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Abstract

This thesis primarily focuses on understanding the plasma behavior during the helicity

injection stage of a pulsed spheromak experiment. Spheromak formation consists of a series

of dynamic steps whereby highly localized plasma near the electrodes evolves toward a

Taylor state equilibrium. The dynamical evolution stage has been modeled as a series of

equilibrium states in the past. However, the experiments at the Caltech spheromak facility

have revealed that unbalanced J × B forces drive non equilibrium Alfvénic flows during

these preliminary stages.

The Caltech spheromak experiment uses coplanar electrodes to produce a collimated

plasma jet flowing away from the electrodes. The jet formation stage precedes the sphero-

mak formation and serves as a mechanism for feeding particles, magnetic helicity, energy,

and toroidal flux into the system. Detailed density and flow velocity measurements of hy-

drogen and deuterium plasma jets have revealed that the jets are extremely dense with

βthermal ∼ 1. Furthermore, the flow velocity was found to be Alfvénic with respect to the

the toroidal magnetic field produced by the axial current within the plasma. An existing

magnetohydrodynamics (MHD) model has been generalized to successfully predict the effect

of plasma current on the jet’s density and flow velocity. The behavior of these laboratory

jets is in stark contrast to the often considered model for astrophysical jets describing them

as equilibrium configurations with hollow density profiles.

Other contributions of this thesis include the following.

1. The thesis presents an analytical proof that resistive MHD equilibrium with closed

flux tubes is not feasible. This implies that sustained spheromak experiments cannot

maintain helicity while being in a strict equilibrium.

2. The thesis describes measurements to characterize the circuit parameters of the high

voltage discharge circuit used in the Caltech spheromak experiment.

3. The thesis also describes the setup of novel He-Ne laser interferometers used to mea-

sure the density of plasma jets. The ease of alignment of these interferometers was

greatly enhanced by having unequal path lengths of the scene and reference beams.

4. Finally, the thesis details the setup for a soft X-ray (SXR)/Vacuum ultra violet (VUV)
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imaging system. Some preliminary images of reconnecting flux tubes captured by the

imaging setup are also presented.
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Chapter 1

Introduction

Plasma is an ionized gas. Some of the applications of plasma physics are fusion energy

research, plasma processing, arcs, space propulsion, and understanding many solar and

astrophysical phenomena.

The fusion reaction between deuterium and tritium has the highest reaction rate [1]

(∼ 10−22 m3/s) at moderately high temperatures (∼ 10 keV). It yields Ereaction = 17.6 MeV

per reaction.

D + T→ He4(3.5 MeV) + n(14.1 MeV).

To achieve fusion, hot and dense D-T plasma has to be confined long enough for substantial

fusion reactions to occur. A fusion reactor will be profitable if the energy spent in confining

the hot plasma is less than the energy output from the fusion reaction. This argument is

used to derive the Lawson criterion

nτE &
kT

Ereaction × reaction rate
∼ 1020 − 1021 sec×m3, (1.1)

where n is the plasma density, τE is the energy confinement time, and T is the temperature

of the plasma. A tokamak is a donut shaped device that confines hot plasma particles on

toroidal magnetic flux surfaces. The tokamak concept is the most widely pursued magnetic

fusion reactor design. The ITER device [2] being built in Cadarache, in the South of France

is an experimental reactor which is expected to demonstrate an energy efficiency of 10

by confining hot plasma (T ∼ 10 keV, n ∼ 1020 m−3) with confinement time of ∼ 4 s

(the experimental pulse will be substantially longer ∼ 500 s). However, there are huge
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technological and monetary constraints for building tokamak reactors. The budget of ITER

is approximately 10 billion US dollars.

Spheromaks [3] are simply connected (and hence topologically simple) plasma configura-

tions which may provide a cheaper alternative to other fusion reactor designs. The Sustained

Spheromak Physics Experiment (SSPX) at the Lawrence Livermore National Laboratory

has been the most successful spheromak experiment to date. It achieved plasma tempera-

tures of few 100 eV and nτE approximately three orders of magnitude less than the Lawson

criterion [4] described in equation (1.1). Huge improvement in the spheromak performance

is required to make it a viable fusion reactor. The progress in the last three decades has

been exceptional and substantial progress is expected in near future.

Spheromaks configurations are constrained minimum energy states, and thus plasmas

have a natural tendency of evolving toward a spheromak equilibrium. Thus, concepts of

spheromak research have often been used to explain plasma behavior in many naturally

evolving plasma structures, for example solar prominences [5] and astrophysical jets [6].

1.1 Magnetohydrodynamics-MHD

Magnetohydrodynamics (MHD) is a description of the plasma which models it as an elec-

trically conducting fluid [7, Chapter 2.6]. A MHD description of plasma behavior is valid

under the following assumptions:

1. Plasma is charge neutral. This is true when considering plasma behavior at length

scales much greater than the Debye length.

2. The plasma is collisional, or equivalently the collision times are much shorter than the

characteristic timescales of the experiment. This ensures that the particle distribution

is Maxwellian.

3. The plasma behavior under consideration has velocity much smaller than the speed

of light.

4. Either the timescales under consideration are much longer than the ion cyclotron

frequency or the electron cyclotron frequency is much smaller than the electron-ion

collision frequency.



3

5. The pressure and density gradients are parallel in the plasma.

The mass conservation equation in MHD is

∂ρ

∂t
+∇ · (ρu) = 0, (1.2)

where ρ is the mass density of the plasma and u is its velocity. The MHD equation of

motion is

ρ

(
∂u
∂t

+ u · ∇u
)

= J×B−∇P, (1.3)

where J is the current density, B is the magnetic field and P the fluid pressure. Using

equation (1.2), the left hand side of equation (1.3) can be expressed as

ρ

(
∂u
∂t

+ u · ∇u
)

=
∂ (ρu)
∂t

+∇ · (ρuu)−
[
∂ρ

∂t
+∇ · (ρu)

]
u

=
∂ (ρu)
∂t

+∇ · (ρuu) .

Thus, the MHD equation of motion can be expressed in the following alternative form

∂ (ρu)
∂t

+∇ · (ρuu) = J×B−∇P. (1.4)

MHD Ohm’s law is

E + u×B = ηJ, (1.5)

where E is the electric field in the plasma and η is its resistivity. In a plasma with negligible

resistivity, the MHD Ohm’s law can be used to show that the magnetic flux linked by any

closed loop in the plasma is conserved.

The MHD heat transport equation [7, page 73],[8, section 10.6] is

∂

∂t

(
NP

2
+
ρu2

2

)
+∇ ·

(
q +

(N + 2)P
2

u +
ρu2

2
u
)

= J ·E− Sl

= ηJ2 − J · (u×B)− Sl, (1.6)

where N is the dimensionality of the system (usually N = 3), q is the heat flux, and Sl is

the rate of energy loss by radiation.
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1.1.1 Energy Conservation in MHD

Dotting electric field E with the pre-Maxwell form of Ampere’s law gives

E · ∇ ×B = µ◦J ·E.

Similarly, dotting the magnetic field with Faraday’s law gives

B · ∇ ×E = −∂B
∂t
·B.

Subtracting these two equations and using the vector identity ∇ · (E ×B) = B · ∇ × E −

E · ∇ ×B gives

∇ ·
(

E×B
µ◦

)
= − ∂

∂t

B2

2µ◦
− J ·E.

Using equation (1.6) gives

∇ ·
(

E×B
µ◦

+
ρu2

2
u +

(N + 2)P
2

u + q
)

= − ∂

∂t

(
B2

2µ◦
+
ρu2

2
+
NP

2

)
− Sl.

This can be integrated over the entire volume of plasma and over time. By Gauss’ law, the

volume integral of the terms on the left-hand side turns into a surface integral. If the plasma

velocity is zero at the boundary of the volume, the surface integration terms involving the

plasma velocity are zero as well. Assuming that there is no heat flux at the boundary, we

get

∫ t

0
ds ·

(
B×E
µ◦

)
︸ ︷︷ ︸

Winput

=
∫

B2

2µ◦
d3r︸ ︷︷ ︸

Wmag

+
∫
ρu2

2
d3r︸ ︷︷ ︸

Wkin

+
∫
NP

2
d3r︸ ︷︷ ︸

Wth

+
∫ (∫ t

0
Sl dt

)
d3r︸ ︷︷ ︸

Wradiation-loss

. (1.7)

equation (1.7) is the MHD energy conservation equation. Note that ds is pointing outwards

from volume bounding the plasma. The left-hand term (Winput) is the energy input into the

plasma and is the surface integral of the Poynting flux over time. If the plasma is bounded

by electrodes which link external current, then Winput can also be expressed as
∫ t

0 V Idt.

V is the voltage at the electrodes, and I is the current linked by the electrodes. Wkin is

the kinetic energy in the plasma and Wth is the thermal energy. The thermal energy of

the plasma can be increased by adiabatic compression or from Ohmic heating from the ηJ2
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term in equation (1.6). Wradiation-loss accounts for the radiation losses in the plasma. The

energy lost in radiation also comes from the Ohmic term ηJ2. Wmag is the energy in the

magnetic field in the plasma. In case of azimuthically symmetric plasma configurations,

Wmag can be expressed as the sum of toroidal and poloidal field energies.

∫
B2

2µ◦
d3r︸ ︷︷ ︸

Wmag

=
∫
B2

tor

2µ◦
d3r︸ ︷︷ ︸

Wtor

+
∫
B2

pol

2µ◦
d3r︸ ︷︷ ︸

Wpol

. (1.8)

1.2 Helicity Injection and Spheromak Formation

Magnetic helicity in a plasma is defined as

K =
∫

A ·Bd3r,

where A is the magnetic vector potential. Magnetic helicity as defined above is gauge in-

variant if there is no normal magnetic field component on the surface bounding the volume

under consideration. However, this condition is not satisfied in most spheromak experi-

ments. For such scenarios, an alternate concept of relative helicity is used [3, Section 3.5].

Krel =
∫

(A ·B−Avac ·Bvac) d3r,

where Avac and Bvac are the vacuum solutions to the magnetic vector potential and the

magnetic field inside the volume, and Bvac satisfies the same boundary conditions as B.

The dissipation of relative helicity by plasma resistivity and its implications on plasma

equilibrium is considered in chapter 2.

Woltjer [9] showed that the helicity is conserved in an ideal plasma, and conjectured that

in a slightly resistive plasma, magnetic helicity is nearly a constant in the time scale of decay

of magnetic energy. He considered a plasma with negligible thermal energy (P → 0), and

used a variational principle to show that the minimum energy state satisfying the constraint

of constant helicity is characterized by

∇×B = λB, (1.9)
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Figure 1.1: Closed poloidal flux surfaces in an isolated spheromak in a cylindrical flux

conserver with aspect ratio r/z = 1.9.

where λ is constant throughout the volume. Plasmas defined by equation (1.9) are often

called force-free plasmas, as equation (1.3) shows that there are no forces in a uniform

plasma if current density is parallel to the magnetic field.

Taylor [10] argued that magnetic reconnection conserves the total magnetic helicity in a

plasma, but lowers the magnetic energy to a force-free plasma state. He used this hypothesis

to explain the spontaneous existence of a reversed toroidal field in a toroidal device called

a reversed field pinch (RFP).

The relative magnetic helicity conservation equation is

dKrel

dt
+
∫
∂V

(2VB) · dn = −2
∫
V
ηJ ·Bd3r.

It shows that magnetic helicity can be injected into a plasma by maintaining an electric

potential difference V across open magnetic field lines on its boundary ∂V. This is the most

common technique for helicity injection in spheromak plasmas and is called electrostatic

helicity injection. Initial spheromak experiments were non steady-state experiments which

involved electrostatic helicity injection and relaxation of the plasma into a force-free state

in a flux conserver. The eigenvalue λ in the force-free equation (1.9) is determined by the

shape of the flux conserver. Spheromak plasmas in the flux conserver can have closed flux

surfaces which are beneficial for particle confinement. Figure 1.1 shows an example of the

closed poloidal flux contours in a cylindrical flux conserver.

Helicity can also be injected in a spheromak experiment in steady state. Figure 1.2

shows the open and closed flux surfaces in a steady state spheromak. Particle confinement

is expected to be good on the closed flux surfaces, however chapter 2 shows that such a
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Figure 1.2: Open and closed poloidal flux surfaces in an steady state spheromak in a

cylindrical flux conserver with aspect ratio r/z = 0.67.

system can not be in a strict equilibrium. Magnetic helicity conservation in a steady state

spheromak was experimentally demonstrated by Barnes et al. [11].

1.3 Overview of the Caltech Spheromak Experiment

The Caltech spheromak experiment is a pulsed helicity injection experiment without a flux

conserver. The experiment employs a coaxial planar electrode design for helicity injection.

Figure 1.3 shows the design of the electrodes. The setup is installed inside a cylindrical

vacuum chamber with length ∼ 1.6 m and diameter ∼ 1.4 m. The inner disk cathode is

20 cm in diameter, and the outer annular anode has a diameter of 50 cm. Plasma is created

by discharging up to two high voltage 59 µF capacitors across the electrodes. Details of the

discharge circuit are presented in chapter 3.

Throughout this thesis, a cylindrical coordinate system {r, φ, z} is considered while

describing plasma dynamics in the spheromak experiment. The z axis is coming out of the

plane of the figure 1.3, r axis points radially outwards from the center of the electrodes,

and φ is the toroidal direction to form a right-handed coordinate system around the z axis.
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Magnetic probe

Outer radius = 25 cm
Anode

Gas feed lines

Outer gas orifices(8)Inner gas orifices(8)

Cathode (Radius = 10 cm)

Figure 1.3: Electrodes in the Caltech spheromak experiment.
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Figure 1.4: Cartoon showing the definition of the cylindrical coordinate system for the

Caltech spheromak experiment. The red arrows represent the poloidal r − z direction, and

the green arrows represent the toroidal φ direction. The poloidal current in the experiment

is driven by an external capacitor bank linked to the electrodes. The poloidal current creates

a toroidal magnetic field. An external magnetic field coil (see figure 1.5) creates a poloidal

magnetic field in the experiment.
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Bias field coil

Anode

Cathode

Fast gas puff valve

Figure 1.5: Cartoon showing the location of bias field coil behind the cathode of the Caltech

spheromak experiment. Also shown is the location of a fast gas puff valve. Image courtesy

of Paul Bellan.

The electrodes are located at z = 0. Vectors which lie in the r − z plane are referred

to as poloidal vectors. Vectors oriented along the φ̂ direction are referred to as toroidal

vectors. Poloidal and toroidal vectors are often referred to by subscripts “pol” and “tor”

respectively. Also, scalar quantities which are independent of φ are referred to as poloidal.

The coordinate system is described in figure 1.4.

A poloidal vacuum magnetic field created by a 2.8 mH coil behind the electrodes links

the two electrodes (see figure 1.5). The coil was powered by an electrically isolated 14.4 mF

capacitor bank. The voltage of the capacitor bank could be varied to create a magnetic flux

of up to 4.9 mWb at the cathode. The applied flux remains constant for the time scale of

the experiment and is referred to as the poloidal bias flux.1 Changing the direction of the

bias flux did not cause any change in the plasma behavior in the experiment.

Neutral gas was puffed near the electrodes using 16 orifices, eight each on the two

electrodes (see figure 1.5). Two fast gas puff valves [3, Chapter 14] each were used to

supply neutral gas at the anode and the cathode.

The following sequence of events was followed to create a plasma discharge (refer to
1Calibration of the poloidal bias flux was done by Auna Moser, Gunsu Yun, and Deepak Kumar.
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0.50 µs

(a) Eight spider legs

5.00 µs

Jet diameter ∼  6 cm

(b) Collimated jet

7.25 µs

(c) Kink unstable jet

Figure 1.7: Visual images of the three distinct stages of plasma evolution in the Caltech

spheromak experiment.

figure 1.6):

1. The poloidal flux power supply was triggered 10 ms before the plasma discharge. It

takes 10 ms for the magnetic field to reach its maximum and link the two electrodes.

2. Fast gas valves were triggered ∼ 2 ms before the plasma discharge. It takes ∼ 2 ms

for neutral gas to travel from the fast gas puff valves to the orifices.

3. The high voltage capacitor bank was discharged across the electrodes to create a

plasma. Initially the plasma links the gas nozzle along poloidal magnetic field lines.

The eight plasma filled flux tubes linking the two electrodes resemble the eight legs

of a spider as shown in figure 1.7(a). The capacitor bank drives a poloidal current

through the plasma (see figure 1.4), which creates a toroidal magnetic field.

4. The various diagnostics and the digitizers were triggered upon the neutral gas break-

down near the electrodes.

Figure 1.7, shows the typical stages in plasma evolution after the breakdown - eight

“spider legs” linking the electrodes, a collimated plasma jet, and a kink unstable plasma

column. The structure of the spider legs was investigated by You et al. [12]. The properties

of the collimated jet are described in chapter 5 of this thesis. The kink instability of the

plasma jets was studied by Hsu and Bellan [13].
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1.3.1 Diagnostics

The following diagnostics were used in the experiment:

1. A Tektronix P6015 [14] high-voltage probe was used to measure the potential differ-

ence across the electrodes.

2. A Rogowski coil [3, Chapter 15] was used to measure the current flowing through the

high voltage capacitor bank.

3. Imacon 200-a high speed imaging camera manufactured by DRS Technologies [15] -

was used to take visible images of the plasma.

4. A He-Ne laser interferometer to measure the density of the plasma jets. Details of the

interferometer are described in Chapter 4.

5. A 60-element magnetic probe array [16] was used to measure the magnetic field in

the experiment (see figure 1.3). The probe measured magnetic field along {r, φ, z}

directions at 20 different radial locations separated by 2 cm. The axial position

(distance from the electrodes along the z direction) of the probe could be varied.

Assuming toroidal symmetry, the Ampere’s law can be used to calculate the poloidal

current from the toroidal magnetic field measurements:

I(r, z) =
2πrBφ(r, z)

µ◦
.

The poloidal current I(r, z) is calculated only at discrete radii, corresponding to the

location of the measurement coils in the magnetic probe.

The poloidal flux can be calculated using

ψ(r, z) =
∫ r

0
Bz(r′, z)2πr′dr′. (1.10)

The integration over discrete radial locations in equation (1.10) may introduce sub-

stantial errors. Also, the calculation of poloidal current and flux assumes that the

magnetic probe is oriented along the radial direction. However, there is no mecha-

nism to ensure this accurately.
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1.3.2 Experimental Parameters and Dimensionless Numbers

Table 1.1: Measured parameters for the plasma jets

Symbol Value Comment

(Parameter)

τ

timescale of the jet
5− 10 µs Experimentally observed.

l

length of the jet
∼ 0.3 m Inferred from visual plasma images.

See figure 1.7(b).

r

radius of the jet
∼ 0.03 m Inferred from visual plasma images.

See figure 1.7(b).

n

plasma density
∼ 3× 1022 m−3 Described in chapter 4.

B

magnetic field
0.1− 0.2 T By magnetic probe measurements [16].

Ti

ion temperature
∼ 2 eV By spectroscopic measurements [17,

Page 79].

Te

electron temperature
∼ 2 eV The electron and ion temperatures are

expected to equilibrate because the

plasma is highly resistive. νei � τ−1

(Table 1.2).

uz

jet axial velocity
∼ 40 km/s Described in chapter 5.

Table 1.1 shows some of the experimentally measured parameters of the plasma jets.

These parameters were used to derive the quantities listed in Table 1.2.2

2Rory Perkin’s help in formulating this table is greatly acknowledged.
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Table 1.2: Some derived quantities for the plasma jets

Symbol Parameter Formula Value

vT i ion thermal velocity
(

2kTi
mi

) 1
2 ∼ 20 km/s

vTe electron thermal velocity
(

2kTe
me

) 1
2 ∼ 800 km/s

λD Debye length
(
ε◦kT
nq2

) 1
2 ∼ 0.1 µm

Λ particles in a Debye sphere n4π
3 λ

3
D ∼ 100

νei collision rate nq4

2πε2◦m
1
2
e (2kTe)

3
2

∼ 300 GHz

η plasma resistivity meνei
nq2

∼ 3× 10−4 Ωm

ωce electron cyclotron frequency qB
me

∼ 2× 1010 rad/s

ωci ion cyclotron frequency qB
me

∼ 107 rad/s

ωpe electron plasma frequency
(
nq2

meε◦

) 1
2 ∼ 1013 rad/s

ωpi ion plasma frequency
(
nq2

miε◦

) 1
2 ∼ 2× 1011 rad/s

re electron gyroradius vTe
ωce

∼ 50 µm

ri ion gyroradius vTi
ωci

∼ 0.2 cm

DB Bohm diffusion coefficient 1
16
kTe
qB ∼ 1 m2/s

τB Bohm time r2

2DB
∼ 500 µs

δp plasma skin depth c
ωpe

∼ 30 µm

Rm magnetic Reynold’s number uzr
η ∼ 106
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Chapter 2

On Magnetic Helicity Injection in a Steady State

Scenario

Many driven plasma experiments consist of closed flux surfaces maintained by externally

linked currents along open field lines linking the electrodes. This chapter shows that it is

not possible to sustain magnetic helicity in such configurations with static magnetic fields.

Consider an externally driven resistive MHD plasma in a simply connected volume V

bounded by a perfect conductor with gaps (see figure 2.1). A driven configuration attempts

to sustain magnetic helicity in the plasma by having open magnetic field lines linking bound-

ary surfaces at different potentials (electrostatic helicity injection) or by generating time

dependent surface potential and magnetic fields inductively (AC helicity injection). Such

systems have been used in many sustained spheromak experiments for both electrostatic

helicity injection [11, 18, 19] and AC helicity injection [20]. This chapter examines whether

a truly static equilibrium is possible for such driven systems.

Consider the relative magnetic helicity conservation equation in a resistive plasma [3,

Chapter 3]
dKrel

dt
+
∫
∂V

(2VB) · dn = −2
∫
V
ηJ ·Bd3r. (2.1)

For further analysis, the volume of plasma is divided into open and closed flux tubes as

shown in figure 2.1. The open flux tube links electrodes having different potentials V+ and

V− respectively. An external source drives a current I◦ through the open flux tube. The

potential appearing at the electrodes is the cumulative effect of the resistive drop across the

open flux tube and also inductive voltages from the self inductance of the open flux tube and
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dl
ds

V
−

I
1

V
+

ψ°

Figure 2.1: A cartoon showing an open flux tube (in blue) having a flux ψ◦ and an externally

linked current I◦. The volume in red is a closed flux tube carrying a current I1.

mutual inductance from the closed flux tube. For simplicity, we will consider just a single

open flux tube with infinitesimally small cross section, but the arguments presented in this

chapter can be extended to more than one open flux tube. Consider the right-hand-side

term of equation (2.1) within the volume V◦ of the open flux tube (blue region in figure

2.1):

− 2
∫
V◦
ηJ ·Bd3r = −2

∫
V◦

(E + U×B) ·Bd3r

= −2
∫
V◦

E ·Bd3r

= −2
∫
V◦

(−∇V − ∂A
∂t

) ·Bd3r. (2.2)

The first term in equation (2.2) can be expressed as

2
∫
V◦
∇V ·Bd3r = 2

∫
V◦
∇ · (VB) d3r = 2

∫
∂V◦

VB · dn,

which is exactly equal to the electrostatic helicity injection term in equation (2.1). The
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second term in equation (2.2) can be expressed as

2
∫
V◦

∂A
∂t
·Bd3r = 2

∫
V◦

∂A
∂t
·Bdl · ds = 2

∫
V◦

∂A
∂t
· dlB · ds = 2ψ◦

∫
V◦

∂A
∂t
· dl, (2.3)

where dl and ds are infinitesimal length and area elements along the open flux tube (refer

to Fig. 2.1) and ψ◦ = B · ds is the flux, which is constant throughout the length of the flux

tube. In deriving equation (2.3) we used the fact that dl, ds and B are parallel to each

other in the flux tube.

Thus equation (2.1) can be rewritten as

dKrel

dt
− 2ψ◦

∫
V◦

∂A
∂t
· dl = −2

∫
V−V◦

ηJ ·Bd3r. (2.4)

Note that the helicity source terms in equation (2.4) depend on a time-dependent magnetic

vector potential. This shows that helicity cannot be sustained in a driven plasma having

closed flux surfaces (V − V◦ 6= 0) with the plasma being in static equilibrium. Equation

(2.4) also shows that a resistive MHD equilibrium is not possible in a plasma containing

closed flux tubes (surfaces).

It is often considered that the rate of helicity injection into the plasma is proportional

to the voltage appearing across the electrodes with open field lines. However, equation (2.4)

clearly shows that meaningful helicity is injected only by the fluctuating voltage appearing

at the electrodes and not by the voltage caused by the resistive drop across the plasma.

A time-changing magnetic vector potential implies a time changing current distribution

in the plasma. Equivalently, it implies fluctuating topological changes in the plasma. High

node number (n 6= 0) modes and turbulent fluctuations have been observed in sustained

spheromak experiments during helicity sustainment [11, 18, 21].

At the SSPX experiment [21] it was found that once the gun current exceeded a soft

threshold limit, detached flux and current channels were formed (V − V◦ 6= 0). In this

regime, oscillations (10 − 100 kHz) in gun voltage and measured poloidal magnetic field

were observed. We argue that such oscillations are ubiquitous with helicity sustainment

against resistive decay. In fact the SSPX experiment was able to achieve a quiescent state

with higher electron temperatures Te and consequently lower resistive decay rates by altering

the bias magnetic field profile [19]. Since helicity injection was minimal during the quiescent
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stage, the mode activity was suppressed. However, after the quiescent stage, when the gun

current started decaying, the mode activity increased.

The SPHEX experiment [18] found similar n = 1 oscillations at 20 kHz during the

sustainment stage and no oscillations in the resistive decay stage. The sense of oscillations

during the sustainment stage changed with the sign of total helicity being sustained.

Sustained spheromak configurations can be considered to be in a quasi-equilibrium with

small fluctuations. A naive consideration of equation (2.4) suggests that zero mean fluctu-

ations in magnetic vector potential cannot balance the mean loss of helicity by the resistive

term on the right side. However, we now argue that this conclusion is false. Consider the

case that a current I◦ flows along the open flux tube and does not leak outside the open

flux tube. If so, then akin to Kirchoff’s voltage law,
∫
V◦ ∂A/∂t · dl can be expressed as a

sum of voltages induced by self inductance and mutual inductance

dKrel

dt
− 2ψ◦

(
∂(I◦L◦)
∂t

+
N∑
i=1

∂(IiMi)
∂t

)
= −2

∫
V−V◦

ηJ ·Bd3r, (2.5)

where L◦ is the self inductance of the current carrying open flux tube and Mi is the mutual

inductance between the open flux tube and ith closed current loop carrying a current Ii,

where we have split the plasma volume into i = 1, . . . , N closed current loops. In order to

inject helicity into the plasma volume electrostatically, either the self inductance of the cur-

rent carrying open flux tube should change or the mutual inductance should change. Most

magnetized gun driven pulsed spheromak experiments rely on an increasing self inductance

L◦ to inject helicity (see section 2.1). Even sustained spheromak experiments [21] rely on

increasing self inductance L◦ as a means of increasing helicity before plasma detachment.

Let us now examine a quasi equilibrium solution for equation (2.5) with fluctuating

quantities-L◦,Mis and Iis. With only a fluctuating self inductance, DC helicity cannot be

injected into the plasma against resistive decay as 〈∂(I◦L◦)/∂t〉 = 0. Similarly, DC helicity

cannot be injected with only fluctuating mutual inductances (Mis) and closed currents (Iis).

However, a repetition of the following sequence of events can inject mean helicity through

fluctuating quantities: The expansion of the open flux loop increases the self inductance L◦

thereby injecting helicity into the plasma. Meanwhile the mutual inductance or the closed

currents in the plasma decay resistively. When the self inductance increases beyond a certain
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limit, reconnection converts open flux to closed flux. The dynamical reconnection process

lowers the self inductance L◦ but increases the mutual inductance and closed currents.

The cycle thus continues and mean helicity is injected by fluctuating quantities. Such a

dynamo-like process is an essential requirement for sustained spheromaks. The essence of

this chapter is showing that this dynamo process cannot be time independent.

2.1 Helicity Injection in Pulsed Spheromak Experiments

Pulsed spheromak experiments [13, 22] do not have closed flux tubes during the initial

plasma ejection stage. For such systems, equation (2.5) can be expressed as

dKrel

dt
− 2ψ◦

∂(I◦L◦)
∂t

= 0. (2.6)

Integrating equation (2.6) over time yields the injected helicity,

∆Krel = 2ψ◦I◦L◦, (2.7)

which is twice the product of the imposed bias flux ψ◦ and the flux generated by the electrode

current L◦I◦. Thus, to comprehend the amount of helicity injected in pulsed spheromak

experiments, it is paramount to understand the dynamics leading to a change in the self

inductance L◦ of the open flux tubes. Chapter 5 focuses on understanding the mechanism

causing the change in self inductance L◦ of the open flux tube in the Caltech spheromak

experiment.
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Chapter 3

Electrical Characterization of the Discharge

Circuit of the Caltech Spheromak Experiment

Figure 3.1 shows the schematic of the discharge circuit of the Caltech Spheromak Experi-

ment. It consists of two high voltage (HV) capacitors (∼ 59 µF) each switched by a separate

ignitron [23–25]. The Caltech Spheromak Experiment uses size A GL-7703 ignitrons [26].

The ignitrons are each connected to the discharge electrodes by four low inductance coaxial

cables. A matched resistor (∼ 2.3 Ω) is connected across the electrodes. The purpose of

the matched resistor is two-fold:

• It serves as a safety dump resistor for the capacitors in the event of a misfire.

• Its resistance matches the characteristic impedance of the cables and thus prevents

reflections of the initial capacitor pulse when ignitron is switched.

This chapter describes methods for calculating the various internal resistances and in-

ductances of the discharge circuit. These values are used to determine the temporal behavior

Plasma

Cables

Matched
resistor

Cables

HV capacitor

Ignitron
Ignitron trigger

HV capacitor

Ignitron
Ignitron trigger

Figure 3.1: Schematic of the discharge circuit of the Caltech spheromak experiment.
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of the discharge circuit and also to account for all the energy losses in the circuit. Unless

otherwise mentioned, for the measurements and estimates reported in this chapter and in

this thesis, only one capacitor and ignitron was used in the discharge circuit (see figure 3.1).

This was done:

1. To remove jitter associated with triggering two ignitrons [27].

2. To prevent excessive currents from kinking the plasma jets studied in chapter 5.

However, as discussed in section 3.3, even with two capacitors being discharged, the char-

acteristics of the discharge circuit were similar to that of a circuit with a single capacitor.

Section 3.1 describes various methods to calculate the plasma inductance and resistance.

Section 3.2 estimates the electrical resistances and inductances of the cables and the ignitron

in the discharge circuit. The results are interpreted in section 3.3 and the discharge circuit

is modeled as an under-damped current source.

3.1 Plasma Parameters

3.1.1 Plasma Parameters from Traces

Figure 3.2 shows the typical voltage and current traces measured at the electrodes across the

plasma. Note that the traces are almost out of phase, implying that the plasma is mostly

inductive. The voltage measured across the electrodes and the current flowing through the

electrodes are related by

V (t) = I(t)R(t) +
d
dt

(I(t)L(t))

= I(t)
(
R(t) +

dL(t)
dt

)
+ L(t)

dI(t)
dt

, (3.1)

where V is the voltage measured across the electrodes, I is the current flowing through the

electrodes and the plasma, L is the time-varying inductance of the plasma structure, and

R is the time-varying resistance of the plasma. At the plasma breakdown (see figure 3.2)

the inductance is due to the eight “spider legs” as shown in figure 1.7(a). As the plasma

current increases and a jet is formed, the plasma inductance is due to an outward moving

jet.
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Figure 3.2: The current and voltage traces measured across the electrodes for shot #8500.
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The following estimates of plasma impedance can be made from figures 3.2 and 3.3:

• Consider the voltage and current traces from a typical plasma discharge as shown

in figure 3.2. A typical current waveform consists of approximately five half cycles.

Equation (3.1) indicates that the inductance of the plasma structure can be esti-

mated at successive zero crossings (I ∼ 0) of the current traces by L ∼ V/İ. Similar

arguments have been used to estimate plasma inductances in other spheromak exper-

iments [21, 28]. The plasma inductance at breakdown is estimated to be ∼ 50 nH.

The inductance for a fully developed plasma jet will be different from this estimate.

Note that the lifetime of the Caltech Spheromak is ∼ 10 µs, which corresponds to

ramping up of the current in the first half of the cycle. Thus after the initial ramping

of the current, each successive zero crossing corresponds to secondary breakdowns (or

secondary spheromak formations).

• Figure 3.3 plots the energy flowing into the plasma as a function of time. The final

steady state value of the energy is the total energy dissipated by the plasma by heating

and radiation. The steady state value of the energy dissipated is proportional to the

resistance of the plasma. However, the fluctuating part of the energy (∆E) is the

inductive energy sloshing back and forth between the plasma and the driving circuit.

The inductance of the plasma jet can be estimated as L ∼ 2∆E/I2. From figure 3.3,

∆E ∼ 70 J when a current of I ∼ 70 kA flows through the plasma (see figure 3.2).

Thus the typical inductance of a plasma jet is L ∼ 30 nH.

• Equation (3.1) also implies that (R + L̇) ∼ V/I when I(t) is at a local extrema.

Thus, the sum of the plasma resistance and the rate of change of inductance can be

estimated from figure 3.2 to be (R+L̇) ∼ V/I ∼ 12 mΩ when I(t) is at its minimum at

t ∼ 4.3 µs. Note that we previously estimated the plasma jet to develop an inductance

of ∼ 30 nH in 4.3 µs, which implies L̇ ∼ 7 mΩ. Thus the jet resistance R and its rate

of change of inductance L̇ are comparable to each other.

3.1.2 Plasma Parameters from Geometry

Figure 3.4 shows a simple model of the plasma jet outflow. From such a model, the plasma

impedances can be estimated as shown below.
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Figure 3.4: A simplistic model of plasma jet. A current I flows through a central column

of radius r◦. The current returns at radius r. The length of the jet is l and it is moving

outwards with velocity v.

The toroidal magnetic field for a typical plasma jet with l � r◦ shown in figure 3.4 is

given by

Bφ =
µ◦I

2πr
,

and is non-zero only between the inner and the outer current channels of the jet. The flux

linked with the toroidal magnetic field is

Φ =
∫ r

r◦

µ◦I

2πr
ldr

=
µ◦Il

2π
log(

r

r◦
).

Thus the inductance is given by

L =
Φ
I

=
µ◦l

2π
log(

r

r◦
), (3.2)
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Figure 3.5: A lumped circuit model for the spheromak discharge circuit. The time dependent

plasma resistance and inductance are denoted by Rp(t) and Lp(t) respectively. The resistor

Rl ∼ 2.3 Ω is a large load resistance matched to the cable impedance. The lumped resistance

of the cables is represented by Rc. The time dependent resistance and inductance of the

ignitron is denoted as Ri(t) and Li(t). The high voltage capacitor being discharged across

the electrodes is represented by Cb ∼ 59 µF.

and the rate of change of inductance is given by

L̇ =
µ◦v

2π
log(

r

r◦
). (3.3)

For typical D2 plasma jets, v ∼ 30 km/s, l ∼ 20 cm, r ∼ 25 cm, and r◦ ∼ 10 cm (see section

1.3.2). Using these values in equations (3.2) and (3.3) give, L ∼ 35 nH and L̇ ∼ 5.5 mΩ.

The plasma resistance can also be estimated by similar geometrical considerations. The

plasma ion temperature Ti is ∼ 2 eV [17, Pg 53]. Since the plasma is extremely col-

lisional (see section 1.3.2), the plasma electron temperature Te should be equal to the

ion temperature Ti. Assuming a Coulomb logarithm of 10 implies a Spitzer resistivity

η ∼ 3.6 × 10−4 Ωm. For a plasma structure shown in figure 3.4, the resistance can be

estimated as R ∼ ηl/πr2
◦ ∼ 2.5 mΩ. Due to the uncertainties involved with the Coulomb

logarithm and the plasma geometry, the plasma resistance is an extremely crude estimate.

The plasma impedances estimated in this section compare well with the values calculated

in section 3.1.1.
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3.2 Circuit Model for Spheromak Experiment

Figure 3.5, shows the lumped circuit model for the spheromak discharge configuration. In

section 3.1 we estimated Rp(t) ∼ 2.5 − 5 mΩ and Lp(t) ∼ 30 − 50 nH. In this section we

describe how these parameters compare to the other impedances in the circuit.

To estimate the other impedances in the circuit, the following changes were made to the

circuit shown in figure 3.5:

• Rl is large compared to the plasma impedance and hence was temporarily removed.

• The “plasma” was replaced by a fixed dummy load1 of resistance 82 mΩ and induc-

tance 1 µH.

A series of shots were done by charging the high voltage capacitor to 2 kV and discharg-

ing it across the dummy load. Voltages were measured at three different locations in the

circuit:

• Voltage was measured at location A (see figure 3.5). The energy flowing into the

dummy load is given by Eload =
∫
VAI dt.

• Voltage was measured at location B (see figure 3.5). The energy flowing into the

dummy load and the cables is given by Ecable+load =
∫
VBI dt.

• Voltage was measured at location C (see figure 3.5). The energy flowing into the

dummy load and the cables is given by Ecable+load+ignitron =
∫
VCI dt. Also, the

voltage across the ignitron is Vignitron = VB − VC .

Typical traces from the shots are shown in figure 3.6. The following parameters can be

estimated from these traces:

• Rc: Resistance of the cables. The total energy dissipated across the cable and the

load (see figure 3.6(c)) is
∫∞

0 I2(Rc + Rp)dt. Since the energy dissipated across the

load is
∫∞

0 I2Rpdt, we get Rc = Rp
Ecable+load−Eload

Eload
. Thus Rc ∼ 8 mΩ.

• Ri: Resistance of the ignitron. The ignitron resistance is expected to be time and

load dependent, but an average value can be estimated by a method similar to the
1The dummy load was built by Auna Moser.
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method described for estimating Rc above. Ri ∼ Rp
Ecable+load+ignitron−Eload

Eload
− Rc. It

leads to a nominal estimate of Ri ∼ 22 mΩ.

The ignitron resistance may also be estimated by Ri ∼
Vignitron

Iignitron
evaluated at time t1

from figures 3.6(a) and 3.6(b). This leads to an estimate Ri ∼ 21 mΩ.

• Li: Inductance of the ignitron. The ignitron inductance depends on the current

flowing through it. An average value of the ignitron inductance can be estimated by

Li = Vignitron

İignitron
, when Iignitron ∼ 0. From figure 3.6(a) Li ∼ 170 nH at time t0. Similar

estimates for Li were found by discharging slightly larger currents through the dummy

load. During normal operation of the spheromak experiment, there is almost a 10 fold

increase in the current through the ignitron. Thus, it is plausible that the inductance

of the ignitron may be slightly higher during normal operation because of the pinching

effect associated with higher currents. Also, from figure 3.6(a), Li ∼ 800 nH at the

turnoff time t2.

3.3 Results and Interpretation

Table 3.1 summarizes the main estimates from this chapter. Note that Lp, Rp and L̇p were

estimated for deuterium jets. Lp and L̇p may be lower for heavier gases, but as described

later in this section, this will not change the characteristics of the discharge circuit. The

following conclusions can be drawn from these estimates:

1. Low energy coupling efficiency: During a plasma discharge only Rp/(Rp +Rc +Ri) ∼

15% of the initial capacitor energy is dissipated into the plasma. This estimate is in

agreement with figure 3.3. It should be noted, however, that the energy fraction being

coupled into the plasma increases with an increase in plasma resistance or decrease in

ignitron resistance. Typically, it is observed that even with varying parameters not

more than 35%−40% of the energy is coupled to the plasma at the Caltech spheromak

experiment. The high resistance of the ignitron makes it a very inefficient technology

to couple power into the plasma. This was observed in other experiments as well [29].

2. Under-damped discharge circuit: For the typical parameters shown in Table 3.1, the

discharge circuit is under-damped [30, Chapter 9.6]. In an under-damped circuit the
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Table 3.1: Typical parameters of the discharge circuit of the Caltech spheromak experiment.

Parameter Approximate Reference

estimate

Cb

capacitance of bank
59 µF N/A

ωd
a

damped frequency of discharge
2.7× 105 rad/sec Figure 3.2

Rp

plasma resistance

5 mΩ (measured),

2.5 mΩ (Spitzer)
Section 3.1

Lp

plasma inductance

30 nH (typical),

50 nH (at breakdown)
Section 3.1

ωdLp

plasma inductive impedance
8− 13 mΩ N/A

L̇p

rate of change of plasma inductance
6− 7 mΩ Section 3.1

Rc

cable resistance
8 mΩ Section 3.2

Ri

ignitron resistance
21− 22 mΩ Section 3.2

Li

ignitron inductance

170 nH (typical),

800 nH (at ignitron turnoff)
Section 3.2

ωdLi

ignitron inductive impedance

45 mΩ (typical),

210 mΩ (at ignitron turnoff)
N/A

aωd = π/τ , where τ is the first zero crossing time in the current waveform.
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cuit.

Figure 3.7: Current trace from various plasma shots. Figures 3.7(a), 3.7(b) and 3.7(c) traces

show that even with varying plasma parameters, the temporal behavior of the discharge

current trace changes insignificantly, thus confirming that the discharge circuit acts as

a current source. Figure 3.7(d) shows that, even with two capacitors being discharged

across the plasma, the circuit was under-damped with similar temporal behavior. This is

because even though the capacitance in the circuit increased two-fold, the resistance and

the inductance also increased almost two-fold due to the extra ignitron.
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current trace oscillates and reverses sign. The frequency of these damped oscillations,

ωd, is given by ωd =
√
|
(
R
2L

)2 − 1
LC |. Plugging in nominal values of C = 59 µF,

L = 200 nH, and R = 30 mΩ, we get ωd = 2.8 × 105 rad/sec, which is very close to

the measured frequency mentioned in Table 3.1.

3. Discharge circuit is a current source: Table 3.1 shows that the combined impedance of

the ignitron and the cables dominates the impedance of the plasma. Thus the plasma

impedance plays a negligible role in determining the profile of the current trace in the

circuit. It is observed that even when the parameters of plasma formation are varied,

the frequency of damped oscillations remains close to 2.7×105 rad/sec (see figure 3.7).

Thus, the Caltech spheromak discharge circuit can be modeled as a current source

driving an inductive plasma load.

4. Ignitron cannot be used as a crowbar device: For many inductive loads, a crowbar

device is placed across the inductive load to recycle the current through the load [31].

Switching devices like solid state diodes or ignitrons are used as crowbars to mantain

a high uni-directional current through the load and thus prevent high reverse voltage

on the main capacitors. However, an ignitron cannot be used as a crowbar for the

Caltech spheromak experiment as the ignitron impedance is much greater than the

plasma impedance. Previous attempts to use the ignitron as a crowbar device for the

Caltech spheromak experiment have been unsuccessful.

The energy efficiency and other electrical characteristics of the Caltech Spheromak Ex-

periment are close to parameters of other pulsed plasma experiments [32]. For pulsed

experiments using spark gap switches instead of ignitrons, much higher energy coupling

efficiencies (∼ 90%) have been reported [33]. This is because spark gaps have a much lower

resistance (∼ 1 mΩ).

3.4 Ignitron Characterization

This section discusses a couple of characteristics of the ignitron GL-7703 [26] used in the

Caltech spheromak experiment.

1. The GL-7703 is a commercially available low inductance ignitron. The product data
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Figure 3.8: The current trace measured across the electrodes for shot #8553 when the HV

capacitor was discharged across a dummy load. The ignitron stopped conducting briefly.

sheet [26] lists its approximate inductance to be 20 nH. However, our analysis estimates

the inductance to be 170 − 800 nH. The inductance of the ignitron depends on the

return path of the current outside the ignitron, but 20 nH is still an ultra optimistic

estimate.

2. The GL-7703 can remain conducting even if the current reverses across its terminals.

If the current does not reverse fast enough, the ignitron may turn off, as seen in

figure 3.8. The ignitron turn off may depend on factors like external temperature,

peak current flowing through the ignitron, and the reverse voltage across the ignitron

as the current approaches zero [24]. One of the most important factors determining

ignitron turn off is İ, the rate of current change as I ∼ 0. Figure 3.8 may be used

to estimate a nominal rate of current change İ = 2 kA/µs required to prevent the

ignitron from turning off.2 However, a much lower cut off limit of İ ∼ 5 A/µs is often

cited for larger, high inductance ignitrons [24].
2Note that the plasma experiments operated at much higher currents (> 60 kA), and so did not experience

ignitron turn off.
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Chapter 4

Interferometer for the Caltech Spheromak

Experiment

Laser interferometry is an extensively used diagnostic for plasma experiments. Existing

plasma interferometers [34–39] are designed on the presumption that the scene and reference

beam path lengths have to be equal, a requirement that is costly in both the number of

optical components and the alignment complexity. It is shown in this chapter that having

equal path lengths is not necessary - instead what is required is that the path length

difference be an even multiple of the laser cavity length. This fact was used in the design of

a homodyne and a heterodyne laser interferometer for the Caltech spheromak experiment.

These interferometers measured typical line-average densities of ∼ 1021/m2 with an error

of ∼ 1019/m2.

The homodyne interferometer was the first interferometer developed for the Caltech

spheromak experiment. It was later replaced by the heterodyne interferometer because

of specific advantages describes in Section 4.5.6. However, the uniqueness of both the

interferometers was that they operated at a large path length difference between the scene

and the reference beams - a feature which is often not utilized on existing interferometers.

This chapter is organized as follows. Section 4.1 describes the relation between the

density of the plasma and the induced phase change of an electromagnetic wave travelling

through it. Section 4.2 describes the design criteria for the interferometers. Section 4.3

shows that the laser phase auto-correlation function, a measure of the coherence, is a quasi-

periodic function of the path length difference between the two beams of an interferometer.

Sections 4.4 and 4.5 describe the homodyne and heterodyne interferometers built for the
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Caltech spheromak experiment. The alignment procedure for both the interferometers is

described in Appendix A.

4.1 Electromagnetic Wave Dispersion Relation in a Plasma

The dispersion relation of an electromagnetic wave travelling through the plasma is[7, Chap-

ter 4]

ω2 = ω2
pe + k2c2,

where the electron plasma frequency, ωpe, is given by

ω2
pe =

nee
2

ε◦me
.

If ω � ωpe, then the wavenumber k can be approximated as

k =
ω

c

(
1−

ω2
pe

ω2

) 1
2

≈ ω

c

(
1−

ω2
pe

2ω2

)
.

Using the above relation, the phase shift in a beam traversing a length L through the plasma

is given by

φp =
∫ L

0
k dx

≈ ω

c

∫ L

0

(
1−

ω2
pe

2ω2

)
dx.

The first term in the above integral is the phase shift experienced by a beam travelling

through vacuum. Thus the change in the phase shift caused by the plasma (second term) is

∆φp =
e2λ

4πc2ε◦me

∫ L

0
n(x)dx

= 2.8× 10−15λ

∫ L

0
n(x)dx, (4.1)
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where the wavelength λ and the length L are expressed in m, and the density n(x) in m−3.

Equation (4.1) can be used to calculate the line average plasma density from the measured

phase shift

n̄(x) =
∆φp

2.8× 10−15λL
.

4.2 Design Considerations for the Interferometer for the Cal-

tech Spheromak Experiment

As discussed in Section 1.3.2, the plasma density in the jets produced by the Caltech

Spheromak Experiment is n ∼ 1022 m−3. This corresponds to an electron plasma frequency

of ωpe ∼ 5×1012 rad/sec. The frequency of operation of a He-Ne laser is ω ∼ 3×1015 rad/s,

so the condition ω � ωpe is satisfied. The laser beam passes through a typical length of

L ∼ 0.1 m of plasma. This will result in an expected phase shift caused by the plasma on

the order of ∆φp ∼ 2 rad, which is of the order of a fringe shift and should be measurable

by the interferometer.

The interferometer for the Caltech Spheromak Experiment was designed as per the

following considerations:

• Due to space limitations and safety considerations, the interferometer could not be

placed close to the vacuum chamber.

• The large diameter of the vacuum chamber (∼ 1.5 m) ensured that the scene beam

had a long path length. The mirrors placed at the bottom and top of the chambers

have limited access, so aligning an interferometer in Mach Zehnder geometry for such

a setup would have been very costly and cumbersome. Thus the interferometer was

set up in a double pass geometry with a layout similar to that of a Michelson inter-

ferometer (for the homodyne interferometer refer to section 4.4.2) or a hybrid of the

Michelson and Mach-Zehnder interferometer (for the heterodyne interferometer refer

to section 4.5.2).

• Many interferometers used on existing plasma experiments are two-color interferom-

eters [34–40] that decouple the phase shift caused by the plasma and by mechanical

vibrations. Because mechanical vibrations (kHz range) are unimportant for the fast
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timescale (∼ 10 µs) of the Caltech plasma experiments, a single laser interferometer

is adequate. As discussed in sections 4.4.3 and 4.5.3, the effects of the vibrations can

be removed by low-pass filtering the detected phase. In fact, these vibrations were

used to “self”-calibrate the homodyne interferometer (refer section 4.4.3).

• Refractive bending of light may cause a spurious change in signal intensity that can be

incorrectly interpreted as a change in phase shift caused by the plasma. Interferom-

eters for large plasma experiments have often used extra optics to counter refractive

bending caused by plasma [38, 41, 42]. However, at the Caltech spheromak experi-

ment, refractive bending is not a concern as:

1. the spatial extent of the plasma is small.

2. the plasma is approximately azimuthically symmetric. Thus, the proposed path

of the beam will always be in the direction of ∇ne, the beam will not bend.

4.3 Laser Phase Auto-correlation Function

4.3.1 Frequency Spectrum of the Laser

A gas laser contains an active medium within a resonating optical cavity bounded by mirrors

on either end. The mirrors allow only those optical modes which traverse an integer number

of half-wavelengths within the cavity. The frequencies of these optical modes are

νq = q
c

2d
q = 0, 1, 2 . . . , (4.2)

where c is the speed of light and d is the distance between the cavity mirrors. These discrete

frequencies are separated by νM = c/2d. For a typical He-Ne gas laser with a cavity length

of d ∼ 25 cm, the modes are separated by νM ∼ 600 MHz.

The active medium between the mirrors can be considered as a narrow-band optical

amplifier. The gain curve for this amplifier is centered around the frequency ν◦, such that

hν◦ is the energy released by the atomic transition that emits the photon. Only a few of

the discrete frequencies given by equation (4.2) appear in the laser beam. These are the

amplified modes; the others are attenuated by the medium. For example, in a commercial
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Figure 4.1: Power spectrum of a laser showing discrete frequency resonance modes. Also

plotted are the Doppler gain curve and two possible levels of cavity loss.

red He-Ne laser, photons are emitted because of transition of Ne atoms from a 2p55s state

to 2p53p state, which corresponds to a center frequency of ν◦ ∼ 473 THz. The gain curve

is primarily Doppler broadened [43] by an amount

∆ν ∼ ν◦
c

√
2kT
M

,

where k is Boltzmann’s constant, T is the gas temperature and M is the molecular mass of

the radiating atom. For a collection of Ne atoms emitting light at the He-Ne wavelength

of λ◦ = 632.8 nm at room temperature, the Doppler width is ∼ 2 GHz. Thus, an amplifier

with gain width ∆ν ∼ 2 GHz allows about 4 modes separated by νM ∼ 600 MHz, as

sketched in figure 4.1 [44].

Power will build up from noise in modes for which the gain exceeds the losses. As the

power in modes builds up, modes will saturate and equilibrate, so that the gain balances the

losses. Modes for which the losses exceed the gain are severely attenuated. For example, if

loss-line 1 in figure 4.1 represents the losses in the system, a monochromatic wave will exist,

corresponding to the resonance mode closest to the peak of the amplifier gain function. On

the other hand, if the losses are represented by loss line 2, there will be 3 distinct modes in

the wave. Power in various modes is distributed according to the amplifier gain profile and

losses in the system [45].

The wave’s electric field in the polarization direction for an ideal laser can be represented
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as:

E(t) =
1

2π

∑
q

Ẽqe
iωqt

=
1

2π

∞∫
−∞

∑
q

Ẽqδ(ω − ωq)eiωtdω, (4.3a)

where ωq = 2πνq. Functions and variables in the frequency domain will be represented by

a “tilde.” Equation (4.3a) is just a Fourier transform relation. Thus the Fourier transform

of the electric field for an ideal laser is a series of delta functions, with the non-zero Fourier

coefficients Ẽq corresponding to the non-attenuated modes.

The discrete resonant frequency modes of a laser are each broadened by a small amount

δν, due to:

1. losses due to absorption and scattering within the medium [43]. These losses relate to

the finite photon decay time via the uncertainty relation between time and frequency.

2. imperfect reflection at the mirrors [43].

3. vibration of mirrors [46]. If the mirrors vibrate by an amount δd, the corresponding

broadening of the modes is given by, δν ∼ ν◦δd/d.

In most commercial lasers, the frequency broadening thus produced is of the order of δν ∼

1 MHz, as sketched in figure 4.1. Typically, δν � νM , so the frequency broadened modes

do not overlap each other.

The Fourier transform of the electric field will now consist of a series of broadened

functions. Under the simplifying assumption that all the modes are broadened by the same

amount, the electric field Fourier transform can be represented as

Ẽ(ω) =
∑
q

ẼqF̃ (ω − ωq),

where F̃ (ω) is a low-pass broadening function of width 2πδν. Because the modes are well

separated, the spectral power is

|Ẽ(ω)|2 =
∑
q

|Ẽq|2|F̃ (ω − ωq)|2. (4.4)
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4.3.2 Phase Auto-correlation Function Related to Power Spectrum

The auto-correlation function of a laser is defined as

G(τ) =
〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

, (4.5)

where 〈·〉 denotes time average. The coherence time of a laser is defined as the time τ

at which the auto-correlation function G(τ) falls significantly below 1, and the coherence

length of a laser is the coherence time scaled by c. It is traditionally assumed that if an

interferometer is set up with a path length difference greater than the coherence length, the

phases of the two waves will be uncorrelated, so no interference pattern will be observed.

However, this standard concept of coherence length is misleading because the phase auto-

correlation function is an almost periodic function; for the purpose of interferometry, it is

sufficient to maintain a path length difference corresponding to a maximum of the auto-

correlation function.

Using

E(t) =
1

2π

∞∫
−∞

Ẽ(ω)eiωtdω,

equation (4.5) can be expressed as

G(τ) =

∞∫
−∞

∞∫
−∞

dω dω′Ẽ∗(ω)Ẽ(ω′)eiω′τ 〈ei(ω′−ω)t〉

∞∫
−∞

∞∫
−∞

dω dω′Ẽ∗(ω)Ẽ(ω′)〈ei(ω′−ω)t〉
. (4.6)

Using the relation

〈ei(ω′−ω)t〉 ∼
∞∫
−∞

ei(ω′−ω)tdt ∼ δ(ω′ − ω),

equation (4.6) reduces to

G(τ) =

∞∫
−∞

dω|Ẽ(ω)|2eiωτ

∞∫
−∞

dω|Ẽ(ω)|2
, (4.7)
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so

G(τ) =
1

2π

∞∫
−∞

S̃(ω)eiωτdω, (4.8)

where S̃(ω) is the normalized spectral power defined by

S̃(ω) =
2π|Ẽ(ω)|2
∞∫
−∞

dω|Ẽ(ω)|2
.

Equation (4.8) is the Wiener-Khinchin theorem [43] and shows that the auto-correlation

function and the normalized spectral power are Fourier transform pairs.

Using equation (4.4), the auto-correlation function has the dependence

G(τ) ∼
∞∫
−∞

dω
∑
q

|Ẽq|2|F̃ (ω − ωq)|2eiωτ . (4.9)

Let

F̃(ω) = |F̃ (ω)|2,

and let F(τ) be the Fourier inverse of F̃(ω) so

F̃(ω) =

∞∫
−∞

F(τ)e−iωτdτ.

Since F̃(ω) has a spread of ∼ 2πδν, F(τ) will have a spread of ∼ 1/δν.
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From equation (4.9),

G(τ) ∼
∞∫
−∞

dω
∑
q

|Ẽq|2
 ∞∫
−∞

F(τ ′)e−i(ω−ωq)τ ′dτ ′

 eiωτ

=

∞∫
−∞

dτ ′
∑
q

|Ẽq|2e+iωqτ ′F(τ ′)

 ∞∫
−∞

e−iω(τ ′−τ)dω


∼

∞∫
−∞

dτ ′
∑
q

|Ẽq|2eiωqτ ′F(τ ′)δ(τ ′ − τ)

=
∑
q

|Ẽq|2eiωqτF(τ)

= P(τ)F(τ),

where

P(τ) =
∑
q

|Ẽq|2eiωqτ

=
∑
q

|Ẽq|2ei2πqνM τ . (4.10)

Each of the complex exponentials in equation (4.10) is periodic in τ , with a period of
1
νM

. Thus, P(τ) is also periodic with the same period. For τ = 0, 1
νM
, 2
νM
, 3
νM
, · · · , all the

components add up constructively and so P(τ) will be maximum at these values of τ . The

exact shape of P(τ) will depend on the value of the coefficients |Ẽq|2. For a laser with a

large number of modes (corresponding to many non-zero |Ẽq|2’s), P(τ) may have a steep

decay away from its peaks.

For a typical laser with d ∼ 25 cm and δν ∼ 1 MHz, P(τ) will be periodic with period

1.67 ns and F(τ) will have a spread of 1 µs. It is convenient to scale time with c to express

P, F and G as functions of length. P(δL) is thus periodic with period 2d = 0.5 m and F(δL)

decreases with a 300 m scale length. G(δL) is thus the product of a slowly decaying envelope

function F(δL) and a periodic function P(δL). The interferometer at Caltech operates at

δL ∼ 8 m, corresponding to the 16th maximum of P(δL). We assume F(δL) to be Gaussian

∼ e−(δL)2/2l2 , where l, the width of F , is approximately 300 m. If an interferometer is

operated at a path length difference corresponding to a maximum of P(δL), the strength
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Figure 4.2: Michelson setup to measure phase auto correlation of laser. BS stands for beam

splitter and M for mirror.

of interference signal will be proportional to F(δL). Thus for the Caltech interferometer,

operating at a path length difference of 8 m causes attenuation of the signal amplitude by

a factor F(δl = 8 m) = 0.9996. In other words, only 0.04% of power is lost due to unequal

path length effects, and phase coherence is maintained since P(δl) has the same value at

8 m as at 0 m.

4.3.3 Measurement of Laser Phase Auto-correlation Function

To test if the laser being used in the Caltech interferometer indeed has a periodic auto-

correlation function, the laser was used in the Michelson interferometer setup shown in

figure 4.2. Mirror M4’s location, L, was varied with a linear translation stage at a constant

speed and the amplitude of the interference signal was plotted as a function of time, as

shown in figure 4.3. Interference is caused by ambient noise vibrating the mirrors. At

t = 0 s, L was 0, and thus the path lengths were approximately equal. The amplitude of

the interference signal is directly proportional to the phase auto-correlation function. Since

L was increased at a constant rate, the horizontal time axis in figure 4.3 is proportional

to path length difference 2L. As seen from figure 4.3, the phase auto-correlation function

is periodic. The difference between successive maxima corresponded to 2L ∼ 50 cm. The

amplitude decreased significantly beyond the third maximum because the interferometer

became misaligned with large motions of the mirror. Thus a significant decrease in contrast

ratio of the maximum and minimum of signal amplitude was observed beyond the third

maximum. However, this was an effect of misalignment and not path length difference.

The contrast ratio could be recovered by realigning the interferometer. The minima of the

amplitude of the interference signal were of the order of the noise level of the detector.
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Figure 4.3: Envelope of the interference signal measured using the setup shown in figure

4.2. The path length difference 2L was varied at a constant rate. The envelope magnitude

is directly proportional to the phase auto-correlation function.

4.4 Homodyne Interferometer

4.4.1 Theory

Quadrature phase information is generated in a homodyne interferometer by interfering a

linearly polarized scene beam and a circularly polarized reference beam [41]. Consider a local

coordinate system with the z-axis pointing towards the direction of the beam propagation

and the y-axis pointing upwards from the optical table. The electric field for the linearly

polarized scene beam is given by

Es = E0s(x̂ cos θ + ŷ sin θ) cos(kLs −∆φp − ωt),

where θ is the polarization angle with respect to the x-axis, k is the vacuum wavenumber of

the laser beam, Ls is the length of the scene beam, ∆φp is the phase change caused by the

plasma and ω is the lasing frequency. The electric field for the circularly polarized reference

beam is given by

Er = E0r(x̂ cos(kLr − ωt) + ŷ sin(kLr − ωt)),
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where Lr is the length of the reference beam. As shown in section 4.4.2, a Wollaston prism

is used to separately combine the x̂ and ŷ polarizations of the scene and reference beams.

Output power of the detector receiving the x̂ components of the beams is

Sx ∝ 〈(Erx + Esx)2〉

∝ 〈(E0r cos(kLr − ωt) + E0s cos θ cos(kLs −∆φp − ωt))2〉

∝ E2
0r〈cos2(kLr − ωt)〉+ E2

0s cos2 θ〈cos2(kLs −∆φp − ωt)〉

+2E0rE0s cos θ〈cos(kLr − ωt) cos(kLs −∆φp − ωt)〉

∝ E2
0r + E2

0s cos2 θ

2
+ E0rE0s cos θ〈cos(kδL−∆φp)〉

+E0rE0s〈cos(k(Ls + Lr)−∆φp − 2ωt)〉

S̃x ∝ E0rE0s cos θ cos(kδL−∆φp),

where δL = Ls−Lr is the path length difference between the scene and the reference beams

and S̃x is the AC component of the detector output power Sx. Similarly, the output of the

detector receiving the ŷ component of the beams is given by

S̃y ∝ E0rE0s sin θ cos(kδL−∆φp).

Thus, the AC output of the detectors is proportional to the sine and cosine of the phase

shift due to the plasma:

S̃x = α cos(∆φp − kδL),

S̃y = β sin(∆φp − kδL), (4.11)

and the phase can be reconstructed as

∆φp = tan−1(
α

β
× S̃y

S̃x
) + kδL+ nπ, (4.12)

where n is an integer. While performing the inverse tangent operation in equation (4.12),

actual signs of S̃x and S̃y can be used to lower the phase ambiguity from nπ to 2nπ.

The ratio α
β will be close to unity if the following criteria are met:
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Figure 4.4: Setup of the homodyne interferometer for the Caltech spheromak experiment.

The dotted beam signifies that the beam is coming out of the plane of the figure.

1. the angle of polarization, θ, of the linearly polarized scene beam is 45◦;

2. the sensitivities of both of the detectors are equal;

3. and the beams are properly aligned so that almost equal power is coupled to each of

the detectors.

4.4.2 Setup
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Table 4.1: Description of some of the components used in the design of homodyne interfer-

ometer (refer to figure 4.4).

Component Description

Laser A 4 mW linearly polarized He-Ne laser with a cavity length of

25 cm. It produces a coherent beam of ∼ 2 mm diameter at

∼ 633 nm.

HWP1 Zero order half wave plate. It is used to rotate the polarization

vector of the incoming beam to be vertical or horizontal.

Isolator Manufactured by Optics for Research [47] (part number IO-5-

660-LP). It prevents any reflected light from entering the laser.

HWP2 Zero order half wave plate. It transforms the beam coming

out of the isolator into a vertically polarized beam. The polar-

ization of the vertically polarized reference beam is unaltered

upon reflection from mirrors or transmission through the beam

splitter.

BS A non-polarizing plate beam splitter was used to both split the

beams and then recombine them.

QWP Zero order quarter wave plate used to make the reference beam

circularly polarized.

Piezo mirror A mirror mounted on a piezo actuator. It could be vibrated

with frequencies ranging from ∼ 1 Hz to ∼ 1 kHz.

P1 and P2 Dichroic polarizers in the reference and scene beam paths re-

spectively. P2 was used to make the scene beam vertically

polarized. P1 was used along with QWP to make the reference

beam circularly polarized.

Continued on next page



47

Table 4.1: continued from previous page

Component Description

SM The radius of curvature of the spherical mirror (SM) is 4 m,

the approximate distance the beam travels from the optical ta-

ble to the spherical mirror, so the spherical mirror focuses the

beam back to almost its original size. The spherical mirror’s

position can be adjusted to ensure that the path length differ-

ence between the scene and reference beams is approximately

an even multiple of the laser cavity length.

HWP3 Zero order half wave plate, used to rotate the polarization angle

of scene beam to 45◦.

Wollaston prism Used to split the scene and reference beams into x̂ and ŷ po-

larization components.

Mirrors Plane mirrors are labeled by the letter M followed by a num-

ber. These are 1′′ diameter mirrors manufactured by Newport

optics [48] (part number 10D10ER.1) and are used to steer the

beams. Mirrors M2 is mounted on a damped rod attached to

the vacuum chamber. It is used to direct the beam into the

vacuum chamber through sapphire windows.

Detectors The low noise, high gain detector amplifiers (Model 712A-2,

from Analog Modules [49]) have a bandwidth of 200 Hz to

25 MHz.1 The detector amplifier modules were housed in a

RF shielded box and had a He-Ne filter in front.

A quadrature homodyne interferometer to measure plasma density was suggested by

Buchenauer and Jacobson [41]. However, the optical arrangement they suggested is difficult

to align over long distances. Hence the interferometer for the Caltech experiment was set

up in Michelson double pass geometry as shown in figure 4.4. By interfering beams with
1Model 712A-2, being currently manufactured has a bandwidth of 250 Hz to 60 MHz.
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a large path length difference, it was possible to locate most of the optical components on

a small and accessible optical bench (18′′ × 18′′). Table 4.1 describes the components used

in the homodyne interferometer. The process for aligning the homodyne interferometer is

describes in section A.2.

4.4.3 Results

Typical results from the homodyne interferometer are shown in figure 4.5.2 The two quadra-

ture signals from the detectors shown in blue and red are plotted in figure 4.5(a). Note that

when one of the signals is at its maximum (or minimum), the other is passing through zero

- a consequence of being in quadrature. Plasma causes the sudden change in the signals

near 0 s.

The two signals in figure 4.5(a) are plotted as a Lissajous plot in figure 4.5(b). The data

set corresponding to plasma is plotted as a solid red line while the non-plasma times are

plotted in blue dots. The extent to which the signals are in quadrature can be estimated

from the extent to which the plot resembles a circle. Note that refractive bending diminished

the signal amplitude when the plasma intercepted the beam. The signal amplitude changed

by different amounts on different detectors and hence may have caused a slightly erroneous

measurement of density. Also note that the phase due to background vibrations changes by

around 40◦ during the time in which the phase due to plasma has changed by > 500◦.

Figure 4.5(c) plots the interpreted line average density from the interferometer. The

slight drift in the signal is caused by mechanical vibrations of the mirrors and can be

accounted for by a polynomial fit (of 4th degree) to the phase corresponding to non-plasma

times. The polynomial fit is shown in green in figure 4.5(c). The plasma density after

subtracting the polynomial fit is shown in figure 4.5(d).

The mechanical vibrations of the mirror were used to calibrate the interferometer. Due

to the combined effect of the piezo vibrating mirror and the mechanical vibrations in other

mirrors, an interference signal with a bandwidth of a few kHz was observed in both the

detectors, as shown in figure 4.5(a). This kHz scale signal was used to estimate the signal

strengths α and β as described by equations (4.11). The ratio α
β , thus estimated was used

in equation (4.12). In other words, vibrations were used to calibrate the interferometer.
2This particular shot had two capacitors (59 µF each) being discharged across the plasma.
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nals. A polynomial fit to model the noise vibrations
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Figure 4.5: Results from the homodyne interferometer for shot #7092.
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When inferring the phase from the two detector signals, the relative amplitude, not the

individual amplitude, of the signals is important. Quite often, refractive effects of plasma

caused the amplitudes of the signals to vary (when the overlap of the beams was altered, or

when beams fell on different parts of the detectors). These effects may increase or decrease

the signal amplitudes and may produce errors in the phase detection. As seen by the red

curve in figure 4.5(b), plasma effects caused the signal amplitude to change unequally in the

two detectors. Buchenauer and Jacobson [41] countered the effects of refractive bending by

focusing the scene beam at the center of plasma column.

4.4.4 Procedural Details

This section discusses certain procedural details for the homodyne interferometer.

1. The VME system introduced a fixed DC bias to the received signals. The bias was

estimated by recording a temporary data set with no inputs or by looking at the mean

of the maximum and the minimum of the quadrature signals.

2. The detectors were sensitive only to signals with frequencies greater than 200 Hz.

Consequently, any signal that varied asymmetrically about zero would become “wavy”

as the detectors filtered out its DC mean. In figure 4.5(a) the maxima (or minima)

of a particular signal had slightly varying values. This is a consequence of a filtered

DC mean. A changing DC mean corresponds to a changing position of the “center of

the circle” in the Lissajous plot of figure 4.5(b). This caused the signal data to form

more than one “circle.” The effect is usually more prominent than observed in figure

4.5. The varying DC mean makes it tricky to estimate the signal amplitude to get

the ratio α
β . The corresponding phase error, however, is minimal especially because

the phase change caused by the plasma is about 2π. It is difficult to get high-gain

photo-detector modules with bandwidth up to DC.

3. In a previous version of the interferometer, the mirror on top of the chamber was

attached to the ceiling via a mount. Unfortunately, the ceiling is prone to vibrations,

so the interferometer would misalign very frequently. Mounting the mirror on the

chamber diminished the effects of these vibrations. However, quite often, the signal

amplitude is seen to fluctuate with a period of about ∼ 1 s. This may be caused by
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a fluctuating overlap of the scene and the reference beam or by a fluctuating overlap

of the beams on the detector.

4. After a few hours of interferometer operation, the signals were observed to fall out of

quadrature by a few degrees (< 5◦). The quarter wave plate QWP had to be adjusted

to bring the signals back into quadrature.

5. The laser had a switching power supply which operated at ∼ 18 kHz. If the piezo

mirror was set to vibrate at this frequency, strange resonances were introduced, and

the detector signals did not remain in quadrature. Thus the piezo vibrations were

maintained between 1 and 4 kHz.

6. If a non-polarizing plate beam splitter was used, fringes were observed from just

one beam due to reflections from the two surfaces. These were avoided by slightly

misaligning the beam splitter. Cube beam splitters do not suffer from this drawback

of self-interference, as they have just one surface for transmitting and reflecting.

7. Previously, & 50% power was lost by the scene beam due to multiple reflections while

passing through the sapphire windows. This power loss was minimized by an anti-

reflection coating on the windows for the HeNe wavelength.

8. The data analysis relied heavily on the fact that the detector signals were in quadra-

ture. Signal quadrature depended on the extent to which the beams were linearly

or circularly polarized. Since good polarization was of critical importance, dichroic

polarizers were used in the interferometer. These polarizers have a high extinction

ratio of 1 : 104 and a low transmittance of 36%. Consequently, substantial power was

lost in these polarizers.

9. The polarizer P2 ensures that the scene beam is vertically polarized before interfering

with the reference beam. Power loss in the scene beam is minimized if the optical axis

of the sapphire windows is oriented along the polarization direction.

10. Zero order wave plates were used in the interferometer, as their properties are rela-

tively insensitive to ambient temperature variations.
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11. The interferometer alignment was “relatively” simple as the beams traced back the

same path. This back reflection would have caused resonance modes in the laser if

not for the isolator next to the laser.

4.4.5 Error Analysis

As described by Buchenauer and Jacobson [41], the phase error of the interferometer is ∼ σ
α ,

where σ is the standard deviation of the measured signal. This does not take into account

the phase error due to a varying DC mean. The standard deviation can be easily estimated

by smoothing the detector signal and taking its difference from the original measured signal.

Typically this phase error is on the order of 2◦.

4.4.6 Advantages

As compared to the original design by Buchenauer and Jacobson [41], the design of the

interferometer for the Caltech Spheromak Experiment had the following advantages

1. Separate control of the phase quadrature and the relative amplitudes of two signals:

The error performance of the interferometer is better if the two signals have equal

amplitude. Their respective amplitude was adjusted by HWP3. Quadrature mismatch

between the signals was improved by adjusting P1.

2. Only one mirror to adjust at long distances: The interferometer was aligned in an

iterative scheme by first aligning all of its components alone on a small optical table

and then by just adjusting the spherical mirror so that the scene beam traced back

its path. Thus, as compared to the Mach-Zehnder geometry, only one mirror which

was not on the table required alignment.

4.4.7 Disadvantages

1. Poor signal to noise ratio (SNR): As compared to the heterodyne interferometer, the

homodyne interferometer has poor SNR performance.

2. Power inefficient: Due to stringent polarization requirements, significant amount of

power (& 75%) is lost in the polarizers.
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4.5 Heterodyne Interferometer

Heterodyne interferometers are usually simpler in design and alignment than homodyne

interferometers. They also have better Signal to Noise Ratio (SNR). Thus the homodyne

interferometer at the Caltech experiment was replaced by a heterodyne interferometer. The

design for the interferometer was motivated by an interferometer built by Golingo [50].

4.5.1 Theory

Consider a vertically polarized reference beam with a frequency offset by an amount ∆ω

from the He-Ne frequency ω. The electric field of such a wave can be represented as:

Er = E0ryŷ cos(kLr − (ω −∆ω)t).

The scene beam can have an arbitrary polarization, as it passes through birefringent material

like the sapphire windows. The electric field of the scene beam may be represented as:

Es = E0syŷ cos(kLs −∆φp − ωt) + E0sxx̂ cos(kLs − δφ−∆φp − ωt).

The phase difference δφ between the 2 polarizations may be caused by birefringent materials.

If the scene and the reference beams interfere on a detector, the signal from the detector

will be proportional to

S ∝ 〈(Ery + Esy)2 + E2
sx〉

∝ 〈(E0ry cos(kLr − (ω −∆ω)t) + E0sy cos(kLs −∆φp − ωt))2

+(E0sx ˆcos(kLs − δφ−∆φp − ωt))2〉

∝ E2
0ry〈cos2 (kLr − (ω −∆ω)t)〉+ E2

0sy〈cos2 (kLs −∆φp − ωt)〉

+2E0ryE0sy〈cos (kLr − (ω −∆ω)t) cos (kLs −∆φp − ωt)〉

+E2
0sx〈cos2 (kLs − δφ−∆φpωt)〉

∝
E2

0ry + E2
0sy + E2

0sx

2
+ E0ryE0sy〈cos (∆ωt− kδL−∆φp)〉

+E0ryE0sy〈cos (k(Ls + Lr)−∆φp − (2ω −∆ω)t)〉

S̃ ∝ E0ryE0sy cos (∆ωt− kδL−∆φp), (4.13)
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where S̃ represents the AC component of the signal. δL = Lr−Ls is the fluctuating change

in path lengths caused by mechanical vibrations. The detector is fast enough to track

changes occurring at frequency ∆ω ∼ 80 MHz but averages out any changes occurring at

He-Ne frequencies or higher. Refractive bending may cause the signal amplitude of the

detector to change as a function of time, so the detector signal can be expressed as

S̃ = F (t) cos (∆ωt− kδL−∆φp), (4.14)

where the rate of change of F (t) is slow compared to ∆ω. Next, the signal from the detector

described by equation (4.14) is demodulated to recover the phase information. To do so,

the coupled signal from the radio frequency (RF) source at ∆ω = 80 MHz is split into

quadrature components: A cos(∆ωt + ϕ) and B sin(∆ωt + ϕ), where ϕ is the phase shift

caused by the transmission cables. The detector signal from equation (4.14) is split into

two equal parts and mixed (multiplied) by the quadrature signals. The resulting signals

coming out of the mixers are given by:

S1 =
F (t)A

2
cos (∆ωt− kδL−∆φp) cos(∆ωt+ ϕ)

=
F (t)A

4
(cos (kδL+ ∆φp + ϕ) + cos (2∆ωt+ ϕ− kδL−∆φp))

S2 =
F (t)B

2
cos (∆ωt− kδL−∆φp) sin(∆ωt+ ϕ)

=
F (t)B

4
(sin (kδL+ ∆φp + ϕ) + sin (2∆ωt+ ϕ− kδL−∆φp)) (4.15)

On low-pass filtering the above signals, we get quadrature signals:

S1 =
F (t)A

4
cos(∆φp + ϕ′),

S2 =
F (t)B

4
sin(∆φp + ϕ′),

where ϕ′ = ϕ+ kδL is constant for the scale of the experiment. The phase shift caused by

the plasma can be calculated by taking the inverse tangent of the ratio of the two signals.

Note that taking the ratio of the signals eliminates the time dependence caused by refractive
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Figure 4.6: Setup of the heterodyne interferometer for the Caltech spheromak experiment.

The dotted beam signifies that the beam is coming out of the plane of the figure.

bending F (t). The plasma phase shift can be estimated as

∆φp = tan−1(
S2

S1

A

B
)− ϕ′ + nπ. (4.16)

4.5.2 Setup

Table 4.2: Description of some of the components used in the design of the heterodyne

interferometer (refer to figure 4.6).

Component Description

Laser A 4 mW linearly polarized He-Ne laser with a cavity length of

25 cm. It produces a coherent beam of ∼ 2 mm diameter at

∼ 633 nm.

HWP1 Zero order half-wave plate. It is used to rotate the polarization

vector of the laser beam so that it aligns with the direction of

the polarizer at the input of the isolator.

Continued on next page
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Table 4.2: continued from previous page

Component Description

Isolator Manufactured by Optics for Research [47] (part number IO-5-

660-LP). It prevents any reflected light from entering the laser.

HWP2 Zero order half-wave plate. It transforms the beam coming out

of the isolator into a vertically polarized beam. The polar-

ization of the vertically polarized reference beam is unaltered

upon reflection from mirrors, beam splitter or from transmis-

sion through the acousto-optic modulator (AOM).

Non pol. BS1 Non-polarizing plate beam splitter is used to split the beam

into a scene and a reference beam.

AOM The acousto-optic modulator (AOM). Up to 86% of the input

power to the AOM can be coupled into its first harmonic out-

put. The iris obstructs all other beams except for the first

harmonic.

Mirrors Plane mirrors are labeled by the letter M followed by a number.

These are 1′′ diameter mirrors manufactured by Newport optics

[48] (part number 10D10ER.1) and are used to steer the beams.

Mirrors M4 and M5 are mounted on a damped rod attached to

the vacuum chamber. They are used to direct the beam into

the vacuum chamber through sapphire windows.

Non pol. BS2 Non polarizing cube beam splitter used to recombine the scene

and reference beams.

Continued on next page
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Table 4.2: continued from previous page

Component Description

SM The radius of curvature of the spherical mirror (SM) is 4 m, the

approximate distance the beam travels from the optical table to

the spherical mirror, so the spherical mirror focuses the beam

back to almost its original size. The spherical mirror position

can be adjusted to ensure that the path length difference be-

tween the scene and reference beams is approximately an even

multiple of the laser cavity length.

Detector UDT Sensors part number HR040L [51] with bandwidth ∼

500 MHz used in a reverse biased mode.

RF electronics All the components shown in figure 4.7 were off-the-shelf com-

ponents from Mini Circuits. The components were selected

based on their power ratings.

Figure 4.6 shows the schematic for the interferometer. The RF electronics for demodu-

lating the signal are shown in figure 4.7. The interferometer described in figure 4.6 is set up

in a double pass geometry. By interfering beams with a large path length difference, it was

possible to locate most of the optical components on a small and accessible optical bench

(18′′× 18′′). Mirror M4 and the spherical mirror SM are mounted on the vacuum chamber.

They direct the laser beam through the plasma (via sapphire windows) and back to the op-

tical bench. Sapphire is a birefringent material, and the windows are oriented to minimize

the change in the polarization of the scene beam. Note that equation (4.13) implies that

the interference signal strength is maximized if the polarization of the interfering beams is

the same.

A major advantage of the design shown in figure 4.6 is the ease of alignment. The two

beams are arranged to overlap each other simply by adjusting the cube beam splitter BS2,

and the mirror M2. Both these components are located on the optical bench and are easily

accessible. A cube beam splitter was used for combining the beams instead of a plate beam

splitter since a cube beam splitter does not introduce any lateral shift in the position of the
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passing beam. The process for aligning the homodyne interferometer is describes in section

A.2.

4.5.3 Results

Typical results from the heterodyne interferometer are shown in figure 4.8. The two quadra-

ture signals after demodulation are shown in blue and red in figure 4.8(a). Note that when

one of the signals is at its maximum (or minimum), the other is passing through zero - a

consequence of being in quadrature. Plasma causes the sudden change in the signals near

0 s.

The two signals plotted in figure 4.8(a) are plotted as a Lissajous plot in figure 4.8(b).

The data set corresponding to the beam passing through the plasma is plotted as a solid red

line while the non plasma times are plotted in blue dots. The extent to which the signals are

in quadrature can be estimated from the extent to which the plot resembles a circle. Note

that refractive bending intensified the signal amplitude when the plasma intercepted the

beam. Provided that the beams undergo only a “small” displacement because of refractive

bending, taking the ratio of the two signals removes the effects of refractive bending on

the phase inferred [42]. Also note that the phase due to background vibrations changes by

around 40◦ during the time in which the phase due to plasma changes by > 200◦.

Figure 4.8(c) plots the interpreted line average density from the interferometer. The

slight drift in the signal is caused by mechanical vibrations of the mirrors, and can be

accounted for by a polynomial fit (of 4th degree) to the phase corresponding to non plasma

times. The polynomial fit is shown in green in figure 4.8(c). The plasma density after

subtracting the polynomial fit is shown in figure 4.8(d).

4.5.4 Procedural Details

In this section certain procedural details for the heterodyne interferometer are discussed.

1. The interferometer was aligned in a hybrid geometry motivated by the Michelson and

Mach-Zehnder designs. The beams did not trace back their paths, so did not come

back to the laser. Yet, the isolator was placed in front of the laser to remove any

possibility of light coming back to the laser and effecting its stability.
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Figure 4.8: Results from the heterodyne interferometer for shot #9114.
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2. As noted in section 4.4.4, the VME system introduced a DC bias to the measured

signals.

3. When aligning the homodyne interferometer, fringe patterns were observed when the

scene and reference beams overlapped reasonably well. This provided a visual feedback

on the degree of alignment. However, because of the 80 MHz modulation, fringe

patterns could not be observed for the heterodyne interferometer.

Let θ be the angle of misalignment of the beams on a detector with diameter d (see

figure 4.9). To ensure that the beams remain sufficiently coherent on the surface of the

detector, it is required that dθ � λ. For a detector of diameter∼ 1000 µm, this implies

that the beams have to be aligned up to θ � 0.03◦. Thus, while a smaller detector has

better frequency response, it is undesirable when considering beam alignment. The

process for aligning the beams is described in section A.1.3.

4. In many heterodyne interferometers, the scene and the reference beams are the 0th

and the 1st harmonics coming out of the AOM [34, 36, 37, 39, 52, 53]. This approach

requires many mirrors to steer the beams long enough before the scene beam can be

directed to the vacuum chamber. Instead, as suggested by Kawano et al. [38, 40], a

beam splitter (BS1 in figure 4.6) was used to split the beams. However this approach

was slightly power inefficient as only ∼ 86% of the input beam power can be coupled

to the first harmonic by the AOM.

5. The 90◦ splitter in the demodulation circuit (figure 4.7) has slightly different gains

for each of its output channels. This resulted in a slight difference (∼ 3%) in the
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signal amplitudes of the quadrature signals of the interferometer. Since the gain was

constant over time, it was compensated for in the software written to interpret the

phase from the quadrature signals.

4.5.5 Error Analysis

The phase ambiguity of the signals is given by σ/A [41], where σ is the rms error in the

signal and A is the strength of the signal. For typical data this was ∼ 1◦, corresponding to

a density error of ∼ 1019/m2.

4.5.6 Advantages

As compared to the homodyne interferometer described in section 4.4, the heterodyne in-

terferometer had the following advantages:

1. Bandwidth extending to DC: The bandwidth of the RF mixers shown in figure 4.7 ex-

tends to DC. Thus, unlike the homodyne interferometer, the heterodyne interferometer

can measure a steady phase difference. This also prevented a spurious introduction in

the mean value of the signal, as occurred for the homodyne interferometer (see section

4.4.4, point 1).

2. High SNR: The heterodyne interferometer had about a factor of two better noise

performance than the homodyne interferometer.

3. No drift in quadrature: As mentioned in point 4 of section 4.4.4, the homodyne signals

would drift out of quadrature with time. For the heterodyne interferometer, the phase

quadrature was generated by RF electronics, so no drift was observed.

4. Simpler alignment: Aligning the homodyne interferometer required adjusting the

spherical mirror SM (see figure 4.4), which was very inaccessible. However, align-

ing the heterodyne interferometer only involved adjusting the beam splitter BS2 and

the mirror M2, both of which were on the optical table and hence extremely accessible.

5. Unaffected by refractive bending of light: As explained in the discussion just prior to

equation (4.16), the phase detection of a heterodyne interferometer is unaffected by

refractive bending of light.
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4.5.7 Disadvantages

An extra mirror M4 was used in the heterodyne interferometer to steer the beam through the

vacuum chamber. The extra mirror lowered the alignment complexity of the interferometer.

However, it also increased the mechanical vibrations in the beam’s path.

4.6 Conclusion

He-Ne homodyne and heterodyne interferometers were developed for the Caltech spheromak

formation experiment. The designs were especially suited for fast plasma experiments with

time scales much smaller than the time scales of mechanical vibrations of the mirrors.

The interferometers operated well even though there is a path length difference of ∼ 8 m

between the scene and the reference beams. Operating at such a large path length difference

considerably reduced the number of optical components and also made alignment much

easier.

Line densities of the order of 5× 1021/m2 were observed in the experiment. Assuming a

double pass plasma length L ∼ 12 cm, as shown in the figure 1.7(b), corresponds to average

densities of ∼ 4× 1022/m3. These results are in good agreement with the densities inferred

from Stark broadened spectral lines [54].

The idea of operating at a large path length difference could in principle be applied

to two-color interferometers as well. The beams in a two color interferometer might have

different periods for their phase auto correlation function. A plausible way of altering the
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path length of reference beam is suggested in figure 4.10. For a two-color interferometer

with lasers with the same cavity length, or with a single laser [37], only a single normal

mirror would be needed to adjust the length of the reference beam.

4.7 Future Extension

The interferometer setup for the Caltech experiment could probe only one spatial location

corresponding to the first available view ports. To overcome this limitation, a future designs

of the interferometer should use fiber optics to couple light into and out of the vacuum

chamber [55, 56].
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Chapter 5

Non-equilibrium Alfvénic Plasma Jets Associated

with Spheromak Formation

Strong MHD-driven flows have been observed over a wide range of scales from terrestrial

experiments (coaxial gun accelerators [57–59], plasma thrusters [60, 61], high-current arcs

[62], Z-pinch formation [63], spheromak formation [22] and sustainment [64]) to extra-

terrestrial phenomenon (solar coronal mass ejections [65] and astrophysical jets [66]).

One of the earliest experimental observation of flows during spheromak formation was

done by Uyama et al. [67] using Doppler shift measurements. Strong flows have also been

observed during the helicity injection stage in the Caltech spheromak experiment. These

flows are not predicted by Taylor’s relaxation theory [10], and so during this stage, the

plasma should not be considered to be evolving through a series of equilibrium stages, as

has been previously assumed [22].

It is shown in this chapter that MHD driven flows are generated because of the flaring

of the poloidal current channel profile, i.e., ∂I/∂z 6= 0. Reed [62] argued that the flow

velocities, u, should scale as I
1
2 in flared high current arcs, where I is the current in the arc.

This is in contrast to the u ∼ I scaling found for the jets in Caltech spheromak experiment.

Barnes et al. [64] also developed a model to predict plasma flow from the electrodes in a

steady state driven spheromak, but did not take into account the plasma pressure. They

argued that the plasma flows should be Alfvénic leading to a gun voltage which scales as

I3. Their experiments showed gun voltage scaling as I2, but no measurements of plasma

velocity were reported.

This chapter consists of five sections. Section 5.1 describes the sequence of plasma
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dynamics leading to jet formation. Section 5.2 describes the experimental results showing

the magnetic field structure in the jet, the velocity scaling of the jet and also its pressure

scaling. A MHD model for these jets is presented in section 5.3. Section 5.4 presents an

energy balance argument for the jets and also justifies the observed small radial extent of

the plasma in these jets. Finally, section 5.5 concludes the chapter by summarizing its main

results.

5.1 Introduction

As shown in section 3.3, the plasma jet can be considered an inductive load. Figure 5.1

shows a series of plasma images which elucidate the sequence of plasma evolution leading

to a changing inductance. Initially (∼ 0.5 µs after breakdown) eight spider legs are formed

linking the gas nozzles on the two electrodes. The collimation and flow of plasma in the

spider legs was studied by You et al. [12]. As the current ramps up, the spider legs expand

due to hoop force and then merge to form a central column jet because of the pinch force

(∼ 3 µs after breakdown). This results in a slightly flaring plasma jet which drives plasma

from near the electrodes to the vacuum. The jet is extremely dense (β ∼ 1) and expands at

Alfvénic velocities [54]. As the jet evolves outward, it increases the plasma inductance and

thus acts as a helicity injection mechanism (see section 2.1). This chapter shows that MHD

driven flows act as the mechanism to drive the change in the inductance of the plasma jet.

As the jet expands towards vacuum, it eventually overcomes the Kruskal-Shafranov kink

instability [7, equation 10.190] condition (due to an increased axial length), and can detach

to form a spheromak like configuration. Kinking of the plasma jet, detachment from the

electrodes and spheromak formation has been studied earlier [13, 68].

5.2 Results

5.2.1 Magnetic Field Structure in the Jets

The magnetic probe described in section 1.3.1 was used to measure the magnetic field and

current distribution in the plasma jets. Figure 5.2 shows the typical poloidal current and

flux profiles in the jet. As discussed in section 1.3.1, the poloidal flux profile may not
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Figure 5.1: False colored visible images depicting the formation of hydrogen plasma jet from

shot #9920 and #9923. The green vertical lines represent the path of the laser beam used

to measure plasma density.
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Figure 5.2: Poloidal current and flux surfaces of hydrogen plasma jets.
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be accurate because of integration and alignment errors. The poloidal flux profile is still

expected to give an intuitive understanding.

Figure 5.2(a) shows the poloidal flux profile at different time instances for a single plasma

jet at a distance z = 20 cm from the electrode. The axial magnetic field Bz is strong where

the flux contours are steep, i.e., Bz has a radial extent of about 10 cm. Also, note that the

poloidal flux surfaces flare outward with time.

Figure 5.2(b) shows the poloidal current profile at different time instances for a single

plasma jet at a distance z = 20 cm from the electrode. From the figure it is noted that Jz

has a radial extent of about 10 cm and that that the axial current contours flare outward

with time (similar to the poloidal flux contours in figure 5.2(a)).

The poloidal flux in the jet at two different axial positions is shown in figure 5.2(c). The

figure is inconclusive regarding the flaring of the poloidal flux contours.

The poloidal current in the jet at two different axial positions is shown in figure 5.2(d).

It is clear from the data that the current channel flares and hence toroidal magnetic field

pressure decreases with increasing axial distance from the electrode. The radial extent of

the current channel increases from about 7 cm at z = 12.5 cm to about 9 cm at z = 20 cm.

Thus if the radius of the flaring current channel is modeled as a(z) = a◦e
κz, then κ ∼ 2 m−1.

5.2.2 Speed of the Jets

The He-Ne interferometer [69] described in section 4.5 was used to measure the density

of the plasma jets. The interferometer beam (shown as a vertical green line in figure 5.1)

intercepted the plasma jet at a distance of 29 cm from the planar electrodes.

Figure 5.3 shows typical line-averaged density traces from the interferometer, for hydro-

gen and deuterium plasma jets. From visible images, the radius of the jet is estimated to

be about 3 cm (see figure 5.1) and so the nominal density of the jets is ∼ 3× 1022/m3.

An obvious characteristic of the density traces shown in figure 5.3 is the extremely sharp

rise time in the observed density as the apex of the plasma jet traverses the path intercepted

by the laser beam. This sharp rise time gives a time of flight measurement and can be used

to estimate the average velocity of the plasma as v = L=29cm
time of flight .

Figure 5.4 plots the time of flight velocity of hydrogen plasma jets as a function of the

maximum gun current flowing through the jet. Plasma experiments were done with fast gas
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Figure 5.3: Typical interferometer density traces from the plasma jets.

puff valves pressurized with H2 at either 70 or 100 psi. It is seen from figure 5.4 that plasma

jets with 70 psi gas valve pressure are faster. This demonstrates that the dominant flow

mechanism in the jet cannot be hydrodynamic, i.e., cannot be driven by pressure gradient

∇P , since if the jet were driven by ∇P , a 100 psi jet should move faster than a 70 psi jet.

Also, if the dominant flow mechanism were hydrodynamic, then the characteristic velocity

would be cs ∼ 2 km/s, which is much smaller than the velocity of the jets shown in figure 5.4.

Figure 5.5 plots the average velocity of hydrogen and deuterium plasma jets as a function

of the maximum gun current flowing through the plasma. This shows that the velocity of a

plasma jet is proportional to the current flowing through the plasma and that the hydrogen

plasma jets are faster than the deuterium ones. The high flow speed and its dependence on

mass and current indicate that the plasma jet’s behavior is in sharp contrast to a previously

considered model for astrophysical jets that describes their evolution as series of Grad-

Shafranov equilibria [7, Chapter 9.8.3] with boundary conditions determined by the twist

of poloidal field lines [70, 71]. Note also that in such models, a low density magnetically

dominated quasi-equilibrium jet expands against an external plasma with higher pressure,

whereas the laboratory jets in our experiment expand into a vacuum.
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Figure 5.4: Velocity of hydrogen plasma jets as a function of the maximum gun current.

Measurements from shots when the fast gas valves were pressurized to 70 and 100 psi are

plotted as circles and squares respectively. Here, and in subsequent figures, the cyan, green,

blue, black, and red data points refer to the gun discharge voltage of 6, 6.5, 7, 7.5 and 8 kV

respectively. Also, the linear fit to the respective data points is plotted in magenta, and the

equation for the linear fit and corresponding error is shown next to the lines. For the linear

fit, y represents the velocity in km/s, and x represents the peak current in kA.
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Figure 5.5: Velocity of plasma jets as a function of the maximum gun current for H2 and

D2 plasmas plotted in circles and squares respectively. The fast gas valves were pressurized

to 70 psi.

5.2.3 Density of the Jets

Figure 5.6 shows that plasma pressure is proportional to the toroidal magnetic field energy

density and that the plasma jets have βφ := nkTi
B2
φ/2µ◦

∼ 0.5. For thermal energy density nkTi

in figure 5.6, ion temperature was assumed to be 2 eV [17] for all the shots, and density was

inferred from the peak of density traces (see figure 5.3) assuming a plasma radius of 10 cm.

Toroidal field energy density (B2
φ/(2µ◦)) was calculated using Bφ = µ◦I/(2πa), where I is

the instantaneous current flowing through the plasma when the density was measured, and

a, the radius of current channel, was assumed to be 10 cm. Also the typical axial field in

the experiment was Bz ∼ 0.2 T, which corresponds to βz := nkTi
B2
z/2µ◦

∼ 0.1 − 0.2. Plasma

density was observed to scale directly with Bφ and inversely with Bz.

Figure 5.7 plots the plasma pressure as a function of toroidal magnetic field energy

density for D2 plasma jets. While the data has more scatter compared to figure 5.6, it is

seen that βφ ∼ 1 for shots involving higher poloidal current (the red and black squares).
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Figure 5.8: Density of the hydrogen plasma jet produced by gas valve pressurized to 100 psi.

Shot #9205.

5.2.4 Distribution of Neutrals in the Jet

It is seen from figure 5.4 that plasma jets produced when the fast gas valves were pressurized

to 100 psi are slower. A typical density trace from such plasma shots is shown in figure 5.8.

The inset shows that just before the plasma intercepts the laser beam, there is a “negative

dip” in density. The negative dip corresponds to a phase change of δφ ∼ 3◦, and has a

duration of δt ∼ 0.1 µs. The negative dip is from refractive index of neutrals in front of

the jet being pushed along. The refractive index of a dense neutral gas is given by the
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Gladstone-Dale relation [72, Chapter 2]:

ρ = K(n− 1) = Kδn,

where ρ is the mass density, K is the proportionality constant, n is the refractive index of

the gas, and δn := n − 1 is the difference between the refractive index of the gas and the

refractive index of vacuum.

The phase difference measured by the interferometer because of neutral gas is

δφ =
∫
δk dx =

∫
2π
λ
δn dx ∼ 2πL

λ
δn,

where λ is the free space wavelength of He-Ne laser and L ∼ 20 cm is the length of the path

of the laser beam within the dense neutral gas. Thus a phase change of δφ ∼ 3◦ corresponds

to δn ∼ 10−7.

For hydrogen, δn ∼ 10−4 at NTP(normal temperature and pressure) [73, Page E-224].

Thus the number density of neutrals in front of the jet, nexperiment, is given by

nexperiment

nNTP
∼ δnexperiment

δnNTP
∼ 10−7

10−4
.

Thus the number density of neutrals in front of the jets produced by gas valves pressur-

ized to 100 psi is 1022 − 1023/m3. Since the jet is travelling at ∼ 40 km/s and the duration

of the negative dip is δt ∼ 0.1 µs, the thickness of the layer of neutral molecules is ∼ 0.4 cm.

The presence of a cloud of neutrals in front of the jets (for shots done with gas valves

pressurized to 100 psi), implies incomplete ionization of the neutrals at breakdown. The

Bohm time [74, section 5.10] for the plasma is ∼ 500 µs, which is much larger than the

lifetime of the plasma jets. Thus the ions in the plasma jet are unable to diffuse into the

neutral cloud in front of the jet.

5.3 Model

This section describes a model showing that the flow is driven by axial gradient in B2
φ

associated with the slight flaring of the jet. This model is a generalization of the model
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presented by Bellan [75].

Consider a cylindrical coordinate system {r, φ, z} with the origin at the center of the

electrodes and z axis along the direction of the jet flow. The jet is assumed to be axisym-

metric and slightly flared. Furthermore, the poloidal flux inside the jet is assumed to have

the simplest non-trivial physically relevant form

ψ(r, z) = ψ◦
r2

a(z)2
, (5.1)

where

a(z) = a◦e
κz

describes the flaring of the jet of radius a(z). Here a◦ is the jet radius at the electrodes (refer

to figure 5.1) and the constant κ is determined from flaring in figure 5.1. We assume that

the pressure P (r, z) vanishes at r = a(z) which corresponds to assuming that Bz is nearly

uniform in the jet or equivalently that the radial scale length of Bz exceeds the radial scale

length for pressure. Plasma jets with a large aspect ratio (length � radius) are assumed to

be well described by equation (5.1).

Let

I(r, z) = I(ψ) =
λψ

µ◦
=
λψ◦
µ◦

r2

a(z)2
= I◦

r2

a(z)2
, (5.2)

where λ is a constant with dimension (length)−1. The assumption I = I(ψ) implies that

current flows along flux surfaces so there is no torque (φ̂ · (J × B)) causing acceleration

in the φ direction [75]. Poloidal current described by equation (5.2) implies that the axial

current density Jz is independent of r.

The associated toroidal/poloidal magnetic fields and current densities are:

Btor =
µ◦I

2π
∇φ,

Bpol =
1

2π
∇ψ ×∇φ,

Jtor = − r2

2πµ◦
∇ ·
(

1
r2
∇ψ
)
∇φ,

Jpol =
1

2π
∇I ×∇φ, (5.3)

where ∇φ = φ̂/r. Note that a toroidal current density, Jtor, will only exist if the poloidal
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flux function deviates from a vacuum field solution.

Due to the jet’s large aspect ratio, radial equilibrium is achieved much faster than the

axial equilibrium. This is evident from figure 5.1, where the radial profile of the jet hardly

changes as it evolves. MHD radial pressure balance (refer to equation (1.3)) then implies

∂P

∂r
= (Jpol ×Btor)r + (Jtor ×Bpol)r

= − µ◦

(2πr)2

∂

∂r

(
I2

2

)
− 1

(2πr)2 µ◦

[
r
∂

∂r

(
1
r

∂ψ

∂r

)
+
∂2ψ

∂z2

]
∂ψ

∂r
.

Note that 1
r
∂ψ
∂r = constant because of the ψ ∼ r2 dependence assumed in equation (5.1).

This implies

∂P

∂r
= − λ2

(2πr)2 µ◦
ψ
∂ψ

∂r
− 1

(2πr)2 µ◦

∂2ψ

∂z2

∂ψ

∂r

= −
(
λ2 + 4κ2

)
(2πr)2 µ◦

ψ
∂ψ

∂r
. (5.4)

Equation (5.4) can be integrated radially to give

P (r, z) =

(
λ2 + 4κ2

)
ψ2
◦

(2πa)2µ◦

(
1− r2

a2

)
, (5.5)

where the boundary condition is P (r, z) = 0 at r = a(z).

Current and hence λ are time dependent in the experiment (see figure 3.2). However,

using an average value of current I ∼ 75 kA and applied poloidal flux ψ◦ ∼ 4 mWb yields

a nominal value of λ ∼ 20 m−1. From the visual images (see figure 5.1) the flaring of the

jet corresponds to κ ∼ 2 m−1. Thus λ2 � 4κ2 and hence 4κ2 can be neglected in equation

(5.5). Thus, P (r, z) is predominantly determined by the axial current (or equivalently the

toroidal magnetic field). For such a jet, the plasma toroidal beta βφ should be of order

unity, as shown in figure 5.6.

The jet is in radial force balance, but there is no such balance along the z-axis. Consider
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the z component of the MHD equation of motion (refer to equation (1.4)) in steady-state

[∇ · (ρuu)]z = (Jpol ×Btor)z + (Jtor ×Bpol)z −
∂P

∂z
. (5.6)

Using equations (5.1)-(5.3) and (5.5), equation (5.6) becomes

[∇ · (ρuu)]z = − ∂

∂z

[(
λ2 + 4κ2

)
ψ2
◦

(2πa)2µ◦

(
1− r2

2a2

)]
. (5.7)

Using λ2 � 4κ2, equation (5.7) can be rewritten as

[∇ · (ρuu)]z = − ∂

∂z

[
λ2ψ2

◦
(2πa)2µ◦

(
1− r2

2a2

)]
= − ∂

∂z

[
µ◦I

2
◦

4π2a2

(
1− r2

2a2

)]
= − ∂

∂z

[
B2
φ,a

µ◦

(
1− r2

2a2

)]
, (5.8)

where Bφ,a = µ◦I◦/2πa is the toroidal magnetic field evaluated at r = a(z). The plasma

velocity is predominantly oriented along the z direction. So equation (5.8) can be simplified

as
∂

∂z

[
ρu2

z

]
' − ∂

∂z

[
B2
φ,a

µ◦

(
1− r2

2a2

)]
. (5.9)

Evaluating it at r = 0 gives

∂

∂z

(
ρu2

z +
B2
φ,a

µ◦

)
r=0

= 0, (5.10)

which is similar to the Bernoulli equation. Integrating equation (5.10) along the length of

the jet gives (
ρu2

z +
B2
φ,a

µ◦

)
r=0,z=0

=

(
ρu2

z +
B2
φ,a

µ◦

)
r=0,z=L

. (5.11)

At the electrodes (z = 0), uz ∼ 0, and Bφ,a = µ◦I◦/2πa◦. Far from the electrodes (z = L)

of the jet, Bφ,a is small and can be neglected. Thus the flow velocity at the jet tip can be
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estimated as

ur=0,z=L ∼

√
B2
φ,a◦

ρµ◦

ur=0,z=L ∼ 1
2πa◦

√
µ◦
ρ
I◦. (5.12)

Equation (5.6) assumed the plasma jet to be in steady-state. If the time dependent

inertial term ∂ (ρu) /∂t was included in the analysis, the final result of equation (5.12)

could still be derived by considering dimensionless scaling of the equations. In such a case,

the equations can be cast in a dimensionless form with a characteristic velocity given by

equation (5.12). Also, the steady-state assumption is justified for the bulk of the plasma

jet, except for the dynamic apex.

5.3.1 Comparison of the Model with Experimental Results

We now compare the experimental results to the quantitative predictions of the theory.

Using the typical parameters of a hydrogen plasma jet (ne ∼ 3× 1022/m3, a◦ ∼ 3− 10 cm),

equation (5.12) predicts that the slope of the u vs I linear fit for hydrogen plasmas in

figure 5.5 should be 0.25 − 0.84 m/sA−1. The experimentally observed linear dependence

has a slope of 0.45 m/sA−1. Equation (5.12) also suggests that the slope for the linear

fits in figure 5.5 should scale inversely with the square root of the mass of ions. Thus it

predicts that the ratio of slopes of the linear fits in figure 5.5 for hydrogen and deuterium

plasmas should be
√

1
2 = 0.707. From the experiments the ratio of slopes is measured as

0.33±0.03
0.45±0.03 = 0.73±0.08. Thus the experimentally measured value agrees reasonably well with

the predicted ion mass dependence. The results clearly show that the phenomenon causing

bulk plasma motion is non-equilibrium dynamics as the response of the plasma is inversely

related to the square root of the ion mass.

5.4 Energy Balance for Plasma Jets

An energy balance argument for the plasma jets is presented in this section. A coaxial

gun expanding against a restraining spring (see figure 5.9) is a simple analogue to the

Caltech spheromak experiment. The current flowing between the outer (brown) and the
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I

Figure 5.9: Cut out of a coaxial gun expanding against a spring.

inner (blue) conductor in figure 5.9 produces a toroidal magnetic field. The toroidal field

pressure accelerates the conducting red disk outwards, thus increasing the inductance of

the rail gun. Thus the toroidal field pressure acts in increasing the inductance in both

the rail gun and in the Caltech spheromak experiment. As the rail gun moves outward, it

deforms the spring and thus stores potential energy in the compressed spring. In the Caltech

spheromak experiment, as the jet expands, it deforms the applied poloidal magnetic field

there by storing energy in the stretched poloidal field Wpol =
∫ B2

pol

2µ◦
d3r.

We now consider the energy balance in the coaxial rail gun. Neglecting the resistance

of the rail gun, the input energy is given by the integral of Poynting flux at the electrodes

Winput =
∫ t

0
V Idt =

∫ t

0

d
dt

(LI) Idt,

where V is the voltage appearing across the electrodes, I is the current linked by the

electrodes and L is the inductance of the jet. Since the current is assumed to be constant,

the input energy can be approximated as

Winput =
∫ t

0
I2 dL

dt
dt = LI2.
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The input energy is split into the the energy in the toroidal field, the potential energy in

the spring and the kinetic energy of the disk.

Winput = Wtor︸︷︷︸
= 1

2
LI2

+ Wpot︸ ︷︷ ︸
= 1

2
kx2

+ Wkin︸︷︷︸
= 1

2
mv2

, (5.13)

where k is the spring constant, x is the deformation of the spring, m is the mass of the disk,

and v is the velocity of the disk.

Note that the energy in the toroidal field is half of the input energy. Thus, in the absence

of a restraining spring, the energy input from the current source is distributed equally into

the disk’s kinetic energy and the toroidal magnetic field energy in the rail gun.

However, a more physically relevant situation is when the kinetic energy term in equation

(5.13) can be neglected. When the kinetic energy of the disk is negligible, the input energy

is split evenly between the toroidal field energy and the spring potential energy. The kinetic

energy of the rail gun can be neglected if:

1. The restraining force from the spring is almost equal to the outward force from the

toroidal magnetic field pressure. The velocity gained by the disk will be negligible

and the rail gun can be considered to be almost in equilibrium. The analog of this

situation for the Caltech spheromak experiment is if the plasma jet were to evolve in

force-free equilibrium states, thereby having equal amounts of toroidal and poloidal

field energies (see [3, section 4.4.1]).

2. The mass, m, of the disk is small, and hence the kinetic energy is negligible.

We will now extend these ideas developed for the energy balance in the rail gun to

the energy balance in the plasma jet. Consider an ideal plasma jet that is driven by an

electrode with constant current. The energy flowing into the plasma is the time integral of

the Poynting flux at the electrodes

Winput =
∫ t

0
V Idt =

∫ t

0

d
dt

(LI) Idt+
∫ t

0
I2Rdt,

where V is the voltage appearing across the electrodes, I is the current linked by the

electrodes, L is the inductance of the jet, and R is the resistance of the jet. Since the
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current is assumed to be constant, the input energy can be approximated as

Winput =
∫ t

0
I2 dL

dt
dt+

∫ t

0
I2Rdt = LI2 +

∫ t

0
I2Rdt. (5.14)

According to the definitions introduced in section 1.1.1, let Wtor, Wpol, Wth and Wkin

be the energy in the toroidal magnetic field, the energy in the poloidal magnetic field, the

thermal energy of the jet and the kinetic energy of the jet. The corresponding energy

densities are represented by w and the appropriate subscript. Thus

Wtor =
∫
wtord3r, Wpol =

∫
wpold3r, Wth =

∫
wthd3r, Wkin =

∫
wkind3r.

By conservation of energy (see equation (1.7))

Winput = Wtor +Wpol +Wth +Wkin +Wradiation-loss.

In low temperature plasmas the energy input from the resistive term in equation (5.14) is

expected to be almost completely lost in line emission (Wradiation-loss) [76]. Thus, the plasma

jets are expected to gain minimal thermal energy from Ohmic heating. This gives

LI2 ∼Wtor +Wpol +Wth +Wkin.

Since, Wtor = LI2/2, we get

Wpol +Wth +Wkin ∼Wtor. (5.15)

Had the jet been force free, then Wth = Wkin = 0 and the energies in the toroidal and

poloidal fields would have been equal [3, section 4.4.1]. However, with the non-equilibrium

jets at the Caltech spheromak experiment all the quantities in equation (5.15) are posi-

tive definite. At the Caltech spheromak experiment, a strong poloidal field is applied for

substantial helicity injection and also for ensuring kink stability. Thus the energies in the

toroidal and poloidal magnetic fields are comparable to each other. Using equation (5.15),

this implies Wpol . Wtor, and also that the thermal and kinetic energy content of the jet is
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Figure 5.10: A cartoon of the jet showing three different regions of the plasma jet.

significantly less than the toroidal field energy. Equivalently

Wkin � Wtor,

Wth � Wtor. (5.16)

The results in sections 5.3 and 5.2 indicate that

wth ∼ wkin ∼ wtor. (5.17)

Equations (5.16) and (5.17) can be simultaneously satisfied only if the spatial extent of the

plasma is small compared to the spatial extent of the toroidal magnetic field. This fact is

validated by observation of the plasma jet radius of ∼ 3 cm in figure 5.1 and a radius of

∼ 10 cm of the toroidal field densities in figure 5.2. Even equation (5.5) predicts that the

radial extent of plasma is smaller than the radius of the current channel.

These inferences can be summarized as follows:

1. The center of the jet (represented by the yellow in figure 5.10) consists of dense plasma.

It has a radial extent of ∼ 3 cm.
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2. Outside the central region (represented by the cyan region in figure 5.10), the plasma

density is negligible. Hence this region is expected to be in a force free state described

by J × B ∼ 0. The radial extent of the force free region is ∼ 10 cm. The toroidal

magnetic pressure in this region is comparable to the plasma thermal energy density

and kinetic energy density in the plasma central region.

3. Outside the force free region, the magnetic fields are vacuum fields until the return

currents to the anode are encountered. this region is represented by green in figure

5.10. The return currents are located after a radius of ∼ 25 cm.

5.5 Conclusion

Alfvénic flows based on toroidal magnetic field pressure have been observed in earlier coaxial

gun experiments [58]. However, this chapter shows that even in the presence of a substantial

external poloidal magnetic field required for helicity injection, the plasma flow is predomi-

nantly Alfvénic with respect to the toroidal magnetic field, provided there is only a slight

flare in the poloidal current channel of the plasma jet.

The following are the main results from this chapter:

1. MHD based non-equilibrium slightly flaring plasma jets are observed during helicity

injection.

2. These jets emanate outwards from the electrodes towards the vacuum with Alfvénic

velocities. The speeds of these jets are not based on neutral pressure gradients, but

on the axial gradient in the toroidal magnetic field energy density.

3. The pressure in the jets is balanced by the toroidal magnetic field. Hence these jets

have βφ ∼ 1.

4. The radial scale for pressure in these jets is smaller than the radial extent of poloidal

current or poloidal flux.

5. When the jets are formed by neutral gas fed from fast gas valves pressurized at 100 psi,

then there is a layer of neutrals of density 1022 − 1023/m3 and thickness ∼ 0.5 cm in

front of the jet.
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Chapter 6

X-ray Imaging System for the Caltech Solar

Coronal Loop Simulation Experiment

Energetic particles and radiation have been observed in reconnecting plasmas in both lab-

oratory [77] and extra-terrestrial plasmas [78]. The Caltech solar coronal loop simulation

experiment [79] is designed to study reconnecting magnetic flux tubes and the relevant

physics of solar prominences [5, 80]. This chapter focuses on characterizing the soft X-ray

(SXR) and Vacuum Ultra Violet (VUV) radiation observed from the experiment.

The chapter is organized as follows. Section 6.1 describes the Caltech solar coronal

loop simulation experiment. It also explains the three different modes of operation of the

experiment. Section 6.2 describes the diagnostics used in the experiment. The X-ray diodes

and the X-ray imaging system are described in detail in sections 6.2.1 and 6.2.2 respectively.

Section 6.3 compares the various modes of operating the experiment (single prominence,

co-helicity and counter-helicity merging), focusing on the production of X-ray photons.

Finally, section 6.4 suggests some ideas for future research on the experiment.

6.1 Overview of the Experiment

The Caltech solar prominence simulation experiment uses the “Mark IV” electrode design,

described in detail by Hansen [79], Chapter 5. The setup consists of four electrodes each

with a gas injection orifice (see figure 6.1). The upper electrodes are the cathode and the

lower electrodes are the anode. The electrode polarity is fixed and is usually not changed.

During a plasma discharge, the electrodes are floating with respect to the chamber ground.
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Figure 6.1: Electrodes for the dual prominence experiment.

A 59 µF capacitor bank is switched by a size A GL-7703 ignitron to achieve the plasma

discharge. For all the results presented in this chapter, the capacitor was charged to 6 kV.

Four magnetic field coils of inductance ∼ 280 µH each are located behind each of the gas

injection points. Each coil creates a bias magnetic field either out of the plane of the picture

in figure 6.1 (represented by “North - N” in subsequent figures) or into the plane of the

picture (represented by “South - S” in subsequent figures). The polarity of each magnetic

field bias coil can be controlled independently. The applied magnetic field (referred to

as the toroidal bias field in this chapter) is constant for the duration of experiment. The

magnetic coils behind the cathode foot points are powered by an electrically isolated 9.9 mF

capacitor bank and the magnetic coils behind the anode foot points are powered by another

electrically isolated 9.6 mF capacitor bank. For all the measurements reported in this

chapter, the magnetic field coils were discharged at 200 V, thereby creating a toroidal flux

of ∼ 0.2 mWb at each foot point.1

Neutral gas was puffed into the chamber at the gas injection foot points shown in the

picture. The two orifices in the cathode were fed by a fast gas puff valve [3, chapter 14].

The two orifices behind the anode were fed by a similar gas puff valve.

The following sequence of events was followed to create a plasma discharge:
1Calibration of the toroidal flux was performed by Rory Perkins and Eve Stenson.
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1. The toroidal field power supplies were triggered 4.5 ms before the plasma discharge.

It takes 4.5 ms for the magnetic field to reach its maximum and link adjacent foot

points on the cathode and the anode.

2. Fast gas valves were triggered 2 ms before the plasma discharge. It takes about 2 ms

for neutral gas to travel from the fast gas puff valves to the orifices at the foot points.

The fast gas valves were pressurized with deuterium at 100 psi for all the experiments

reported in this chapter.

3. The 59 µF capacitor was discharged across the electrodes to create a plasma.

4. The various diagnostics and the digitizers were triggered upon the neutral gas break-

down near the electrodes.

The experiment can be run in the following modes:

1. Single prominence: The setup for the single prominence experiment is shown in figure

6.2. Only the left electrodes are used to create the plasma discharge. The bias

toroidal field is not created at the right electrodes. Neutral gas is also not injected at

the orifices in the right electrodes. As the plasma flux tube expands due to the hoop

force, it kinks. The shape of the flux tube resembles the shape of a typical helical

field line shown in the figure i.e., a dip is observed from the side view and a reversed

“S” shape from the top view.

2. Co-helicity merging: The setup for the co-helicity merging experiment is shown in

figure 6.3. Two similar magnetic flux tubes are created by each of the electrodes.

Since the same amount of helicity is injected into both the flux tubes, they behave in

an identical manner. For example, they have identical shapes when looked at from

the top view. The plasma flux tubes expand due to the hoop force and also merge

with each other due to the attraction between parallel currents.

3. Counter-helicity merging: The setup for the counter-helicity merging experiment is

shown in figure 6.4. Two magnetic flux tubes are created by each of the electrodes. The

toroidal bias field is in opposite direction in the flux tubes. Thus, equal but opposite

amounts of helicity are injected into each of the flux tubes. Since the handedness of
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the magnetic field is opposite in each of the flux tubes, an “S” and a reversed “S”

shaped flux tube is observed from the top view.

The origin of the “S” and the reversed “S” shape of the plasma in the experiments can be

explained in terms of a kink in the flux tube (as shown in figures 6.2, 6.3, 6.4 and explained

by Rust and Kumar [81]) or by considering plasma in a Taylor state equilibrium [5].

6.2 Diagnostics

The following commercially available diagnostics were used in the experiment:

1. A Tektronix P6015 [14] high voltage probe was used to measure the potential difference

across the electrodes.

2. A Rogowski coil [3, chapter 15] was used to measure the current flowing through the

high voltage capacitor bank.

3. Imacon 200 - a high speed imaging camera manufactured by DRS Technologies [15] -

was used to take visible images of the plasma.

In addition to the diagnostics mentioned above, two more diagnostics were upgraded for

the experiment. These are described below.

6.2.1 X-ray Diodes

Four high speed X-ray sensitive diodes (Part number AXUV-HS5) manufactured by Inter-

national Radiation Detectors [82] were used to diagnose the evolution of plasma-filled flux

tubes in the experiment.2 The diodes were reverse biased to 45 V, to achieve maximal

efficiency and the best rise time performance (< 1 ns). The diodes are sensitive to photons

with energies & 10 eV, and their gain increases by ∼ 17% per eV increase in photon energy.

Three out of the four diodes were covered with thin metal foil filters manufactured by

Lebow Company[83]. The filters placed in front of the diodes were Ti 50 nm, Al 200 nm

and Ti 500 nm. The transmission properties of the filters is plotted in figure 6.5 [84, 85].
2The mechanical assembly of the diodes and the electronics were designed by Paul Bellan.
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Figure 6.5: Transmission characteristics of X-ray foil filters.

It is shown in section 6.3 that no output was detected by the diode behind the Ti 500 nm

filter. This shows that X-ray photons produced by the experiments have energies . 200 eV.

To understand the energy spectrum of the photons produced in the experiment, the Ti 500 nm

filter should be replaced by a filter whose bandwidth is limited to 75− 200 eV.

6.2.2 X-ray Imaging System

Photons in the VUV (Vacuum Ultra Violet) to SXR (Soft X-ray) band are severely atten-

uated by glass. Thus X-ray scintillators are usually placed so that they share the same

vacuum as the main experiment, or special windows are used to ensure transmission of the

photons. The X-ray diode array built by Snider et al. [86] used Beryllium vacuum windows

to prevent X-ray attenuation. They also used pressurized neutral gas as an X-ray energy

filter.

The VUV/SXR imaging system built for the Caltech solar coronal loop experiment was

installed in vacuum. figure 6.6 shows the setup of the imaging system. A pin hole of

diameter 200 µm was used in the setup. The pin hole was placed ∼ 5 cm in front of the

Micro Channel Plate (MCP). The position of the pinhole can be adjusted to change the
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Figure 6.6: Schematic of the X-ray imaging setup.
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(a) Setup of the X-ray imaging camera showing parts outside the vacuum.

(b) Pin hole used for X-ray imaging (c) Vacuum interface of the MCP (phosphor screen).

Figure 6.7: Setup of the X-ray imaging setup.



95

zoom level of the imaging system. There was no foil filter used for the images presented

in this chapter. The MCP and phosphor screen assembly (Part number XUV-2018) was

manufactured by X-ray and Speciality Instruments [87]. The MCP had a diameter ∼ 1 inch

and was coated with CsI. It was sensitive to radiation with energies & 6 eV. The MCP

assembly was mounted on a 2.75” conflat vacuum flange. The MCP assembly was attached

to the main vacuum chamber with flexible vacuum bellows which could be tilted to change

the region under view. However, the tilt was not adjusted for the results presented in this

chapter.

A −900 V pulse generated by a Berkeley Nucleonics high voltage pulse generator Model

310H [88] was connected to the front end of the MCP. The pulse allowed the creation of

secondary electrons by the MCP when X-ray photons were incident on it. Thus the pulse

acted as an effective shutter mechanism for the imaging system. The camera was sensitive

with 10 ns pulse duration, but sharper images were obtained by pulses of duration 20 ns.

The pulse duration was maintained at 20 ns for all the X-ray images presented in this

chapter. The electrons from the MCP were accelerated by a 3 kV DC bias applied between

the phosphor screen and the MCP (see figure 6.6). The electrons caused the phosphor

screen to fluorescence. The image on the phosphor screen lasted for several milliseconds

(∼ 50 ms) and was imaged by a Meade DSI Pro II CCD camera [89]. Data from the Meade

camera was communicated to a desktop PC with a USB 2.0 cable. The Meade camera was

mounted on an optical mount with tilt and linear translation capability (see figure 6.7(a)).3

Sample images from the X-ray imaging system are shown in section 6.3. However, the

following changes may improve the X-ray imaging system:

1. The DC voltage bias to the phosphor screen was limited to 3 kV by the existing power

supply. Increasing it to 5 kV will improve the contrast of the images.

2. The high voltage pulse from Berkley Nucleonics 310H was relayed to the MCP via a

∼ 10 m long coaxial cable. The cable was terminated by its characteristic impedance

of 50 Ω, yet the long length of the cable caused a slight resistive loss of the pulse

amplitude and also altered the shape of the pulse. Moving the 310H module closer to

the MCP and using a shorter cable will remove these problems and may improve the
3The mount for the Meade camera was modified from an initial design by Hyungmin Park.
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contrast of the images.

3. For the images shown in this chapter, no foil filter was used in the setup (see figure

6.6). Using a foil filter may help localize the high energy radiation observed only in

the counter-helicity merging experiment.

4. Different pin holes may be used in the setup of the camera. The effect of changing

the pin holes on the intensity and sharpness of the images has not been investigated.

6.3 Results

The X-ray production and other differences between the three modes of the experiment

have been previously studied semi-quantitatively by Hansen et al. [90]. In their work, they

found:

1. Counter-helicity experiments produced significantly more X-rays than the co-helicity

and single prominence experiments.

2. A bright region (the dip) at the apex of the flux tubes was observed in counter-helicity

merging experiment.

The results presented in this section confirm the above observations and also offer more

specific insights. The results and the dynamics of the plasma filled flux tubes for each of

the three modes are described below:

1. Single prominence: It is seen from figure 6.8 that the plasma-filled flux tube expands

due to the hoop force and starts writhing at ∼ 1 µs. As the flux tube expands further,

the plasma becomes extremely diffuse and detaches from the electrodes at ∼ 2.8 µs.

The voltage and current traces (figure 6.9) across the electrodes show discrete voltage

jumps and current fluctuations at ∼ 3−4 µs after breakdown. This is a characteristic

of the plasma flux tube detaching from the electrodes, thereby causing a change in

plasma inductance. The X-ray diode signals from the single prominence simulation

experiment (figure 6.10) indicate that almost no signal is measured by the diodes

with foil filters in front. Thus the radiation from the single prominence experiment

is limited to . 10 eV. The measured radiation has a distinct temporal behavior. It
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Figure 6.8: Fast camera images from single prominence simulation experiment. Visible

band. Shot #6343.
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Figure 6.9: Current and voltage traces from single prominence simulation experiment. Shot

# 6343.
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Figure 6.10: X-ray diode signals from single prominence simulation experiment. Shot

#6343.



99

0.
40

 µ
s

S
ho

t #
63

18
1.

40
 µ

s
S

ho
t #

63
26

2.
40

 µ
s

S
ho

t #
63

29

3.
40

 µ
s

S
ho

t #
63

35
4.

40
 µ

s
S

ho
t #

63
39

5.
40

 µ
s

S
ho

t #
63

44

F
ig

ur
e

6.
11

:
V

U
V

/S
of

t
X

-r
ay

im
ag

es
fr

om
si

ng
le

pr
om

in
en

ce
si

m
ul

at
io

n
ex

pe
ri

m
en

t.



100

0.28 µs 0.57 µs 0.88 µs

1.18 µs 1.48 µs 1.77 µs

2.08 µs 2.38 µs 2.67 µs

2.98 µs 3.27 µs 3.58 µs

Figure 6.12: Fast camera images from co-helicity merging experiment. Visible band. Shot

#6296.
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Figure 6.13: Current and voltage traces from co-helicity merging experiment. Shot #6296.
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Figure 6.14: X-ray diode signals from co-helicity merging experiment. Shot #6296.
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Figure 6.16: Fast camera images from counter-helicity merging experiment. Visible band.

Shot #6273.
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Figure 6.17: Current and voltage traces from counter-helicity merging experiment. Shot

#6273.
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Figure 6.18: X-ray diode signals from counter-helicity merging experiment. Shot #6273.
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consists of a slowly varying background signal of ∼ 30−50 mV along with sharp bursts

of duration . 1 µs. These bursts usually range from 100 − 200 mV and occur when

the plasma is detaching form the electrodes (between 3.5 − 4.5 µs after breakdown).

The bursts occur at the same time as the discrete jumps are seen in the voltage across

the electrodes.

The contrast of each individual VUV/SXR image from the single prominence exper-

iment (figure 6.11) has been manually enhanced. It shows an expanding flux tube

which detaches from the electrodes between 2.4− 3.4 µs.

2. Co-helicity: It is seen from figure 6.12 that the two plasma filled flux tubes expand due

to the hoop force. They start writhing at ∼ 1 µs and also tend to merge at ∼ 2 µs.

The slightly merged flux tubes detach from the electrodes at ∼ 3 µs. The voltage

and current traces (figure 6.13) across the electrodes show discrete voltage jumps and

current fluctuations at ∼ 3 − 4 µs after breakdown, indicating plasma detachment.

The X-ray diode signals from the co-helicity merging experiment (figure 6.14) again

indicate that the radiation from the co-helicity merging experiment is limited to .

10 eV (similar to the single prominence experiment). Usually one (or sometimes

two) bursts are observed in the signal from the unfiltered diode. The first burst

usually occurs at ∼ 3.4 µs after breakdown. As compared to the single prominence

experiment, the first X-ray burst (corresponding to the plasma detachment from the

electrodes) occurs slightly earlier.

The contrast-enhanced VUV/SXR images from the co-helicity merging experiment

(figure 6.15) show two distinct flux tubes until 2.4 µs after the discharge. Images

from after 4 µs show bright arcing between electrodes, unlike the single prominence

experiment.

3. Counter-helicity: It is seen from figure 6.16 that the two plasma filled flux tubes

expand due to the hoop force. They start writhing at ∼ 1 µs and also tend to merge

at ∼ 2 µs because of the pinch force from the parallel currents in adjacent flux tubes.

The central dip at the apex of the flux tubes is brighter than the apex from the co-

helicity merging experiment (figure 6.12). The voltage and current traces (figure 6.17)

across the electrodes show discrete voltage jumps and current fluctuations at ∼ 3−5 µs
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after breakdown, indicating plasma detachment. The X-ray diode signals from the

counter-helicity merging experiment (figure 6.18) are significantly different from the

signals from co-helicity merging experiment. Usually 3− 4 bursts are observed in the

X-ray diode signals, compared to just one in the co-helicity experiment. Compared to

the co-helicity experiment, these bursts are higher in magnitude (100−700 mV). The

sharp peaks in the Ti 50 nm and Al 200 nm traces in figure 6.18 indicate that the the

photon energies are up to ∼ 75 eV, which is considerably higher than photon energies

in the co-helicity merging experiment. Also, the first burst in the X-ray diode signal

is usually 3 µs after the breakdown, which is approximately 0.3 − 0.4 µs before the

first burst observed in the co-helicity merging experiment. This indicates that the

merged flux tubes in the counter-helicity experiment tend to go kink unstable and

detach from the electrodes earlier than the corresponding merged flux tubes in the

co-helicity experiment.

The contrast-enhanced VUV/SXR images from the counter-helicity merging experi-

ment (figure 6.19) are also significantly different than the images from the co-helicity

experiment (figure 6.15). Comparing the images at 2.4 µs indicates that the flux tubes

have already merged in the counter-helicity experiment and are still distinct in the

co-helicity experiment. The intensity of the radiation from the bulk of the flux tubes

in the counter-helicity experiment is also greater than the radiation observed from

the co-helicity experiment. When the merged flux tubes detach from the electrodes

(images at 2.4 and 3.4 µs in figure 6.19), an intense spot is observed near the cathodes.

Such a bright region is not observed in the co-helicity experiment.

6.3.1 Interpretation

There are two distinct reconnection events in the co- and counter-helicity merging exper-

iments. The first is when the adjacent flux tubes merge, and the second is when the flux

tubes detach from the electrodes.

During the merging of the flux tubes in the counter-helicity experiment, the oppositely

directed toroidal magnetic fields in adjacent flux tubes are annihilated. The annihilation of

the toroidal field releases more energy than the merging of the flux tubes in the co-helicity

experiment. Thus the bulk plasma is brighter in the counter-helicity experiment than in
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the co-helicity experiment. Since the bulk plasma mostly radiates in the VUV range, the

radiation is most likely from line emission. This can be investigated by VUV spectroscopy.

Annihilation of the toroidal magnetic field also makes the flux tube in counter-helicity

experiment more susceptible to kink instability. Thus the merged flux tube in the counter

helicity experiment goes unstable and detaches from the electrode before the corresponding

flux tube in the co-helicity experiment. The reason why the detachment leads to signif-

icantly higher energy photons in the counter-helicity experiment than in the co-helicity

experiment is still unclear. The bursts in X-rays from the counter-helicity experiment are

in a significantly higher energy band (up to 80 eV) and might be Bremsstrahlung.

6.4 Future Work

The results presented in this chapter provided some insight into the dynamics of flux tube

merging in the experiment and the production of high energy photons. The following steps

are suggested to further enhance the understanding of the experiments:

1. The gas orifice foot points at the cathode are much brighter than the anode foot points.

This can be seen in all the visual and X-ray images from section 6.3. It is certainly

a non-MHD effect, and the spectra of the emitted photons should be diagnosed using

different energy filters.

2. The X-ray images from the counter-helicity experiment were taken at 1 µs intervals

(see figure 6.19). Images should be taken at much more frequent intervals and with

different foil filters to help understand the origin and spectra of the X-ray bursts.

3. The application of an external strapping field [80] will inhibit the detachment of the

flux tubes from the electrodes. Such a scenario will be beneficial to focus only on the

reconnection of the adjacent flux tubes before they detach from the electrodes.

4. The bursts of X-rays from the experiment corresponded to the flux tubes detaching

from the electrodes. However, such bursts were absent when the kinked plasma jets

detached from the spheromak electrodes (see chapter 5). The reason for this is not

understood.
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Chapter 7

Summary

Chapter 1 described the concept of spheromaks as viable magnetic fusion reactors. Sphero-

maks rely on the conservation of magnetic helicity as plasmas relax to an equilibrium state.

Chapter 2 considered the problem of sustaining magnetic helicity in a steady state driven

spheromak. It was shown that resistive MHD equilibrium is not possible when a plasma

has closed flux surfaces and thus a true equilibrium is not possible in a driven spheromak.

Furthermore, it was shown that a time dependent change of open flux to closed flux is

essential to maintain helicity in a spheromak in quasi equilibrium.

Chapter 3 described the discharge circuit of the Caltech spheromak experiment. Various

resistances and inductances in the discharge circuit were found, and it was shown that the

inductance and resistance of the ignitron are the most dominant. It was also shown that the

discharge circuit was an under damped current source with low energy coupling efficiency.

A homodyne and a heterodyne interferometer were built to measure the plasma density

in the Caltech spheromak experiment. These interferometers were described in chapter 4.

The heterodyne interferometer had about a factor of two better signal to noise ratio as

compared to the homodyne interferometer, and was also much easier to align. It measured

typical line-average densities of ∼ 1021/m2 with an error of ∼ 1019/m2. Chapter 4 also

showed that the phase auto correlation function of a laser is periodic in length. Thus the

traditionally assumed requirement of keeping the path lengths equal in an interferometer is

not necessary. This fact was utilized to simplify the design of both the homodyne and the

heterodyne interferometers.

The planar electrode structure of the Caltech spheromak provides an excellent oppor-
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tunity to study the dynamics of magnetic helicity injection. Strong collimated jets have

been observed previously in the experiment. The density and velocity measurements from

these jets were described in detail in chapter 5. These flows are generated by by MHD

forces because of the slight flaring of the plasma jet. The flow velocity was found to be

Alfvénic with respect to the toroidal magnetic field. Also, the thermal pressure in the jets

was balance by the toroidal magnetic field energy density.

The design of a VUV/SXR imaging system for the Caltech solar coronal loop simulation

experiment was described in chapter 6. It was found that the bright energetic photons were

radiated when the plasma flux tube detached from the electrodes. In the counter-helicity

experiment, the detachment caused the plasma flux tube near the electrodes to be be

extremely bright in the VUV/SXR images. In general, the plasma flux tubes from the

counter-helicity experiment were found to be brighter in VUV/SXR range, and also more

susceptible to being kink unstable.
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Appendix A

Alignment of the Interferometers

The appendix describes the alignment procedure of the two interferometers. Section A.1

describes in detail certain critical procedures in the alignment process. Sections A.2 and A.3

describes the steps in aligning the homodyne and heterodyne interferometers respectively.

A.1 Alignment Techniques

This section describes in detail certain techniques to align the interferometers described

earlier. The techniques described in this section were motivated by the work of Galvez [91].

A.1.1 Ensuring a Constant Height of the Beam Above the Optical Table

The first and the most critical step in aligning the interferometers is to ensure that the

beam coming out of the laser is parallel to the optical table. The height of the beam was

chosen to be the height of the detector. The technique for adjusting the laser for a parallel

beam is shown in figure A.1.

The desired height of the beam was marked on the screen. The screen was then placed

close to the laser at position #1 (see figure A.1). The laser mount was adjusted to change

Laser

Adjust vertical height of laser

Screen position #2
Adjust pitch of laser

Beam

Screen position #1

Figure A.1: Adjusting a laser to align the beam parallel to the optical table.
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S2

S1

M4

M5

Figure A.2: Adjusting the scene beam of the heterodyne interferometer to pass through the

sapphire windows.

the height of the laser so that the beam struck the screen at the desired height. The screen

was then placed at a long distance from the laser (position #2). The pitch of the laser was

adjusted to ensure that the beam struck the screen again at the desired height. The whole

process was repeated a few times to align the beam parallel to the optical table.

A.1.2 Steering the Heterodyne Interferometer’s Scene Beam through

Sapphire Windows

Figure A.2 shows the arrangement used to steer the scene beam through the sapphire

windows for the heterodyne interferometer (see figure 4.6). Mirror M5 is located directly

below and in close proximity to the lower sapphire window S1. The first step involved

adjusting mirror M4 to ensure that the scene beam was reflected by M5 to the approximate

center of S1. For the second step, M5 was adjusted to steer the beam through the lower

sapphire window to the approximate center of the upper sapphire window S2. The two
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Scene beam

Reference beam

To wall

Screen

M2
M6

BS2

Figure A.3: Alignment for the overlap of the scene and reference beams of the heterodyne

interferometer.

steps were repeated iteratively. If, however, the beam was obstructed by the chamber walls

during the second step, then the alignment process was restarted at the first step.

A.1.3 Combining the Scene and Reference Beams of the Heterodyne In-

terferometer

As discussed in point 3 of section 4.5.4, the requirements for the overlap of the scene and

the reference beams for the heterodyne interferometer are very challenging. The alignment

procedure for overlapping the two beams is shown in figure A.3. For the first step, the

screen was placed next to the cube beam splitter BS2, and the mirror M2 was adjusted so

that the beam spots from the scene and reference beams overlapped on the screen. For the

second step, the screen was removed and the mirror M6 was used to steer the beams to

a distant wall a few meters away. Next, BS2 was adjusted to ensure that the beam spots

from the scene and reference beams overlapped on the distant wall. The steps were repeated

until a perfect overlap was achieved.

A.2 Alignment Procedure for the Homodyne Interferometer

Figure A.4 shows the arrangement of the various optical components of the heterodyne in-

terferometer on the optical bench. The homodyne interferometer for the Caltech spheromak

experiment was aligned by the following sequence of techniques (refer to figure 4.4):
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M3 M4

D1
D2

HWP3

HWP1

Laser

M1

Isolator

HWP2

Piezo mirrorP1QWPP2

Extra

mirror

Wollaston

prism

Temporary
mirror

Figure A.4: Image of the 18”× 18” optical table showing the various optical components of

the homodyne interferometer.
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1. The laser beam was set up to be parallel to the optical table.

2. Half wave plate HWP1 was oriented to set the polarization of the laser beam to

be either vertical or horizontal. Vertically or horizontally polarized light is desired

because such a polarization is unaltered by reflections. A Wollaston prism can be

used to check if the beam is horizontally or vertically polarized.

3. The mirror M1 was adjusted to align the beam approximately parallel to the grid on

the optical table.

4. The two polarizers on the ends of the isolator were adjusted as per the manufacturer’s

specification to ensure near perfect isolation of the laser beam.

5. The isolator was placed to intercept the beam. The isolator was rotated about its

post and the mirror M1 was adjusted to ensure that the beam at the output of the

isolator was strongest and unobstructed.

6. The polarization vector of the light coming out of the isolator is rotated. The half

wave plate HWP2 was adjusted to again polarize the laser beam either horizontally

or vertically.

7. The non polarizing beam splitter was adjusted so that the split beams propagated

almost orthogonally. The tilt of the beam splitter was adjusted so that the scene beam

was parallel to the ground and hits the mirror M2 at the bottom of the chamber.

8. The piezo vibrating mirror was placed and adjusted so that the reflected reference

beam follows the path of the incoming beam. It was helpful to ensure that the beam

spots were coinciding on HWP2.

9. The optical axis of P1 was aligned vertically. The optical axis of the QWP was

adjusted to make a 45◦ angle with P1’s axis. The axis of P1 was found by noting that

when the axis was horizontal, P1 would completely obstruct an incident vertically

polarized beam. Also, the optical axis of any wave plate can be found by noting that

if the wave plate intercepts a linearly polarized beam with the polarization angle along

the optical axis of the wave plate, then the polarization of the beam is unaffected.
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10. The second polarizer P2 was placed in the scene beam’s path with its optical axis

vertical.

11. It was advantageous to align the whole interferometer on the optical bench before

worrying about the passage of the beam through the plasma. A mirror was temporarily

placed on the optical bench to intercept the scene beam’s path after P2. The path

lengths of the scene and reference beams were maintained to be approximately equal.

The temporary mirror was adjusted so that the reflected beam traces the incoming

beam’s path. Again, it was helpful to align the spots on HWP2.

12. The beams on the other end of the beam splitter must be perfectly combined. The

beams were steered to a distant screen. When perfectly aligned, the beam spots on

the screen were still overlapping. If not, the piezo mirror and/or the extra mirror

placed in the previous step were adjusted.

13. Once perfectly aligned, the circularly polarized reference beam and will be interfered

with the vertically polarized scene beam.

14. As discussed after equation (4.12), if the polarization angle of the linearly polarized

beam makes an angle of 45◦ with the geometric axis of the Wollaston prism, the output

of the two detectors will be almost equal in magnitude. To achieve this, another half

wave plate HWP3 was placed in the path of the interfering beams, with the optical

axis of the wave plate making an angle of 221
2

◦ with the vertical direction. Note that

HWP3 does not effect the circularly polarized beam.

15. The Wollaston prism was placed in the path of the interfering beams after the half

wave plate.

16. An optical post was mounted at the likely position of each detector (D1 and D2). The

mirrors M3 and M4 were adjusted so that the beams strike the center of the posts

at a height equal to the height of the detectors. The piezo mirror was vibrated at

∼ 1 Hz, and visible fringes were observed on the posts.

17. The posts were replaced by the detectors. The piezo mirror was vibrated at a frequency

of ∼ 1 kHz and the signals from the detectors were monitored on the oscilloscope.
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Figure A.5: The x − y “ellipse” from the signals of the two detectors of the homodyne

interferometer.

18. Mirrors M3 and M4 were adjusted to maximize the signal strength.

19. If needed, the overlap of the scene and reference beams was improved by finely adjust-

ing the piezo mirror and the temporary mirror. This increased the signal strengths of

the detectors.

20. If the outputs of the detectors had unequal amplitude, HWP3 was finely adjusted so

that the signal amplitudes were approximately equal.

21. On the oscilloscope, the two signals from the detectors were observed in an x − y

plot or Lissajous figure. If the signals were in quadrature then the plot resembled

a circle. The voltage setting of one of the channels was set to an extreme so that

the circle turned to an ellipse resembling figure A.5. If the major axis of the ellipse

was not entirely horizontal or vertical, the signals were not in quadrature. To achieve

quadrature, the quarter wave plate QWP was finely adjusted until the major axis of

the ellipse became horizontal or vertical.

The previous step completes the calibration of the interferometer. The next steps
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describe the process of aligning the scene beam through the vacuum chamber.

22. The temporary mirror in the path of the scene beam was removed, and the mirror

M2 at the bottom of the chamber was adjusted to steer the scene beam through the

sapphire windows.

23. The spherical mirror on top of the chamber was adjusted so that the reflected beam

traced the incoming beam’s path. It was helpful to place a temporary translucent

screen in the scene beam’s path when adjusting the spherical mirror to align the

reflected beam. When the spherical mirror was adjusted, quadrature signals were

observed on the oscilloscope.

24. If the signal observed on the oscilloscope was low in amplitude, then the interferometer

might have been operating at a minimum of the phase auto-correlation function of

the laser as discussed in section 4.3. If this is the case, increasing the path length of

the scene beam changed the signal amplitude. This could be achieved by moving the

optical table back and forth or changing the location of the spherical mirror on its

mount.

A.3 Alignment Procedure for the Heterodyne Interferome-

ter

Figure A.6 shows the arrangement of the various optical components of the heterodyne inter-

ferometer on the optical bench. The heterodyne interferometer for the Caltech spheromak

experiment was aligned by the following sequence of techniques (refer to figure 4.6):

1. The laser beam was set up to be parallel to the optical table.

2. The isolator was placed so that it intercepted the laser beam. Its position was adjusted

so that the beam came through the center of the polarizer at the end and its shape

was not distorted.

3. Half wave plate HWP1 was placed between the laser and the isolator. To align its

optical axis, it was rotated so that the output from the isolator went to a minimum.

At this point the polarization of the beam entering the isolator was orthogonal to the
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BS2
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Figure A.6: Image of the 18”× 18” optical table showing the various optical components of

the heterodyne interferometer.
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axis of the input polarizer of the isolator. To align the polarization, the axis of HWP1

was rotated by an extra 45◦.

4. The axis of half wave plate HWP2 was adjusted to vertically polarize the laser beam.

The polarization angle was checked using a Wollaston prism.

5. The mirror M0 and beam splitter BS1 were placed at their respective positions.

6. The acousto-optic modulator (AOM) was positioned so that it intercepted the refer-

ence beam. It was rotated so that maximum power was coupled into the first harmonic

or equivalently so that the first harmonic was the brightest.

7. The iris was placed so that it blocked all beams except for the first harmonic.

8. The mirrors M1, M2 and M3 and beam splitter BS2 were adjusted to steer the beam.

Mirror M3 was adjusted to steer the beam onto the center of the aperture of mirror

M4.

9. The mirrors M4 and M5 were adjusted to steer the beam through the sapphire windows

onto the spherical mirror SM. The process of steering the beam through the windows

was easier than the homodyne design due to the extra mirror beneath the chamber

(refer to figure 4.4).

10. The spherical mirror SM on top of the chamber was adjusted so that the beam fell

back on BS2 as shown in the figure 4.6.

11. Mirror M2 and beam splitter BS2 were adjusted iteratively so that the scene and

the reference beams overlapped almost perfectly. This was achieved by the technique

described in section A.1.3.

12. Mirror M6 was aligned to direct the interfering beams onto the detector. The RF

electronics were switched on, and the quadrature signals were monitored on the oscil-

loscope. M5 was adjusted to maximize the signal strength.

13. If the signal observed on the oscilloscope was low in amplitude, then the interferometer

might have been operating at a minimum of the phase auto-correlation function of

the laser as discussed in section 4.3. If so, increasing the path length of the scene
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beam changed the signal amplitude. This could be achieved by moving the optical

table back and forth or by changing the location of the spherical mirror on its mount.
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