Combining Computation
with
Geometry

Thesis by

Sheue-Ling Chang Lien

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California 91125

1985

(Submitted November 30, 1984)

—ii -

Copyright © 1985 by Sheue-Ling Chang Lien. All rights reserved. No part of this
thesis may be reproduced in any form or by any means without prior permission in

writing from the author.

-1 -

Acknowledgement

Thanks to God for bringing a baby boy and two Ph.D.’s to our family in such
a short period of time, and for letting me enjoy the fun of punching the keyboard with
one hand and rocking the baby to sleep with the other.

Thanks to my mother for helping me through the difficult time of being a
new mother and a Ph.D. candidate at the same time. Thanks to my dear husband
for not only being a good father and companion, but also a good collegemate. His
encouragement and support helped me very much—not only in my own personal life,
but also in my study—especially when I became frustrated from looking at a mound

of soiled diapers sitting right next to a stack of unfinished papers.

I am very grateful to my adviser, Dr. James Kajiya, for his patience and
guidance. He was willing to grant me the freedom of venturing into an area which is
largely foreign to my background. Through his direction, I learned the most important
thing: confidence in my ability to identify and address a pertinent research topic. I am

also very grateful to Dr. Derek Fender and Dr. George Lewicki. I sincerely appreciate

their care.

I would like to thank Young-il Choo, Richard Landry, John Tanner and Brian
Von Herzen for helping to polish up this document, and also Peggy Li and Calvin
Jackson for helping to print out this document. I am especially grateful to John Tanner
for his enthusiasm and helpful discussions. Special thanks go to Calvin Jackson, who

is such a nice person, and so willing to help other people.

Abstract

This thesis seeks to establish mathematical principles and to provide efficient
solutions to various time consuming operations in computer-aided geometric design. It
contains a discussion of three major topics: (1) design validation by means of object
interference detection, (2) object reconstruction through the union, intersection, and
subtraction of two polyhedra, and (3) calculation of basic engineering properties such

as volume, center of mass, or moments of inertia.

Two criteria are presented for solving the problems of point-polygon enclosure
and point-polyhedron enclosure in object interference detection. An algorithm for
efficient point-polyhedron-enclosure detection is presented. Singularities encountered
in point-polyhedron-enclosure detection are categorized and simple methods for resolv-

ing them are also included.

A new scheme for representing solid objects, called skeletal polyhedron repre-
sentation, is proposed. Also included are algorithms for performing set operations on
polyhedra (or polygons) represented in skeletal polyhedron representation, algorithms
for performing edge-edge intersection and face-face intersection in a set operation, and
a perturbation method which can be used to resolve singularities for an easy execution

of edge-edge intersection and face-face intersection.

A symbolic method for calculating basic engineering properties (such as volume,
center of mass, moments of inertia, and similar integral properties of geometrically
complex solids) is proposed. The same method is generalized for computing the
integral properties of a set combined polyhedron, and for computing the integral

properties of an arbitrary polyhedron in m-dimensional (R™) space.

Table of Contents

Page

Acknowledgement. iii
Abstract iv
Chapter 1. Introduction, . 1
1.1 Computer-aided geometricdesign. 2

1.2 Solid Modeling it 4

1.3 Thesissummaryot i ittt et e 5
Chapter 2. Point-Polygon Enclosure Detection 12
21 Notation e 13
2.2 A transition criterion for vertex to surface comparison 18

23 Inverse polygon. e 24
24 Degenerate cases. e 25
2.5 Applications. 26
2.5.1 Point-polygon enclosure detection 26

2.5.2 Three-dimensional edge-face-penetration detection 27

2.5.3 Polygon orientation detection 30

254 Verycomplex curves iiitrn ... 31
Chapter 3. Point-Polyhedron Enclosure Detection 35
3.1 Point-polyhedron enclosure detection. 37

3.2 Point-polyhedron enclosure detection algorithm......... . . 38

33 Phaseroutine. 42

Chapter 4. Resolving Singularities in Point-Polyhedron Enclosure Detection 46

4.1 Categorizing singularities 47
4.2 Resolving a V-singularity 51
4.3 Resolving an E-singularity 55
4.4 Resolving complex singularities 56
4.5 Application to 3D edge-face penetration detection 59
4.6 Proof of the singularity criterion 61
47 Discussion e e e e e e 71
Chapter 5. Polyhedron-Polyhedron Intersection 73
5.1 Singularities. e 75
5.2 Edge-edge intersection 83
5.3 Face-face intersection. 86

5.4 Perturbation. e e e e e e e 92

- Vi -

Chapter 6. Skeletal Polyhedron Representation 95
6.1 Skeletal polyhedron representation 96
6.2 Datastructure 104
6.3 Discussiont 107
Chapter 7. Set Operationson Solids 110
7.1 Skeletal polygon representation 111
7.2 Set operationson polygons | 113
7.3 Polygon combination algorithm 119
7.4 Set operationsonsolids 120
Chapter 8. Basic Engineering Properties Calculation. 126
8.1 A symbolicevaluation 129
8.2 Integration over arbitrary nonconvex polyhedra. 133
8.3 Complexity analysis. 139
Chapter 9. Integral over a Set-Combined Polyhedron 141

........................... 144

Chapter 10. Integral Over a Polyhedron in R™ Space 148
10.1 Evaluating an integral over an m-simplex 149
10.2 Evaluation of an R™ transformation 151
10.3 Integration over an R™ polyhedron 153
Chapter 11. Conclusion i . 158
References. 161
Appendix A: Derivation of the integral formula. 164
Appendix B: Integral Algorithm. 165
Appendix C: Introduction to the Topology of Polyhedra 170
1 Rectilinear simplexes 170

2 Simplicial complexes 172
3Polyhedra 173

4 Regularsubdivision 174

5 The cone construction

- Vil -

Figures and Tables

Page
Figure 1. 6
Figure 2. 10
Figure 3. 13
Figure 4. o 15
Figure 5. 16
Figure 6. 17
Figure 7. 18
Table 1. 19
Figure 8. 20
Figure 9. 21
Table 2. 23
Figure 10. 25
Figure 11.o 26
Figure 12. o 27
Figure 13. 30
Figure 14. oL 32
Figure 15. 35

Figure 16. 36
Figure 17.

.. 39
Figure 18. 43
Figure 19. o 44
Figure 20. 45

Figure 21. 48

Figure 22.o 49
Figure 23. 50
Figure 24. o 52
Figure 25. 52

Figure 26. 56

Figure 27. 57
Figure 28. 60
Figure 29. 62
Figure 30. 65
Figure 31. 67
Figure 32. L 68
Figure 33. 69
Figure 34. 74
Figure 35. 75

Figure 36., 76
Figure 37.
Figure 38.
Figure 39.

Figure 40. 81
Figure 41. 83
Figure 42. 89
Figure 43. 90
Figure 44. 96
Figure 45. 98
Figure 46. 98
Figure 47. 99
Figure 48. 100
Figure 49. 103
Figure 50. 110
Table 3. 111
Figure 1. 112
Table 4. 115
Figure 52. 116
Figure 53., 117
Table 5. 118
Table 6. e, 122
Figure 54. 123
Figure 55. 124
Table 7. . . o 125
Figure 56. 130
Figure 57. 135
Figure 58. L 136
Figure 59. 142

-1 -

Chapter 1

Introduction

From the earliest of times, drawings were the primary medium for com-
municating geometry between humans. With the advent of computerized drafting,
cursors and light pens have replaced pencils, drawings are stored in disks and tapes,
and sketches are displayed on ephemeral CRT images. These systems have grown to

permit improved productivity, job specialization, and efficient management of design

specifications through data bases.

However, there are several things which early computerized drawing systems
still cannot do. They cannot, for example, automatically calculate the mass properties
of defined objects, or produce perspective views that automatically eliminate hidden
lines, or perform a union or intersection operation on two defined objects. These
deficiencies are surprising because the tasks themselves are mathematically well-defined,
and it is reasonable to expect that they could be performed automatically. The
solution to this problem resulted in a new generation of computerized drawing sys-

tems, the so-called solid-modeling systems.

“Solid modeling” is a subject which involves the representation, specification,
design, manipulation, display, and analysis of free-form curves and surfaces. It encom-
passes an emerging body of theory, techniques, and systems focused on “informationally
complete” representations of solids, that permit any well-defined geometrical property
of any represented object to be calculated automatically. This field draws on tech-
niques and principles from several lines of research, including numerical analysis, ap-
proximation theory, computer graphics, interactive computer systems, and mechanical
and geometric design. We expect this new generation to remove the major roadblock to

flexible automation and advance the “A” in CAD/CAM from “aided” to “automated.”

-2 _

1.1 Computer-aided geometric design

It is naturally appealing to develop a system containing full descriptions of
the geometric and physical properties of objects and their relationships, on which a
mechanical engineer can generate an initial design interactively, perform engineering
calculations, and describe the properties and shape of each part. The designer could
interact with a 2D display screen using a keyboard, a cursor, and perhaps a light pen
to indicate position and parameter values. The screen might contain multiple views
with perspective projections. The rendering could follow a selected drawing standard
that eliminates hidden lines, and the designer could express a design directly in 3D

rather than as multiple 2D projections.

Further, a mechanical engineer would be able to specify such properties as the
material type, the heat treatment parameters, and the surface finish of a part. The
shape would constitute a complete description of the geometry of a part, including
all relevant information, such as mass, surface area, and center of mass. As the
design development extended from a single part to multiple parts assembly mechanism,
the relationships among parts could be investigated. Static interferences could be
checked, dynamic interferences that would occur as parts moved along trajectories
could be detected, and mechanisms could be simulated. As the design moved into
the manufacturing stage, the same engineering data base could be used again. If a
part were to be machined, the numerical control (NC) programs would be generated
automatically; if a part were to be cast or molded, the dies would be designed and the

NC programs generated.

At any stage of the initial design and subsequent refinement process, a designer
could perform design analysis studies appropriate for the level of detail entered thus
far. These studies might. involve individual objects or design validation in between
objects in an assembly, and the analysis might cover computation of basic engineering
properties of parts. The basic engineering properties of a geometric object in which we
are interested include surface area, volume, center of gravity, and moments of inertia

of the object. Each of these may be readily calculated by appropriate integration of

-3 -

the object. The results of the analysis could be used to confirm the validity of the

design or to provide guidance for corrective actions.

Object interference detection is one of the procedures in design validation
which investigates geometric interference relationships between parts. The aim is to
determine whether parts fit correctly, whether mechanisms move correctly, or whether
tolerance distributions are correct. An interactive geometric graphics system allows
the designer to define the position and orientation of each object, and to “fly” objects
into their correct relative positions. When positioning must be simulated many times,
a more powerful technique uses a symbolic description of placement to express the
geometric and spatial relationships between objects. This approach allows a procedural
description of an assembly sequence; for example, execution of an assembly procedure
causes models of the parts to be fetched from a parts library and a scene to be composed
with the objects in their correct relative positions. If the designs of objects are changed
so that the positions of features are changed, then re-execution of the procedure allows

the scene to be recomposed with the parts automatically in their new relative positions.

When simulating the spatial positions of solid objects, it is possible to detect
physically unrealizable situations in which objects occupy the same region of space.
Object interference detection involves simulating objects in their desired positions and
testing to determine whether they are disjoint, whether one object is contained in
another, or whether one is partially inside and partially outside the other. It is also
possible to test whether an assembly is physically realizable by performing dynamic
interference checking: determining whether there is a collision-free trajectory for a
part to reach its final position. If no collision-free path can be found, then the
assembly cannot be built. This problem then becomes one of testing for collisions
between boundaries as objects move-discovering when the edge of one object pierces
a face of the other. It is important to notice that although the objects themselves are
polyhedral, they may still approximate objects with curved surfaces. Interference tests
between polyhedral objects are only meaningful when the error between the polyhedral

approximation to curved surfaces is less than the minimum intended distance between

parts.

- 4 -

Other features are also required in order to produce a complete description of
objects. For instance, a designer should be able to indicate that an entity is part of
a complete object, and in addition, whether the part contributes a positive (“solid”)
or negative (“hole”) volume to the object. Complex shapes can be formed by “gluing”
or “molding” together simpler shapes (formally speaking, téking the set union or the
set intersection of polyhedra), or, conversely, by “cutting and drilling” sections out of
parts (taking the set difference of polyhedra). This method greatly reduces the burden
of describing all the points, lines and surfaces which define a complex part’s polyhedral

representation.

1.2 Solid Modeling

Solid modeling is the interactive computer graphics technology used to describe
mathematically accurate three-dimensional objects. It has been touted as the tech-
nological solution to automating and integrating design and manufacturing functions.
The technology is important because of the new dimension it brings to CAD/CAM.
The wide range of activities to which the data base can be applied is what makes solid

modeling so highly significant.

Mechanical design and manufacturing environments pose specific demands
upon the solid modeling technology. Most of the solid modeling systems in mechanical
design/manufacturing environments were installed to test the feasibility of integrating
these two functions. Recently, however, these systems have started to be shifted toward
the design development and structure analysis of actual parts and assemblies. Objects
specified and designed using a solid modeling system can be manufactured from a

shared database.

Although solid modeling has been used in conjunction with a number of ap-
plications including animation production for film-making, the greatest potential for
solid modeling is not these displayed images but the ability to provide a more complete
part description for design and manufacturing. The technological constraints for a

solid modeler for mechanical engineering differ so much from those of the film industry.

-5 -

Systems capable of developing solid-looking images could be used for the film industry,
but they may not be sufficient for using in a mechanical design/manufacturing environ-
ment. The major requirement of a solid modeler for mechanical engineering application

1s to be able to build and contain unambiguous representations of parts or assemblies.

Constructive solid geometry (CSG) and boundary representation (B-rep) are
two methods of storing the requisite geometry in a computer system. With CSG, an
object is represented by a tree-like data structure that describes how the object is
built up from simpler objects. Boolean operations are used to combine the simpler
objects. At the bottom of the tree are primitives such as cubes, spheres and cones
which constitute the foundation of this building process. Boundary representation is
a list of the surfaces, or boundaries, of an object. The advantage of using boundary
representation is that solid images can be generated quickly and the solid content of
the object can be computed easily. A problem in using this type of construction is
ensuring its validity, both combinatorially and geometrically. The advantage of using
CSG is that it guarantees the validity of an object, howevér, it usually requires an

enormous amount of time to generate the display of an object.

Other important attributes required by a solid modeling system include such as
a friendly user interface, the ability to interact with the model and make modifications,

reliable operations within the system, and the ability to apply structural analysis, etc.

1.3 Thesis summary

Today, the increasing speed, capacity, and connectivity of computers and
the related advances in display and data entry devices make possible such important
engineering advances as direct computation of the area, volume, and mass properties
of three-dimensional objects. However, these breakthroughs are governed by both
the complexity of the geometry involved and the complexity of computation desired.
Besides the task of rewriting known formulas in a programming language, engineers
face other significant obstacles in solid representation, data structures, algorithm

design, complexity analysis, etc.

Solid Modeling

asic Engineering
A

Design Validation @metry Reconslruction)

Properties

Calculation

Y
/ flz.y. z)dv
Q

Perturbati
ion .
Volume. Barycenter

A [9

Skeletal Q=AUuB
@ Polyhedron @=ANB
Representation @Q=A-B

y Y
QU@ f flz.y.)dv
QNQ: Q
Q-Q @ in R™ Space

“

Conclusion

and
Future Work

Figure 1

Flowchart of the thesis.

-7 -

The goal of this research is to contribute to the resolution of some of these
issues by exploring powerful means for dealing with geometries. It does this by ex-
ploiting basic theorems to strengthen the theoretical foundations of solid modeling; by
proposing a new scheme for solid representation; and by developing efficient algorithms
for solving some persistent engineering problems and for calculating engineering-related
properties. It includes a discussion of three specific topics: (1) design validation by
means of object interference detection; (2) object reconstruction through the union,
intersection, and subtractions of two polyhedra; and (3) the calculation of basic en-
gineering properties, including volume, center of mass, and moments of inertia of

designed objects. Figure 1 describes the organization of this work.

The first part of the thesis (Chapters 2-4) offers a new approach to the com-
mon problems of point-polygon enclosure detection and point-polyhedron enclosure
detection in design validation. Point-polygon enclosure detection is one of the most
time-consuming operations in the elimination of hidden lines on a graphic display;
and 1t is also a major operation of object interference detection in two-dimensional
space. Point-polyhedron enclosure detection is a major operation of object interference
detection in three-dimensional space. An efficient execution of point-polygon enclosure
detection and point-polyhedron enclosure detection can significantly improve both the
speed of object interference checking and the performance of the user interface in a

solid modeling system.

Chapter 2 proposes a transition criterion for detecting points enclosed in a
2D polygon, which determines the containment relationship by means of as many
line equation computations as the number of edges of the polygon. By using the
criterion, one does not need to pay special attention to some singular situations which
are considered troublesome in using a conventional 2D enclosure detection method.
The criterion can also be applied to solving an edge-face-piercing problem, detecting
the orientation of a polygon, and detecting whether a point is enclosed by a curve

represented with strip-trees.

Chapter 3 presents an efficient algorithm for solving 3D point-polyhedron

-8 -

enclosure problem. This form of detection, conventionally made by drawing a testing
vector from the point to infinity and counting the number of faces penetrated by a
testing vector, it is indicated by an odd parity of intersections. The new algorithm
improves in efficiency by searching only for the closest face which penetrated by a
testing vector; and as a result, it takes on the average, about half the amount of work
as the conventional techniques do. In the best case, it reduces the original 3D enclosure
problem into only one 2D point-polygon enclosure detection. In the worst case it would

take only as many 2D point-polygon enclosure detections as the conventional techniques
do.

A singularity in 3D point-polyhedron enclosure detection is a case in which
a testing vector coincides with a vertex, an edge, or a face of the polyhedron. The
presence of singularities can impair the parity count of intersections. One benefit of the
new approach is that it not only handles common cases well, but that it also handles
singularities in an efficient procedural fashion. A criterion for solving such cases is
proposed in Chapter 4, as a generalization of the transition criterion in Chapter 2. The
singularity criterion leads to a simple method for correctly resolving all the singularities
possibly encountered, and yet requires only as many plane equation calculations as the
number of faces connected to the vertex that induces the singularity. This criterion is
applicable to arbitrary nonconvex polyhedra and has no restriction on the number of

faces to which a vertex can be connected.

This chapter also categorizes all singularities encountered in 3D point-polyhe-
dron enclosure detection, and includes simple methods for solving them. Singularities
are categorized into two basic types, V-singularity and E-singularity, and four complex
types, V-V-singularity, V-E-singularity, E-E-singularity, and F-F-singularity. A V-
singularity is a case in which a testing vector intersects a vertex of a polyhedron but
is not coplanar with any of its converging faces. An E-singularity is a case in which a
testing vector intersects an edge of the polyhedron but is not colinear with the edge.
A complex singularity is one in which a testing vector is coplanar with a face of the
polyhedron, it can always be decomposed into a combination of two basic singularities

by bending the testing vector.

-9 -

The second section (Chapters 5-7) proposes new representational strategies to
replace conventional techniques, including algorithms for performing edge-edge inter-
section and face-face intersection; a perturbation method which can be used to trans-
form two objects into a singularity-free situation for an easy execution of edge-edge
intersection and face-face intersection; a new scheme for solid-object representation
called skeletal polyhedron representation; and algorithms for performing set operations

on solids represented in skeletal polyhedron representation.

The perturbation method proposed in Chapter 5 is a technique used to trans-
late two objects into a singularity-free situation so that a set operation on the two
objects can be performed without resorting to the kinds of irregular procedures that
singularities conventionally demand. Perturbation is applied in an early stage of edge-
edge intersection (in a set operation on two polygons) or face-face intersection (in a
set operation on two polyhedra). The advantage of applying this technique at these

stages is that singularities can then be resolved independent of the set operation to be

performed.

The first step of performing a set operation on two polyhedra is polyhedron-
polyhedron intersection. Perturbation is a technique that greatly simplifies this step.
Polyhedron-polyhedron intersection compares two polyhedra to find all the intersec-
tions between them. It is composed of several independent face-face intersections which
compares one face from each polyhedron to determine the intersection between the
two faces. Face-face intersection is conventionally solved by decomposing it into mul-
tiple edge-face-penetrations and reducing the problem into multiple 2D point-polygon
enclosure detections. An efficient technique [9] is used instead which determines the

intersection between the two faces by directly merging the ordered cut-edge lists from

each face.

Skeletal polyhedron representation discussed in Chapter 6 is a new way of
describing solids on the basis of their topological relations. This simple method
represents solids by means of the connection and the order between vertices. Boundary

faces in this representation are implicit. However, skeletal polyhedron representation

- 10 —

I

Figure 2

Several similar objects are constructed out of one wire frame repre-

sentation.

1s different from the conventional wire frame representation which describes solids

simply by their vertices and edges. As Figure 2 shows, objects described in wire frame

representation may be ambiguous.

Chapter 7 discusses skeletal representation for polygons and algorithms for
performing set operations on polygons and polyhedra. A planar polygon described
in a skeletal representation scheme contains a set of vertex representations; a vertex
representation describes the relationship between a vertex and its right- and left-hand
neighbors. Although boolean operations on solids can be time-consuming, skeletal
polyhedron representation simplifies matters in the case of the set operation in par-

ticular, by resolving it into easier local operations.

The last section (Chapters 8-10) offers a particularly efficient algorithm for the
calculation of basic engineering properties, such as volume, center of mass, moments
of inertia, and similar properties of geometrically complex solids. Volume, center
of mass, moments of inertia, etc., are defined by triple integrals over subsets of
three-dimensional Euclidean space. Because such quantities figure prominently in
static and dynamic simulation equations, where the mass of an object or the effects
during rotation must be calculated prior to manufacture, the ability to compute

integral properties of geometrically complex solids is an important goal in the field

- 11 -
of CAD/CAM.

A symbolic method for computing integral properties of an arbitrary, possibly
nonconvex polyhedron is proposed in Chapter 8. This method works by decomposing
a polyhedron systematically into tetrahedra and accumulating integral results from
each tetrahedron. An equation is also presented that supplies a direct solution to the
integral of a polynomial over a tetrahedron and thereby permits symbolic integration
over the polyhedron. This method is analytically exact and applicable to the integral
of arbitrary polynomial functions. The time complexity of the method is linearly

proportional to the number of vertices of a polyhedron.

A symbolic method for computing the integral properties of a set-combined
polyhedron is presented in Chapter 9. A set-combined polyhedron is one which is
expressed as the union, intersection, or subtraction of two polyhedra. This method is
an extension of the method presented in Chapter 8. It shows how integral properties
of a set-combined polyhedron can be calculated without reconstructing the polyhedron

by a set operation.

In Chapter 10 the method above is generalized to permit computation of the
integral properties of an arbitrary polyhedron in an m-dimensional (R™) space. This
issue features prominently in the fields of linear programming and program analysis
mechanization, where the probability that a conditional will yield the value ‘true’ or
‘false’ from a path in a program may be determined by the ratio of the volumes of two
polyhedra: the polyhedron representing the conjunction of linear inequalities along the
path, and the polyhedron representing the boundaries of the variables. Computing the

volume of an R™ polyhedron is the key to solving this problem.

- 12 -

Chapter 2

Point-Polygon Enclosure Detection

Testing for point-polygon enclosure plays an important part in many tech-
niques common to computer graphics, including ray tracing [1, 13, 27, 31}, hidden-line

elimination [28], and constructive solid geometry[4, 22, 26].

In ray tracing, for example, it is necessary to find the intersection of a given
ray with a polygon, by finding the point of intersection of the ray with the polygon
plane, and then, by testing for enclosure of that point by the polygon.

Similarly, hidden-line elimination procedures must test for point-polygon
enclosure when determining whether a vertex of a screen-projected polygon is hidden
by a face. This occurs when the vertex and eye lie on opposite sides of the face plane

and when the screen-projected point is contained within the polygon.

Finally, constructive solid geometry, it is advantageous to determine point-
polygon enclosures quickly when transforming an object representation of a boolean
combination of primitives to a polyhedral representation. For example, to intersect
two polyhedra, one may compare each face of one polyhedron to every edge of another
polyhedron and vice versa [4, 22]. This edge-face-penetration detection involves testing
for opposition, intersection locus, and enclosure. The opposition test entails checking
whether two ends of an edge are on opposite sides of the plane containing the face:
the intersection locus test locates the point where an edge pierces a plane; and the
enclosure test detects whether the piercing point is within the face, i.e., whether the

edge really pierces the face.

Each of the above procedures requires comparison of a point with a simple
polygon, either in two-dimensional or three-dimensional space. In this chapter we
present a transition criterion for determining whether a given point lies to the interior
or exterior of a polygon. The criterion is described first in two-dimensional space,

where a face is simply a two-dimensional simple polygon. Later, we redefine several

~ 13 -

Figure 3

(a) Polygon @ is a convex polygon. Vertex v is a convex vertex. (b)

polygon Q3 is a concave polygon. Vertex v4 is a concave vertex.

terms used in describing the transition criterion so that we can apply it to edge-face-
penetration detection, in which a face is a planar simple polygon in three-dimensional
space. In the last section we also describe how this technique can be applied to very

complex curves and in determining the orientation of a polygon.

2.1 Notation

Let a simple polygon @ be represented as an ordered list (vi,ve,..,vp) of n
vertices. Each pair of consecutive vertices, (v;, vi41) in which 4 =1, .., n, constitutes a
directional line segment, edge E;. No two nonconsecutive edges intersect. Each vertex
vi 1s represented as a pair < z;,y; > where z; and y; are its x- and y-coordinates
on the plane. The polygon Q divides the plane into interior and exterior regions. For
convenience, we assume in this thesis that vertices of a polygon are always ordered in
a clockwise direction so that the interior of Q always lies to the right when the edges

of @ are traversed.

An edge E; is a vector from vertex v; to vertex v;4;. A vertex, say v, is

- 14 -

defined as convez if the angle between edge E;_, and edge E; is less than 180 degrees,
as with 6; in Figure 3a; otherwise it is concave, as with 02 in Figure 3b. A polygon
1s defined as convex polygon if it contains no concave vertex. If it does, however, it is
called a concave polygon. We can associate with each polygon @ = (vy, ...vn), a vertex
pattern (V P) which describes the convexity and concavity of its vertices:

VP(Q) = (vp1,vps, ..., vpy), where

vp; =1 if vertex v; is convex 2.1)
= —1 if vertex v; is concave

Let < z;,y; > and < x4y, y;41 > be the coordinates of the vertices of an

edge E; =(v;, vi11). We can describe a line L; which contains an edge E; by a line

equation Li(z,y) = 0:

Li(z,y) : ax + by + ¢ = 0, where
C=Yi+1 Y
b= z; — iy, (2.2)
C= Zin1¥i — TiYi+1

where < a,b > is the normal vector of the edge pointing toward the interior of a
polygon. A line divides a plane into two regions: the positive, containing those points
satisfying Ly(x,y) > 0, and the negative, containing those points satisfying L¢(z,y) <
0. We choose the normal vector to point toward the interior of Q@ so that the interior
of @ always lies in the positive region of an edge when edges of Q are traversed. Here

regions of an edge are referred to the regions separated by the line containing the edge.

Given a simple polygon Q = (vy,ve,..,v,), and an arbitrary point P =<
z,y >, we can associate a point P with a region pattern (RP), describing in which

region of each edge of a polygon Q the point lies. The region pattern bit is Ry = +1if

P lies in the positive region of edge E;; R; — — if P lies in the negative region:
RP(P,Q)=(Ry, R, ...,Ry), where
P=<uzy>
Ry =+ if Li(z,y) > 0, (2.3)

By = —if Ly(z,y) <0,

{a) ®)

Figure 4
(a) Point P; is an interior point and point P is an exterior point

of a convex polygon. (b) Point P is an exterior point of a concave

polygon.

We know that an interior point of a convex polygon Q must lie in the positive
regions of all edges of @, such as P; in Figure 4a. If a point P lies in any one of the
negative regions, P must be exterior to @ , such as P; in Figure 4a. Therefore, if a
polygon is convex, we can easily tell whether a point is inside or outside. However,
with a concave polygon, a point may lie in the negative region of an edge, however,
still in the interior of polygon, P; in Figure 4b. In this case, a nonzero region pattern

no longer implies that a point is in the exterior.

The transition criterion, permits us to detect in which region of an arbitrary
polygon a point lies. We will first use a convex and a concave polygon as examples.
Polygon @) in Figure 5 is a triangle composed of three convex vertices vq,vg, and
v3, and three edges Ey, Eg, and E3. The vertex pattern VP(Q) equals (111). Three
lines Ly, Ly, and L3 through edges Ey, Ep, and Ej3, respectively, split the plane into
seven disjoint regions, A, B,C,D, E, F, and G. All points residing in the same region
have the same region pattern, and we can associate each region with a unique region

pattern. Region A, which is an interior region of @ , has region pattern RP(A) —

e VIR INDIIIIIINS N L
- s 2

E Ué E2 U..z &
=) F (--+)
Figure 5

Polygon @ is a triangle with three convex vertices vy, ve, and vg,
and three edges Ey, Ep, and E3. Its vertex pattern is VP(Q;) =
(111); Lines Ly, Ly, and L3 split the plane into seven disjoint regions,
A,B,C,D,E,F, and G. Each region has a unique region pattern.

(+++). Any point residing in region A has the same region pattern (+++). Region

patterns of other regions are as follow:

RP(A) = (+++), RP(B)=(—++), RP(C)=(—+-), RP(D) = (++-),
RP(E) = (+——), RP(F)=(+—+), RP(G)=(—).

We define a transition patiern (TP) of a point P as the transition state in its
region pattern. We say that P has a transition between R; and Riyq if Ry 54 Ryyy,
ie., (Ry, Riy1) = (—+) or (+—). A transition pattern of a point P is defined as

TP(p) = (Ty, Tz, ..., Tp), where
111: =0, if Rl'—-l = R",
=1, if R; ;3% R;and vertex v; is convex, or (2.4)
=-—1, if R;_ 15 R;and vertex v; is concave.

If a bit T; = +1, it indicates that P has a transition between edges F;_; and E; . If
T; = 0 we say that P has no transition at vertex v; , as in Figure 6a; if T; = 1, P

has a convex transition at v; , as in Figure 6b; if T; = —1, P has a concave transition

- 17 -

) (®)

Figure 6
(a) Point P has no transition at vertex v;, (b) P has a convex transition

at v;, (¢) P has a concave transition at v;.

at vy , as in Figure 6c. A region is also associated with a unique transition pattern.
The transition pattern of a point would also be the transition pattern of the region in
which it resides. Region A has TP(A) = (000) since it has no transition. Region B has
TP(B) = (110) with two transitions between (R3, R1) and (Ry, Rz) and no transition

between (Rg, R3). Following is a list of transition patterns for polygon Qg :
TP(A) = (000), TP(B)=(110), TP(C)= (011), TP(D) = (101),
TP(E)=(110), TP(F)=(011), TP(G)= (101).
We define a total-transition of a point P as

n
Transition(p) = > _ T;
1

From the above example we can see that region A is an interior region and is the only
region having zero transitions. All the others are exterior regions and each has a total

transition of two.

Another example is illustrated in Figure 7 where Qg is a concave polygon

composed of three convex vertices vy, vg, v3, one concave vertex vg, and four edges

~ 18 -

Figure 7

Polygon Q3 is concave with vertex pattern VP = (111 —1).

Ey, Eqg, E3, and Ey4. The vertex pattern is VP(Q2) = (111—1). There are eleven disjoint
regions, A, B,...K within @ separated by four lines L;, Lg, L3, and Ly through edges
Ey, Ep, E3, and E4. The region patterns, transition patterns, and total transitions
of Q2 are listed in Table 1. It shows that regions A, B, and C are interior regions

with zero transition; regions, D, E, ... K, are exterior and each has exactly two total

transitions.

2.2 A transition criterion for vertex to surface comparison

The transition criterion can be formally described by the following proposition:

I If a point P resides in the interior of a simple polygon @ , it has an equal number
of convex and concave transitions. In other words, it has a total-transition of

Z€ero.

1L If a point P resides in the exterior of a simple polygon Q , it has two more

convex transitions than concave transitions. In other words, it has a total-

- 19 -

RP TP total
region (region (transition | transitions
pattern) pattern)
A (+4+++) (0000) 0
B (++—+) (001-1) 0
C (+++-) (100-1) 0
D (+—+-) (111-1 2
E (+—++) (0110) 2
F (—++) (1010) 2
G (—+++) (1100) 2
H (—+—+) (111-1) 2
I (—+——) (0110) 2
J (++——) (1010) 2
K (+——) (1100) 2
Table 1

The region patterns, transition patterns, and total transitions of Q2

transition of two.

The remainder of the section presents a proof of the transition criterion.
However, the proof is not crucial to understanding the rest of the chapter. The proof
of the transition criterion proceeds in the following way:

Step 1. An tnternal triangle of a polygon is a triangle formed by three vertices of the
polygon and located completely within the polygon. A simple polygon can
always be decomposed into a set of mutually disjoint internal triangles.

Step 2. A simple polygon can be rebuilt by recomposing the internal triangles. During
each recomposition, two partly built polygons share only one edge.

Step 3. A triangle has already been proved in the second section to satisfy the transi-
tion criterion. |

Step 4. If a simple polygon @ = (v1, .., Um+n—2) is formed by the union of two semi-
disjoint simple polygons Qg = (vl,.., o) and Qp — (v%, .., vy) where Qg and
Qp share one edge and Q4 and @y both satisfy the transition criterion, polygon

Q also satisfies the transition criterion.

- 920 —

(&) ¢)

Figure 8

(a) The line segment (v;_ 1, v;;1) splits a polygon into two smaller non-
overlapping polygons. (b) The line segment (v;, v;) splits a polygon

into two smaller nonoverlapping polygons.

To prove that a simple polygon can always be decomposed into a set of internal
triangles, we show that within an arbitrary simple polygon Q = (v, .., vp) With n>3,
we can find at least a pair of nonconsecutive vertices v; and vj, so that the line segment
Sij connecting the two vertices is located completely in the polygon and splits polygon
@ into two smaller nonoverlapping simple polygons. Since there is at least one convex
vertex vy within an arbitrary simple polygon Q, a triangle 7 = (vi—1, V4, Vi41) can be
formed with its two neighboring vertices v;_; and v;;;. If none of the other vertices of
Q 1s inside triangle T, triangle T is completely in the interior of polygon Q. In this case
the line segment S'(,-_ 1)(+1) connecting vertices v;_; with v; .1, is the segment which
splits polygon @ into two smaller simple polygons, Figure 8a. If there are vertices
located inside the triangle T, the line segment Si;j connecting v; to the closest vertex
v; Is the one which splits the polygon @ into two smaller simple polygons, as in Figure
8b. Polygon @ can be split along line segment Si;j into two smaller simple polygons.

By induction, the polygon can be decomposed into a set of internal triangles where no

two triangles overlap.

- 921 -

Uit i

EL Qa Ex
(2
T

O¢ /k - ‘5

Te T 5

Ef ES *P
Vi Q b L!.-I'H
Figure 9

Polygon Q is the union of Qg and Q. T3 and T2 are the transition
pattern bits of P in polygon Qg in between edges (EL, E) and (E,
E2), respectively. T} and T are the transition pattern bits of P in
Q® in between edges (El, E) and (E, E%), respectively. Tj and Ty
are the transition pattern bits of P with respect to the new polygon

in between edges (E3, E}) and (E2, Eg), respectively.

Let P be a testing point and @, = (vl,..,v™) and Q; = (vi, ., V}) be two
simple polygons satisfying the transition criterion. A new simple polygon Q is formed
by the union of Qg and @ under the following two conditions :

I : Qa and @Qp share exactly one edge;

I the interiors of Qg and @ are disjoint.

Let edge E =(v;, v;) represent the edge shared by Qg and Q. The new polygon Q =
(v1,.., Ym+n—2) , as shown in Figure 9, contains a total of m + n — 2 vertices, where
each vertex belongs to either Qg or @), with the exception of vertices v; and v; which
belong to both. Edges EL = (v;,v;41) and E% = (vj—1,v;) are the neighboring edges
of E within the polygon @, . T1 and T2 are the transition pattern bits of P with
respect to edge pairs (EL , E) and (E , E2), respectively. Edges E} = (v;_y,v) and
E% = (vj, vj+1) are the neighboring edges of F within polygon @}, and T}, and Tf are

— 922 _

the transition pattern bits of P with respect to (E} , E) and (E , E2) respectively.
As the new polygon Q is concerned, Ty and Ty are the transition pattern bits of P
with respect to (EL , E}) and (E2 | E%), respectively.

The transition criterion can be easily proved by foliowing three fundamental
theorems.

1. (Combination Requirement):

For two polygons @, and @} to be combined under conditions I and I, the
transition pattern bits with respect to Q4 and Q, on both ends of the shared edge

must satisfy the constraints:
Ty +Tt >0and T2+ T3 >0

2. (Local Transition Reservation):

If polygon @ is the union of Qg and Qp under conditions I and II, the transition
pattern bits with respect to Q , Qa, and @ on both ends of the shared edge must
satisfy the equations:

n =TL+T}—1

(2.5)

T, =TZ+TE-1

3. (Combinatorial Transition Reservation): If polygon @ is the union of Qq and Qy
under conditions I and II, the total transitions with respect to Q , Qq, and @p must

satisfy the equation:

TT =TTa+TTb—2, where
m+n—2

TTa=3"T., TTo—S°Ti, and TT— ST (2.6)
1 1 1
In the above equation T'T, TTa, and TTb denote the total transitions of point P with
respect to polygons @ , Q4 , and Q) respectively.

For two polygons to be combined under the two conditions listed above, the
combination requirement placed on the transition bits is that the summation of the
transition bits of the shared vertex must be greater than zero. If the transition bits on
the shared vertex are as listed in cases (7), (8), or (9) in Table 2, then the two polygons

cannot be combined under the two conditions.

- 923 -

T! T} Ty
1 1 1 1 ,
2 1 0
3 0 1 0
4 0 0 -1
5 1 —1 —1
6 —1 1 —1
7 0 -1 nonexist
8 -1 0 nonexist
9 -1 -1 nonexist

T,ll is the transition pattern bit of P with respect to polygon Qg
in between edges E1 and E.

T2 is the transition pattern bits of P with respect to Qg

in between edges E and E2.

T; is the transition pattern bits of P with respect to polygon Q
in between edges El and E}.

Table 2

We prove the local transition reservation simply by listing the transition pat-
tern bits Ti, T!, and Ty in Table 2 to show that Ty =T+ T% — 1 15 always true.
The transition pattern bit T3 combined from T2 and T? also follows the same rule.

Next we prove the relation of combinatorial transition reservation by showing
that (1) for a vertex vy of @ which originally belongs to Qg but not to Q; , the
transition pattern bits are the same for @ as for Qg, i.e., Ty = T{;; and this statement
also holds true when vy originally belongs to @ but not to Q, ; (2) for the two vertices
v; and vj; shared by @, and @} , the transition pattern bit 77 and T must satisfy that
Ty =T+ Tl —1and T = T2 + T% — 1; (3) the total transition of Q , therefore,
satisfies TTa + TTb — 2.

We then prove the transition criterion by the combinatorial transition reserva-
tion theorem, showing that, given two polygons satisfying the criterion, a new polygon

combined from them still satisfies the criterion. Assuming that P is in one of the

- 94 —

polygons, say Qg, then the total transition of P on Q4 equals zero and that on @ equals
two. Through the combinatorial transition reservation theorem, the total transitions
of Pon Q is zero, i.e., TT = TTa + TTb—2 = 0. Since P is in the interior of Qq,
then P is in the interior of the combined polygon Q, and the above result satisfies
the transition criterion. If P is in neither Qg nor Qp, then P has two transitions on
both Qg and @ , ie., T2 =T} =2, and P is in the exterior of the combined polygon
Q. Therefore, it is proved again that the total transitions of P on Q is two (ie.,

TT =TTa+ TTb—2 =2). this also satisfies the transition criterion.

2.3 Inverse polygon

An inverse polygon is one in which the finite region confined by the perimeter
of the polygon is the “exterior” and the remaining infinite region is the “interior”. The
transition criterion for an inverse polygon can be described as follows:

L If a point P is enclosed in an inverse simple polygon Q, that is if P resides
in the exterior of the polygon, the point has an equal number of convex and
concave transitions. In other words, it has a total-transition of zero.

1I. If a point P is not enclosed in an inverse simple polygon Q , that is P resides
in the interior of the polygon, it has two more concave than convez transitions.
In other words, it has a total-transition of —2.

Polygon @ in Figure 10 is an inverse polygon with three concave vertices. Its
vertex pattern is VP(Q) = (—1 —1 —1). The equations of lines L;’, Ly’, and L3’
containing the edges E;1’, Ey’, and E3’ respectively, are defined opposite manner from
the line equations in Figure 5, ie., L1 (z,y) = —Lyi(z,v), Ly(z, y) = —Ly(z, y), and
Ly'(z,y) = —Ls(z, y).

The region pattern and the transition pattern of the seven regions divided by
Ly’,Ly’, and L3’ can also be defined as previously described. It is easy to see that only
the three exterior regions have zero total transition; each of the other regions has a

total transition of minus two.

- 95

Figure 10

An inverse triangle.

2.4 Degenerate cases

We have excluded the degenerate cases during the above discussion by assum-
ing that every region pattern bit can always be defined. However, in the case where
a testing point is standing right on an edge or on the extension line of an edge, the
line equation value is zero and that particular region pattern bit cannot be defined.
Such situations are referred as degenerate cases. The way to solve a degenerate case
is to first discover whether the testing point is standing right on the edge or simply
on the extension line of an edge. In the former case the testing point is located on
the polygon, and such a situation can be easily detected. In the latter case, where a
testing point is located on the extension line of an edge but not directly on the edge, we
can always substitute the region pattern bit with a positive sign so that the transition
criterion can still be applied.

Figure 11a shows a deliberately produced case where the testing point P is
located on the extension lines of four edges. The line equation values of P with respect
to each of the above four edges, Eg, E4, Eg and Eg, each equals zeros. However,
by substituting the region pattern bits of Ey, E4, Eg and Eg with positive signs, we

transform the problem virtually into the case as shown in Figure 11b. In this situation

- 26 -

(a) (b)

Figure 11
(a) Point P is located on the extension lines of edges Ey, E4, Eg and

Eg. (b) The polygon is virtually perturbed so that P does not lie on

the extension lines of the edges.

there are no more degenerate cases, and the original point-polygon enclosure problem
can still be correctly resolved with the result from the virtual case. Therefore, the

transition criterion is not crippled by the degenerate cases.

2.5 Applications

2.5.1 Point-polygon enclosure detection

We show a more complicated example in Figure 12, where polygon @ has
seven convex vertices, four concave vertices, and eleven edges. Polygon Q has vertex
pattern VP(Q) = (1,—1,1,1,1, —1,—1,1,1,~1,1) in which v, vg, v7, and vy are
concave vertices. Point P; has a region pattern RP(P;) = (—++———+++—+), and
transition pattern TP(P;)=(1,—-1,0,1,0, 0,—1,0,0,—1,1). Point P; has three convex
transitions at vy, v4, and vy, and three concave transitions at vg, vy, and v10. We can
see that P; has a total-transition of zero, implying that P is in the interior of Q.

Point Py has region pattern RP(P;) = (—+—+—+—++—+), and transition pattern

—97 _

Figure 12
Point Py has region pattern RP(P;) = (—++———+++—+). Point

P, has region pattern RP(Pp) = (—+—4—-+—++—+).

TP(Pz) =(1,-1,1,1,1,—1,—1,1,0,—1,1). P, has a total-transition of two, including
SIX convex transitions at vy, vs, vy, vs, vg, v11, and four concave transitions at Vg, vg, V7,

and vyp. According to the transition criterion, Py is exterior to Q.

2.5.2 Three-dimensional edge-face-penetration detection

There are three steps in edge-face-intersection detection: opposition, intersec-
tion, and enclosure. Given a face F and an edge E, the opposition test determines
whether both ends p; and py of an edge E are in opposite half-spaces with respect
to the plane G containing face F. An edge E is represented by its two terminals
E = (p1,p2) with coordinates p; =< z1,y;,2; >, and py =< Z9,Y2,29 >. A
plane G containing F' can be represented as a four-element vector G — (a,b,¢,d) in
the homogeneous space. If the following plane equation values G(Py) and Pp.G have
opposite signs, i.e., G(P;)G(P;) < 0, we know that points P; and P, are in opposite
half-spaces of plane G. we know that edge E pierces through plane G.

G(Pl) =P.G=ax) + b.y1 +c.p +d,
G(Pz) = PG =a.x9+bys + c.z9 +d.

- 928 -

The intersection test locates the point where an edge pierces a plane G. First
we represent a point P on a line in between points P; and P; by a parametric equation:

P = P1 + a(Pz —Pl),

=<ztalrz—z), ntaoyz—w), z+olzz—=z)>,
where o is a parameter, and 0 <= o <=1

(2.7)
A piercing point can be found by means of interpolating between Py and Ps. Since the

piercing point P is located in plane G, the plane equation value equals zero:

afz1+a(zg —z1)] +blyr + oy —y1)] +elar + oz —)] +d =0 (28)

We can solve equation (2.8) for o :

a=G(p)/(Glp1) —G(Py) (2.9)

The enclosure test determines whether an edge really pierces the interior of a face; in
other words, tells whether the piercing point is within the face. However, the transition
criterion discussed so far applies only to simple polygons in two-dimensional space. In
face-piercing detection, a face is a planar simple polygon in three-dimensional space
and so is a piercing point. The transition-criterion is still applicable to the face-piercing
detection, after redefining simple polygons in a three-dimensional space.

A 3D simple polygon is a planar polygon located in three-dimensional space.
A 3D polygon @ can be represented as an ordered list (vy, v, .., vn) Where vy, vg, .., vy
are a sequence of coplanar vertices in 3D space. Each vertex vi for ¢ = 1,.. n, is
represented as <C zy,y;, 2 > where 74, y; and 2; are x-, y-, and z-coordinates in the
space. A 3D polygon Q also divides the plane where it is located into interior and
exterior regions.

A line L; through an edge E; = (v;, v;41) also divides the plane G into positive
and negative regions. We assume that vertices of a face are always listed in a clockwise
order when the normal vector of the face points outward from the polyhedron so that
the interior of the face always lies to the right half-plane of an edge. Nevertheless,

we are left with the problem of deciding in which region with respect to a line L; ,

- 929 _

positive or negative, an arbitrary point P in plane G lies. This can be solved by taking
an outer product OUP(P, vy, v341) of vector (P, v;) with vector (P, Vi4+1), Which is a
rotation axis from vector (P, ;) to (P,v;4;) and is normal to plane G. If point P is
in the positive half-plane with respect to line L; , vector OUP is in the same direction
as the normal vector of the face. Otherwise, as the following set of equations show,
OUP is in the opposite direction.

P=<zy 2>,

Vi =< T, ¥, % >,

Vit1 =< Zy, Y5, 25 >,
N = (nz, ny, ng), normal vector of plane G

(P, v;) = (2; — 2,9, — y, 2, — z) vector from P to v; ,
= (vzi: Vyi, Uzi);
(P, viy1) = (z; — 2, yj — y, zj — 2) vector from P to viy; , (2.10)
= ('Uzj, Vy3, vzj):

OUP(P, v;, viy1) = Outer product of vectors (P, v;) with (P, Vit1)

('in'vzj - ’ij.‘l)zi, vzi'vzj -_— vzj.vz,-, vm-.vw- - ’Uzj.’vy,;),
= (oug, ouy, ouz).

INP(P,v;, viy1) = Inner product of OUP(P, v;, v;+1) With normal vector of plane G
= (nz.ouz, ny.ouy, ny.ouz).

In the former case where point P is in the positive region of edge E; with respect to
plane G, the inner product of OUP with the plane normal vector is positive; in the
latter case where P is in the negative region, it is negative. The vertices of a polygon
are always in the clockwise order when the normal vector of plane G points outward, so
that the interior of Q always lies in the positive region of an edge when edges of Q are
traversed. Based on the definition above, the region pattern of a point P =< x,y,2 >
corresponding to a 3D simple polygon @ can be defined in the same way :

RP(p) = (Ry, Ry, ..., Ry), where
R; = + if p lies in the positive region of edge E; with respect to plane G,
= — if p lies in the negative region of edge E; with respect to plane G,
fori=1,.,n

(2.11)

(»)

Figure 13

(a) A ordinarily oriented polygon. (b) An inversely oriented polygon.

We can also define the vertex pattern, the transition pattern, and the interior-exterior
pattern with respect to a 3D simple polygon as before. By redefining all of these
patterns, we can apply the transition criterion described in section 2 to vertex-face

comparison in three-dimensional space and as well as to face-piercing detection.

2.5.3 Polygon orientation detection

The interior of an ordinary polygon is assigned to the finite region confined
by its perimeter. With an inverse polygon, however, the finite confined region is as the
exterior. Generally, these two polygons are distinguished by describing their vertices
in either a clockwise or a counterclockwise order. However, partial edge information is
not enough to determine the orientation of a polygon. The transition criterion permits
us to distinguish the orientation of a polygon in an easy way.

For instance, assuming that the orientation of the polygon Q = (v1,v2, .., vp)
in Figure 13 is unknown, a virtual testing point P can be set up barely next to the first
vertex vy; that is, the coordinates of P are approximately the coordinates of vy. The
region pattern of P with respect to @ can be calculated by substituting the coordinates

v =< 71,¥1 > into the line equations of each edge of @ . However, the line equation

- 31 -

values of P with respect to Ey and E, are zero, i.e., Li(z1,y1) = 0 and Ln(zy1, ;) =0,
since vy is the intersection of edges E; and E,. We assume that the testing point P
is slightly displaced into the (++) corner of vy, that is the line equation values of P
with respect to E; and Ey are substituted by (++). The region pattern of P with
respect to @ can then be fully determined. If the polygon is ordinarily oriented, the
testing point is enclosed by the polygon, as in Figure 13a. According to the transition
criterion, P has a total-transition of zero. In case the polygon is inversely oriented,
the testing point is excluded by the polygon, Figure 13b. According to the transition

criterion, the testing point has a total-transition of minus-two.

2.5.4 Very complex curves

Lastly, the transition criterion is adapted to curves represented in strip trees.
A strip tree is a hierarchical representation for a planar curve, consisting of a binary
tree with a special datum called a strip at each node, [2]. Lower levels in the tree
correspond to finer resolution representations of the curve. Strip tree structure is
a direct consequence of using a special method to digitize lines while retaining all
the intermediate steps; this permits curves to be efficiently encoded and displayed at
various resolutions. A strip tree S is defined to be a six-tuple (vp, ve, wy, w;) where
vp =< Zp, yp > denotes the beginning of the strip, v, =< Ze,Ye > denotes the end,
and wy and wy, respectively, denote the right and left distances of the strip borders
from the directed line segment (vy, ve). A curve is approximated by a polygonal line
with an ordered list of discrete vertices (v1, oy Un).

We can represent a simple connected area by means of a strip tree that
describes its border, a planar closed curve enclosing the area and having the same
starting and end point. With the application of the transition criterion, we can
determine in a straightforward manner if a point lies inside the area, By taking further
advantage of the hierarchical structure of strip tree representation, we can compute
the enclosure test very efficiently.

Figure 14a shows a simple connected area represented by a strip tree. The

first level in the tree consists of four strips, S1, Sg,S3, and Sy, each representing a

(¢)

Figure 14
(a) A simple connected area represented by a strip tree. (b) The

strip Sy is decomposed into several lower level strips. (c) If a point
is located in strip Sy, it must be in either one of the five rectangles,
@11, -, Q1s, or in the central polygon @ = (vo1, vy, v12, v13, v14, V15,

vg, v2).

- 33 -
portion of the border such that:

Sl = (le V2, Wyy, wll)r)
Sy = (v2, v3, wre, wyp),
S3 = (v3, v4, wr3, wi3),
S¢ = (v4, V1, Wrq, wyy).

Each strip can be decomposed into several lower-level strips with finer resolution, as

Figure 14b shows. The strips here are regular strips as defined in [2], with endpoints

touching the ends of the curve. Four rectangles, ¢, g2, ¢3, and ¢4 are also defined,

containing strips s1, sg, s3 and sy, respectively. Each rectangle g; is oriented with vector

(vi, vi41), and has endpoints v; and Vi1, length= |(v;, v;41)|, and width= (wy; + wy;).
To determine whether a point P is inside the area, we can apply the transition

criterion to the execution of the following procedures

Step 1: Detect whether P is in either one of the four rectangles.

Step 2: If not, detect whether P is in the central polygon (vy, ve, vs, vy).

Step 3: (al). If point P is not in one of the rectangles, or in the central polygon
(v1, ve, va, vy), point P is outside the area and the computation is terminated.

Step 4: (a2). If point P is not in any of the rectangles, but in the central polygon
(v1, ve,v3,vy), point P is inside the area and the computation is terminated.

Step 5: (a3). If point P is in one of the rectangles, e.g., rectangle q;, go down one level

on the strip tree and repeat the above procedure.

The curve contained in strip s1 is decomposed into five lower level strips,
S11, 12, 513, S14, and 835, each representing a smaller segment of the border:
s11 = (v1, vi2, Wr11, Wi11),
S12 = (012, V13, Wr12, wuz),
513 = (v13, v14, Wr13, Wi13),
S14 = (v14, V15, Wr14, W1 4),
s15 = (v15, Ve, Wr15, Wi1s)-

Again five rectangles, ¢11, q12, 13, q14, and gi5 are defined to enclose strips
811,812, 813, S14, and s35. To determine whether the point P, as known in rectangle

g1, 1s inside the area, we then execute the same procedures as above:

Step 1:

Step 2:
Step 3:

Step 4:

Step 5:

- 34 —

Detect whether P is in either one of the five rectangles, ¢11, q12, q13, q14, or
q15. If not, then: -
Detect whether P is in the central polygon (Vo1, 1, v12, V13, V14, V15, Vg, vo2)-
(b1). If point P is not in one of the rectangles, or in the central polygon, point
P is outside the area and the computation is terminated.

(b2). If point P is in neither of the rectangles, but in the central polygon, point
P is inside the area and the computation is terminated.

(b3). If point P is in one of the rectangles, say in rectangle ¢11, go down one
level on the strip tree, and repeat the above procedure until reaching the end

of the tree branches.

Using the above procedures, we can compute point enclosure in a curve with

thousands of points in only a dozen or so steps, depending on where the point is located.

If the point lies outside of the area and away from the border, it may take only one cycle

of computation for the enclosure test. If the point lies inside and close to the center of

the area, the enclosure test may also take only one cycle of computation. When a point

is located in one of the rectangles, the enclosure computation may possibly terminate

in a few cycles. The worst case occurs only when a point happens to be located so that

1t causes the enclosure computation to search down to the bottom of a tree branch.

- 35 —

Chapter 8

Point-Polyhedron Enclosure Detection

Point-polyhedron enclosure detection, the problem of determining whether a
point lies within a polyhedron in 3D space, occurs frequently in applications such as
computer vision, pattern recognition, computer-aided design, and other areas involving
computational geometry [4, 7, 13, 22|, especially in object interference detection in a
solid modeling system. Object interference detection is a procedure for investigating
geometric interference between parts to avoid physically unrealizable situations with
objects occupying the same region of space and to assure that parts fit correctly
and mechanisms move correctly. Detections for interference are done by simulating
the objects in their desired positions and testing for various types of interference
or performing dynamic interference checking to determine whether an assembly is

physically realizable.

! 1
)
[e
\ 1 / : \
: , X
S I \ N
[] H 1] M
N s 7l ' '
.._\ /’ "‘\ [‘

Figure 15
(a) Point Py is located inside the polyhedron; point P, is located

outside the polyhedron. (b) A curve testing vector.

- 36 —

Figure 16
Edge E; penetrates face F. Both ends of edge Eo are on opposite

sides of F, but E3 does not penetrate face F, Both ends of edge E3

are on same side of F.

The conventional method for solving point-polyhedron enclosure problem in-
volves determining the parity of intersections between the polyhedron and a testing
vector that extends from the point under question to infinity [16]. If the vector makes
an odd number of intersections with the polyhedron, then the point is enclosed by the
polyhedron; if even number of intersections, then the point is outside the polyhedron
(see Figure 15a). This is also true even when the testing vector is a curve instead of a
straight half line (see Figure 15b).

The total number of intersections between a vector and a polyhedron can
be determined by examining each face of the polyhedron to discover whether it is
penetrated by the testing vector. A face is possibly penetrated by a vector only when
each end of the vector is located on opposite sides of the face. If this is 50, We then must
check whether the intersection point of the testing vector with the plane containing
the face is enclosed by the face. If both these conditions hold true, then we know that
the face is penetrated by the vector, as Ey shown in Figure 16. If both ends are on
opposite sides of the face but the intersection point is not enclosed by the face, then

the vector does not penetrate the face, as Ey shown in Figure 16. If both ends are

- 37 —

on the same side of the face, as F3 shown in Figure 16, the vector simply does not
penetrate the face. This 3D point enclosure problem is thus reduced into aseries of 2D
point-polygon enclosure detections. The number of 2D detections required depends on

the number of possible intersections between the polyhedron and the testing vector.

3.1 Point-polyhedron enclosure detection

However, it is important to notice that if a point is inside a polyhedron, no
matter which direction a testing vector points toward, the vector always penetrates
the closest face from inside to outside. If a point is outside a polyhedron, the testing
vector either has no intersection with the polyhedron, or penetrates the closest face
from outside to inside. We can, therefore, simply the problem by searching for the face
which is penetrated by the testing vector and is closest to the point and determining
the phase of the face in which the testing point lies. We say that a point is in the
positive phase of a closest face if the testing vector penetrates the face from inside to
outside; a point is in the negative phase of a closest face if the testing vector penetrates
the face from outside to inside.

Based on this observation, we can further improve the efficiency of the conven-
tional method by searching for only the face that is penetrated by a testing vector and
1s closest to the testing point; and therefore, we need not to perform a 2D enclosure
detection on every possibly penetrated face. A face would require a 2D enclosure
detection only if it makes a closer intersection with the testing vector than the one
successfully examined previously. Those faces which may be penetrated by the vector
but have farther intersections require no 2D enclosure detection. By this means, we
can reduce the number of 2D point-polygon enclosure detections required during the
entire operation.

Ideally, this method has the potential for drastically reducing the amount of
work necessary in point-polyhedron enclosure detection. The amount of work in this
algorithm, therefore, depends on how the faces of the polyhedron are traversed. On
the average, the algorithm takes about half as much work as the conventional method.

In the best case, the closest face is caught as the first try, we then need only one 2D

- 38 —

enclosure detection. However, if the faces are traversed from the farthest one to the
closest one, then it takes the same amount of work as the conventional method does.

The chances of this happening, however, are very small.

3.2 Point-polyhedron enclosure detection algorithm

Following is an algorithm for point-polyhedron enclosure detection. We first
introduce some notation used in the algorithm. A simple polyhedron in 3D space is
composed of a set of v vertices (v1, v, .., vy), a set of e edges (Ey, Eg, .., Ee), and a set
of f faces (Fy, Fy,..,Fy). A face is a simple planar polygon which can be either convex
or concave. A face is described by a sequence of vertices v; =< z;, y;, 2; > and edges
E; = (v;,v;). Two adjacent faces intersect by an edge and each edge connects two
vertices. A vertex is possibly connected to more than three faces. Each face Fj is
described by a plane equation a;x + b;y + ¢4z + d; = 0, and a sequence of vertices
< v}-,v?, .,vf* > surrounding the normal vector in a clockwise direction, where <
ai, by, c; > is the outward unit normal vector.

Within the 3D point-enclosure detection algorithm below, a flag FACE points
to the current minimum-distance face. A flag CID (current intersection distance) keeps
track of the minimum distance of the penetrated faces which have been examined. A
flag STATE which takes six scalars (normal, V-S, E-S, V-V-S, V-E-S, or E-E-S) indicates
the current state of intersection, which could be either a normal intersection or a
singularity. It it is a singularity, flags v,, vy, Ep, E] indicate the coincident elements.
For an efficient computation, we always draw a testing vector toward the positive z-
axis direction. By doing so, we can simplify the calculation of the distance from the
testing point to the intersection of the testing vector with a face. Let us denote the
coordinates of the testing point by P =< x4, yo, 20 >.

This algorithm works by searching among the faces of a polyhedron for the
closest face which is penetrated by a testing vector. A distance of ‘—99’ is stored in
a flag ‘CID’, initially, for indicating that there is no intersection yet. The algorithm
then looks for the first face which is penetrated by the testing vector, and then stores

the intersection distance in ‘CID’. The distance in CID is then used as a threshold

(']
oaQ
d
(a (a)
) P o
o0
o < —
P
*) $ ©)
P o
©)] (F)
V
" |

Figure 17

Singularity encountered in a 3D point enclosure detection.

to discard those faces having farther intersections. Only when a face has a closer
intersection would it require a 2D point-polygon enclosure detection. If a face is
successfully examined, its intersection distance then replaces the one stored in ‘CID’.
This distance is again used as a new threshold for examining next coming faces. By
doing this recursively, the closest penetrated face can be eventually found.
Singularities are situations where a testing vector coincides with a vertex, an

edge, or a face of the polyhedron, Figure 17. There are all kinds of singularities capable

— 40 -

of occurring in a 3D point enclosure detection. We will discuss methods for solving
all these singularities in the next chapter; here we simply assume these routines are
available. P is a testing point and @ is the polyhedron in operation.
(1) 2D-point-polygon-enclosure-detection(P, Q) routine:
detecting enclosure of P by polygon Q.
(2) V-singularity(P, v,) routine:
U 18 the coincident vertex.
(3) E-singularity(P, E,) routine:
E, is a coincident edge.
(4) V-V-singularity(P, v,, v1) routine:
vo and v are coincident vertices.
(5) V-E-singularity(P, vo, E,) routine:
Vo 1s a coincident vertex and Ej is a coincident edge.
(6) V-E-singularity(P, E,, E}) routine:
E, and Ej are coincident edges.
Below is the 3D point-enclosure detection algorithm:
(Step 1) [Initialize the face index and the CID flag]
Set 7 &= 1; CID = maximum; STATE < normal; FACE & 0.
(Step 2) [Skip to the next face]
te=141;
If i > f (total number of faces) or CID=0 then go to step 9.
(Step 3) [Determining the possibility of penetration]
IF ¢; = 0 then go to step 6;
2 &= —(a%0 + biyo + d;)/cq;
P =< 20,90,z >;
If z < 0or 2z >= CID then go to step 2;
(Step 4) [2D point-polygon enclosure detection]
CALL 2D-point-polygon-enclosure-detection(P’, F;) routine;
If P’ is outside polygon F; then go to step 2;
If P’ is on boundary of F; then go to step 7;

— 4] -

(Step 5) [Update flag CID]
CID < z; FACE & ¢; STATE « normal;
Go to step 2;

(Step 6)[A face parallel to the testing vector]

If (a;x0 + biyo + 520 + di) 5£ O then go to step 2;
(Step 7) [Resolving Singularities]

If V-singularity then set STATE « V-S;

find coincident vertex v, ; call V-singularity(P , v,) routine;

else if E-singularity then set STATE & E-S;

find coincident edge E, ; call E-singularity(P , E,) routine;

else if V-V-singularity then set STATE « V-V-S;

find coincident vertices vp and vy ; call V-V-singularity(P , v, , v;) routine;

else if V-E-singularity then set STATE & V-E-S;

find coincident vertex v, and edge E, ; call V-E-singularity(P , v, , E,)

routine;

else if E-E-singularity then set STATE & E-E-S;

find coincident edges E, and Ej ; call V-E-singularity(P , E, , E1) routine;

z < intersection distance;

If singularity is significant then CID < z; go to step 2;

(Step 8)[Determining the phase]

Call phase routine;

If phase=positive then the point P is inside; otherwise P is outside.

The intersection distance in step 7 is measured as the distance between the
testing point and the intersection of the testing vector with the coincident element.
The coincident element could be a vertex as in a V-singularity, a point as in an E-
singularity, or two elements, a vertex and/or an edge, as in a complex singularity. In
a complex singularity, the intersection distance means the closer distance of the two
intersections with the two coincident elements.

The PHASE routine called up in the last step determines in which phase the

testing point P lies. If the testing point is in the positive phase of the closest face, P

_ 42 —

is contained in the polyhedron; otherwise, P is outside. The phase of a face in which
a testing point P lies can be determined by the sign of the plane equation value by

substituting the coordinates of the point into the the plane equation of the face.

3.3 Phase routine

Generally, the closest element found in a point-enclosure-detection routine is
a face. In that case it is very easy to determine the phase by calculating the plane-
equation value of P with respect to the face. The sign of the value determines the
phase of the testing point. However, there are cases where the closest element is in
a singular situation; and this complicates the determination of the phase. We must,
therefore, know how to determine the phase in a singularity case, even though the
possibility of encountering a situation like this is very low.

If the closest element is an E-singularity, the phase can be determined by the
region pattern bits of P with respect to the two consecutive faces F,, and F} of the
coincident edge E,. The phase is positive if the testing point is in the {(++) region of
F, and Fy; the phase is negative if P is in the (——) region instead. Notice that we
do not consider the cases where P is in (+—) or (—+) regions since only when P is in
(++) or (——) regions can it be a significant singularity.

If the closest element is a V-singularity, the face that determines the phase is
one of the converging faces of the coincident vertex closest to the testing vector.

We know that an E-E-singularity is significant when one of its coincident edges
is convex and another is concave. If both coincident edges are convex or concave, the
E-E-singularity is trivial and is neglected. The phase in an. E-E-singularity can thus
be determined by the edge with a closer intersection to the testing point. If the closer
edge is concave and the farther one is convex, as in Figure 18a, the phase is positive.
Conversely, if the closer one is convex then the phase is negative, as in Figure 18b.

For a V-E-singularity with coincident vertex v, and edge E, , the phase can
be determined by edge E,. If edge E, has a closer intersection to the testing point
than v, and if E, is concave, the phase is positive, as in Figure 19a; otherwise, the

phase is negative if E, is convex, as in Figure 19b. However, if v, is closer to P than

— 43 -

® o
Figure 18
An E-E-singularity where (a) the closer edge E, is concave and the

farther edge Ej is convex, (b) the closer edge E, is convex and the

farther edge Ey is concave.

the edge E, and if E, is convex, the phase is positive , as in Figure 19c; otherwise, it
is negative if E, is concave, as in Figure 19d.

A V-V-singularity is significant only when one of its local V-singularities is
significant and another is trivial. Let CV and CC represent the number of convex
and concave transitions, respectively. From the singularity criterion, we know that
a significant V-singularity has CC = CV with its testing vector traveling from the
interior to the exterior or vice versa. A trivial V-singularity has either CC = CV +2
if the vector travels from interior to interior or CV = CC + 2 if the vector travels
from exterior to exterior. Assume that within the V-V-singularity, v, is significant and
vy is trivial. The phase in this case can be determined from the trivial singularity at
vy.

If v, is closer to the testing point than vy, the phase is positive if v; has CV =
CC + 2, as in Figure 20a; and it is negative if v; has CC = CV + 2, as in Figure 20b.
The phase in Figure 20a is positive because the testing vector travels from the interior
to exterior on v, and from exterior to exterior on v;. The testing point is thus inside
the polyhedron. We can also tell that v; has CV = CC + 2 since the testing vector

travels from exterior to exterior on v;. The phase in Figure 20b is negative because

— 44 —

R
%
'
Jo
)
T €
@ (b
[
R
Y.
(o "€ o
1 Ca
N
oQ
(¢) (d) ?
Figure 19

A V-E-singularity where (a) edge E, is closer to the testing point and
concave, (b) edge E, is closer to the testing point and convex, (c) edge

E, is farther and convex, (d) the coincident edge E, is concave.

the testing vector travels from exterior to interior on v, and from interior to interior
on vy. The testing point is in the interior of the polyhedron. On the other hand, if v;
is closer to the testing point than v,, the phase is positive if v; has CC = CV + 2, as
in Figure 20c; it is negative if v; has CV = CC + 2, as in Figure 20d.

— 45 —

\ / \ :,'
% \|/
) ®)
"\ ve
Vi -
¢
& R
N
4
N
/\\\
Nyve
(d)
vy
?
Figure 20

A V-V-singularity where the testing vector travels (a) from interior to
exterior on v, and from exterior to exterior on vy, (b) from exterior
to interior on v,, and from interior to interior on vy, (¢) from interior
to interior on vy, and from interior to exterior on v, (d) from exterior

to exterior on vy, and from exterior to interior on vo.

— 46 —

Chapter 4
Resolving Singularities
in

Point-Polyhedron Enclosure Detection

Just as with point-polygon-enclosure detection, the problem of determining
the inclusion of a point in a polyhedron is encountered frequently in many applications,
[4, 6, 7, 13, 22]. However, an extra degree of freedom makes the 3D point-polyhedron
containment analysis much more difficult than the 2D problem, mainly because of the
geometrical increase in the number of possibly penetrated faces, and the lack of an
efficient and accurate means for testing them. Resolution of 2D singularities based on
local data alone was made possible due to the sequential nature of the ordering of the
polygon elements (edges and vertices). In 3D space, however, there is no particular
sequence in which the faces of the polyhedron are ordered.

Establishing the containment relationship between a point and a polyhedron
can be accomplished, as in the 2D case, by counting the parity of intersections between
the polyhedron and a vector extending from the point to infinity. However, the parity
count can be impaired by singularities which arise when a testing vector coincides
with a vertex, an edge, or a face of the polyhedron. If we misjudge the significance
of the singularity, we can derive an incorrect parity count, and thus turn the point-
polyhedron containment relationship inside-out or vice versa. Singularities resolve into
two situations where (1) a testing vector penetrates a polyhedron from its interior to
its exterior or vice versa, or where (2) a testing vector is tangent to a polyhedron and
causes no inside/outside transition. The former case is a significant intersection and
can be counted for parity, while the latter case is a trivial one and cannot be counted
for parity.

Singularities can be resolved by either avoiding them or solving them directly.

One way to avoid singularities is to choose a different testing vector that causes no

- 47 _

singularity. However, because a certain amount of trial-and-error is involved in finding
a singularity-free vector, trying to avoid a singularity can actually be more expensive
than a direct solution. Kalay [16] resolves a singularity by removing the elements which
cause the singularity (the coincident edge and vertex and all the edges which converge
on it) and then testing the contour of the merged faces. However, this method is not
applicable to cases where a testing vector is coplanar with a face of a polyhedron.
We propose a singularity criterion in this chapter which we believe leads to a
simpler, superior solution to all singularities encountered in point-polyhedron enclosure
detection. We first categorize all the singularities into two basic types and four complex
types. We then show that a complex singularity can be decomposed into two basic

singularities by bending or perturbing a testing vector; the two components can then

be resolved and their results combined.

4.1 Categorizing singularities

The singularities encountered in a point-polyhedron enclosure detection fall
into the following six categories:
» The testing vector intersects a vertex of the polyhedron but does not lie in any of
its connecting planes, as in Figure 21a.
» The testing vector intersects an edge of the polyhedron by a point, as in Figure 21b.
» The testing vector intersects the polyhedron by an edge, i.e., the testing vector lies
at the intersection of two faces of the polyhedron, as in Figure 21c.
» The testing vector lies on a face of the polyhedron and intersects two vertices of that
face, as in Figure 21d.
» The testing vector lies on a face of the polyhedron and intersects a vertex and an
edge of that face, as in Figure 21e.
» The testing vector lies on a face of the polyhedron and intersects two edges of that
face, as in Figure 21f.
The first two categories describe basic singularities and the others describe
complex singularities. The first basic singularity is called a V-singularity. A V-

singularity is a case where a testing vector intersects a vertex of a polyhedron but

— 48 —

[ee]
v /

) ®) i

< Eo

@ ¥

Vo

@ L% P/ e
o 0 y

)

E,

Figure 21
The testing vector intersects a polyhedron by (a) a vertex, (b) a point

on an edge, or (c) the vector is collinear with an edge, or (d) intersects

by two vertices of a face, () a vertex and an edge, or (f) two edges of

a face.

— 49 -

o'}
[]
TN
- N\
‘ A\
1
y \
'l
! !
' [U
R ;
LT '\]
P
Figure 22

A bent testing vector will not disturb the parity count as long as it

starts from the testing point and extends toward infinity.

is not coplanar with any of its converging planes, as Figure 21a shows. The second
basic singularity type, the E-singularity, is a case where a testing vector intersects an
edge of the polyhedron but is not collinear with the edge, as Figure 21b shows.

As we know, perturbing a testing vector does not disturb the parity of the
intersections (see Figure 22) as long as the vector starts from the testing point and
stretches toward infinity. In the following figures we show how a complex singularity
can be decomposed into a combination of V- and/or E-singularities by bending the
testing vector. We later discuss how a complex singularity can be resolved by resolving
the two components and combining their results.

The singularity in Figure 21c can be decomposed into two local V-singularities
by pinning down both ends of the vector at vertices v, and v; and detaching the vector
from the coincident edge F, . The vector was originally collinear with E, ; but it now
intersects the polyhedron by only two vertices, as Figure 23a shows. We call this a
F-F-singularity.

The singularity in Figure 21d can also be decomposed into two local V-singula-

rities by pinning down the vector at v, and vy and detaching the vector from the

- 50 -

.
b v
w P \/ Ev u L P VD

oo

(a)

Vi P
o Ve
)
‘P
p' Eo
Ve

oR

) /E\ E,
m/ //

Figure 23
The vector is deformed to intersect the polyhedron by (a) (b) two

vertices vp and vy, (¢) a vertex vp and an edge E,, or (d) by two edges

Eo and El .

- 51 -

coincident face F' . The vector was originally coplanar with the face F' , but now it
intersects the polyhedron only by v, and v; , as Figure 23b shows. This is called a
V-V-singularity.

The singularity in Figure 21e is decomposed into a V-singularity and an E-
singularity by bending the vector so that it intersects only a vertex and an edge of the
polyhedron, as in Figure 23c. We call this a V-E-singularity with a local V-singularity
and a local E-singularity.

The singularity in Figure 21f is decomposed into two E-singularities by bending
the vector so that it intersects two edges of the polyhedron, as in Figure 23d. We call

this an E-E-singularity with two local E-singularities.

4.2 Resolving a V-singularity

The method for resolving a V-singularity is based on a singularity criterion
proposed later as an extension of the transition criterion proposed in the second
chapter.

A 3D polyhedron W can be described by a set of vertices V(W) = (v1, va, .., vy),
a set of edges E(W) = (E1, Eq, .., Ee), and a set of faces F(W) = (F1,Fz,.., Ff). A
face is a planar polygon that can be either convex or concave. A face is defined by a
sequence of coplanar vertices, where each two consecutive vertices constitute an edge
and two consecutive faces are intersected by an edge. A vertex may connect more than
three faces.

To determine the containment relationship between a testing point P and
a polyhedron W, a testing vector is drawn from P to infinity, and the parity of
intersections between the testing vector and the polyhedron is determined. Assume
that the testing vector causes a singularity by coinciding with a vertex v, of the
polyhedron. Let (Fy, Fg,.., Fm) represent the neighboring faces of v, which surround
Vo in a sequential order. Let (Ey, Eq,..,Em) represent the neighboring edges of v,
which connect pairs of consecutive faces in (Fy, Fa, .., Fm) , i.e., F;_; and Fy intersect
E;, as in Figure 24. We also assume that the testing vector is not coplanar with any

of the m faces.

- 52 —

> B FiH) *
P~ K ro Rt §
VeI " Fa(t)
1Y) / — £15)
@) s 2
Figure 24

E; and Ej are convex edges. Eg and E4 are concave edges. (a) The
region pattern of Py with respect to the faces is (+——=). (b) The
region pattern of Py with respect to the faces is (++——).

[31 Eo

KN

6 o&*

Figure 25

Angle 6, is less than 7, and edge E, is convex; angle 0; is greater

than m, and edge Ey is concave.

We define an edge pattern of a polyhedron in terms of the properties of the

polyhedron’s edges. This edge pattern corresponds to a vertex pattern of a polygon.

_ 53 —

An edge is concave if the angle between the two adjacent faces covering the interior of
the polyhedron is reflex; otherwise it is convez. For instance, edge E, in Figure 25 is
convex, but edge E; is concave. We define the edge pattern, EP(W), on a subset of
edges of a polyhedron W as

EP(E,,Es,..,Em/W)= (EP,,EP,, ..., EPy), where
EP; =1 if E; is convex, or

(4.1)

= —1 if E; is concave.

Let G; be the plane containing face F; and described by plane equation
Gi(z,y,z) = 0. This plane divides space into two regions: a positive region satisfying
Gi(z,y,2) > 0; and a negative region satisfying Gy(z,y,2) < 0. We always define a
plane equation such that the interior of a polyhedron always lies in the positive region
of a face. We define a region pattern of a point P =< z,y,z > with respect to a
subset of faces of a polyhedron as

RP(P,F,Fsy,..,Fp) = (RP,,RPs, ..., RPp), where

RP; =+ if Gy(z,y,2) >0, or
RP; = — if Giz,y,2) < 0.

(4.2)
A bit RP; is positive if P lies in the positive region of* Fy, and is negative if P is in the
negative region. Here the positive or negative regions of a face refer to the positive or
negative regions divided by the plane containing the face.

We then define a transition pattern (T'P) of P with respect to a set of converg-
ing faces of a coincident vertex, (F1, F2, .., Fm) , based on the region pattern defined

above:

TP(P,F1,Fe,..,Fn) = (T1, T2, ..., Tm), where
T; =0, if RP; 1= RF;,
=1, if RP, ;5 RPF; and Ej is convex, and (4.3)
= —1, if RP;_; 5 RP; and E; is concave.

Since faces Fy;_; and F; are intersected by edge E; , we say that P has a transition
at E; if RP;_; # RP;. Furthermore, if E; is convex we say that P has a convez

transition; if E; is concave, we say that P has a concave transition. We can then count

~ 54 —
the total transitions of P on (F, Fg, .., Fm) by means of the following equation:
m
transitions (P/Fy, Fy, .., Fm) = E T; (4.4)
1=1

This leads to the following Singularity Criterion:

L We say that a testing vector has a significant intersection with a polyhedron
at a testing point if the vector penetrates the surface of the polyhedron at that
point. If a testing vector has a significant intersection with the polyhedron, i

has an equal number of convez and concave transitions at the testing point, i.e.,
transitions (P/Fy, Fa, .., Fm) =0. (4.5)

I We say that a testing vector has a trivial intersection with a polyhedron at a
testing point if the vector is tangent to the surface of the polyhedron at that
point. If a testing vector forms a trivial intersection with the polyhedron, it has
at the testing point a total of two more convex than concave transitions, or vice

versa, t.e.,

transitions (P/Fy, Fg, .., Fp) = 2. (4.6)

Using this criterion, we can then determine whether a singularity is significant or
trivial. The proof of the singularity criterion appears in the last section.

The following two examples in Figure 24 show how a singularity can be solved
by using the singularity criterion. Points P; and Py are two testing points against the
polyhedron W. A testing vector, drawn from P; to infinity, intersects W by vertex
vo and causes a singularity at v, , Figure 24a, vertex v, has four neighboring faces,
Fy, Fs, F3, and Fy4. The intersections of F} with Fy and Fy with F3 are convex edges Ey
and Ej3, respectively, and the intersections of Fy with Fg and F3 with Fjy are concave
edges Eo and Ejy, respectively. The polyhedron W thus has an edge pattern defined
on the four faces: EP(Fy, Fp, F3,Fy) = (1,-1,1,-1).

Py is in the positive region of F; and the negative regions of F, F3, and Fy,

the region pattern of P, with respect to Fy, Fo, F3, Fy is

RP(PI)FI}F2)F37F4):(+y—)_y_)-

— 55 —

This means that P; has two transitions, one between Fy and Fj, and the other between
Fy and Fy. Edge Ej is convex and Es is concave. The transition pattern of point P;
is, therefore, TP(Py, Fy, Fa, F3, Fy /W) = (1,—1,0,0). In other words, P; has a convex
transition at £} and a concave transition at Eg, and so it has a total of zero transitions.
According to the singularity criterion, the testing vector penetrates the surface of W
at vertex vo .

Another testing vector is drawn from Pp to infinity, as shown in Figure 24b;

and this also causes a singularity at v, . The region pattern of Py is
RP(P27F‘17F27F31F4) == (+)+)—1_)'

Py has a total of two convex transitions, one at E1 between Fy and Fy and the other
at E3 between Fy and F3. According to the singularity criterion, the testing vector is

tangent to the polyhedron at vertex v, .

4.3 Resolving an E-singularity

Faces F] and Fy in Figure 26a intersect a convex edge, and F3 and Fy4 in Figure
26b intersect a convex edge. Two planes (G; and G containing F; and Fy, respec-
tively, separate the space under consideration into four regions (++), (+—), (—+),(—)
defined with respect to Fy and Fy as do two planes Gi3 and G4 containing F3 and Fjy,
respectively. A testing vector in an E-singularity can only travel between opposite
regions, e.g., from a (++) to (——) region or from (+—) to (—+) region; it can not
travel between two neighbor regions such as from (+-+) to (+—) or from (——) to (—+).
We can see from the figure that regardless the faces intersect a convex or a concave
edge, a testing vector traveling between (+-+) and (——) regions always penetrates the
surface of the polyhedron as Figures 26al and 26b1 show; likewise, a testing vector
traveling from (+—) to (—4) or vice versa is always tangent to the surface of the
polyhedron as Figure 26a2 and 26b2 show. Therefore, an E-singularity can be easily
solved by calculating the region pattern of the testing point with respect to the two
consecutive faces of the coincident edge. The singularity is significant if the testing

point resides in (++) or (——) regions, otherwise it is trivial.

- 56 —

0o (--)
') Fa o®
Fa =)
Fi)
| 0 R
) (++)
@) ¥ ®)

r-

(a2) (b3) -+ P

Figure 26
Faces F1 and F3 intersect a convex edge. Faces F3 and Fy4 intersect

a concave edge. A testing vector traveling (al) from (++) to (——)
region of Fy and Fy; (bl) from (++) to (—) region of F3 and Fy;
(a2) from (—+) to (+—) region of F1 and Fg; (b2) from (—+) to (+—)
region of F3 and Fy.

4.4 Resolving complex singularities

A complex V-V-, V-E-| E-E-, or F-F-singularity is a combination of two local
V- or E-singularities, and its global result is determined by combining results from its
two local singularities. If both local singularities are significant, then the global result
is trivial; since an inside/outside transition followed by an outside/inside transition, or
vice versa, results in no global transition, as Figure 27a shows. If both local singularities
are trivial, then the complex singularity is still trivial, Figure 27b. Only when one
local singularity is significant and another is trivial is the complex singularity thus

significant, as Figure 27¢ shows.

The V-V-singularity shown in Figure 21d can be simplified into two local V-

~ 57 -

/
(@) Vi

o
Q
'\/o/l Y
Vi
®
(&) /
aQ

(——-—---——- - ,""El
) P £ F

Figure 27

(2) The bent testing vector travels from outside to inside at v, and
then from inside to outside at vy. {b) The bent vector has two trivial
singularities at v, and vy, separately. (c) The singularity at E, is
trivial but the one at Ej is significant. The result is thus a significant

singularity.

_ 58 —

singularities by detaching the testing vector away from the coincident face. This results
the V-V-singularity into a combination of two V-singularities at vertices v, and vy .
Let (F,Fy,..,Fm) and (F,Fy’, F3’.., F}’) represent, the adjacent faces of v, and vy |
respectively. To calculate the region pattern of P with respect to (F, Fy, .., Fy,) and
(F,Fy’, F3'.., F}’), we notice that the region pattern bit of the testing point with respect
to face F' can not be defined because the vector is coplanar with F. By shifting the
testing point P into the positive region of face F' (and thus P’ is moved into the negative
region of F') as shown in Figure 23b, we can substituted the zero region pattern bit
with (+). By applying the singularity criterion separately to v, and v; with the region
pattern bit with respect to F' substituted by (+)in case of v, and by (—) in v; , we can
then determine the result of this V-V-singularity.

Figure 23a shows an F-F-singularity where the testing vector is collinear with
an edge E, =(vo,v1). Let Fy and Fy be the two adjacent faces of E, described by
plane equations a3z + bjy + ¢12 + d; = 0 and agzx + bgy + cg2 + dg = 0, respec-
tively. Let (Fy, F3, .., Fyn) and (Fy, Fg, F3’.., F}’) represent the sequences of adjacent
faces separately surrounding vo and v;. Notice that faces F; and Fy appear in both
sequences. To calculate the region pattern of P with respect to (Fy, F3, .., Fm) and
(Fy, Fo, F3’.., F}’), we notice that two bits can not be defined (P with respect to faces
Fy and Fp), because the testing point P =< zo, Yo, 20 > is on both Fj and Fy , i.e,
a1Zo + b1yo + €120 +dy = 0 and agxo + byyo + c220 + do = 0.

By bending the testing vector into one of the four regions separated by faces Fy
and Fy , such as the (+,+) region, this F-F-singularity becomes a combination of two
V-singularities at vertices v, and v as illustrated in Figure 23a. Thereafter, the two
region pattern bits can be defined. We can then solve the original F-F-singularity by
applying the singularity criterion separately to the two local cases. When calculating
the region pattern of P with respect to (F1, Fa,.., Fyn), if we choose to move point
P into the (++) region, we substitute the two zero region pattern bits with (++)
bits. When calculating the region pattern of P with respect to (Fy, Fa, F3'.., F}’), we
substitute the two zero region pattern bits with (——) instead. We can then determine

whether this F-F-singularity is significant or trivial by combining the two local results

- 59 —

following the rules we explained above.

It is easy to see that the global result would stay the same if we chose different
regions to bend the vector toward. If we had chosen to move point P into the (+-)
region, then when applying the criterion to v, and v; , the two zero region pattern
bits should be substituted by (+—) in v, and (—+) in vy , respectively.

In case (e) we simplify the V-E-singularity into a V-singularity at vertex v,
and an E-singularity at edge E, as Figure 23c shows. We bend the vector into the
positive region of F so that we can substitute the region pattern bit with a (+) bit and
apply the criterion to solve the local V-singularity E-singularity.

In the last case (f) where a testing vector crosses two edges E, and Ej of
the face F , the singularity is an E-E-singularity, Figure 23d. Again by bending the
testing vector into the positive region of F', we can solve both local E-singularities by
substituting the region pattern bit with (+) bit when solving the E, case and with (—)

bit when solving the Ey case.

4.5 Application to 3D edge-face penetration detection

The singularity criterion described previously pays its great benefits when it
is applied to the very time-consuming operation of edge-face-penetration detection.
Conventionally, the object collision problem is solved by comparing all edges of one
object against all faces of another object, and vice versa. This obviously may lead to
hundreds of edge-face-penetration detections. Edge-face-penetrating detection tradi-
tionally skirts this danger by reducing the dimensionality of the problem, first by
checking whether both ends of the edge are in opposite half-spaces divided by the
extension plane of the face, and then by performing a 2D enclosure test to determine
whether the intersection point of the edge with the extension plane is contained in the
face. See Figure 28a and 28b for example.

However, it is possible to apply the singularity criterién to this problem directly
without reducing its dimensionality. As shown in Figure 28c and 28d, by treating one
end of the edge, p, as a coincident vertex, and the other end, pg, as a testing point,

we can set up a set of virtual convergent faces (F1, Fy, ..., Fn) and turn the edge-face-

— 60 —

(b)

Figure 28
(a) Edge E = (P, P;) penetrates the face F. (b) Edge E = (P, P,)

does not penetrate the face F. (c) (d) A set of virtual faces (Fy, Fy, ..., Fg)

is set up around P; which results in a V-singularity at P;.

penetration problem into a V-type singularity. We can then solve the singularity by
calculating the transition pattern of the testing point pg with respect to the faces
(Fy, Fa, ..., Fy). According to the singularity criterion, an edge penetrates a face only
if the singularity is significant. Otherwise, if the singularity is trivial, we know that
the edge does not penetrate the face.

Assume that face F is composed of vertices, vy, vg, ..., vn. By treating p; as the

_ 61 -

coincident vertex, a set of faces (Fy, Fy, ..., Fy) is set up to constitute the converging
faces of p;. Each face Fy is specified by three points, (v;, vi41, and p1). The normal
vector, n;, of face F; is the outer product of vectors (p1, v;) with (p1,v441). The edge
pattern bit of the edge E; in between F;_; and F; can be determined by the inner
product of vector (py,v;_1) with the normal vector n;. The region pattern bit of the
testing point pg with respect to a face F; can be determined by the inner product of
vector (p1, pz) with the normal vector n;.

According to the singularity criterion, if the transition pattern of the testing
point has an equal number of convex and concave transitions, we know that edge E
penetrates face F' , as in Figure 28¢c, otherwise I does not penetrates face F' , as in

Figure 28d.

4.6 Proof of the singularity criterion

To analyze a V-singularity at vertex v, , let us assume the existence of a sphere
S(r) centered at v, , Figure 29a. The radius r of the sphere is so small that the sphere
intersects the polyhedron only by those faces which converge to v, . Let (Fy, Fy, .., Fin)
represent the set of converging faces of v, . The intersection of the sphere S(r) with
(F1, Fy, .., Fn) creats a simple closed curve C', called the trace of verter v, on sphere
S , as shown in Figure 29b. This trace is composed of as many sections as the number
of faces in (Fy, Fe, .., Fm) , in which each section is an arc formed by the intersection
of the sphere S with one of the converging faces. The spheré S is then separated into
two areas by the trace C : (1) the interior which is merged in the polyhedron and (2)
the exterior which is exposed in the air, Figure 29b.

Let (Gy, Gg, .., Gm) represent the set of planes containing faces (Fy, Fy, .., Fn),
respectively. A plane Gy is described by a plane equation Gy(z,y,2z) = 0. It is clear
that all planes in (G1, Gg, .., Grm) intersect each other exactly at v, . The volume of
S is divided by (G1, G, .., Gm) into 2f regions: (Ry, R', Ry, R?, ..,Rf,Rf) . The total
number of regions is dependent on how (Fy, Fo, .., Fyn) are located. Here we use (R;
and Ri) to denote a pair of dual regions, i.e., a testing vector entering S at region

R; and going through v, would exit by its dual region R* and vice versa. If only

- 62 -

\. F,(ﬂ

° 5(\Y

Fal)

Fa ()

e trace o Uo

on sphere S.
(a)

Figure 29
(a)(b) The intersection of the converging faces of v, with a sphere

S(r) centered at v, is the trace of vo. (¢) Py is the south pole and P,
is the north pole of S. (d) Sphere S is projected from the north pole
P, onto the projection plane by a one-to-one mapping, except the

point Py. The south pole P; is mapped to the origin of the projection

plane.

(F1, Fg, .., Fm) are concerned, each region in (Ry, RY, Ry, R?, .., Ry, Rf) defines a unique
region pattern. A pair of dual regions has conjugate region patterns, since they are

located at opposite sides of vertex v, .

— 63 -

Two dual regions R; and R* can both lie either interior or exterior to the
polyhedron, or one can reside in its interior and the other on its exterior. We also
know that a testing vector entering at a region R; must exit by its dual region. If a
testing vector enters by an interior region of the polyhedron and exits by an exterior
region, or vice versa, then it causes an inside/outside transition, i.e., the testing vector
penetrates the surface of the polyhedron. In this case, we know that the testing vector
has a significant intersection with the polyhedron. On the other hand, if the vector
both enters and exits either on an interior or an exterior region, we know that the
testing vector is tangent to the polyhedron. In this case, the testing vector has only
a trivial intersection with the polyhedron. By categorizing (R; and Ri) as a pair of
significant regions if one of them resides in the interior and the other in the exterior
and as a pair of trivial regions if they are both in the interior or exterior, we can
easily determine whether a testing vector penetrates or is tangent to a polyhedron by
determining whether it is traveling between a pair of significant or trivial regions.

Next we will prove the singularity criterion. We will show that if a testing
vector travels between a pair of significant regions, the region pattern of the testing
point with respect to the convergin faces of the coincident vertex has an equal number
of convex and concave transitions; if between a pair of trivial regions, then the region
pattern has two more convex or concave transitions.

Let P; be the entrance of the testing vector at R; , i.e., the intersection of
the vector with sphere S at region R; , and Py be the exit at the dual region Rt. We
call P; the south pole and Py the north pole of S | as shown in Figure 29¢c. We then
define a transformation which projects the surface of S from the north pole Py onto
the tangent plane of the south pole P as shown in Figure 29d. Assume that S is

centered at (0,0,0). The transformation is defined as:

2ra’
r = -

r—z

2ry’ (4.7)
y =]

r—z

where (27,9, 2’) is the old coordinate system and (z,y) is the new coordinate system

on the tangent plane. The tangent plane, called a projection plane, holds the projected

— 64 -

image of the sphere. This mapping is a one-to-one mapping except that the north pole
is mapped to infinity. The south pole Pj is mapped to the origin of the projection
plane. Since the trace of v, is a simple closed curve, the image of the trace on the
projection plane is also a closed simple curve which will be called the projected trace.
The trace of v, divides the surface of the sphere into two areas; correspondingly, the
projected trace divides the projection plane into two regions.

The intersection of a plane in (Gy, Gy, .., Gy) with the sphere S forms a great
circle. Therefore, a section of the trace of v, is a portion of a great circle, i.e., an arc.
The projected trace is composed of as many sections as the trace, and each section is
an image of an arc. Next we shown that the image of a great circle in this case is still
a circle. Therefore, the projected trace is still composed of sections of arcs.

A great circle, formed by the intersection of a sphere with a plane through
the center of the sphere, can be described by the equation set

112 + y72 + 2’2 J— T2
ar’ +by’'+2° =0

{

(4.8)

where n = (a, b, 1) is the normal vector of the plane. Through the transformation in

(4.7), the above great circle is projected into a circle
(x —2a)% + (y — 2b)% — (4 + 4a® + 4b%) (4.9)

on the projection plane with radius — V4 + 442 + 4b% and centered at — (2a,2b). It
is called the projected circle. Notice that if a plane is normal to the projection plane,
a great circle in that case is mapped to a line instead of a circle. However, such a case
does not exist here because we have assumed that a testing vector is not coplanar with
any of the planes.

The transformation in (4.7) is a conformal mapping which preserves the angle
between two great circles. Let Cp and Cy represent two great circles on planes Gy
and Gy with normal vectors Ny =< ay,b1,1 > and Ng =< ag,bg,1 >, respectively.
They can be described by the set of equations

SII’Z + y,2 + 2’2 — ,,.2
a1z’ + by + 2 =0

Oy { (4.10)

- 65 —

Figure 30
The angle 6 between circles C’; and C’g is the angle between vectors

r1 and rg which can be calculated from the radii of C’1 and €’ and

the distance between the centers of C’; and C’s.

x72 + y’2 + 272 J— 1.2
agx’ +boy’ +2°=0

Ce: {

(4.11)

After the transformation, C; and Cs are mapped respectively to C1’ and Cg’ on the

projection plane:

Cy' : (z —2a1)? + (v — 2b1)2 = (4 + 4a3 + 4b%) (4.12)

Cy’ : (z —2a9)? + (y — 2bg)? = (4 + 4a% + 4b3) (4.13)

The angle © between circles C; and Cs is the angle between planes Gy and Ga. By

calculating the inner product of the normal vectors Ny and Ng, we can find ©:

Ni.Ng _ 1+ ajag + bibe
IVINZL a2 83\ /1+ 0] + 8]

cos O =

(4.14)

The angle between projected circles C’; and C’z, shown in Figure 30, can be

calculated as follows.

- 66 -

d = the distance between the centers of C’y and C’y.
d? = 4(a1 - 02)2 +4(by — b2)2
d? = r% + r% —2r1racosé
4(a1 — ag)? + 4(by — b2)® = 4(1 + of + bf) + 4(1 + af + 83)
—8y/1+ a2 +b3/1+ a} + b cos 6
1+ajag+biby

V1+a3 +83\/1+ e} + 63

(4.15)

cos @ =

We have thus shown that the transformation indeed preserves the angle between two
great circles, i.e., 8 =20.

We know that the south pole is mapped to the origin of the projection plane,
also that a projected circle always encloses the origin of the projection plane. If the
south pole is in the positive half-space of a plane, then the positive half-space is mapped
to the interior of the projected circle. For instance in Figure 31al, the the south pole
is in the positive half-space of face F3, thus the positive half-space is mapped to the
interior of the projected circle C3 as shown in Figure 3122. Instead, if the south pole is
in the negative half-space, then the positive half-space is mapped to the exterior of the
projected circle, for example the projected circle Cs in Figure 31a2. The cross-mapping
between the positive/negative half-spaces and the interior/exterior of the projected
circle is, therefore, determined by where the south pole is located, and accordingly by
where the testing point is located. For example, the testing point in Figure 31al is
located in the positive half-spaces of both Fj and F3, and the negative half-spaces of
F3. The positive half-spaces divided by Fj and F3 are thus mapped to the interior of
the projected circles Cj and Cj, respectively. The positive half-space divided by Fg is
then mapped to the exterior of its projected circle, Cy, instead.

If a positive half-space is mapped to the interior of a projected circle, the
region pattern bit of the origin with respect to the corresponding arc is positive, as in
Figure 32a. If, instead, a negative half-space is mapped to the interior of a projected
circle, then the region pattern bit of the origin with respect to the arc is negative, as
in Figure 32b. Based on this, the two-dimensional region pattern of the origin of the
projection plane with respect to the projected trace can be calculated by calculating the

three-dimensional region pattern of the south pole Py with respect to the converging

— 67 —

P

\ e |
. Fa =)
(a1) Ve
™)
00
o0
(1) R
N F(4)
/ s \To
?, Fa(=)
Figure 31

(al) Py isin the (4, —, +) region, and (b1) Pj is in the (+, +, —) region
of faces F}, Fp and F3. The shaded areas correspond, respectively,
to (a2) the intersection of the interior of C3 with the union of the
interior of C; with the exterior of Cg, and (b2) the intersection of the

exterior of C3 with the union of the interior of C} with the interior

of Cs.

faces (F1, Fa, .., F) of the coincident vertex. We also notice that the region pattern of
the south pole P with respect to (Fy, Fy, .., Fy,) is the same as the region pattern of
the testing point P with respect to (Fy, Fg, .., Fyy) . This shows that the region pattern

- 68 -

A A
-
/
— —
Z - — —
/ — - —
—t) — (=) —=
— —= j—
—|- - —
(@) I :'e 05. - 4
sauth ple (b)

Figure 32
(a) The positive half-space is mapped to the interior of the projected

circles if the south pole is located in the positive half-space of a face.
(b) The negative half-space is mapped to the interior of the projected

circles if the south pole is located in the negative half-space of a face.

of the origin can be derived from the 3D region pattern of the testing point P with
respect to (Fy, Fy, .., Fin) .

A convex edge originates from the ‘intersection’ of two positive half-spaces
divided by two adjacent faces, therefore, the image of the interior would correspond to
the intersection of the images of the two positive half-spaces. A concave edge derives
from the ‘union’ of two positive half-spaces. The image thus corresponds to the union
of the images of two positive half-spaces. For example, F] and F3 in Figure 31al
intersect a convex edge. the image of the interior of the polyhedron corresponds to the
intersection of two projected circles Cy and Cj3, as shown in Figure 33al. Faces F} and
Fy in Figure 31b1 intersect a concave edge. The image thus corresponds to the union
of C1 and Cpy, Figure 33bl. However, it is important to point out here that faces Fy
and F3 in Figure 31bl also intersect a convex edge. Because the testing point resides

in the (4, —) region of F] and Fj3, the image thus corresponds to the intersection of O}

— 69 —

(s1) (x2))

= ; S
—
— — —
— —_
- '/” —
. /, /
-//’

(b1) “(b2) (b3)
Figure 33

Two faces intersect a convex edge. The south pole is in the (al) (+, +)
region, (a2) (4, —) region, (a3) (—,—) region of the faces. Two faces
intersect a concave edge. The south pole is in the (b1) (+, +) region,
(b2) (+,—) region, (b3) (—,—) region of the faces.

with the exterior! of C3, as shown in Figure 33a2. Fj and Fy in Figure 31al intersect a
concave edge. However, due to the similar reason, the image corresponds to the union
of Cy with the exterior? of Cy, Figure 33b2.

Through the angle-preserving transformation, it is guaranteed that if two
consecutive faces in (Fy, Fy, .., Fy,) intersect a convex edge, the corresponding arcs in
the projected trace also intersect a convex vertex; if two faces intersect a concave edge,
the corresponding arcs also intersect a concave vertex. For example, voz in Figure
31a2 is convex because Fp intersects F3 by a convex edges, as shown in Figure 31al.
Vertex vyg is concave because Fj intersects Fy by a concave edge. Therefore, the
angle-preserving transformation guarantees that the vertex pattern of the projected

trace can be determined from the edge pattern of (Fy, Fa,.., Fin) .

1As we mentioned before, the testing point is in the negative half-space of Fg, the positive half-space of Fs is
thus mapped to the exterior of Cg.

2The testing point is in the negative half-space of Fy, the positive half-space of F; mapped to the exterior of
Cs.

- 70 -

The transition pattern of the origin with respect to the projected trace can be
calculated from the vertex pattern of the projected trace and the region pattern of the
origin with respect to the projected trace. Since the vertex pattern of the projected
trace is equivalent to the edge pattern of (Fy, Fy, .., Fy,) and the 2D region pattern of
the origin with respect to the projected trace is equivalent to the 3D region pattern of
the testing point P with respect to (F, Fg, .., Fyn) , then the 2D transition pattern can
be calculated directly from the 3D edge pattern and region pattern.

If both north pole and south pole reside in the same region of the polyhedron
(both in the interior or both in the exterior), then they will be mapped to the same
region divided by the projected trace. If they reside in opposite regions (one in the
interior and the other in the exterior), then they will be mapped to opposite regions
divided by the projected trace. We know that the south pole is mapped to the origin
and the north pole is mapped to the infinity of the projected plane. Therefore, if
north and south poles reside in the same region, then the origin is located ouside of
the projected trace, that is, the origin is ‘NOT enclosed by’ the projected trace. If
the poles reside in opposite regions, then the origin will be ‘enclosed by’ the projected
trace.

We mentioned before that a testing vector can travel either from (1) the interior
to the exterior, (2) the exterior to the interior, (3) the interior to the interior, or from (4)
the exterior to the exterior. If a vector travels from the interior to the exterior or from
the exterior to the interior of a polyhedron, it causes a significant intersection with the
polyhedron. In this case, as we have shown above, the origin will be ‘enclosed by’ the
projected trace and, therefore, the testing point satisfies the singularity criterion I and
has an equal number of convex and concave transitions. If a vector travels from the
interior to the interior or from the exterior to the exterior of a polyhedron, it is tangent
to the surface of the polyhedron. Therefore, in this case the origin will be excluded
by the projected trace and the testing point will fulfill the singularity criterion II and

have two more convex transitions than concave transitions or vice versa.

- 71 -
4.7 Discussion

The presence of singularities can confound our attempts at efficient point-
polyhedron enclosure detection. This paper shows, however, that the resolution of
simple singularities and the decomposition of complex singularities offers not only
mathematical elegance but practical utility as well. The singularity criterion help
simplify the time-consuming 3D edge-face-penetration detection problem. This makes
1t particularly useful in practical applications in CAD/CAM.

The development of digital computers has made it possible to carry out com-
putations involving a very large number of arithmetic operations. However, due to the
fixed precision of computers, rounding errors could result through iterative addtions
and subtractions, [32]. However, according to the discussion in this chapter, we need to
keep in mind that the accuracy of the sign of a line equation value is very critical when
using the singularity criterion to determine whether a vertor penetrates a surface.

We now consider the rounding errors made in the fundamental arithmetic
operations. Addition and subtraction involve no round-off in fixed-point arithmetic,
though the possibility of the sum or difference lying outside the permitted range has
to be borne in mind. The exact product of two ¢-digit numbers a and b is, in general,
a number requiring 2¢ digits for its representation. This exact product is replaced by
the ¢-digit approximation obtained by adding 127* and discarding the last ¢ digits.

2
Therefore, we have the computational equation

1
¢ = ab+ € where |¢] < -2—2"t

Nearly most of the digital computers produce, in the first instance, the exact
2t-digit product of two t-digit numbers. On many computers advantage is taken of
this fact to obtain more accurate results. A very common requirement is seen in the

calculation of an inner product defined by
n
§ == E azby
1

If each product in this expression is rounded separately, then the corresponding com-

putational equation is

— 72 —

n 1 _t
s=)_ a;b; + ¢ where |¢| < §n2

1

However, on most of the computers, the inner-product can be accumulated exactly to

the full 2¢ figures and the bound for the rounding error is reduced by the factor n:
= 1
s= Z aib; + € where |e| < 52"t
1

Computers which are provided with this feature have an accumulator which can store
a 2t-digit number. However, the details of the fundamental floating-point arithmetic
operations differ from one computer to another. On a computer having a double-
precision accumulator, the operations are done as follows. Let the two floating numbers
zy and zg9 be denoted by z; = 2%1a; and x5 = 2%2g5. We also assume that xy Is
the number with the larger modulus. Then the integer (by — bg) is computed: (i) if
(b1 —bg) > t, the number of digits, then z3 is too small to have any effect as far as the
first £ significant digits of the sum are concerned; (ii) if (by —bg) < t, then ag is divided
by 2b1—b2 by shifting it b, — bg places to the right. The sum a; + 215245 is then
calculated exactly. This sum is then multiplied by the appropriate power of 2 so that
the resulting number lies in the range permitted for the mantissa of a floating-point
number.

Therefore, if the difference between b; and by is more than the number of
digits ¢, then one can loose the precesion on the result as much as z3. In calculating

the sign of a line equation value ax + by + ¢z + d, this effect can sometime lead to an

erroneous result.

- 73 -

Chapter 5

Polyhedron-Polyhedron Intersection

The set operation has a central role in computer graphics problems where the
goal is to construct a new polygon (or polyhedra) out of two separate originals. We
can define the subspace occupied by the resultant polygon (or polyhedra) as the union,
intersection, or difference of the subspaces occupied by the two original polygons (or
polyhedra); and conventionally we can execute the necessary computation by means
of a dot matrix scheme where each dot represents the occupancy of a particular small
space by the object. With this method, performing a set operation on two objects
becomes a very simple task: we merely select the appropriate set of dots out of the
two matrices of the objects. For instance, to perform an intersection operation on
two objects, we select the dots which are present in both objects; to perform a union
operation on two objects, we select the dots which are present in either object. Simple
though this method is theoretically, however, practically it demands high memory
costs.

A more efficient way of representing a solid is by describing its boundary;
this is known as the boundary representation scheme. Sufficient information about
the boundary can uniquely identify the space occupied by the solid. Performing a
set operation on two objects represented with boundary representation scheme then
becomes a task of constructing the new boundary of the resultant object according to
the specifications demanded by the specific operation classes.

With boundary representation scheme, however, polygon-polygon intersection
is the first step to perform in a set operation between two polygons. Polygon-polygon
intersection detection is an operation on two polygons which compares every edge of
one polygon against every edge of the other polygon to find the intersections between
them, as shown in Figure 34a. This edge comparison between two polygons is called
edge-edge intersection detection and is for determining whether two edges intersect

each other, as in Figure 34b. If they do intersect, the operation further discovers

(@)

«-.] .

(©))

Figure 34
(a) Polygon-polygon intersection, (b) edge-edge intersection, (c) polyhedron-

polyhedron intersection, (d) edge-face penetration.

the coordinates of the intersection point. A polygon-polygon intersection thus consists
of n? independent edge-edge intersections, where n is the number of edges in one
polygon. Sometimes, the number of edge-edge intersection detections can be reduced
by pre-checking the maximum and minimum coordinates of the vertices of the two
edges.

Similarly, polyhedron-polyhedron intersection is the first step in performing a
set operation on two polyhedra in a three-dimensional space. A polyhedron-polyhedron
intersection is an operation which compares every face of one polyhedron against every
face of the other polyhedron, to find all the intersections between the faces of the
two polyhedra, as in Figure 34c. This face comparison is composed of multiple inde-
pendent edge-face-penetration detections, each of which compares an edge of a face
with another face to determines whether the edge penetrates the face, as in Figure 34d.

An edge-face-penetration problem can be solved by a 2D point-polygon-enclosure detec-

75 -

® ®)

Figure 35
(a) Two polygons intersect by a line segment, (b) two polyhedra

intersect by a face.

tion method or using the singularity criterion proposed in Chapter 4. A polyhedron-
polyhedron intersection consists of 2mn independent edge-face penetrations, where n
is the number of edges and m is the number of faces of a polyhedron.

As one can see, polygon-polygon intersection and polyhedron-polyhedron in-
tersection are the two most computation-intensive operations in performing a set opera-
tion on two objects. In the following discussion we describe how to perform these opera-
tions in an easier and more efficient way. A perturbation method is suggested below
which can be used to transform two polygons (or two polyhedra) into a singularity-free
situation so that polygon-polygon intersection and polyhedron-polyhedron intersection

can be performed without the necessity of considering degenerate situations.

5.1 Singularities

When performing a set operation on two objects some undesirable situations
may occur: for instance, two polygons may intersect by a line segment, as in Figure 35a;
or two polyhedra may intersect by a face, as in Figure 35b. Situations like these are
called “degenerate situations” or “singularities.” Singularities are a very troublesome

but inevitable problem. They are troublesome because their result is degenerate, for

- 76 —

(a1) (b1)

(a2) (b2)

Figure 36

(al) Two polygons are tangent to each other, (a2) two polygons are
detached from each other, (bl) part of the boundaries of the two
polygons overlap with each other, (b2) the overlapping edge portions

are detached from each other.

instance, the intersection of the two polygons is a line segment which does not have
an area; and the intersection of the two polyhedra is a face which does not have a
volume. Such degenerate situations usually cause erroneous results if they are not
carefully handled. A conventional way to handle them is to allow the presence of
partial intersections, such as a half or a quarter intersection, depending on the nature
of the singularity.

Let us first consider a generally defined polygon which is a smooth closed curve
instead of a segmented polygon. When we intersect two polygons like this, we may face
the following difficult situations: (1) the boundaries of the two polygons are tangent to
each other, as in Figure 36al, or (2) part of the boundaries of the two polygons overlap
with each other, as in Figure 36b1. The former case is a zero-order singularity which
will be called a ‘D° singularity’, and the latter one is a first-order singularity, which
will be called a ‘D! singularity.’ In two different cases of these two singularities, the

overlapping boundaries of P and @ face either the same or opposite directions.

- 77 -

@) @) @)

1)) () (b3)

Figure 37
(al) A virtual V? singularity, (b1) a virtual V°° singularity, (a2)

smoothed polygon, (b2) smoothed polygon, (a3) the coincident vertex
turned slightly away from the edge, (b3) the coincident vertex turned

slightly away from the corner.

As we can see, we can easily avoid a zero-order singularity by perturbing the
coincident vertex just enough to detach it from the coincident edge, as in Figure 36a2.
Similarly, a first-order singularity can be transformed into two lower order singularities
by slightly perturbing and thus detaching the overlapping edges, as in Figure 36b2. In
this case, the singularity can then by resolved by digesting its two components.

When considering segmented polygons, other degenerate situations may occur
in addition to the degenerate cases mentioned above. These degenerate situations
are considered normal when polygons are smoothed. For instance, the situations in
Figure 37al and 37bl are considered degenerate only because the vertex is located
on a polygon. However, as we can see in Figure 37a2 and 37b2, they are not real
degenerate situations once the polygons are smoothed. Thése cases are virtual zero-
order singularities. The one in (al) is called a virtual V° singularity, and the one in
(b1) is a virtual V' singularity. We can tell a virtual singularity from the fact that

each polygon subdivides the interior of the other polygon. These degeneracies can

- 78 —

A

z

|

E |

@r)y (@z)

(b2)

Figure 38
(al) A D° singularity, (a2) a D singularity, (b1) a D! singularity,
(b2) a D! singularity. '

usually be avoided by virtually moving one coincident vertex slightly away from the
other so that they turn into normal situations, as in Figure 37a3 and 37b3. The term
“virtually moving the vertex” implies that no physical movement is really enforced
onto the vertex; we only assume the vertex has been moved.

Because of the segmentation at the boundaries of the polygons, a D? singularity
can turn into a D% singularity, as shown in Figure 38a, when the vertices of two
polygons overlap; and a D! singularity can turn into a D! singularity, as shown in
Figure 38b, when two edges of the two polygons overlap. A D° singularity and a D%
singularity are thus basically the same when considered in a smooth boundary polygon,
and so are a D! and a D! singularities.

Next we discuss how to handle singularities encountered in performing a
set operation on two polygons. Here the polygons are segmented polygons whose
boundaries are composed of a sequence of line segments called edges. In a set operation
on two polygons P and @), we first perform an edge-edge-cross examination between
the two polygons. The intersection of two segments can be determined by calculating
the line-equation values of both ends of one segment against the other segment, and
vice versa. We use a function “/” (called “against”) to determine whether a point P is

located on the positive side or the negative side of an edge, or whether the point falls

- 79 -

right on the line which contains the edge. The function maps a point P =< Zo, Yo >
and a line L : az + by + ¢ = 0 into an integer in {+1,0,—1}. It returns a value “1”
if a point is located on the positive side, a value “’1’ if it is on the negative side. If
P falls on the line, then the function returns a value “0”. Therefore, we can define
the function as the sign of the line-equation value as P/L = 1 if az, + byo + ¢ > 0;
P/L=—11if azo+ by, +¢ < 0; P/L =0 if az, + by, + ¢ = 0.

P/L = Sign(az, + by, + ¢) (5.1)

Let edges Ep = (v1, vz) and Ey = (v3, vg) be edges of P and Q, respectively,
in comparison. Let Ly and Lg represent the two lines containing edges Eyp and Ey,
respectively. To determine whether Ejp intersects Ey, v; and vg are compared “against”
Eq4 and vz and vg are compared “against” Egp. We know that vertices v; and wvg are
on the opposite sides of edge E; when (vy/Lg)(v2/Lq) < 0, and vz and vy are on the
opposite sides of edge Ep when (v3/Lp)(v4/Ly) < 0. Edges Ep and Ej intersect when

v1 and v are on the opposite sides of edge Eq and vz and v4 are on the opposite sides

of edge Ep, such that

(v3/Lp)(v4/Lp) < 0 and (v1/Lg)(v2/Lq) < O. (5.2)

In this case we say that the two edges intersect “normally.”

However, in a singular situation, two edges intersect when one end of an edge

1s on the other edge:

(va/Lp)(vs/Lp) < O or (v1/Lg)(vz/Lg) < O

We call this case a singular situation, or a singularity. A singularity occurs when vy
or vg is located on Eg or vz or vy is located on Ep, or sometimes when Ep and Ey are

overlapping with each other:

(va/Lp)(v4/Lp) < 0 and (vy/Lg)(ve/Lg) =0,
(v/Ly)(v4 /L) = 0 and (vn./Lg)(v2/Lq) < O, or
(va/Lp)(va/Lp) = 0 and (v1/Lg)(v2/Lg) =0

SONNNNNN

()
2
/LEF U:B
> 1 %3 ? %'l
(®) g, P2
H
V%3 V2.1 "El 3.3

Figure 39
(a) Vertex vg is moved away from Ey by a perturbation so that the D°

singularity disappears. (b) Vertices vy 9 and vq,2 are detached from

each other by a perturbation so that the D singularity disappears.

Here we say that the two edges intersect in a singular situation. To remove it, we
would like to enforce a perturbation on one of the polygons during the edge-edge-cross
examination.

Vertex vg in Figure 39a is a vertex of polygon @ which causes a D° singularity
on an edge Ep of polygon P with condition vg/E, = 0. A slight perturbation can cause
vg to move away from Ep into the same region where vy is located. Vertices vy, v, and
vz are thus located in the same region divided by the line containing Ep, and clearly
there is no intersection between Eg 1 with Ep, nor between Ey 9 with Ep. Therefore,
the perturbation causes the singularity (vy/Ep)(ve/Ep) = 0 and (v3/Ep)(ve/Ep) = 0
to turn into (vy/Ep)(ve/Ep) > 0 and (vz/Ep)(ve/Ep) > 0.

- 81 -

NN

o
N
V1

&
4
kN

(»)

AS|

7
/
7

L&/\\ %’3

Figure 40
(a) Vertex v is moved into the positive region of Ey so that the V°

singularity is no longer present, (b) vertices vp,2 and vg g are shifted

away from each other to avoid the V°° singularity.

In Figure 39b vertices vp 9 of polygon P and vq,2 of polygon @ coincide and
result in a D singularity with conditions vp9/E, 1 = 0, vp,2/Eq2 =0, vg9/Ep1 =
0, vg,2/Ep2 = 0. Since the interiors of the two polygons are disjoint, a perturbation
can detach vg s from vy 9 so that the two corners are isolated from each other and the
singularity simply disappears. Thereafter, neither Ep,1 or Ep o intersects gy or Egq.

Vertex vg in Figure 40a causes a V' singularity because vy is located on edge
Ep and vy and vz are on the opposite sides of Ep. The perturbation moves vy into the
positive region of Ep, thus avoiding the singularity. In other words, the perturbation

enforces vy /Ep = 0 into vy /Ep = +1 and resulting in the situation that

(v1/Ep)(v2/Ep) < 0 and (va/Ep)(vs/Ep) > 0

- 82 -

We then know that there is a normal intersection between E,, with Ep, but no
intersection between Ego with Ep. However, it is important to mention here that
the coordinates of the intersection point between Eq1 and Ep should be the same as
the coordinates of point vg, so that we assure there is no physical displacement really
enforced on the polygon. The perturbation is only a virtual means to determine which
two edges do intersect and which two do not.

By this same reasoning we can resolve the V°° singularity in Figure 40b with
a perturbation, shifting vy 2 and vg g away from the edge and moving the intersection
onto edges Epy and Eg3. The perturbation leaves the result that only edges E;q
and Ege have normal contact, but not edges E,; with Eq1, Ep2 with Egq, or
Ep 9 with Eg9. Again, the coordinates of the intersection point of Eyy with Eg 9
should be the same as the coordinates of points Vp2. In some cases there may be no
physical perturbation to displace intersections onto edges Ey1 and Eg; while leaving
no intersection between the rest of the edges. However, since no physical displacement
is really enforced onto the polygons, assuming the existence of such a nonrealizable
perturbation would still lead to a satisfactory result.

A D! singularity can be transformed into two lower order singularities, either
two D° singularities, a D° and a V° singularity, or two V° singularities, by pushing
the coincident edge of the second polygon, Ey into the positive side of the first polygon,
and then resolving its two components following the previous rules. A D! singularity
can be resolved in a similar way by pushing the coincident edge of the second polygon
into the interior of the first polygon.

The method discussed above for avoiding singularities is called the “neighbors
look-up” method, because the perturbation enforced depends on the type of neighbors
a coincident vertex has. For instance, a vertex vg of polygon P is located on an edge
E4 of polygon Q. Vertex vg may be in the middle of several kinds of singularities such
as a D° singularity, a V° singularity, a D singularity, a V% singularity, or even a
D! singularity, see Figure 41le. We would perturb vertex ve differently depending on

what kind of singularity it is in.

— 83 -
—_—

Vo q«—
A

i

(a) (b) (c) (d) ()

Figure 41
(a) A D? singularity, (b) a V? singularity, (¢) a D° singularity, (d) a
V0 singularity, (e) a D! singularity.

5.2 Edge-edge intersection

Because the number of degenerate cases increases enormously when we enter
a 3D space, we can expend a great effort trying to admit every possible singularity and
solving each of them on a case-by-case basis while performing the set operation on two
objects. Next we discuss a singularity-independent perturbation method which can
“virtually” eliminate all the singularities encountered in polygon-polygon intersection
or polyhedron-polyhedron intersection. This method resolves a singularity independent
of the neighbors of the singularity-causing element. It resolves singularities at the level
of edge-edge intersection (or the edge-face penetration) so that singularities can be
handled at this step independent of the type of operation being performed.

In the following discussion we explain the details of this method and show
how singularities can be solved by using the idea of “perturbation.” As we explained
previously, perturbation is a method of slightly displacing one polygon (polyhedron)
relative to another. One might think that in order to create an infinitely small
perturbation one would need to make an infinitely small change on the coordinates of
vertices, which is difficult to achieve on a computer. However, perturbation is simply

a way used to develop a set of rules which one can follow whenever a singularity is

— 84 —

encountered. At the end of this section such a set of rules is presented. These rules are
the core of the singularity-independent perturbation method. As far as implementation
is concerned, these rules are what we need to code a “singularity-resolver.”

As we described before, the intersection of two edges can be determined by
calculating the line equation values of both ends of one edge against the other edge,
and vice versa. If both ends of the first edge are located at opposite sides of the second
edge, and both ends of the second edge are also located at opposite sides of the first
edge, we know that the two edges intersect.

Let Qg and @y be the two polygons in operation. Let E, = (V1 V2) and
E, = (Vl,Vg) be edges of Qg and Qp , respectively, under edge-edge intersection
examination. Let the coordinates of the vertices be VI =< xi,y,lz >, Vi =<

933, 3/3 >, Vll, =< x},,y,} >, and Vf =< xf,y% >. Let

La:aax+ﬂay+'7a=0
Ly : opz + fpy + ¢ =0

represent the lines containing edges Eg and Ej , respectively. Two edges intersect

normally if the following condition stands:
(Va/Le)(Ve/Ly) < 0 and (V}/La)(V}/La) < O (5.3)

If there are singularities present, we assume that the second object @y is displaced
by an infinitely small perturbation (egz, €y) relative to the first object Qg so that all
the singularities disappear. In other words, we like to choose a perturbation (ez, €y)
which can perturb the two objects so that they intersect each other in a singularity-
free situation. We also assume that both €; and ey are positive and that the order
of magnitude of €z is far larger than €y, so that the ¢y perturbation on y-axis can be
neglected whenever the ez perturbation on x-axis is not negligible.

For example, a singularity occurs when vertex V}, is located on line Lg, so that

the line-equation value is zero.

(V3/La) = et + Bayt +7a =0

— 85 —

With an small perturbation (ez,ey) on Qp , vertex V} =< z},y} > is displaced to
a new position V} =< x,} + ez,y}, + €y >, so that the line-equation value is not
anymore zero. Since we are concerned with only the sign of the line-equation value,

we can express (V1/Lg) as

(V%/La) = Sign(aaez + abfy)

Since both €z and €y are positive and the effect of €y is negligible when compared to

€z, we conclude that

(V1/Ls) = Sign(ag) if org # 0
(V%/La) = Sign(Ba) if aa =0 (5.4)

If the x-component of the normal vector g 7% 0, the line Lg is not a horizontal
line. Applying only ez perturbation on the x-axis alone can shift the coincident vertex
V}, away from Lg. However, if Lg is a horizontal line, that is if the normal vector
has ag = 0, the coincident vertex V% is still on line Lg if it is perturbed only on the
x-axis, no matter by what amount. In order to shift the coincident vertex V% away
from Lg, the €y perturbation on y-axis is necessary. However, the magnitude of ¢y is
restricted not to overtake the effect of €z, so that the signs of agez + apey and aqe,
can be identical.

A similar rule applies to singularities occurring on vertex Vg =< x%,y% >
when (VE/Ls) = 0: the perturbation causes VZ to be displaced to a new position
V,z, =< xf + ez,yf + €y >, so that

(V§/La) = Sign(ag) if aq %~ 0, otherwise
(V3/La) = Sign(Ba) (5.5)

However, a singularity may occur on the vertices of polygon Qg instead of Qy,

for instance, on vertex V1 with condition
(Va/Ly) = apas + Boya + 1 =0

Since polygon @y is perturbed by < €z,€y > relative to polygon Qg , we can say
that polygon Qg is perturbed by < —ez,—ey > relative to polygon @Qp. Therefore,

~- 86 —

instead of shifting the line Ly by (ez,€y), we can imagine that vertex V1 is displaced
by (—ez, —€y) to V=<2l - €z, Y1 — €y >. Therefore, we arrive at the following

conclusion when singularities occur on the vertices of polygon @, instead of @y :

(V1/Ly) = Sign(—oy) if op 54 0, otherwise
(Va/Ly) = Sign(—4)

For a singularity occurring on vertex Vﬁof Qa , the perturbation also leads to a similar
situation

(VZ/L,) = Sign(—ay) if £ 0, otherwise

(VE/Ly) = Sign(~$s) (5:6)

By following the above rules, edge-edge intersection can be strictly determined by the

following condition:

(Va/Ly)(Va/Ls) < 0 and (V}/La)(V§/La) <O

5.3 Face-face intersection

An edge-face-penetration detection can be performed by first checking whether
both ends of the edge are located on the opposite sides of the plane containing the face,
and then checking whether the intersection point of the edge with the plane is enclosed
by the face. The second operation is called 2D point-polygon-enclosure detection. If
both conditions hold true, then we know that the edge intersects the face. Thus
each edge-face-penetration detection ideally requires one 2D point-polygon-enclosure
detection. In practical application, however, it would take much computer time to
compare every edge of the first polyhedron against every face of the second polyhedron
and also every edge of the second polyhedron against every face of the first polyhedron.

Face-face intersection compares a pair of faces to determine whether they
intersect. Instead of decomposing a face-face intersection detection into multiple edge-
face-penetration detections as the conventional technique does, a simpler method [9]

can be used which takes as many plane-equation calculations as the total number of

_ 87 -

edges of the two faces in comparison to determine the intersection. Next we discuss how
to apply the perturbation method in case of singularities in 3D face-face intersection
detection.

Let Q4 and Qp be the two polyhedra in operation. Let F, be a face of
polyhedron Q, composed of m edges, Fy = (EL, E2,..,E™) and let F} be a face of
polyhedron @y, composed of n edges, Fy = (E}, E%,.., ET*). Each edge is described by
two vertices, ES = (v%, v5t1) and E‘l = (v{,vg+1). Let G4 and Gybe the two planes
containing faces Fg and F}, respectively, such that

Ga:agz+ Bey+vaz+ 6, =0
Gy opz+ Bpy + ez + 8 =0

If planes G and Gy are not parallel to each other, the intersection line Lg j between

G4 and Gy can be described by an equation set

a,

fear + Bay + ez + s =0
‘ {abz-i-ﬁby—i—’ybz-{-&b =0

We use a function “/” (“against”) which maps a point P =< z,,y,, 20 >
and a plane (or a face) G : oz + By + vz + 6§ = 0 into an integer in {+1,0,—1}. The
function returns “1” if the point P is located in the positive side of the plane; or “-1”
if the point is in the negative side; if the point is in the plane then it returns “0.”
We define the function by P/G = 1 if az, + fyo + 720 +6 > 0, by P/G = —1 if
azo + BYo + 720+ 6 < 0, or by P/G = 0 if oz, + Byo + Y20 + 6 == 0, such that

P/G = Sign(az, + Byo + V20 + 6) (5.7)

If an edge of Fg intersects the plane Gf, it makes a cut on the line L, 3 ; so does an
edge of Fyif it intersects the plane G, . If an edge E; = (v}, v2) of F, intersects plane
Gy, both ends of the edge must be on the opposite sides of the plane, which can be
described by the condition

(va/Gy)(ve/Gy) < O (5.8)
If an edge Ey = (v}, vE) of Fy intersects plane G , it must satisfy the condition

(v5/Ga)(v§/Ga) < O (5.9)

_ 88 -

Therefore, an edge of F; makes a cut on L, 3 when condition (5.8) is satisfied; and so
does an edge of F when condition (5.9) is satisfied.

In the event that edge E{ intersects plane G in a singular condition where
. 1
(v}/Ga)=0 or (v}"'/Ga)=0

we apply an infinitely small perturbation < €z, €y, €z > to the second polyhedron @
to displace vertex vz to v{ =< 1‘% + €z, yi + €y, z{, + €z >, so that

'U'g/Ga == Sign(aafz -+ ﬂafg -+ ’Yafz)

We also assume that €z, €y and €z are positive and the effect of €; can overcome that

of €y, and the effect of ¢y can overcome that of ¢;. We conclude that

v{/G’a = Sign(ag) if ag £ 0 else
vl /G4 = Sign(Ba) if ag = 0, B 5 0 else
vi/Ga = Sign(a) if @g = B, =0

However, if a singularity occurs on polygon Qg instead of Qy , i.e., an edge E},

of Fg intersects plane G, such that
(va/Gp) =0 or (vg"!/Gy) =0
then the perturbation leads to the situations

vi /Gy = Sing(—oy) if op 7% 0 else
’U;/Gb = Sign(—ﬂb) if Qp = 0, ﬁb 7é 0 else
va/Gp = Sign(—p) if ap = fp =0

Since a face is a simple closed curve, an even number of cuts is always made
on the cut line L, by each face, as Figure 42 shows. Let (1, 1, ..., pr, £7) be the set
of 2r cuts made by face Fy , and let (1,2}, ..., vs, %) be the set of 2s cuts made by
face Fy, where the cuts are sorted according to their position on the cut line Ly 3 , as in

Figure 43a. We know that the cuts are in a paired structure so that each pair (p;, pi)

Figure 42
Four cuts (p1, u!, u2, u?) are made on the cut line Lgp by Fg. Two

cuts (1, v!) are made by face Fyon the cut line Loy -

constitutes a segment that occupies the interior of face Fy , as in Figure 43b, and each
pair (VJ', Vj) constitutes a segment that occupies the interior of face Fj, as in Figure
43c. However, two consecutive cuts from two neighboring pairs such as (u‘., Hit1) OF
(v, Vj41) constitute a segment occupying the exterior of the face. By sorting the two
sequences of cuts (uy, ut, ..., ur, u7) and (v, 1, ..., vs, v*®) together, we can determine
which sections of the cut line Lgp form the intersections of F, with Fj, as in Figure
43d.

We know that if a segment of Lgp forms the intersection of F, and Fj, then
that segment must occupy the interiors of both F, and Fj. Therefore, we know that
if a segment Sf, = (u,-,pi) is in face Fj, then sz forms part of the intersection of Fy
with Fy. Conversely, if a segment S‘Z = (v,, I/j) is in face F , then S{ also forms part
of the intersection of F, with Fj.

When the cut line is considered as a one-dimensional space, we can compare

two points p; and pg on the cut line by their positions: say p; < pg if p; is on

by Fpare sorted according to their position on the cut line I

(ﬂ) < *o—9 ? ol - tad * 4% Lﬂ‘b
' g2
M f 2 D)

\b) < L4 * %’M\(" 4 —> La, b
G, ") (Mo i)

(C) ~< - . l . l{ - % La/_b

'{’; ,u')
(d) N >~ ‘JF%TJI . } Ld,L

(W2 ")
Figure 43

(a) Four cuts (uy, u!, pz, u?) made by F, and two cuts (v1, v') made

intersection of Fy and Fy.

(c1) vy <pi< v <t
(c2) p <w; < pb <
(e3) vj<p < pt <

(c4) pi <V < v < ut

a.,b ’
(b) Segments (1, u') and (ug, u?) occupy the interior of Fj , and

(c) segment (vy,v!) occupies the interior of Fy. (d) (pg,r!) is the

the left side of pg; p; > peo if p; is on the right side of ps. We thus sort the cuts
(p1, Y, ..., gy, u7) and (v1,v1, ..., v, v®) according to their positions on the cut line
Lgp ; and we can then determine which portion of Ly p forms the intersection of F,
and Fy by the conditions listed below. The segments (i , v7) in condition (c1), (vs, 4%)
in condition (c2), (u4, #*) in condition (¢3), and (vj, v¥) in condition (c4) all constitute
portions of the intersections of Fg with Fy. There is no overlapping between Sfl and

S{ in conditions (c5) and (c6).

(5.10)
(5.11)
(5.12)

(5.13)

- 91 -

(c5) py < pf <y < i (5.14)

(c6) v < < py<pt (5.15)

By sorting the cuts (ug, p?, ..., ty, u7) and (v1,v1, ..., vs, v®) along the cut line
Lgp , we can select the appropriate segments according to the rules above by means
of the following algorithm. The algorithm advances along the cut line and searches
for the pair of cuts which constitutes a portion of the intersection of F, with Fy. It
then advances along the cut line to compare each two pairs (u;, p*) and (vy, v¥) to find
the segment which satisfies either one of the following categbries: (ug, l/j) in condition

(c1), (vy, #*) in condition (c2), (u, #*) in condition (c3), or (v, 7) in condition (c4).

(Step 1) Set 7 & 1, and 5 < 1;

(Step 2) If 7 <= r and j <= s then
compare segments (ug, u*) with (v, 7)

else go to end;

(Step 3) If condition (c1) then select segment (u;, v7); j &= j + 1;
If condition (c2) then select segment (v;, u'); ¢ & @ + I;
If condition (c3) then select segment (p;, u'); i & ¢+ 1;
If condition (c4) then select segment (v;, v § o= 5+ 1;
If condition (c5) then select no segment; ¢ & 1 + 1;
)

If condition (c6) then select no segment; 7 & 5 + 1;
(Step 4) Go to .step 2;

(Step 5) End;

- 92 _
5.4 Perturbation

Here we show that the perturbations discussed in sections 2 and 3, < €g,€y >
and < €z, €y, €, > respectively, are physical.

Let {V3 =< zh, v >}, for ¢ = 1,...,I, be a set of vertices belonging to
polygon Qg that causes singularities on some edges in {E'g = (Vj, V{_H)}, for j =
1,...,J, belonging to polygon @y . Let {V]* =< zf*,y® >}, for m = 1,..., M, be
a set of vertices belonging to polygon @, that causes singularities on some edges in
{E? = (V2 V*Hl forn=1,..,N, belonging to polygon Qg . Let {L?} and {Lg}
be the set of lines which contain edges in {E} } and {E]}, respectively. We assume that
the second object @ is displaced by an infinitely small perturbation (€z, €y) relative
to the first object Qg . Let us represent the line equations of lines in {L%} and {Lz}
by

Ll :aéx—%ﬁiy—{—qizo Li :a%x—{—ﬂ%y—i—q%zo
...................... (5.16)
Ly caNz4+ Ny +4N =0 L{ :a{x+ﬂ{y+'ﬁ,’=0
With an infinitely small perturbation (e, €ey) on Qy , vertices (Vi =< a*, yf* >}
are perturbed to new positions {V* =< aJ* + ¢z, yI* + ¢y >}, so that

(VE/Lg) = Sign(ages + Brey)

We have assumed that both €; and €, are positive and the order of magnitude of ¢,
is far larger than ey so that the ey perturbation on y-axis can be neglected when the
€z perturbation on x-axis is sufficient. Therefore, for those lines in {L?} with of £ 0,

the perturbation leads to the results
(Vy'/Lg) = Sign(af) whenever af 5£0, (5.17)
and for those lines in {L}} with o = 0, the perturbation leads to the results
(VP/LE) = Sign(g2) i ol =0 (5.18)

What is the constraint on the perturbation <ez, €y>> so that the requirements

in (5.17) and (5.18) are fulfilled at the same time? It is easy to tell that the magnitude

- 93 —
of €y should be restricted to satisfy the condition
Sign(ages + Pgey) = Sign(agez) for those lines with o £ 0

Therefore, we know that the magnitude of ¢y should be small enough to satisfy

the condition

lagez| > |Bgey| for every n where o #£ 0

This means that the magnitude of ey should be less than the minimum of {ezal/B2},
for those n with af £ 0.

A similar rule applies to singularities occurring on vertices {V;} of Qg4 that

coincide with edges {EZ} of @y ; such that
oz + Bhyh + 3 =0

Polygon @y is perturbed by < €z, ¢y > relative to polygon Q, . We interpret this to
mean that polygon Qg is perturbed by < —ez, —ey > relative to polygon Qp . After
perturbation, vertices {Vi =< z%, 4% >) are displaced to (Vi =< 2t —¢,, yhi—ey >}
relative to the edges of @y . Therefore, we arrive at the result

(V;/Li;) = Sign(—ai) if ai_ £ 0,

(Vi/L}) = Sign(—B}) if o] = 0.

By the same reasoning, the magnitude of €, should be restricted to satisfy the condition
Sign(—af‘gez — ﬂgey) = Sign(—a’lez) for those lines with ag # 0

Therefore, we know that the magnitude of €y should be less than the minimum of
{ema{/ﬁ{} for those j with a'i #£ 0.

We have shown that there does exist such a physical perturbation <eg, €y >
which can fulfill the requirements described above. The constraints on the magnitude

of the perturbation are

n
€y < minimum(lgénez, for those n with aff £ 0 and

o o ;
71’.[)6_., for those 7 with of 5£ 0

€y < minimum(|-
By

- 94 -

In performing a set operation on two polyhedra in three-dimensional space, we
similarly show that there does exist a physical perturbation <€z, €y, €2> which can

transform two polyhedra into a singularity-free situation.

— g5 —

Chapter 6

Skeletal Polyhedron Representation

Highly developed computer representations of sculptured surfaces have been
used successfully in computer-aided design in the automotive, aircraft, shipbuilding
industries, etc, [3]. However, most of the work has been concentrated on developing
elegant mathematical representations for sculptured surfaces instead of addressing the
real problem of representing solids. A few researchers who realize the paucity of results
in the area of geometric modeling of solids with simple surfaces have looked into various
aspects of the problem, including computer-aided design architecture, [10], internal
descriptions of objects for computer vision systems, [4, 5], and computer aided design
and manufacture of simple mechanical parts, [29].

The objective of the research presented here is to develop a new representation
scheme for solids that would lead to a powerful and efficient solid modeling system.
To further this goal, we offer a new means of describing solid objects called Skeletal
polyhedron representation (SPR). It differs significantly from the conventional
boundary polyhedron representation scheme which describes solid objects in terms of
their boundary faces. A face is a planar polygon bounded by a sequence of edges.
An edge is a straight line segment defined by two vertices, and a vertex is a point
containing its cartesian coordinates. Since topological information about objects is
essentially important in object modeling where general pro'perties such as adjacency
and connectedness sometimes provide more useful information than the geometric
information, the new SPR representation gives more information about the topology
of the object under description.

SPR describes objects by the adjacency and connectedness between vertices.
SPR represents a polyhedron by a set of vertices in which a vertex is associated with
a radiating-structured bridge which connects the vertex to all its neighbors. The
bridges between the vertices constitute the skeleton of a polyhedron; although, the face

information of the polyhedron is embedded in the skeletal structure itself. The bridge

- 96 —

Figure 44
Vertex v; has a set of neighboring vertices {vg-}, a set of neighboring

edges {F%}, and a set of neighboring faces {F%} for 7 = 1,..,n.
J J

structure facilitates set operations on solid objects and also has a great advantage
on permitting the creation of volume models from a wire-frame representation. Set
operations in SPR can be resolved simply by collecting the appropriate set of vertices
and reconstructing the bridge of a vertex locally, unlike the conventional representation
where we must recreate boundary faces of the resultant object. SPR can also resolve
multiple objects in a set operation. Despite this convenience, SPR contains no less
information than conventional boundary polyhedron representation nor than winged-

edge polyhedron representation [4].

6.1 Skeletal polyhedron representation

Solids in discussion here are defined as regular sets of points in a Euclidean
3D space. A set is regular if it equals the closure of its interior, [26]. Our discussion
1s concentrated only on the subset of solids whose boundaries are planar faces, usually
called polyhedra. Let @ denote a polyhedron composed of f faces, e edges, and v ver-
tices. Let F(Q) = {F1, Fy, ., Ff}, £(Q) = {E1, By, .., Ee}, and V(Q) = {v1,v2, .., o}

denote the set of boundary faces, the set of edges, and the set of vertices of Q, respec-

- 97 -

tively. Each vertex v; of @ has a set of neighboring vertices, as shown in Figure 44.

Let V(7) represent the set of neighboring vertices of vertex v, such that

Vi) =1{vw | (vj,vw) € E(Q)}

Also let E(7) represent the set of neighboring edges of vy which connect the vertex vj

to its neighboring vertices in V(j), such that

E(7) = {(vj,ve) | (vj,vk) € £(Q)}
Finally, let F(j) represent the set of faces which converge to the vertex vj, such that
F(35) =A{Fx | v; €EF}

The sets V(7), E(7), and F(j) are called, respectively, the neighboring vertices, neigh-
boring edges and meighboring faces sets of vertex vj.

The neighboring edges in E(j) surround vertex vj In a sequential order. Every
two consecutive edges expand a corner of a neighboring face of vj. We can specify the
order of a neighboring edge set in either a clockwise or a counter clockwise order. In
our representation, we choose to specify a neighboring edge set in a clockwise order
surrounding the outward normal vector of the polyhedron.

A representation of a solid in SPR contains a set of vertex-representations,
inclusively called a skeletal format. A vertex-representation is a description of the
relation between a vertex and its neighboring vertices. Let us assume that a vertex
v; has a total of m neighbors. The set of neighboring vertices V(j) of vj 1s expressed

as a chain V(j) = (U}, ..,v;-"), where v% is called the pre-neighbor of viT! and vj-“‘ Is

J J
called the post-neighbor of v; The order of the vertices in V(j) enforces the structure

of a polyhedron and also implies that every pair of triple vertices, (v;.-, vj, and v§-+1)

constitutes a corner of a neighboring face F;- of v;. The following is the format of a

vertex-representation:

L 2 m k ;
70, vj boy vy where vy € V(j) (6.1)

Vqy . v
J Oim 1

The set of bits {f; ;11} in a vertex representation form an angle-pattern of the

corners of the vertex’s neighboring faces. An angle bit 0; i+1 describes the angle of a

— 98 _

@

Figure 45
(2) The angle bit 8, ;. is less than 180 degrees, (b) the angle bit

05441 15 greater than 180 degrees.

Figure 46

The outward normal vector of face F;'- is determined by the outer

product of edge E'; with edge E;-"‘l modified by the angle bit 0; ;5.

corner in between edges E; = (vy, v;) and E§+1 = (vj, v§~+1). An angle bit is defined

'—’ depending on whether the angle of the corner is greater or less

as either '+’ or

than 180 degrees, as in Figure 45a and 45b.

— 99 _

Figure 47
Pj(vf) = vf“l is the pre-neighbor of vertex v;‘-’, and and Rj(vf-) ==
v§+1 1s the post-neighbor of vf.

0; i+1 = + if the corner between edges E; and E;‘*’l is less than 180 degrees,

= — if the corner between edges E; and E;-+1 is greater than 180 degrees.

(6.2)
The outward normal vector of a face F; can then be determined by the outer product

of E; and E;'H modified by the angle bit, as in Figure 46.

Dpi = 6ii+1-(E} X EFT) (6.3)

We define two cyclic permutation functions P; and R; on V() such that for
a vertex v? e V(y), PJ-('U.”?) is the pre-neighbor of v;? and RJ-(vf) 1s its post-neighbor, as
in Figure 47:
P V()= V()

Since both functions P; and Rj are cyclic, it is obvious that Pj(v;‘?) = v;?_l, Pj(v}) =

vl Rj(v;) = v?"'l and P;(v]*) = v}-.

b % Vi s
i/ U V;
$--- » 2
"1'\,‘? l", % .
) J Y A
/
’ ¥ e U; U =
;i ? Uy Vs
\Ié ‘/ lj& - ..il..s.. . wlo B
Vg - ﬁ%
Via Uiy
b (¢
Figure 48

(a) A polyhedron consists of twelves vertices, eighteen edges, and
eight faces, (b) a face delineated by polygon (vy, ve, v3, vg, vs, vg), (c)

a face delineated by polygon (vg, vy, vy, vg).

The following is a skeletal representation of an object shown in Figure 48a. To
avoid mistaking an angle bit for a plus or a minus sign, in the following representation
we denote the ‘4’ angle bit by a period and the ‘-’ angle bit by an asterisk, respectively.
We can see from the figure that all corners of the boundary faces are inflexed except
two corners, the one on vertex vz between edges E1 = (vs, vg) and E2 = (v3, v4) and
one on vg between edges E3 = (vg,vs) and Ey4 == (vg, v1p). The third angle bit in
the vertex representation of vz and the second angle bit in that of vg are, therefore,

marked by an asterisk.

- 101 -

U1 : () Vg vr

(%] : V1 vg . U3

v3 . V9) Vg) V4 *

V4 1 U3 V1o . Us

Vs S g ot s

g U1 . Vs V12 .

vy v12 vg (6.4)

vg : (%] . vr . vg .

Vg : U3) vg « V1o
Yio - V4 @ Ug Y Y S
v11 s V1o o Y12
V12 - U B ¥ 7

As the name implies, a skeletal representation characterizes the skeleton of
a solid instead of its boundaries, as in boundary representation. The boundary infor-
mation of a solid in skeletal representation is implicit and is embedded in the bridge
structures of the vertices. However, a skeletal representation is different from a wire-
frame description, which contains no volume information. Solids represented in SPR
are fully and uniquely described.

SPR represents the neighboring vertices of a vertex in a chain so that a
boundary face can be easily traced using the face-tracing procedure described below.
The procedure takes an ordered pair of vertices (vq, vg), representing an edge, and
searches for the sequence of vertices which delineate the perimeter the face initiated
by that edge. The procedure first holds parameter v; and then searches under the set
of neighboring vertices of the second parameter vy to find the pre-neighbor of vy; if
found then it is stored as vg. The procedure then holds vy and searches under the set
of neighboring vertices of vy to find the pre-neighbor of vy. By recursively following
this procedure until v; is found again, the polygon initiated by (v1, vg) is found.

Here we assume that the edges of a polygon are specified in a clockwise order
so that the interior of the polygon is always located to the right side of an edge when

the edge of the polygon are traversed.

procedure face-tracing (vy , ve);

- 102 -

begin output('Polygon=");

output(vy);

v = v
’UJ' = 9 ;
vg = vg

while vy 54 v; do begin

output(vg);

v = Pjv);
v =)

vy = Uk
end

For instance, the face shown in Figure 48b can be found by submitting the initiating

edge (v1, ve) to the face-tracing procedure. The result we get is :

Polygon= vy, ve, v3, v4, vs, Vg (6.5)

It is important to notice that the order of the parameters in the procedure is
noninvertible. By exchanging the parameters we can arrive at a different result. For

instance, by substituting (vg, v1) instead of (v, vg) into the face-tracing procedure, we

get the polygon

Polygon= wvg, vy, v7, vg (6.6)

This is the face initiated by edge (ve, v1), as in Figure 48c.
Occasionally faces of a polyhedron have holes on them, and information on
them is also implicit in SPR. Face F of the polyhedron in Figure 49 has a hole. The

following is a partially listed skeletal representation of the polyhedron:

- 103 -

. &
- Wiy
J Uiz Vi
Uy v
/
/
l"'
Ve Ve
Figure 49

A polyhedron with a hole in one of its faces.

(%1 : (]) V4) V13

(] : v1 . V14) v3

v3 : (%]) V15] V4

V4 : 1) V4) V16

Vs . Vg) Vg) vg *

Vg : Vs « U7] 10 (6 7)

vroi v, U8 U11 '

Vg : (U) V12) v7 "

Vg

V18

The polygons delineating the perimeter and the hole of face ¥ can be found by
substituting (v1, ve) and (vg, vs) separately into the parameters of the face-tracing

procedure.

perimeter vy, v, vs3, vy
hole : wg,v7,vg, vs

- 104 -

As we can see from the figure, polygon (v1, v2,v3, v4) delineates the perimeter of F with
vertices surrounding the normal vector of F in a clockwise order. An inversion polygon

(ve, v7,v8, vs) delineates a hole in F, but, with vertices surrounding the normal vector

in a counter-clockwise order.

6.2 Data structure

An inversion polyhedron is one whose interior occupies the infinity of a 3D
space. If we allow no inversion polyhedron to be specified, then the angle-pattern bits
In a vertex representation are redundant, see (6.1). A geometrical structure can be
unambiguously specified by a set of vertex representations without an angle-pattern,
as long as the coordinates of all the vertices are given. However, a corner of a
polyhedron described by a vertex representation without an angle-pattern gives no
local information on where the interior of the polyhedron resides. A global solution is
required to determine the interior region, and sometimes this is very complicated and
expensive. The angle-pattern is thus attached so that the solid’s regional information
can be inferred locally.

As far as implementation is concerned, we prefer a data structure that allows
easy access frequently requested information. Next we suggest a data structure for
SPR that has the advantage of using no angle-pattern bit information. However, for
the purpose of easy access to some data, the data structure must store a certain amount
of redundant information. The data structure we suggest is called a redundant skeletal
format. A redundant skeletal format dismisses the angle-pattern while still supplying
local regional information.

A redundant vertex-representation describes the relation between a vertex and
its neighboring edge-set. The neighboring edge-set E(7) of vertex vj forms a chain

structure E(j) = (Ej, ..,EZ;,), in which Ef is the pre-neighbor of E'Z+1 (because v}
1s the pre-neighbor of v'}+1) and Ef+1 1s the post-neighbor of Ef The following is a

redundant skeletal format

vi1zZ, Y, 2, EJ'} Ej, ,E;’n whereEiEE(j) (6.8)

- 105 -

in which z, y, and z are the coordinates of the vertex. Edges E'Z and Ei+1 constitute
a corner of the face between them. The two cyclic permutation functions Pj and R;

can also be defined on E(7), where P;j(Ey) is the pre-neighbor of Ej and R;(vg) is the
post-neighbor of E}, such that

Fj : E(j) = E(j) and R, : E(j) = E(j)

An edge E is a directed line segment defined by an edge representation. An
edge representation describes the relation between an edge and its four neighbors v; and
vg (the head and the tail of £) and F, and F} (the right- and left-hand side consecutive

faces of E,) as seen from the exterior along the direction of E. The following is an

edge-representation:
E : v, v, F, F (6.9)

A face is a planar polygon, possibly with some holes in it. A face F is described
by an outward normal vector < a,b,¢ >, a plane equation az + by + cz +d = 0 of

the plane, and an initial edge E,. A face is defined by a face representation as:
Foo:oa b ¢ d e, {h} (6.10)

Edge e, is the lowest indexed edge in the perimeter of F that can be used in the
face-tracing procedure to find the entire perimeter of the face. The set of edges in
{hi} are initiating edges of holes in F', which can also be used to find the polygons
delineating the holes. Since an outward normal vector of a face already implies the side
the interior side of a face, the angle pattern can be dismissed in a redundant skeletal
format.

The following is a redundant skeletal representation of the solid shown in

Figure 48a containing twelves vertices, eighteen edges, and eight faces.

Edge-representation : vy, ve, Fy, F
Ey © v, v, F, F
Ey : wve, w3, F, Fy

Es : w, v, F, Fs

Face-represent.

Vertex-representation

U1

[

- O = O =~ O O O

U4,
Vs,
Vs,
v7,
vg,
vg,
V10,
11,
12,
V1,
V2,
13,
U4,
Us,

Vg,

o~

S = O O

S = O =

- 106 —

Us,
Vs,
1,
U8,
Vg,
V10,
V11,
V12,
V13,
v7,
U8,
vg,
V10,
V11,

V12,

Ry
&

o O O O O O =
l
[y

el,

- 107 -

vg 1 2 1 Es E; Ey4
v3 1 1 1 E3 Ey, Ei
vq 2 1 1 Ey E;3 FEy
s 2 0 1 FEs E4 Fyq
vg 0 0 1 Eg Ej Fis
vy 0 2 0 Fy;3 E; E;3
vs 1 2 0 FE; Eg Ey
vg 1 1 0 Eg Eg Es
V10 2 1 0 Eg E;p Ep
11 2 0 0 Eyp Eu1 Eif
v12 0 0 0 En E; Es

Compared with the conventional boundary representation, SPR adopts a bot-
toms-up description structure. In conventional boundary representation, an object is
described by a set of bounding faces. Each bounding face is a planar polygon described
by a sequence of edges. An edge is then described by two vertices. Finally, a vertex is
a point in a Euclidean space which has a set of coordinates associated with it. A vertex
is conventionally used as a leaf node that supplies only coordinate information. A face
usually sits in a superior position having a normal vector and from there it infers a
sequence of vertices that delineate its perimeter. An edge usually connects the faces
with the vertices.

In the data structure of skeletal polyhedron representation, a vertex not only
has a set of coordinates but also a data structure on all the neighboring vertices, edges
and faces attached to it. This data structure gives a full topological description of the
vertex. An edge is described by its two ends and two consecutive faces. The wings of an
edge in a winged-edge polyhedron representation are part of the information contained
in a vertex. A boundary face in this data structure is only implicitly described by a

plane equation and an initial edge.

6.3 Discussion

Skeletal polyhedron representation is equivalent to the winged-edge polyhedron

- 108 -

representation [4, 5]. A polyhedron in winged-edge polyhedron representation is made
up of four kinds of nodes: bodies, faces, edges, and vertices. The body node is
the head of three rings: a ring of faces, a ring of edges, and a ring of vertices.
A ring is a doubly-linked circular list with a head node. The perimeter of a face is
an ordered list of edges and vertices. The perimeter of a vertex is an ordered list of faces
and edges. The perimeter of an edge is an ordered list of two faces and two vertices.

In the data structure of a winged-edge polyhedron representation, each face
and each vertex points directly at only one of the edges on its perimeter. Each edge
points at its two faces and its two vertices. Furthermore, each edge node contains a
link to each of its four immediate neighboring edges clockwise and counter-clockwise
about its face perimeter, as seen from the exterior side of the polyhedron. These last
four links are the wings of the edge.

Comparing the skeletal representation with the winged-edge representation,
we can see that skeletal polyhedron representation offers a more direct description of
the topology of an object. It associates a vertex with its neighbors directly, and an edge
only with a perimeter consisting of two faces and two vertices. A vertex node takes
a leading position in skeletal representation instead of an edge node in winged-edge
representation; and the vertex node carries most of the topological information about
the object as well, instead of the edge node in winged-edge representation. A face node
plays the same role in both representations.

Skeletal polyhedron representation is a complete and unique representation. It
1s equivalent to conventional boundary representation in that it traces all the bound ary
faces of a polyhedron with a face-tracing procedure. A redundant skeletal format
also supplies information contained in winged-edge representation. Furthermore, SPR
has great potential in applications where conventional methods fall short, such as
set operations on polygons and solids, the calculation of integral properties, object
1dentification, volume modeling from wire-frame representation, and computer vision.
We illustrate the advantages of using a redundant skeletal format in the next chapter
where set operations (union, intersection, difference) on polygons and solid objects are

discussed.

- 109 -

With regard to the consistency of the representation, an arbitrary permutation
of a neighboring set could easily produce a nonphysical solid. However, according to
Edmonds’ theorem [11], we know that for any connected linear graph with an arbitrary
specified cyclic ordering of the edges to each vertex, there always exists a topologically-
unique embedding in an oriented closed surface so that the clockwise-edge orderings
around each vertex are as specified. The theorem only guarantees the existence of an
object satisfying the topological constraints on the edge orderings around each vertex
as permuted. However, with geometrical and coordinate constraints, an arbitrary

permutation of a neighboring set produces only a nonphysical solid.

- 110 -

Chapter 7

Set Operations on Solids

Computing the union, intersection, or difference of two polygons or two poly-
hedra is central to operations such as polygon clipping, graphic display, VLSI layout,
and other aspects of computer-aided design. A solid modeling system must allow a
designer to indicate whether an entity is a fraction of a part or whether that fraction
contributes a positive (“solid”) or negative (“hole”) volume to the complete object.
Set operations on solids permit complex objects to be “glued” or “molded” together
from simpler shapes or, conversely, to be created by “cutting and drilling” sections
out of parts. Techniques such as these greatly reduces the burden of describing the
polyhedral representation of complex parts.

A polygon is a planar closed region confined by a sequence of line segments,
called edges, that form the boundary of the polygon. In the discussion below we use
the notation E(P) to denote the boundary of polygon P which contains a set of edges.

The boundaries of two polygons P and Q can be classified into the following sets:
» {E(P)—in— Q} = those portions of edges of P which lie inside Q;

e e —

EP)-ants E6)
S gy

I
r - ' b ./___,/___
| ! EGM'P 1/, i
: { VAN
it oeeze) —r
EPSUt-@ ershore-E(6) ECp)-shore

Figure 50
(a) Segments belonging to sets {E(P)—out—Q}, {E(Q)—out— P},
and {E(P) —share — E(Q)} are selected for P U Q. (b) segments in
sets {E(P) —in — Q}, {E(Q) — in — P}, and {E(P) — share — E(Q)}
are selected for P N Q.

set PUQPNQP—Q Q—P
E(P)—in—Q X X
E(Q)—in—-P X X
E(P)—out—Q X X
E(Q)—out—P X X

E(P)—share — E(Q)| X X
E(P)—anti— E(Q) X X

Table 3

» {E(Q) —in — P} = those portions of edges of Q which lie inside P;
» {E(P)—out — Q} = those portions of edges of P which lie outside Q;
{E(Q) — out — P} = those portions of edges of Q which lie outside P:
{E(P) —share — E(Q)} = those edges of P and Q which overlap with the interiors

occupying same side of the edge; and

v

v

A4

{E(P) — anti — E(Q)} = those edges of P and Q which overlap with the interiors
occupying opposite sides of the edge.

Set operations on polygons such as union (P U Q), intersection (P N Q) and difference
(P —@Q or @ — P), can be performed via boundary classification - selecting proper
boundary fragments out of the sets described above following the rules in Table 3 12,
23]. The line segments selected must be rearranged in a sequential order.

For instance, to perform a union operation on polygons P and @, those
segments belonging to sets { E(P) —out —Q}, {E(Q)—out — P}, and {E(P)—share —
E(Q)} must be selected, as in Figure 50a. To perform an intersection operation on P
and @), the segments falling in sets {E(P) —in — Q}, {E(Q)—in — P}, and {E(P) —
share — E(Q)} must be selected, as in Figure 50b.

7.1 Skeletal polygon representation

A vertex of a polygon has two neighboring vertices and two neighboring edges.

Let vertex vy be the neighboring vertex to the right of a vertex v and v; be the

- 112 -

EL Er

U Us

Ve e
(s)

Figure 51

(a) A vertex has two neighboring vertices and two neighboring edges.
Vertex vy and edge Ey are the right-neighbors and vertex v; and edge
Ej are the left-neighbors of v. (b) A polygon represented in a skeletal

polygon representation.

neighboring vertex of v to the left. Here ‘right’ and ‘left’ are seen from the exterior
of the polygon. Let edge Ey denote the neighboring edge to the right of v and E,
the neighboring edge to the left, respectively, as in Figure 51a. The two edges are
composed of vertices Ey = (v, vr) and E} == (v,, v;). Usually, we address both E, and
vy as the right neighbor of vertex v and E; and v; as the left neighbor of v, except in
cases where there might be misunderstanding.

We describe a polygon in two-dimensional space by a skeletal polygon repre-
sentation which consists of a set of 2D vertex-representations. A 2D vertex-represen-
tation describes the relationship between a vertex and its left and right neighbors. A

vertex-representation can be expressed either as

v vy v, or (7.1)

0
v . Er, El (72)

The angle bit # between Ey and Ej, which can be either greater or less than 180 degrees,

can be easily determined by the sign resulting from the substitution of the coordinates

- 113 -

of vy into the line equation of edge E;. The following is a skeletal representation of a

polygon in Figure 51b.

v1 : Es, El
ve : Ly, Ep
V3 : Eg, E3

7.3
vy : FEi, Ey (7.3)
vs : FEy4, FEs

7.2 Set operations on polygons

The first step in performing a set operation on two polygons is polygon-polygon
intersection. This routine compares all edges between two polygons to find all the
intersections between them. Polygon-polygon intersection is composed of multiple local
operations, called edge-edge intersection, which compare two edges and determine
whether they intersect or not. After polygon-polygon intersection, vertices of two
polygons are classified into different classes so that one can tell which vertices of the
first polygon are located inside (or outside) of the second polygon, and vice versa. By
using the skeletal polygon representation, we can easily accomplish a set operation by
first collecting the appropriate set of vertices belonging to the resultant polygon and
then connecting each vertex to its appropriate neighbors.

A perturbation method presented in Chapter 6 can be used to transform
two polygons into singularity-free situations so that each edge-edge intersection can
be strictly determined; that is, two edges can only intersect ‘normally’ or have no
intersection. This permits us to classify the boundaries of the two polygons into only
four sets rather than six:

: {E(P) —in — Q} = those portions of edges of P which lie inside Q;
{£(Q) —in — P} = those portions of edges of @ which lie inside P;
{E(P) —out — @} = those portions of edges of P which lie outside Q

v

v

v

2

v

{E(Q) — out — P} = those portions of edges of @ which lie outside P;
The other two sets, { E(P) —share — E(Q)} and {E(P)— anti— E(Q)}, present only in

singular cases, no longer exist.

- 114 -

The resultant polygon constructed from a set operation on two polygons is
called a set-combined polygon. As we know, boundaries of set-combined polygons,
PUQ PNQ, P—Q,or Q—P, are composed of portions of the boundaries of either
P or Q. For instance, if polygon W is the union of P and @, then the boundary of W
1s composed of those portions of boundaries of P and @ which exterior to the other
polygon; if W = P N Q, then the boundary of W is composed of those portions of
boundaries of P and @ which are interior to the other polygon. We can describe these

relationships as followings:

IfW=PUQ, then E(W) = {E(P)—in— Q} U {E(Q) —in — P} (7.4)

IfW=PnQ, then E(W) = {E(P) —in — Q} U {E(Q) — in — P} (7.5)

If W= P—Q, then E(W)= {E(P)—out—Q} U {E(Q) — in — P} (7.6)

By using the perturbation method, we can strictly classify the vertices of the
two polygons into the following four sets. We use V(P) and V(Q) in the following
discussion to denote the sets of vertices of polygons P and Q, respectively.

» {V(P)—in — Q}= those vertices of P which lie inside Q;

» {V(Q)— in — P}= those vertices of Q which lie inside P;

> {V(P) — out — Q}= those vertices of P which lie outside Q;

> {V(Q) — out — P}= those vertices of Q which lie outside P.

Two more sets of vertices are possible:

» {V(P)—on — E(Q)} = those vertices of P which lie on boundary of Q;

> {V(Q) —on — E(P)} = those vertices of Q which lie on boundary of P.

However, they are present only in singular situations. The perturbation method
resolves this problem by shifting a coincident vertex to one side of the edge so that no
vertex is on the boundary of the other polygon.

We can notice that vertices of a set-combined polygon can either be vertices of
the two original polygons P and @, or new vertices created from a normal intersection
of two edges of P and Q. We denote this set of new vertices by {E(P)—cross— E(Q)}.

When a polygon-polygon intersection is performed on P and Q, these new vertices are

- 115 -

set PUQPNQP-QQ—P
V(P)—in—Q X X
V(Q)—in—P X X
V(P)—out—Q X X
V(Q)—out—P X X
E(P)—cross— E(Q)] X X X X

Table 4

also created at the same time, and they eventually belong to the resultant polygon.
To perform a set operation we then need to collect the appropriate set of vertices
belonging to the resultant polygon. The types of vertices collected are dependent on
the kind of operation performed. For instance, to perform a union of P and Q, vertices
belonging to {V(P) —out — Q}, {V(Q) — out — P}, and {E(P) — cross — E(Q)} are
collected. For the rest of operations PUQ, PN Q, P —Q, or @ — P, we can collect
the appropriate set of vertices following the rules in Table 4.

In the next step “bridge construction” is performed to connect each vertex
of the resultant polygon to its proper neighbors. The following rules explain how to
construct the bridges between a vertex collected for the resultant polygon and its left
and right neighbors.

We know from Table 4 that vertices belonging to classes {V(P)—out — Q}
or {V(Q) — out — P} are collected only in the operations P U Q, P — @, and Q — P.
In performing a union operation on two polygons shown in Figure 52a, we connect
vertex vy to its two closest neighbors, v4 and vy1, as in Figure 52b, where v4 becomes

the right neighbor and v1; becomes the left neighbor of v;. We express this by the

vertex-representation
U1 : Vg, Y11

This leads to Rule 1: A vertex belonging to classes {V(P)—out—Q} or {V(Q)—out—P}

is always connected to the two closest vertices on its two old neighboring edges.

- 116 -

Us Vi Vs Ve
[7 [:
U; Vit NN I./}‘x 2 Vl- ' L]Z'
S X 4 \X /s ,,/ // u;’ U;2
@ | 9’ P/ (b)
. R
/ / s . u-
lfq U_'-B Vi S
o 2 R Uiz i
2 . Z =
@1 o, 7 o | === 2
v //////// us
A

Figure 52
(a) Two polygons P == (v, vy, v3,v4) and Q = (vs,vg, v7, vg, Vg, V10).
(b) Union of P and Q. (c) Intersection of P and Q. (d) Subtraction
of @ from P.

A vertex of class {V(P) —in — Q} or {V(Q) —in — P} is connected only in
the operations P N Q, P — Q, or Q@ — P. Therefore, these bridges are built only in
these operations. For example, to perform intersection operation on the same polygons,

v10 is connected to vg and vy, Figure as in 52¢c. We can express the relation by the

vertex-representation

V10 : vg , 11
This leads to Rule 2: A vertex of class {V(P) —in — Q} or {V(Q) —in — P} is is also
connected to the two closest vertices on its two old neighboring edges.

When we perform a subtraction operation P — Q, vig is connected to vg and

v11 in a reverse order, as in Figure 52d
V10 : v11 , g

Notice that the order of the left and right neighbors are exchanged because the interior

is inverted. This occurs also to the vertices of class {V(Q)—in—P} in a Q—P operation.

- 117 -

@)

©)

Figure 53

(a) Vertex vpey is the intersection of E] and Es. Vertices vl 'ull, vZ,

and 'ulz are the closest vertices to vpey on the four ends of Ej and Es.
(b) In P U Q, vertex vpey is connected to v} and v2. (¢)In PN Q,
vertex vpey 1s connected to vg and vll. (d) In P — Q, vertex vpey is

connected to v! and v2.

Rule 3: A new vertex of class { E(P)—cross—E(Q)} is always collected for every
operation, however, it is connected differently depending on the operation performed.

As shown in Figure 53a, Fy (an edge of P) and Ej (an edge of Q) intersect by
a vertex named vnew. The closest vertices to the intersection point vpeyw on the four
ends of £y and Eg are denoted by v},v,l,v‘:‘, and v,2. Vertex vnew Is connected to v}
and 1)12 in P U @, as shown in Figure 53b, and is connected to vZ and vll in PN Q, as
in Figure 53c. The relationship of vertex vpeyw to its neighbors is illustrated in Table
5.

The two polygons in Figure 52a illustrate how a union operation on P and Q
can be performed. According to Table 4, the vertices collected for P U Qare {v1, vg, v3,
v4, Vs, Ve, V7, Vg, V11, and vig }, where vertices vy, .., v4 belong to {V(P)—out—@Q}, and
vertices vs, .., vg belong to {V(Q)—out—P}. Vertices v1; and vyg are the newly created

vertices. All these vertices are connected to their corresponding neighbors according

- 118 -

vertex
operation representation illustration
PUQ Vpew : VL, 1)12 Figure 53b
PNQ Unew : vg, vll Figure 53¢
P—0Q Vnew : VL, vZ Figure 53d
Q—P Unew : v,l, v,z not shown
Table 5

to the rules explained above. The resultant polygon is shown in Figure 52d and is

expressed in a skeletal format as follows:

1 . V4, V11
V2 : V12, U3
3 . v, V4
V4 . V3, U1
Vs : 1, Vg
Vg . Vs, v7
v : Vg, (%3
vg : v, V12
U11 : vy, Vs
Viz g, V2

It is important to point out here that the perturbation method we use has the advantage
of being singularity-free; however, it also has the disadvantage of being less flexible.
Because perturbing a polygons by an infinitely small displacement < €z,€y > may
create some redundant vertices having the same physical location. As a result, it is
possible to create some nonphysical polygons: polygons with zero area. To eliminate
this drawback, we delete these redundant vertices later by checking their physical

locations.

- 119 -
7.3 Polygon combination algorithm

The method described above for performing polygon combination has been
coded and it has performed very well. We outline the key stages of the algorithm.
However, the description is designed for easy comprehension. As a result, we outline
each stage without describing every detail of the data structures and the algorithms
used. Let the two polygons being operated on be named polygon A and polygon B.

(Step 1) Polygon-polygon intersection

Compare all edges of polygon A against all edges of polygon B to find all intersections
between edges of polygons A and B. A polygon-polygon intersection is composed of
multiple independent edge-edge intersection. If one edge of a polygon intersects an

edge of the other polygon, two cuts are produced, one on each edge.

(Step 2) Sorting cuts
Sort all cuts on each edge which are made from the intersection with all the edges of

the opposite polygon. Cuts are sorted according to their positions on the edge.

(Step 3) Vertices classification

Classify vertices of one polygon against the other polygon, that is, determine whether
a vertex of polygon A is inside or outside B and also whether a vertex of polygon B is
inside or outside A. A two-dimensional point-enclosure detection may be required to
classify the first vertex of polygon A against polygon B, and the first vertex of polygon
B against polygon A. The rest of the vertices can be classified according to the cuts

information obtained in the previous step.

(Step 4) Vertez collection
Collect proper set of vertices for the resultant polygon according to what type of

operation it is in. The rules for vertex collection are described in Table 4.

(Step 5) Bridge construction
Connect the vertices collected in step 4 to their corresponding right and left neighbors

following the rules described in Table 5. The bridges are constructed depending on the

- 120 -

type of operation being performed.

(Step 6) Polygon tracing
After the bridge construction has been finished, the vertex sequence for the resultant
polygon is traced.

The distinguishing feature of a skeletal polygon representation is that the
topological information of a polygon is localized so that set operations can be performed
by reconstructing the bridges of each vertex independently of the other vertices. Unlike
the boundary classification method which collects boundary fragments arbitrarily and

eventually tries to put them in an order, the order of vertices is already included

implicitly in a skeletal representation.

7.4 Set operations on solids

Polyhedra in a three-dimensional space are described by a set of boundary
faces. Asin a 2D case set operations on two polyhedra P and QIPUQ,PNQ, P-Qor
@ — P) can also be accomplished via boundary classification [12, 23], by classifying the
boundaries of the two polyhedra in similar sets as described in the previous section:
(D{F(P)—in—Q}, (2) {F(Q)—in— P}, (3) {F(P) — out— @}, (4) {F(Q)— out— P},
(5) {F(P) — share — F(Q)}, and (6) {F(P) — anti — F(Q)}. However, here F(P) and
F(Q) denote the sets of bounding faces of polyhedra P and @, respectively. The sets
{F(P) — share — F(Q)} and {F(P)— anti — F(Q)} denote respectively those faces of
P and @ that overlap with the interiors occupying the same and the opposite sides of
the face. Boundaries of P U Q, PN Q, P — Q, and @ — P can be then formed by
selecting proper boundary fragments out of the above sets.

A skeletal polyhedron representation describes a polyhedron by its set of
vertices set and by the connection between the vertices and their neighbors. A set
operation on two polyhedra can thus be accomplished by selecting the appropriate set
of vertices for the resultant polyhedron and connecting each vertex to its corresponding
neighbors. The entire operation in a three-dimensional space is similar to that in a

two-dimensional space as described in the previous section.

- 121 -

We know that boundary faces of a set-combined polyhedron, PU Q, P N Q,
P — @, and Q — P, are part of the boundaries of either P or Q. However, the edges
of a set-combined polyhedron are either edges of P or Qor new edges created from
the intersection of faces of P with Q. The vertices of a set-combined polyhedron
are either vertices of P or Qor new vertices created from the intersection of edges
of P with faces of @ or vice versa. With a polyhedron-polyhedron intersection all
intersections between edges and faces of P and Q can be found. Therefore, as a result
of polyhedron-polyhedron intersection, new edges are created from the intersection
of faces of P with those of @, and new vertices are created from the intersection of
edges of P with faces of Q or edges of Q with faces of P. Besides, as a by-product of
polyhedron-polyhedron-intersection, edges of P and Q are chopped into sections which
are located either inside or outside the other polyhedron.

Using the perturbation method and the face-face intersection algorithm de-
scribed in Chapter 7 to perform polyhedron-polyhedron-intersection, we can strictly
classify vertices of the two polyhedra into only four sets. We use the notation V(P)
and V(Q) to denote the set of vertices of polyhedra P and Q, respectively.

1. {V(

2. {V(Q)—in— P} = those vertices of Q which lie inside P;

3. {V(

4. {V(Q) — out — P} = those vertices of Q which lie outside P;

P)—in — Q} = those vertices of P which lie inside Q;
P) —out — @} = those vertices of P which lie outside Q;

Two more sets of vertices can be created from the intersections of edges of one
polyhedron with faces of another polyhedron, and vice versa. We use the notation
V(P) and V(Q) to denote the set of edges of polyhedra P and Q, respectively.

5. {E(P) — cross — F(Q)} = new vertices created by the intersection of edges
of P with faces Q.

6. {E(Q) —cross— F(P)} = new vertices created by the intersection of edges
of @ with faces P.
As a result of face-face intersections, edges of the two polyhedra are also chopped into
segments which can be classified as being either inside or outside the other polyhedron:

1. {E(P) —in — Q} = those segments of P which lie inside Q;

- 122 -

set PUQPNQ P-QlOo—P
V(P)—in—Q X X
V(Q)—in—P X X
V(P)—out—Q X X
V(Q)——out——P X X

E(P)—cross— F(Q)| X X X X

E(Q)—cross— F(P)| X X X X

Table 6

2. {E(Q)—in — P} = those segments of Q which lie inside P;

3. {E(P)—out — Q} = those segments of P which lie outside Q;

4. {E(Q) — out — P} = those segments of Q which lie outside P;

One more set of edges is created from the intersections of the faces of the two polyhedra.

5. {F(P)—cross— F(Q)} = new edges created by the intersection of faces of
P and Q.

As in a 2D case, to perform a set operation on P and Q, we can select vertices
for the resultant polyhedron PU Q, P N Q, P—Q, or Q—P from the six sets of vertices
described above, following the rules in Table 6. For instance, vertices belonging to sets
{V(P)—out—Q}, {V(Q)—out— P} {E(P)—cross—F(Q)}, and {E(Q)—cross—F(P)}
are selected for P U Q; vertices belonging to sets {V(P) —in— @}, {V(Q)—in — P}
{E(P) — cross — F(Q)}, and {E(Q) — cross — F(P)} are selected for P N Q.

A bridge construction then connects each selected vertex to its corresponding
neighbors in a proper cyclic order in a manner dependent on the type of operation
being performed. A vertex of these classes {V(P)—in—Q}, {V(Q)—in— P}, {V(P)—
out—@Q}, or {V(Q)—out—P} is always connected to the closest vertices on its original
neighboring edges.

A vertex belonging to classes {E(P)— cross —F(Q)} or {E(Q)—cross— F(P)}
is also connected to its neighbors in a manner dependent on the type of operation being

performed. Let vpey denote a new vertex created from the intersection of an edge E

- 123 -

Figure 54

Vertex vpey is the intersection of edge E with face F,

of polyhedron P with a face F of polyhedron Q, as in Figure 54. Let E;,, and E,qyt
represent the two segments of E that are near to vpew. Eyy, is an edge constituted
by vnew and the neighboring vertex v, which is located to the interior of F. Eout
1s the edge constituted by vnew and the neighboring vertex wpys which is located on
the exterior side of F. Ey, and E,yt are thus two new neighboring edges of vpew, one
located to the interior and another to the exterior of F. Let Fy and Fy represent the
right and left consecutive faces of edge E. Intersections of F, with F and Fp with F
form two edges, denoted by Ey and Ej, that are connected t0 vney, and are, therefore,
new edges of the resultant polyhedron.

For instance, two polyhedra P and @ shown in Figure 55 are composed of ver-
tices P = {vy1, vz, .., vg} and Q = {vg, v10, .., v1e}. Four new vertices {v17, v1g, v1g, V9o }
are created from the intersection of P with Q.

Vertex v belongs to class {V(P) — out — Q}, and vertex vg belongs to class
{V(Q) —out — P}. In a union operation P U @Q, vertex v; is connected to vertices
vg, V4, v17 and vertex vg is connected to vertices vig, vig2, v13, the closest vertices on
their original neighboring edges, respectively. We can express the relations using the

following vertex representations:

'

% vis
Figure 55
Two polyhedra P and @ are composed of vertices P — {v1,v2, .., vg}

and Q@ = {UQ, V105 1716}-

(%1 : (%]) V4) V17
g I 10 oo tiz ng

Notice here that vertex vy is connected to vy7 instead of vg.
Vertex vs belongs to class {V(P)—in—Q}and is connected to vertices vg, Ug, V17
In an intersection operation P N Q. Vertices vg, Vs, V17 are the new neighboring

vertices of v in P N Q. We can express these relations using the following vertex

representation:

V5 : g . Vg . v17
Notice again that vertex vg is connected to vyy instead of vy.

Vertex vgg is a new vertex created from the intersection of an edge F — (vq, vg)
of polyhedron P with a face F' = (vg, v1g, v11, v12) of polyhedron Q. Edge E;, =
(vs,v20) is a new neighboring edge of veg located to the interior of F. Eout = (vg, vog
1s another new neighboring edge of vyg located in the exterior of F. Intersection of

right and left consecutive faces of E with F forms two edges By = (veo, v1g) and

- 125 -

Ey = (vg0,v17). In a union operation, vertex vgg is connected to vertices V17, U4, V1g,

and this can be expressed by a vertex representation

V20

The rules for constructing the bridges for a new vertex vpey created from the

intersection of an edge of a polyhedron with a face of another polyhedron are shown

in Table 7.

1T 4

V19

operation vertex
representation
PUQ Unew Ey, Eout, E)
PNnQ Unew By, E., E
P—-Q Vnew E;, Eout, £,
Q —P Unew Ey, Ein; El
Table 7

- 126 -

Chapter 8

Basic Engineering Properties Calculation

Volume, center of mass, moments of inertia, and similar properties of solids are
defined by triple integrals over subsets of three-dimensional Euclidean space. Because
such quantities figure prominently in static and dynamic simulation equations where
the mass of an object or the effects during rotation must be calculated prior to
manufacture, for instance, the ability to compute integral properties of geometrically
complex solids is an important goal in CAD/CAM, robotics, and other fields. The

integral properties of a solid, @, are defined as the volume integral of a function f over

the solid:

I=/;gf(z,y,z)dv.

Most computational studies of multiple integrals deal with problems where the domain
@ 1s geometrically simple but the integrand f is complicated. However, in the calcula-
tions of mass, moment of inertia, etc., we confront the converse problem: the function
f is usually simple but the domain @ may be very complicated.

Lee and Requicha [17,18] have viewed several representation-oriented algo-
rithms for evaluating the triple integral described above. The known methods for
representing solids include primitive instancing, disjoint decomposition, simple sweep-
ing constructive solid geometry, and boundary representation. Each of these methods
poses particular difficulties in the transfer of theory into practical application.

Objects described by primitive instancing belong to a finite number of object
families, each of which is characterized by a finite number of parameters. Algorithms
for computing integral properties of objects represented by primitive instancing are
primitive-specific: that is, a special formula or method is developed for each primitive.
As the number and complexity of primitives in a representation scheme increase so do
the programming effort and the size of the software library.

Decomposition methods also suffer from some drawbacks. Disjoint decomposi-

- 127 -

tion partitions a solid into smaller solids. Three-dimensional triangularization decom-
poses a solid into a union of tetrahedra. Octree decompositions [15] partition objects
into cubical solids whose linear dimensions are power-of-two multiple of some mini-
mal size. An integral over a solid is then the sum of integrals over each small solid.
However, generating an appropriate decomposition for a solid is usually expensive and
requires considerable human labor and computation time.

Likewise, constructive solid geometry (CSG) representation suffers from some
relative inefficiencies. In this scheme, objects are described by the union, intersec-
tion, and subtraction of primitive solids. A CSG representation is a tree with branch-
ing nodes representing operators and leaves representing primitive solids. Lee and
Requicha [18] exploit a divide-and-conquer method for computing the integral properties

of solids represented by CSG by recursively applying the formulae:

/AU*dev:/.‘1fdv+/deU_/Am*dev

/A—-'dev:/Afdv_/Am*dev'

However, one must solve the basic problem of evaluating an integral over the intersec-
tion of an arbitrary number of primitive solids, and this involves extensive computation
time.

Other methods, though theoretically exact, may stretch programming skills to
their limit. Sweeping representation describes a volume by an object moving along a
trajectory, generally with translational and /or rotational motions. Integral properties
of solids represented by translational and rotational sweeping may be computed by
exploiting dimensional separability to convert a triple integral into a double integral.
It remains a difficult challenge to devise a convenient algorithm for this technique,
however.

Finally, some methods trade exactness for efficiency. Integral properties of
solids represented by boundary representation may be evaluated by generating a col-
lection of quasidisjoint cells whose union approximates the solid, and computing the

integral properties of the solid by adding the contribution of each individual. This

- 128 -

method, though simpler, is only approximate and is inefficient. Cohen and Hickey [8]
also introduced two algorithms for computing volumes of convex polyhedra. The first
algorithm consists of triangularizing a given solid into simplices and adding their in-
dividual volumes together. The idea is similar to that contained in this paper. However,
our algorithm also is applicable to the calculation of arbitrary polynomial functions.
The second algorithm is of the Monte Carlo genre but is specialized to take advantage
of the convexity of polyhedra. The result is approximate with the accuracy increased
at the expense of additional computer time.

In each of the above methods, objects with complicated boundaries thwart the
goals of exactness and ease of execution. By contrast, we present here a simple method
for evaluating the integral of an arbitrary polynomial function over an arbitrary
possibly nonconvex polyhedron represented by boundary representation.

A direct integral over a polyhedron can be evaluated by taking a central
projection and adding the appropriate contributions of the cones defined by the faces
of the object with respect to the center of projection [30]. The divergence theorem
provides an alternative method for evaluating the integral properties of solids by simply

integrating over their boundaries:

/Qf(z; Y, Z)dv=/Qdiv(g)dv:/an..nds

where g is a vector function such that the divergence of g equals the function f, aQ
is the boundary of @, n is the unit outward normal vector of the boundary, and ds is
the surface differential.

An integral over a polyhedron can then be calculated easily by using the central
projection method and decomposing a polyhedron systematically into a set of simplices
and accumulating the results from each simplex based on this formula. We present
a general formula for a direct evaluation of the integral of a polynomial over a 3D
simplex. This method adopts a systematic and automatic decomposition. The method
is analytically exact but the practical accuracy of the result is limited by the accuracy of
floating-point arithmetic. The time complexity of this method is linearly proportional

to the number of vertices of a polyhedron.

- 129 -
8.1 A symbolic evaluation

The area of a planar region can be defined as a vector which riot only has
a quantity but also an associated orientation. The area of a triangle T° with vertices
(vo, v1,v2) equals the outer product of the two vectors r1=(vy—v,) and r —(vo—

Vo). We use v to denote a vector from the origin to a vertex v.

1 1
Area(T) = 5(1‘1 X ro) = -2-(3/122 — Y921, 21T2 — T122, Z1Y2 — T2y1), Where

8.1
r; = (71,91, 21) and rg = (z2, y2, 22). (8.1)

Here the symbol X denotes the cross-products of two vectors. The area of an arbitrary

closed planar region R is:

1
Area(R) = 5?{aRr X dl (8.2)

where OR is the boundary of the region R and dl is the differential tangent vector
of the boundary. The area of a planar polygon R = (v1, v, .., vn) With n vertices,

{vi = (24, i, 20)}, 1st

1 1 n—2
Area(R) = 3 ngr X dl = 3 > (Vg1 — V1) X (Vigg —v1). (8.3)

=1

Using v; as a projection origin, we dissect the planar polygon sequentially into a series
of triangles formed by v; and each directed edge of the polygon in sequence. The
area of the polygon is the vector sum of the areas of each triangle. As we can notice,
the dissected triangles are not necessarily mutually disjoint, however, if a polygon
is concave, as in Figure 56b. Equation (8.3) nevertheless holds for either convex or
nonconvex polygons.

Polygon R4 in Figure 56a is a convex polygon composed of five vertices.
Using vy as a projection origin, R, is dissected sequentially into three triangles {T; =
(v1, Vig1, vi42)} for © = 1,2,3. The area of R, equals the sum of the areas of each
triangle. Polygon R} in Figure 56b is concave and composed of six vertices. Rj can be
dissected into four triangles {T; = (v1, viy1, vs42)} for ¢ = 1,..,4, where the triangles
T1 = (v1,ve,v3) and Tp = (vy, v3, v4) are not disjoint. The area of Ry equals the sum

of the appropriately signed areas of each triangle, i.e., Qp = 17 — To + T3 + Ty.

- 130 -

Figure 56

(a) A convex polygon composed of five vertices and dissected into

three triangles; (b) a concave polygon composed of six vertices and

dissected into four triangles.

The integral properties of a polyhedron @ can be described by:

I=/Qf(x,y,z)dv, (8.4)

where function f is a polynomial. With a linear transformation defined as

r = gz(u,v,w)
Y = gy(u7 v, 'l.U)
z = gz(u,v,w)

equation (8.4) becomes

I=///Qf(gz,gy,gz)|.]|dudvdw (8.5)

where the Jacobian J is

Ogz/0u 0gz/0v dgg/dw
J = |0gy/Ou Ogy/0v dgy/0w (8.6)
0gz/0u 9gz/0v dgz/0w

- 131 -

The integrand f in equation (8.4) is a polynomial which can be generally represented

as:

f(xr Y, Z) a E InlynZZnS’

nyi,nz,n3

where nj,ng, and ng are integers.

To compute the integral in (8.4) we consider only one term at a time:

Izlffqznly"2z"3dxdydz

First let us look at a simple case where Q is a 3D simplex, i.e., a tetrahedron,

(8.7)

with four vertices (vo, v1, v2, v3) and the vertex v, located at the origin. The coordinates

of the vertices are:

vo =1{(0,0,0)
U1 :(9«‘1,?/1,21)
(8.8)
vg = (22,92, z9)
v3 — (1'3: Y3, 23)
We define a linear transformation T as
T9 I3
T = Y2 Y3 (8.9)
Z9 23

which relates the old coordinate system (z,y, z) with the new system (X,Y, Z) by

T ry T2 T3\ (X
y|=|vn v2 v|Y (8.10)
z 21 22 z23/)\7

Under this transformation, the tetrahedron @

into an orthogonal unit tetrahedron W =

Y

—(vo, v1, vg,v3) in (8.8) is transformed

(vo’, v1’, v9’, v3’) With coordinates:

v’ = (0,0,0)
n =00 (8.11)
’l}27 (O, 1,0)
1)3’ (’ :1)

- 132 -

Based on the transformation in (8.5), the integral in (8.7) becomes

I= ///Q:v"l y™"2 2™ dzdydz

=||T}| ///W(:qX +z2Y + 237)" (1 X + oY + y3Z)"2 (8.12)
X (21X + 29Y + 232)"8dX dY dZ

where the Jacobian ||T|| equals the absolute value of the determinant of the matrix 7.
Next we present a formula for evaluating the integral of a polynomial z™ y"2 "3

over an orthogonal unit tetrahedron W described in (8.11):

1 r1-2 fl—z—y

/ xnlynzz"’*dv:/ / / 2™ y"2 "3 dpdyds — ni! ng! ng! .

w o Jo 0 (n1 + ng + ng + 3)!
(8.13)
The details are shown in the Appendix A. We can see that an arbitrary tetrahedron
can always be transformed to an orthogonal unit tetrahedron by means of a simplex-
dependent transformation matrix T as in Equation (8.9). Therefore, an integral of a
polynomial over a tetrahedron can be evaluated symbolically by Equations (8.12) and

(8.13).

To calculate the integral in (8.12), first of all, we decompose the integrand

[=|T| /w(‘”lX + 29Y + 23Z2)" (1 X + y2Y + y3Z)"% (21X + 20Y + 232)"3dV,
— TN L S elirs,) [, XYizkav,
T 7k w
R T
=|\IT k)——)
I IIE%:EI;C(M,)(l+1+k+3)!

(8.14)
Here the function ¢(3, 7, k) represents the coefficient of a term X*Y 7 Z¥ in the expansion

of the integrand, which can be loosely described by

(21X + 29Y + 232)" (11 X + y2Y + y3Z)"2 (51 X + 2Y + 232Z)"3

= 3 o(i, §, k)XY ZF
i+j+k=n1 +ng-+ns

- 133 -

The following examples show how to calculate the volume, center of mass, and

moments of inertia of a 3D simplex. The volume of a tetrahedron Q as described in

(8.8) is

_ _ _ @ T
v = [yav =17 [, av = g = 12 (5.15
The barycenter (zo, Yo, 20) of the tetrahedron Q is

xoz/;xdv/V,

=Tl // /W(xlx +29Y +232)dX dYdZ)V
1
= (71 + 22 +23) (8.16)
1
Yo = 7(y1 +y2 +y3)

1
Zp = Z(zl + 29 + z3)

The moments of inertia of the tetrahedron Q are

1%
j /Q r2dv = —1-6(:6% + x% + xg + T1%9 + 7173 + T273)

v
lyy = /Q yidv = E(y% + Y5+ vE+yive iy + y29s3)

v
I, = / 22dv = E(z% + 23+ 25+ 2120+ 2123 + z223)

= @[Q(xﬂh + Y2 + x3y3) + (T1y2 + Tay1 + T1y3 + T3Y1 + Toys + T3Y2)]
%
Iy, = %[2(211/1 + 29yg + 23y3) + (2192 + 221 + 21y3 + 231 + 22y3 + 23Y2)]
%
I, = —[2(x121 + 7222 + 2323) + (2129 + 2921 + 7123 + 2321 + 923 + z322))

(8.17)

Higher order moments of the tetrahedron @ can also be calculated in a similar way.

8.2 Integration over arbitrary nonconvex polyhedra

The integral properties of a solid @ defined in a polar coordinate system can

be described as

- 134 -

I=/Qf(r,9,¢>)dv : (8.18)
Let G (r,6, ¢) be a vector function and g(r, 6, ¢) be a scalar function which is equal to
the divergence of G :

G (r,0,¢)=g(r,0,¢)r, and
VG =f

where r is the unit radial vector. Functions g(r, 8, #) and f are therefore related such

that

9g(r,0,8) _g(r,0,¢)

f= or +2 T
1 r
g= 7_2/0 r2f(r,0, 6)dr’

Through the divergence theorem, the integral in (8.18) becomes

(8.19)

= 5Q g(r,0, $)r-nds

Therefore, the integral can be represented as a surface integral over the boundary of

the polyhedron.

For example, in Figure 57 the integral is taken over a small volume Av , a cone, which

is expanded by a small face As of the polyhedron with respect to the origin

/Av f(r,8,¢)dv = /aAu g(r,0, d)r-nds (8.20)

Since the outward normal vector n of the wall of the cone is orthogonal to the radial

vector r, i.e, r-n = 0, the integral in (8.20) is valuable only on the face As

/Av f(r,0,¢)dv = /As g(r, 0, ¢)r-nds (8.21)

Let us call the face that expands a cone the base of the cone. A volume integral over a

cone can, therefore, be represented in terms of a surface integral over the base of the

- 135 -

¢

Figure 57
A small cone Awv is expanded by a small face As of the polyhedron

with respect to the origin. The normal vector on the wall of the cone
is orthogonal to the radial vector. A surface integral taken over the

surface of the cone, therefore, is valuable only on the face As .

cone. The integral in (8.19) thus equals a sum of appropriately signed volume integrals

over cones expanded by faces of Q) such that
I=/ 7,8, ¢)dv
o f(r,6,9)

= Jyo 1,0, ¢)rnds

= > S(Aw) /A " f(r,0,)dv

Av;

(8.22)

We introduced a sign function S(Awv;) in the above equation. The sign function is

defined on a cone Aw, as:

S(Avg) = +1 if Av; is coherent with Q ,
= —1 otherwise.

Significantly, the n in (8.19) is the outward normal vector of the boundary of the

polyhedron @. However, the n in (8.21) is the outward normal vector of the boundary

- 136 -

14

Figure 58

Faces of a tetrahedron expand into four new tetrahedra with respect

to the origin.

of the cone Av; . They may point toward opposite directions. They point to the same
direction only when Av; and @ are coherent, i.e., the interiors of @ and Av; occupy
the same halfspace divided by the base of the cone, As; . The sign function S(Awv;)
determines whether the integral over Av; has a positive or negative contribution to
the integral over @ . If Aw; is coherent with Q , the integral over Av; has a positive
contribution to Q) ; otherwise it has a negative contribution.

A tetrahedron Q = (vy, v, v3, v4) in Figure 58 has four faces, F1 = (vg, vq, v3),
Fy = (v1,v3,v4), F3 = (v1,v4,v3), and Fg = (v1,v2,v3). The order of the vertices
in each face are specified clockwise so that the normal vector of a face always points
away from the tetrahedron. A face F; of @ with the origin O forms a new tetrahedron
Qi = (O, vm, v5, vi), where (vm, vj, vg) are vertices of F; . Four new tetrahedra, Q; =
(O, vg,v3,v4), Q2 = (O, v1,v3,v4), @3 = (O, v, vz,v4), and Q4 = (O, vy, vp, v3) are
formed. As we can tell, tetrahedra Q;,Q2, and Q3 are coherent but Q4 is incoherent
with @ . Since each tetrahedron has a vertex located at the origin, an integral over

these tetrahedra can be evaluated symbolically with the method illustrated in the last

section.

- 137 -

An integral over the tetrahedron @ thus equals the sum of the appropriately

signed integral over each newly formed tetrahedron Q;

I= /Q f(=z,y, 2)dv

— T s@) [, fa

(8.23)
Q1,Q2,Q3,Q4 y

As we know the sign functions are S(Q1) = S(Q2) = S(Q3) == 1, and S(Q4) = —1.

Let the coordinates of the vertices of a face Fy = (vm, vj, vg) be

m = (zmy Ym, Zm)
'Uj :(Ijryjrz]')
v = (Tk, Yk, %k)

A linear transformation 7; can be defined as
Im T Tk
Ti=\|Ym Y Yk (8.24)
Zm Zj 2
As we know, the determinant of the transformation matrix is positive if Q; is coherent
with the base F} | i.e., |T5| > O; if @; is incoherent with F; , the determinant is negative.

The determinant |T;| implicitly represents the effect of the sign function S(Q;) and the
Jacobian ||T;||. Equation (8.23) thus becomes

I=/Qf(a:,y,z)dv
- s(0) J, ftav, 20

8.25
= 3 s f 705,00, 087 (8.25)

= Ly o 03,)0V

where functions gz, gy,and g, are defined as
z =g(X,Y,7) =amX +a;Y + 137

y =gX,Y,Z) =ymX +y;Y +yZ
z =g,(X,Y,Z) = emX +2Y + 257

- 138 -

A polyhedron @ composed of f faces, e edges and v vertices can be represented
by Q = (F,E,V), where F = (Fy, ., Fy) is a set of faces, E = (Ey, .., E,) is a set of
edges, and V' = (vy,..,vy) is a set of vertices. A face F; is composed of f; vertices,
F; == (v‘i, . v‘)...), where a vertex v;'-inV and the vertices are specified in an order such
that the normal vector of F; points away from the polyhedron.

A face can also be a nonconvex polygon. As described in the second section, a
face F composed of f vertices can be dissected sequentially into f —2 triangles. A face
Fy = {v}, v}, ., 'Uff‘,} can be dissected into f; — 2 triangles, {T; = (vi, v;-+1,v;+2)}, by
using the vertex v'i as the projection origin. A triangle T;- with the origin O forms a
tetrahedron Q_‘;- = (O, v’i, U§'+17 v§-+2). A face F; with respect to the origin, therefore,
expands a set of tetrahedra {Q;} An integral over a cone Y; which is expanded by the
face F; with respect to the origin thus equals the sum of appropriately signed integrals

over all tetrahedra {Q;} Let the coordinates of the vertices of Q; = (0, %, v§-+1, v§+2)

be
0] == (0,0, 0)
vi =(a},4},4)
U§+1, (5'3;+1:?/g+1r]+1)
”§'+2 (x;+2:?lg+27 y+2)

As described before, a linear transformation, T;-, can then be defined as
&3} Tj41 Thio
Ty=|¥1 Y41 Yo (8.26)
A | T
Z] 21 Zy
An integral over a cone Y; expanded by a face F; equals the sum of integrals over all

tetrahedra {Q;}
I= /Y flz,y, 2)dv
—ZS Q%) f f(z,y,2)dv

—*ZIT|/ gz,gy;gz)dv

(8.27)

- 139 -

where I/V; i1s an orthogonal unit tetrahedron transformed from Q; and]T;] is the
determinant of the matrix T; Notice again that the sign function S(Q;) determines the
contribution of the integral over Q; to the integral over the cone, and the determinant
IT;I combines effects of both the sign function and the Jacobian.

Finally, an integral over a polyhedron Q = (F, E, V) equals the sum of the
integrals over all cones {Y;} expanded by faces of the polyhedron with respect to the
origin O

Iz/Qf(z,y,z)dv
== %‘:/;if(x’ Y, z)dv

T v 2)dv (8.28)
%%&ﬂ%ﬂ

l

I

TH [. (92, gy, 92)dV
;%h%quwm

The functions gz, gy, and g, are dependent on the simplex Q; and are defined as

x == gz(X, Y, Z) == xiX -+ x§.+1Y + $§'+2Z

z =g(X,Y,Z) = z‘iX—I-Z;‘-HY-Jrz;'._mZ

8.3 Complexity analysis

The method described above is simple and systematic. The procedure of
computation is divided into integrals over a set of cones formed by faces of the
polyhedron with respect to the origin. An integral over a cone is then divided into
integrals over a set of tetrahedra formed by the triangles dissected from the face
with respect to the origin. Although equations (8.13), (8.12), (8.27), and (8.28) look
complicated, the basic idea is very simple. An integral over a polyhedron Q = (F,E,V)
equals the sum of the appropriately signed integrals over cones formed by faces of Q
with respect to the origin, as in (8.28). An integral over a cone equals the sum of the

appropriately signed integrals over a set of dissected tetrahedra, as in (8.27).

- 140 -

Since a face F; with e; edges is dissected sequentially into (e; — 2) triangles,
the operation takes a total of 3 (e; —2) computations. Since an edge is counted twice

during the whole scanning procedure, we arrive at

> (e —2) =2E —2F

F;
where E is the total number of edges and F is the total number of faces of the
polyhedron. According to the Euler Equation (V — E + F == 2) the total number

of computations equals 2(V —2), i.e.

D (ei—2)=2(V ~2)

F;

Therefore, the time complexity of the method is linearly proportional to V, the number
of vertices of the polyhedron.

It is worthwhile to note that the numerical accuracy of this method can be
improved by shifting the origin of the coordinate system to the barycenter of the
object, especially to prevent the occurrence of long, thin tetrahedra when an object is
far removed from the origin. By using a more sophisticated 3D trianglarization, the
efficiency of the algorithm can be improved. It is also important to notice that the
computation time of the method does not increase linearly with the number of integral
quantities computed, since only one matrix determinant |T| needs to be computed
when several integral quantities are calculated at the same time.

This method can be generalized and applied to solids in higher-dimensional

space. We discuss this in Chapter 10.

- 141 -

Chapter 9

Integral over a Set-Combined Polyhedron

A set-combined polyhedron is a polyhedron derived from a set operation on
two polyhedra, such as a union, intersection, or subtraction operation. This type of
solid figures greatly into the field of constructive solid geometry, in which objects are
synthesized by means of set operations on primitive solids. This chapter presents a

simple method for calculating the integral properties of this type of solids.

9.1 Basic discussion

A symbolic method for evaluating the integral of a polynomial function over
a nonconvex polyhedron was presented in chapter 8. In the following discussion we
illustrate how the original method can be generalized to solve the more complicated
problem of calculating the integral properties of a set-combined polyhedron.

We showed in chapter 8 that a volume integral over a polyhedron Q can be

decomposed into integrals over a set of cones {Q;}, defined by the boundary faces {F;}
of the polyhedron with respect to the origin.

/Qf(ft, y, 2)dv
:;/‘f(x, y, z)dv (9.1)

A face of a polyhedron can be further decomposed into a set of triangles with
respect to a fixed point on the face, where a triangle 7} on a face F' is formed by an
edge E; of F relative to a fixed vertex v, of F. An integral over a cone thus equals
the sum of appropriately signed integrals over all the tetrahedra formed by the set of
triangles on the face with respect to the origin. In the following equation a tetrahedron
Qj (defined by an edge E;=(vj,v;41), a fixed vertex v, of the face, and the origin) is

transformed into a unit tetrahedron Wj.

- 142 -

Ue
tL
T8
VE gl T/ ¥
Ve
Figure 59

The triangle Ty is constituted by edge E and vertex vy; T} is con-
stituted by edge F and vertex vj.

The tetrahedron Q); is transformed into a unit tetrahedron W; through a transforma-

tion TJ defined as

To Tj Tjqq Vo — (950; Yo, ZO)
Tj =|Y% Y5 Yj+1 where (v; = (Ij7 Yy, Zj) (9.3)
2o 25 2541 V41 = (Ij-i-lz Y541, ZJ'+1)

An integral over a polyhedron thus becomes

Jo o 2o = ST fyg s v (9.4

An edge is defined as E=(vy,vq, Fy, F}), where vy and vg are its head and

tail, and Fy and F] are its right- and left-consecutive faces. One edge constitutes a

- 143 -

pair of triangles, each with respect to a fixed vertex on its two consecutive faces. For
instance, the triangle T, in Figure 59 is constituted by edge E and a fixed vertex v,
of its right-consecutive face Fy, and T is constituted by E and a fixed vertex v; of its
left-consecutive face Fj. We can choose the highest indexed vertex of the face as the
projection center, for instance, so that all the triangles of a face are formed by the
edges of the face with respect to the same vertex.

We can rearrange the order of summation in Equation (9.4) so that it follows
the sequence of edges instead of the sequence of faces. Therefore, instead of scanning
first through all faces of the polyhedron and then through all edges of each face, we
perform the summation by scanning through all edges of the polyhedron where an edge
E = (v, vg) constitutes a pair of tetrahedra W;, W}, with respect to the origin, and a
fixed vertex of each of its consecutive faces. Tetrahedron W, is constituted by E, the
origin, and a fixed vertex vy on its right consecutive face, while W} is constituted by

E, the origin, and a fixed vertex v; on its left consecutive face.

Iz/Qf(x,y,z)dv

(9.5)
= S Tl [, Sras oy o)tV + (T3 [, 5(FinsFig SV)
E r !
We can define the two polyhedra by the expressions Wy = (O, v, vg,vr) and W) =
(O, ve,v1,v;). The transformations Ty and 7Ty are defined by the coordinates of the
vertices of the tetrahedra W, and W) such that

vy =< Ty, Yr, 2y >
v =< T, Y, R >
v =< 71,Y¥1,%21 >

vg =< Tg,Y2,%2 >

Ty T1 X9 r T2 1
Tr=|Y Y1 Y2 Ti=|u Y2 0 (9.6)
Zy Z1 29 z1 29 21

The functions frz, fry, frz, fiz, fiy, and fi; are defined separately as

- 144 —

frz X fl:z: X
fry - (Tr) Y and fly - (Tl) Y
fTZ Z flz 7z

We can see from the above analysis that, to compute the integral, using only
edge information is sufficient for the calculation. We include an algorithm in Appendix
B for calculating the volume, center of mass, and moments of inertia of solids. We can
make use of this tool in calculating an integral over a set-combined polyhedron.

Usually, we calculate the integral properties of a set-combined polyhedron by
first building the polyhedron using the set operator described in the previous chapter,
and then performing an integration by the method described previously. However,
we can improve on this approach if we can do the calculation without rebuilding the

polyhedron. In the discussion that follows we offer a method for accomplishing this

goal.

9.2 Outline of the method

Let P and @ denote two polyhedra, and W a set-combined polyhedron of P
and Q. We will use F(P), F(Q) and F(W) to denote the boundaries of the polyhedra
P, Q, and W, respectively. These boundaries can be expressed as sets of the bounding
faces of the polyhedra. We denote the boundary faces of the polyhedra P, Q, and
W, respectively, by the expressions F(P) = {F%}, F(Q) = {FiQ}, and F(W) =
{F{,V}, where F%, F‘é, and F%V refer to the 2z, face of the polyhedra P, @ , and W,
respectively.

If E(F) denotes the boundary of a face F', then E(F) = {E;} is a set of edges
delineating the perimeter of ', where E; denotes the jy; edge of face F'. Therefore,

edges of F};, FiQ, and F{V, respectively, can be expressed as
E(Fp)={E¥'}, E(Fg)={E}, and E(Fly)—{E}

where Efj denotes the 7t edge of the ith face of the polyhedron P . We then describe

the sets of edges of the polyhedra P, @, and W by the expressions E(P), E(Q), and

)

E(W), respectively, as

- 145 -

E(P)=U {0FF} =U {E¥}, B(Q)=U {0FF} =U {EY}, and E(W)=U
{oF ¥} =U{EW}}
We can generally describe the relationship between the boundary of a set-

combined polyhedron and the boundary of its source polyhedra by the following

statements:

If W=PUQ, then F(W) = {F(P)N Q} + {F(Q) N P} (9.7)
I W=PNQ then FW) = {F(P) N Q} + {F(@) N P} (9.8)
If W=P—Q, then F(W)= {F(P)N Q} + {F(Q) N P} (9.9)

Here we use F(P) N Q to denote the portions of bounding faces of polyhedron P which
are located in the interior of Q) , and F(P) N 6_2 to denote the portions of bounding
faces of polyhedron P which are located outside of @ . Also we use F(Q) N P to denote
the portions of bounding faces of polyhedron @ which are located in the interior of P,
and F(Q) N P to denote the portions of bounding faces of polyhedron Q which are
located outside of P .

If W is the union of P and @ , then the boundary of W is composed of portions
of those faces of P that are in the exterior of @ and those of Q that are in the exterior
of P. If W is the intersection of polyhedra P and @ , then the boundary of W is
composed of portions of those faces of P which are in the interior of Q and those of
@ which are in the interior of P. If W is the subtraction of polyhedra Q@ from P |
then the boundary of W is composed of portions of those faces of P which are in the
exterior of @ and those of ¢ which are in the interior of P.

However, the above relationships hold true only in situations with no degenerate
cases. Those cases with degeneracy can first be resolved by the perturbation method
discussed in Chapter 7. Therefore, our discussion assumes a degeneracy-free situation.

The relationship between the edges of a set-combined polyhedron and the edges

of its source polyhedra can also be generally described by the following statements:

If W=PUQ, then EW) = {E(P)N Q} + {E(Q) N P} + {F(Q) N F(P)}. (9.10)

— 146 —

IfW=PnNQ, then E(W)={E(P)N Q}+ {E(Q) N P} + {F(Q) N F(P)}. (9.11)

If W= P—Q, then EW) = {E(P)N Q} + {E(Q) N P} + {F(Q) N F(P)}. (9.12)

Here E(P) N Q denotes the portions of edges of P that are interior to ¢, and E(P)N
é denotes the portions of edges of P which are in the exterior of Q. We also use
F(Q) N F(P) to denote the set of edges created by the intersection of a face of P with
a face of Q) .

If the polyhedron W is the union of P and @ , then the set of edges of W is
composed of those portions of edges of P that are exterior to Q and those portions of
edges of @ that are exterior to P as well as the edges formed by the intersection of
faces of P with faces of Q. If the polyhedron W is the intersection of P and Q , then
the set of edges of W is composed of those portions of edges of P that are interior to
@ and those portions of edges of @ that are interior to P as well as the edges which
formed by the intersection of faces of P with faces of Q . If the polyhedron W is the
subtraction of @ from P , then the set of edges of W is composed of those portions of
edges of P that are exterior to @ and those portions of edges of Q that are interior to
P as well as the edges formed by the intersection of faces of P with faces of Q .

An edge-face-penetration procedure can perform the task of discovering the
intersections between edges and faces of two polyhedra. Afterward, the edges of each
polyhedra are cut into segments that are classified by types as either {E(Q) N 1_3},
{E(Q) N P}, {E(P) N Q}, or {E(P) N Q}. A method is described in Chapter 7 for
performing face-face intersection between two polyhedra. This operation solves the
intersections between faces or between edges and faces of two polyhedra. By using
the perturbation method proposed in the same chapter, we can perform a face-face
intersection in a degeneracy-free situation. It follows, then, that by using the face-face
intersection method and following the principles above, we can quite readily find the
integral of a set-combined polyhedron.

As we have explained before, an integral over a polyhedron can be calculated
by means of its edges. We can, therefore, calculate the integral of a set-combined

polyhedron W by scanning through its edges discovered from its source polyhedra

- 147 -

following the rules described above. For instance, if W is the intersection of P and Q
then the set of edges of W is composed of three classes of segments: (1) = {E(P) N Q},
(2) = {E(Q) N P}, and (3) = {F(Q) N F(P)}. If E = (vm, vm) is a segment of class
(1), then E is an edge or a portion of an edge of P . The two consecutive faces F,
and F] associated with E are two boundary faces of P. Edge E defines two triangles,
one with respect to the highest indexed vertex v} of Fy and the other with respect
to the highest indexed vertex vf, of F;. The two triangles eventually constitute two
tetrahedra with respect to the origin and contribute part of an integrated amount to
the final integral.

For a segment E of class (2), £ can be an edge or part of an edge of Q. Edge
E is also associated with two consecutive boundary faces, Fy and F;. Edge E, with a
fixed vertex v of face Fy and a fixed vertex v of face Fj, defines two triangles, that
eventually constitute two tetrahedra with respect to the origin. Part of an integrated
amount can also be accumulated from these two tetrahedra.

For a segment E of class (3), E is the intersection of a face Fp of P with a
face Fg of Q. Edge E is thus associated with the two faces Fp and Fg. Edge £, with
a fixed vertex v% of face Fp and a fixed vertex v‘é of face Fg, constitutes two triangles
that also eventually constitute two tetrahedra with respect to the origin. Part of an
integrated amount can also be calculated from these two triangles.

If W is the union of P and @, then the first two classes of edges are different
from that of the union of P and Q , while the third class remains the same. If W
is the subtraction of @ from P | then the first two classes of edges are different and
the third class is the same. However, an integral over the union or the subtraction of
two polyhedra can still be calculated using the same principle described above. For a
segment Ein{E(P) N é}, edge E is still a portion of an edge of P and is associated
with two faces Fy and Fj of P. Part of an integral can thus be calculated separately
on the two triangles defined by E with a fixed vertex of face Fy and a fixed vertex of

face Fj. The same calculation can also be performed for a segment Ein{E(Q) N P}.

- 148 -

Chapter 10

Integral Over a Polyhedron in R™ Space

To recognize the need in mechanized program analysis for an efficient method
to compute the volume of a nonconvex polyhedron in m-dimensional space (R™),
we have to consider the problem of determining the probability that a conditional
will yield a “true” or a “false” value from a path in a loopless program consisting of
assignments and embedded or cascading conditionals. Let us assume that all variables
in a program have known upper and lower bounds, and that the boolean expression
in a conditional is formed by a conjunction of linear inequalities. When each boolean
expression in the path consists of linear inequalities, the probability of taking that path
may be determined by the ratio of the volumes of two polyhedra P; and Py, where
P is the polyhedron representing the conjunction of linear inequalities along the path
and P, is the polyhedron representing the bounds of the variables. In this case, being

able to compute the volume of an R™ polyhedron is the key to the solution of the

problem.

The symbolic method proposed in the previous sections can be extended to help
solve the probability analysis problem described above. With appropriate generaliza-
tion, we can apply this method to the calculation of the integral properties of a noncon-
vex R™ polyhedron. For instance, Equation (13), previously defined as giving a direct
evaluation of an integral over a unit orthogonal tetrahedron, needs to be generalized to
evaluate an integral on a unit orthogonal m-simplex, instead. In addition to computing
the volume of an R™ polyhedron, we can also use this method to calculate an integral
of an arbitrary polynomial function. For example, if the probability density in the
above problem is not distributed uniformly through the entire R™ space, we would
need to calculate the mass of polyhedra P, and P, instead of their volume, making

the density distribution function equal to the probability density function.

- 149 -

10.1 Evaluating an integral over an m-simplex

We can describe the integral properties of a polyhedron @ in R™ by the

expression

I=/Qf(x)dx (10.1)
where the integrand f is a polynomial function defined in R™ and dx is short for

the differential drjdzs..dzm. A linear transformation § is defined in R™ that maps

a vector u into a vector x by § : u = (u1, ug, .., um) = x = (21,72, .., Tm) as

zy = g1(uy, ug,.., Um)

zg = go(uy, uz,.., Um)
= ... ,

Tm = gm(uy,ug, .., um)

This transforms Equation (10.1) into

1= [S5, (102

where the Jacobian J is the determinant of an m X m matrix

9g1/0ur 0g1/0ug ... 9g1/%um
Oge/0uy Oge/Bug .. 9go/0u

7|99/ / 2/Om (10.3)
Ogm/Ouy Ogm/duz ... Ogm/Oum

A polynomial f in R™ can be represented as

_ ny N nm K ;
f(x)= E AR M iy where n;’s are integers.
ni,ne,.,"m

Similarly, to compute the integral in Equation (10.1), we consider only one term
I= /Q rylzy?. apmdx. (10.4)

A brief introduction to the topology of polyhedra is included in Appendix C.

The notation used below is based on the presentation there. Let s™ = (O, vy, ..., vm)

- 150 —

be an m-simplex with m + 1 vertices, where O is the origin and the coordinates of the

vertices are

O = <00..0>
n = <<zl,1,x1,2,...,21,m >

(10.5)
Um = < zm,l,zm,2, ..., zm,m >

The definitions of m-dimensional simplices (m-simplex) and complexes (m-complex)
can also be found in the Appendix. Let v; represent a column vector from the origin

to a vertex v;. An m X m linear transformation T can thus be defined by the set of

vectors {v;}, such that

T=(V1,V2,...,Vm) (10.6)
Under this transformation, an orthogonal unit m-simplex W = (v,’, vy, ..., vy,’) with
coordinates
'vo’ —_— (0,07...,0),
v’ = 1,0,...,0),
(10.7)
vm’ = (0,0,...,1), respectively

1s transformed into the original m-simplex s™. Based on the above transformation,

the integral in (10.4) becomes
I= /a’" z1lzy?. apmdx,

8
— 71 [, (o)™ (02)"...m)™ s, 1os)

where the transformation functions ¢;’s are defined as

g1{u1, ., Um) = (:ciul + x%uz + ..+ 2tum)
ga(u1, ..., um) = (x%ul + x%uz + ..+ 2P up)

gm(u1, .., um) = (anul + x?nuz + ..+ zptum)

We generalize the formula presented in the previous chapter to the following

formula, which resolves an integral of a polynomial x'fl 11332 ..Zp™ over a unit orthogonal

- 151 -

m-simplex as described in Equation (10.7):

1 f 1
ni, no ns — ny! ng! ... npy! .
/le To?. .x3dx (b Frm T m)] (10.9)

An arbitrary m-simplex (vo, vy, .., vm) in which v, is not the origin can always be
transformed into an orthogonal unit m-simplex by means of the same transformation,

if only the vector v; denotes a vector from v, to v;.

T=(V1, V2, . Vm) (10.10)

An integral over an m-simplex can then be evaluated symbolically by Equation (10.9).

10.2 Evaluation of an R™ transformation

Next we discuss how to calculate the determinant of an m X m matrix as
defined in Equation (10.10). We present a simple method to accomplish this operation.
We first define a set of new bases (f1, fy, .., fyn) from the simplex s™ = (vo, vy, ..., Um)

in the previous discussion, such that

(£, = YL
v
f— Y27 (vz e fy)fy
7 Iva—(vaefi)fy] (10.11)
£ Ym (E:n=—11 vm o I;)f;
m —
[vm —(:n=11 v @ £)f;]

Here “e” denotes the inner product of two vectors. Basis (f1,fz,..,f) is a set of

orthonormal bases, that is

f;of;,| =0if¢£7 fori,7=1,..,m
il

We know that the determinant of a matrix is not altered by adding a multiple of one

column to another column. Therefore, the determinant of the transformation matrices

IT|=|(vi ..vi;t kv .. V)| (10.12)

- 152 -

are constant for arbitrary number k. On the bases of Equation (10.12), we can shift
the contents of the transformation matrix T in Equation (10.10) to T” in the following

statement without altering its determinant:

T"=(v1, va—(vzefi)fi, va—(vzefy)fi—(vzefe)fs, ..) (10.13)

The matrix T” is based on the new bases (fy, fy, .., fm)

T’ = (hyfy, hofy, .. s hmfm) - (10.14)

where each scalar h; is the length of the 7, column vector, defined as
j—1
hi = |vi— D (vie £l
j=1
Since (fy,fs,..,fm) is a set of orthonormal bases, the determinant of matrix F —
(f1,f2,..,fm) is either 1. Therefore, the determinant of matrix 77 is
|T’l = dhiho...hApy

and, therefore, the determinant of matrix T is

IT| = +hihg..hm

We interpret the physical meaning of the scalars hy, hg, ..., by, in the following
discussion. We first recall that (fy,fy, .., frs) are defined by extracting from a vector v;

the component that is orthogonal to the previously defined bases fy, .., f;,, such that

£ — YL

[v1]
£ — Vo — (v2 L] fl)fl
2 p—

ho (10.15)

f“ v — (i vm @ §)f;
m

I

We can interpret vector vy as a l-simplex s! = (vo, v1) consisting of two vertices. The

scalar hy is the length of the vector vy, which is also called generally the ‘volume’ of

- 153 -

simplex s and is expressed as |s'| = |vi|. Vectors v; and vy expand a ”2-simplex”
consisting of three vertices s = (vo,v1,ve); this arrangement forms a ‘2-cone’ built
on a ‘base’ s! = (v, v1) with vertex vg. In Appendix C we can find the definitions of

“cone” and “base.” We know that the length
hg = |vg —(vg o f1)f1]

marks the orthogonal distance from the vertex vg to the base (v,,v1), i.e., the distance

between vg and the line containing (vo, v1). The “volume” (the area) of simplex s? is
1
2 1
—Zh
|s%] = ghals™|

Vectors vy, vg, and v3 expand a 3-simplex consisting of four vertices s2 = (vo, v1, ve, v3),

forming a 3-cone on s = (v, vy, v3) With vertex vs. As we can easily see, the length
h3 == lVg - (V3 ® fl)fl - (V3 ® fz)f2|

equals the distance from vg to the plane containing the base s2 = (vo,v1, v2), and the

volume of simplex s2 is thus

31, .2
s°| = —hgls
%] = 2 hals?]
Finally, a set of m vectors vy, ve, ... and vy, expands an m-simplex s™ consists of m+1
vertices to form an m-cone built on its previous simplex, s™ ! = (vo, 1, ..., Um—1) With

vertex vm. The volume of s™ is therefore equal to

1
-—hm|8m_ll,
m

where |sm_1| is the volume of its base and hy, is the distance from vy, to its base.

10.3 Integration over an R™ polyhedron

An R™ polyhedron @ is an m-complex whose boundary is a set of (m — 1)-
complexes denoted by {B* !}. The boundary of a (m — 1)-complex B:’l'"l is again

a set of (m — 2)-complexes denoted by {B;’:;ZZ , etc. Let Q be represented as Q =

- 154 -

{B™1} where {B™"!} are the boundaries of Q. Let pp be a point in ™ which
forms an m-cone C7* with respect to each boundary B:n—l of Q. Point py, therefore,
forms a set of m-cones {C™ = pp, B™ 1} with respect to all the boundaries of Q. An

integral over @ thus equals the sum of appropriately signed integrals over the set of

cones {O7'}, such that
/ f(z1, . zp)dx = E S(C:n)/ Sz, 2a)dx
Q cr Ci

where the sign function S(C*) is determined by the side of Bfn_l on which point py,

1s located.

An R™ polyhedron is an m-complex. The boundaries of an R™ polyhedron
are a set of (m — 1)-complexes. Similarly, the boundaries of a boundary of an R™
polyhedron is a set of (m — 2)-complexes. The subspace of R™ in which an (m — 1)-

complex is embedded is a super plane which can be described by a superplane equation

I'(x) = 0, where
ImIm + Ym—1Tm—-1+ ... + 7121 +7 =0
and < Ym, Ym—1, ---, 71 > is the unit outward normal vector of the super plane.

Let T'y(x) = 0 be a superplane with an embedded B:-"_l boundary. The
distance from a point ppm =< 1%, z*, .., 27y > to a superplane is the absolute value
of the result of substituting the coordinates of the point into the plane equation of the
superplane. A ‘signed’ distance from a point py, =< zT*, 2%, .., 2% > to a boundary
B:-"_l is a direct result of substituting the coordinates of py, into the plane equation,

that is
hm =Ti(Pm) = YT + Yo 18m 1+ .+ izl +4h

The sign function S(CT*) is defined as the sign of the signed distance hy,, that is

S(CT) = Sign(hm) = Sign(T'1(pm))

If hyy has positive sign, then point py, is located on the positive side of B:-"_l; if hyy

has negative sign, then py, is on the negative side.

- 155 -

Let B™1 denote a boundary of Q, and {B:"_z} denote the set of boundaries
of B™~1. We can dissect the boundary B™~1 which is an (m—1)complex, into a set of
(m —1)-cones {O’;""1 = Pm— 1B:"_2} by selecting a point py,—; out of the superplane
in which B™ ! is embedded. Each cone in {C:"—l = pm_lB:-"—z} is constructed on
the bases of {B:"_z} with point ppm_1. The volume of B™~1 equals the summation of
the appropriately signed volume of each cone, that is

1 _
> ——Thm|BIY
7 m—1
where IBT—ZI is the volume of a base B:n_z and hy,_1’s are signed distances from

Pm—1 to the base. Here ‘distance’ is considered in the subspace in which B™ 1 is

embedded.

Let B™ 1 represent the 4y boundary of Q and B:"j_z represents the 7z,

boundary of B:."_l. The subspace of R™ in which a (m—2)-complex B;n’j—z is embedded

can be described by two superplanes that lie orthogonal to each other

Ti(X) = Vo Zm + Vop 1Zm_1+ ... + Yoz +7h = O, (10.16)
and

I‘,-’j(x) = 'Y'anm + 'y"m_lxm_l + ...+ "7';.’1:1 + "7‘6 =0, (10.17)
I'4(x) = O is the superplane containing B:-n_l and Ty j(x) = 0 is an orthogonal

superplane so that the intersection of the two is the subspace containing B:’}”? Here

‘orthogonal’ means that the inner product of the normal vectors of the two faces equals

zero, that is

(Y Ym—1, - 71) ® (Vs Vi1 - 71) =0

Since the two planes in (10.16) and (10.17) are orthogonal, the distance hp,—1 from

Pm_1 to the base {B;"j—2 equals

hm—1 =T j(Pm—1) = Yuzm '+ V121 + o+ T A

- 156 -

Generally speaking, the subspace in which a (m — j)-complex is embedded can

be described by a set of 7 superplanes as the followings:

F]_(x) =0
Fz(x) =0

(10.18)
FJ(X) =0

The subspace in which the boundary of a (m—j)-complex is embedded can be described

by adding one more orthogonal superplane to the original set of planes, and resulting

Ix)=0
Fo(x)=0
Lo (10.19)
I'j(x) =0
Ijta(x) =0

The signed distance hy,_; from a point py,_; =< :z;nhj, e xm—j > of B™J to one

of its boundaries {B:n_j_l} equals I'j1(ppm—), that is
hm—j = 1-‘j+1(pm—j)

Let pym be a point in R™ . Let {B:'l‘_l} be the boundaries of @ and {p’,-}z_l} be
the local points selected respectively out of the subspaces where {B:-';"l} are embedded.

Let {B:'l';zl} be the boundaries of B;’l‘_l and {p:.};:éz} be the points selected respectively
m—1
11,12

described above can be used to dissect a polyhedron @ into a set of m-simplices

o\ iLa "
{(po, PiL,p5 ", ..., p' ™)}

from the subspaces where {B } are embedded, and so on. The entire procedure

Since a volume integral over a unit orthogonal m-simplex can be evaluated

directly through Equation (10.9), it follows that the determinant of an m X m matrix

can also be readily calculated. The volume integral over an m-simplex s = (po, p‘il,p:i,l’iz,
’n};""‘m) can then be evaluated directly, by means of a simplex-dependent trans-

a.ey

formation T(s) defined as in Equation (10.6). A volume integral over a polyhedron

- 157 -

Q thus equals the sum of the ‘appropriately signed’ integrals over all the simplices,
where the sign for each simplex is contained in the signed distances from a local

highest indexed vertex to its base.

- 158 -

Chapter 11

Conclusion

The goal of this research has been to explore powerful computational means to
improve and perfect current solid modeling systems so that engineers can rely on them
to easily and efficiently generate complete designs, perform automatic pre-checks, and

calculate engineering-related properties.

Toward the realization of this goal, we present two basic theorems, a transi-
tion criterion and a singularity criterion, that support the theoretical foundations of
solid modeling and permit verification of computational techniques. A new solid rep-
resentation scheme is also proposed. Taking a new view of computerized geometries,
it allows geometrical set operations to be decomposed into local suboperations. An
algorithm for performing face-face intersection in a set operation is presented as a new
way of locating the intersections of two polyhedra without edge-face penetration detec-
tions as conventionally required. This algorithm drastically reduces the computational
burden on a set operator in a solid modeling system. Finally, a symbolic method is
presented for efficiently calculating certain important engineering-related properties.
The dissection technique at the heart of this method makes the overall implementation

remarkably easy.

This ease of implementation is the final aim of each of the innovations and
techniques listed above, not just in the sense of mathematical clarity or efficiency, but
most important, in the sense of practical utility. Point-polygon- and point-polyhedron-
enclosure detections, for example, are two very time consuming operations which
occur very frequently in hidden-line elimination and object interference detection. An
efficient execution of these two operations can significantly improve both the speed
of object interference checking and the performance of the user interface in a solid
modeling system. The transition criterion proposed in Chapter 2 leads to a direct and

efficient method for solving two-dimensional point-enclosure problems. The singularity

- 159 -

criterion proposed in Chapter 4 leads to a theoretically exact solution to all the

singularities possibly encountered in a three-dimensional point-enclosure problems.

We also categorize all singularities possibly encountered in 3D point enclosure
detection, so that object interference detection in a solid modeling system can be
implemented in a clean and exact way. And we introduce an efficient algorithm for 3D
point-enclosure detection which reduces the number of 2D point-enclosure detections

required during the computation.

Similarly, set operations on solids normally require several time-consuming
local operations, such as edge-face-penetration, point-polygon enclosure, point-poly-
hedron enclosure, edge-edge intersection, polygon-polygon intersection, face-face in-
tersection, and polyhedron-polyhedron intersection. Good techniques for these opera-
tions can improve the performance of a solid modeling system. Among these tech-
niques, perturbation is a method which can be used to transform two objects into a
singularity-free situation so that edge-edge intersection and face-face intersection can
be performed easily. A set of rules is generated, as a result of perturbation, that can
be followed in implementing a set operation in a solid modeling system. This set of
rules makes the implementation of edge-edge intersection and face-face intersection

executors in a solid modeling system short and clean.

A scheme called skeletal polyhedron representation is likewise proposed in
this thesis, as a new means of representing solids. Skeletal polyhedron representation
describes solids based on the relationship between their vertices rather than by the
conventional scheme of boundary representation. This scheme allows set operations
on solids to be performed in a more efficient and convenient way. A detailed discussion
of 2D and 3D set operations on solids on the basis of skeletal representation is presented

in Chapters 5-7.

Finally, our work seeks to fulfill the specification that a useful solid modeling
system should supply not only efficient means of handling objects, but also efficient
techniques for performing engineering-related calculations. To do this, we presented

a symbolic method for calculating the integral properties of an arbitrary nonconvex

- 160 -

polyhedron in Chapter 8. This method not only is efficient but also gives an exact
result of an integral of an arbitrary polynomial function over a polyhedron. Besides,

the implementation is very simple because of the systematization of the method.

By taking advantage of the features of the above symbolic method, we present
in Chapter 9 a similar method for directly calculating the integral properties of a
set-combined polyhedron, that is a polyhedron which is the union, intersection, or
subtraction of two polyhedra. This method avoids the necessity of rebuilding the
resultant polyhedron through a set operator. The symbolic method in Chapter 8 is
not confined by the dimensionality of the space, it can be generalized to permit the

calculation of the integral properties of a polyhedron in m-dimensional space.

This decade is proving to be an era of intense interest in computer-aided
geometric design, an activity attracting people from many sectors including comput-
ing and manufacturing. As the discipline more firmly establishes valid principles and
standard techniques, it will undoubtedly come to dominate computer-aided manufac-
turing as well as a wide range of other applications. To provide increased capability for
future applications, we must continue making advances in such areas as mathematical
representation, logical structuring, management of geometric data, development of ap-

propriate geometry standards, and improvement in user interfaces through interactive

graphics techniques.

- 161 -

References

{1] Appel, A., “Some Techniques for Shading Machine Renderings of Solids,” SJCC
37-45, 1968.

[2] Ballard, D.H., “Strip Trees: A Hierarchical Representation for Curves,” Communications

of the ACM, Vol. 24. No. 5, May 1981.

[3] Barnhill, R.E. and R.F. Riesenfeld, “Computer-Aided Geometric Design,” Eds.
Academic Press, 1974.

[4] Baumgart, B.G., “Geometric Modeling for Computer Vision,” Stanford Artificial
Intelligence Laboratory Memo Aim 249, October 1974.

[5] Baumgart, B.G., “Winged Edge Polyhedron Representation,” Stanford Artificial
Intelligence Laboratory Memo Aim 179, October 1972.

[6] Bentley, J.L. and W. Carruthers, “Algorithms for Testing the Inclusion of Points in

Polygons,” 18th Annual Allerton Conf. on Communication, Control and Computing,
ACM, 1980.

(7] Boyse, J.W., “Interference Detection Among Solids and Surfaces,” Communications

of the ACM, Vol. 22, No. 1, 1979.

[8] Cohen, J. and T. Hickey, “Two Algorithms for Determining Volumes of Convex
Polyhedra,” J. ACM, Vol. 26, No. 3, July 1982.

[9] Eastman, C., and Y. Kalay, “An Algorithm for Spatial Set Manipulations of Solid
Objects,” Research Report, Dept. of Archi, Carnegie-Mellon Univ., July 1980.

[10] Eastman, C., J. Lividini, and D. Stroker, “A Database for Designing Large Physical
Systems,” Nat. Compu. Conf. Proc., 1975.

[11] Edmonds, J., “A Combinatorial Representation for Polyhedral Surfaces,” Notices
Amer. Math. Soc. Vol. 7, 646, 1960.

[12] Franklin, W.R., “Efficient Polyhedron Intersection and Union,” Graphics Interface,

~ 162 -
73-80, 1982.

[13] Goldstein, E. and R. Nagle, “3D Visual Simulation,” Simulation 16, 25-31, January.
1971.

[14] Hanarahan, P.M., “Creating Volume Models from Edge-Vertex Graphs,” ACM
Computer Graphics Vol. 16, No. 3, 1982.

(15] Jackins, C. L. and S.L. Tanimoto, “Oct-Trees and Their Use in Representing
Three-Dimensional Objects,” Computer Graphics and Image Processing, 14, 3, 249-
270, November 1980.

[16] Kalay, Y.E., “Determining the Spatial Containment of a Point in General Polyhedra,”
Computer Graphics and Image Processing 19, 303-334, 1982.

(17} Lee, Y.T. and A.A.G. Requicha, “Algorithms for Computing the Volume and Other
Integral Properties of Solids, I. Known Methods and Open Issues,” Communications

of the ACM, Vol. 25, No. 9, September 1982.

(18] Lee, Y.T. and A.A.G. Requicha, “Algorithms for Computing the Volume and
Other Integral Properties of Solids, II. A Family of Algorithms Based on Representation
Conversion and Celluar Approximation,” Communications of the ACM, Vol. 25, No.

9, September 1982.

(18] Lien, S.L. and J. Kajiya, “A Transition Criterion for Vertex to Surface Comparison,”
ACM Transactions on Graphics, (submitted), 1983.

[20] Lien, S.L. and J. Kajiya, “Resolving Singularities in Point-Polyhedra Enclosure
Detection,” ACM Transactions on Graphics, (submitted), 1984.

[21] Lien, S.L. and J. Kajiya, “A Symbolic Method for Calculating the Integral Properties

of Arbitrary Nonconvex Polyhedra,” IEEE Computer Graphics and Applications, October
1984.

[22] Maruyama, K., “A Procedure to Determine Intersections Between Polyhedra Objects,”
Inter. J. of Compu. and Infor. Sci., Vol.1, No. 3, 1972.

[23] Putnam, L.K. and P.A. Subrahmanyam, “Computation of the Union, Intersection

- 163 -

and Difference of N-dimensional Objects via Boundary Classification,” Department of

Computer Science, Univ. of Utah, 1981.

[24] Requicha, A.A.G. and H.B. Voelcker, “Solid Modeling: A Historical Summary and

Contemporary Assessment,” IEEE Computer Graphics and Applications, Vol. 2, No.
2, March 1982.

[25] Requicha, A.A.G. and H.B. Voelcker, “Solid Modeling: Current Status and Research
Directions,” IEEE Computer Graphics and Applications, Vol. 3, No. 7, Oct. 1983.

[26] Requicha, A.A.G. and R.B. Tilove, “Mathematical Foundations of Constructive
Solid Geometry: General Topology of Closed Regular Sets,” Production Automation
Project, TM-27a, University of Rochester, 1978.

[27] Roth, S.D., “Ray Casting for Modeling Solids,” Computer Graphics and Image
Processing 18, 109-144, 1982.

[28] Sutherland, L.E., R.A. Sproull, and R.A. Schumacker, “A Characterization of Ten
Hidden-Surface Algorithms,” Computing Surveys, Vol. 6, No. 1, 1974,

[29] Voelcker, H.B. and A.A.G. Requicha, “Geometric Modeling of Mechanical Parts

and Processes,” Computer 10, December 1977.

[30] Wesley, M. A., “Construction and Use of Geometric Models,” Computer Aided
Design, Lecture Notes in Computer Science 89, 79-136, 1980.

[31] Whitted, J.T., “A Scan Line Algorithm for Computer Displaying of Curved Surfaces,”
Computer Graphics (SIGGRAPH 78 Supplement) Vol. 13(3), August 1978.

[32] Wilkinson, J.H., “Rounding Errors in Algebraic Processes,” Prentice-Hall, INC.,
1963.

- 164 -

Appendix A: Derivation of the integral formula

The Beta function and Gamma function are defined as:

1
B(ni+1,ng+1)= /0 2" (1 —z)"2dx

o0
I'(n+1)= /0 e *z"dr = n!

I'(m)l'(n) (m—1)(n—1)
B(m, n) = Pm+n) (m+n—1)!

The derivation of the formula for evaluating the integral of a polynomial z"1y%2z ;"3

over an orthogonal unit tetrahedron proceeds as follows:

/ ™M y"2 M drdydz

1—2—y
/ / "Myt2 "3 dxrdydz

__2_ n1+1yn2 n3dydz

"1+1(1 v)"’1+1 y"22"3dydz

1—=
y=(1-2)YY, dy=(1-—2)dY

"‘1+1(1 Y)Yt (1 —)2y n2,m8(1 — 2)dY dz

Y)mHlyma(] — pymtnet2 ng gy g,

TS / B(ng +1,ny 4+ 2)(1 — z)M1tn2t2,m3 4,

1

:B(nz +1,n; +2) / (1 _ z)n1+n2+2zn3dz
ny +1 0

_ B(ng+1,n1 +2)

o ny+1

1 ng!(ny + 1) ngi(ny +ng + 2)!

~ ny+ 1(ng +ng +2)! (ng + ng + ng + 3)!

. nl! ’ng! n3!

" (n1 +ng +nz+3)!

B(nz +1,n; + ng + 3)

- 165 -

Appendix B: Integral Algorithm

The following is an algorithm for calculating volume, center of mass, and

moments of inertia of a polyhedron.

procedure Integral (Q: polyhedron);
var j, k : integer;

pl, p2, p3 : point;

E : edge;

fr, fl:integer; { right and left consecutive faces }

X0, yo, zo , determ, volume: real;

bary_xo, bary_yo, bary_zo : real; { barycenter }

Ixx, Iyy, lzz, Ixy, Iyz, Izx : real; { moment of inertia }
{ calculating partial bary-center }

procedure bary_center(determ: real; pl, p2, p3: point);

begin xo:=xo+determx(pl-x+p2-x+p3-x);
yo:=yo+determx(pl-y+p2-y+p3-y);
zo:=z0-+determ«(pl-z+p2-2+p3-z);

end;
{ calculating partial moment of inertia }

procedure moment_of_inertia{ determ: real; pl, p2, p3: point);

begin Ixx:=Ixx+determ#(p1l-xxpl-x+p2-x*p2-x+p3-xxp3-x+

pl-x*p2-x+p2-x+p3-x+p3-xxpl-x);
Iyy:=lyy+determx(pl-y*pl-y+p2 y*p2-y+p3-y*p3-y+
pl-y*p2-y+p2y+p3-y+p3-y*pl-y);

- 166 -

Izz:=Izz+-determ«(pl-z+pl-z2+p2-2%p2-2+p3-z*p3-z2+
pl-z«p2-2+p2-zxp3-z+p3-z+pl-z);
Ixy:=Ixy+determ*(2x(pl-x+pl-y+p2-x+p2-y+p3-x*p3-y)+
pl-x*p2-y4+p2-xxp3-y+p3-x*xpl-y+
P1-y*p2-x+p2-y*p3-X+p3-y*pl-x);
Iyz:=lIyz-+determx(2+(pl-y*pl-z+p2-y+p2-z2+p3-y*p3-z)+
pl-y*p2.z-+p2.y+p3-z+p3-y*pl-z+
pl-zxp2-y+p2-2+p3-y+p3-z+pl-y);
Izx:=Izx+determ*(2+(p1l-z+pl-x+p2-2+p2-x+p3-2+p3-x)+
pl-z+p2-x+p2-zxp3-x+p3-z+pl-x+
pl-xxp2-z+p2-x+p3-2+p3-x*pl-z);
end;
begin { initialization }
x0:=0; yo:==0; z0:=0; volume:=0;,
Ixx:=0; lyy:=0; 122:=0; Ixy:=0; Iyz:=0; Izx:=0;
for j:=1 to Q-total_edges do
begin E:=Q-edgelj];
fr:=E-right_face;
{ pl is assigned the fixed vertex of face fr }
pl:=Q-vertex| Q-edge[Q-face[fr]-e0 |-v1 |p;
{ p2 is assigned the head of edge E }
p2:=Q-vertex(E-v1]-p;
{ p3 is assigned the tail of edge E }
p3:=Q-vertex|E.v2]-p;
{ a transformation is defined on pl, p2, p3, and the origin }
determ:=determinant(pl, p2, p3);
{ accumulating results from each tetrahedron }
volume:=volume-+determ;
bary_center(determ, pl, p2, p3);

moment_of_inertia(determ, pl, p2, p3);

~ 167 —

fl:=E.left_face;
pl:=Q-vertex| Q-edge| Q-face[fl]-eo |-vl]-p;
{ notice the exchange of vl and v2 }

p2:=Q-vertex|E-v2].p;
p3:=Q-vertex[E-v1]-p;
determ:==determinant(pl, p2, p3);
volume:=volume+determ;
bary_center(determ, pl, p2, p3);
moment_of_inertia(determ, pl, p2, p3);

end; { of for ;=1 to Q-total_edges do }

volume:=volume/6;

bary_xo:=x0/24/volume;

bary_yo:=yo/24/volume;

bary_zo:=z0/24/volume;

Ixx:=Ixx/60/volume;

Iyy:=lyy/60/volume;

Izz:=122/60/volume;

Ixy:=Ixy/120/volume;

Iyz:=lyz/120/volume;

Izx:=Izx/120/volume;

end;

procedure Integral (Q1, Q2: polyhedron; operation:integer);

var j, k : integer;

- 168 —

pr, pl, p2, p3 : point;
E : edge;
fr, fl:integer; { right and left consecutive faces }
X0, yo, zo , determ, volume: real;
bary_xo, bary_yo, bary_zo : real; { barycenter }
Ixx, Iyy, Izz, Ixy, Iyz, Izx : real; { moment of inertia }
{ calculating partial bary-center }
begin { initialization }
x0:=0; yo:=0; z0:=0; volume:=0;
Ixx:=0; lyy:=0; Izz:=0; Ixy:=0; Iyz:=0; Izx:=0;
for 1:=1 to Ql-total faces do
for j:=1 to Q2-total faces do

face_to_face_cross_examination(i,j);

for j:=1 to Q-total_edges do
begin E:=Q-edgelj];
fr:=E-right_face;
fl:=E-left_face;
{ pr is assigned the fixed vertex of face fr }
pr:=Q-vertex| Q-edge[Q-face[fr]-e0 |-v1 |-p;
{ pl is assigned the fixed vertex of face fr }
pl:=Q-vertex| Q-edge| Q-face[fr]-eo |-v1]-p;

classify(E, p2, p3);
determ:=determinant(pr, p2, p3);
volume:=volume-+determ;
bary_center(determ, pr, p2, p3);
moment_of_inertia{determ, pr, p2, p3);
determ:=determinant(pl, p3, p2);

volume:==volume-determ;

end;

- 169 -

bary_center(determ, pl, p3, p2);
moment_of_inertia{determ, pl, p3,

end;

volume:=volume/6;
bary_xo:=x0,/24 /volume;
bary_yo:=yo/24/volume;
bary_zo:=z0/24/volume;
Ixx:=Ixx/60/volume;
Iyy:=lyy/60/volume;
Izz:=Izz/60/volume;
Ixy:=Ixy/120/volume;
Iyz:=Ilyz/120/volume;
Izx:=Izx/120/volume;

p2);

- 170 -

Appendix C: Introduction to the Topology of Polyhedra

In this section we include a brief introduction to the topology of polyhedra
to give the reader some idea of what a simplez and a complex are. We also introduce

notation which is used in this thesis in Chapters 5 and 10.

1 Rectilinear simplexes

Elementary combinatorial topology is concerned with those topological spaces
which admit dissection into suitably regular pieces. If we put this the other way
around, we need to formulate the concept of a standard space or type of space in a

precise manner and then to define the concept of building a space from such pieces or

“bricks.”

The bricks are called simplezes; a simplex is a generalization of an interval
(1-simplex), a triangle (2-simplex) or a tetrahedron (3-simplex). Here we are only con-
cerned with subsets of a Euclidean space R™; the points of R™ can be determined by
real m-dimensional position vectors with respect to some chosen Cartesian coordinate
system in R™ (we shall use the same notation for a point of R™ and for the vector
associated with it). Thus, if a, b are points of R™ and «, 3 are real numbers, we may

speak of the point @a + Sb. In such a context the symbol O represents the origin.

We then introduce the preliminary notation necessary for the definition of a

p-simplex. A set of (p+1) points of R™ , a® al, ... aP, issaid to be a set of independent

points if the equations

Y onat=0) N=0, (1)
1=0 1=0
together imply Mg = X1 = ... = Ap = 0. This definition clearly describes a property

1

of the points a0, al, ... aPthemselves and is independent of the choice of origin. A point

- 171 -

b is said to be dependent on the set a% al ... aPif there exist Ao, ..., Ap such that

p . 4 i
Z X\;a' = b and E N = 1. (2)
It is then obvious that the set a® al, ... aP b is not independent, so that no point of

an independent set is dependent on the others.

If a% al, ... aPis an independent set and b is dependent on it, the equation (2)

is unique. If a0 al .. aPis a dependent set and b is dependent on it, the equation (2)
1s not unique; moreover, if in this case b admits an equation (2) with all \; > 0, it

admits more than one. First let the set be independent and suppose

b——Z)\a—Zu,awwh Z)\—Zp,—l (3)

=0 1=0 1+—0

Then
P , P
;}(Xi —pi)at =0 ;)(x,- —) =0 (4)

whence, by equation (1), \; = p; for i =1, ..., p, and the expression (2) is unique.

Conversely, suppose that the set is not independent. Then there exists numbers
V,;, i =1,..,p, not all zero, such that 3-F_, v;at = 0, > _ovi=0. Thenif b —

o \;a' we also have
t 0

»
Z)\+V,a.—Oand Z)\—*—Vt) 1, (5)
1==0 1==0

so that the expression for b is not unique.

The set of points dependent on a°, al, ... aPform a Euclidean subspace of R™

If the set is independent the subspace is of dimension p. We can, therefore, at-

tach to each point of the subspace a unique set of coordinates; namely, we attach

to b the coordinates (X, M\, ..., \p), where expression (APNb) holds. The coordinates

(Mo, M1, ..., Ap) are called the barycentric coordinates of b with respect to the inde-
1

pendent set a0 al, ... aP. The name “barycentric” is derived from the fact that b is

the center of mass of masses)\; placed at the points a*, i =0, ..., p.

- 172 -

The rectilinear p-simplex, sP, with vertices a0 al ... aP is the set of points
dependent on a® al, .. aP whose barycentric coordinates satisfy Ay > 0,7 =0, ..., p.
The simplex sP with vertices a%,al, ... aP may be written (a%,al, ... aP); sP is said to
be spanned by its vertices. It is clear that sP is an open subset in the subspace of
R™ consisting of points dependent on a® al ... aP. For brevity we may call the latter
space the subspace determined by a® al,... a? and so we write R(a% al, . aP).

The closure of sP, s, is a closed rectilinear p-simplex and consisting of points of
R(a% al, .. aP) whose barycentric coordinates satisfy \; > 0,7 =0, .., 0. The frontier
of sP is written sP and is defined as sP-sP. Then =P consists of those points of sP for
which A\; = 0 for some ¢, 0 < 7 < p. The simplex sP is said to have dimension p; this
agrees with its dimension as a Euclidean space. A p-simplex is a simplex of dimension

p.

For clearly every point of sP, except the vertices, is the midpoint of a segment
lying in sP; this provides a characterization of the vertices. If s”:(ao, al .. a?), any

1

subset of a® al .. af is also independent and a simplex spanned by a subset of the

vertices is called a face of sP. In particular, sP is a face of itself; the other faces are
called proper faces of sP and have dimension less than p. We write s < sP if Sq is a

face of sP.

Each point of sP belongs to precisely one proper face f sP. Conversely, the
points of all proper faces of sPare all points of s?. Then Zf \;a' = 0 is a point of sPif

and only if some)\; is zero.

2 Simplicial complexes

In this section we describe how simplexes may be fitted together to form more
interesting configurations. In this way we shall be able to bring combinatorial methods
to bear on spaces of widely differing topological types. The configurations discussed
are called finite geometric simplicial complezes, abbreviated where there can be no

ambiguity to geometric complez or just complex.

- 173 -

A finite geometric simplicial complex in R™ space is a finite collection, K, of

simplexes {sf} of R™ , subject to the conditions

K1:If s» € K and s7 < sP, then s7 € K.
K2 :Distinct simplexes of K are disjoint.

The dimension of K is the maximum of the dimension of its simplexes. Condition K1
ensures that a geometric complex is a union of closed rectilinear simplexes. Condition

K2 ensures that they fit together in a satisfactory way.

3 Polyhedra

The underlying space of a complex K, that is, the set of points of R™ belonging
to some simplex of K, with the topology induced by that in R™ , is called the polyhedron
of K and written |K|. The complex K is said to be a dissection or triangulization of
the polyhedron |K|. |K|. is more than just a topological space; it inherits from R™ a
metric and an affine structure in each simplex. Clearly, different complexes may have

the same polyhedron. If is a point of |K|, then, by K2, it belongs to just one simplex

of K which is called the carrier of z.

If K is a complex, a subcollection K, of its simplexes is called a subcomplez of
K if it is a complex. If K, is a subcomplex of K, |Ko| is called a subpolyhedron of |K|.
In an obvious sense we may say that K, is a subcomplex if it is closed, that is, if it is
a union of closed simplexes of K. An important example of a subcomplex is the set of

all faces of some simplex sPof K; then |K,| ==sP. We may also take all proper faces of

sP; then |Ko| =sP.

Let K™ be the set of simplexes of K of dimension < n; then K™ is a subcomplex
of K, called the n-section of K. A complex is a collection of simplexes so that unions
and intersections of complexes are again collections of simplexes. The intersection
of two complexes in R™ is certainly a complex, but its polyhedron may not be the
intersection of the underlying polyhedra. However, if K and L are complexes in R™

and if (K] N |L] = |M|, where M is the subcomplex of K and of L, then K U L is a

complex.

- 174 -

4 Regular subdivision

A vertex set of a complex K is the set of points of R™ that are vertices of
simplexes of K. The set of subsets of the vertex set which span simplexes of K is the
vertex scheme of the complex K. We emphasize that K is known when we know its
vertex set and its vertex scheme. This point of view is useful since a complex is often

presented as a vertex scheme.

If K is a geometric complex in R™ | then |K| admits the rectilinear dissection
K. We now describe a process whereby, for complexes K, further rectilinear dissections
K’, K=, ... of |[K| may be found which chop up |K| up more and more finely. Let V be
the vertex scheme of K. We shall define a vertex scheme V’ which is the vertex scheme
of a complex K’ such that |K| = |K’|. The complex K’ is called the first derived of K
and is said to be obtained from K by regular subdivision. Once the vertex scheme V'’

is defined, readers will have no difficulty in accepting the truth of this statement.

We now define V. To each simplex (a’, ..., aiP) of K we define a vertex bterir
of V' by
1
p+1 Ei:o aik

Thus bte:% is the barycentre, or center of gravity, of equal masses placed at vertices

bio,.‘.,ip J—

afo . a'. Clearly bl is symmetric in its superscripts. We next describe the
selected subsets of the vertices which are to belong to V’; namely, a subset of the b’s
is selected if and only if its elements may be so ordered that the set of superscripts
for each vertex is contained in the set of superscripts for the preceding vertex. For
instance, if bL9347 b43 b394 are vertices of V', they form a selected subset since
they may be ordered as b1:9347 p3.9:4 43 Op the other hand, b1347 pt.3 13,9.4

1s not selected.

5 The cone construction

Let V' be a vertex scheme in R™ and a a point of R™ which is not a vertex

of V. We define aV to be the vertex scheme whose vertices are those of V with a

- 175 -

adjoined and whose subsets are (i) the selected subsets of V, (ii) a itself and (iii) all
subsets consisting of the union of a with a selected subset of V. We call aV the cone on
V with vertex a. If V is the vertex scheme of a complex L and aV is the vertex scheme
of a complex K, we call K the m-cone on L with vertex a and write K = al, where m
is the dimension of K. Thus, for example, if |L| € R™ ! and R™ 1 is embedded in
R™ and if a € R™—R™ !, the al is a complex and |aL| is the cone on the base |L|
with vertex a. Therefore, we can build a cone on the base of a (p—1)-simplex to form

1

a p-simplex. Let a% al, ... aPbe an independent set in R™ and let sP—(a® al, .. aP),

sP~1=(al, ..., aP), then sP=a®sP 1,

