A Hierarchical Timing Simulation Model
for Digital Integrated Circuits and Systems

Thesis by
Tzu-Mu Lin

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

‘California Institute of Technology

Pasadena, California

1985

(Submitted August 2, 1984)

© 1985
Tzu-Mu Lin
All Rights Reserved

ili

Acknowledgments

Special acknowledgment is due to Professor Carver Mead, my adviser, for his guidance,
encouragement and many insights which lead to the result of this research. It has been a

most exciting and rewarding period to work under his guidance.
I also wish to thank the following people on whose earlier work this research is based:
Prof. Paul Penfield, Jr. and Dr. Jorge Rubinstein: RC delay model,
Prof. Randy Bry;\nt: switch-level simulation model, and
Prof. Marina Chen: universal hierarchical simulation.

I am grateful to Chao-Lin Chiang for his helpful discussions and experiments on RC
delay model and circuit simulation, to John Wawrzynek for his aide and collaboration, to
Wen-Chi Chen for his friendship and constant encouragement, and to Ward Cunningham
for his support in the implementation of the HITSIM simulator.

I am most indebted to my parents, my wife and her parents for their love, understand-

ing and encouragement,

This work is sponsored by the System Development Foundation.

iv

Abstract

A hierarchical timing simulation model for digital MOS circuits and systems is pre-
sented. This model supports the structured design methodology, and can be applied to
both “structure” and *behavior” representations of designs in a uniform manner. A sim-
ulator based on this model can run several orders of magnitude faster than any other

simulators that offer the same amount of information.

At the structure (transistor) level, the transient behavior of a digital MOS circuit is
approximated by that of an RC network for estimating delays. The Penfield-Rubinstein
RC tree model is extended to include the effects of parallel paths and initial charge dis-
tributions. As far as delay is concerned, a two-port RC network is characterized by three
parameters: R: series resistance, C: loading capacitance and D: internal delay. These
parameters can be determined hierarchically as networks are composed in various ways.
The composition rules are derived directly from the Kirchoff's current and voltage laws,

so that the consistency with physics is established.

The (R, C, D) characterization of two-port RC networks is then generalized to describe
the behavior of semantic cells at any level of representation. A semantic cell is a functional
block which can be abstracted by its steady-state béhavior to interface with other cells in
the system. As semantic cells are composed, the parameters of the composite cell can be
determined from those of the the component cells either analytically or by simulation. A

Smalltalk implementation of the hierarchical timing simulation model is also presented.

v

Table of Contents

Acknowledgments

Abstract

Chapter 1. Introductionivvs S O S P P 1
1.1. Structured Design Methodology and Hierarchical Simulation 1
1.2. A Hierarchical Timing Simulation Model it 2
1.3. Organization of the Thesis ...iivv.es bk e n ke 5
Chapter 2. Composition of Delay in RC Networkscvviiioiiiiniinininriniennn., 8
2.1. Transistor<level Timing Model ... civiiiiiiviiiiiiinsinecsnnns 9
2.2. Definitionof Delay «.oivviniiiirivimnvonrsniens R 12
2.3. Composition of Delay Parameters of Two-port RC Networks 15
2.4. The TREE Algorithm ~ Delay Calculation in RC Tree Networks 25
2.5, SUMMMABIY o venvcreseveveacatonnsoososiiannsesssvasessnssosnansss 27
2.6. Appendix: Proofs of Theoremsovveversesnrisnnny ereseeen 28
Chapter 3. Delay Calculation in General RC Networksccooviiniiniiiiiniien 36
3.1. Distributive View of Delay Calculationcoviiiviiiiininnn 36
3.2. Tree Decomposition and Load Distribution. ...coviiiiinivacass. 39
3.3. The LRD Algorithm ..civcvvvviiennines N S 42
3.4. Examples of Delay Calculationcoivvieiriiririisinnineenn. 47
3.5. SUMMATY .viviinmiivnimsmsmmronconnsas S 54
3.6. Appendix: Correctness of the LRD Algorithmvivneninnn, 55
3.7. Appendix: Proofs of Theoremsc..ovvvvnvviiiiiiiiiinin, 59
Chapter 4. Timing Simulation of Transistor Networks ..c.ocvvvviniiiieiiiniicnnns. 66
4.1. Dominant Path Decompositioncciivcierscvosnnnesnss vaned by 66
4.2. Simulation Algorithmsv.ccieieiciieviiininireinenioncnnnnses 13

vi

4.3, Simulation Results ... iiiiivernrsrmsiennrersvase e crrans . 78

4.4, SUmMmAary s..cccenivienes R I S Civsemase. B8
Chapter 5. Hierarchical Timing Simulationc.vivviviiiiaii R - *]

5.1. Semantic Cells in Two-phase Synchronous Systems cvesesass 50

5.2. Composition of Semantic Cells feEe e e R S RPN |

5.3. Example: nMOS Static PLA ,..vvniiviininsn. e e mae e nh s 99

5.4. Effect of Multiple Inputs .oivviiiiiirnrrvrinriveinrerinsenennes 102

5.5. Example: UPE, a Pipelined Multiplier and Interpolator 109

5.6. Summary CmerereeiNE Rty IR Cra WA EEE e e esnd 117
Chapter 6. Implementation of a Hierarchical Timing Simulatorc.cvevn... 119

6.1. Specification of a Leaf Cell e e nriin e oo 120

6.2. Specification of a Composition Cell Cemerves cevissveneees 127

6.3. Static Structure of a Cell for Simulationovvinnviiviinnn, 130

6.4. SimulationofaCellc...... wreveneaiiaisiasisinanansacnsse 138

6.5. Data Abstraction B P e ae A ey 144

6.6. Summary T o RN 146

6.7. Appendix: Logic and Timing of UPE vcouus RN 147
Chapter 7. Conclusions P AN G emrsrseeenres Cevreares veeeen 151

7.1. An Integrated Design Systemc.ivivienennnnnns verveerann 151

7.2. Suggestions for Future Researchicvivieirnvinnnnninns 154

Referencesvss

vii

List of Figures

Figure 2.1. Curves illustrating the Elmore’s delaycoicviiiiiininnn, 12
Figure 2.2. The five cases of a two-port RC networkc.ovevivnies Cerabasines 17
Figure 2.3. Approximation of a distributed RC line by lumped elements 25
Figure 2.4. Delay calculation of a node in an RC networkcoooviennniiicn, 33
Figure 3.1. Two examples illustrating T3's and C(; 1)’ vovvvvvnnsnerineiiiicin. 38
Figure 3.2. lllustration of the idea behind procedure SCANc..iiiiiiiiiiia. 45
Figure 3.3. Two situations in which condition 1 of (3.9) is not satisfied 46
Figure 3.4. An nMOS circuit to illustrate algorithms TREE and LRD vee 4T
Figure 3.4. (continued) An nMOS circuit to illustrate algorithms TREE and LRD . 50
Figure 3.5. Example for which the Jacobi method divergesccciiiiien. 53
Figure 3.6. Terminology defined for a tree networkcoviiiviniiinnana.. 56
Figure 3.7. Classification of nodes in a tree network (wrt. node A} 56
Figure 4.1. Illustration of the DP (dominant path} decomposition scheme oo, 68
Figure 4.2. The DP decomposition for Example 3.9 ..ccvvvinnnenriiinneann. PP 69
Figure 4.3. Effect of capacitance ratios on the accuracy of the DP scheme 71
Figure 4.4. Network configuration before and after transistor M is turned on 74
Figure 4.5. A chain of transistors in an RC tree networkcoiiiiiiiaianan, 76
Figure 4.6. Calibration of effective resistances by SPICEc.coiiiiiiiniin 80
Figure 4.7. SDS and SPICE simulations of an nMOS XOR gate00 . 81
Figure 4.8. SDS and SPICE simulation of an nMOS carry chain ccco.0 ceen 82
Figure 4.9. SDS and SPICE simulation of an nMOS PLAoviiiianl . 83
Figure 4.10. SDS and SPICE simulation of an nMOS one-bit adder 84
Figure 4.11. SDS and SPICE simulation of an nMOS four-bit adder 85
Figure 5.1. Clocked-cell: building block for synchronous systems0. 91
Figure 5.2. Effective ¢, and ¢4 clock periods ...coivivivriiiiiiiiiiiiiiinnnnn ver 92
Figure 5.3. Cells and interconnections .ociearremseveveiiisituminissnersusnrossene . 96
Figure 5.4, Structure of a static nMOS PLA Ce R essnaresaessnn vamessenas 100
Figure 5.4. (continued) Structure of a static nMOS PLAc.ooiiiniiiiiinnnnn, 101
Figure 5.5. Series connection of transistors ..civveeniens fevaieakravensnaarnasenins 103
Figure 5.8. Series connection of transistors across cell boundary virinasnaa 108
Figure 5.7. Cell interconnections with pass transistors in the input ports 107

Figure 5.8,

Parallel connection of transistors vevvecincsencnnes imegesaea . 108

viii

Figure 5.9. Block diagram of one stage of UPE iviiiiivninnrnraincenn, SO 110
Figure 5.10. The circuit diagram of cell MUX ...iiiiiveiiineirnieiiiaiinrnnnnnn.. 111
Figure 5.11. The circuit diagram of cell ADD e sheaeerneeeenens 114
Figure 6.1. Using Smalltalk System Browser for specifying a leafcell 126
Figure 6.2. Using Smalltalk Inspector to investigate a cell hierarchy:... 131
Figure 6.3. Net (Phi2) spans over two levels of composition cells c.ovvnun.... 133
Figure 6.4. Net delay with pass transistors in an input network 137
Figure 6.5. Simulation display of cell MUXcooiiiiiiiiiiiiiiiii . 142
Figure 6.6. Simulation display of a 4-stage UPE (bit-level)coovvvvviianin.n.. 144
Figure 6.7. Simulation display of the UPE at theword levelc.oiiivviin. 146

Figure 7.1. An integrated design systeIll ...iciuiieninniniisoiioreasesssmrnnearnen 152

Table 3.1.
Table 3.2.
Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.
Table 5.5.
Table 5.6.
Table 6.1.
Table 6.2.

ix

List of Tables

Values of C’s and T’s at the end of some relaxation steps 51
Values of C's and T's at the end of some relaxation steps evwixsisas D3
Error Percentage of the delays calculated by the DP scheme 69
T* and E, for different ratios of ry,73,and 7 coovvvnririniiinnrinannas. 72
Comparisons of analysis time between SPICE and SDS coiviiiin 79
Delay estimation of the output nodes of Figure 4.8.accivine 86
Timing parameters of an inverting bufferooiciiiviiiiaiai, 100
Timing parameters of an r-input NOR gateccoiiiaiiarnannnnnn 101
Timing parameters and critical paths (unit: ns} ..ovoovieiiiiininnn. 105
Logic and timing of cell MAT iy iranEerans et nasanai v 115
Logic and timing of cell XOR ..cooviiiiiiiiiiiiinininnnn, e s eens 115
Logic and timing of cell XKOR ...civiiviiiiniimivirrniniacinnnneoonnss 115
Delay calculation of net (Phi2Z)cciimveiiiiiiiiiiiiiiiiiininiarann, 134
Net-dependent instance variables of one UPE SEAEE .ieverserenneas e 150

Chapter 1

Introduction

1.1 Structured Design Methodology and Hierarchical Simulation

It is by now common knowledge that the evolution of VLSI fabrication technology fol-
lows Moore’s law — the complexity of commercially available chips doubles every year {34].
With the state-of-art technology, it is possible to integrate hundreds of thousands of tran-
sistors in one chip that is functionally as capable as an entire computing system [35]. Many
algorithms that are traditionally only implementable by software pi‘ograms are now built
directly on silicon wafers with much faster execution speed [25]. The explosive advances

in VLSI technology have generated opportunities for revolutionary system designs.

In order to exploit these opportunities successfully, there must be correspondingly
aggressive advances in the supporting technologies and sciences. One guestion that must
be addressed is how to manage the increasing complexity of VLSI systems. Under the well-
known structured design methodology [30,32], a design is partitioned into several levels of
hierarchy, typically from the architecture level, block level, logic level to circuit level. This
partitioning helps designers focus on one particular level of design at any given time, so

that the complexity of a large design may be managed effectively:

A hierarchical design is best supported by a hierarchical simulator for determining its
functionality and performance. The difficulty of a hierarchical simulator, however, is that
. consistency between different levels of representation cannot be easily ensured. As pointed
out in [32], to ensure this consistency requires a good deal of discipline — in particular, |
a well-defined and consistent timing convention, and well-defined data types. If these

disciplines are followed, then a system can be partitioned successively into hierarchical

levels of semantic cells !. A semantic cell at any level of representation can be abstracted
by its steady-state behavior to interface with other semantic cells. Furthermore, any legal
interconnection of several semantic cells is itself a semantic cell, and the behavior of the
composite cell can be derived from the behaviors of the component cells in a consistent
manner. Based upon the fixed-point algorithm [42] to abstract the behavior of a cell from
its implementation, Chen developed a Universal Hierarchical Simulator (UHS) that can
be applied to designs from transistor circuit-level to high-level communicating sequential
processes [8]. The hierarchical nature of the UHS allows the implementation details to be
hidden, and therefore vields a clear conceptualization'of the design and a very efficient

simulation.

1.2 A Hierarchical Timing Simulation Model

The main ¢oncern of the UHS is the functional behavior of a design, not the delay
in physical time units. Time delay information is very important to designers because
a chip is not correct if it does not run at the desired speed: On the other hand, most
simulators that offer time delay information [7,36] tend to carry too much analog detail;
no simple abstraction or composition rules have been derived from these simulators to
allow hierarchical treatment of a complicated design. As the complexity of VLSI systems
increases, the demand becomes more and more urgent for a UHS style simulation model

with the capability of generating physical timing relations.

This thesis presents such a timing simulation model. MOS (Metal-Semiconductor-
Oxide) is selected as the target technology because of its increasing importance in fabri-
cating digital systems. The general principle, however, is applicable to other technologies,

as well. The timing model reported here is distinguished from other timing or circuit

1 As opposed to syntactic cells, which are only used for ease of specification, and do

not provide any abstraction. The results are due to Chen [8,9].

simulation models by one or more of the following features: -

1. High-level Primitives: Traditional circuit or timing simulators use very low-level
primitives, such as node voltages and branch currents in modelling the circuit behavior.
The advantage is that these primitives are general enough that, potentially, any design
implemented in any technology can be dealt with. However, the computation involved
in solving the circuit equations (usually in the form of nonlinear algebraic-differential
equations) is so intensive that, practically, these simulators can be applied only to
designs of very small size. By concentrating on digital MOS circuits, higher-level
primitives are derived and used as the basis of our timing simulation model. “Delay”
(D) is the main primitive used. To allow the characterization of a cell independent of
its comiposition environment, two more primitives are also included: driving resistance
(R) and loading capacitance (C). In terms of these primitives, the circuit behavior is
expressed in the form of linear algebraic equations, which can be solved much more
efficiently?. Moreover, once the solution is obtained, the circuit behavior is solved
for a time interval (length determined by the time constant natural to the circuit),
rather than a single instant of time. The R, C and D primitives of our timing model
satisfy the following two requirements, which are considered crucial to the successful

development of a simulation model.

o theoretical soundness: The primitives are precisely defined. The equations
that govern the behavior of these primitives are derived analytically from the
fundamental laws that govern the low-level primitives, i.e., the Ohm’s law and

the Kirchoff’s current law (Chapter 2 and 3).

e practical applicability: The circuit dynamics is expressible in terms of these

? The R, C and D primitives only model the integral behavior of MOS circuits, without
considering the detailed waveforms. The essential information of digital systems such as

the timing of signal transitions and glitches are all covered by these primitives.

primitives so that simulation algorithms can be derived. The simulation algo-
rithms presented in this thesis are capable of estimating the circuit behavior
(both logic and timing) with reasonable accuracy. On the other hand, its compu-
tational complexity is low enough for it to be applied to very complicated VLSI
designs {Chapter 4).
2. Uniformity and Hierarchy: Our timing model supports both “structure” and
“hehavior” representations of VLSI designs in a uniform manner. The importance of
including this capability has been pointed out by a number of researchers [32,47]. In
this thesis, the terms “structure” and “behavior” are used to mean the following two

types of representations of a cell:

e structure representation: the cell is expressed as a net list of transistors and

wires,

o behavior representation: the cell is represented by its behavior description,
usually in an executable form, without specifying its structure or implementa-

tion. Note that behavior representations are associated only v‘vith semantic cells
(Chapter 5).

In supporting structure representations, the transient behavior of a transistor network

is characterized by a set of R, C, D parameters. The values of these parameters can be

determined algorithmically as transistors and wires are composed in various ways. The

composition algorithms are derived directly from the Kirchoff’s voltage and current

laws, and thus the consistency of our timing model with physics is established.

Without digging into the detailed implementation, the behavior representation of a cell
is used for interfacing with other cells. When several cells are connected together, the
behavior of the composite cell can be derived from the behaviors of the c;omponent
cells based on our timing model. By decomposing a system successively and then

recomposing the behavior, the complexity of a complicated design can be managed

effectively.

To extend the (R, C, D) characterization of transistor networks to behavior-level rep-
resentations, the three primitives are expressed as functions rather than as single
values. However, the physical meaning of these primitives remain the same. Note
that interconnection of cells is established simply by wires, so that the composition
algorithms for transistor networks can be applied directly to behavior-level representa-
tions. Based on our timing model, the behavior representation of a cell can be derived
from its structure counterpart. The level of accuracy guaranteed by these two types

of representations is the same (Chapter 5 and 6).

3. Semantic Composition with Syntactic Checking: To guarantee the con-
sistency between the structure and behavior representations, some disciplines must
be followed in the partitioning of a system. These disciplines As an example, 2 set
of rules are given in Chapter 5 for partitioning an arbitrary synchronous system so
that every partitioned cell is a semantic cell. Under our timing model, the behavior
representation of a semantic cell is valid for any legal composition of the cell. To
check whether a composition is legal or not, only local and syntactic procedures are

required.

1.3 Organization of the Thesis

Three pieces of work are done to establish our hierarchical timing model:
1. a transistor-level (bottom-level, structure-level) model that serves as the basis,

2. a general technique to abstract the behavior and timing of a cell from its structure,

and

3. a general composition rule for deriving the behavior and timing of a high-level cell

from those of the lower-level compoﬂent cells.

Chapter 2 presents the transistor-level timing model. The transient behavior of an
MOS circuit is approximated by that of an RC network for estimating delays, Three
parameters R, C and D are used to represent the delay characteristics of a two-port
RC network. As two-port RC networks are composed in various ways, these parameters
can be determined in a hierarchical manner. This model extends the RC tree model
of Penfield-Rubinstein [38,40], and is capable of handling any general RC network with

parallel connections and initial charge distributions.

Chapter 3 introduces the concept of tree decomposition and load redistribution. Based
on this concept, a relaxation algorithm for calculating delays in any general RC network
is presented. This algorithm uses local information only during the relaxation process, the

convergence of which is guaranteed.

Chapter 4 applies the delay calculation algorithms to timing simulation of digital MOS
circuits at the transistor level. A prototype simulator, calleci SDS (Signal Delay Simulator),
has been developed. For all the examples (transistor counts ranging from 10 to 100) tested
so far, this simulator runs two to three orders of magnitude faster than SPICE [36], and
detects all transitions and glitches at approximately the correct time. This ratio grows

drastically as the size of circuits increases.

Chapter 5 generalizes the (R, C, D) characterization of two-port RC networks to se-
mantic cells at any level of representation. The behavior of a semantic cell is characterized
by a set of R, C, D parameters, the number of which is proportional to the number of con-
nection ports of the cell. As semantic cells are composed, the parameters of the composite
cell can be derived from those of the component cells either analytically or by simulation.
As an example, the behaviors of a static nMOS PLA and a bit-serial multiplier are derived
analytically from the behaviors of their subcomponents. The size of these subcomponents

is small, and their behaviors can be easily obtained from their structures.

Chapter 6 discusses a Smalltalk [18,19] implementation of our behavior-level timing

simulator (called HITSIM for Hierarchical Timing Simulator). The object oriented pro-
gramming model of Smalltalk matches with our semantic cell-oriented simulation model.
The environment in which users set up and modify the simulation for their designs, inves-
tigate the simulation results, etc., can be naturally done using the hierarchical “inspector”
of Smalltalk. The internal nodes and substructures of a design can be accessed in the same
hierarchical order that the design is specified. All dialogues are by way of the graphical

interfaces provided by the Smalltalk system.

Chapter 7 concludes this thesis by presenting an integrated design system that sup-

ports the structured design methodology. Areas for further investigation are also discussed.

Chapter 2

Composition of Delay in RC Networks

Modelling digital MOS circuits by RC networks has become a well accepted practice
for estimating delays [31,38]. In 1981, Penfield and Rubinstein (P-R) proposed a method
to bound the waveforms of nodes in an RC tree network [38,40]. Two approximations are
made in the P-R method: 1) modelling the input of transistors by step waveforms, and
2) modelling conducting transistors by linear resistors. Later, Horowitz (H) extended this
method to include both effects of slow inputs and nonlinearity of MOS transistors [20,21].
The P-R-H approach is conceptually simple and computationally efficient, and has been
incorporated into many timing-analysis programs [23,45].

One deficiency of the work of P-R-H is that only RC tree networks are dealt with,
not general RC meshes. Furthermore, the effect of initial charge is only considered for
a special case, that an RC tree without any initial charge is driven through another RC
tree that is fully charged initially [21]. No generalization is made to deal with networks
with arbitrary initial charge distributions. In this chapter and the following, general RC
networks with parallel (and bridge) connections and arbitrary initial charge distributions
are considered. The two assumptions made by P-R are also assumed during the discussion.

The main results of these two chapters have been published in {27,28].

In section 2.1, a timing model for MOS transistor networks is presented. The transient
behavior of a transistor network is aéproximated by that of an RC network for estimating
delays. The definition of delay is based upon the Elmore’s delay [15], modified to correctly
treat non-monotonic responses (section 2.2), This value of delay is shown always to fall
within the P-R bounds for RC tree networks. In section 2.3, transmission matrices are used

to express the transfer behavior of two-port RC networks. As far as delay is concerned,

a two-port RC network is characterized by three parameters: R: series resistance, C:
effective capacitance, and D): internal delay. These three parameters can be calculated
hierarchically as the corresponding two-port RC networks are composed in various ways.
The composition rules agree with those described in [38], except that stored charge is
properly taken into consideration. We also add composition rules for parallel connections.
An algorithm for calculating delays of all nodes in an arbitrary RC tree network is presented

in section 2.4. General RC networks are dealt with in the next chapter.

2.1 Transistor-level Timing Model

The timing model for MOS transistor networks is based upon the switch model pro-
posed by Bryant [4,5]. In this model, a network is represented by a set of transistors
T.= {ti,t2,.-.2tm}, and a set of nodes O = {ny,n2,...,nn}. With each node are asso-
ciated a capacitance and one of three different states corresponding to the nodé voltage:
1 (high voltage), O (low voltage) or X (in transition). The other end of the node ca-
pacitor is always connected to the ground, and no floating capacitors are allowed in the
network. With each transistor is associated an ON-resistance (or two different values of
ON-resistances: one is used in cése of pull up and the other is used in case of pull down
[20,46]). A transistor may be either ON or OFF depending on the state of the node con-
trolling its gate. A transistor is treated as a resistance equal to its ON-resistance if it
is on or to oo if it is off. Instead of the order of magnitude (or logic) conductances and
capacitances used in Bryant’s switch model, precise values of the resistances and capac-
itances are kept for determining logic levels as well as for estimating delays. Although
the capacitance of a node and the resistance of a transistor are voltage-dependent, they
are treated as constants here. This approximation is considered adequate for our purpose,
since only the delay values are of interest, not the detailed .wa.veforms. The evolution of an

MOS circuit is approximated by a sequence of RC networks. Various node capacitors are

10

charged to VDD and discharged to GND through the network. This charging-discharging
process may change the state of a node which in turn changes the topology of the RC net-
work. Under the unit delay model which is employed by Bryant and others, all such nodes
change state at the same time. In our model, different nodes are charged or discharged
at different rates which depend on the topology and the initial charge distribution of the
RC network. When the gate node of at least one transistor changes state, a new network
results. A partially charged or discharged node which connects to the gate of a transistor
does not change the state of that transistor. However, the charge stored in the nodes will
be taken into account when the nodes are again charged or discharged through the new

network. The whole process continues until the topology of the network no longer changes.

With the approximation introduced above, the problem of estimating the delay of an
MOS circuit reduces to that of an RC network. In this thesis, the term “RC network” refers
only to those networks that are approximations of an MOS circuit, i.e., resistor networks
where there is a capacitor between every node and GND. Note that the approximating
RC networks of different transistor groups! of an MOS circuit are disconnected, and their
delays can be evaluated independently. In our model, an RC network is always driven
by one and only one source (VDD or GND) which is referred to as the source of the RC

network. The other two possibilities presented below are not considered.

1. Neither VDD nor GND is driving the RC network: this undriven situation may cause

static charge sharing among nodes [4].

2. Both VDD and GND are driving the RC network: In most practical situations, one
source is dominant over the other with respect to a node; otherwise, a conflict condition

occurs and the logic state of the node is unpredictable. Although the presence of the

! Two nodes are in the same transistor group if and only if they are laterally connected
through transistors. As the size of MOS circuits increases, that of a transistor group

remains almost constant,

11

other source may affect the delay of the response to the dominant one, the effect
is usually small, as various experiments indicate. In our model, this RC network is
approximated by two independent RC networks, one driven by VDD and the other
by GND (detailed in Chapter 4).

A more constructive definition of RC networks is given in section 2.3.

To measure the delay of a node in an RC network, it suffices to consider the normalized
case where the node voltage starts from some initial value between 0 and 1, and is driven
towards the final value 1. The results obtained in this normalized case are easily adapted to
both charging and discharging processes, and to any values of supply voltages. Normalized
variables are used throughout the context; that is, V is dimensionless and therefore Q is

of the same dimension as C.

The delay values estimated under an RC-based model like ours are relative rather
than absolute. In some sense, the values obtained are normalized with respect to the
threshold voltage of a certain transistor type. The effect of different threshold voltages
of different transistor types are reflected by adjusting the values of their ON-resistances.
As introduced in [31], the delay time r of an inverter (the simplest transistor group) is
linearly related to the RC time constant, where R is the ON-resistance of the driving
transistor, and C is the load capacitance of the output node. The nonlinear part of the
circuit behavior can be absorbed in the coefficient, which can be determined from more
detailed circuit analysis or simulation [36]. The delay time is also additive in that the delay
of a chain of such inverters can be obtained by summing up the delays of the individual
ones. The motivation behind our work is to extend this linear and additive property to
more general transistor networks. The resistances of wires, contacts, etc., can be treated
in the same manner as transistor ON-resistances. The lumped approximation of these
distributed elements are investigated by Chiang [12]. Simulation results based upon this

model and their comparison with SPICE outputs are given in section 4.3.

12

greg = |

t
|
{
l
i
I
!

¥
]
i
- !
&
j o]
MTD i P"‘To]

Figure 2.1. Curves illustrating the Elmore’s delay

2.2 Definition of Delay

Prior to the actual analysis, it is necessary to have a consistent and unambiguous
definition of delay. There are a number of such definitions in practical use, for instance,
the time required for a response to reach the threshold voltage of an MOS traﬁsistor.
Although this kind of definition is useful for certain simulators whose delay calculations
are based upon empirical data, it is extremely awkward for theoretical investigation. On

the other hand, the Elmore’s delay [15] is very efficient in this respect, and it is defined as
[~
T3 = / ty' (t) de. (2.1)
0

where y’ () is the derivative of the transient response y(t) of some node of a network.
The superscript © indicates zero initial charge, which condition is always assumed by
Elmore (also by P-R). This definition of delay is based upon the observation that, if y(¢)
is monotonic in time, TJ is the centroid of y'(t), and is very close to what is commonly
conceived as “delay” (Figure 2.1). The great usefulness of the Elmore’s delay lies in its close

connection to the Laplace transform £ of the response. In an RC network, g(s) = L{y(t))

lL+ays+e38% +---+ams™ Note that
$(1 46y +bgs? + -+ bps™)’

can always be expressed in the form g(s) =

13

59(8)|s—0 = y(t)]t—o = 1, because there is no floating capacitor in the network, If there

is no initial charge stored in the network, then Tg = by — ay [15].

Although g(s) is in general a very complicated expression, T = b; — a, is very easy
to obtain analytically. Penfield and Rubinstein have shown that a general expression of
T B exists for any node in an RC tree network, and the expression can be determined in
a hierarchical manner [38]. In this chapter, the result is extended to more general RC
networks with parallel connections and nonzero initial charge. To do this, a modification
of the Elmore’s delay is necessary because the original formulation {2.1) makes sense only
when y(t) is monotonic. In an RC tree network without any,inital charge, the step response
of any node is guaranteed to be monotonic [40]; however, monotonicity is not true in

general. To deal with general RC networks, the term delay is redefined as

Tp = /o P - (). (2.1')

This expression is just the area above the response y(t}, but below 1, as indicated in
Figure 2.1. In the case of zero initial charge, Tp is equal to Tg. In [40], this result was

proved for the case of RC trees, For general networks, the result is proved as follows:

-0 = [h-se) e

=TD—S‘AW{1—y(t)}tdt+...

sothat Tp = Iim,_.o(-z ~-g(s)) = by —ay = TJ. i

From the above discussion, T is consistent with and more general than TJ. To justify
the usage of Tp, consider the.case of RC tree networks with no initial charge. Referring
to Figure 2.1, Tp = Tg deviates from the standard visualization of delay only when the

response curve is highly asymmetric. Fortunately this deviation does not occur in an RC

14

network in the following sense, Suppose that the response curve of a node is approximated
by a single exponential function with time constant Tp; then the delay time ¢4 for the
response to reach a threshold voltage v is Tp In(125). The value ¢4 of any node in the
network always lies within the upper and lower bounds given by Penfield and Rubinstein
[38] for any voltage level v, as the following theorem indicates. These bounds are far tighter

than other approximations in the simulation procedure.

Theorem 2.1. Consider a node in an RC tree network with no initial charge. Let

t1,t2,t3,t4 be the four bounds of time defined in [38], i.e.

ti(v) =Tp - Tp(l - v)

L Tp

ta(v) = Tgln To(i—v)
T

ta(v) = 1 _}:)v - Tr

ta(v)=Tp~Tr+Tpin -f,—;(%e:—v—)

where Tp = T3 is the Elmore’s delay. Ty and Tp are defined in {38}, which satisfy

Tr < Tp < Tp for any node in an RC tree network. Let t4(v) = Tpln(;X;). Then

ts > t1,ta > ta,ta < ta for all values of v, and tg < tq forv 21— 2. i
The proof of this theorem is given in section 2.5. Tp in case of nonzero stored charge

is still consistent with the Elmore’s delay T3, as discussed in section 4.2. The usage of Tp

is also very effective in detecting glitches produced by the dynamic charge sharing effect.

To understand more about the definition of delay (2.1), consider the voltage of any
node ¢ in an RC network (let V, denote this voltage). Note that V, can be found by
replacing each capacitor-in the network by its equivalent current source, ¢, = -C,.%,
and then using linear superposition. The voltage drop of node ¢ due to current 7y equals
- R Ck %, where Ry . is the mutual resistance between node ¢ and node k. Summing

over all capacitors in the network gives

15

: dVy
Vo=~ ij Ry, Cr— (2.2)
One assumption made implicitly in the definition of (2.1) is that
o 4% for all nodes k in the network are roughly equal to ¢ (2.3)

Substituting %- by ‘1—;—;‘» in (2:2), V. can be solved exactly, and the solution is 1 ~

exp{™¥/Tp), an exponential function with time constant equal to

Tp =Y RieCh. (2.1")
k

This definition is equivalent to (2.1). Given a threshold voltage v, the delay of V, equals
Tp ln(—l—-};), which is linearly proportional to the Elmore’s delay. In most MOS circuits,
the assumption (2.3) is satisfied. For more accurate results, delay models with two or more
time constants are required at the cost of much more complicated computations [21]. In

this thesis, only single time constant is considered, and the definition of delay (2.1') is

used.
2.3 Composition of Delay Parameters of Two-port RC Networks

A well-known result from circuit theory [14] states that the (voltage-current) transfer

behavior of a two-port linear network can be described by the following equation:

(‘;o(a)) - (T;(s) Tz(")) (Vi(")) + (Ux(s)) (2.4)
o(s) Ta(s) Tals)/ \ Lils) Ua(s)

where the subscripts , and ; indicate the output and input ports, respectively. This
equation can be expressed either in the time domain or in the Laplace domain; however,
it is more convenient to use the Laplace domain, as indicated in section 2.2. The matrices

(T;(s) Tg(s)) and (Ux(s)

Tals) Tuls) Us (5)) are referred to as the T-matrix (transmission matrix) and

16

the U-matrix, respectively. The T-matrix is only a function of the network, while the U-
matrix depends on both the network and the initial conditions. In general, Ti(s);=1,2,34
and Uy{s)i=1,s are very complicated polynomials in s; however, the delay Tp depends only
on the constant and s terms of these polynomials, so higher terms can always be omitted.
As shown in Theorem 2.2, the T-matrix and U-matrix of any two-port RC network are
characterized, up to the s term, by the following five parameters of the network: the series
resistance R, the total capacitance C, the internal delay D due to input, the total stored
charge @, and the internal delay D* due to stored charge. These five parameters can
be determined hierarchically as the corresponding two-port RC networks are composed
in various ways. Among these five parameters, R, C, and D are only functions of the
network, and @ and D" also depend on initial charge. As far as delay is concerned, the
number of parameters reduces to only three, as indicated by Theorem 2.2’ and Theorem
2.5'.- Prior to any further discussion, a more constructive definition of RC networks than
the one described in section 2.1 is given. First, a two-port RC network with its input and

output ports is recursively defined.
A two-port RC network is one of the following:

1. a resistor in series with a capacitor: The common node of the two is the output,
and the other end of the resistor is the input of the network. The other end of the

capacitor is grounded (Figure 2.2.a).

2. a series connection of two two-port RC networks N; and Nj: The input of N; and the
output of Ny merge internally; the input of Ny becomes the input, and the output of

N2 becomes the output of the resulting network (Figure 2.2.b).

3. a paraliel connection of n two-port RC networks Ny .. a: The inputs and outputs
of these networks merge and become the input and output of the resulting network

(Figure 2.2.c).

4. a two-port RC network Ng with a side branch Ny of which the output is open, and

Vv, r Vs
Il CI 12
(a)
Ve Vi
I, N I

Gt

(d)

v, v,
N T

(e)

Figure 2.2. The five cases of a two-port RC network

]

18

the input is connected to the output of N (Figure 2.2.d).

-

5. a two-port RC network with input and output ports interchanged. Although this con-
struction is not necessary in characterizing an RC network, it is very useful in practice
for those networks where the directions of signal flows are dynamically changing (Fig-

ure 2.2.e). (2.5)

Finally, an “RC network” is defined as a two-port RC network with the output port open

and input port connected to the source.
Remarks:

e In terms of two-port RC networks, the two cases not considered in our model (sec-

tion 2,1) are described as follows:

1. no driving source: a two-port RC network with output port open and input port

connected to a capacitor.

2. multiple sources: two two-port RC networks with their output ports connected

together and input ports connected to VDD and GND, respectively.

o This definition of RC networks does not cover all possible network topologies because
bridge connections may exist, which make the configuration neither series nor parallel.
Simple bridge connections may be dealt with easily, and one such example will be given
in section 3.4, As an extension of the A—Y transformation of resistor networks [14], we
conjecture the existence of a transformation from a number of Y-connected networks
to the same number of A-connected networks, and vice versa. This transformation
is in terms of the (R,C, D, Q, D*)-parameters of these networks such that, as far as
delay is concerned, the two sets of networks are equivalent. If this conjecture is true,
then these definitions do cover all possible network topologies. Moreover; a technique
exists that is capable of dealing with general RC networks, and requires only the
information of the first four cases of (2.5). This technique is described in the next

chapter.

19

Consider an arbitrary node as the output, A two-port RC network between the source
and the node can be constructed step by step using the process of (2.5). In Theorem 2.2,
the relationship between the five parameters R, C, D, @, and D* and the transfer equa-
tion (2.4) of a two-port RC network is established for each of the five cases of (2.5). Then
in Theorem 2.5, a formula for determining the delay of a node is derived from the two-port
RC network between the source and the node. Although one such network is enough for
this purpose, a more general result which also inc{udes‘an explicit loading network is pre-
sented. This general result is very useful in the case of a tree network where the driving
and loading networks are well-defined: they are the subtrees above and under the node,
respectively. In such networks, the delay of every node can be obtained simultaneously and

incrementally, as indicated in Theorem 2.9. Proofs of these three theorems are presented

in section 2.6.

Theorem 2.2. Up to the first order, the transfer equation (2.4} of a two-port RC network

is of the following form:

(5) = (174822 5o (H) (25

Symbol = in (2.6) indicates that the two formulae are equal up to the s term. The
parameters ¢ R, C, D, @, and D* for each of the five cases of (2.5) are determined as

follows:

2 The parameters b, h, and f are of no concern in this context because they do not

appear in the formula for T for either simple or composite networks.

20

1. primitive case:

R =
C = ¢
D = re (2.7)
Q = sw
D=0

where r, ¢ and vg are the values of the resistance, the capacitance and the initial voltage
of the capacitor, respectively.

In the following four cases, a subscript is associated with each parameter, indicating
to which network this parameter belongs. In particular, subscript ¢ indicates the resulting

network of each composition (or operation).

2. series connection of Ny and Nj:

o
C)
]

Ry + Ry

Cr = C1+Cy

Dy = Dy + D+ RiCy (2.8)
Q1+ Q2

Dy = Di+D;+ R:Qy

£
e
it

3. parallel connection of Ny, a:

T
i3

Cr = Zc,i
1

" D;
g g) (2.9)

(
Qr = f:Qi
1
St
4. Ng with side branch Np:
Rr = Rg
Cr = Cs+C¢
Dy = Ds+ RsCy, (2.10)
Qr = Qs +0Qs
Dy = Ds
5. input and output ports interchanged:
Ry = R
Cr=20C
Dy = RC-D (2.11)
Gr = Q
Dy = RQ-D*

Corollary 2.3. If there is no initial charge in the two-port RC network, then the pa-

rameters @ and D* are both 0, |

Corollary 2.4. If the nodes of the two-port RC network are all charged to 1 initially,

then the parameters @ and D" are equal to C and RC — D, respectively. |

Theorem 2.5. If a node connecis to the source through a network Ng with parameters
Rsg, Cs, Ds, Q@s,and Dy, and is loaded by another network Ny, with parameters Rg, Cp,

Dy, Qr, and D3, then the delay Tp of this node is (Ds + D — RsQs) + Rs(CL— QL) §

Corollary 2.8. If there is no initial charge in both Ns and Nt of Theorem 2.5, then
Tp = Ds + RsCy. i

Among the five parameters of Theorem 2.2, D* and Q can be expressed in terms of
R, C and D for special initial charge distributions {Corollary 2.3 and Corollary 2.4). In
fact, this reduction of parameters is possible in general, and only three parameters are
necessary to represent any two-port RC network to calculate delays. Suggested by the

result of Theorem 2.5, these three reduced parameters are

e
]

(2.12)

Ql
i
O aQ =
|

o O

ol
i

In case of zero initial charge, R, C, and D reduce to R, C, and D, respectively.” In

terms of these three reduced parameters, Theorem 2.2 and Theorem 2.5 are restated.

Theorem 2.2'. The three parameters R, € and D of a two-port RC network can be

determined as follows:

1. primitive case:

23

ol
i

.
C = ¢(1 - v) (2.7
D= rc(l -~ Uo)

The composition rules of these three parameters are the same as those of R, C aﬁd

D in Theorem 2.2; L.e,,

2. series connection of NV; and Nj:

ol

r = Ry + R,
51* = 61 -+ Eg (28')
ﬁr = :51 + —D—g + Elﬁg

3. parallel connection of Ny a:

- 1
By =
STE
. n
Cr =)T (2.9)
1
A =
Dr = Br (z 2&)
T
4. Ng with side branch N
Rr = Rg
Cr = Cs+C (2.10")
Dr = Ds+RsCy
5. input and output ports interchanged:
Rr = R
Cr=0C (2.11)
Dr = RC~-D

24

Theorem 2.5'. If a node connects to the source through a network Ns with parameters
Rs, Cs, Ds, and is loaded by another network Ny with parameters By, Cr, Dy, then
the delay Tp of this node is Dg + RsCp. |
Corollary 2.7. If there is no explicit loading network N, then Tp = Ds. B |

Corollary 2.8. Consider a two-port RC network with series resistance R, total capaci-
tance C, and total charge Q. Let T, denote the delay of the output port when the input
port is driven and the output port is open, and T; that of the input port when the output
port is driven and the input port is open. Then T}, + T, = R C = R(C - Q). |

Remarks:

e It is quite obvious that B and C alone are not enough to characterize the delay
behavior of a two-port RC network:‘ the capacitance in the network may be distributed
differently, which results in different delays. The amazing thing is that, by adding only
one more parameter D, the delay of the network can be completely characterized, no

matter how large the network is, or how the network is going to be composed.

e Many circuit analysis programs {37,46] use R - C for estimating delays, Corollary 2.8

indicates that this estimation is conservative, on the average, by a factor of two.

o The separation of driving network and loading network for a given node is by no means
unique. For instance, Nz in Theorem 2.5’ can be considered as a side branch of Ng
so that there is no explicit loading network at all. That the value of the delay is the
same for both cases is shown as follows: Let subscript r denotes the network Ng with
Ny, merged inside. By case 4 of Theorem 2.2/, Dr = Ds + RsCy, and Ry = Rs.
Then by Corollary 2.7, Tp = D = Dg +RsC, which is the same as the result given

in Theorem 2.5'.

e In most cases, there is more than one branch (transistor) incident on a node, and
these branches belong to different two-port networks. The capacitance of the node

can be arbitrarily distributed among these branches without affecting the result.

25

Vi R Ve v, V,

P 4 s A —

I‘ c Io I‘i ‘L_._C,_ g lxﬁ
2 2

(a) (b)

Figure 2.3. Approximation of a distributed RC line by lumped elements

—sinhI" coshT
where I' = VSRC and Z = 4/ 3%- [16]. R and C are the total resistance and ca-

sinh [
o The T-matrix of a uniformly distributed RC line (Figure 2.3.a) is (cosh' - A) ;

pacitance of the line, respectively. Up to the s term, the T-matrix is the same as
ic
1+ sRC _ R - sk
(—sC 1+ sRC
85
line can be approximated by two capacitors and one resistor connected as shown in

Figure 2.3.b [12].

). That is to say, as far as delay is concerned, the RC

2.4 The TREE Algorithm — Delay Calculation in RC Tree Net-

works

From Theorem 2.5, the delay of a node depends on both the driving and loading
networks of the node. Parallel (and bridge) connections couple all nodes together so that
every node is driving and loading every other node at the same time. As a result, the
calculation of delays in general needs to be carried out independently for each individual
node. However, no node in a tree network both drives and loads another node, and the

delays of all the nodes can be calculated simultaneously and incrementally.

Theorem 2.9. Suppose node N; and node N, are cascaded in an RC tree network. Ny

is nearer to the source and is connected to N; through a resistor of value r. The total

26

capacitance and total charge of the loading network of N3 are Cp and Qy, respectively. If

the delay of node N; is Ty, then the delay of node N is Ty +rC =Ty +r(Cr — Q). §

Corollary 2.10. The delay of a node ¢ in a tree network is 3, Ri ¢(Ck — Q&), where
R; x is the mutual resistance between node ¢ and k, i.e., the resistance of the (unique)
path between the source and node 1, that is in common with the (unique) path between
the source and the node k. Ci and Q4 are the capacitance and initial charge of node k,
respectively. The summation carries over all nodes k in the network [38]. |

The following algorithm (TREE) calculates the delays of all the nodes in a tree net-

work.

1. The loading information is accumulated and propagated from the loading ends towards
the driving end of the network. To be more precise, a value C’f‘ is associated with

each node 1, and

ok = Ci—Qx if node 7 is a leaf;
* T\ Ci-Qi+ T, CF otherwise,

where index j ranges over all the succeeding nodes of node i. C; and Q; are the node

capacitance and stored charge of node 1, respectively.

2. The delay of each node is calculated incrementally from the driving end towards the
loading ends; i.e., Ty = Ty + r;C{‘, where p({) is the parent node of node ¢, and r;
is the resistance between node i and node p(3).

The correctness of this algorithm is guaranteed by Theorem 2.9. The time complexity

is O(n), where n is the number of nodes in the tree network.

27

2.5 Summary

Digital MOS circuits are approximated by RC networks for estimating delays. Every
transistor group corresponds to one RC network, which is assumed to be driven by one
and only one source (VDD or GND). The area criterion of (2.1’) is used as the definition of
delay. This definition is consistent with and more general than the Elmore’s delay because
it also handles nonmonotonic responses. To justify the usage of this definition, we proved
that, given any threshold voltage, the delay always falls within the Penfield-Rubinstein

bounds for any RC tree networks.

The Penfield-Rubinstein RC tree modél is successfully extended to include the effects
of parallel paths and initial charge distributions. The formulation of a transfer equation
leads naturally to the composition rules of the R, C' and D parameters of two-port RC
networks. These composition rules extend the classical circuit theory for composing resis-
tance of an arbitrary resistive network between two ports. Theorem 2.2' represents the
first success in characterizing the transient behavior of any reasonable class of circuits in

a general and rigorous way.

With Theorem 2.2’ and Theorem 2.5/, the two-port RC network between the source
and a node can be constructed, and the delay of the node can be calculated. This process is
direct, constructive, and requires information regarding the global topology of the network.
Presented in Chapter 3 is another approach to delay calculation that is iterative and
distributive in nature. Each node or transistor is itself a process, which communicates only
with its neighboring nodes and transistors. The delays of all the nodes are determined in a
collective manner. This approach is capable of dealing with general RC networks without

sacrificing the desirable property of tree networks.

28

2.6 Appendix: Proofs of Theorems

Theorem 2.1. Consider a node in an RC tree network with no initial charge. Let

t;,(v) =Tp—Tp(l ~ v)

Tp
ta(v} =Tglin m
- I
13(‘0) 1w Tr
t4(v) =Tp~Tp+Tpln -——-1—.'9—-—
Tp(l—v)

where Tp = T9 is the Elmore’s delay. Tg, and Tp are defined in [38], which satisfy

Tr < Tp < Tp for any node in an RC tree network. Let t4(v) = Tpln(:1:). Then

tg >ttty > ta,tg < té for all valuesof v, and ¢y <ty forv > 1~ %.
Proof:
The following three inequalities regarding the natural log function are noted first:
Lingl-2zfor0<z<1
2.z—Inz>YLforz2>1
3.12z(l~Inz),for0<z<1

The proof of the theorem itself goes as follows:

1
_v) ~Tp + Tp{l — v)

_ 1 Tp
ta—ty=(Tp Tn)inl_v+TglnTD

>0

29

T 1
t3“'td=‘l‘”fz;“TR‘”TDml

1 1
nTD(l-—v*lnl-v)“TR

2Tp—Tg
20
T 1
tq*td=TP—TR+TPinT;h“TDlﬁm
Top Tp
> T 2 —
>Tp TR+TDinTP (Tp(l-ﬂ)21>
Tp Tp
= -2y g =2
—Tp(l Tp (1 mTP)>
20

Theorem 2.2. Up to the first order, the transfer equation (2.4) of a two-port RC network

v

is of the following form:

(}’a(s)) ~ (1 + s(RC - D) —R+sb) (‘/}(s)) + (—D‘ +sh> (2.6)
+(8) sC 1+sD Ii(s) Q+sf
The parameters R, C, D, @, and D* for each of the five cases in (2.5} are determined as
follows:
1. primitive case: R=1r, C=c¢, D =r¢, Q = cvg, D* = 0. (2.7)
2. series*connection of Ny and Ny: Rpr = Ry + Rz, Cr = C1+ Cq, Dy = Dy + Dy +
RiCy, Qr = + Q2 Dy = D] + D3 + R3Qy. (2.8)
3. parallel connection of Ny, : Rp = Z%_RL:’ Cr=3Y1Ci Dr=Rr (}:’1‘ %‘?) , Qr =
TiQ. Dy =Rr (D1 E). (29)
4. Ng with side branch Ny: Rp = Rg, Cr = Cs + Cr, Dy = Dg + RsCp, Qr =
Qs +Qr, Dy = Djg. (2.10)

30

5. input and output ports interchanged: Ry = R, Cr = C, Dr = RC — D, Qr =
Q, Dy = RQ ~ D*, {2.11)
Proof:

1. primitive case: From Fig.2.2.a, vy, va, 1y, and iy are related by the following equations:

vi(t) — va(t) = riy(t)
2.13
(t) — i2(t) = c%v;(t). (213)

Expressed in the matrix form in the Laplace domain, (2.13) becomes

Va(s)y _ [1 -r Vi(s) L 0
Ip(s)] ~ \~sc l+esrc) \ Ii(s) cvg)"
This is of the form (2.6) with parameters given in (2.7).

2. series connection: Assume that

() = (a2) (06) + (@)

(50) ~ (e) (50) - (@)

then

(Ffd)~ (Mot P Tt (V) s ()

~ 1+ S(RzCz - Dz) ~Ha + sby 14 s(R;C, - Dg) - By 4+ shy Vi (s)
=~ ~8C7 143809 sy 143D, I (8)

+ (1+3(R202 ~ Dy} —R2+sbg) (*D; +sh1) (”D; + shg
~38C4 1+8D; Qi1 +shH Qa+sfa

~ (1T s(RrCr— Dr) —Rr+sb,) (Vl(s) + ~D7 + sh,
—~3Cp 14 8Dy Ii(s) Qr+sfy /°

31

This is of the form (2.6). The corresponding parameters may be easily checked against

those in (2.8).

3. parallel connection: Assume that

()= (o™) () + ().

This equation may be transformed into the following G-matrix form {14]:

1+8(RCimD;
(fl,s'(S)) ~ D T =mra | (Vi) 4
I 4(s) —8Ci — (14D)(1+8(RCi~Di}) 1+sD; Va(s)

—fRoab; - RiAaby

=Dl Esh

(145D;)(= D% vahe)’

1ha D M =D +ak
- :R‘-+‘b‘. Y+ Qi+ sfs

1 D; b b
L(Hrele-Bed) leed)) vy
bk -(ee(ge) (O
-§‘-+.sm.
';i" Qi+ sl
wheremiz(%k_-k‘—’é;-),andli +-——-;‘-+~—L+f; Since I (s) = 2111,,(3

and I3(s) = Y7 Ix,i(s),

Transforming from the G-matrix formulation back to the T-matrix formulation,

-89 C;

32

e (85 -5F) ‘s:?“’rg? (

>
1+$:§;

This is of the form (2.6} with parameters given in (2.9).

4. with open side branch Ny: Assume that

(11(

3;/1'53}5(6)) = (

(v;,(s)) ~ (1 +8(ReCr. - D1)

0

1+ S(RsCS - Ds)
—-SCS

--SCL

After a few steps of simplification,

~Rg + sbs
1+s8Dg

~Ry, + sb,

o) (

(mq) N (1 +s(RpCr — Dr) "‘“RT-i-sbr) (

- 14 aDyp

I

)(

Vs(s)
éw)+

Ip(s)

fs(a)

Vx(:))) + (—%—%;—‘- shy

ZQi.+ sfr

(«D; + sh,
Qs +sf;

) (8.

Vs(s)) + («—D'} + sh,)
Qr+ 3f1~

)

)

33

L

3 A

I I \Y;
8 NS L

‘I —l\“LI

Figure 2.4. Delay calculation of a node in an RC network

with the set of parameters shown in (2.10).

5. input and output ports interchanged:
Vo(s) _ [1+3(RC-D) =R+shb\ {Vis) + ~D* + sh
L(s)]~ -sC 1+sD Li(s) Q+sf)

L(s) —sC 1+sD I(s8) - Q~sf

N (1+sD R—sb Vo(s) D* — RQ + sh,
F\ s¢ 1+s(Re-D))\L(s)) T\ -@-sf,)

(m(s)) N (I+s(RC~D} —R+sb)“ (‘Va(s)+D‘—-sc)

Finally,

(i) = (128 e) (20) = (507 ™)
|

Theorem 2.5. If a node connects to the source through a network Ng with parameters
Rs,Cs, Dg, Qg, and D}, and is loaded by another network N with parameters Ry, Cy,
Dy, Qy, and D}, then the delay Tp of this node is (Ds + Dy — RsQs) + Rs(Cr ~ Q1)

(Figure 2.4).

34

Proof:

From the hypothesis and from Theorem 2.2,

("5) = (e) (T + ()

(V(s))z 1+3(RsCs = Ds) -Rs+sbs\ (1Y _ (~Ds+sh,
-sCs 1+ sDg Is Qs +sf; J°

After a few steps of simplification,

1+ 3(RrCr — Rs(Cr - Qs ~ Q1) — (D§ + R1Qs + D))
s{1 + sDr)

VL (8) =

where Ry = Hs + Ry, Cr = Cs + Cp, and Dy = Ds + Dy, + RsCy. Reflecting back

from node L to node 1,

(V(s)) N (1 +s(R.Cr - D) -Rg +sb;,)“l (VL(a) + D} - sh,)

I(.s) ~sCp, 1+ 38Dy —QL—st
~ (1+8DL Ry —sb,) (VL(.S)-%»DE—-ShL
3Cy 14 s(RyCr — Dp) -Qt — sf,)

Finally,

V(s) = (1 +sDg)Vi(s) + (1 +sDL) (D} — sh,) ~ (R — b,)(Qr + 3f,)
(1+sDr)(1 +sA) + 8(1 + sDp}{D} -~ RQp)
s{1 + sDy)

~ 1+s(DL+A+ Dy -R.QL)
s(1 + sDr)

=]

where A = RpCp — Rs{Cr — Qs ~ Q1) - (D;' + RpQs + Di) Az a result, Tp =
Dy~ (Dp+ A+ Dj -~ RQL) = Ds + Rs(Cr — Q1) + (Dg — RsQs). i

35

Theorem 2.9. Suppose node Ny and node Ny are cascaded in an BC tree nétwork; Ny

is nearer to the source and is connected to N; through a resistor of value r. The total

capacitance and total charge of the loading network of N3 are Cp and Q, respectively. If

the delay of node Ny is T}, then the delay of node No is Ty ++Cr =Ty + r{Cr ~ Q).

Proof:

Let subscripts 1; and s; denote the loading and driving networks of node N;,i = 1,2,

respectively,

From Theorem 2.2/,

From Theorem 2.5,

Thus, T2 — Ty = (Dg3 — Ds1) + (Rs2Cp2 ~ Bs1Cry) = rCpy = r(Cpy ~ Qr1)-

T; = Ds; + Rs:Cpy

T; = Dsz + Rs2Ca.

36

Chapter 3

Delay Calculation in General RC Networks

In section 2.4, a linear algorithm (TREE) was presented to calculate the delays of all
nodes in an RC tree network. This algorithm cannot be applied to a non-tree network
because the driving and loading networks of the nodes in such a network are not explicit.
Parallel (and bridge) connections couple all nodes together, so that every node is driving
and loading other nodes at the same time. As a result, the delay values must be datermined

collectively through some relaxation process.

In section 3.1, the problem of delay calculation is reformulated as a set of relations
among neighboring nodes and branches. By taking advantage of the effectiveness of delay
calculation in RC tree networks, this formulation leads to the concept of tree decomposition
and load redistribution, which is the main subject of section 3.2. A relaxation algorithm
for calculating delays in general RC networks is presented in section 3.3, and analyzed
in section 3.6. This algorithm requires information from neighboring nodes and branches
only during the relaxation process. Under certain conditions, this algorithm is equivalent
to the block Gauss-Seidel method for solving a system of linear equations. The matrix
associated with this system of linear equations is symmetric and positive-definite, which
guarantees the convergence of the G-S method. Examples of delay calculations are given

in section 3.4.

3.1 Distributive View of Delay Calculation

The problem of evaluating delays in an RC network can be reformulated as a set of
relations among neighboring nodes and branches. Associate a global index with each node.

Suppose there are a; branches incident on a node N;. Let r, ., denote the resistance of

37

the jth branch, and f(1, 7} denote the global index of the neighboring node of N; through
this branch. The idea here is to partition C; = C; — @ into these a; branches, each
of value C;5), such that 3., .. Ci s = Ci, and the delays evaluated from different
branches are the same, _C_"(,-,j) is the equivalent load on node N; from the jth branch.
By Theorem 2.9, T; = Tyy 5 + rh.‘i’"C‘_(,\,j). To summarize, we have the following set of

relations

T Tf(;,J)'th“C(‘,J) J-—l Gy 1=1,..,N

(3.1)
where NV is the number of nodes in the network. The formal derivation of (3.1) is as follows.

By the definition of delay (2.1), Ty = [;°(1 — v,)dt, and Ty 5y = fo (1 — v,)dt.

_ T;,-T Oy, . -
C(;’ J)déf , f(‘!]) = / 1839} * dt (3‘2)
’ T o T

The first set of equations of (3.1) are established by this definition. The second set of

equations are established as follows: By Ohm’s law and Kirchoff’s current law,

dv; Veony — ¥
Coi=Y A G (3.3)
STy

Combining (3.2) and (3.3),

ZC(U)“‘Z/ n-n” ‘dt

h 3)

< dv,
= Oyt

o dt
= Ci - Qs
=T,

38

B2 Aa A,

(a) (b)

Figure 3.1. Two examples illustrating T}'s and Cy; jy’s

Formula (3.1) represents a system of linear equations: T sand €,’s are known, and
Ti's and _C_(i,j)’s are to be determined. This system of equations is general enough to deal
with all RC networks, including those with bridge connections. To simplify the discussion,
zero initial charge is assumed throughout this chapter. The results obtained are directly

applicable to general cases by replacing C’s with {C — Q)’s.

Example 3.1, Congsider the two simple circuits in Figure 3.1. Circuit 3.1.a consists
of n transistors connecting the source to a node A. All transistors are ON, and are with
resistances ry . n, respectively. From Theorem 2.2 and Corollary 2.7, T4 = RpC4, where
Ry = Ewl———;—, and C,4 is the capacitance of node A. Another way to calculate the delay
j=i Ty
is that, instead of combining resistances, capacitance C, is distributed into the n incident
branches: Cy) = -’}}'—CA, for j = 1,...,n. This combination of C(4 ;y’s is the only
possible partition of C4 such that Z;=1 C(a,j) = Ca, and the delays evaluated from all

n branches are equal. This common value of delay equals R+C4. Both methods give the

same result,

Consider an arbitrary node A inside a tree network such as circuit 3.1.b. Suppose
there are n branches incident on node A. As the network is a tree, there are also n

neighboring nodes of A. Among these n neighboring nodes, one node is nearer to the

39

source than node A (call this node 4,), and all other nodes are farther away from the
source (call these nodes Ay ., respectively). By Theorem 2.9, Ty, = Tx + erf‘, for
J = 2,...,n, where r; ig the resistance between nodes A and A, and Cf is the total
load capacitance of node 4;. From (3.2), Cra) = Tﬁ:};‘—*—ﬂ = »—C‘f, for y = 2,...,n.
Again by Theorem 2.9, Ty = T4, + r1C%, and thus C4,; = CL. It is easy to check
that 327, C(aj) = €4 = Li=z CF = Ca. Note that C(y,j) is negative for j = 2,...,n,

indicating that node A is driving, not loading node A;. i

3.2 Tree Decomposition and Load Distribution

We do not intend to solve equation (3.1} directly because of the enormous number
of variables involved: zfi_l(a,; + 1). Note that the ¢; branches incident on node N; need
not be decoupled completely as we did in the formulation of (3.1). These branches can be
divided into any number (b;,1 < b; < a) of groups. Rather than fully decouple the network
into nodes and transistors, it is decomposed into a smaller number of subnetworks. Delays
are calculated directly and independently inside each subnetwork using the techniques
discussed in Chapter 2. The consistency of the delay of a common node shared by more
than one subnetwork is checked and corrected by a procedure similar to the formulation
of (3.1). As delays can be calculated very efficiently for a tree network, we require that
all decomposed subnetworks be trees. The root of every tree must be the source of the
network. For convenience, the following terminology is introduced. As node capacitance
C; is partitioned into b; parts, each of these partitioned capacitances is considered as
separated nodes. Such nodes are referred to as “secondary nodes,” while the original
nodes of the network are referred to as “primary nodes.” If there is no ambiguity in the
context, the term “node” refers to either a primary node or a secondary node. Those ‘
primary nodes with b; > 1 are also called “split primary nodes.” Suppose that there are P

split primary nodes (N, p) and N ~ P nonsplit ones (Np4;,.. n) in the network. With

40

every secondary node is associated an index pair (4,5}, indicating the jth secondary node
generated from the ith primary node of the network. The term “equivalent secondary
nodes” refers to the set of secondary nodes that correspond to the same primary node.
By considering equivalent secondary nodes as disjoint, the decomposition of a network is
achieved. The original network is also called the “primary network,” and the decomposed
network is called the “secondary network.” The transformation from a primary network
to a secondary network is a two-step process. The first step is purely topological, while
the second step concerns the distribution of node capacitances, as well. The first step
is referred to as “topological decomposition,” and the second step is referred to as “load
distribution.” For a given RC network, a topological decomposition can always be found
that separates the network into a collection of tree subnetworks. This collection of trees
can be considered either as disjoint trees or as branches of one single tree that is rooted
at the source of the network. Based upon the concept of dominant path [4], one such
decomposition scheme is presented in section 4.1. The discussion in this chapter applies

to any tree decomposition of RC networks.

As the secondary network is a collection of independent tree subnetworks, the delay of
each secondary node can be calculated directly. The question arises as to how the delays
of these secondary nodes are related to those of the primary nodes. It is quite possible that
equivalent secondary nodes have different delay values. Note that the delays of secondary
nodes depend on the values of C(; ;'s. If the capacitances C;’s are distributed incorrectly
among these secondary nodes, the delay values will be different. However, if the C;’s
are somehow distributed so that equivalent secondary nodes give the same delay, then it
makes no difference whether these nodes are connected or not. If connected together, the
secondary network reduces to the primary network, and the delays of the primary nodes
are equal to the common delays of the corresponding set of equivalent secondary nodes.

In what follows, we show that for any given tree (topological) decomposition of an RC

41

network, such a load distribution always exists and is unique. Via this distribution, we

also present an algorithm to find the delays of all nodes of an arbitrary network.

From Corollary 2.10, the delay T(; ;) of node Ny,) is equal to Ter. RE";';} Clu,v)»
where Rgi’;.)) is the resistance of the {unique) path between the source and node Ny; ;y, that
is in common with the (unique) path between the source and node N, ,j. If node Ny,
and node IV(; ;) are not in the same tree subnetwork, then Rg";)) = 0. Equating T{; ;)’s for
equivalent secondary nodes, Zfﬂ ?;‘_ Ré:’;;)C(u v) = 22;1 Zv‘: Réfﬁ’c(“ o) ==
Zivgx Zi‘:x R&ggc{u,v)’ or Zu:! Zu’;x(R((:;;) g‘;:))c(u,u) =0,forj=1,...,0; — 1,
and i = 1,...,P. Since Ei‘,‘__l Clu) = Cus or Crup,) = Cu = Z”-ll C(u,v) the above set

of equations can be reduced to

o
§

w1

P N
(U) (bu (Ba rbs B
> ((s - R - RS + RERS)) Clawy =2 (Rg‘ s — Bl)) Cu-

u=l u=l ux=l

(3.4)

Formula (3.4) represents a system of linear equations with }:up,_:l(b,- ~ 1} variables:
Ci,1)»Cami=1) C2,1)5C2ba=1)s -4+ Clp,1)a s C(p,p,~1)- Equation (3.4) can also be
written in a matrix form Az = b, where Ais a 3.°_,(b; — 1) x 3_2_.(b; — 1) matrix with

element a(; ;) (v,0) = R((:‘;;) - RE:‘;:% - R({zf)“) + Ré:’:‘)‘) Both b and z are 3_°_, (b; — 1)-

vectors with element b(; ;) = Zf:;(RfIf;ﬁ;) é:‘ :')“))C,,, and z(;;) = C(;y). Given a
tree decomposition, all a(;),(u,v)’s and by; ;y's are fixed. This matrix equation can also be

expressed in the following block form:

Ay Az .. Agp o B,
Azy Azz ... Aj, Ca B,
: 1= (3.5)

Apr Az - App/ \Gp B,

42

a’(f,{),(u,l} e a{'i,l),(!{,é“'-l) z(usl) .
where A;u = : y Cy = : , and B, =
Alib,—1)(w,1) o E{Ehp—1)u by —1) Tla,by1)
b,
bibi-1)

The block Gauss-Seidel method [48] can be used to solve (3.5); i.e.,

g1 P
cim W = ATt B -3 o™ - 3 400
i=1 FE (3'6)

t=1,...,°P, m>0

where superscript (™) indicates the mth step of relaxation. Starting from any initial guess
of C‘SO) , this method always converges, as indicated in the following theorems. The proofs

of these theorems are given in section 3.7,

Theorem 3.2. The Zi\;l b x Zﬁ‘-’l bi matrix R with elements R(i,j),(u,v) = (u9) &

(5.4) ®
symmetric and positive-definite [41]. i
Theorem 3.3. The matrix 4 in (3.5) is symmetric and positive-definite. i

Corollary 3.4. Matrix 4 is nonsingular, so the solution of (3.5) exists and is unique. J

Theorem 3.5. Let 4 be an n X n real symmetric matrix. Then the block Gauss-Seidel

Method is convergent for all initial xio) 's if and only if A is positive-definite. [48] i

Corollary 3.6. The scheme (3.6) converges for all initial Cfo) ’s. |

.

3.3 The LRD Algorithm

The system of linear equations {3.5) can be solved by another algorithm which only
uses local information during the relaxation process. Given an initial load distribution for
a tree decomposition of an RC network, the delays of the secondary nodes are calculated

using algorithm TREE. The relaxation process starts by scanning through the split primary

43

nodes Nj,....p. and checking if the corresponding secondary nodes give the same values of
delay. If they do not, node capacitances are distributed improperly somewhere in the
network. Although nothing is known as to where this improper distribution happens, we
can always adjust the local distribution of Cy; ;1’3 so that the delays of equivalent secondary
nodes are equal for the primary node presently under investigation. The adjustment is done
as follows. Suppose N; is the current node under investigation, and T(; 1),...,T(4,) are
not all equal. Based upon case 3 of Theorem 2.2, the delay of node N; at this relaxation

step is given by

T .

b 1))

Zj:l R(‘ 3

Ty = ——) (3.7)

where Ry, ;) is the source resistances of node Ny; ;), and remains fixed during the relax-
ation process. For the dominant-path decomposition scheme to be described in Chapter 4,
the R(; ;) values are determined at the time when the network is decomposed. Let A¢,

be the amount of load adjustment for the secondary node Ny; ;3. Then

(3.8)

The constraint Z;’=1 Ciig) = Ci is satisfied automatically since Z;":l Acuy =
Tn ""T Pl R L2F 1) b.’ b T ki LIY10 » - - .
Z, Lt = (Z;~: oy ”) - in 2 = 0. To maintain consistency, this ad-
justment of Cy; ;)'s must be propagated to other nodes in the same tree so that their delays
. def 1,7
may be updated accordingly (Ar, ,;1(:,5) = Ar,., |Ac(,.,,, =0,¥Ymaki Vngj = R((ufv))Ac(i.j))‘
Consider the following two conditions:
1. Before a node is combined with other nodes using (3.7), the delay of the node is fully
updated.

2. No two equivalent secondary nodes lie in the same tree, ie., Rg:;)) =0

44

ifj#v,for ju=1,...,b5andi=1,...,P. (3.9
Theorem 3.7. If both conditions of (3.9) are satisfied, then the relaxation process based
upon (3.7) and (3.8) is equivalent to the block Gauss-Seidel method of (3.6), the conver-

gence of which is guaranteed. 1

The proof of this theorem is also given in section 3.7. Condition 1 of (3.9) can always
be satisfied if, whenever there is a change in Cy; ;), this information is propagated to all
the nodes in the same tree. However, this is a very time-consuming process. A more
cfficient approach is to accumulate the changes as the scan process goes along. The delay
of a node is not updated until it is scanned. Instead of scanning through split primary
nodes, the corresponding secondary nodes are visited in a depth-first manner [2] for each
tree subnetwork. This algorithm, called LRD (Load ReDistribution); is described in the

following pseudo-code,

procedure LRD;
var source:secondary node; “source of the network”
begin
function scan({A:secondary node; TO:delay) =capacitance;
var ZT:delay; 2 c«clicapacitance; S:secondary_node;
begin
“A.primary; corresponding primary node”
“A.sons: succeeding nodes”
“A.R: source resistance R4”
“A.Ac: capacitance adjustment Ac,, (3.8) 7
“A.T: delay Ty"
AT:=AT+T0 oreens (@)
combine(A.primary); “(3.7) & (3.8) 7
if A.sons = nil then scan:=A.A¢
else begin
Y ri=TO0+A.Ac*A.R; cvenes (B)
3 oi=0.0;
for 5 € A.sons do begin
cl:=scan(8,)_,+A.R*S.c2);

45

|
B/ \D

Figure 3.2. Illustration of the idea behind procedure SCAN

Yo= Letel;
Se2=20i i (<)
Sri=LpbesAR; Ll (d)
AT:=AT+cl+AR;, .. (e)
end;
for S € Asons do S.c2i= Y o -8.¢2; ... (f)
scan:=A.Ac+Y i
end;

end; “scan”
begin “LRD”
while not converge do
for S € source.sons do scan(8,0.0);
end; “LRD”
Procedure COMBINE implements {3.7) and (3.8). The idea behind procedure SCAN
is indicated by the following relationship among the three nodes A, B and D of Figure 3.2:
d
o Aryla,n(FArslac,=024.0) = Rp,alc,+AB,0Ac, = Ra(Ac,+Ac,) = Ar,lap.
. ATA}B,D = R,A.,BACg -+ RA,DACD = RA(ACB +'ACD).
The first equation above suggests the accumulation and propagation of Ap (parameter
T0 of procedure SCAN) from the driving end towards the loading ends as the nodes of a
tree are scanned in a depth-first manner. The second equation suggests the accumulation
of A¢ (returned by procedure SCAN) from the loading ends towards the driving end. If
branch B is scanned before branch D, then Agy,|p is in effect at the present scan. On

46

(1) (2)

Figure 3.3. Two situations in which condition 1 of {3.9) is not satisfied

the other hand, the value of Ac, is stored at variable B.c2 to update T when node B is

scanned at the next relaxation step.

Condition 1 of {3.9) is satisfied in most cases, except the two situations shown in
Figure 3.3. In case 1 (Figure 3.3.a}, nodes A; and A, are equivalent, and they are in the
same tree as node C;. Suppose branch B; is scanned before branch B,;. Then, at the time
when node C; is scanned, T(c,y, is only partially updated (Since 4; <, C; <, A3, the
adjustment of T((g:)1) due to A(CTZ.;; is in effect, but that due to Ag‘lm is not. Note that
A; <, Cy means that node A, is scanned before node C}). In case 2 (Figure 3.3.b), nodes
Ay and C) are in a same tree, while Az and ', are in another. Suppose tree T is scanned

before tree T;. Then at the time when C; is scanned, node C; is not fully updated yet

(A1 <4 C1 <4 Az <4 C3, 50 the adjustment of T(¢ z) due to Acyu.q I8 not in effect).

Algorithm LRD is applied regardless of whether the two conditions of (3.9) are satisfied
or not. Convergence of this algorithm has always been observed, although the convergence
rate is slower when condition 2 is not satisfied. Note that only secondary nodes that
correspond to split primary nodes need to be considered in the relaxation process. The

delays of other nodes can be calculated after the relaxation process terminates.

Theorem 3.8. The time complexity of algorithm LRD is O(-g), where [is the number

of relaxation steps used, and ¢ = Zil',,‘,#x b; = 2{;1 b; is the number of secondary nodes

e Zdnc z
r ¥ 2¢
X feamms Y Xfe Y
3r 3 2r
(b) ‘ (c)
Figure 3.4. An nMOS circuit to illustrate algorithms TREE and LRD

corresponding to split primary nodes.

Proof: COMBINE (p) is of time complexity O(|S,|) and, at each relaxation step, COM-
BINE is called exactly once for each split primary node. The other part of the code
SCAN(A,T0) takes time O(|Dal}, which can be easily checked by induction. The theorem
follows from the fact that 3 (ISp]) = |Daourcel = ¢ i

The number of relaxation steps required depends on the accuracy aimed at. Usually
four or five steps are enough to bring the error down to within 10%. The correctness of

algorithm LRD is proved in section 3.6.

3.4 Examples of Delay Calculation

Example 3.9. Consider the nMOS circuit shown in Figure 3.4.a. Let A, B, C, D, E
indicate the input nodes (also transistors) of the circuit, and X, ¥, Z indicate the internal
nodes. The values marked by the transistors are their ON-resistances and those by the
nodes their capacitances. In order for this circuit to function properly, the condition
R > 6r must be satisfied. Initially, transistors D and B are OFF, and transistors A and
C are ON, so all the internal nodes are at voltage level VDD. At time 07, the topology of
the network changes, and various internal nodes are pulled down towards a voltage level

very close to GND. The delays of these nodes are determined using algorithms TREE and

48

LRD. As a shorthand, let {by,b2,b3,b4,bs5) denote the logic level of the five input nodes
A,B,C,D,E, where by .. 5 € {0,1}.
1. (1,1,0,0,1) : The corresponding RC hetwork in this case is a tree (Figure 3.4.b).
Therefore, the delays can be calculated directly using algorithm TREE, and no relaxation
process is required.

o (load): Cf =¢, CF =4c,and CL =CL + CF + c =6e.

o (delay): Ty =3r-6c=18r¢, Ty =Ty +r:¢=19rc,and T; = T, + 7 4c = 22rc.
2. {1,1,1,1,0) : The network in this case is not a tree, 50 some decomposition is necessary.
Say, node capacitance C; is split into two parts: C(,;), and C(.2) (Figure 3.4.c}). The
source resistances of various nodes are R; = 3r, Ry = 2r, R(,;) = R; +r = 4r, and
R(z,2) = Ry + 2r = 4r. Assume that C(;) = 4¢, and C(; 3y = 0 initially.

a. Initialization of delays using TREE:

o CEO = ye, CEO) = 5 (tree 1), C&gg =0, and C’;‘(o) = ¢ (tree 2).

{z,1)
o T = 18re, T, = 197c (tree 1), T{” = 2rc, and T((f by = 2re (tree 2).

b. LRD, step 1:

0) (¢
Ton |, Tew
o Check node Z (forward):) = R(;'l) R(;’z) = 19+2m = 10.5r¢. Then,
_— 2
R(‘vl) R(z’z)
1052

A _105-19

Cony = y e = 2.125¢.

¢ = —2.125¢, and qu)..z) -

o Correct T, and Ty due to the changes of C(; ;) and C(,3) (backward): T,(,” =
7! + R.Aq,,,, = (15— 3-2.125)r¢ = 8.625rc, and TyV) = T{® + R,Ac,, ,, =
(2 +2-2.125)rc = 6.25r¢.
One relaxation step gives us the exact delays of all the nodes. This is in general true if there
is only one node to split, and condition 2 of (3.9) is satisfied. As a comparison, the delays

of node X, Y, and Z are calculated again using the techniques presented in Chapter 2.

49

The triple (R, C, D) is used to represent a two-port RC network, where R,C, D are the
parameters described in Theorem 2.2. Let — and || denote series and parallel connections,
respectively, and — has precedence over ||. The RC networks between nodes X,¥, Z and

GND can be individually represented and reduced as follows:

(Z): (3r,¢,3rc) — (r,2¢,2r¢) || (2r,c,2rc) — (2, 2¢,4r¢)
=(4r, 3¢, 11re) || (4r,3¢,10rc)
=(2r, 8¢, 10.5r¢)
(X): (8r,e,3rc) || (2r,¢,2r¢) — (2r,4¢,8rc) — (r,0,0)

=(3r,¢,3r¢) || (57, 5¢, 18r¢)

(1.875r, 6¢,8.625r¢)

(Y): (2r,¢,2rc) || {3r,¢,3rc) — (r,4¢c,4rc) - (27,0,0)

i

(2r,¢,2rc) || (6r,5¢,19r¢)
=(1.5r, 6¢, 6.25r¢)
By corollary 2.7, T, = 10.5r¢, T, = 8.625r¢, and T, = 6.25rc.

3. (1,1,1,1,1): Suppose the tree decomposition of Figure 3.4.d is selected. Both node
X and Y are split, resulting in two chains: GND -Y, - Z - X; - Y, and GND - X,
respectively. The source resistances of various nodes are Ry =2r Ry =4dr, Rz =
S5ry R(yz) = 6r, and R(,,;) = 3r. Assume that C(; ;) =0, C(z3) = ¢, Cy1) = ¢, and
Cy,2) = 0 initially.

a. Initialization of delays using TREE:

o C!f,(zo) = 0, Cf,(zn) =¢, CH = 5¢, CEO) = g¢ (tree 1), and ct9 =0 (tree 2).

{v:1) {=1)
o T, = 12re, TSV = 22re, T, = 23re, T(%), = 23re (tree 1), and T2, =0
(tree 2).

b. LRD, step 1: Suppose tree 1 is scanned before tree 2.

50

Z
ag
4 2r
XZ °X3r
I Y
3r 2r
(d) (e)

Figure 3.4. (continued) An nMOS circuit to illustrate algorithms TREE and LRD

12 23
TRy 14.35 — 12
s Check node Y;: Ty) = —zi—ie—rc = 14.75rc. Then Ag’{)"n ==
2 6
14.75 -~ 23
1.375r¢, AC(,,,, = -ﬁ—z—g————c = -~1.375¢. Also ZT = 14.75r¢ — 12rc = 2.75r¢.
o Check node X, (forward): T(,,q) is first updated to 23re +) p = 25.75rc (the
25.75+
effect of Ag()"” on Tz 2)). Then T,En = ——?—I——rc = 9,66rc. Thus, Ag‘()’.” =
573
9.66 — 0 1 9.66 — 25.75
——¢ = 3.22¢, and Ag) , = ——F——¢=—82%. Abo L = (275 +

(9.66 — 25.75))rc = ~13.34r¢ (or (9.66 — 23)re).
o Update Ty z) (forward): T,z is first updated to 14.75r¢ + S p = ldlre. As
node Y is already checked, nothing needs to be done further. On the other hand,

an end of the tree is reached, so the backtrack phase starts with }_ = A¢,, 5, =

~1.375¢.

o Update T) (backward}): Té:}z) is updated to 9.66rc + Rz 2) 2o = (9.66 — 5-
1.375)rc = 2.78rc. Also 3. is accumulated up to ~1.375¢ + Ag{ }‘ 5 = —4.595e.

e Update T,y (backward): T((;,)z) is updated to 14.75rc + R(',,l) Yo = (1475

2 - 4.595)rc = 5.56rc.

o Nothing is done for tree 2 since node X has already been scanned.

51

In summary, after the first step of relaxation, C(z 1) = 3:22¢, C(z 9y = —2.22¢, Cy,1) =
2.38¢, Ciy,2y = —1.38¢, T(z,1) = 9.66rc, T(; gy = 2.78r¢, T(y,1y = 5.56rc, and T(y 9y =
1.41re. The delay of every node is fully updated.

step 0 1 2 3 4 | 5 10 > 12
Clz1) 0 3.22 2.23 2.58 2.49 2.54 2.56 2.58
1

0

Clz,2) .2.22| -1.23] -1.58 | -149] -1.54| -1.56| -1.56
Tzt 966 | 669| 795 | 7148| 1.62| 7.68| 1.69
Tny| 23| 278| 929| 7.9 | 7.86| 765| 7.69| 7.69
Ciay| 1| 238| 186| 197 | 1.89| 18| 183| 1.83
Ciyzy| 0| -138| 086 -097| 089 -088) -0.83) -0.83
Ty | 12| 556 | 7.54| 684 | 7101| 692] 6.88] 6387
Tys| 23] 141] 843| 622 | 697| 676 6386| 6.87

Table 3.1. Values of C’s and T’s at the end of some relaxation steps

The results at the end of some relaxation steps are summarized at Table 3.1. Note
that node Z is not split, and thus is not involved in the relaxation process. The value
of T, is determined after the process terminates. In this case, T}, is 6.87rc, and Cf =
Cyz+Cz2+Ca = (~1.56 — 0.83 + 4)c = 1.61¢, 50 Ty = (6.87 + 2 - 1.61)re = 10.09rc.
Consider another tree decomposition shown in Figure 3.4.e: node X is split into three parts,
and tree 1 is not a simple chain. The source resistances of various nodes are Rz 1) =
87, Rz 3) = 51, R(z3) = 3r, and R, = 2r. Assume that C(;,1y = 0, C(z,2) = 0, and
C(z,3) = ¢ initially.

a. Initialization of delays using TREE: Ty(,o} = 12re, TV, = 20re, T((f'):,‘) = 13r¢ (tree

(,2)
1), and T((:,)l) = 0 (tree 2).

b. LRD, step 1: Assume that tree 1 is scanned before tree 2, and branch 1 of tree 1 is

scanned before branch 2.

20 13 :
O o 4 — 9.61 — 20
¢ Check node X3: éx} = T’H— = 9.61rc. Then Ag‘)’m = -—-—5——-—c =
B Vi B

3 5 3

52

-2.08¢, AD) = -113¢,and A% =321

e Backtonode YV: } = Al o ~2.08¢, and), = Ry 3o = —4.16rc.

C(s(ﬁk
o Update node Xa: T((:?S) is updated to 9.61rc + 3, = 5.45r¢c. Nothing is done

further, except that Ag()’m is recorded in branch 1 of tree 1 to update T(z,2) at

step 2.

Afterstep 1, C(z’t) = §.21¢, C(z’g) = —2.08¢, C(:’a) = ~0.13¢, T(‘z,l) =9.6lre, T(z,g) =
9.61rc, and Tz 3) = 5.45rc. T, 3) is only partially updated (the actual value is 9.61rc —
By-Ac,, = 7.35r¢).

¢. LRD, step 2:

961 T7.35 545

H (2) 3 + 3 + 3
o Check node X3: T, 3) is updated to 7.35r¢c. Then Tz = &y re =

15

7.49re. Thus Ag‘)’m = 0.03¢, and Ag‘?‘m = 0.68¢.

s Update node X3: T, ay is updated to 7.49rc+ R, - AW =785 T, z.2) 18 not
(2,3) Ao N (z,2)
fully updated, and Ag)M) is recorded for step 3.

step 0 1 2 3 4 5] 210
Ciz,1) 0 3.21 2.50 2.61 2.57 2.57 2.57 2.56
Clz,2) 0 -2.08 ~2.05 -2.25 -2.31 -2.35 -2.37 -2.38

1
0

Cle.a) 013| 035| 064 | 074| 078 | 080| 082
T(z1) 961 | 7.50 | 7.83 | 7142 | 1.2 71.90 | 7.69
T2y | 20| 961 | 750 783 | 772| 772| 790 | 7.69
Tz | 13| 546 | 755 | 742 | 760| 764 | 767| 769
7. | 20| 736 | 885 | 802 | 791 | 7.79| 75| 7.60

Table 3.2. Values of C’s and T"’s at the end of some relaxation steps

Table 3.2 summarizes the results at the end of some relaxation steps. Note that item
*T('z,ﬂ) in the table indicates the fully updated value of T{; 3). T and T, are calculated

after the process terminates: Ty = T 3) ~7C(z3) = 6.8Trc,and Ty = T(p 2y — 1 Clz,2) =

83

source

source

[4

source , P

[4
D 7Y 0w

«;C E“ source °

(a) (b)
Figure 3.5. Example for which the Jacobi method diverges

10.09rc. Note that (3.1) is applied for the above calculation. To calculate the delay of
node Z directly, a A — Y transformation among the three nodes GND, X,Y is necessary.
One phantom node T' is generated by this transformation, and the resulting network is
shown in Figure 3.4.f. Note that this transformation is not necessary for node X and Y.

The network between nodes X, Y, Z and GND are as follows:

(2): (r,0,0) - {(0.5r,¢,0.5rc) ~ (r,2¢,2rc) || (0.33r,¢,0.33rc) — (2r,2¢,4rc)}
(X): (3r,¢,3re) || {(2r,¢,2rc) — ((2r,4¢,8rc) — (r,0,0) || (r,0,0))}

(Y): (2r,¢e,2r¢) || {(3r,¢,3rc) — ((r,4¢c,4rc) — (2r,0,0)) | (r,0,0)}
It can be easily checked that T, = 7.69r¢, T, = 6.87r¢, and T, = 10.09rc.]

Before finishing this section, we give an example to indicate that a Jacobi-like method
[44] (update the delays simultaneously after all the nodes are scanned) may lead to diver-

gence of the relaxation scheme.

Example 3.10. Consider the circuit shown in Figure 3.5.a, There are 101 branches
incident on node N. Paths P .. 100 are all identical: P; connects to node N;, which in
turn connects the source. Path Pjgy connects to the source directly. Suppose that all
nodes Ny, . 100 are split into two parts (Figure 3.5.b), and the network is decomposed

into 101 tree subnetworks., Suppose the initial guess of the load distribution is such that

54

Cni1y = ¢ and Cy, 2y = 0 for ¢ = 1,+++,100. Then C’f}(o) = [01e, T‘ﬁ}} ==.101re, and

TSZTI = 102rc¢, and Ty, 2y = 0. At the first step of relaxation, T‘,(\,t) = lg-z-rc = 5lre,
and Ag‘) P —25.5¢. Reflecting all these changes of capacitances back to node N, Tg,")

becomes 10lrc — 100 - r - 25.5¢ = ~2449rc. At the second step of relaxation, T3

(N:iy1) =
—2473.5 + 102
~————————i}~—~rc = —~1185.75rc. Then Ag)m ,, = 643.875¢. Reflecting

~2473.5rc, T) =
these changes back to node N, Tgfz) becomes ~2449re+ 100-r-643.875¢ = 61938.53r¢. It can
be easily seen that the absolute values of Ac,,‘_ 's, Tiw;,1's and Tn's will grow indefinitely,
and the process diverges. On the other hand, both conditions of (3.9) are satisfied by this

example, so algorithm LRD converges. 1

3.5 Summary

Complementary to the transfer-equation formulation of Chapter 2, “delay” is refor-
mulated as the fixed point of a collective process among all nodes in an RC network. The
technique of tree decomposition and load redistribution combines these two formulations
in a nice way. The proof of positive-definiteness which leads to the convergence of the

LRD algorithm indicates the robustness of this technique.

Our transistor-level timing model is mathematically well-founded. To apply this model

to digital MOS circuits, the following four assumptions are made:
1. MOS circuits are approximated by RC networks.

2. Transistors are approximated by linear resistors, and inputs to transistor gates are

approximated by step waveforms.
3. Each approximating RC network is assumed to be driven by one and only one source.
4. The area criterion of (1.1') is used as the definition of delay.

These four assumptions are justified in various sections of Chapter 2. The application

of the TREE and LRD algorithms to timing simulation of digital MOS circuits is presented

55

in the next chapter.

3.6 Appendix: Correctness of the LRD Algorithm

To discuss the LRD algorithm of section 3.3 in more detail, the following terminology
is used. Referring to Figure 3.6, let C(B) be the set of nodes along the path from the
source to node B, excluding node B itself. If a node X is in C(B); then X is called an
“ancestor” of B, and this relation is denoted by X < B. A is called the “parent” of B
if A is adjacent to B, and A < B. Every node N except the source has a unique parent
which is denoted by p(N). Let com(B,C) denote the common ancestor of B and C such
that every other commeon ancestor of B and C is also an ancestor of com(B,C). Given
two nodes B and C, com(B,C) always exists, and is unique. Also Bg,c = Reom(n,c)-
Let S(4) = {X|p(X) = A}, and D(A) = {X]|A <X X}. With S(4) is associated an
ordering O4 : S(A) — {1,...,|S(A)|}, where |S(A)| is the size of S{A). A.SONS in the
above code corresponds to the set S{A), and O, indicates the ordering of the nodes in
A.SONS. Let E(B) = {X|X & 5(p(B)), Op(5)(X) < Op(s)(B)}, and F(B) = {X|X €
S(p(B)), Op(8){B) < Op(m)(X)}. Define a total ordering <, among the nodes in a tree
ne'twox;k as follows. For any two distinct nodes B and C, let A = com(B,C},

1. £ B<C,ie. A= B, then B <, C.
2. H C < B, then C <, B.
3. I B,C € S(A), then B <, C if O4(B) < 04(C), and vice versa.

4. Otherwise, let B; and C; be the two nodes such that B < B, C < Cj,and B;,Cy €
S(A). Then B <, C if By <, C}, and vice versa.

That is to say, if node B is scanned before node C in the pseudo-code of LRD {section

3.3), then B <, C, and vice versa. Let Q(A) = {X]X <, A} be the set of (secondary)

nodes that is scanned before A. The following relations among various sets defined above

are noted.

36

Figure 3.7. Classification of nodes in a tree network (wrt. node A)

Lemma 3.11. D(4) = {A}U (U.esn) D(z)). i
Lemma 3.12. If A is the parent of S, e, A = p(S), then Q(S) = QA)U
(41U (U.ezs) D@)- 1

87

Let A be a node in a tree network, and node NV be any ancestor of node A (refer
to Figure 3.7). Let By n = {X|com(A,X) = N}, Gany = Ban 0 Q(A), and Hyn =
Ba,n — Ga,n. With respect to node A, all nodes in the tree are cyiassiﬁed into three sets;
Urec(a) Gan: D(A), and UNeC(A) Ha, n. Accordingly, Ar, is split into three terms as

follows. As TA =z Zx RA,.-:C: = Z; Rcam(A,x)Cm

ATy =4 (Z Rcam(A,:)cz)
z

= Z Rcom(A,z)ACz
T

> RN(3 AC,,)-!»RA). ac

NeC(A) EBA.N zE€D(A)

= > Rv| Y AC:+ Y AC:|+Ra Y. AC,

NeCc(A) 2EGA.N zEH A N zED{A)

= > By| D AC.|+Ra), AC.+) Rn| Y AC.
zEG AN z€D(A) NeC(A) z€H4, v

NeC(A)

The three terms split from Ar, are as follows:

ATa= Y RN(3 AC‘:)

NeC(A) zE€Ga,w

AoT4 = Ry (z AC,)

2 D{4)

NeC({A4) sEH .5

AsTa= Y. RN(> Ac,),

Lemma 3.13. Q(S) = Unec(sy Gs.n- Moreover, if A = p(S), then

58

U Gs.N=(U GA,N) U{A}U(U D(z))

NeC(s) NaeC(A) z&B{S5)
U HS,N == (U HS,N U U D(:z:) P
NeC(s) Nec(4) z€F(8)

i
Theorem 3.14. Refer to the pseudo-code of LRD in section 3.3. As procedure SCAN(A,T0)

is called and executed at the mth relaxation step, the following statements are true.
(1) The value of 3__cp(a) ACY™ is returned by the procedure.
(2) When the procedure returns, variable A.c2 contains the value of 37 cp(4) 2iep(z) ACfm).
(3) The value of the parameter T0 equals AlTX") + AsT‘gm"l) .
(4) Before entering procedure COMBINE, T, is updated to be consistent with all the
changes of Ci(k) fork <m,vi,and for k= m, 1 <, A.
Proof:
1. (1) is proved by induction. If node A is a leaf, i.e., S(4) = ¢, then D(4) = {A}.
In this case, SCAN returns ACL"‘) (A.Ac in the code). Suppose S(A) # ¢, and
(1) is true for all nodes X € D(A). In this case, SCAN returns A.Ac + Y o =
ACTY + Tsesa)SCAN(S,) = LY + Tsesa) Tien(s) 8C; ™, which equals
Yien(a) AC™), by Lemma 3.11.
2. By (1), SCAN(S1,) returns 3 .cp(s1) AC’f"‘). When instruction {c) marked in the
code is executed, S.c2= 3 g1 p(s)u(s)SCAN(SL,-). Then at the time when in-
“ struction (f) is executed, T = Y51c5(4)SCAN(S1,+), where A = p(S). Thus
5.62= 1ep(5)SCAN(S1,) = Tsrer(s) iensn ACT™. a
3. (3) is proved by induction. If node S is connected to the source directly, then

C(S) = ¢, and A;Tém) = A3T§"“1) = 0. Suppose node § is not connected di-

59

rectly to the source, and (3) is true for p(S) = A. Then by Lemma 3.13, AlTé’") =
AiT,(Am) + RA(‘QCX“) + 2 zep(s) ZiGD(z) Aci(m))’ and AaTém-” = A;;TX""” +
RA(Z:&F(S) ZiGD(x) Ac‘gmml)). Thus

AT + 83T = AT + AT+

RAAC‘(‘m)ﬂ-R Z Z AC("‘)-{—RA Z Z AC(m—l)

z€E(8)€D{x) z&F(8)ieD(z)

By (1) and (2), ATS™ + AT Y = AT + AT + RuaCY
+RA Y cp(s)SCAN(z, ")+ Ra(S.c2). A T™ +asT{™ ~1) 5 passed as the parameter
T0. T0and RAAC{™ are added up to ", by instruction (b). Ra 3= ,cp(s)SCAN(S,)
is added to 3, by instruction (d). Finally, when SCAN(S,T) is called, the parameter
T equals 3 p +Ra(S.c2) = A TS + ATV, ’

4. (4) is proved by induction on m. When SCAN(A,TO) is called at the first relaxation
step, TO=4,T, (1) is added to Ty by instruction (a) before calling procedure COM-
BINE. Suppose (4) is true for k = 1 up to m— 1. In procedure COMBINE ((m — 1)th
step), RaACT™™ is added to T4. Then Ra-SCAN(S,) = Ra Yiep(s)AC™ Y
is added to T4 one by one by instruction (e) for VS € S{A). Thus all terms of
Angm‘l) are added to T, before the end of the (m — 1)th relaxation step. As pro~
cedure SCAN(A,T0) is called at the mth relaxation step, T0 = AiTim) + AaTX""U
is added to T4 (instruction (a)) before procedure COMBINE is called. 1

3.7 Appendix: Proofs of Theorems

The following lemmas are used in the proofs of Theorem 3.2 and Theorem 3.3.

Lemma Al. Suppose A and D are two real symmetric n X n matrices, and X is an
n X n nonsingular matrix. f A = XDX T then A is positive-definite if and only if D is
positive-definite [44]. i

60

Lemma A2. The principal minors of a positive-definite matrix are also positive-definite
[44]. i
Theorem 3.2'. Suppose tﬁere are N nodes in a collection of tree networks. Let R be an
N x N matrix with elements R; ; equal to the resistance of the path between the source of

node 1, that is in common with the path between the source and node j. Then the matrix

R is symmetric and postive-definite.
Proof:

It suffices to consider a tree network since the R matrix associated with a collection
of tree networks is just the direct sum of the R matrices associated with individual trees,
It is easy seen that R;; = R;;, so matrix R is symmetric. As the network is a tree, there
are same number of branches as there are nodes (the source, or the root, is not considered
as a node in this case). With each node 1 is associated a branch b(t) connecting the node
to its parent node p(i}. This node-to-branch mapping is one«to;one and onto. Let matrix
X be defined as follows: If the path from the source to node ¢ passes through branch b(y),
then z;; = 1; otherwise z; ; = 0. Note that X can be obtained from Inxx by a sequence
of row operations op(t): adding row ¢ to all rows j such that p(;) = ¢. Starting from
the source, this operation proceeds in a top down manner until the leaves of the tree are
met. op(i), Vi preserves the determinant of the matrix, so det(X) = det(l) = 1, and X
is nonsingular. Let D denote the diagonal matrix with diagonal element d;; = ry;) > 0,
rp(s) being the resistance of branch b(z). It is obvious that D is a positive-definite matrix.

Check that XDXT = R. Finally, by Lemma Al, R is positive-definite. i
Theorem 3.2. The Y[, & x Y iL, b; matrix R with elements R(; ;) (u,v) = Ré:: 3';} is
symmetric and positive-definite.

Proof: immediate from Theorem 3.2/, i

61

Theorem 3.3. The matrix A4 in (3.5) is symmetric and positive-definite.

Proof:
Let E be an @ x N (@ = T2, (b ~ 1)) matrix with elements

{-—1 fi=u,forj=1,...,bi =1, ¢t=1,...,P

€fe o —
(6.5) 0 otherwise

Consider the SN b, x TN b; matrix X = (I%’%Q In Nf_ ETE)' As det(X) =
x

det (E{T (}) =1, X is nonsingular. Let A’ = XRXT, where R is the matrix of Theorem

3.2. Then by Lemma Al, A’ is positive definite. Check that matrix A is the Qth principal

minor of A’. By Lemma A2, A is positive-definite. i
The following lemmas are used in the proof of Theorem 3.7.

Lemma A3. Let 4;; be the ith diagonal block of the matrix 4 in (3.5). If R((: ;')) =

for j # v, 7,v = 1,...,b;, then the determinant of A;; equals

by
(IT2ew) (S 75) (310

where R(; z) is the source resistance of node N(; k).
Proof;

As R((: ;’)) = 0 for j # v, the (j, v)-element of A, a; ;) (i,v)» €quals Rei s,y + 8,0 R)
This lemma is proved by induction on the order of the matrix A4;i: n=b;—1. Forn=1,

Aii=[Ri,1 + Ruyl= [BenRea (g + moyy)]

Suppose (3.10) is true for n = m — 1. Then for n = m(= b; — 1},

62

(Ry + By Riib) oo Rib)
R Ry + Bipy - Ripy)
A= . . .
\ Rus Riie) cor Rppiony + Ry
[Ry Riipy) Rp, (3.11)
—Rizy Bz +Bugy - Rip)
- 0 R(i,b‘.) . R(;’;,..)
\ 0 Ripy) cer Rgp-1y + R

Expanded along the first column, the determinant of A;: equals R, 1) (H?f:z R(‘-,k))
b; by - B; b;
(Zk:z 'iz';l',:,’) + Bi) (Hkma R(i,k)) = (szl R(i.k)) (Zlc.—.i ‘ﬁ;;l‘;;;) . i
Lemma A4. Let A;; be the ith diagonal block of the matrix A in (3.5), and D;; be the

inverse of A;;. If Rg”;’)) =0forj#v,5,v=1,...,b, then

b 1 4 S —
PR (Chotiss mly) o= (3.12)
(id)t("x”) - "Afid) Otherw.lse ‘
{i.9)

where d(g,j),(g,v) is the (j,v)-element of D;’,;, and A(,"J') = Rog 23‘ T,
ht) k=1 Xk

Proof: Tmmediate from inverting (3.11) using cofactors. |

Theorem 3.7. If both conditions of (3.9) are satisfied, then algorithm LRD is equivalent
to the block Gauss-Seidel method of (3.6).

Proof:.

Algorithm LRD, plus condition 1 of (3.9), implies that T ") = T4!, The, R{ES c{raY

N by p(u9) -(m) (m+1) . T’L‘Tmﬂ)
- 3 " a3) i,
+ Zu:—.:’ Zv-.—.l R(i:i) C(u,u)a and Tg = “““E‘;l:"’:“il‘- Thus
=t K [3]

83

(mr1) _ ~(m) (m+1)
C(m) C(' 5] t AC(- 3

{1} {m+1)
T =T

(m) o
C(w) R j
b.’ T(:"*’” T(:"*‘U
(m) 1 Zk-— { k)Rh k)(kA
=Cent R T
’ {1.4) k=1 Bin
by =1 b R{“ 1) R(“) by R(“ R(“)
c(m™ k) T M) almd (4,%) (4,9)
(:r;) + A Z Z Z : R ‘ C(::u)) + z Z : B ’ C((:::)})
1v=1 (k) w=iv=1 (i.k)
i f¥=1 be—1 R(‘h") - R(“N) - R(“»hs) + R{u’b")
(3:k) (8,4} (i,k) ,7) 1
= i + g 2o 5 55 2Rl TR oo
k=1 \u=1 v=l (4,k)
by=1 plw.v) (w,v) _ plu,by) {,ba) N (mibu) _ pluda)
Ri —Rujy — By + Eagy o(m))
Z Z R {u,v) + Z R Cyu
=i vl (i,k) w=1 (4,k)
(3.13)
where A ;) = = }_: . On the other hand, the block Gauss-Seidel method of
65) dawms Ry

(3.6), plus condition 2 of (3.9), implies

b —1 $=1 by—1 by—1
+1 ma1
iy = Zd“”’ (k) (b“ b= 2 2 sk Cinm ~ Z D a6k, (u,v))

wa=] vl umidl vl
- L by Rluts
= A(':J)(Z - R(; Ic)) (Z (R(f,ﬁ;} (t k)) Z Z a(hJ) (“g")c{u,t)) —
k=1,k#] ’ u=1 u=l v=1
ibil m) N A [(gt _ gluba)
$3J Uy U0y
(i) Cl,) """.—(Ripy —Ean™) Cu—
=i+l v=l {u g %%j R 2;1(¢ «h))
i1 by~1 P oby~1
3 apnwnCin’ - 2. 2 a6, (“»")C(u,u))
=l y=l =il v=l

(3.14)

where @, 4),(4,0) is the (i, k), (4, v)-element of the matrix A in (3.5). The coefficients of

64

some terms of (3.13) and (3.14) are reduced as follows:

o Term Cpivy in (3.13), for v = 1,...,b;, v # jt

by (t) R(‘lr”) — R("ybl) o R(‘rb 3|

<‘ k) (.7} {1k})
A
w3 o

B; R§=:§ b; 123)
i i
LTI Pag S ppct

Ruwy £ Bow

‘l (.’&i
{:4) Riwy Rien

=

e Term C(; ;) in (3.13):

R(%,J) pI) _ pliby + Rle:)

(%, %) {5,7) (5:k) {4:)
1+ A4,
© ;‘):_: Ry

by (w; b; R((";:g b; ? Ze))
3. k § \]
A('!J) Z R(:‘) (‘sJ) Z Z

k=1 S Buw o Bew

=}1=-1+0

=0

65

e Term Cy in (3.14), foru=1,...,N:

&; N (“161) — R(“‘&u) N (“ybu) - R(uras)

b;
("rbi) (i,7) Q. {1.5:) {4,1)
Beiy 2. D Rom R CIDMDD R

ka=1,k#f u=l P==1 d56g us=l

bi N <“ ba) _ plube) _ pleda) (wb)
pep 3% Rivd ~ Ry ~ Bis) T Rk
= LIV .
k=1,kss u=l Ri iy

b; N (“ bu) R("»bu}

=aeny 3% Bap — B

ksl kg u=l Ri b

N (u bu) R(u b,,,

= B(if) Z Y B, HR({,&) (i)

k=l us=l

o Term C(y) in (3.14),forv=1,...,b,— 1, u=1,...,P,and u # &

b;
a’(‘d) {u,v}) a(‘ 1) (w,v)
Agig) = Agi) Z
k=1, k] (6,k) ey PR S0

— . a(i’k)v(“!v) = 8(4,3) {u,v)
- A("J) R \

k==1,kss (3,k)

b; (u!") {uv) {u,by) (u.bu) - (u,v) (u,v) (w,ba) (usba)

TR i 2) B N 0 W 3 W Rivo+ RBin® = Bab)
- ("1]) Z R(‘ k)

by {wv) _ {uw) _ (u.bu) (w.bu)
= A i Z Riiwy —Buj) —Buw * Rej
- (3,7} — R(i,k}

All the corresponding coefficients of (3.13) and (3.14) are equal, so the two methods are

equivalent.

66

Chapter 4

Timing Simulation of Transistor Networks

In section 2.1, a timing model for MOS transistor networks was presented. RC net-
works are used to approximate transistor networks for estimating delays between logic
events. Two algorithms were presented in Chapter 2 and Chapter 3 for calculating the
delays of RC tree networks and general RC networks, respectively. In this chapter, these

algorithms are applied to perform timing simulation of transistor networks.

The concept of dominant path has been successfully used in logic simulation of digital
MOS circuits [5,6]. This concept also leads to a natural tree decomposition of RC networks,
as explained in section 5.1. In most cases, the delays estimated from individual tree
subnetworks are already very accurate. For other cases, the technique of load redistribution
can be used to calculate the exact delay of every node. In section 4.2, logic simulation and
delay estimation are combined into one unified process. The mechanism for scheduling logic
events is similar to that presented by Terman [46]. As each new event is invoked, the delay
values as well as the logic states of the nodes in the network are updated incrementally.

Simulation results are discussed in section 4.3.

4.1 Dominant Path Decomposition

Consider a transistor network driven by both VDD and GND. There are a certain
number of paths that lead a node in this network to either one of the sources. Among all
these paths, the ones with the smallest series resistance (the source resistance) are called
the dominant paths of the node (in general, there is more than one such path). In most
practical cases, all the dominant paths of a node lead to the same source, and the logic

state of the node is set to that of the source, 1 for VDD and 0 for GND. Similar to the

87

formulation of (3.1), the source resistances of the nodes and the series resistances of the

paths are related as

{Rgggﬁrw i=1,...,a,i=1,...,N (4.1)

R; = minj=y,...,a, Rf i=1,...,N

where R; is the source resistance of node Ny, r, ; is the resistance between node N; and its
jth neighbor, and Rf is the series resistance of the jth path of node N;. The determination
of the R; and Rf values are equivalent to the single-source shortest path problem with
positive costs. There exist quite a few algorithms for solving this problem, for example,
Dijkstra’s algorithm [2]. The solution of (4.1) exists and is unique, and the time complexity
of the algorithm is O(n?), where n is the number of nodes in the network. Equation (4.1)
needs to be solved only once and, as the transistor network evolves, the dominant paths

and source resistances of the nodes and the series resistances of the paths can be updated

incrementally.

The dominant paths of the nodes in a network lead to a very efficient scheme for
estimating delays. Recall, in section 2.1, that any (connected) RC network is driven by
one and only one source. If a network N is driven by both VDD and GND, then this
network is decomposed into two (or more) groups: Ny pp and Ngnp which consist of the
nodes of N whose dominant paths lead to VDD and GND, respectively. A resistor between
two nodes in the same group (Nvpp or Ngnp) is considered to be a resistor of the group.
A resistor between one node in Nypp and another node in Ngyp is considered as if it
were not present. Such resistors are called the “bridges” between Nvpp and Ngyp. The
above scheme can be generalized to decompose an RC network even if the nodes are driven
by the same source. That is to approximate the load distribution such that a node loads
only those nodes that are along its dominant paths, and has no effect on f‘.he nodes along

other paths, whether they lead to the same source or not. This scheme, referred to as the

68

source source
(a) {b)

Figure 4.1. Tllustration of the DP (dominant path) decomposition scheme

dominant path (DP) scheme, decomposes a network into a collection of trees since a node
A cannot be in the dominant path of another node B if node B is in the dominant path
of A. If a node has more than one dominant path, then the load is equally distributed

among these paths.

Example 4.1. Consider the network of Figure 4.1.a. which consists of four nodes: a, b,
¢ and d. There is only one source driving the network. The dominant paths of these nodes
decompose the network into three trees, which are indicated ’in Figure 4.1.b. Branches
b—d and a — b do not belong to any of these trees, and are called the bridges among these
trees. The delays of various nodes are calculated independently for each tree. There are
two dominant paths incident on node b, so the node capacitance is split into two equal
parts. The delay of this node is approximated by the average of the delays evaluated from
the two dominant paths. The same goes for node d. If the difference between the delays
of every pair of nodes that are connected by a bridge is within certain error bound, then
no relaxation process is necessary. Otherwise, every bridge needs to be bound to a tree
to start the relaxation process. Note that the load redistribution technique applies only
to a collection of trees that are driven by the same source. Two trees that are driven by

different sources are not allowed to be connected by bridges.]

As an aid to detect conflict conditions in a network, the source resistance of a node to

69

z z z

i | 2 | 2
X { .y % b Y N v
3 3 2 3| ! 2

v v v
(1 (2) {3)
Figure 4.2. The DP decomposition for Example 3.9

VDD (the smallest resistance among the paths that lead to VDD) is compared with that
to GND. A conflict condition is detected when the difference between the two resistances

is smaller than a threshold value.

Example 4.2. The nMOS circuit presented in Example 3.9 is considered again. The
dominant paths of the nodes in each of the three cases are shown in Figure 4.2. The delays

evaluated by the DP scheme (T”) and the exact values (T') are listed in Table 4.2.

case 1 2 3
Tp.0,,T; | Te T, T, T, T, T,
T ~ 9 6 10.5 9 75| 11.25
T - 8.625| 6.25 | 10.5| 769 | 6.87| 10.09
=T 0% 42%| -42%| 0% | -25%| 31%| 1%

Table 4.1. Error Percentage of the delays calculated by the DP scheme

In case 1, the network is a tree, so the delays evaluated by the DP scheme are all exact.
In case 2, both paths incident on node Z are dominant, and the delay calculated is also
exact. Independent of the size of the network, the relative errors of case 3 and case 2 are
typical for nontree networks with and without bridge connections, respectively. Such error

percentages are quite acceptable for most practical applications. |

70

To a node, there are two kinds of nondominant paths: one kind leads to a source
(nondominant driving paths), and the other kind leads to an open end (loading paths).
A pair of nondominant paths may also result in an phantom path, i.e. a loop with no
side branch that connects to a source. Such paths are no different from those which lead
to an open end. Note that all dominant paths must lead to the source. The presence
of nondominant driving paths causes an error in evaluating delays, while that of loading
paths does not. On the other hand, the following two conditions are sufficient for the exact

calculation of the delay of a node N using the DP scheme:
o All the driving paths of node N are dominant.

s For those nodes that are along a driving path of N, all their driving paths but the

one that passes through N are dominant.

Another factor that affects the accuracy of the DP scheme is the relative magnitude
of the node capacitances. Note that only the values of resistances participate in the
determination of dominant paths, not the values of capacitances. Roughly speaking, the
more uniformly the capacitances are distributed in the network, the more accurate the
DP scheme is. The following example illustrates the effect of the capacitance ratio on the
accuracy of the DP scheme.

Example 4.3. Consider the simple circuit of Figure 4.3.a which is driven by a source

ry (7’+r2)

from both ends. The exact delay of node 1 of the circuitis T = ey ey L U ey .;(‘::_'2)62.

On the other hand, the delay 7" estimated by the DP scheme depends on the relative
magnitude of the three resistors: 7, ry, and r5. There are five possible cases, of which the

values of T7 and the relative errors E, are listed in Table 4.2. The term E; is T'; T i

T > 7T, and 1'-11‘—,‘,—2 otherwise. Shown in Figure 4.3.b is E, plotted as a function of logr,,
with ¢, as a parameter, where r, = %, and ¢, = -2-;— The following remarks refer to

Table 4.2 and Figure 4.3.b.

71

source i | r 2 r
A AA a2 Source
C ¢ == C
|
T T
(a)

f' >r'~r2

r =rer,

source | | | source

‘————-—:] ~~~~~~ E——-— e -
100 CiiCi2

(c)' (d)

Figure 4.3. Effect of capacitance ratios on the accuracy of the DP scheme

72

T T T

T
riop +(rry i
fi+r<ry 1 (Cl + Cg) T—S(———L—r+rg CTFrocs

1
" :0Y Fie
2 rg=rybr rifer + 2) m‘a{m
¥i1Cp—~TaC
3 ryRT > Ty, T T DTy i€y PR CETEE]
4 ry=r4ra Taarlata 0
5 rL>r4r (r+r2)ey + r2cn =2

Table 4.2. T’ and E, for different ratios of ry,rz, and r

e If ry > ry + r, then the approximation is made as if the resistor r; were not present.

As a result, T is larger than T. E, increases as r, gets larger, or ¢, gets smaller.

- @ If ry > r+ rg, then the approximation is made as if ry were not present. In this case,
E, is independent of the value of ¢,. With r{ and r; interchanged, this error is always
larger than that in the previous case. As ¢, — 0, the two errors become identical, and

the two curves become symmetric.

o If ry < r+ry and ry < r+ ry, then the approximation is made as if the resistor
r did not exist. Node 1 is fully loaded (overloaded) by ¢;, and is not loaded at all
{(underloaded) by ¢;. Although these two errors are of opposite sign, they do not
always cancel out exactly. As the ¢, varies, the error E, changes tremendously. As
two extremes, E, — 50% as ¢, — oo, and E, — —o0 as ¢, — 0. Fortunately, in a

practical circuit, such highly asymmetric situations do not occur very often.

o If ry = r+ry, then E, = 0; if r2 = r + ry, then E, = -g-;cf_;g. Compared with the
errors of the other cases, these two values are considerably smaller. Moreover, a small
perturbation of the values of r's at these points will result in a drastic increase of
the error. In fact, the smaller the perturbation, the larger the increase of the error.
This phenomenon, due to the discontinuous (with respect to r) approximation of load
distribution, is common to various networks. One possible modification of the DP

scheme is to consider paths with slightly larger resistance to be dominant as well.

o Taker; =r=ry =1, ¢; =1, and ¢z = 100 to show how algorithm LRD corrects the

73

errors caused by the DP scheme. The éxact delays of nodes 1 and 2 are: Ty = 34 and
T, = 67, respectively. The dominant paths of these two nodes are shown in Figure
4.3.c. and, under the DP scheme, their delays are ’I’{ = 1 and T3 = 100, respectively.
To start the relaxation process, bridge 1 — 2 is linked to either node 1 or node 2. If it

is linked to node 2, then the network is decomposed as indicated in Figure 4.3.d and

4 T.

)

node 1 is split into two parts. At the first relaxation step, Tlm = -’l‘-l-—.-—-ﬁ%’i- = 34,
;'T riry

T(l) -T!
Ac,s = *‘_“““"“; T 2 = 33, and sz = T4 +r3- Ag, , = 67. One relaxation step is
’ 2
enough to correct the values of the delays. i

4.2 Simulation Algorithms

The evolution of a transistor network is represented by a sequence of logic events,
sorted by time. Each event corresponds to a change of the logic state of a node, from 1to
0, or vice versa. At the time when an event is scheduled, say to change node A from L to
I, the logic state of node A is set to X first, indicating that it is in transition. Not until
the event is activated after a certain delay does the state of A switch to L. The activation
of this event will affect other nodes in the network through the transistors whose gates are
controlled by node 4. Consider the circuit of Figure 4.4.a. Initially, transistor M is turned
off, and networks N1 and N2 are independent of each other. Let Rp and Rs denote the
source resistances of the two lateral nodes D and S (drain and source) of transistor M,
respectively. At time T, an event is invoked to switch the gate node of M and turn the
transistor on. As a result, the series resistance of path Pl of node D changes from oo to
Rs + Rpy, where Ry is the ON-resistance of M. Likewise, the series resistance of path

P2 becomes Rp + Ras. One and only one of the following five conditions is satisfied.

1. Rs + Rpe > Rp and Rp + Ry > Rg: P1 and P2 are both nondominant paths of

node D and S, respectively. Under the DP scheme, neither the logic state nor the

M M
Pz . Py source 1 =i- source |]
N ifffore ol
115 D
\G3
N2 3
sgurce source source source
(a} (b) (¢)
Figure 4.4. Network configuration before and after transistor M is turned on

delay value of any node of the network is changed.

. Rs + Ry < Rp: P1 becomes the dominant path of node D. Take the network
of Figure 4.4.b as an example. The dominant paths of the nodes before and after
transistor M switches are indicated in Figure 4.4.b and Figure 4.4.c, respectively.
With M turned off, node A belongs to tree G, so its logic state equals, or is scheduled
to be, the state of the source driving G;. As M is turned on, A becomes a part of
tree G3, and its logic state will be driven towards the source of G3 which may be the
same or different from that of Gy. The above argument’a.lso applies to node B. Trees
G1, G2 and G3 are perturbed by transistor M’s turning on. The logic states of the
other nodes in these perturbed trees do not change; however, their delay values may
be affected. The ﬁlost: primitive approach to updating the delays is to evaluate the
stored charge of each node of these trees and use algorithm TREE to recalculate the
delays. If there is no event scheduled for a node, then the stored charge of the node
equals O or the node capacitance, depending on whether its logic state is the same as
or opposite to that of the source driving it. The simplest way to estimate the stored
charge of a node when an event is being 5chedu1ed is by way of linear interpolation:
Q@ = Qo+ -T*i%f—'—zi(c — Qo), where @ and Ty are respectively the charge and
delay calculated at time Tp when the event is scheduled. More accurate estimation by

using an exponential function is also possible, but unwarranted considering the level

75

of approximation being used.

The other three cases (Rp + By < Rs, Rs + Ry = Rp, and Rp + Ry = Rg) can

be dealt with in a similar way.

The following pseudo-code describes a simulation cycle:
procedure sim.cycle;
begin
put input events into the event queue;
while (event queue not empty) do begin
1. fetch an event from the top of the event queue;
2. update the node state corresponding to the event,
3. propagate the effect of this update,
and put all affected nodes in the event queue.
end;
end;

It was pointed out, in section 2.2, that the definition of delay (2.1) is equal to the
Elmore’s delay in the case of zero initial charge. In what follows, the consistency between
these two definitions is discussed for the cases of nonzero initial charge. This discussion
also suggests another simulation algorithm that is very efficient, and gives the exact delay
value for the end node of a chain of transistors. Consider the chain of transistors in the
tree network shown in Figure 4.5. Initially, all the transistors in the chain are turned off,
and all the transistors in the side branches are turned on. All internal nodes are without

initial charge. Compare the following two cases:

1. All transistors in the chain are turned on at the same time. This is a case in which

.

Elmore’s definition can be applied.

2. The transistors in the chain are turned on one after another, starting from M}, then

Ma,..., M,, successively. M; is not turned on until the nodes Ny - all settle

76

M, M, M,
source LN o L N; o .._f"L'L[\f“__{;
1. L f
NE Ni Nn
Figure 4.5. A chain of transistors in an RC tree network

down. This is a case where Elmore’s definition cannot be applied.

In case 1, Tp, the delay for the end node Ny, equals 3, (ri 3z, CF), where r; is the
ON-resistance of transistor 7}, and Cf is the total load capacitance of node Ny, including
the loads from side branches. In case 2, there are n time intervals to be considered. The
ith time interval starts when transistor M; is turned on, and ends when the nodes Ny __;
all settle down. T}, the length of the ith time interval, is equal to (Z;;:l rk)Cf‘. Note that
the stored charge in the nodes N; _ ,.; has been taken into consideration. It is easy to
check that 3.7, T} is equal to the T in case 1. i

In the case of nonzero initial conditions, Tp is still consistent with the Elmore’s
delay, as the above example indicates. In fact, 5.::';1 T: = Tp even if transistor M; is
turned on before the nodes Ny, ; settle down. As theorem 2.2’ and theorem 2.5 indicate,
the value of delay depends only upon the amount of charge yet to be supplied for each
node. Regardless of how the charge is actually supplied, the overall delay should always
be the same. Another thing to be noted is that, when the network topology changes, a
nonzero delay may be associated with a node which has been settled previously. This delay
corresponds to the settling of the glitches produced by the dynamic charge sharing effect.
Recall that Tp is equal to the area between 1 and the response curve. The larger value
of Tp always implies a bigger glitch. In practical circuits, small glitches do not tend to

produce transitions at the next stages. We set a threshold value and ignore all glitches

77

that are smaller than this value. This filtering action prevents circuit events from over-
propagation, and makes our algorithm more efficient. On the other hand, the occurrence
of a sizable glitch is very useful information for the designer, and our algorithm is capable

of detecting these glitches without any extra cost.

The result of the above example suggests a modification of the DP simulation scheme.
That is to consider a node not directly driven by the source, but by one of its neighboring
nodes through a dominant path. Take case 1 of the above example. Instead of driving all
nodes Ny, . n at the same time, the source only drives N; because only N; is adjacent to
the source. After delay time T} = r)c;, node Ny will change its logic state, and be able to
drive next node N3, which takes time T, = (ry + r3)c3 = Rgcy, where Ry = ry + r3 is the
source resistance of Na. Any other nodes that are also adjacent to Ny are driven by it, as
well. However, each node is driven independently (an additional approximation}, and the
delay is not affected by the presence of other nodes. Note that ¢; is the node capacitance,
as opposed to Cf' which is the total load capacitance of node 3. In general, node N; is

driven by node N;_i, which takes time T; = Rie; = (ry + ... + rijei.
The advantages of this modified scheme over the original one are as follows:

s Among the three parameters R, C and D for evaluating delay values, only R (source
resistance) needs to be calculated. The determination of the other two parameters
does not require any computation at all. Under this modified scheme, the total load
capacitance is replaced by the node capacitance for parameter C. On the other hand,
parameter D is implicit in the overall delay before the activation of the event corre-
sponding to its driving node. Note that the values of resistances are also essential for
the determination of logic levels, and this modified scheme is almost as efficient as a

pure logic simulator.

¢ Under the original scheme, all nodes N, . are inserted into the event queue at the

same time. Under the modified scheme, however, a node is not inserted until the event

78

corresponding to its driving node is evoked and removed. The average length of the

queue is in general much shorter for the modified scheme.
The disadvantages of the modified scherme are as follows:

¢ This modified scheme only calculates correct delay for a node that is at the open end
of a chain of transistors. An error occurs if some intermediate node is also of concern,

or the network is inore complicated than just a chain.

In summary, the modified scheme is more efficient than the original one; however, it
is less accurate. Depending on individual applications, this simulator can be easily tuned

to fulfill the requirement.

Based on algorithms TREE and LRD, an experimental simulator called SDS (Signal
Delay Simulator) has been developed. Some simulation results are presented in the next

section.

4.3 Simulation Results

Before any simulation can he done, the effective sheet resistances of various transistor
types must be determined first. Note that, in this section, the term “effective resistance”
is used interchangeably with the term “ON-resistance.” The high-field effect of MOS
transistors is ignored in our model, and the effective resistance of a transistor is inversely
proportional to its W/L ratio. The capacitance values can be obtained directly from
the fabrication data. To calibrate the effective resistances of depletion and enhancement
transistors in nMOS circuits, the inverter chain in Figure 4.6.a is considered. The W/L
ratios of the pullup and pulldown transistors are 8/2 and 2/2 (unit: A=2um)}, respectively.
The SPICE simulation result is shown in Figure 4.6.b. The time taken for two consecutive
inverters to switch, one up and one down, is 352 =0.9ns, The time taken for an up
transition is about 4 times longer than that for a down transition. The capacitance of

the output node is estimated to be 0.015pf. As a result, the effective sheet resistances of

79

enhancement and depletion transistors are the same, both equal to 9—32 /0.015 =12Kohm
The same analysis has been performed on multi-input nand/nor gates. The variations
among the resistance values calibrated by different gate configurations are only minor, as
predicted from our theory (Theorem 2.2). The SDS simulation result on the inverter chain

is indicated in Figure 4.6.c.

The schematic diagram of MOS circuits being tested and their input waveforms are
shown in Figure 4.7.a-4.11.a. Comparisons of output waveforms generated by SPICE and
SDS are shown in Figure 4.7.b-4.11.b. A comparison of the analysis time in CPU seconds
spent by each program is given in Table 4.3. Both programs runon a DEC-2060 computer,
The tabulated figures do not include the time spent in the read-in, setup, and read-out

phases of each program.

Circuit of Fig. 4.7] Fig. 4.8] Fig. 4.9] Fig.4.10] Fig. 4.1
of unknown nodes 4 8 9 11 48
of transistors] 13 6 22 104
of R’s and C’s 0 0 12 0 0
CPU-SPICE (sec) 10.3 12.3 12.9 40.3 108
CPU-SDS (sec) 0.07 0.05 0.09 0.12 0.31
CPU-SPICE/CPU-SDS 147 246 143 336 639

Table 4.3. Comparisons of analysis time between SPICE and SDS

Remarks:

e Figure 4.7.a shows an nMOS XOR circuit. Note that when input A goes high and
input B goes low, both the gate and source voltages of transistor M and transistor N
are changing, an effect that is not considered in our model. As a result, the output
delay estimated by SDS (2.0ns) is shorter than that predicted by SPICE (2.2ns); the
error is about 10%. Note that the value 2.2ns is obtained by cascading an inverter
chain to the output node, and using the same technique as we did for the inverter

chain (Figure 4.6.b).

80

LI
T
it

(c)

o O W P

Figure 4.8. Calibration of effective resistances by SPICE

81

T I
2 R

3 L I TIL

out Il LI
(b)

Figure 4.7. SDS and SPICE simulations of an nMOS XOR gate

5ns IOns
L L HHTHIT
2 35!
3 L T
4 ___II ’ L
s HIHHHIL B
1 11—
7 IHHHHTHTL e
I 11 1|

(b}

Figure 4.8. 5DS and SPICE simulation of an nMOS carry chain

83

fom R-2i
C~0.4pF 4
3 -
H 3 I %
g $C~0.69F
R~12KS)
C~0.4pF }“%
i

(a)

i M
2 TN} T
3 __ I Il
4 __JIIUIR AL 1117 ——
5 it mir—
(b)

Figure 4.9. SDS and SPICE simulation of an nMOS PLA

84

Sv

carry 1 —
= I re
. L
ESRTII
L
T
(b)

Figure 4.10. SDS and SPICE simulation of an nMOS one-bit adder

&8

oW

o\
—/__

(a)

= '
i :
iOns 20ns

¢, il
Co Jill
Cs i
Ca I

(b)

Figure 4.11. SDS and SPICE simulation of an nMOS four-bit adder

86

o Figure 4.8.a shows an nMOS carry-chain circuit. From the 5ns-10ns section of the
SPICE output (Figure 4.8.b), high-going signals degrade significantly when they pass
through the carry chain. The present implementation of SDS does not include the
effect of slow inputs; thus the estimated delay between node 1 and node 2 is the same
as that between node 7 and node 8. Furthermore, the body effect is only dealt with
by doubling the effective resistances of those transistors that are gated by a degraded
signal. The output delays estimated by SPICE and SDS are listed and compared in
Table 4.4. Note that the 0 — 1 and 1 — O transitions indicated in the table refer to
signals along the carry chain. The direction is reversed for the output signals. While
it predicts the correct qualitative behavior, SDS underestimates the absolute delays
of almost all the output nodes because the slope of the signals that drive the output
transistors is smaller than that in the inverter chain (the calibration reference). The
main problem is that the MOS pass transistor is not well approximated as a linear
resistor, since its conductance is voltage-dependent. To improve the accuracy, different
effective resistances may be associated with transistors of different usages (such as
pass transistors) [23] or different types (rising or falling) of transitions (20,21]. Note
that a static pre-analysis is required to determine the usage of transistors. For the
present implementation of SDS, no static pre-analysis is performed, and the effective
resistance was established by a single calibration, and is only a function of the type
of the transistor (enhancement or depletion). Simple as it is, SDS works reasonably

well for circuits without long carry chains.

1 - O transitions 0 — 1 transitions
Node 2 4 8 B 2 4 8 8
SPICE 0.83 1.17 1.87 2.15 1.95 2.72 3.80 4.30
SD§ 0.84 1.15 1.70 1.85 1.65 2.10 2.40 2.55
error 23%| -1.9%| -91%!| -14% -15% | -22%| -36%| -41%

Table 4.4. Delay estimation of the output nodes of Figure 4.8.a

87

s Figure 4.9.a represents the critical path of an nMOS PLA which contains 60 minterms.
The metal wires in the PLA are approximated by pure capacitances, and the poly-
silicon wires are approximated by six-step 7 ladder network. The estimated stray
capacitances and resistances of these wires are indicated in Figure 4.9.a. Both the
AND plane and the OR plane are driven by a strong buffer. The output delay esti-
mated by SDS (5.2ns) is about 15% shorter than that predicted by SPICE (6.1ns).

s Figure 4.10.a shows an nMOS one-bit adder. To exaggerate the effect of feedback
and multiplexing to test the capabilities of SDS, the W/L ratio of the pass transistors
is deliberately changed to make their resistances unreasonably small. The resistance
ratio among pass-transistors, pulldown transistors and pullup transistors is 1:30:120.
Compared with the SPICE simulation result of Figure 4.10.b, SDS detects all glitches
and transitions at approximately the correct time. Note that, although the length of

the glitch of SUM is not estimated very accurately, the time when it settles is.

e From Table 4.4, SDS runs two to three orders of magnitude faster than SPICE for
circuits consisting of fewer than one hundred transistors. Note that, in SDS, delays are
calculated independently for different transistor groups. The simulation time grows
linearly with the number of logic events, and does not depend directly on the size of
the circuit. The CPU-SPICE to CPU-SDS ratio grows drastically as the size of the

network increases.

s Recently, a new circuit simulation technique called “waveform relaxation” (WR) has
been reported in the literature {26]. This technique is claimed to have nice numerical
properties, and can speed up circuit analysis by at least an order of magnitude over
SPICE. One possible application of SDS is to provide initial waveforms for WR-
based circuit simulators. Note that a good initial guess of waveforms is crucial to the

performance of this type of circuit simulator.

88

4.4 Summary

Delay estimation and logic simulation are combined into one unified process through
the concept of dominant path. The usage of (2.1°) as the definition of delay is also justified
for the case of nonzero initial charge. An Bxgerimenta.l simulator, called SDS, has been
developed and applied to a number of test circuits. Comparison of the simulation results
with SPICE indicates that SDS is capable of analyzing the timing of digital MOS circuits
with reasonable accuracy, and much faster sirnulation speed. The circuit information
required for running SDS can either be extracted from masks [3] or be generated from

layout synthesis systems [22,53].

Like SPICE and other timing and circuit simulators, SDS deals only with designs
at the transistor level. To run SDS, the entire design must be flattened into transistors
and nodes. However, due to the composition capabilities of our model, simulation can be
done in a hierarchical manner, The generalization of the R, C, D parameters of two-port
RC networks to functional blocks, and the application of our timing model to hierarchical
timing simulation are discussed in Chapter 5. A timing simulator based on these principles

is described in Chapter 6.

89

Chapter 5

Hierarchical Timing Simulation

It was shown in section 2.3 that the timing behavior of a two-port RC network can
be characterized by three parameters: R: series resistance, C: effective capacitance, and
D: internal delay. These three parameters can be calculated in a hierarchical manner as
the corresponding networks are composed in various ways. In this chapter, this charac-
terization is generalized to semantic cells at any level of representation. Note that the
characterization of a “semantic cell” is such that the cell can be abstracted by its steady-
state behavior to interface with other cells. For any given timing discipline, there exists a
way to partition a system such that every subsystem is a semantic cell. In this chapter,
two-phase synchronous systems are used as an example to illustrate the principles of our

hierarchical timing model. These principles apply equally well to other timing disciplines

[10,43], and can be extended as necessary.

Two kinds of cells are distinguished in our hierarchical timing model: leaf cells and
composition cells. Leaf cells are the primitive components that have no sub-components.
A composition cell is a legal composition of leaf cells and other composition cells. With
each leaf cell is associated a logic and timing description, which is valid for all possible
input patterns and driving and loading conditions of the cell (as long as the composition
preserves the semantics of individual component cells). To obtain such a description, SDS

or other circuit or timing simulators can be used.

With each composition cell are associated a number of subcells which may be either
leaf cells or composition cells, and a set of nets indicating how these subcells are connected.
There is no explicit logic and timing description for a composition cell; however, it is

possible to derive such a description from the descriptions of its subcells either analytically

90

or by simulation. Once the logic and timing description of a composition cell is obtained,
the composition cell is reduced to a leaf cell, and the details of its implementation can be

totally eliminated.

In section 5.1, semantic cells of two-phase synchronous systems are characterized.
Composition of semantic cells is discussed in section 5.2. The TREE algorithm developed
in section 2.4 is extended for this purpose. Based on a one-input, one-6¢utput model, the
timing of a static aMOS PLA is analyzed in section 5.3. Using the results of section 5.2, the
timing behavior of the PLA is derived analytically from the behaviors of its subcomponents.
These subcomponents are merely buffers or multi-input NOR gates, whose delays can be
easily obtained using SDS. The effect of multiple inputs is considered in section 5.4. Two
propositions are given for deriving the output timing of a series or parallel connection
of transistors, the input timings of which are dynamically changing. Based on these two
propositions, the timing of a bit-serial multiplier and interpolator is analyzed in section 5.5.

The implementation of our hierarchical timing simulator is discussed in the next chapter.

5.1 Semantic Cells in Two-phase Synchronous Systems

In a two-phase synchronous system, all operations are igitiated by global clocks. The
period of a clock phase {the period from the rising edge of one clock to that of the other
clock) is greater than the maximum amount of time necessary to complete any computa-
tions that occur during that phase; the results are then ready to be latched by the clock
of the other phase. If the system is partitioned according to the phase relationships, then
every partition of the network is a semantic cell. The reason is as follows: When clock ¢,
goes high, the inputs of all ¢; cells switch to the results of the previous ¢3 computations,
and remain stable during the rest of the clock phase, Although the outputs of these cells
may switch several times during this period, the intermediate results are stoped by clock

$2, and have no effect on the system behavior. Only the steady-state value of an output

91

2
/ A s
/ v clock
/ VoL
! S, y .
1 clock é t\
: t clock”
I clock i .
| cloc : a
\ P 'ﬂi ,
! I
\ {
! i
A a clocked-cell /)
\
Figure 5.1. Clocked-cell: building block for synchronous systems

is of importance, and all internal nodes are stabilized at the end of this period. A ¢, cell
can be abstracted by its steady-state behavior to interface with the rest of the system, and

thus is a semantic cell. Similarly for ¢, cells.

A cell thus partitioned can be represented by the structure shown in Figure 5.1. All
inputs of the cell (except clocks) are controlled by pass transistors gated by a clock signal.
All outputs are static with no pass transistor blocking the way. Such a cell, called a

“clocked-cell” by Chen (8], is the primitive building block of any synchronous system 1

A semantic cell in a two-phase synchronous system is recursively defined: it is either
a clocked-cell or a legal composition of semantic cells. A phase attribute is associated with
each input to, and each output from a semantic cell indicating the active phases of the
input and output ports of the cell. A legal composition of semantic cells is such that the

following two conditions are satisfied:
a. ¢; inputs connect to ¢, outputs, and vice versa.

b. The period for both phases is sufficient for all circuits active during that phase to

! Pass transistors are the most common clocking primitive in MOS designs, The same

comments apply to any clocked signal gating discipline.

92

eftective ¥,

- elock period

¢ |

b L -
effective %, ‘
clock period

Figure 5.2. Effective ¢; and ¢, clock periods

reach their steady states. (5.1)

The checking of the first condition of (5.1) is purely syntactic. To assure the second
condition, the minimum clock period of both phases can be determined using the timing
model presented in this paper. The second condition is a strong one, and can be checked
for every cell without fegard to how it will be interconnected. It is often desirable, however,
to relax the second condition to allow the borrowing of time between ¢; and ¢, [1], as
often implemented in practical designs. A ¢, cell is not required to reach its steady state
before the rising edge of ¢2. As long as all inputs to ¢, cells are stabilized by the falling
edge of ¢2, a circuit can be made to function correctly. The “effective clock period” of 2
cell starts from the rising edge of ¢;, through the rising edge of ¢, till the falling edge
of ¢, (Figure 5.2). Similarly for a ¢, cell. To allow borrowing time between ¢, and ¢q,
condition (5.1.b) is replaced by the following three weaker conditions. Note that the term

“period™ refers to the effective clock period of a cell.

a. The network activities of two consecutive periods of the cell are loosely coupled, so

that each period can be considered independently.

b. The response of the cell at any period can be described analytically with reasonable

complexity.

93

¢. The period of each phase is sufficient for all inputs of that phase to stabilize before

the falling edge of that phase. (5.2)
One possible interpretation of conditions (5.2.a) and (5.2.b) are as follows.

o When the cell is excited at any period, all nodes in the cell stabilize to a fully charged

or discharged state before the next period starts. (5.2.2)

If (5.2.2) is satisfied, then we need not keep track of the stored charge of the internal
nodes any more. Although it is necessary to record the logic states of storage nodes of
a sequential circuit, the number of such nodes is much smaller than the total number of

internal nodes in the network.

During one period of the cell, an input state may switch once, more than once, or
not switch at all. In general, there are infinite number of input patterns that need to be

considered. To make the situation tractable; the following requirement is imposed.
o During any given period, the state of every input port switches at most once.(5.2.b")

In summary, conditions (5.2.2") and (5.2.b') determine whether or not a clocked-cell is
a semantic cell. Note that these two conditions refer to interactions among cells. Therefore,
whether a cell is a semantic cell depends not only on its content, but also on how it is

interconnected with other cells,

Depending on individual applications, conditions (5.2.a') and (5.2.b") can be further
relaxed to assure that every clocked-cell is a semantic cell. For instance, certain input
states are allowed to switch more than once during a given period, or certain internal
nodes are allowed not to stabilize before the next period starts. However, more complicated
expressions are required to describe the timing behavior of such a semantic cell. In this
paper, conditions (5.2.a') and (5.2.b’) are used as an example to illustrate the general idea
of our timing model. These two conditions, or the stronger conditions (5.1.a) and (5.1.b)
are believed to be satisfied by clocked-cells of most digital circuits. The set of timing

parameters presented at the end of section 5.2 are based on these two conditions.

94

Syntactically, a clocked-cell can be further decomposed into gate-level cells. According
to the argument at the beginning of this section, clocked-cells were the smallest possible
semantic cells in synchronous systems. With the relaxation of condition (5.1.b), however,
it is possible to treat gate-level cells as semantic objects. In particular, if both conditions
{5.2.a") and (5.2.b") are satisfied by the gate-level cells decomposed from a clocked-cell,
then the timing behavior of the clocked-cell can bé derived from the behaviors of these
gate-level cells analytically. The PLA example of section 5.3 and the multiplier example

of section 5.5 are treated this way.

MOS transistors are, in general, bidirectional devices; the signal may flow in either
direction. For a semantic cell, however, the direction of every connection port must be
determined. Note that this restriction does not exclude the possibility of an I/O port.
Although the direction of such a port changes dynamically, at any given clock period, it
is either an input or an output. One illegal situation is that two input ports of a cell
are shorted (even temporarily} by a conducting path of pass transistors within the input
network of the cell. We assume that some discipline has been applied in the input network

to assure “no fighting” between driven signals [39].

5.2 Composition of Semantic Cells

Consider a semantic cell with n input ports (Iy,.. ») and m output ports (Oy, m).
From the previous discussions, every input or output state of the cell switches at most once
during any given clock period. Suppose, during the current clock period, the input states
of the cell switch to VI, . at time TI; _ ., respectively. Note that all TI values of a
semantic cell under condition (5.1) are equal to 0, because new input values enter the cell
on the rising edge of the clock (the reference time). In general, the TI's may admit any
non-negative values. Suppose the output states are updated to VO, . m, and stabilized

at time TOy . m, respectively. Note that, in general, the values of the T'I's depend on the

95

driving resistances at the input ports, and the TQO’s depend on the loading capacitances at
the output ports. Consider the general situation of interconnections among cells indicated
in Figure 5.3.,a. An “interconnection™ (or “net”) is always of a tree structure. There are
several loading nodes (referred to as nodes Nj . ,), and only one driving node (node N,).
Although there may be more than one driving node in the case of a bus, we assume a
discipline in which only one driving node is active at any given time. All nodes in the
net are logically equivalent because there are no transistors separating them. However,
due to the stray resistances and capacitances of the interconnection wires, these nodes are
not electrically equivalent, and their delay values are different. Every driving or loading
node of the net is contained in a “partial® transistor group of the cell that contains the
node. The term “partial” is used here to mean that the boundary of the transistor group
is not defined unless the net is defined. According to the transistor level model presented
in section 2.1, every such transistor group can be approximated by a two-port RC network
for estimating delays. Note that the input port of the two-port RC network that contains
the driving node N, of the net is connected directly to the signal source {this network is
denoted by M,). The output port of the two-port RC network that contains the loading
node N; of the net is open (this network is denoted by M;, i =1,...,s). Let N/ denote the
node at the output port of M;. Referring to Figure 5.3.a, the net combines all these two-
port RC networks into one RC network through which these cells interact (this resulting

network is referred to as Mygr).

In section 2.4, a linear two-step algorithm (TREE) was presented for calculating the
delays of all nodes in an RC tree network where every branch is a pure resistor. The two

steps of this algorithm are repeated as follows.

1. The load capacitance CF of every node ¢ is accumulated and propagated from the
loading ends towards the driving end of the tree. If node ¢ is a leaf node, then

CF = Cy; otherwise, Cf = C; + 3., C}, where index j ranges over all succeeding

7

g6

(a) (b)

Figure 5.3. Cells and interconnections

nodes of node 1, and C; is the node capacitance of node 3.

2. The delay of every node is calculated incrementally from the driving end towards the
loading ends: Ty = Tp(y) + r,-C’f‘, where p(i} is the parent node of node i, Ty(;) is the
delay of node p(i), and r; is the resistance between node p{¢) and node .

This algorithm can be extendéd to deal with networks where every branch is a two-

port RC network. The two steps of the modified calculation are as follows (the differences

are underlined),

1’. load capacitance CF: if node ¢ is a leaf node, then Cf = Ci; otherwise CF = C; +
p (Cf‘ + C,-,j), where C; ; is the C parameter of the two-port RC network between

node 7 and node j.

2. delay value Ty: T; = Tpps) + Rp(3)iCL + Dp(i),i» Where Ry i and Dy ; are the R

and D parameters of the two-port RC network between node p(1) and node 1.

The delays of all nodes in network My gr can be calculated using the extended TREE

algorithm.

Consider the RC network derived from My gt by the following operations:

97

o Replace the two-port RC network M, by R,, where R, is the R parameter of M,.

s Replace the two-port RC network M; by C;, where C; is the C parameter of M;,

i, = 1yeeey 8
This derived RC network is indicated in Figure 5.3.b. Every branch of this network is
a resistor so that the original TREE algorithm can be applied. Except for the R, (driving
resistance} and C;’s (loading capacitances), all capacitances and resistances in this derived
network come from interconnection wires. The delay properties of a compositioh of cells

are based on the following theorem:

Theorem 5.1. Let T; and T; denote the delays of node N/ in the original and derived
Mpy g, respectively, ¢ = 1,...,8. Then I} = T; + D, + D;, where D, and D; are the D

parameters of M, and M;, respectively,

Proof:

First note that the load capacitance of' every node in the net is the same for both the
original and the derived Mygr. Let t;, L, t] and ¢; be the delays of node N, and N; in
the original and the derived My gr, respectively. The proof of the theorem proceeds from
the driving end towards the loading ends of My gr.

¢ Node N,: The signal source is the parent node of node N, in both the original and
the derived My gr. In the original network, ¢; = R,CX + D,, where CF is the load

capacitance of node N,. In the derived network t, = R,CL. Therefore, t} = to + D,.

¢ Node N;: Note that all the branches in the net between node N, and N; are pure
resistors. Therefore, the two algorithms add the same amount of delay to both ¢} and
t, to obtain the values of t] and ¢;, respectively. Thus t] ~ t; =t — t, = D,.

¢ Node N/: Node N; is the parent node of N/ in the original Nygr; thus T =-t] + D;.

In the derived My gr, T; and ¢; refer to the same node, thus T = ¢;.

Combining the results of the above three items, T = T; + D, + D;. B

g8

Note that D, and D;'s in the above theorem are only functions of individual cells,
and are independent of the interconnection. On the other hand, T; is only a function of
the interconnection, and is independent of the internal behavior of any of these cells. The
ability to derive T from these three terms analytically makes it possible to abstract and

compose timing behaviors of cells.

Timing Parameters

In summary, the timing behavior of a cell with n input ports (I, . .), m output
ports (Oy,....m) and ¢ internal states (S1,...,t) can be characterized by the following set of

parameters:
1. VO, for i = 1,...,m: the logic state of output O; after the network has stabilized.

2. TO; for i =1,...,m: the time when output O; is stabilized {all the output ports are

open and input ports directly driven by signal sources).
3. V&, for { = 1,...,t: the internal state S; after the network has stabilized.
4, CI;for i = 1,...,n: the load capacitance of input .
5. RO, for 1= 1,...,m: the driving resistance of output O;. (5.3)

These parameters are evaluated each time any input of the cell switches during a clock

period. In general, these parameters are functions of
o VI, fori =1,...,n: the state of input I; that excites the cell.
e TI;fori=1,...,n: the time when the state of I; switches to V I;.
. VS}O) fori=1,...,¢: the internal state S; before the cell is excited.
® VOfO) for ¢ = 1,...,m: the state of output O; before the cell is excited.

Among the five items of (5.3), RO, CI's and TO’s are generalizations of the R, C
and D parameters of a two-port RC network. TO’s and V' §’s describe the logical behavior
of the transistor network. These two items are not necessary in a two-port RC network

because the state of the output port simply follows that of the input port.

99

Note that, in this section, the input capacitances and output resistances are assumed
to be fixed when the corresponding port is active at a given clock period. While this
assumption is valid for output ports, it does not always hold for those input ports that
connect laterally to pass transistors in the input network. The input capacitance of such
a port depends on whether the pass transistors are on or off. The relative timing between
the driving transistors and the pass transistors affect the timing of the input port in a
significant way. A generalization of Theorem 5.1 is presented in section 5.4 when the effect

of multiple inputs is discussed.

5.3 Example: nMOS Static PLA

Consider the structure of a static nMOS PLA shown in Figure 5.4.a. There are n
non-feedback inputs, m non-feedback outputs, | feedback terms, and t product terms.
According to the phase relationships, this circuit is partitioned into two clocked-cells: By
is active during ¢y, and By is active during ¢3. The structure of B, is very simple: every
feedback or output term corresponds to either an inverting or non-inverting buffer. Each
buffer contains two inputs (I and ¢7), one output, and no internal states. Take an inverting
buffer as an example. Its schematic diagram with associated circuit parameters is shown
in Figure 5.4.b. The set of parameters for describing the timing behavior of this buffer
is indicated in Table 5.1. VI is the state of input I, and T1y, is the time when clock
¢ rises. We assume that input [is stabilized before TI,; therefore TI; is zero, and not
shown in the table. The general situation is considered in the next section. A subscript
is associated with every parameter in the table indicating that they belong to clocked-cell
B,. The TO, values in the table are based on the assumption that the output state is

switched; otherwise, TO; is 0.

100

B|,2 t Bl
= 3 B, cell
AND plane OR plane
A L < Il -
/” a—‘ e
L B, buffersy ~ 1B, buffers j<-%, B, cell
TELe T
. I
n inputs m outputs

o

RO,

L

I

o, o] s W

f
!
i
]
i
i
L)
\
§
1

‘\
B, cell ®

B, cell ‘

(b)

Figure 5.4. Structure of a static nMOS PLA

VII =1 VI; =)
VO, 0 1
TO, TIM + RyCi + R0y + RyCha TI,;, + B Cy + RaCay + RsC3
Cl, Cy Cy
ROy Ry Rs

Table 5.1. Timing parameters of an inverting buffer

Clocked-cell By can be divided into three gate-level subcells: By ; contains the input
buffers; By z is the AND-plane; By 3 is the OR-plane. Both conditions (5.2.2') and (5.2.b")
are satisfied by these three subcells; therefore the timing parameters of B; can be derived
from those of the three subcells. By ; can be treated in the same way as cell By. B2
and By 3 are both (a collection of) multi-input NOR gates. Refer to Figure 5.4.c for the

transistor circuit of an r-input NOR gate. The timing parameters of a single NOR gate

101

(c) (d)

Figure 5.4. (continued) Structure of a static nMOS PLA

are considered for the following two cases:
1. All the pulldown transistors are turned off.

2. Only one, say the jth, pulldown transistor is turned on.

case 1{0—1) 2(1—0)

TO TO =(max!_,TL)+ R,C| TO=TIL + R;Cy
CIE,...,r Cl,‘..,r Cl,...,r

RO Ry Ry

Table 5.2. Timing parameters of an r-input NOR gate

The timing parameters in the above two cases are indicated in Table 5.22. The values
in case 1 are used for 0 — 1 transitions, and those in case 2 are used for 1 — 0 transitions.
The delay values estimated for 1 — O transitions are always conservative since only one
pull-down transistor is assumed and are very useful in pattern-independent timing analysis
122,33]. The general situation when more than one pulldown transistors are turned on is
discussed in Example 5.4 and Proposition 5.5 of the next section. Consider one special

case in which all such transistors are turned on at approximately the same time; the two

2 The composition of delays may be done either at the input side or at the output side.

The TO values in the tables are composed at the input side.

102

R;’s in Table 5.2 change to i%—%:’ where the summation ranges over all transistors that
are turned on. This approximation is useful when the delays of a NOR gate under specific
input patterns are of interest. For the PLA, the output delay of an AND plane under these
conditions will be dominated by the pullup of the following OR Plane, and hence the issue

is largely academic.

Let TOy4, ROy i, and CIy ; be the timing parameters of cell By ;, for ¢ = 1,2,3. These
values can be determined from Table 5.1 and Table 5.2, respectively. Cell B, is composed
from these three subcells, and the stray capacitances and resistances of the (long poly)
interconnection wires are indicated in Figure 5.4.d. The lumped approximation of wires
presented in [12] and the TREE algorithm are used in calculating the timing parameters

of B;. The result is as follows:
o TO; =TOy,; + RO 1(Ca + Cly3) + 1R:Ca + TOy 2+
RO 3(Cy + Cly3) + FRsCy + TOy 3.
s ROy = ROy 3.
o CI) =ClI,;.
Up to this point, By and B; are analyzed independently. Again, TREE algorithm is
used to combine these two cells together. During a ¢, period, cell By drives cell By, and

the output timing of B; is equal to T0; + ROy - CI;. Likewise, the output timing of Bj,
during a ¢ period, is equal to TO3 + ROy - Cl,.

5.4 Effect of Multiple Inputs

Abstraction and composition of cells are discussed in the last section. The effect of
one input on the output timing of a cell is illustrated by the PLA example. Note that the
assumption that all pulldown transistors are turned on at approximatedly the same time
reduces an r-input NOR gate to an equivalent one-input NOR gate (inverter). If the PLA

had used a NAND structure, however, the reduction to a single wider transistor would not

103

¢
0 .
B— RIC
A—{ Rrgi

(a) (b)

Figure 5.5. Series connection of transistors

have been possible. In this section, the effect of multiple inputs are considered for both

series and parallel transistors connections.

Delay due to a series connection of transistors is probably the most important con~
sideration in any delay model. In the following example, the output delay of a two-input
NAND gate is analyzed. The result leads to a general expression (abstraction) for the
output delay of any transistor chain. Without this abstraction, at least 2n constants (re-
sistances and capacitances) need to be stored to calculate the delay, where n is the number
of transistors in the chain. With this abstraction, only n consﬁants are required. These
n constants are denoted as T) ... » in the example (also in the Proposition that follows),
Without abstraction, the computation time is of order O{n?). With abstraction, the order
reduces to O (n). There is no approximation made during the abstraction process, and the

delay calculated is as accurate as that done without abstraction.

Example 5.2. Refer to the two-input NAND gate in Figure 5.5.a. Consider the
following three cases that switch the output state of the gate' from 1 to 0. The transistor-
level model presented in Chapter 2 is used for the delay calculation.

1. B = 1 initially, and A4 switches from 0 to 1: The delay of the output after A switches
is Ty = R;(C; + C3) + R3C,.

104

2. A = 1 initially, and B switches from 0 to 1: Capacitance Cy is discharged to GND
already. The delay of the output after B switches is Ty = (R, + R,3)C;.

3. Both A and B switch from 0 to 1: Let T/, and TIg denote the time when A and B
switch, respectively.

o T4 < TIg: Let T} = R,;C,, the time it takes to fully discharge capacitance C}
with transistor M turning off. If Tl > TI4+Ty, then this case reduces to case 2,

and the output timing TO = TIg + T3. On the other hand, if TIp < TI4 + T},

then capacitance C; is only partially discharged when B switches. Define p =
ﬂﬁ—ﬁ.&. By using linear interpolation to approximate the stored charge of Cy,

the output delay after B switches is T] = Ry((1 - p)Cy + C3) + R;C;. As a

result, the output timing TO =TIg + T| = T4 + pT7 + T =TI, + Ty, which

is the same as the result of case 1. Note that the dynamic charge sharing effect

is directly modelled by our definition of delay [27].
o TIg < TI,4: This reduces to case 1.

In summary, when both inputs switch, TO = max(TI4 + T,T1p + T3). The output

timing of a series of transistors can in general be determined in the same way. i

Proposition 5.3. Let M;,..., M, be a series of transistors connecting a signal source
(VDD or GND) to an open output O (Figure 5.5.b). Consider the case when all these tran-
sistors are turned on, and the output switches to the logic state of the source after certain
delay. Let TI; denote the time when transistor M; is turnedon, f = 1,...,n. If M; is on ini-
tially, then TI; = 0. Let /¥; be the node between transistors M; and My,y,1=1,...,n~1,
Let Dy and C; be the D and C parameters of the two-port RC network between node N;
and output O with M;_,..., M, turning on. In particular, C, is the node capacitance
of output O, and D, = 0. Let R; be the source resistance of node N; with transistors

M;...,M; turning on, s = 1,...,n. Define T; = R; - C; + Dy, ¢ = 1,...,n. This value is

the output delay after transistor M; is turned on, under the condition that all the other

106

transistors in the chain are turned on initially. Then the output timing TO =

max rr, >0l + 7).

Proposition 5.2 is very useful in determining the critical path of an MOS circuit.
Consider a chain consisting of three transistors. Depending on the relative time each
transistor is turned on, the critical path to the output is different. For instance, let T =8ns,
T; =6ns, and T3 =3ns. The critical path goes through My, M; or M3, depending on the

input timings, as indicated in Table 5.6.

Th TI, TIs TH + T, T + Ts TIs+ T3 critical path
1 1 1 9 7 4 My
1 5 4 9 11 7 M,
i 1 8 9 T 11 Ma

Table 5.3, Timing parameters and critical paths (unit: ns)

In many situations, a series of transistors spans over two cells, and is thus split into
two different phases. For instance, transistors M and N of Figure 5.6 are in two different
cells, and are active at phase 1 and phase 2, respectively. According to Proposition 5.3,
the timing of node B when it switches low is max(TI4 + Ta, Ty, + Ty,), where T14 is
the time when node A rises, and Ty = r1(Cy + Ca) + r2Ca; Ty, is the time when clock
b rises, and Ty, = (ry + r2)Ca. Note that T4 includes delays of both phases, and can be
naturally split into two terms: Ta,1 = r1Cy and Ty2 = (r1 + r2)C2 = Ty,. When 42 is
low and transistor N is off, T, is the time required to discharge capacitance Cy. Usually,
capacitance C; is fully discharged before ¢, rises, and the timing of node B is T1y, +T},.
In general, if the borrowing-time technique is employed, and C; is or is not settled before
goes high, then the timing of B is max(TI4 + Ta,1,T1s,)+T4,. Although this formula
is equivalent to the one in Proposition 5.3, it distinguishes the delays contributed from
individual phases, and is thus more convenient to use. The following corollary generalizes

the above arguments,

106

%2

1 8
. L2 i>°
FZ“

Cet 2

o
[t

>f
<+
z

Call

Figure 5.6. Series connection of transistors across cell boundary

Corollary 5.4. Refer to Proposition 5.2 and Figure 5.5. Suppose M, is a distinguished
transistor along the transistor chain M, -, M,. With respect to this transistor, every T
term, with 1 <1 £ ¢, can be split into two terms: T ; = T; ~ Ty, and T; 2 = Ty. In terms
of these new parameters, the output timing is expressed as TO = maxf’ml(TI; + i) +
max} ,(TL + T:). i

For RC tree networks, no simple abstraction can be made that is as general and
simple as Proposition 5.3 (and Corollary 5.4) for RC chains. Based upon the functionality
of individual circuits, however, the above proposition can be extended to deal with tree
networks. For instance, in the common case where two branches of a tree network are
mutually exclusive, then the tree reduces to two chains which can be analyzed separatedly.
If the load on a node in a tree network is dynamically changing due to the turn-on and
turn-off of side branches, the maximum possible load may be used statically. Again, the

tree network reduces to a chain. The estimated delay, in this case, is always conservative.

In theorem 5.1, the input capacitance of an input port is assumed to be fixed when
this port is active during a given clock period. Consider the net of Figure 5.7. Suppose the
driving node of this net is active during ¢y, and all the input ports driven by this net are
active during ¢,. Refer to Figure 5.1 for the structure of a clocked-cell. Every input port

of this net is controlled by a pass transistor gated by a clock signal active during ¢¢ (this

107

*2
4 ’{ JL L
1 St Ciz
T

Figure 5.7. Cell interconnections with pass transistors in the input ports

transistor is referred to as the “clocked pass transistor” of the input). Given an input port
I;, the “total input capacitance” C; is defined to be the input capacitance when all the
pass transistors are turned on. With respect to the clocked pass transistor, C; can be split
into two parts: C; 1: the input capacitance when the clocked pass transistor is turned off,
and C;3: C; —C;,1. Note that, although the input signal does not have to be settled when
the clock goes high (borrowing time technique of section 5.1}, the controlling signals of the
other pass transistors are required to be stable. This requirement reduces the number of
possible input capacitances to only two. More discussions on input capacitances are given

in Chapter 6.

As a generalization of Corollary 5.4, two delays are associated with input port I;:
D; ;1 for phase 1, and D ; for phase 2. The value of these two delays can be calculated by
applying the TREE algorithm to some “reduced networks” of the net (refer to section 5.2):
the output port is replaced by its driving resistance; the input ports I;'s are replaced by

corresponding C;1’s and Cj ;'s, respectively.

Let T, be the TO parameters of the output port of the net. Note that this value does

108

f

":Lc;L
" k3
I
LI&J TI, TI, 7O
(a) (b) (c)

Figure 5.8. Parallel connection of transistors

-

not include the effect of loading from the net. Suppose the “clocked pass transistor” of

input port I; turns on at time Ty; then the effective input timing of I; (T}) is

T; ‘é—*max(T°+_.l?i,_x_,T¢)+P_¢Lz. (5.5)

Formula (5.5) is always conservative, and gives correct results when the “clocked pass
transistors” of all the input ports of a given net are turned on at approximately the same

time.

The following example deals with parallel connections of transistors. Similaf results

as example 5.2 and proposition 5.3 are derived.

Example 5.5. Consider the 2-input NMOS NOR gate of Figure 5.8.a. The ON-
resistances of the two input transistors (M, and M,) are ry and r;, respectively. The
loading capacitance at the output is Cp. Initially, both transistors M; and M; are off.

During the current clock period, either or both of the transistors are turned on.
1. Only one transistor is turned on: If it is M, that is turned on, then the output delay

is Ty = r,Cp. If it is transistor M, that is turned on, then the delay is T = r3Cy.

9. Both transistors are turned on: Let TI; and T'I denote the time when transistors M,
and M; are turned on, respectively. Assume that TI; > TI;, and let py = Ifﬂ-f.ffﬂk

If p; > 1, then this case is no different from case 1 (when M; is turned on, Cf is

109

fully discharged). If 0 < py < 1, then the delay of the output after M, turns on
1 .
is (1 — p1)Ty,2, where Ty 3 = ——— (Figure 5.8.b). Similarly for the case that
ntn
TI; < TI.
Parallel connections of transistors in general can be dealt with in the same way. J

Proposition 5.8, Let M,,...,M, be n parallel transistor connecting a source to
an open output O (Figure 5.8.c). Initially, all M;’s are turned off, and during the cur-
rent clock period, at least one transistor is turned on. Let T/, denote the time when
transistor M, is turned on. If M; remains off, then TI; = 0. Define T; = r;C, where
r; is the ON-resistance of M, and Cp is the node capacitance of . This value is

the delay of the output when it is only driven by transistor M;. Let p(1),...,p(n) be a

permutation of 1,...,n such that Tl,y) < -+ < Tl,,). Then the output timing

TO = H,, where H;, t = 1,...,n are recursively defined as follows:

Hy = if Tlp) = 0 then 0 else Ty + Tp(y)
Hi= if Tlyy=0then Hiy 1 =2,...,n

else if T'I;(;) > Hi— then H;.y

else TTy + (1 —p1)-- (1~ 8n)Tp01), -, p(5)

Tlpi41) = Thpgi) 1
where p; = L yand Tory o) =
P H; ~- TIP(‘) p{1)...,p(s) T:(.x) Goees .__._Tpi“)

The above equation is much more complicated than that for series connections of
transistors. Approximations of this expression under special conditions were presented in
the PLA example of the last section. These approximations are adequate for most practical

applications. i

5.5 Example: UPE, a Pipelined Multiplier and Interpolator

The result of section 5.4 is applied to analyze the timing of a bit-serial multiplier

and interpolator called UPE (Universal Processing Element) {50,51], one stage of which is

110

ba
A:-:: om Aoyt
L) —
870 wux_aoo @y ' =
L sty e Fym— m warsy
$ o) T -*jT\—- Cin
3
#, L T *
" " M —
e A W
-4 Bout
L8t =~
T Dowt
Lab =l W50l o T L Pt S L S | 0wt
{a) ib}
Figure 5.9. Block diagram of one stage of UPE

indicated in Figure 5.9.a%. The main processing section of the circuit, referred to as cell

MUX_ADD, is indicated in Figure 5.9.b. The rest of the circuit is merely a set of shift

registers.

In addition to clock ¢, there are six inputs to cell MUX_ADD: Lsb, M, B, D, Ain and
Cin, and two outputs: $Gm and €arry. Lsb is active during ¢z, and the other five inputs
are active during ¢;. Note that cell MUX_ADD is a clocked-cell — the smallest possible

semantic object in the strict sense (section 5.1). To analyze timing, however, it is more

convenient to divide the cell into the following two gate-level subcells: ADD and MUX,
the details of which are shown in Figure 5.10 and Figure 5.11, respectively. Parenthesized

numbers in these two figures are transistor ON-resistances and wire resistances (if not

3 A chip containing ten UPE’s has been designed, fabricated, and integrated into a
sound-synthesis system. This chip handles both positive and negative numbers under 2's
complement representation. For simplicity, a portion of the design is omitted (for instance,
the sign extender and carry kill circuit), and the circuit described in this section only works

for positive numbers. The architecture of the UPE is based on that proposed by Lyon {29].

111

s
L.sb 60
IR, -
L.sb ¢‘
md+40 404 mb _1. i
5 | g e 5
350% 6} 3 (6} 8]
o
M et b 130 {13)
10 uzs”&

Figure 5.10. The circuit diagram of cell MUX

negligible); unparenthesized numbers are node capacitances. The unit for resistances is

KQ (10%Q1), and that for capacitances is fF (10~!5F).

Cell MUX

Consider subcell MUX (Figure 5.10). This cell contains five inputs: ¢;, Lsb, M, B
and D, and one output: s. Input Lsb is not high for every clock cycle, and nodes bb and
dd act like two internal state variables (the capacitances associated with these two nodes
are relatively large). The logic and timing of cell MUX are analyzed through the following
steps. Clock ¢ is assumed to be high for (5.6)-(5.10).

1. The logic of cell MUX:

if Lsb then begin bb:=B; dd:=D; “otherwise unchanged” end;
if M then s:= not bb else s:= not dd _ (5.8)

2. The timing of signals m and M (T, Tw) when input M switches is

Tm:= max(Ty, ,Tr)+0.9ns; “(6-140+ 1 -130- 1.3)ps”
if M then Txi= max(Ty,,Tm)+2.4ns “6-140+12-120+ §.120-1.27
else Twi= max(Ty,,Tn)+6.7ns “6-140+48-120+ §-120-1.2" (5.7)

T4, is the time when ¢; goes high; Ty is the time when input M switches (with ¢,

112

low). If M does not switch during the current clock period, then both T_m and T
are equal to 0. The formula of (5.7) is based on Corollary 5.4 (series connection of
transistors across phase boundary), assuming that the input port is driven directly
by the signal source (VDD or GND). The effect of driving resistance and loading

capacitance (140fF) is dealt with by composition (detailed in section 6.1).

. The state of bb switches when Lsb is high, and B is different from bb(® (the state at
previous clock ¢ycle). The timing of bb (Tws) when it changes state is

if Lsb and (B # bb(9)
then Tppi=max{Ts, ,Tg,Tres)+1.8ns. (5.8)

Treb is the time when input Lsb goes high; T is the time when B switches. Likewise,
the timing of dd (T4q) when it changes state is

if (LSB) and (D # d(®)
then Tyq:=max(Ty, ,TE,TL,b)+2.2m. (5.9)

. Finally, the timing-of output s {T,) is expressed in terms of Tp,, T, Tho and Tyq as

follows:

if M then begin
if bb then T,:=max{Typ+1.0ns,T5+0.7ns) “s falls”
else begin “s rises”
if dd then T,:=max({Tys, Tw+9.6ns
else Ty :=min{max(Typ,Taq)+3.8ns,max{Tpy,Tx))+ 9.6ns

end

end else begin
if dd then Ty:=max(T44+1.0ns,T +0.7ns) “s falls”
else begin “s rises”

if bb then Ty:=max{Taq,Tm)+9.6ns
else T,i=min{max(Tqq,Tsp)+3.8ns,max(Tyd,Tm))+9.6n8
end
end. (5.10)

“Ty:=max(Tpb+1.0n8,Tx+0.7ns)” in the second line of (5.10) is based on Proposi-

tion 5.3 (series connection of transistors). The formula in the fourth and fifth lines of

113

(5.10) is based on the fact that output s does not start charging up until 1) bb goes
low, and 2} either fi or dd goes low. The delay 9.6ns is due to the capacitances of

node s and node mb; 3.8ns is due to the capacitance of node md.

In Chapter 6, the implementation of an event-driven timing simulator is discussed.
Every event created during the simulation process corresponds to a node. When this event
is evoked, the state of the node is switched, the cell that is driven by the node is excited,
and the code that describes the logic and timing of the cell is executed. Lét ng refer to
the node that corresponds to the current event. If it is cell MUX that is excited, then ng
is ¢y Lsb, M, D or B. The logic and timing of cell MUX can be obtained by combining
(5.6)~(5.10) as follows:

procedure MUX;
begin
if ¢, then begin
case ng of
M: Eq. (5.7);
B: Eq. (5.8);
D: Eq. (5.9);
LSB: begin Eqs. {5.8); (5.9); end;
¢:: begin Egs. (5.7); (5.8); (5.9); end;
end;
Egs. (5.6); (5.10);
end;
end. (5.11)

Cell ADD

There are four inputs to cell ADD (Figure 5.11): ¢y, Ain, Cin and s. For convenience,
this cell is further divided into three subcells: MAJ, XOR and XOR, each of which can be
dealt with using the same technique as we did with cell MUX. The results are summarized

in Table 5.4-5.6. The following remarks refer to these three tables.

100_ 3 2g
#
Ain 10 Sum
{8)
Ca
2710.8)
40
06 (e ————— 5 40(1.2)
(@8) I
; !‘bc i P % ‘0 (63;,1& cerry
a ¥
Lt (6)] pb—ri A 10 e
] ci iz 13
I 18 30 |
6 | P,
; 18) ~ 6] | 2
v }
——
- 18(0.5)
$
Figure 5.11. The circuit diagram of cell ADD
Remarks:

¢ All input timing in these tables refers to the time when the corresponding input
stabilizes and starts to switch the transistors te which it is connected. The effect of

wire delays is handled by compaosition.

Table 5.4 indicates the logic and timing of cell MAJ. There are three inputs to this
cell: al, sl, and c¢l. n, is the node that switches at the current event (n,= al, sl
or c1). The values in the first three columns of the table indicate the input states
after node n, switches. The fourth column shows the output state; the last three
columns indicate the output timing, which is a function of both n, and the input

states.. Similarly for Table 5.5 and Table 5.6.

According to Proposition 5.3, those items in Table 5.4-5.3 that are marked with *'s
should be of the form “max(T;+D;,Tz+D;),” where T; and T; are corresponding

input timings, and D; and Dy are constants. In these two tables, however, they

115

inputs output output timing Tezmy
alj sl| <1 Carry no~al 1,581 no=cl
0 01 0 i min({ Tz, Ta1+1.9ns) - min(Tezrry, Tey +1.9n8)
0 0 1 1 Tai+3.4ns Te+34ns —
0 1 0 i Tai+1.9ns - - Tcl -+1.9n8
0 1 1 0 - T4 +0.7ns To1+0.Tns*
i1 0] O 1 - Tey+2.8ns Te1+2.8ns
1 0 1 0 Tay-+0.9ns - Tey+09ns”
1 1 0 0 Ta1+0.6ns" Ta1+0.6ns -
1 1 1 0 - - -

Table 5.4. Logic and timing of cell MAJ

inputs | output output timing Ty,

a2l ¢2 *0 ng=ald =02

0 0 g Taz+1.3ns Te+1.3ns
0 1 1 Ta.2+9.6ns | T.2+9.8ns
1 0 1 Tas-+8.8n8 | T.+9.6ns
1 1 0 | Tua+0.Tns*| Te3+0.7Tns

Table 5.5. Logic and timing of cell XOR

inputs| outpuf output timing Tepm
xii s2 U no=xi No=s2
0] 0 1 Txi+2.2ns| Ts+2.2ns
0 1 0 Tx;+0.4n8| Tsa+0.4ns
1 0 0 Twi+0.4n8| Tip+0.4ns
1] 1 1 Tx+2.2n51 Ta+2.2n8

Table 5.8. Logic and timing of cell XOR

are all simplified into the form “max(T,T;)+max(D,D2).” For instance, the exact

formula for the item in the (n,=al} column and (110) row of Table 5.4 should be

max(T,;+0.5n8,T,;+0.6n8). Note that al is the node that switches in the current

event, so that T51 > Tai. The above formula is simplified to T,;+0.6ns, as shown in

the table. The delay estimated using this simplified formula is always conservative,

and the over-estimated amount is at most 0.1ns.

118

e “~ -" in Table 5.4 (cell MAJ) means that neither the output state nor the output
timing is affected by the current event. For instance, sl switching low when both
al and ¢l are already low does not reduce the delay to charge up the output node.
Although sl switching high when both al and ¢l are already high may reduce the
delay to discharge the output node, the reduced amount is always very small (at most
a few tenths of a nanosecond) and can be neglected. For cells XOR and XOR, the
output state switches when any input state switches, so that no “~ -” appears in these

two tables.

o Note that cell XOR is not a semantic object because inputs xi and s2 are laterally
connected to VDD from inside the cell, a characteristic of an output, not an input.
However, both of these inputs are driven directly by a restoring node (no pass transis-
tor in between) with W /L ratios of the pulldown transistors properly adjusted. Refer
to Figure 4.7 for the SPICE simulation result of such a circuit. Although' there is a
big glitch of the output node when the input states switch from (0,1) to (1,0), the
input nodes are quite stable. In this particular composition environment, cell XOR
can be treated as if it were a semantic object. Furthermore, the values of output tim-
ing in Table 5.6 already take the driving resistances into account because it is more
convenient to handle cell XOR this way. These values are valid only for this particular
composition. On the other hand, the values in Table 5.4 and 5.5 are applicable to any

semantic composition of cells MAJ and XOR.

There are four internal nets of cell ADD: input s drives input s1 of cell MAJ and input
s2 of cell XOR; output xo of cell XOR drives input xi of cell XOR; primary input Ain
drives input al of cell MAJ and input a2 of cell XOR. primary input Cin drives input c1 of
cell MAJ and input ¢2 of cell XOR. Note that, without affecting the result, the parasitic
capacitances and resistances of a net can be arbitrarily distributed into the cells to which

the net is connected. In net (xo,xi), for instance, all capacitances are lumped into node

117

xi, and the delay of the net becomes part of the internal delay of cell XOR (Table 5.5).
In net (s,51,52), 60fF are considered inside cell MUX as the node capacitance of output
s. The rest of the net does not belong to any cell, and is taken care of by composition.
There is no special reason, other than for illustration, to partition these nets this way. The
delay between driving 5nd loading nodes of the above four nets can be calculated using

the TREE algorithm {detailed in section 6.7).

In Chapter 6, the UPE is used as an example to illustrate an implementation of the
hierarchical timing simulation model. First, the logic and timing of one UPE stage is
specified using the result of this section. Based on this specification, a multi-stage UPE
is simulated, and analyzed for the next level of abstraction (from bit-level to word-level).
Finally, a second-order filter consisting of two 32-bit UPE’s is analyzed using this derived

word-level representation.
5.6 Summary

The extension of the (R, C, D) characterization of two-port RC networks to semantic
cells at any higher level of representation explores the real capabilities of our timing model.
This chapter serves as a guideline for characterizing the logic and timing behavior of
semantic cells independent of their composition environment. The composition is handled
automatically by using the TREE algorithm, the correctness of which is guaranteed by
Theorem 5.1. The only thing the user has to make sure of is that the composition preserves
the semantics (or behavior) of individual cells. As discussed in section 5.1, this checking

is usually syntactic, and can be done very easily.

Most discussions of this chapter are for gate-level cells and clocked-cells. To make
abstraction possible, we first made the assumption that, at every clock period, every input
and output port of a cell switches at most once. Furthermore, all internal nodes stabilize to

a fully charged or discharged state before the cell is excited again at the next clock period.

118

With these assumptions, the timing of a static ntMOS PLA was derived analytically based
on a single-input/single output model. For a multi-input cell, the situation is more difficult
because of the variations in the relative timing of inputs. Proposition 5.3 deals with series
connections of transistors in a simple way, which leads to an efficient treatment of the 6~
input/2-output circuit of section 5.5. The results presented in this chapter can be applied
to either compiled code (hard-coded timing model) or event-driven timing simulation. In
an event-driven simulation environment, only one event is evoked and one input switches
at one time (although the possibility that several inputs switch at the same physical time
is not excluded). The circuit status due to previous input events (at the same clock period)
is recorded in a very small number of variables. With every input port, for instance, are
associated a logic value and a timing. Some of these variables can be eliminated if the

output delay does not depend on them in a significant manner.

Although the logic and timing descriptions derived in this chapter are rept;esented in
an executable form, they are almost as accurate as the results obtained by running SDS
directly on the transistor listings of the corresponding circuits. It is quite possible to trade
complexity for accuracy. The larger the error that can be tolerated, the simpler these
descriptions can be. One can expect that a lot of optimizations and simpliﬁcétions will be

excercised when timing is abstracted from the bottom to the top level of a hierarchy.

119

Chapter 6

Implementation of a Hierarchical Timing Simulator

As mentioned at the beginning of Chapter 5, there are two kinds of cells in our
timing simulation model: leaf cells and composition cells, With a leaf cell is associated a
logic and timing behavior which is valid for all possible input patterns and loading and
driving conditions of the cell. Two examples (PLA and UPE) were given in section 5.3
and section 5.5 to illustrate the principles of deriving the behavior of & cell from its circuit
structure. The result is expressed in an executable form, and serves as an abstraction
of the cell for interfacing with other cells. With a composition cell; on the other hand,
are associated a number of subcells, and a set of nets indicating how these subcells are
interconnected. Qur hierarchical simulator is based on the “behavior” models of leaf cells

and the “structure” information of composition cells.

Note that a leaf cell may be as simple as a single inverter, or as complicated as the
entire data path of an ALU. Obviously, it requires the flexibility of a general purpose
programming language to specify the behavior of such a cell. This is quite a contrast to
most other simulators in which circuits are expressed in terms of only a few different types

of primitives whose behaviors are very rigid, and predefined by the simulators.

Instead of designing yet another hardware description language, we embedded the
simulator in an existing programining environment. Among several popular languages
available today, Smalltalk [18,19] comes closest to our need for the following reasons:

1. The programming model: the object-oriented programming model of Smalltalk pre-

cisely matches our semantic cell-oriented simulation model. The “messages,” “meth-

ods,” and “data” of an object correspond respectively to the interface parameters,

120

internal behavior, and internal states of a cell in our simulation model. By nest-
ing object definitions, cells can be easily specified according to the hierarchical levels

appropriate to the design.

2. The debugging capabilities: The environment in which users set up and modify the
simulation for their designs, investigate the simulation results, etc., can be naturally
done using the hierarchical “inspector” of Smalltalk. The internal nodes and sub-
structures of a design can be accessed in the hierarchical order in which the design is
specified. All dialogues are by way of the graphical interface provided by the Smalltalk

system. These features are particularly attractive for our application.

The Smalltalk implementation of our hierarchical timing simulation model, called
HITSIM (Hlerarchical Timing SIMulator), is presented in this chapter *. The specification
of leaf cells and composition cells is presented in section 6.1 and 6.2. Instance creation,
simulation and data abstraction of a cell are discussed in section 6.3-6.5. The UPE circuit
of section 5.5 is used as an example during the discussion of these five sections. All the

program segments presented in this chapter are in literal Smalltalk code.

6.1 Specification of a Leaf Cell

“Object,” “Class” and “Instance” are the three major concepts in Smalltalk. All

information in the Smalltalk system is represented as an object. Objects that respond to

! The particular suitability of Smalltalk for an embedded behavior-level simulation en-
vironment was suggested by Prof. Marina Chen of Yale University. Some preliminary
Smalltalk simulation experiments were performed in collaboration with Dr. Chen on “Dol-
phin” hardware at Xerox, Pasadena, California, courtesy Kerry Laprade, Robert Lansford
and Don Stewart. The simulator presented in this chapter was implemented on the exper-
imental “Magnonia” workstation of Tektronix (Beaverton, Oregon) which was generously

provided by Ward Cunningham and Kit Bradley.

121

the same messages in the same way can share the same generic definition. The generic
definition is called a class. Objects generated from this definition are called instances of

the class.

In structured VLSI design, a cell (or a family of cells) is often specified once, and gets
instantiated in several different places. Using the Smalltalk terminology, specification of a
cell corresponds to setting up a class, and the actual instantiations of the cell correspond

to creating instances of the class,

Corresponding to the two kinds of cells in our hierarchical simulation model, there
are two predefined classes in HITSIM: “LeafCell” and “CompositionCell.” These two
classes contain methods (functions) to transform cell specifications provided by the user
into suitable classes and methods for performing timing simulation. All leaf cells specified

by the user will become a subclass of the class “LeafCell”; similarly, for compeosition cells.
A' leaf cell can be specified by sending the following message to the class LeafCell.

name: #<aString>

inputs: #(one or more <inputSpec>'s)

outputs: #(one or more <outputSpec>’s)

states: #(zero, one or more <stateSpec>’s)

behavior: ¢ <Smalltalk code> ’. (6.1)

<aString> of (6.1) specifies the name of the leaf cell. <inputSpec>’s, <outputSpec>’s,
and <stateSpec>’s specify the name and other attributes of the input ports, output ports,

and internal states of the leaf cell:

1. One <inputSpec> corresponds to eaﬁh input port, and consists of two items: the name
and the loading capacitance of the input port. The loading capacitance is either a
single value, if there are no pass transistors in the input network, or a pair of values,
if there are. In the latter case, the first value corresponds to the input capacitance
that is directly connected to the input port (no pass transistors in between), and the

second value corresponds to that in the rest of the input network (C;; and C; 3 of

122

Figure 5.7). For instance, the capacitance pair of input B of cell MUX (Figure 5.10)
is (10fF, 153(F). 10fF is the input capacitance corresponding to phase 2 and 153fF is

that corresponding to phase 1.

2. One <outputSpec> corresponds to each output port, and consists of three items: the
name of the output port, and two values of driving resistance: the first used for1 — 0

transitions and the second used for 0 — 1 transitions.

3. One <stateSpec> corresponds to one state variable, and consists of only one item: the

name of the variable.

<Smalltalk code> in (6.1) is a text of Smalltalk source code for describing the logic
and timing behavior of the leaf cell: a mapping from the input states, current internal
states and input timings to the output states, next internal states and output timings of
the cell. Any construct of the Smalltalk language can be used in this text. If auxiliary

variables are needed for the computation, they can be declared here.

Referring to Table 5.5 and Figure 5.11 of section 5.5, the following message specifies
the logic and timing of cell XOR.

LeafCell name: #XorBar
inputs: #((x0) (s 0))
outputs: #((sumBar 72 12))
states: #()
behavior: ‘sumBar +— x eqv: s.
TsumBar « sumBar ifTrue:[Phy Time + 2.2]
ifFalse:[PhyTime + 0.4].’ (6.2)
Upon receiving the above message, class “LeafCell™ creates a subclass of its own, called
“XorBar,” with the following four instance variables: “x,” “s” and “sumBar” in which the
logic values of the corresponding input and output ports can be stored; “TsumBar” stores

the timing of output “sumBar.” The prefix “T” to the name of an output port is a

convention adopted by HITSIM to associate timing with the output port. In general, if a

123

cell contains m inputs, n outputs and [internal states, then m + 2n -+ instance variables
are created (this statement will be modified later). These variables are referre& to in the
behavior section of message {6.2). Input timings are not always required to specify the
logic and timing of a cell. For instance, the output timing of cell XOR depends only on the
time when the cell is excited {The physical time, “PhyTime,” a global variable detailed in
section 6.3), so that no additional variables are created for individual input ports. In case
the timing of a particular input port is important in the specification of a cell, it must be

declared explicitly as a state variable.

After class “XorBar” is created with associated instance variables, the behavior sec-
tion of the message is passed to the Smalitalk compiler, which returns a “compiledMethod”
under message heading “cellChanged.” Again, this heading is a convention used in HIT-
SIM. This compiledMethod will be executed every time the message “cellChanged” is sent
to an instance of the class. Note that users always interpret the data types of instance
variables in their own way. For cell XOR, all input and output states are of type Boolean.
For other cells, other data types (integer for instance) may be used. As to delay parame-
ters, real numbers are used in this section (units: K{1 for resistances, fF for capacitances
and ns for timing) for descriptive purposes. For performance reasons, however, integers

are used in the real implementation with units properly adjusted.

Implied in message (6.2) is that, whenever an input of cell XOR changes state, the
same code (cellChanged) is executed. In many practical circuits, however, different actions
may be required when different inputs change state. To specify the behavior of such a cell,
the following message is used:

LeafCell name: #<aString>

inputs: #(one or more <inputSpec>'s)

outputs: #{ one or more <outputSpec>'s)
states: #(zero, one or more <stateSpec>’s). (6.3)

124

Since the behavior parameter is missing in the message?, instead of creating a method
under heading “cellChanged,” message (6.3) creates a number of methods under headings
determined by the names of the input ports. The contents of these methods are empty

and must be filled by the user. For example, cell MUX of section 5.5 is specified as follows:

LeafCell name: #MuxBar
inputs: #((Phil 100) (Lsb 50) (M (10 140))
(Bbar (10 153)) (Dbar (10 183)))
outputs: #{ (s 96 6))
states: #(bb dd Tbb Tdd Tm Tmbar). (6.4)

In response to the above message, a class called “MuxBar” is created with the fol-
lowing five methods: “PhilChanged,” “LsbChanged,” “MChanged,” ‘BbarChanged” and
“DbarChanged.” The suffix “Changed” to an input name is a convention adopted by HIT-
SIM to associate an input-specific action with the corresponding input port. If, during
simulation, the state of an input switches at certain instant of time, then the cérrespond-

ing method is executed.

Another point to be noticed from (6.4) is that there are two capacitances associated
with each of the following three inputs of cell “MuxBar”: M, Bbar and Dbar (there are
pass transistors associated with these ports). According to the rule we had before, there
would be thirteen variables created for class “MuxBar”: Phil, Lsb, M, Bbar; Dbar, s,
Ts, bb, dd, Tbb, Tdd, Tm, Tmbar. In fact, six more variables are created, and the total
number is nineteen. These six variables are: RM, FM, RBbar, FBbar, RDbar and FDbar.
The reason is as follows. ‘Suppose there are no pass transistors in an input network, then
the delay of the net is totally independent of the aelay inside the cell. However, if there
are pass transistors in the input network, then these two delays are not independent, and

the communication is established by way of these variables {see the method defined in the

? Message (6.3) contains four parameters and is different from message (6.1) which

contains five parameters. These two messages are specified independently.

125

following). Note that two variables are associated with every such input port: one for
rising and the other for falling of signals; the convention is to add prefix “R” or A“F” {0 the
input name: As a result, the actual number of instance variables for a cell that contains
m inputs, k of which contain pass transistors in the input network, n outputs, and { states

ism+2k+2n+ 1.

After class “MuxBar” is created, one can use the Smalltalk System Browser to enter
the contents of these five input-specific methods (with the sequence of menu selections
indicated in Figure 6.1.a) [18]. Referring to (5.6)—(5.11) and Figure 5.10 for the behavior

of cell MUX, the contents of these five methods are defined as follows:

MChanged
“When this method is executed, “PhyTime” equals max{TM,Ty,)"
Phil ifTrue:M ifTrue:{Tm ~PhyTime+RM+0.9. Tmbar «PhyTime+RM+2.4]
ifFalse:/Tm «PhyTime+FM+0.9. Tmbar «PhyTime+FM+6.7].
self sChanged] “sChanged is defined later”

BbarChanged
“When this method is executed, “PhyTime” equals max(TBbar,Ty,,Trss)”
(Lsb and:[Phil and:|{(Bbar=bb) not]])
if True:{bb «Bbar.
Tbb «PhyTime+(bb ifTrue:{RBbar] ifFalse:[FBar])+1.8.
self sChanged|.

DbarChanged
“When this method is executed, “PhyTime” equals max(TDbar, T4, ,TLsb)"
(Lsb and:[Phil and:[(Dbar=dd) not]})
ifTrue:[dd +Dbar.
Tdd «PhyTime-+(dd ifTrue:[RDbar| ifFalse[FDbar])+2.2.
self sChanged].

LsbChanged
(Lsb and:[Phil]) ifTrue:[self BbarChanged; DbarChanged]

PhilChanged
Phil ifTrue:[self MChanged; LsbChanged]. (8.5)

126

‘Syswrn Browsex’

Simulauon-Abstracy

- 0

Simulaton-Interlacs Addl Y it -ty e
Stmuladon-BitBit-Data-Pat Harsniny inidalizadon = '
Stmulaton-Cell Ry]~ wem s muine

Stmuladon-Support

Tree-Expanzion -Suppon
Stmuladon-User-inter!
Staulaton -CompositionCa

R L

MChanged
Pl iChanged

L]

| imsapcs 1 clan

BrarChaxged
* upapecifiad *

(a)
{Sysem Bmwserl

Simulauon-Absuact
Simulauon-interface
Simulaton-BitBls-Data-Pal
Stmulaton-Cell]
Supulatdon-Suppory
Tree-Expansion -Support
Simulation -User-inwriacs
Steaniation -LeadCall

- .y
I

EY evamassnmwe LsbChanged

P L

L imovmew | class
sTiming:s withd with:th with:td withon wid :tabae

Ts o b AfTrus: [t1he 10 max: unbar +7]
ifFaise: { 4 ifTree: [(th max: tnbar) +36]

ifFalse: (W max:d)ed8 min; (5 maxtmbar}}es6]
3

(b)

Figure 6.1. Using Smalltalk System Browser for specifying a leaf cell

127

Note that clocks are not treated as special signals in HITSIM, although they can be
made special by the user in the specification of the methods of a leaf cell. For instance,

the specification of cell MUX is such that nothing happens when signal Phil is low.

The values of RM, FM, RBar, FBbar, RDbar and FDbar are determined when the
composition environments of the corresponding input ports are determined (section 6.3).
The five methods above refer to message “sChanged” which is defined in two steps as

follows:

sChanged
M ifTrue:[s +bb not.
self sTiming:bb with:dd with:Tbb with:Tdd with:Tm with:Tmbar]
ifFalse:[s «~dd not.
self sTiming:dd with:bb with:Tdd with:Tbb with:Tmbar with:Tm]

sTiming:b with:d with:tb with:td with:tm with:tmbar
Ts +~ b ifTrue:[tb+1.0 max: tmbar+0.7]
ifFalse:[d ifTrue:|(tb max:tmbar)+9.6]
ifFalse:[((tb max: td)+3.8 min: (tb max:tmbar))+9.6]].

At the end of the above dialogue, the System Browser becomes the one shown in
Figure 6.1.b. Note that the user can always take advantage of the Smalltalk graphical
interface for specifying and modifying a cell description. For instance, the behavior section
of message (6.1) can be entered or modified after a cell class is created. State variables

can also be added or deleted as methods are added, modified or deleted for the cell class.

6.2 Specification of a Composition Cell

A composition cell is specified by sending the following message to the class Compo-
sitionCell:
pame: #<aString>

inputs: #{ one or more <inputPortSpec>’s }
ocutputs: #(one or more <outputPortSpec>’s)

128

subcells: #(one or more <subcellSpec>’s }
connections: #(one or more <connectionSpec>’s). (6.6)

Every <inputPortSpec> or <ocutputPortSpec> of (6.6) corresponds to an input or out-
put port of the composition cell, and consists of only one item: the name of the port.
The loading capacitances and driving resistances need not be specified because these val-
ues are all implicit in the connection list. Also, there are no explicit internal states of a

composition cell.

Every <subcellSpec> of (6.8) corresponds to a subcell of the composition cell, and
consists of two items: the instance name and the class name of the subcell. A subcell is
either a leaf cell or a composition cell. Every <connectionSpec> of (6.6) corresponds to an
interconnection net, and consists of two ifems: the name of the driving node, and a tree
structure describing the topology and physical parameters of the net. The driving node
of a net is either an output port of a subcell, or an input port of the composition cell.
Every entry in the tree structure corresponds to one branch of the interconnection tree,
and consists of four items: the capacitance and resistance of the branch, the subtree that
loads the branch (<child>), and a branch fanned out from the same branch as this branch
(<sibling>). The BNF of <connectionSpec> is given in (6.7), and any net can be described
using this construct.

<connectionSpec> = (<source> <treeEntry> }

<treeEntry> ::= (<capacitance> <resistance> <child> <sibling>)
<gibling> ::= <treeEniry>|nil

<child> 1= <treeEntry>i<destination>

<source> = { <subcellName> <outputName>) |<inputPortName>
<destination> = (<subcellName> <inputName>) |<outputPortName> (6.7)

Note that <outputName> of (6.7) indicates an output port of subcell <subcellName>,
while <outputPortName> indicates an output port of the composition cell. Similarly for

<inputName> and <inputPortName>,

129

As an example, one UPE stage (Figure 5.9) is specified in the following as a composi-
tion cell consisting of one instance of cell “UPEMain™ and two half-bit shift registers which
are instances of the same cell: “HalfShift.” Cell “UPEMain” contains cell MUX.ADD and
the shift registers at the bottom of Figure 5.9. Cell “HalfShift” contains two inputs: “in”
and “phi,” and one output: “out.” The specification of these two cells (classes) is given in

section 6.7.

CompositionCell name: #UPEStage
inputs: #(Phil Phi2 Ain Lsb M Bbar Dbar)
outputs: #(Aout Lsbout Mout Bout Dout)
subcells: #((Cm UPEMain) (Cc HalfShift) (Cs HalfShift))
connections: #((Phil (0 10 (Cm Phil)})
(Phi2 (0.1 10 (Cm Phi2) (0.3 30 (Cs phi) (0.1 10 (Ce phi)))))
((Cm carryBar) (00 (Cc in))) ((Cc out) (00 (Cm Cin}))
((Cm sumBar) (00 (Cs in))) ((Cs out) (00 Aout))
(Ain (00 (Cm Ain)))
(Lsb (00 (Cm Lsb))) ((Cm Lsbout) (0 0 Lsbout))
(M (@00 (CmM))) ((CmMout}) (00 Mout))
(Bbar (0 0 (Cm Bbar))) ((Cm Bout) (0 0 Bout))
(Dbar (0 0 (Cm Dbar)) } { (Cm Dout) (0 0 Dout))). (6.8)

Upon receiving the above message, class CompositionCell creates a subclass of its '
own, called “UPEStage,” with the following fifteen instance variables: “Phil,” “Phi2
“Ain,” “Lsb,” “M,” “Bbar,” “Dbar,” “Aocut,” “Lsbout,” “Mout,” “Bout,” and “Dout”
store the logic values of the input and output ports; “Cm,” “Cc” and “Cs” refer to the

three subcells of the cell. These fifteen variables will be created for every instance of the

class “UPEStage.”

Most of the resistances and capacitances of the nets are equal to 0, because the
connections of adjacent stages of UPE are established simply by abutment. However,
the delays through these nets are nonzero because of the output resistances and input

capacitances of the connection ports. The structure of net (Phi2) is indicated in Figure 6.4

130

of section 6.3,

As another example, a two-stage UPE is specified as a composition cell consisting of

two instances of class “UPEStage” defined above.

CompositionCell name:#UPE2

inputs: #{ Phil Phi2 Ain Lsb M Bbar Dbar)’

outputs: #(Aout Lsbout Mout Bout Dout)

subcells: #{ (C1 UPEStage) (C2 UPEStage))

connections: #((Phil (0 60 (C1 Phil) (0 140 {C2 Phil))})
(Phi2 (0 120 (C1 Phi2) (0 200 (C2 Phi2))))
(Ain (0 0 (C1 Ain))) ((C1 Aout) (00 (C2 Ain}))) ((C2 Aout) (00 Aout))
(Lsb (0 0 (C1 Lsb))) ((C1 Lsbout) (00 (C2 Lsb))) ((C2 Lsbout) (0 0 Lsbout))
(M (00 (C1M))) ((C1Mout) (00 (C2M))) ((C2 Mout) (0 0 Mout))
(Bbar (0 0 (C1 Bbar))) ((C1 Bout) (0 0 (C2 Bbar)}) ((C2 Bout) (0 0 Bout))

" (Dbar (00 (C1 Dbar))) ((C1 Dout) (00 (C2 Dbar))) ((C2 Dout) (00 Dout)))

(6.9)

One can easily write a method that takes a parameter n, and generates the specifica-

tion for an n-stage UPE.

6.3 Static Structure of a Cell for Simulation

In HITSIM, simulation is always performed on a composition cell. This composition
cell may be as complicated as an entire system consisting of several levels of hierarchy,
or as simple as a composition cell that contains only one leaf cell. The input and output
ports of the composition cell are referred to as the primary inputs and primary outputs.
Before simulation is done, the message “instance:#<aName >” is sent to the composition

cell, which in response performs the following tasks:

1. An instance of the cell together with all the subcells under its hierarchy is created.
Take the UPE2 cell of section 6.2 as an example. Cl1 and C2 are instance variables
of class “UPE2"; both correspond to class “UPEStage.” Cm is an instance variable

of “UPEStage,” and corresponds to class “UPEMain.” Therefore, when an instance

131

! unz[-U—;!—z-l

self e b s v v Talas

aodeArray
ronmesuans
Aln

Laby

M

Bar

Doar

Phiy

i

Acut
Lshout
Mout

Bout

Daout

Ci

<2

-

Lo T 2 Re—

(a) (b)

UP!Z]
UPBSWQ ;1}-...-.-... an UP!S\;‘.
superCell JUPESuge
nu. hadudad 2 2 L T T8 W
[E P — =~ 1 an UPEMain nodeArray selt an UPEMain
connectons superCell UPEMain
LA:: name mmvevasavad rolse
™ nodeArray self
Boar connecuons | supercCeil
Dbar Phi name
Phit Phia nodsArray
Ain L3k
Lt
M
Bhar
Dbar
Aout
: Labous
i Mout
|
evesnemmnan mvamememmes | o B
L]
ad

(c) (d)

Figure 6.2. Using Smalltalk Inspector to investigate a cell hierarchy

132

of UPE2 is created, two instances of “UPEStage” are also created, and stored in the
C1 and C2 variables of the created instance of UPE2. Recursively, two iﬁstances of
“UPEMain” are created, and stored in the Cm variable of C1 and C2, respectively.
The Smalltalk Inspector can be used to investigate the internal states of a composition
cell in a hierarchical manner [18]. For instance, statement “ (UPE2 instance:#foo)
inspect” creates a window of the form shown in Figure 6.2.a. There are nineteen
items (variables) appearing in the left-hand side of the window, among which the last
fourteen are cell-specific instance variables (ports, states, timings, etc). The first five

items, on the other hand, are cell-generic instance variables:
¢ “self” points to the cell itself;
o “superCell” points to the super cell of the cell;
* “name” stores the name of the cell;
* “nodeArray” stores various attributes of the ports of the cell described below;

¢ “connectionArray” stores the connection list of the cell. This information is only

associated with composition cells.

Note that the format of the inspector is user-programmable, and that of Figure 6.2.a

is the default one provided by the Smalltalk system.

When one of the variable names is selected, a description of the variable is printed in
the right-hand side of the window. If the selected variable is a node of the cell, then the
state of the node is printed (Figure 6.2.b). The state of the node can also be modified
at this point. If the selected variable is a subcell, then the class name of the subcell is
printed (Figure 6.2.c). The content of the subcell itself can be inspected by selecting
menu item (a pop-up menu) “inspect.” Repeating this process, the internal states

and structures of a cell can be manipulated in a hierarchical manner (Figure 6.2.d).

133

Leo 200
T T 1
c + ¢
' hotony 30103 Ce [ioto.n _ 3010.3)
1 § I 7
tm 200] [6 Gl Cm 200] [6 & ____:
ho jlo
joun o
ct 15— -t cﬁ 15 e ol

Figure 8.3. Net (Phi2) spans over two levels of composition cells

2. All the nets that span over more than one composition level are flatterned, and proper
pointers among nodes in the same net are established. Take net (Phi2) of cell UPE2
as an example (Figure 6.3). This net spans over two composition levels, and each level

contains only partial information about the net. There are nine nodes in the net:
o top level: (Phi2)
» second level: (C1 Phi2), (C2 Phi2)

o leaf-cell level: (C1 Cm Phi2), (C1 Cs Phi2), (C1 Cc Phi2),
(C2 Cm Phi2), (C2 Cs Phi2), (C2 Cc Phi2).

(Phi2) in the above listing refers to the Phi2 port of the top level composition cell
“UPE2”; (C1 Phi2) refers to the Phi2 port of the C1 subcell of UPE2; (C1 Cm Phi2)
refers to the Phi2 port of the Cm subcell of the C1 subcell of UPEZ2; etc. This notation

for accessing a node through the cell hierarchy will be used in this chapter.

There are two nodes in the intermediate-level composition cells: (C1 Phi2) and (C2
Phi2). Through these two nodes, various segments of the net are merged into one
tree, from which the delays between the driving node (Phi2) and the loading nodes

(the six nodes at the leaf cell level) are calculated using the TREE algorithm. The

134

{Phi2)| (C1 Phi2)] (Cl Cm Phi2)| (C1 Cs phi) | (Cl1 Cc phi)
Loading Capacitance 880 760 270 40 15
Rising Delay 1.76 1.76 1.79* 1.7¢* 1.79*
Falling Delay (.88 0.88 g.91° 091" 091
{C2 Phi2)[(C2 Cm Phi2)| (C2 Cs phi)j (CZ Cc phi)

Loading Capacitance 280 270 40 15

Rising Delay 1.76 1.79* 1.7¢* 1.79*

Falling Delay 0.88 g.91* 0.91° g.91*

Table 8.1. Delay calculation of net (Phi2)

loading capacitances of the loading nodes and the driving resistance of the driving
node are also used in the calculation. For a connection port of a leaf cell, the driving
resistance or loading capacitance is specified when the cell is specified (section 6.1). If
there are two capacitances specified for an input port, then the first value is used. The
driving resistance to a primary input port or the loading capacitance to a primary
output port can also be specified by the user {default value is zero). Assuming that
the driving resistance to the primary input (Phi2) is 2K11 for rising and 1K1 for falling
transitions, Table 6.1 lists the total load capacitances and delays of the nine nodes in
the net. Those items that are marked with “*’s are recorded after the calculation;

the other items are for temporary usage only.

During the net-flattening process, pointers are established from the driving node to
the loading nodes of a net with calculated delay values. When the state of the driving
node switches, these pointers and delay values are used to excite the loading nodes
at proper points in time. Note that, in addition to the primary inputs and primary
outputs, only leaf cells {(and their ports) are involved in the simulation process. No
overhead is spent on travelling through the intermediate-level composition cells. On
the other hand, pointers are stored in the ports of intermediate-level composition cells,

so that the design can be manipulated in a hierarchical manner.

In general, a port of a cell at any level of hierarchy is classified into one of the following

135

three categories: driving end of a net, loading end of a net, or port of an intermediate-level
composition cell. The driving end of a net is either an output port of a leaf cell or a
primary input; a loading end of a net is either an input port of a leaf cell or a primary

output. With a node in each of the three categories is associated the following data set:

1. With the driving end of a net (referred to as a “driving node™) is associated the

following data set:

a. a pointer to the cell that contains the node and an index for accessing the related
attributes of the node that are stored in the symbol table (instance variables)
of the cell. The most important attributes are the “state” and the “timing” of
the node. Note that what is stored in the “state” variable is actually the “target
state” of the node, while the “actual state” is stored elsewhere (item b below).
The reason is as follows. Suppose the driving node is an output port of a leaf cell.
The “state” variable is updated immediately (and implicitly) when an input of
the cell switches and some methods of the cell are executed. In reality, however,
the state of the node should not be updated until after certain amount of delay
(determined by the output timing). For a primary input, the target state is set

by the user.
b. the “actual state” of the node.

¢. a set of fan-out data, each of which corresponds to a loading end of the net, and
contains three items: a pointer o the loading end, and two delay valuesfor 1 — 0

and O — 1 transitions, respectively.

d. a pointer to the corresponding event if there is one scheduled for changing the
state of the node later. This pointer is used to cancel or reschedule the event

when necessary.

2. With every loading end of a net (referred to as a “loading node") is associated the

following data set:

136

a. (if this node is an input port of a leaf cell} a pointer to the cell that contains the
node and an index for accessing the related attributes of the node that are stored
in the symbol table of the cell. The most important atiributes are the “state” of
the node and the “method” that needs to be executed when the state of the node
changes. Unlike a driving node, the “state” variable stores the “actual state” of

the node.

b. a pointer to the corresponding event if there is one scheduled for changing the
state of the node later. This pointer is used to cancel or reschedule the event

when necessary.

3. Stored in every port of an intermediate-level composition cell is a pointer that points to
the *actual state” of the driving node of the net that contains the port. This pointer
is used when the design is debugged in a hierarchical manner using the Smalltalk
Inspector (Figure 6.2).

Recall that two capacitance values are specified for an input that contains pass tran-
sistors in the input network (section 6.1 (6.4)). Furthermore, two instance variables with
prefix “R” and “F” are associated with such an input port. The values of these instance
variables can also be determined using the TREE algorithm. Take the net that contains
(C1 Bout), (C1 Cm Bout), (C2 Bbar) and (C2 Cm Bbar) of UPE2 as an example (Fig-
ure 6.4.a}. The two input capacitances of (C2 Cm Bbar) are 10fF and 153fF, respectively.
Referring to (5.5) of section 5.4, there are two pairs of delays associated with this net.
The first delay pair (one rising and one falling) corresponds to the delay from (C1 Cm
Bout) to (C2 Cm Bbar) when clock ¢, is off (phase 2 delay). This delay pair is handled
in exactly the same way as net (Phi2). The first input capacitance, i.e., 10fF, is used for
the calculation (Figure 6.4.b). The second delay pair corresponds to the delay from (C2
Cm Bbar) to (C2 Cm bb) after ¢; turns on, under the condition that (C2 Cm Bbar) is

settled and Lsb is on initially (phase 1 delay). The values of this delay pair are calculated

137

48 or 48 or
12 12
L) é ll53
b} {c}
Figure 8.4, Net delay with pass transistors in an input network

based on the tree shown in Figure 6.4.c. The results are stored in the RBbar and FBbar
instance variables of cell C2. Note that this technique is general enough to deal with any
net of tree structure. Once the delay is calculated, its value never changes. This “static”
delay is longer than the real delay in certain circumstances (it is always conservative), for
instance, if a net drives two inputs both of which contain pass transistors in the input
networks. To be conservative, each input network is assumed always to load the other
network (unless the two are mutually exclusive}. However, if during a certain clock period,
one input port is active and the other is not, then the estimated delay to the first input
is longer than the real value. One solution to this problem is to consider the net itself
as a process which determines the delays between nodes dynamically (either structural or
behavioral model can be used). However, the static approach is adequate for practical
purposes. In particular, if there is only one input in the net, then the estimated delay is

always correct (Corollary 5.4).

The usage of the two variables “RBbar” and “FBbar” (and four others) makes the
specification of cell MUX completely independent of its composition environment. For
different compositions of the cell, only the values of these variables are different; the
specification of the cell is the same. On the other hand, if one is only interested in a

particular composition environment of a cell, then these variables can be eliminated. For

138

instance, the UPE is designed in such a way that the Bbar signal of one UPE stage is
always fed from the Bout signal of the previous stage. The delay value of the net can be

precalculated and hard-coded into the specification of cell MUX.

6.4 Simulation of a Cell

HITSIM is an event-driven simulator. Associated with every event are the time to
excite the event, the node to switch, and the target state of the node. When an event is
scheduled, a pointer is established from the corresponding node to the event for possible
cancellation or rescheduling of the event later. Al most one event is associated with a
given node. There are two global variables used during simulation: “EventQueue”: a
global queue in which all events are sorted by time, and “PhyTime": the physical time.

The following pseudo-code indicates the main loop of the simulation process.

[EventQueue isEmpty | whileFalse:
[take the first event from the EventQueue;
update the (global) physical time;
invoke the event and put affected nodes into the EventQueue].

When an event is invoked, “PhyTime” is updated to the time associated with the
event. Then, depending on whether the corresponding node of the event is a driving or a

loading node, one of the following two actions is taken.

1. driving node: the “actual state” of the node is updated first. Then the loading nodes
of the net driven by this node are checked one by one to see if there is an event
pending.

a. If there is no event pending for a given loading node, then an event is scheduled
at time “PhyTime+T,e” with value equal to the state of the driving node. De-
pending on the type of transition (rising or falling), “Txes” is one of the two delay

values precalculated and stored in the fan-out data.

139

b. If there is an event pending, then the state of the driving node is compared with
the target state of the pending event. If these two values are different, then the
pending event is cancelled, and the new event is scheduled. If these two values
are the same, then “PhyTime+Tye” 18 compared with the excitation time of the
pending event. Which one is smaller becomes the excitation time of the pending

event. (6.10)

2. loading node: The value of the node is updated first. If the loading node is an input
port of a leaf cell, then an appropriate method of the leaf cell is executed. This method
is either the same for all inputs of the cell {method “cellChanged”}, or is specific for
the input port. At the end of this execution, the output ports of the cell are checked
one by one to see if there is an event pending, and if the “target state” is the same
as the “actual state” of the port. Depending on the result of the checking, one of the

following four actions is taken:

a. the target state is the same as the actual state of the output, and there is no

event pending: nothing needs to be done in this case.

b. the target state is different from the actual state, and there is no event pending:
schedule an event with excitation time equal to the output timing and value equal

to the target state of the output.

c. the target state is the same as the actual state, and there is an event pending:

cancel the event.

d. the target state is different from the actual state, and there is an event pending:
check to see if the target state is the same as the value of the pending event. If
the two values are different, then the pending event is cancelled, and a new event
is scheduled in the same way as in case (b) above. On the other hand, if the two
values are the same, then the timing of the output is compared with the excitation

time of the pending event. Which one is smaller becomes the excitation time of

140

the pending event. - (6.11)

Take cell MUX (Figure 5.11, (6.4)) as an example. Suppose the initial states of nodes
M, Lsb, bb, Bbar, dd and Dbar are 1, 0, 0, 0, 1, 1, and thus the output state s is 1. In this
section, “0,” “false” and “low” are used interchangeably, so are “1,” “true” and “high.”
At the beginning of every simulation process (usually one simulation process corresponds
to one clock period), a method called “resetTime” is executed for every leaf cell under the
hierarchy of the top-level composition cell. This method is also user-definable; the default
action is to reset all timing-related variables (Tbb Tdd Tm Tmbar) to zero. For cell MUX,

one more thing is done: to reset clock Phil to low.

Suppose, at the current clock period, the following events switch the corresponding

input states and excite the cell successively. Refer to (6.4) of section 6.1 for the behavior of

MUX, and Table 6.2 of section 6.7 for the values of the net-dependent instance variables.

time 0.5 1.0 1.5 2.0 3.0
input Bbar Lsb Phil M Dbar
target state i 1 1 0 1

1. Bbar switches high at time 0.5: Method “BbarChanged” is executed. Since Phil is
low at this moment, no instance variable other than Bbar is modified.

2. Lsb switches high at time 1.0: Method “stChanged” is executed, which in turn
invokes methods “BbarChanged” and “DbarChanged.” Since Phil is low at this
moment, nothing more happens.

3. Phil swit':ches high at time 1.5: Method “PhilChanged” is executed, which in turn
invokes methods “LsbChanged” and “MChanged.”

3.1. LsbChanged: Methods “BbarChanged” and “DbarChanged” are invoked in turn.
e BbarChanged: bb is set to high and Tbb is evaluated to be 10.6°(1.5+7.3+1.8).

Then, in method “sChanged,” s is set to low, and Ts is evaluated to be 11.6

(10.6+1.0). As a result, an event is scheduled to switch the “actual state” of

141

output s to low at time 11.6 (case (b) of (6.11)). Note that the instance variable

s (the target state) is set to low already.
e DbarChanged: dd is the same as Dbar, so nothing happens.

3.2. MChanged: Since M is high, Tm and Tmbar are evaluated to be 9.1 (1.5+6.7+0.9)
and 10.6 (1.5+6.7+2.4), respectively. In method “sChanged,” signal s is evaluated
to be low, and Ts is evaluated to be 11.6 (case (d) of (6.11)). Nothing needs to
be modified.

Suppose the order of execution of the above two methods are reversed (in the specifi-

cation of method “PhilChanged”). Then what happens is the following:

3.1’ Mchanged: Tm and Tmbar are evaluated to be 9.1 and 10.6, respectively. Since
bb has not been updated to high yet, so s is evaluated to be high (case (a) of
(6.11)). Nothing needs to be done.

3.2’ LsbChanged: the same as item 3.1 above.

Although the efficiency may differ, the result is independent of the order of execution

of the two methods. Likewise, if several events are scheduled at the same physical

time, the result is the same regardless of the order of excitation of these events. Note
that the above statement is only true for semantic cells of disciplined systems, and is

not true in general [9].

. M switches low at time 2.0: Method “MChanged” is invoked, in which Tm is evaluated

to be 4.8 (2.0+1.7+0.9) and Tmbar is evaluated to be 10.4 (2.0+1.7+6.7). In method

“sChénged,” s is evaluated to be high, and Ts is evaluated to be 20 (10.4+9.6) (case

(c) of (6.11)). The pending event scheduled at item 3.1 above is cancelled.
. Dbar switches to high at time 3.0: Method “DbarChanged” is invoked, in which dd

is set to high, and Tdd is evaluated to be 14 (3.0+8.8+2.2). In method “sChanged,”
s is set to low, and Ts is evaluated to be 15.0 (14.0+1.0). An event is scheduled to

142

" _—L: Thaet

. f—----Tlog.c----—}Eg—

st <~ --=-- T ""‘“'%

ns E 5| 10[151 ao_]

Figure 6.5. Simulation display of cell MUX

switch the “actual state” of s low at time 15.0 (case (b) of (6.11)).

6.. At time 15.0, the above event is excited. Note that output s fans out to the sl input
of cell MAJ and the s2 input of cell XOR (Figure 5.9). The net delay is the same for
both inputs: 0.7ns when s falls, and 5.6ns when s rises (section 6.7). As a result, two
events are scheduled to switch the sl and s2 inputs to low at time 15.7 (case (a) of

(6.10)).

Simulation results can be displayed in a number of ways. Because HITSIM is embed-
ded in a programing language system, the user can always reconfigure the simulator in the
most preferable way. In addition to text displays, the current implementation of HITSIM
also supports waveform displays. Shown in Figure 6.5 is the waveform display of the above

simulation process. The following remarks refer to Figure 6.5:

Remarks:

e Node s and node sl refer to the same logic node. The waveforms of the two nodes are

quite similar, except that the high-to-low transition of s1 happens 0.7ns later than

143

that of s. The delay between the rising edge of Dbar and the falling edge of s1 (T of
Figure 6.5) can be naturally divided into two segments: Tjogic and Tpet. Tiogic is the
internal delay of leaf cell MUX, assuming output s is open; Tpe, is the delay due to
the interconnection net. The waveform of s is not real; it sets a lower bound on the

timing of node sl under all possible interconnections.

e When Phil switches high at time 1.5, an event is scheduled to switch node s low at time
11.6. This event is later cancelled when M switches low at time 2.0. The two input
events above do not produce a glitch at output s (at least, the present implementation
of HITSIM does not indicate a glitch under these conditions). Usually, there are
several stages of transistor groups between an input port and an output port of a
behavior-level cell. A small glitch at the input port does not tend to produce a glitch
at the output port. On t;he other hand, if node M switches high at time later than
11.6, then a glitch shows up in the waveform of s. In this sense, HITSIM implements

~ a sophisticated form of “propagation delay” model.

e The termination condition for the above simulation process is that the event queue is
empty. The “PhyTime” at this moment sets a lower bound on the period of clock é:1°3.
Another possible termina.tioﬁ condition for a simulation process when the maximum
allowable clock period is specified is that “PhyTime” exceeds this specified value. All
events left in the queue violate the specification, and can be investigated one by one
when the simulation process terminates.

e It is possible to simulate an arbitrary number of clock cycles in one simulation pro-
cess (Figure 6.6). This capability is essential when the borrowing-time technique is

employed.

3 Usually the reference time for a simulation process is selected to be the rising edge of
a clock. For illustration purposes, however, the reference time of the above example is se-

lected to be 1.5ns before clock @, rises. Thus the actual bound is equal to “PhyTime—1.5.”

144

mrPail
portan p— L | | . | S
] e A | i paam— 1
oo —{ | - L 1
paanb—{ L[L . L 1 1
PP SRR e SN e W pay S pa S |
oo cues g t—{ L[| N 1 A
wuove o — T e L L\
pariasus p—{] I LT L B pu—
anll: C1/Cc -mur-—| | 1]
oy propm ™ L T [
csit: €3 porsant p—mf____ I
i Coce pormut bl [T — LI
- ETN) Tage____Jeoo — Jecc) K1) EL) [&30 175G [Feca___ 13000

Figure 6.6. Simulation display of a 4-stage UPE (bit-level)

6.5 Data Abstraction

In addition to functional abstraction, our timing model also allows data abstraction.
The data used in previous sections for describing the UPE are of type “Boolean.” The
timing discipline imposed at this level of representation (bit-level) is the “non-overlapping
two phase clock.”

For an n-stage UPE, 2n consecutive bits coming in and out of the UPE are interpreted
as one unit4. As a result, a new data type “serial word” (integer) is used to describe the
behavior of the UPE at the word level. The timing discipline imposed at this level of
abstraction is the “data stationary control” [24] of input Lsb. Referring to Figure 6.6,
input Lsb goes high every 2n clock cycles, synchronizing with the first bit (the least

significant bit) of any serial word.

At the word level, the behavior of a 4-stage UPE is specified as follows:

LeafCell name: #UPE4
inputs: #((Lsb 50) (M (10 140)) (Bbar (10 153))

4 In Lyon’s multiplier[29], n consecutive bits are interpreted as one unit.

145

(Dbar (10 183)) (Ain (10 50)))
outputs: #{ (Lsbout 48 12) (Mout 48 12) (Bout 48 12)
(Dout 48 12) (Aout 48 12))
states: #()
behavior: ‘Lsbout «Lsb.
TLsbout «—PhyTime + (8*ClockPeriod).
Lsb ifTrue:[Aout «— (Bbar bitInvert*M)+
(Dbar bitInvert*(M bitInvert))+ Ain rem:256.
TAout «—TLsbout.
Bout —Bbar. TBout —TLsbout.
Dout «Dbar. TDout ~TLsbout)’. (6.12)
A “ClockPeriod” of (6.12) is the period between two consecutive rising edges of clock
#1. The complexity of one UPE stage is simple enough for the user to figure out the
critical path of each clock phase. Thus the minimum allowable value of “ClockPeriod”
can be determined by running HITSIM based on the bit-level representation. The loading
capacitances and driving resistances specified in (6.12) are used to check if the value of
“ClockPeriod” needs to be increased due to the delay of external interconnections. The
consistency between the bit-level and word-level representations of the UPE can be estab-
lished either by comparison of simulation results or by the formal fixed-point argument

introduced by Chen [9].

For an n-stage UPE, the two numbers 8 and 256 appearing in the behavior parameter

of (6.12) are replaced by 2 * n and 22", respectively.

Shown in Figure 6.7.a is a simulation result of a 4-stage UPE. The value of “ClockPe-
riod” is conservatively set to 125ns. Shown in Figure 6.7.b is a second-order filter consisting
of two 32-stage UPE’s. Based on the word-level representation, the HITSIM simulation
result is displayed as a plot of output “Aout” as a function of time (Figure 6.7.c). Note
that output U is a truncated version of Aout, with sign bit extended [50]. When this filter
is synthesized using the real UPE chip, the output waveform after a D/A converter looks

exactly the same as Figure 6.7.c on a CRT screen.

146

wo M mn gl m 1
Boar | 10} 10 | 15| s|]
Doar | 12 | 15 | 10 | 5]]
" 2] 71 oJ 10 |]
an L ol 5[2] o]]
Acut L I 43 | 20T 77] 150 |
w L 1 | 2 | a_| « 1 5]
(a)
Aout Iﬂ‘
{
n:._—__)lm Asut asn ot >
v00 —| Cver WD ~1Oner v \J VN
-OT- Hal 1.8 lli-l
| B -
(b) (c)
Figure 6.7. Simulation display of the UPE at the word levgl

6.6 Summary

A Smalltalk implementation of our hierarchical timing simulation model is presented
in this chapter. The resulting simulator, called HITSIM, is based on “behavior” models of

leaf cells and “structure” information of composition cells:

e Logic propagation: the logic relationship among the ports of a leaf cell is specified by
the user. Any constructs and data types allowed in the Smalltalk language can be

used. On the other hand, propagation of events from one cell to another is handled

147

automatically by HITSIM. The connection information specified in the cémpositién

cells is used for this purpose.

Delay calculation: The delays from the inputs to the outputs of a leaf cell are also
specified by the user. Any timing or circuit simulators can be employed for obtaining
this information. For composition purposes, the driving resistances of the output
ports and loading capacitances of the input ports also need to be specified. On the
other hand, delays between leaf cells are calculated automatically by using the TREE

algorithm. Any interconnection nets of tree structure can be dealt with in a simple

and general way.

6.7 Appendix: Logic and Timing of UPE

Referring to (6.8) of section 6.2, one stage of UPE is composed from the following

three leaf cells: one instance of class “UPEMain” and two instances of class “HalfShift.”

The two classes “UPEMain” and “HalfShift” are specified as follows:

Cell UPEMain

LeafCell name: #UPEMain

inputs: #((Phil 200) (Phi2 200) (Lsb 50) (M (10 140))

(Bbar (10 153)) (Dbar (10 183)) (Ain (10 50)) (Cin (10 39)))
outputs: #((Lsbout 48 12) (Mout 48 12) (Bout 48 12)

(Dout 48 12) (carryBar 48 12) (sumBar 72 12))
states: #(bb dd Tbb Tdd Tm Tmbar x s Tx Ts Isbl bl d1).

The meaning of the thirteen state variables specified above are as follows:
bb and dd are the internal states of cell MUX;

x and s are the outputs of cells XOR and MUX, respectively;

Isb1, bl and d1 are the internal states of the shift registers;

Tbb, Tdd, Tm, Tmbar, Tx and Ts are the timing of various nodes inside the circuit.

148

Although many of the state variables are not absolutely necessary (for instance, x and
s are outputs of combinational circuits...), they are included for ease of specification. With

the eight inputs of cell “UPEMain” are associated the following eight methods:

MChanged
Phil ifTrue:[M ifTrue: [Tm «PhyTime+RM+0.9. Tmbar «PhyTime+RM+2.4]
ifFalse:[Tm «—PhyTime+FM+0.9. Tmbar «—PhyTime+FM+6.7].

self sChanged|

BbarChanged
(Lsb and:[Phil and:[(Bbar=bb) not|})
ifTrue:|bb —Bbar.
Tbb «—PhyTime+ (bb ifTrue:[RBbar| ifFalse:[FBar})+1.8.
self sChanged|

DbarChanged
(Lsb and:[Phil and:[(Dbar=dd) not]})
ifTrue:([dd —Dbar.
Tdd ~PhyTime+(dd ifTrue:|RDbar| ifFalse[FDbar])+2.2.
self sChanged].

LsbChanged
(Lsb and: [Phil]) ifTrue:[self BbarChanged; DbarChanged]

AinChanged
| ta tx |
Phil ifTrue:[x «Ain xor:Cin.
ta —PhyTime+(Ain ifTrue:|RAin] ifFalse:[FAin])+0.3.
“0.3 is the internal net delay from Ain to al (or a2) (Figure 5.11)”
tx «—ta + (x ifTure:[9.8] ifFalse:[1.3]). “cell XOR, Table 5.5”

self carryBar:ta sumBar:tx]

CinChanged:
| te tx |
Phil ifTrue:{x «—Ain xor:Cin.
tc PhyTime+(Cin ifTrue:[RCin] ifFalse:[FCin])+0.2.
“0.2 is the internal net delay from Cin to c1 (or ¢c2)”
tx ~—tc + (x ifTrue:[9.8] ifFalse:[1.3]). “cell XOR, Table 5.5”

149

self carryBar:tc sumBar:tx|

PhilChanged:
Phil ifTrue:[self MChanged; LsbChanged; AinChanged; CinChanged]

Phi2Changed:
| tout |
tout —PhyTime+1.4.
Phi2 ifTrue:Mout —M. TMout «tout.
Bout «~bl. bl «~Bbar. TBout ~tout.
Dout «d1l. d1 «~Dbar. TDout «~tout.
Lsbout «Isb1. Isbl ~Lsb. TLsbout «tout]

To complete the specification, the following two methods are defined.

sChanged

| tse |

M ifTrue:[s —bb not.
self sTiming:bb with:dd with:Tbb with:Tdd with:Tm with:Tmbar]
ifFalse:[s «—dd not.
self sTiming:dd with:bb with:T'dd with:Tbb with:Tmbar with:Tm)].

tsc «— Ts + (s ifTrue:[5.6] ifFalse:[0.7]).

“5.6 and 0.7 are due to the net delay from s to sl (or s2)”

self carryBar:tsc sumBar:tsc]

sTiming:b with:d with:tb with:td with:tm with:tmbar
Ts « b ifTrue:[tb+1.0 max: tmbar+0.7
ifFalse:[d ifTrue:|(tb max:tmbar)+9.6]
ifFalse:[((tb max: td)+3.8 min: (tb max:tmbar))+9.6}]

carryBar:tc sumBar:ts
carryBar « (x ifTrue:[s] ifFalse:[Ain]) not.
TcarryBar «tc + (carryBar ifTrue:[Ain ifTrue:{2.8]
ifFalse:[Cin ifTrue:[3.4] ifFalse:[1.9]]]
ifFalse:[0.9]). “cell MAJ, Table 5.4”
sumBar «x eqv:s.
TsumBar «ts + (sumBar ifTrue:[2.2] ifFalse:[0.4]) “cell XOR, Table 5.6

There are ten net-dependent instance variables of cell “UPEMain.” They are associ-

150

ated with the five input ports: “M,” “Bbar,” “Dbar,” “Ain” and “Cin” with prefix “R”
and “F,” respectively. Under the composition environment of the UPE (Figure 6.4 and

(6.9)), the values of these ten variables are listed in Table 6.2.

M | Bbar{ Dbar| Ain | Cin
R (rise)| 6.7 7.3 88 | 24 1.9
F (fall) | 1.7 1.8 2.2 0.6 0.5

Table 6.2. Net-dependent instance variables of one UPE stage

Cell HalfShift

LeafCell name: #HalfShift
inputs: #((in (5 20)) (phi 15))
outputs: #((out 48 12})
states: #()
behavior: ¢ phi ifTrue:[out « in not.
Tout —PhyTime+ (in ifTrue:[Rin+0.1]
ifFalse:[Fin+0.5]) |. ’

The values of Rin and Fin under the composition environment of cell “UPEStage”

(6.8) are 1.0 and 0.2, respectively.

151

Chapter 7

Conclusions

The model and simulation algorithms presented in this thesis were developed to cope
with the increasing complexity of VLSI systems. The model supports both structure and
behavior representations of designs in a uniform manner. At the structure level, time
constant-related primitives (the R, C, D parameters) are used to characterize the integral
behavior of digital MOS circuits. The simulation algorithms are much more efficient than
other circuit and timing simulators in which lower-level primitives (currents and voltages)
are used and differential behavior is considered. The composition rules of the R, C, D
parameters are derived analytically from the Kirchoff’s current and voltage laws so that
the consistency with physics is established. At the behavior level, the logic and timing of
a semantic cell can be abstraded from its implementation to allow hierarchical treatment
of a complicated design. The intention is to balance the circuit-level and system-level

considerations for developing a simulation model.

7.1 An Integrated Design System

Two experimental simulators have been implemented and presented in this thesis: SDS
for the structure representation and HITSIM for the behavior representation of designs.
These two simulators can be combined with other tools to form an integrated design
system that fully supports the structured design methodology. The design flow of one
such system currently under integration is indicated in Figure 7.1. The blocks bounded
by bold lines are programs, and those bounded by regular solid lines are data sets. The
blocks bounded by dash lines are tasks that are currently performed the user; possible

automation of these tasks are discussed in section 7.2. In addition to SDS and HITSIM,

152

Leaf Cell Design and
Syntactic Composition System (Pooh)

L T~ T

-

Circuit Port Drive/Load Cell Size & Cell
Schematics | Characteristics Part Coordinates Layout

!

Structure-level
Simulation (SOS) General Routing
System (BBL)

r—— "
Simulation Behavior
Result ‘ Extraction

Lo -
& Chip Layout
-~ -

| Behavior || Behavior Representation

Abstraction
L 7T._. — JL
Simuylation Behavior-level
Result Simulation (HITSIM)

Figure 7.1. An integrated design system

two other programs used are the Pooh leaf cell design and syntactic composition system
1 developed by Whitney [52,53] and the BBL general routing system developed at UC

Berkeley by Chen, Kuh, etc. [11]. These two systems are selected because they both fit in

1 The Pooh system consists of a graphic editor, called Tigger (49], for (f)hysical or
syntactic) leaf cell design, and a syntactic composition system, called PoohComp, which
supports both port fusion and river routing. To run hierarchical simulation, the result of
a syntactic composition must be a semantic cell. This resulting cell, called a functional

block in many design systems, is used as a (logical or semantic) leaf cell in the HITSIM

simulator.

153

our general framework in a clean and natural way:

o The Pooh system manipulates and generates circuit schematics (listing of transistors

and wires and their sizes) and design-rule-correct layouts based on a unified repre-

sentation (called Pooh representation). This is quite 2 contrast to the traditional

approach of extracting circuit schematics from physical layouts, a process that is not

only timing consuming, but also incapable of determining the semantic boundaries

within a circuit for performing hierarchical simulation.

e The BBL system handles arbitrarily shaped rectilinear blocks, minimizes layout area
and assures 100% routing completion. This system also allows routing to be done in

a hierarchical manner.

Given the specification of a target circuit, the user first determines the timing strategy,

the set of leaf cells to be designed, and the composition hierarchy for building up the circuit.

Every leaf cell can be designed using the Pooh system which, upon completion, generates -

the following four pieces of data: 1) the circuit schematics of the cell for performing

SDS timing simulation, 2) the driving resistances and loading capacitances of the ports

required for HITSIM simulation, 3) the size of the cell and the coordinates of the ports

for performing BBL routing, and 4) the physical layout of the cell which will be combined
with the BBL output to form the complete layout of the chip.

Based on the results of the SDS simulation, the user determines the behavior and

timing of each cell. The behavior and timing descriptions of a collection of cells, together

with the following two data, are used for performing HITSIM simulation: 1) the driving

resistances and loading capacitances of the ports generated by the Pooh system, and 2)

the tree structure and physical parameters of the connection wires generated by the BBL_

_system. Note that both the behavior and timing specifications of cells and the routing data
are maintained in a hierarchical manner. With proper functional and data abstraction of

the specifications of the cells, the user can flatten the design at any desired level for

154
performing the HITSIM simulation.

7.2 Suggestions for Future Research

The present implementation of HITSIM relies on the user for performing the following
two tasks (Figure 7.1):

1. Behavior Extraction: Given the structure (transistor and wire listing) of a

semantic cell, the behavior of the cell has to be derived manually.

2. Behavior Abstraction: Given the behaviors and net listing of a collection of

semantic cells, the abstract behavior of the composite cell has to be derived manually.

In general, the first task (behavior extraction) cannot be fully automated [13]. How-
ever, by restricting the constructs that are allowed in the design, it is quite possible for
computers to perform the task. The key issue is that the performance of the design should
not be sacrificed too much by‘imposing these restrictions. Recently, Frey and Mead have
developed a new logic family that satisfies all the desirable properties of VLSI designs: high
speed, high density, low power, no analog hazard, etc [33). Furthermore, the behavior of
any design following the composition rules of this logic family is directly derivable from its
circuit structure, the correctness of which is guaranteed. Our timing model matches with
this logic family very nicely; the integration of the two seems a natural research project to

pursue.

As to the second task (behavior abstraction), although the description ;)f the composite
cell can be trivially derived by symbolic manipulation of the descriptions of the component
cells, no abstraction or optimization can be easily automated during this process. The task
of abstraction seems better performed by humans rather than by machines. An interesting
project would be to design a reasonable interface to aid the user performing this task.

Certain properties such as the consistency between the two representations should be

guaranteed by the support of the interface.

155

References

(1] Agrawal, V.D., “Synchronous Path Analysis in MOS Circuit Simulator,” Proc. of
the 19th Design Automation Conference, pp.629-635, 1982,
(2] Aho, A.V., Hopcroft, J.E. & Ullman, J.D., “The Design and Analysis of Computer
Algorithms,” Chapter 5, Addison-Wesley, 1974.
[3] Baker, C., “Artwork Analysis Tools for VLSI Circuits,” MIT/LCS/TR-239, May 1980.
(4] Bryant, R.E.,, “A Switch-level Simulation Model for Integrated Logic Circuits,”
MIT/LCS/TR-259, Doctoral Dissertation, MIT, March 1981.
[5] Bryant, R.E., “A Switch-Level Model and Simulator for MOS Digital Systems,” IEEE
Trans. on Computers, vol. C-33, no.2, pp.160-177, Feb. 1984.
(6] Bryant, R.E., Schuster, M. & Whiting, D., “MOSSIM II: A Switch-Level Simulator
for MOS LSI: User’s Manual,” 5033:TR:82, Computer Science, Caltech, 1982.
[7] Chawla, B.R., Gummel, H.K. & Kozak, P., “MOTIS — An MOS Timing Simulator,”
IEEE Trans. on Circuits and System, CAS-22, no.12, pp.901-910, Dec. 1975.
[8] Chen, M.C. & Mead, C.A., “A Hierarchical Simulator Based on Formal Semantics,”
Proc. of the 3rd Caltech Conference on VLSI, pp.207-223, March 1983.
[9] Chen, M.C., “Space-Time Algorithms: Semantics and Methodology,” 5090:TR:83,
Doctoral Dissertation, Computer Science, Caltech, May 1983.
[10] Chen, M.C. & Mead, C.A., “A Methodology for Hierarchical Simulation and Verifica-
tion of VLSI Systems,” in preparation.
(11] Chen, N-P., Hsu, C-P. & Kuh, E.S., “The Berkeley Building-Block Layout System for
| VLSI Design,” Proc. of the IFIP TC 10/WG 10.5 International Conference on VLSI,
pp.37-44, Trondheim, Norway, Aug. 1983.
[12] Chiang, C-L., “Distributed RC Delay Line Model and MOS PLA Timing Estima-

156

tion,” 5010:DF:83, Computer Science, Caltech, Dec. 1983.

(13] Cutland, N., “Computability,” Cambridge University Press, 1980.

[14] Desoer, C.A. & Kuh, E.S., “Basic Circuit Theory,” Chapter 17, McGraw-Hill, 1969.

(15] Elmore, W.C., “The Transient Response of Damped Linear Networks with Particular
Regard to Wideband Amplifiers,” Journal of Applied Physics, vol.19, no.1, pp.55-63,
Jan. 1948.

[16] Gh.ausi, M.S. & Kelly, J.J., “Introduction to Distributed-Parameter Networks with
Application to Integrated Circuits,” Chapter 1, Holt, Rinehart and Winston Inc.,
1968. |

(17] Glasser, L.A., & Penfield, P., “VLSI Circuit Theory,” Proc., of the IEEE International
Large Scale Systems Symposium, pp.499-501, Oct. 1982.

[18] Goldberg, A., “Smalltalk-80, the Interactive Programming Environment,” Addison-
Wesley, 1984.

(19] Goldberg, A., & Roson, D., “Smalltalk-80, the Language and Its Implementation,”
Addison-Wesley, May 1983.

[20] Horowitz, M.A., “Timing Models for MOS Pass Networks,” Proc. of the International
Symposium on Circuits and Systems, pp.198-201, 1983.

(21] Horowitz, M.A., “Timing Models for MOS Circuits,” SEL83-003, Doctoral Disserta-
tion, Stanford Univ., Dec. 1983.

[22] Johannsen, D.L., “Silicon Compilation,” TR:4530:81, Doctoral Dissertation, Com-
puter Science, Caltech, 1981.

(23] Jouppi, N.P., “TV: An nMOS Timing Analyzer,” Proc. of the 3rd Caltech Conference
on VLSI, pp.71-86, March 1983.

[24] Kogge, PM., “The Architecture of Pipelined Computers,” McGraw-Hill, 1981.

[25] Kung, H-T., “Let’s Design Algorithms for VLSI Systems,” Proc. of the 1st Caltech

157

Conference on VLSI, pp.65-90, Jan. 1979.

[26] Lelarasmee, E., Ruehli, A.E. & Sangiovanni-Vincentelli, A.L., “The Waveform Re-
laxation Method for Time-Domain Analysis of Large Scale Integrated Circuits,” IEEE
Trans. on Computer-Aided Design of ICAS, vol. CAD-1, no.3, pp.131-145, July 1982.

[27) Lin, T-M. & Mead, C.A., “Signal Delay in General RC Networks with Application to
Timing Simulation of Digital Integrated Circuits,” Proc. of the 3rd MIT Conference
on Advanced Research in VLSI, pp.93-99, Jan. 1984.

[28] Lin, T-M. & Mead, C.A., “Signal De.lay in General RC Networks,” IEEE Trans. on
Computer-Aided Design of ICAS, vol. CAD-3, no.4, Oct 1984.

[29] Lyon, R.F., “Two’s Complement Pipeline Multipliers,” IEEE Trans. on Communica-

tions, vol. COM-24, no.4, pp.418-425, April 1976.

[30] Mead, C.A. & Conway, L.A., “Introduction to VLSI Systems,” Addison Wesley, 1980.

[31]. Mead, C.A., Reference [30], Chapter 1.

[32] Mead, C.A., “Structural and Behavioral Composition of VLSI,” Proc. of the IFIP
TC 10/ WG 10.5 International Conference on VLSI, pp.3-8, Trondheim, Norway, Aug.
1983.

[33] Mead, C.A. & Frey, A., “A Logic Family,” unpublished report, Jan 1984.

[34] Moore, G.E., “Are We Really Ready for VLSI,” Proc. of the 1st Caltech Conference
on VLSI, pp.3-14, Jan. 1979.

[35] Murphy B.T., “Microcomputers: Trends, Technologies, and Design Strategies,” IEEE
Journal of Solid-State Circuits, vol. SC-18, no.3, pp.236-244, June 1983.

[36] Nagel, L.W., “SPICE2: A Computer Program to Simulate Semiconductor Circuits,”
ERL Memo, no. ERL-M520, Electronics Research Laboratory, University of Califor-
nia, Berkeley, 1975.

[37] Ousterhout, J.K., “Crystal: A Timing Analyzer for ntMOS VLSI Circuits,” Proc. of

[38]

[39]

[40]

[41]

42]

(43]

(44]

(45]

(48]

158

the 3rd Caltech Conference on VLSI, pp.57-70, March 1983.

Penfield, P. & Rubinstein, J., “Signal Delay in RC Tree Networks,” Proc. of the 2nd
Caltech Conference on VLSI, pp.269-283, March 1981

Rem, M., & Mead, C.A., “A Notation for Designing Restoring Logic Circuitry in
CMOS,” Proc. of the 2nd Caltech Conference on VLSI, pp.399-411, Jan. 1981.
Rubinstein, J., Penfield, P., & Horowitz, M., “Signal Delays in RC Tree Networks,”
IEEE Trans. on Computer-Aided Design of ICAS, vol. CAD-2, no.3, pp.202-211,
July 1983.

Ryser, H.J., private communication.

Scott, D. & Strachey, C., “Toward a Mathematical Semantics for Computer Lan-
guages,” Polytechnic Institute of Brooklyn Press, 1971.

Seitz, C. “System Timing,” Reference [30], Chapter 7.

Strang, G., “Linear Algebra and its Applications,” Chapter 6, 2nd. ed., Academic
Press, 1980.

Tamura, E., Ogawa, K. & Nakano, T., “Path Delay Analysis for Hierarchical Building
Block Layout System,” Proc. of the 20th Design Automation Conference, pp.403-410,
1983.

Terman, C.J., “Simulation Tools for Digital LSI Design,” VLSI Memo 83-154, Doc-
toral Dissertation, MIT., Oct. 1983.

Thomas, D.E. & Nestor, J.A., “Defining and Implementing a Multilevel Design Rep-
resentation with Simulation Applications,” IEEE Trans. on Computer-Aided Design
of ICAS, vol. CAD-2, no.3, pp.135-145, July 1983.

Varga, R.S., “Matrix [terative Analysis,” Prentice-Hall series in automatic computa-

tion, 1962.

[49] Von Herzen, B., Master Thesis, in preparation.

159

[50] Wawrzynek, J. & Lin, T-M. “A Bit Serial Architecture for Multiplication and Inter-

polation,” 5067:DF:83, Computer Science, Caltech, Jan. 1983.

[51] Wawrzynek, J., Lin, T-M. & Mead, C.A., “A VLSI Approach to Sound Synthesis,”
the 10th International Computer Music Conference, Paris, France, Oct, 1984.

[52] Whitney, T., Doctoral dissertation, in preparation.

[53] Whitney, T. & Mead, C.A,, “Pooh: A Uniform Representation for Circuit Level
Designs,” Proc. of the IFIP TC 10/WG 10.5 International Conference on VLSI,

pp.401-411, Trondheim, Norway, Aug. 1983.

