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ABSTRACT

PART T

Tnis work s the examination of a cavity mode approach to the
mode siructure of a laser. Solutions of the vector wave equation for
electromagnetic fields in ard between perfectly conducting oblate sphe-
roidal cavities are examined for the case of wavelengths much less than
cavity dirmensions. These solutiong are the field mcdes in Fabry-Perot
type rescnators with egual-radius concave spherical mirrors, or with
concave-convex spherical mirrors, when the parameters of the oblate
spheroids are chosen sc that the radii of curvature and spacing on the
axis of rotation match those of the resonator mirrors. IExpressions for
the transverse and longitudina’l mode structures are derived. Tne
eigenvalue equetions are written, and are solved Tor the case of the

two lowest order modes.



'..J
<

PART IT

This work is the numerical calculation of the steady state
lowest order ever and odd symmetry electromagnetic field patterns at
the mirrors of the multimode resonator formed by ftwo plane-parallel
infinite strip mirrors, modified for output coupling by central strips

of zero reflectivity. The eguation solved is the scalar Huygheng-

Fresnel integral equation (a transverse electromagnetic wave approxi
mation to the vector integral equation, valid when the wavelength is
rmuch less than the cevity dimensions) relating the fields at the two
mirrors, converted to an eigenvalue equation, and approximated for
celculations by a matrix eigenvalue equation. The mode structure,
power loss and phase shift per transit, and output couoling are dis-

cussed.
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CHAPTER ONE

INTRODUCTION

1.1 Review of the Field

The development of coherent light sources nhas opened the opti-
cal regions of the electromagnetic spectrum for use in communicaticn
systems, Jjust as the radio “ransmitter made communication systems possi-
ble at the longer wavelengths. As a resuit, it is of interest to con-
sider the extension of the technigues and devices now used at radio
frequencies into the optical region.

One device cf interest is the optical resonator. It is re-
ceiving current application both as a passive filter and as the reso-
nant element in a laser oscillator or amplifier. In long-distance com-
munications the prcblem of optical beam guiding is important.

“n “his work the passive regonator Is analyzed as a boundary
value prcblem in electromagnetic theory, and additicral complex configu-
rations are treated computationally. These results have applicaticn to
the beam guid ing system also.

Schawlow and Townes (1), Prokhorov (2), and Dicke (3), having
recognized the need for low logs resonators, suggested the use ol
Tapry-Perot interferometers as multimode optical resonators. The self-
corsistent field calculations of Fox and Li (4) showed tkat this reso-
nator could support so-called "normal" modes, thaz is, modes that repro-
duced themselves tc within a constant factor when bounced from one

nirror tc the other.



The use of two confocal spherical mirrors as an interferometer
rad been previously discussed by Connes (5,6). Zox and Li (L) also
mede numerical calculaticns on this resonator and showed that its dif-
fraction loss is orders of magnitude less then that of a plare-parallel
mirrors resonator. Boyd and Gordon (7) aralytically solved the vroblem
of mode structure in this resonator, and Boyd and Kogelnik (8) extended
this analysis to non-symmetric confocal resonators. Goubau and
Scawering (9), Deschamps and Mast (75), and Tien et al. (76) have con-
sidered the optical beem transmission guide with periodic phase cor-
rection; scme of their results are applicable to laser resonators with
spherical mirrors. Numerical calculations on non-confocal resonators
were carried out by Fox ard Li (1C,11) and by Soohoo (12), uasing the
method of self-censistent field reproduction. Numerical calculations
by the kernel expansion-truncatiocn technique have been carried out by
She and Heffner (13) and by Bergstein and Schachter (14) for the plane-
parallel mirrors resonators. She and Heffner have also shown that the
results are applicable to a spherical sector rescnator. McCumber (15)
has used this technigue “o calculabe the modes cf confocal resonators,
including the effects of outpub-coupling apertures on the mirrors.

Kotik and Newstein (16) and Barone (17) have considered the
cavity mode problem by using superposition of plane wave spectra.
Vainshtelir (18) nas used the consideration of diffraction at the open
end of a waveguide to analyze the plane-parallel mirrors resonator,
and the parabolic eguation method to analyze the non-confocal spherical

mirrors resonator (19), the plane-parallel mirrors resonator and open



wavegulides wilh plane mirrors (20), and cylindrical mirrors (21).
Clark (22) has anslyzed the mode structure within multimirror cavities,
where bounces off several mirrors are required to return a beam to its
starting point.

A vhysicel system is approximated by an idealized mathematical
model for the purpose of analyzing its fundemental characteristics.
The resl system is never ideal, so that perturbations on the results of
the mathemat:cal analysis must be considered. Asmus (22) hes carried
out an analysis of the effects of imperfect figure, polish and align-
ment of the mirrors on the optical maser performance of a confocal
resorator. TFox and Li (10) have made calculations on the effects of
tiZt on plane-paraliel mirrors resonators. OCbservations of the effect
of imperfections in the coatings of multilayer dielectric filw mirrors,
a type of perturbation not so far treated, nhave been nace (see Appendix

D).

1.2 Cortent of this Paper

Boyd ard Gordon (7) anaiytically solved the problem of the
mode structure in a Fabry-Perot type resonator with Two idertical,
square cross-section spherical mirrors by the application ol the
Huyghens-Fresnel principle, relating the field at the "scurce' mirror
to the Tield at the "field point" mirror, and by requirirg that the
fields at tne two mirrors be identical within an arbitrary complex
corstant. Boyd and Kogelnik (8) applied “he same technique to reso-

nators with mirrors of different cross-sections and different radil
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of curvature. Several approximations were mede in thelr analyses:

" mirror is not a closed

the source-enclosing surface at the "source
surface, the vector integral equation is scalarized, the integratiocn
point to field point distence is approximated, and the normal derivavive
at the "source" mirror surface lg approximated. That these approxi-
mations are valid at visual and infrared wavelengths has been widely
demonstrated (2L-26).

Another aporoach to the solutior of the problem of laser mode
structure can be seen i one considers that the reflectivity of practi-
cal resonator mirrors is nearly unity, and that the field strength of
the modes described by Boyd and Gordon ard by Boyd and Kogelnik is very
small off the reflector axis for She visuael and infrared wavelengths.

It becomes clear that the mirrors can be assumed perfectly reflecting
and can be continued laterally. Thus, the laser modes should be de-
rivable from the mcdes of a totally enclosed cavity with perfectly
conducting boundary walls having the shape of the rescrator mirrors
near the axig, as long as the mode field strength is small everywhere
off the axis. It is natural, then, to consider an oblate svheroidal
cavity. By suitable choice of the paremeters defining an oblate sphe-
roid, the portions of its surface near the axis of rotavion will ap-
proximate “The curvature ard match the spacing of any set of equal-radius
mirrors spaced closer than concentrically. A focusing convex-concave
mirrors regonator system can be matched with the cavity between two
confocal spheroids. (Though the plane-varallel mirror configuration

and tne concentrically spaced spherical mirror configuration are



Zimiting cases of the oblate spheroidal coordinate system, tﬁe require-
ment ol small field strength off the axis is no’ met; end this approach
is not useful for these cases.)

The vector wave egquation 1s not generally separable in the
spheroidal coordinate systems; boundary conditions are not egsily
matched (27,28). It is separable when the fields are restricted to
rotgtional symmetry, so that rotational modes car be treated exactly.
However, the Torms of the general solutions of the vector wave equation
are such that the boundary conditions can be approximately matched wnen
the wavelength is small compared to the cavity dimensions.

The outline of this approach to the analysis of laser reso-
nator modes has veen given by Zimmerer (29). The detailed analysis
consists of matching the spheroid(s) to the laser configuration, taking
the solutions of the wvector wave squation in oblate spheroidal co-
ordinates, applying the perfectly conducting oblate spheroidal boundary
conditions, and examining the solutions for their form in the case of
wavelengths small compared to the cavity dimensions.

Vainshtein (20) has considered the laser resonator problem in
oblate sphercidal coordinates from the approach of the parsbolic
equation method. His results are [ound more generally here. TIto (30)
nas also considered the laser resonator problem in oblate spheroidal

coordinates.
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CEAPTER TWO

CBLATE SPHEROIDAL COORDINATE SYSTEM

The oblate spheroidal coordinate system (see Figure 1) is a
degenerate form of the generalized confocal ellipsoidal coordinate
systems, in which the x and y axes intersect a given ellipsoid at
equal distances [from the origin and the 2z axls intersection is
cloger to the origin than the others. It can be generated by the ro-
tation of a two-dimensional elliptical coordinate system abcuf its
minor axis. It is an orthogonal coordinate system related to <The

Cartesian coordinate system oy the equations

-
o

X =3 d[(; - ng) (52 + 1)1 cos ©

2 e =
y=2d@-1) (F+ 1] siny 2=

7z =% d TF

where the notation is that of Flammer (31), used throughout this paper.
The coordinates x, y, and z are invarient under any change cf signs
of T and £ such that the product TE does not change sign. The

ccordinate ranges most useful to the present problem are

-1 < T\ < <+
0 <E<w 2.2
Osop=s2n ,



Figure 1. Oblate spheroidal coordinate systen.



since She spheroidal surfaces sre then given oy the single value £ .
These coordinate ranges are shown 1n Figure 1.

Surfrces of constant M are hypervoloids of revoluticn of one
sheet, surfaces of constant £ are spheroids, and surfaces of constant

¢ are planes. The unit vectors e e. Gm form a right hand triple.

The length of the infinitesimal vector ds 1ig given by

2 L2 2 , 2 .
ds” = h an- + h. " dg + L 7 do 2.3

>

where the scale fectors L are given by

L

- )
ny=%q (£2 + P/ - )
1

. ~ -~ -§

he =3 d (57 4 /(7 1) 2.l

1
2



CHAPTER THREE

CONNECTION BETWEEN LASER PARAMETERS

AND EQUIVALENT SPHEROID PARAMETERS

3.1 Single Spheroidal Surface

Figure 2 defines the parameters §O and d of an oblate
spheroid and the parameters a, b, and a of its generating ellipse.

The two equations connecting these varameters are, fror the propersies
& = S A

of an ellipse,

PO

o
i
o
+
=it
0

.

A
!,_._l
-

and, (rom Eq. (1),

1.2

(W8]

b = % d §o .

The radius of curvature of the ellipse at (r, z) = (0, b) (see Figure

2) is given by

2 2 I
R=a"/b==%d(e "+ 1)/, . 3.1.3

Thus tne specification of the equal radii of curvature R of
the laser mirrors end the separation 2b of the mirrors defines the
parameters £_. and d of the spheroid which matches the laser con-

)

figuration. Confocal mirror spacing is given by 2b = R, yielding

d=X% and &_ =1 for the equivalent spheroid.



11

Figure 2. Parameters of un oblatc spheroid, and the spiorica
surface mubchine its radius of curvatire on the

>

rovational axis.
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3.2 Two Confocal Spheroldal Surfaces

In the case of a convex-corcave mirrors system, the parameters

of the equivalent palr of coanfocal spheroids are giver by (see Figure

3)
! (]

=a /b, =3 d(E," + 1)/2
Rl 1 /b.L 2 (Jl ) al
R = e /b =%ale 4 1)
5 == 0,12 /P = 7T ( k,:,g L g? Delieo

o & g

b2 - b]_ = 2 d(*g - gl) 2

where b, - b. 18 the mirror separation.

3.3 Criteria for Matching Laser to Spheroid

Tae deviation of the spheroidal surface from the mirror
surface mast be sma’l compared “o a wavelength in the region of sig-

nificant field strength. Thus (see Figure 2)
. . 2 Z - 5
A=TR=-o0=(1-"bp/a") (a"/b) << 3.3.1

places a limit on the laser beam width at the mirror. The equation of

the ellipse,

(r/a)g + (z/b)z

U
-
(&
(O]

with the expression for op ,

2 2 - N2

r“+ [z + (R

©
i}
i
o}
g
f—
N
.
w
.
o
.
)

yields



Figure 3. Parameters of a double spheroidal surface cavity,
and the radii of curvature of the matching spherical

surfaces on the rotational axis.
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2 z 2 21"

s} o) o) - ~ R

2 >, .2 i4 p 2 z r a - b .-
p-=1r T Db L -—=* 2(a” - %) 11 - = + T . 3.3.4

a a ’

. 2 2 . .. .
Since 1 < a s clearly required, the square rcot can be expanded.
Collecting terms gives

=
~ ~ L ’ 2
.= fad T . @]
bp _ 1.2 1 b ljtr Llr o o e
2 SR ] U S-S » 34340
a : a a a
™1 > 2 T ) r £ > ol ] /2
For a typical laser, & >> bi . Then, from Egq. 3.3.1, bp/a must be
. , . 2,2 . oy
close to one; and the Terms in r /a in Eg. 3.3.5 must be small com-
parec <o one. Expansion and insertior into Eg. 3.3.1 vields
2 2 2 L 6
a |1 b 1 b \ L lr + 1 2.3.6
—— = Lo = T « e e < . 59D
by |2 2 2(\ k"85 3
a a a a

. 2 2 . i} , . 2,2 o

2 "~ << 22", then all but the ilowest order term in r /a may be
dropped, yielding, in terms of the parameters of ooth the ellipse anc
the spheroid,

2\ b4 g i
1 b 1. b T =0 T e 3.3.7
— e — = ~ L . e .

-g A 2 L z \3 .3

a™ o (B, F 17 an

o
A typical laser is the one meter spacing, one meter radius
. el
conTocal mirrors laser. If a wavelength of ©2m x lO—( meters,(in the

vigible) is assumed, the parameters [or this

configuration are



P

{
Wi

5

=

i
wl-
=

[9a1)
f—
i1
-
b

E = 1m

=
il
N
2
b
=
]

where c¢ will be defined later. With these numbers, the Zert hand

)

Ny N o e -2 . , S .
side of Bg. 3.3.7 is less than 10 if v ig less than 2.9 centi-
. - - 1 2 ! 2 - —ll'
meters. This value of r yields & value for B r /a of 2.25 x 10 ,
verifying the approximation made in deriving Eq. 3.3.7. Thus a sphe-
roidal surface is an excellent approximation to a laser mirror for

usual laser beam widths.

3.4 Comparison with Previously Derived Criteris

The analysis of Boyd and Gordon (7) irvolves the use of thre
conditions (given here in theixr notation) on the physical system pa-

rameters: <rom the argumert of the exponential factor,

2 o2 )
% . 2,2 . -
& /bh << L v5/a" 3.l

from the 1/r factor,



2,2 1
a / h << n‘ 5

N . 1
and from !Lk‘ >> =,

A << 21 .

These conditions are paraller to The cordit

N

(S

3.4.3

ions derived in this secticn

for iO = 1 (given in the notation of thig vaper, but written so that
there is a one %o one correspondence between quantities in the ex-
vressions),

2 _ N2, 2 -

r“/(2p) n << 8 (2v)7 /2" 3.4
and

2 2 . .

r7/(on)T << 1 . 3.k.5
For *the case of light wavelengths much less than cavity dimensions, ¢
Zs much greater than one: yielding

A/ (2b) < w . 3.4.6

Thus the same reguirements on the physical

gimilar conditions on the system parameters.
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CHAPTER FOUR

WAVE EQUATTION AND BOUNDARY CONDITIONS

Assumpticn of the Zorms

il

B(m,t) = B(r) "

L.

T(T,t) = A(r) oo

“or the electromsgnetic field vectors in a source-free, non-conducting

scalar medium reduces Maxwell's equations to (see Appendix A)

- e oo
v xv x B(r) - kW E(r) =0
.o
T x 7 x B(T) - ¥° A(F) = 0
or, equivalently,
2 = 2
7° E(r) + ¥ E(r) = 0
b3
o R o -
9 H{r) + k¥~ E(r) = 0
2 o
where k7 = @ ne . The boundary conditions are
nxh=20
Ly
n+*H=0

on the cavity boundary surfaces, where n is the unit vector normal

to the boundary surface: for the spheroical cavities of interest,

n = e. . The single surface cavity will be specified by & = ic

Al



the double

ith E. <
with 3

surface

-
jod .
50
<

cavity will be
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CHAPTER IIVE

ASYMPTOTIC T'ORM OF SCALAR WAVE FUNCTTION

5.1 Solutions of Scalar Wave Egquation

The sclusions of the vector wave equation are given in terms
of the solutiorns ¥ of the scalar wave equation (see Appendix C,

Eq. C.5 and C.6)

-
2 L2 :
Y ’,‘J‘ T r oy =0 . Hez.l
The solutions of this equatiorn in svheroidal coordinates have oveen
given in severzl notati.ns (31-37). In this paper the forms of the
solutions and “heir rotations are those of Flammer {31).
A general sclution ¥ suitable for use in the cevity con-

figurations of interest can be written as a linear combination of the

functions (see Apperdix C, Eg. C.9 and €.10)

i . - . i .. .
weég)(-ac,ﬂ,Je) =5 (-je,m) Rén)(—gcjai) cos mep 5.1.2

N A . - . : .
and Uoéq>(—gc,ﬂ,lg) , the same except for sin my vice cos mp ,

waere Swr(_jc’ﬂ) is the angular function finite at 2z =+ 1, and
L

] (
R(i)(—jc,ji) and Rﬁi>(—jc,j§) are the standing wave forms of the

: RQQ)

i

radial furction. The function must be excluded, for reasons
of continuity of ¢ and its normal derivative, when the surface
F = 0 ig included in the cavity. The indices m and n are zZero or

P . . - . 1 B s s
positive integers, with n =z m . The number ¢ = % kd 1Is a dlmengion-

less paremeter of Bg. 5.1.1 in its explicit form [or spheroidal
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coordirates. Since ¢ >> 1 1is valld for usual lasers, the forms of

The functions useful for large ¢ are of particular interest.

o

5.2 Asymptotic Form of Oblate Spheroidal Angular Wave Function

Tlammer (31) gives the asymptotic form of *he cblate sphe-
roidal angular function:

- o (1 7F
(+ l)n m c%m(l _ ﬂﬁ)gm o c(1Fm)

S (-je,Mat 1)~ L,"[2¢(1 F 1))

mwr

the assoclated Laguerre polynomial of the first

W

_ M N .
where L (x) i

kind (38-40), and

v=2%(c-m , (n - m) even
5.2.2
=% (n-m-1) , (n - m) cad .
Using the scale factor h,  and defining the quantity

r = & d(ia + .l):?f gives

i 5.2.3

r ome

N=+"'1-(x/r )" ,

where » 1is the cylirdrical radius to a point (7,€) . For the laser

configuration described by the numbers of Eq. 3.3.8, r has a ninimun
c

vaiue of 0.5 meter. BSince the restriction has been made that the sig-

-

nificant fileld strength is contained within r = 0.015 meter, 1t is
> ) J
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.
! 2 “ . - .
clear that (r/ro) << 1, permitting the expansion of the square root

in Eg. 5.2.3. Using the plus sign, for T =~ 1 , yields, to [irst

. . L N2
order in (r/roj 5

1

2
/ 2

1 -Mal- by - % (r/ro) 1 ~

ol

o
- “ C 1
(x/ro) . 5.2.4

Thus the angular function can be written in terms of r and £ in the
form
):1 -1

I e—%j m(

|
N
\A

s (-je,Ma+ 1)~(z1 oy e

mr.

o L
v

, 2 s . . ;
where «o = c(r/ro) . This function nhas even ard odd symmetry about

€ = 0 with (n - m) even and odd, for the same value of v .

5.3 Asymptotic Torm o7 Oblate Sphercidal Radial Wave Function

An exact form of the oblate spheroidal radial function useful

for large ¢ is given by Flammer (31):
2 ]

1 s 1 e * .
R(L), jR(2> _ (e2 4 1 (n-m+1) s g M
mn mit Ay S

vt+s T

-Jje - : . -mtl  Jcg .
{ e Jeg Um 2c{l + jE)] % (-—l)n " eJ( - UI\];JN;[QC(:L - Jg ﬂ}
5.3.1

e 0 . e . o s
where Ur (x) is the associated Laguerre polynomial of the sccend kind

(38) and Acmn is given by



fatl
< !
mn mn s -k
= Y o« . P
AT = Al Loa (m,n) « . 5.3.2
k:‘s
Flarmer has tables of ayg(m,n) , polynomials in m anc n , ZJor
. S , _m
sl = 1,2,3,4. The asymptotic development for R (x) when
x| > 1 1is (38)
m -1 xi{ntE)xn ~(n+n+l) x )
U, ()~ " e ) (m+ n)! x ( e, 5.3.3
where the upper sign is used when O arg x < x , and the lower sign

mrn

is wsed when -w < arg x < 0 . Inserving A arc US+« into Eq.
[l Pl
5.3.1 yields, after some manipulation,
[os] Q0
(1),(2) - (v + g + m)! cos - S, -(k+g+1)
R DR s(vtstl) ) sin ° “ %k (m,n) ¢ ’
S=aV 2”(5} + :y)z - m li:‘s‘
53t
where
it . -1 -
B = cE + (2v + 25 + m-—n)éw-ﬁn+~v ~s+1)Tan € . 5.3.5
The dominant terms “n this dovble sum are those of lowest k + s .
These are the v + terms for which k= -s=v , v -1, . . .,1,0.
Dropping nigher order Terms yilelds
(1),(2) -1 Jos 2 =5(v-stl) [cos 4, -8
R ~c T 27(v - s +m)! (g 1) ° e a T(m,n) ,
mn S B sin S



where 6'(s) = 8(-s) . These functions are valid for large valies of
¢ and &ll values of £ . In the limit of large values ¢’ & , the sun
ig dominated by the term 5 = v , yielding the rormalization satisfied

H

by the exact

I

dial functions:

1 -1 r i o
Rén)»v const (c§) "~ cos . cE - (n + 1) gg 5.3.7
[»]
and gimilarly with sin [} for R(L) .



6.1 General Solutions

CHAPTER S5iX

VECTOR WAVE FUNCTION SOLUTION

Soleroidal

v x (v x &) -

can be written in

A =7 ¢ x a
1
— iy
A=k
fad

waere a 18 a

gscalar wave functions of

T the electromagnetic field vectors are derived from Eﬁ

vy the equations

solutions

2 — ~
kWA= 0

E. = -joA
LT T
E =p~9x &
1 b
ené. o = o is chosen,

mn ﬂ) S5
) )x(i)
Ukﬁﬂ )ﬂ: g,0

and similarly for e —

i

the “orms (see

e]

then =

7 x (V x & o)

5.1.2.

and

—jw(Meﬁ(i))

kL

J

oo T,

-1 (Nex(i))

mr

where the

Appendix B)

£,0

Ty €50

functions

constant vector or the radius vector ard

I are given by

on the

of the vector wave equatiocn

£.1.2

v,0 are the

6.1.53

right hand side
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are straightforward but lengthy expressions celculated from Eg. 6.1.2

ey

ané tapulated by Flammer (31), involving 8 o le, their first and
7o ¥
gsecond derivatives, and trigonometric fuactions of mp . Examination

of these functions shows, as 1s well known, that they will not permit

the boundary corditions to be exactly matchec.

6.2 Asympzotic Form of Solutions

For the sphercidal cavities of interest, however, with large

values of ¢ and M=+ 1 , use can be made of

l—ﬂ2=(l+ﬂ) (L-m~21Fm)
SR S 6.2.1

'
i

U D S L R R X

“o reduce the Tunctions To the terms of highest order in ¢ , giving

(the indices of Eq. 6.1.14 are omitted for clarity)

B = jc Smr(_ 1)t R(J) sin © cos mp

1
p ST2@F O L) TS o gip e
LE ~ -1 =% R LT Sy L @ cos mp
g+ 1
+ D5 cos ¢ sin mpl
mmn\,o\pu-;pj
N E)
By -de S~ =) R,  cos ¢ cos my



\
€3 (i
Hﬂ ORI (E) “n %n> COS & COS M

- \i (j) _@__ s} - Islors
L) Rmn [dﬂ S, ©os ® 208 my

n ) . §
- m sin ¢ sSin o !
[a8 l / -

o

: 3 (1) o o
H a-c <H> S,y B SIT ® cos o .

I

6.0.°

C

6.3 Nature of Solutions

Eo and Ho are given by the same expressions with cos mp -
sin mp and sin mp —» -cos mp . E has only ¥ and/or z comporents;
and, since the £ components of E and H are smaller by a factor of

-1

C from the others and the 1 &nd © components are suitably re-

lated, it is cleer that this mcde is avproximately & plare wave, with

E~e E and Ha~e H . A choice of a=-¢e gives B~ e E and
vy X X v x X
Hx~e H; a=e or r gives E=xe E .
y oy z ®

The approximately transverse modes of Eq. 6.2.2 ané 6.2.3 are
characterized by linear polarization, m nodal lines in the ¢ 4i-
rection, and v nodal lines in the r directicn. Even and odd
(n - m) for the same Vv gives the modes even or odd symmetry about
£ = 0 ., These modes have beer photographed by Rigrod (k1l). The circu-

lar mirrors secvion of Figure 18 of Fox and Li (4) illustrate additioral
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modes of By. 6.2.2 and 6.2.3.

7 the electromagnetic field vectcors are derived from AP P

the results are simply related to the fields we have already found:

1
E, - -aof, - goi Tt T xR - (/)
I Lo 7 G B 3o
H2 = M JoX A2 = (KM) 7 X (\‘7 % Al) = Xy Al _ L‘}({-‘,/h) ‘Jl

6.L Matcrhing Boundary Corditions

The approximate electromagnevic field vectors giver by Eq.
6.2.2, 6.2.3 and 6.3.1 are suited to matcning the boundary conditions

the field vectors derived Zrom A, ,

in The cavities of interest. Fc 1

"

within tke single surface cavity,

REDRINEY
mmn mn

6.4h.1

2

(_ l}l R(J) — "R<C->
mr mn

and the boundary conditions are satisfied 1f ¢ takes c¢n any of the

values Cmnq , ¢ = 1,2, . . ., ®, sabtislying

(2) . .
‘ - e s ) = 0 . T
le’l ( J k’mnq , JE ) ( 6.h2

Within the double surface cavity,
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)

N

(1) (1), .. . (L), .. . (@) .. .oy of o ap
Rmn _Rmn (—tj(”) e,]bl) Rmn ("(](’) LJE,) '_:Rmn (_J“} J%) Rm (_UQ’J J\l/

-~

[

i) vy, . . 2y, . . (L) ey (@i ey
(- 1) R =R (e, gRy) BRo(-de, §E) <R (-des 3E) RYA(-ge, 08

64,03

and ¢ is determined by

(1), . ) (2), . i (1), . . (2), . X
e F _dn g - Ao 5 -ja JE_)=C
R S ) RN J»mnq:<J¥Q R 302 2 R, (-] mnq;J«ﬂ )

For the field vectors derivec from A_ , witkin the single surface
[a

cavity, Eg. 6.4.1 holds, ard c¢ is given by

-je_ jgo) =0 . 6.4.5

Within the double surface cavity,

1y, . . 2), .. (1), . i (2), . .
-jes JE ) Rén)<—ac, J%) *Rén>(-JC; JE) R (-je, J8,)

i i) 1), . . 1), . o 2), .. 2), . .
(- 1) Réi’ - Rin)<-aﬁ; Jg,) Rén>(—ac, Ja)*‘Rén)(~Jc,J§) Rén)(—ao, JE-)

and ¢ is determined by Eq. 6.k4.4.



CHAPTER SEVEN

ROTATIONALLY SYMMETRIC SOLUTIONS

7.2 Form of Solutions

Tt is well known (L42-50) that boundary conditions can be
matched exactly on a sphercoid by restricting the fields to rotational

symmetry: either a transverse electric wvector (TE) set with

5]
i

= E@ Em(ﬂ,g) , or a transverse magnetic vector (TM) set with

H = E@ Hm(ﬂ,i) . Upon writing &(M,8) for the © component of either
S€3, redﬁcing the vector wave equation o a scalar equetion for this
component, and comparing this equation with the scalar wave equation
(see Appendix C), it becomes clear that & can be written as z linear

superpcsition cf the components of the orthogonal set @n , complete

only for rotationally symmetric functions, given by

/s .
A : H ~ . 1
q)\l)('ch n, JE) = bln(‘Jc’ ) R(n)(

-je, JE)} . 7.1.1
n eJC} J?/ (

The other components cof the electromagnetic field vectors are given by

-1 7
q o= -(ja)uhghm) + ' o(h

L (e -1 /
ﬂg = quk-ﬂhq)) | 5(}%{%)/%1
7.1.2
E = (josh.h )7t !—B(h H ) /3¢ |
i St LTt
— (wsen )L 3. |
Ei = -(Jwehnnm) ra(h@ﬁm)/oﬂ;
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7.2 Matcking Bouncary Conditions

The TE set will satisly the boundary conditions within a
single surface cavivy il the radial part of E nas the form
) P
(1)

Rln

(-je, j8) and ¢ takes on any of the values ¢ . satisfying the
ng i

equation

no
i

—,jC b4 JEO> = 0 . 7‘

Within a double surface cavity the racial part has the form

) oo 2l s s ) ) . s
R§n>(—JC; 3g,) Rgn (~je, J8) ~R§n)(-JC; Jg) R§n>(—30; Sy

)

and ¢ is gilvern by

(1), .. e (2), .. e (L), .. . (), ..
Ry (-je ) JE1) Ry (‘Jvﬁq: Ey) Ry (-de g J€5) Ry (-dc

-
()
FAL)
]
~—
1

T.2.2
The T™ set will satisf{y the boundary conditions within the

gsingle surface cavisy if the radial part of H&\ has the form

R(l>(

-je, Z€) ard ¢ ‘s given by
in

-]
N
[E8)

7o 2 -

which becomes

u%
O

N

(It

I\ Y

+

!,..‘
~—
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Within the doutle surface

cavity the radial part has the form

2) _(2
A<l) R§l>(—j:, 3€) —A(") Rgn)(—jc, J€) where, from consideration of
Eq. 7.2.3 and 7.2.4,
(0, .. . - 2 -5 (2), . e (g 2. 14\B (2)y .0
A (-je, ng) = bl(gl +1) Rll’l (-3 Jle/"P (3l + l)—Ti(Rl1 ) 1;;%:%1
7.2.5
and similarly for () - (2), (2) - () The values of LS

deternined from the eguation

(1) - (2) ; 4(2) iz
A (-tJ “rlq} J"Dl> A (_ quJ J%g) ( JC q c l)
7.2 Neture of Solutions

A single mode of oscillaticn is

ties n aad g . The quantily (n - 1)

radial direction and q

£ direction. For the single surface cavity, n

by the requirement of a conztinuous Tield gradient
£ = 0 . The frequency of oscillation for a given
5 q y g
-1 -z
w=2cd ~ (pne) ®
The surface cavity,

TE mode in a single
ng

» JE)

\,nq

is the number of

‘g associated with the number of

Tor example,

¢ 385) = 0

gspecified by the two quanti-

nodes in thke

nodes in the
are coupled
about the surface

mode ig given by

is given by

9¥ng* 7.3,



where is given by By. 7.2.1, o by Eq. 7.3.1, and the magnetic

“ng : ng
vector by Eg. 7.1.2.

The expressions written in this section are exact. If the
forms of these expressiorns for large ¢ are considered, thern Eqg.

7.2.1, 7.2.2, 7.2.4 and 7.2.6 vecome identical to Eq. 6.4.5, 6.4.4,

6.4.2, and 6.4.4,



CHAPTER EIGHT

BIGENVALUE DETERMINATION FOR SIMPLE MODES

When v = Q0 , the expressions {or the radial functions in

Ec. 5.3.4 reduce to a single terrm,

j)

('1) 100 i
\ N & - ’2 \e
RoZo = < (g + 1) o emn 8.1

and cceg — sian for (1) - (2) , where

8 (B)=¢cE ~Fn{n-m) - (m+ 1) Tan ~ & . 8.2

The eigenvalue ecuations, (a) Eq. 6.4.5, for the A, or TE modesg in

<
the single surface cavity, (b) Eg. 6.4.2, for the A, or TM modes in

the single surflece cavity, and (c¢) Eq. 6.4.i, for the Al or Ay,
.l [

o

TE or T™ modeg in the double surface cavity, then become

(a) cos emnq (io) =0
(») sin emnq (ﬁo) = 0 8.3
(e) Sin{@mnq (52) B emnq <S;>? =C
which are satisfied by setting
(2) 8, () = (2 - B
(6) 8 (Bp) = an 8.4

?) - emnq (§l> =



3

where q = 1,2, « .+ . , @, yielding

yielding

P - — 1 ~ - _ A T '—l
(a) g 9 gn (g +n-m-1)+ (m+ 1) Tan €
; - - =L
(0) ®ing 50 © trx(2g+n-m)+ (m+ 1) Tan Z,
N ) _ -1 =L
(L) (*‘mnq- <§2 - El) = Qx + (m + l)(Td‘n F:'r('_) - lan Ex]_)
8.5
The number of half cavity wavelengths Nmnq is given by
. N = rB - 0 1
(a), (o) =N =28 o (2) = 8, 0q (O
8.6
. = F - s
(c) TtNmnq emnq (”2) 9mnq (”l ?
fs = 2 -+ -~ -
(a) Nmnq g+n-m-1
. _ 2 + - 8.r~;
(v) Nmnq g+n-m {
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CEAPTER NINE

DISCUSSION CF RESULTS

9.1 General

The approach to the laser mode problem teken ir this paper
differs from the more “amiliar spproaches (4,7-12,15-23,51) in that in
this paper the resonator has been assumed to ove a perfect cavity, per-
mitting a vector solution fcr the electromagnetic fields, rather than
retaining a more realistic regonator configuration, and finding a
scalar solution for the fields.

The two approaches complement one another. For example, the
vector solution shows that the magnitude of the longitudinal fleld
component is c~l smaller than The magritudes of the transverse com-
ponents, indicating thet the scalar soiuvtion is good tc within c_l s
a very good accuracy. The perfectly cornducting closed surface boundary
and lossless dielectric form a lossless cavity, and so diffraction loss
consideraticr. ig not possible. The low-loss configurations of Yariv
and Gordon (52) are reproduced in vart by the oblate spheroidal cavi-
ties considered. It becomes clear that, as stated by Zimmerer (29),
surfaces of constant phase are oblate spheroids and that the lines of
propagation lie along hyperboloids, agreeing, within the region of
approximation of spherical surfaces by spheroids, with the analytical
results of Boyd and Gordon (7) and the numerical results of Fox end Li

(1).

oy ~m
| s & . v .
The factor exp (-% cr /TO ) clarifies zhe assumpticns on
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which the anslysis of <his paper is vased. The requirement that the

field strergsh be small at the edge cf the mirror yields

>

A
N

ca ,/2ro‘ > 1 9.1.1

where a ig the radius of the mirror. This can be written in terms
of a mixture of the spheroidel parameters d and g, and the laser
(v

parameters d' , the mirror separation, and R , the mirror redias:

Bbln  a biw o oa d I
=2 s>, Z .l.c
L sg2ea il L - 9.1.2
0

which requires tha® the half cone angle stbtended at one mirror center
by the otfher, multiplied by a geometrical configuration ratio d/R
meastring the degree of closeness to confocal configuration, must be
much greater than the helf core angle subtended by the Airy disk of
the diffraction of a plane wave from a circular aperture of the same
ares as the mirror. As the configuration approaches spherical spacing,
d' approaches 2R and d approaches zero. As the configuration
approaches plane-parsllel spacing, d approaches infinity and EO
approaches zero. Trus the analysis is not valid for these limiting

ceses.

9.2 Correlation with Confocal Resonator Analysis

Boyd ard Gordon (7) give an expression for the linearly
polarized traveling wave Tield Ir e confocal resonator which is valid

. 2 . : - . .
when the mirror area lLa is rnuch larger than Ypbh , wnere b is
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the mirror separation. Irom it the linearly polarized starding wave

field can be determined to be

T—ﬂ {(L+ =+ n) Tan~ EW

o
O
w
-1
ol
o,
o
S l
~~
—
_|_
=
™
no
o

9.2.1

for the mode even about =z = 0, and cos = gin f(or the mcde odd

about z = 0, where

5 = 2 (1L+E)7F
i
X = x (k/b)®
1
Y o= y (k/b)" 9.2.2
2 2. 2

2z/b

a1
i

and Hm(x) is the Hermite polynomial (38,39).
It can be shown that the oblate spheroidal surface defined by

1

the parameters d =D and z_ (see Tig. #4) g given by

o oo o :
(Z/ZO)L =1 - (2w/e)"/i1 + (EZO/d)LW 9.2.3

. P . - - - / -
and 1s alsc defined by the spheroidal parameters d and £ = EZO/d

. ;N2 .
Since (2w/c)” << X, Eq. 9.2.3 beconmes



Figure 4. Surface of constant phase (dotted line) in a conrocal

mirrors laser.




o
2 2 - (QZO/d) (wg/d)/il + (QZO/d)CW s 9.2.4

which ig the expression [ound by Boya and Gordon (7) for the surface of

constant phase intersccting the axis at Z, - It car be written

it

2,2y 2
~ E ;r:L - (ewt/a") /(1 + g‘ﬂ . 9.2.5

The approximation £ =~ § lelds
3 ™

-
:L+§L,A\:l+§2

9.2.6
Tan ™ E~Tan ™ £
— o] =, D
and the spproximation € ~ € ?l + (2u"/a%) /(1 + EL)W yields
o - __.;:
Eﬁgb + (v /o) (1L + E7) Bl 3 0E . 9.2.7
1
. ) s - o 1. . . 1 28
With these approximations, the guantities ¢ = gkd and roz-gd(l+'§ )

the field is given oy

/ > " -2
© exp r(— c/2) (r/ro)?l cos Pci - (1L +m+ n) Tan ~ g

for the even mode, and cos - sin for the odd mode. The eigenvalue
equation “ound by Boyd and Gordon (7) becomes, when written ir. terms of

¢ and N,



¢c =T (2N + m +n+ 1) . 9.2.9

The two lowest order Hermite polynomials are given by (H0)

Ho(x) =1
9.2.10
Hl(x) = 2x
Thus tke B = Ey ElO node 1s given by

- - o r o -
E = ey(cx/ro“) exp [(—c/Q)(r/rm)aw cos (% 7 (N + 1) £ -2 Tan + §1

9.2.11

for the mode even about € = 0, and cos - si for tae oad mode.
This mode is derivable from m= 1, n= 1 or 2 (for even and odd
symmetry about € = 0) modes of Eq. 6.2.2 and €.2.3 by the use of the

e [orm oi mx

v dependence, insertion of the asymptotic forms of the

spheroidal functions of Egs. 5.2.5 and 8.1,

1 3 -
e - SIS & A &
S:_I'l(\):-o) ~ (i _L) (04 e LO (Oé)

3 iy -
R(l’ _6) ™ (cro) ~ cos (cg - % n{n - 1) -2 Tan . gl s

1n{v=C
9.2.12
_ Y- L
where O = c(r/ro) , use of (39)
m : -
L, (x) =1, 9.2.13
the elgenvalue equation, Eg. 8.4b for €. = 1 written in terms of N

°0



by the use of Eg. 8.7v

) 1
c =z (N +1 2.1k
N;m:}_ 2 ( ) s 9 2.1
and
e, ~ - e, 8ln O+ epcos @ . 9.2.15

Similarly, & superpositiorn of Boyd and Gordon (7) modes

_4- = - O 1 -+ E ! 216
b X Tol v LLO 9.2.16
can be written
- 1
E = ED rta e cos (% x (N+1)E -2 Tar™" ﬂ 9.2.17

for the mode ever zbout & = 0 , and cos = sin fcr the odd mode.

This 1s the rotational TE mode for n = 1, Zor the even mode; n =

n

for the odd mode.

9.3 Correlation with Periodic Beam Phase Correction Analysis

The work of Goubau and Schwering (9) on periodically phase-
corrected beams ig, as has been recognized by others (8,52) applicable
to laser cavity mode studies. Their analysis leads to hybrid waves
which can be combined to form linearly volarized stancing waves in

the form



1
| —-(m-l—]) m "
. a2 - 4 \ Lo
E bie Z) = u ol L o) ex -50)
mn(’y’) I‘.(/ P(’/")
9.3.1
. r I L s o) N ™ “'l —l
cog lkz + 33 - (2n + m + 1) Tan ~ v cos mp
“ B
and similarly with cos [ ] cos mo =~ cos [ ] sinmp , sin [ ] cos mp
or sin | | sin mp , where
-
. 2. 2
& = a7/(L+v")
o ok
[ <o [}
u = Yc(x + y ) 9.3.2
2
v o= T oz/k
7o
z 2
and Yo is an arbitrary constant satisfying Yo << k= . By makxing
/l—.
“he same substituiion, € = 2 z/d , Y, is Tound to be v _ = k/c?

so that “he inequality becomes ¢ >> 1 , the same as that ol the
present analysis. The arbitrary constant LR is defined in terms of
the oblate spheroidal parameter d . The approximation of Egs. 9.2.6

and 9.2.7 inserted into Eq. 9.3.1 yileld

=L . %ml m o2
Emn<r:i> = Io ((‘Oc) Ln (q) @

* cos rcg - (en+m+ 1) fan~t gw cos mep
. 4

and permutation cf the trigonometric Zfunctions. This expression 1s

closely related to the expressions found in this paper.



9.4 Correlation with Parebolic Equation Method Aralysis

. .
Vainshtein (20) has used the parakbolic equation methoa to
analyze the spherical mirrors resonator. The electromagnetic “ield

vectors are written as

=1
it
I
4
5
N
]
b
o=

9.4.1
H=v7 x A .

If A 1is an exacl solution of the vector wave equaticn, then E can

be written
E- ok (FF R+ KR . 9.2

If E is taken to have only an T or £ component, and this com-
porent is taken to be ¢ , 4 golution of the scalar wave equation,
ther “he T and £ components of E given oy Eq. 9.4.1 and 9.L.2
foapa - - -1 , . . .
differ oy terms of order ¢ . The scalar wave equation is reduced,
by neglecting terms of order ¢ > Tto a parabolic equation, which
can be trarsformed into the Schrodinger temporal equation for an iso-
tropic two-dimensicnal harmenic oscillator. Conversely, setting the

two T or comperents of B from Bg. 9.54.1 and 9.14.2 equal yields

[7A11

an equation for the T or £ component of A . By assuming that the
coordinate system 1s roughly Cartesian, equations differing from the

sca_ar wave equation are obtalined. 3By reduction through dropping terms

of crder ¢ © , 1t reduces tc the previously fourd equation for the

scalar wave function. This method seems _esgs straightforward and less

renera’l than the approach taken in the present work.
> £
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CHAPTER TEN

INTRODUCTION

10.1 Review of the Field

Numerical Calculations

The first numerical calculations cn laser modes were carried
out by Fox and Li (4) in their study of the possibility of a self-
reproducing mode structure within a Fabry-Perot interferometer, when
used as a low loss multimcde optical cavity. The method of analysis
was to consider the waves bouncing back axd forth between the perfectly
conductirg mirrors as equivalent tc a beam passing through apertures
the shape of the mirrors in a periodic sequence of perfectly absorbing
gereens. By exciting the apertures system with an arbitrary beam and
by letting the beam transit enough of the beam guide so that the
higher loss modes c¢ie out, the lowest loss mode or modes would be lelT.

The analysis involves the scalarization of the Huyghens-
Fresnel integral relating the fleld outside a closed surface to the
velues of the field and its normal derivative on the surface, which can
be approximately done in the case of approximately transverse electro-
megnetic waves, when the wavelength of light is much less than the
cavity dimensions. With this integrel the traveling-wave fleld ar-
riving at one mirror is related tc the fleld leaving the other.

Since the field coordinates are infinite-dimensional variables,
the complex fieid amplitudes are continuous functions. Solutions of

the integral equations uging continuous functions are or were not



known, sc numerical Technlgues were necessary. he continucus
functions were approximated by finite-dimensional vectors and the
kernel of the integral equation by a mefrix. Thus the integral
equation relating continuous functions iz converted to a matrix vector
product eguation. Succesgive multiplicaticns of the initial vector by
the matrix then would generate vectors in the space of the _argest
amplitude eigenvalue or eigenvalues.

Their resulis shcwed that there are in fact self-reproducing
modes in this type of cavity, characterized by a definite mode
structure, diffraction loss per transit, and phase shift per transit
(the vhase shift is such that it represents an increase in the phase
velocity over that of a wave in free space, just as in the more fa-
miliar cylindrical wavegtides).

With this methcd Fox ard Li (I) studied the mode structure of
the dominant modes in Infinite strip, rectangular, and circular plane-
parallel mirrcrs resonators, and confocal spherical mirrors resonators.

Goubau and Scawering (9), in their study of periodically
phase-corrected beams in a system of thir lenses in apertures in
perfectly absorbing screens, treated the equivalent of the non-ccnfocal
spherical mirrors resonator problem using the expension-truncation
metncd, in waich the field function and the kernel are expanded In a con-
vergent series of sultable orthogonal functions and the series Is truncat-
ed at a suitable poirt. The resulting equation 1s again a matrix e-
quation, becoming a matrix eigenvalue equation when the field functions

a2

are required to be equal within a complex constant, with the amplitudes of



the function expansion in the series as the components of the vector.
Goubau and Schwerirg found only the elgenvalue of largest magnitude
(lowest lcss); Beier and Scheibe (57) solwved for higher order eigen-
values using the same methoa.

Soohoo (12) considered the highly non-confccal spherical
mirrors resonator, with the mirror separaticn much greater than the
nirror radius. The matrix eilgenvalue equation obtained was solved by
iteration, using Franklin (58).

Fox and Ii (1C,11) used the iteration method to solve the case
of rescnators with mirrors of unegual radii of curvature ard areas, and
tre iteration method described by Bodewig (59) for determining the
eigenvalues of largest amplitude when their amplitudes are equal (this
method is also used in Franklin (58)).

She ard Heffner (14) propose the use of the expansion-
truncation method and diagonalizasion of the characteristic matrix
with plane-parallel circular mirrors, but perfcrm no calculations with
it. DBergstein and Schachter (15} carry out calculations with this
method on plane-parallel infinite strip, reclangular, and circular
mirrors resonators.

Gordon and Kogelnik (60) have shown that, for non-symmetric
spherical mirror resonators, three rather thar the expected five pa-
rameters of the system are sufficiernt to determine the mode patterns,
diffraction losses, and resonant {reguencies, thereby simplifying the

celculations needed to predict the characteristics ol the resonator.



Output Coupling

Boyd snd Kogelnik (8) considered analytically the case of =
recbargular shepe, equal radil of curvature, confocal spherical mirrors
resonator with a non-reflecting strip located centrally across one Qi-
mension of one mirror, and derived approximate expressions for the
eigenvalues and elgenfuncticns of the resonator.

Evtuhov and Neeland (61,62) have investigated the transverse
and longitudinal mode structure in ruby lasers. One of thelr methods
of transverse mode selectior is ©o isoclate the desired mode and prevent
other modes from oscillating by shavirg the mirror from one end of tne
ruby except in the area normally occupied by the desired mode. They
feund no significart increase in the threshold, effective cortrol of
the oscillation mcde, and an increase in beam brightness; and the out-
put beam remained diffraction-limited at pumping levels up to at least
2.5 Simes threshold. They daid ooserve unexpecsed effects in the far
field output vattern (62). Suematsu and Iga (64) and Siegman (65)
found substantially the same results on the laser moce structure from
shaviag the mirror.

Patel et al (66) made the first use of cutput ccupling oy
placirg & small hole in the gold reflecting surface of a quartz mirror,
in order to ircrease the laser output by increasing the reflectivity cf
the mirror without at the same time losing the transmitted power in
absorption in the thick metal layer required for the nigh reflectivity.
Quaiitatively understandable effects on the mode structure due to The

missing coating were evident.
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La Touret<e, Jacobs and Rabinowitz (67) used a small zluminum
mirror as u means of output-coupling The laser power around its edges.

McCumber (15) has made calculations on the effect of output-
coupling epertures on the confocal spherical mirrors vesonator, using
the kernel expansion-truncation method. The effect on the mode
structure, the loss and prase snift, and the far field pattern was

investigated.

10.2 Content of this Paper

The purpose of this work is to calculate, using an electronic
computer, the chearacteristics cf the dominant modes withirn infinite
strip, plane-parallel mirrors, with output coupling.

The resonator to be studied has mirrors of equal width, each
having a non-reflecting strip centered cn each mirror. This 1s equiva-
lent to a palr of iafinite strip resonators, close enough to interact
throught diffraction ccupling. As was previously pointed oul, the black
central strip represents a vower loss to the rescnator, while it is the
output coupling mechanism from the standpoint of getting uselul power

into the Dbeam.
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CHAPTER ELEVEN

MASKED INFINITE STRIP MIRRORS

11.1 Physical Egquation

In Appendix E is derived the equation relating the field
function ug(xg) at the "field" mirror of width b to the field
function ul(xl) on an identical "source'" mirror a distance d away

in the form

b
ug(xg) = (Kd)-% expl j(n/b - ka)] del ul(xl) exp[—jk(xz-xl)2/2d]
b
11.1.1

which is valid when the following conditions on the cavity dimensions

are satisfied:

\/d << 2x
ut?/dg << 1 11.1.2
bg/xd << d2/8b2

The conversion to the case of a "source" mirror with a central black
strip is accomplished by cutting that section out of the region of
integration in BEq. 11.1.1. For a strip of half-width a , the inte-

gral equation becomes
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1.

us(x,) = (0a) ® expl(or/% - k)]
-a tb 11.1.3
J + j dxy exp[—jk(x2 —Xl)g/Qd] ul(xl)
-b +a

For an arbitrary field function ul(xl) on the first mirror, the field
on the mirror after the (n - 1)th <transit is given by repeated appli-

cation of the equation

u,(x ) = (Wa)™® expli(n/l - kd)]

-a b 11.1.4
2
. -+ - -
j J dxn—l eXp[ Jk(Xn Xn~l) /gd] un-l(Xn-l)
~-b a

This equation applies equally to the double infinite slit
apertures in plane absorbing screens, with u being the field function
in the nth aperture of the beam resulting from a field function Uy
in the first aperture.

If the concept of the dominant mode is realizable, then after
some sultable number n of transits the field will reproduce itselfl
within a constant factor at each transit. This can be written

un(xn) =7 un-l(xn) s 11.1.5

which permits conversion of Eq. 11.1.4 into the integral eigenfunction-
eigenvalue equation for the complex field amplitude with a complex

eigenvalue from the symmetric, complex kernel derived from the masked
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infinite strip plane-parallel mirrors resonator:

v Ge) = )7 explilx/h - k)] -

b 11.1.6
. 2

f + [ dx_ eXp[-JK(Xn' Xn-l) /2d] un(xn—l)'

-b a

Following the usual practice, the product kd will be assumed
to be an integer times 2 , so that the calculated phase shifts will
be relative to the geometrical phase shift of a plane wave in the
distance 4 .

The resonator is invariant to reflection in the plane defined
by the center lines of the black strips. The field functions will then
have even or odd symmetry about this plane. With this symmetry con-

dition,

u (x)=%u_ (-x_) , 11.1.7

where the plus sign signifies an even symmetry mode and the minus gign

signifies an odd symmetry mode, Eq. 11.1.6 becomes

b
v F () = )77 exp(gn/d) fax, ;-
a
{ exp[—jk(xn—-xn_l)g/Ed] 11.1.8

)

. 2 +
+ - ]
expl Jk(xni-xn_l) /2d]} U (Xn_l

and X takes on positive values only.
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11.2 Dimensionless Equation

All the physics of the resonator, within the approximations
given above, is in Eg. 11.1.8. To handle it mathematically, it is
turned into a dimensionless equation, from which the significant pa-

rameters can be recognized. By defining the quantities

a = a/b
L
B = b/(A)®
11.2.1
n, = x./b
u(n)=u) ,
Equation 11.1.8 becomes
1
+ — . .
U (M) =p exp(in/t) [ an
07
{ exl-ge?(n - m )71 11.2.2

+
n

+ expl -jﬂﬁig('ﬂn + nn_l)gl} u ()

The quantities in Eq. 11.2.1 can take on values in the ranges

O
A

a < 1

O
A

B <o 11.2.3

asn <1

The gquantity B is related to the Fresnel number H for the

unmasked infinite strip mirror by the relation
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H=2p" . 11.2.4

11.3 Computer Equation

Equation 11.2.2 does not have exact solutions. In order to
gain understanding of the physical problem it represents, it must be
solved numerically. An electronic computer is ideally suited for
handling matrix and vector operations; and, by converting the integral
to a sum, Eg. 11.2.2 can be cast into this form.

The trapezoidal rule was chosen for conversgion of the integral
to a sum. Some check points were also calculated using Simpson's rule
as a comparison, with no significant difference in the results. The

trapezoidal rule is given by

N
f(x)ax = [(b - a)/(N - 1)] .E c. £(x.) , 11.3.1

® Gy T

where <y is given by

1

c.=%1if i =1 or N
* 11.3.2
= 1 for all other 1
and Xs is given by
x, =a+ (i- 1)(b - a)/(Ww - 1) . 11.3.3

Then by writing
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o~ NI =a+ (3 - 1)1 - a)/(W- 1)

Mo~ NI =+ (T-1)0Q-a)/W-1)

u (n)~ua), uln )~ o1)

K5(2,1) = (1) {expl-gme5(1(3) - 1(1))*]

11.3.4
. .2 2
£ expl -gnp°(1(7) + (1))71 }
c(I)=23if I =21or N
= 1 for all other I
M=y exp(-dn/B)(W - 1)/B(L - o)
Eq. 11.2.2 becomes a matrix eigenvalue equation:
+ N s +
AU (J) = 2K (J,I) U (1) . 11.3.5
I=1

-+
The kernel K (J,I) is a complex symmetric matrix of di-
+
mensions N x N, and the vector U (I) is a complex vector of di-
+
mension N . The eigenvalue i and the vector U (J) are the desired

+
results of the eigenvalue problem for the known kernel K (3,1)



CHAPTER TWELVE

MASKED INFINITE STRIP MIRRCRS CALCULATTIONS

12.1 Parameters

Calculations were performed by the methods and programs de-

~

scribed in Appendix F. The parameters used were 8 = 0.5, 1.0, and

2.0, and o = 0.C, 0.1, C¢.2, 0.4, ard 0.8.
The program did nct solve the eigenvalue problem for the set
of parameters £ = 2.0 and « = C.0. This poin%t was taken from a

set of points run with a different program, writien to verify the re-

gults of Fox and Li (L).

12.2 Results

Some of the results of the computer calculations are given in
Table 1 and Fig. 5-15.

Table 1 contains the percent relative power lcss per transit
and the phase shift per Transit relative to the phase shift of a plane
wave. Figure 5 is a plot of the power loss data, and Fig. 6 is a plot
of the phase shift data.

Figures T-1C show the relative asmplitudes and phases of the
even ard odd symmetry field functions for B = 2.0 aad verious o .

Figures 11-14 show the relative amplitudes and phases of the

even and odd symmetry field functions fer @ = 0.1 and various 2 .
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B o Synmmetry PLOSS | PHASH
0.5 0.0 E 32.2k 21.07
) 82.64 8hk.00

0.1 E 48,09 18.27

0 82.67 83.94

0.2 E 61.95 14.80

0 82.91 83.53

0.k E 83.24 5.61

0 8L.86 80.51

0.8 E 99.62 -23.90

0 96. 48 61.34

1.0 0.0 E 8.17 7.83
0 27.10 20.93

0.1 E 40.83 8.33

0 27.79 30.82

0.2 E 75.39 21.91

0 32.88 20.06

O.h E 63.67 h4o.sh

O €5.0k 25.48

0.8 E 96.79 82.02

0 91L.32 31.01

2.0 C.0 E 1.30 2.36
0 L.80 9.45

0.1 B 16.92 9.88

0 5.17 9.43

0.2 E 11.68 11.82

0 13.18 1¢.29

0.4 E 22.86 16.7k4

9] 25.01 16.1k

0.8 E 85.60 40.85

0 82.72 39.7h4

Table 1. PLOSS is the percent relative vpower loss per transit;
PEASH is the degrees of phase shift relative to a plane wave;
of the dominant mode in a measked infinite strip plane-
perallel mirrors resonator.
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Fig. 8. Relative phasge of the field function on the mirrors of the
dominant mode in the masgked infinite strip plans-parallel
mirrors resonator, for B8 = 2.0 , even symmetry and various
x .
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B = 2.0, odd symmetry, ard various & .
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12.3 Discussion of Results

The results of the case & = 0.0 agree excellently with the
results of Fox and Li (L4) for the non-masked mirrors resonator.

It can be seen that the odd symmetry modes are not as strongly
affected by the masking strip as are the even symmetry modes. The ad-
ditional power loss and phase shift change rapidly with «o for even
symmetry and slowly with « for odd symmetry, particularly for small
and large £ . The field function for even symmetry is similarly much
more affected by non-zero « than is the odd symmetry field function.

This can be qualitatively understood from the standpoint of
perturbations. The odd symmetry modes have a smaller proportion of
their field strength within the masked strip, particularly for small
B , so that the masking has less effect on the odd symmetry modes.
For small £ , the even symmetry modes have broad maxima at the center
of the masked strip, so that the power loss from an even symmetry mode
should be approximately proportional to «a for small o . The odd
symmetry modes for small f are linear through zero at the center of
the masked strip, so that the power loss should be approximately pro-
portional to ag for small o .

The data in Table 1 shows that the conclusions given above
are roughly correct. It is of interest to consider how well the power
loss can be estimated by using perturbation. For the £ = 0.5,

o = 0.0 even symmetry resonator mode the power loss per transit is
32%, so that 68% of the power on one mirror is incident on the other.

The field function for this resonator is not shown in the figures of
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this paper, but is closely approximated by the function for the

p = 0.5, ¢ = 0.1 resonator. By squaring the amplitude curve and
estimating its area, it is seen that about one-eighth of the power on
the mirror lies in the o = 0.1 zone. Thus the perturbation estimate
of the additional power loss is one-eighth of 68%, or approximately
9%. It can be seen from Table 1 that the actual additional power loss
due to masking for this case is 16%. The perturbation estimate is an
order of magnitude, but not an accurate estimate, for the values of &
used in this paper.

At large values of « , the two halves of the resonator be-
come less coupled, beginning to appear as two isolated resonators with
narrow mirrors, with diffraction coupling between the resonators. The
resonators are still within the configuration of the urmasked reso-
nator, for which it was assumed that all parts of the mirrors were
diffraction coupled, so that the less coupling does not extend to zero
coupling. This can be seen by examination of the field functions for
even and odd symmetry for «o = 0.8. Though the power losses are about
the same, the phase shift per transit and the field functions differ
markedly.

The power losses for large values of O are greater for the
even symmetry modeg than for the odd symmetry modeg. This can be
understood in terms of the field on the masked strip containing more
power in the even symmetry mode than in the odd symmetry mode. The
field on the center of the masked strip is usually not zero in the

even symmetry mode, and is always zero in the odd symmetry mode.
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APPENDICES
PART T
APPENDIX A

VECTOR WAVE EQUATICN

Maxwell's equatiors relating the electric field intensity
vector E(r,t) , the electric displacement vector D(r,t) ,  the mag-
netic induction vector B(r,t} , ard the magnetic fielé intensity

vector H(r,t) are

7 x BT - - D (5,1)

3
>
[
iy

~~
=

-
—

S—
|

- T + 2 (5)

p(r,t)

g
—~
[
»
—-
paS——
i

where p(r,t) is the electric chargs density and J(r,t) is the con-
duction and convection current density. D(r,t) and E(r,t) , and

B(r,t) and H{r,t) , are related by the constitutive relations

I
|
|

D(r,=) = e E(r,t)

=

B(r,%) = u H(z,t)

where, for the case of interest here, namely, & homogeneous, lsotropilc,
linear medium, € and | are scalar constants independent of position.

Ir. & conductive medium, 3(?}t) is related to E(;,t) by Ohnm's law,
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J(r,t) = o B(r,t) . A.3

The conductivity o 1s assumed to be zero, and no convection current
or electric charge is introduced.
As a consequence of the above restrictions, Maxwell's

equations become

B(Et) = - 1 gr (5,0)

d
»

e 5% (r,t)

it
+

H(r,t)

<
b

AL

<
i
O

- E(r,t)

- H(r,t) =

<31
1
O

The solutions are written in the separated form

B(7,t) = B(7) I
A.5

A(T,t) = A7) «°°

EquationsA.U4 then become

7 x B(r) = - jou H(r)

+ joe E(r)

<
bed
st

—~~
>}

~
i

A6

<l
=
P
H
pa—
f
O

<1
us|

N
H

g
it
e
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By taking the curl of both sides, the first two equations

become

- jop v x H(r)

7 x (v x E(r))

1l

ALY

v x (7 xH(r)) = + jwe v x E(r) -

The left-hand sides can be transformed with the use of the vector
identity

_— — — O — 2._

vx(vxu)=v(v -u) -vu ; A8

and, with the insertion of Eq. A.4, the result is

v° E(r) + K° E(r) =

= 0
A.Q
V2 H(T) + KX HE) = 0
or, equivalently,
_ —_ D e
v x (v x E(r)) - ¥ E(r) =0
A.10
Tx (T xEF) - AT =0
with the side conditions
v - E(x) =0
AJ1L
v+« HTr) =0 ,
where
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APPENDIX B

VECTOR WAVE FUNCTION SOLUTION

In Appendix A it was shown that for the physical problem of
interest the equations governing the electromagnetic fields are

(exp (jot) time dependence assumed)

2

7 x (v x (1)) - o pe E(r) = 0
7 x (7 x 8(7)) - oue BE) = 0
B.1
v« E(r)=0
v - HT) =0

the form
— oA
BE(r,t) = - 57 (1,%) -7 ¥ (r,1)
B.2
B(r,t) =v x A(r,t)
or, with the exp (jot) time dependence,
B - - 0@ -7 4 ()
B.3
B(r) = v x A(r)

Smythe (53) shows that, when all charges are confined to perfect con-

ductors, the electric potential can be set equal to zero;and the vector
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potential can be required to be solenoidal. Then E(?) and ﬁ(?)

are given by

E(r) = - joA(r)
B.L

N el - e

H(r) = u = 7 x A(r)
and the condition

7« A(r) =0 B.5
guarantees solenoidal E(?) and ﬁ(?) . The equation governing K(?)
ig, from Eq. B.l, with k2 = wzue 5

— _ = o R

v x (v xalr)) - ¥ Alr) =0 . B.6

Since K(?) can be required to be solenoldal, it can be

written in the form
Ar) =9 x W . B.7
Smythe (54) shows that the particular vector

W= uAWi +uxv W2 5 B.8

where u 1is an arbitrary constant vector on the radius vector, is

particularly convenient. The result of the operation curl K(?) is
- - e - - 2 =
v x (7 xA(r))=-vxluv W)t ux v (v Wg)] , B.9

so that Eq. B.6 becomes



5

2

Gx[ﬁ(v2w1+k W 2

+ux (VW +k2W2)]:O. B.10

l) 2

Thus, if W and W are solutions of the scalar wave equations,

1 2
2 2
+ =
v Wl k Wl 0
B.11
2 2
+ =
v Wé k W2 o ,
solutions to the vector wave equation can be written as
K(?):%’x[ﬁwl+'ax€w2] . B.12

This is two separate solutions, since Wl or W2 can separately be

set equal to zero. Thus we have two forms for K(?) s

=V W xu ;

A(?):'v'x('dwl) 1

|
o
Py
H
p——g
0
<

v x (ux E'WQ) .

By considering the quantities U+ A and u - (5'X K) , it
can be geen that Wl produces no A in the direction of u , and

that W2 produces no ¥ x A in the direction of 1 .
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APPENDIX C

ROTATTIONALLY SYMMETRIC SOLUTIONS OF THE VECTOR WAVE EQUATTON

In Appendix A it was shown that the electric field intensity
vector E(E) and the magnetic field intensity vector ﬁ(?) satisfies

the pair of equations

v x E(xr) = - jou H(r)

il

7 x H(r) = + jwe E(r)

il

The sphercidal coordinate systems do not permit separation of
a general solution of the vector Helmholtz equation in a form suitable
for matching boundary conditions (27,28). For the special case of
fields with rotational symmetry about the axis, Egq. C.1 can be solved
in a form sulitable for matching boundary conditions on a spheroid

(41-49). Equations C.1 are a set of six coupled equations:

o ) . B
3¢ (hcp Ecp) - 3o (hg Eg) + Jou hg hcp H,ﬂ = 0

%(hnEﬂ)—gﬂ(thEcp)-ijphnhcpHE:O C.2a
a(h E)—a(h E )+ jouh h H =0
on g g7 T Qg Ymm nNE
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5 3 . i
5t (M) - 55 (g M) - Jwe b b By =0

5] 5]
H - -3 E. = .
&B(hﬂ n) gﬂ(hcp Hcp) Jooe hn hcp e 0 C.2b
a(h H)-a(h H)-joeh h E =0
on e gl T oE Yo g o
The gcale factors hi are independent of o . IT Eﬂ’ E%’ Hn, and

H§ are required to be independent of « , then the set of six coupled

equations breaks into twoc uncoupled sets of three coupled equations

each:
a(hE)+jwuhhH:O
M e T E o
—a(h E )+ jou h,h H_ =0 gTE C.3a
M e N g

o) o . B
Sﬁ(thg)’Sé (]an Hn) - jwe hﬂ hg E =0

P
-é—(h H)-joeh, b E =0
0F T E
a | g ,
-5 (hcp Ecp) - Joe by b B =0 ™ C.3b

joi hy, h, H = 0 . /

+

55?1'“?@"% (b Bp)

The transverse electric vector set has E = g@ ECp (M,€E) ; the
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transverse magnetic vector set has = ¢ @ ® (n,€) . Each set can be
solved for the ¢ component. Writing ¢ (M,E) for the ¢ component

and inserting the scale factors in both sets yields the same equation

for &

2, .2 242
[(1 ) M}_% \;@2 + 1) %_g i @2%.,_1;(1“_ = 5 + %'l—(ggqun?)@ - 0.

Comparing this with the scalar Helmholtz equation

v * +k * =0 C.5

which upon insertion of the scale factors becomes

2.2

a{ o, 2% 3 e 9 3% x5 2 .2
(1-17) }'* L( + 1) } + (ES+ N ) E =0
i e H @rna-P

c.6
shows that the solution for ¢ 1is the solution for F* ,
® (-jeom,38) = Toa Fo,(dem38)
Cc.7

1l

. . . .. sin
F (=Je,M,58) 8, (-3 MR (-3e, 5E) {C mﬁ@} )

with no o dependence and m set equal to one:



19

& (-jc,M,J8) = L (Fem5E)

!
5?4

C.8

i

@n(‘ijan§> Sln<-jc’n) Rln<-jc’j§)

The angular function Smn(-jc,ﬂ) and the radial function Rmn(—jc,ji)

are the sclutions of the equations

2
d 2, d m .
Fla - & aem]+ D+ - l_vﬂgl 5 (-3e,M) = 0
C.9
2 R
STER ) R Caein) ] - [, - e € - = +1] R (-jc,35)= 0
C.10

The quantity ¢ is a dimensionless parameter given by

The numbers m and n are positive integers or zero, with n z m .
The T and € components of the electromagnetic fields are

given by the use of Eq. C.3 with the ¢ components of Eq. c.8.
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APPENDIX D

LIGHT SCATTERING FROM DIELECTRIC FIIM LASER MIRRORS

The following pages are a reproduction of the Scientific
Report No. 1 from the Quantum Electronics Laboratory of California
Institute of Technology, titled "Light Scattering from Dielectric Film
Laser Mirrors,'" dated September 1, 1962.

The results of this work are verified by the recent work of
D. L. Perry (55). His work showed that the scattering spots are parti-
cles of the dielectric being deposited. By using the dielectric ma-
terial in chunks instead of the usual powder form, preparing them
properly, and evaporating them at a precise temperature below the
melting point, the number of large particles is greatly reduced. The
technique of observing the scattered light as a measure of the mirror
quality is being used in his work.

An additional reference on dielectric films is Heavens (56).
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Light Scattering from Dielectric Film Laser Mirrors -

Introduction:

Operation of the helium-neon gas-filled continuous wave laser at
a wavelength of 63288, in the red, has permitted visual observation
of the transverse mode pattern of the output beam, by placing a white
card or ground glass screen in the beam. It is immediately apparent
that the mode pattern is also visible on the mirror surfaces, by scat-
tered light. This scattering of light from the cavity standing wave
is an undesirable dissipation of the stored energy and reduces the
cavity Q . The object of this work was to examine the mirror scat-

tering from the point of view of laser operation.

Experiment:

The laser setup used was a helium and neon filled, direct cur-
rent discharge tube, approximately centered in a cavity formed by a
pair of one-meter radius mirrors, spaced 127 cm. apart. This is the
configuration analyzed by Boyd and Gordonl and by Boyd and Kogelnikg,
and reported by Kogelnik and Rigrod3. The mirrors were quartz, with
multilayer cryolite and zinc sulfide dielectric films, and wvere
specially made to be highly reflective at the neon 382 to 2pu tran-
sition line (63283). The laser cavity was stopped down to restrict
the oscillation mode to a low order. Microscopic examination of the
mirror surface by scattered light was made using a 50 power micro?

scope. Photographs were taken with a microscope cameras and adapter

with an over-all magnification of 25 times.
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ABSTRACT

The transverse mode pattern in a gas laser visible output
beam can be seen on the dielectric film of the laser cavity mirrors;
the eye is seeing light scattered by the film from the standing
light wave in the cavity. This scattering results in a lowering
of operating efficiency.

Microscopic examination of the scattered laser light shows
that the light is scattered from small (2 to 20 microns) defects,
covering about 4% of the mirror surface, and relatively widely
spaced. The greater portion of the mirror surface has comparatively
negligible scattering. Close correlation between the scattering of
laser light and the scattering of white light permits a simple
check for mirror scattering defects, by inspection under a medium
povwer (about 50X) microscope.

The total loss of pover due to absorption and scattering in
the film is less than 1% of the cavity traveling wave power per
transit. The effect of the scattering points on the laser beam

itself are negligible.
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white light

laser light

microscope axis

Photographs of the scattered light from the mirror surface
are reproduced in Figures 1 and 2. Figure 1 was taken with only
laser light incident, and Figure 2 was taken with only white light
incident. Inspection of these photographs yields the following
observations:

1. The laser transverse mode pattern is seen as a grouping

of dots of scattered light into the characteristic mode

pattern.

2. A relatively small percentage of the mirror surface area

is taken up by the scattering points.

3. The scattering points, even after magnifiication, are

very small.

4, Diffraction and interference effects appear on the right

and left hand sides of the photographs.

5. The white light scattering points correlate closely with
the laser light scattering points in location, in size

and in intensity of scattered light.

Several dielectric film laser mirrors were examined for scattering

points, with this result:

6. All the mirrors had scattering points in roughly the same den-
sity and size as the mirror photographed.
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A deposited gold film mirror also examined showed few scattering points.

Discussion:

A point by point discussion of the experimental results follows:

1. Figure 1 shows a TEM05 mode .

2. The smallness of the scattering area compared to the non-
scattering area is an indication that the scattering points
are, perhaps, avoidable defects.

3. An examination of the photograph of the scattering of a rep-

resentative area of the dielectric film X b'e = mm square

revealed 37 spots with an average diametez of55 microns
ranging from 2 to 20 microns, an average area of Ul square
microns, and a total white area percentage of U%. It is
expected that this figure will be greater than the total
scattering loss, since not all light incldent on a scatter-
ing point is scattered, and possible over-exposure of the
photographic film for a high-intensity scattering point
will make it appear larger than it should. PolsterL+ and
S’cone5 report that the total loss from scattering and
absorption in a typlcal multilayer dielectric film is

less than 1% .

4, The mirror tangent plane having a dihedral angle of 26°
with the microscope focal plane (line of intersection,
vertical) combine with the small depth of field of the
microscope at high magnifications to bring out Fresnel
diffraction and interference patterns, where the microscope
is not focused on the mirror surface. Focusing on the
right or left edge of the mode pattern instead of the center
shows about the same size and density of scattering points.
The scattered white light shows Fresnel diffraction patterns
also. This is due to the use of a projection lamp with a
collimating lens as the white light source: measurements

made on the cone of light passing through a pinhole show
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that the cone of light incident on a point of the mirror
surface was defined by a half-angle of 0.4° so that the
noncoherent white light source still showed Fresnel dif-

fraction and interference patterns, though not as distinctly.

5. The fact that the white light scattering points are the same
as the monochromatic light scattering points rules out any
special effect that might be attributable to the monochro-
maticity of the laser light. It also makes possible a check
for mirror scattering points, consisting of a visual examina-

tion under a medium-power (50X) microscope, with white light.

6. Scattering points appear to be an unsolved problem in dielec-
tric film techniques. Any change in the dielectric constant
in a direction parallel to the mirror surface will scatter
light from an incident beam. Possible explanations for the
scattering points are:

a) An uneven deposition rate, causing thin spots or pin-
holes in the thin layers.

b) Disposition of relatively large chunks of the evaporated
dielectric.

¢) Growth of crystals in the dielectric layer.

Holland6 discusses these problems, with others, in multilayer

dielectric film technique.

Conclusion:

The transverse mode pattern in a gas laser visible output beam can
be seen on the laser cavity mirrors; the eye is seeing light scattered by
the mirror surface from the standing light wave in the cavity. This
scattering results in a lowering of operating efficiency. Microscopic
examination of the scattered laser light shows that the light is scaﬁtered
from small (2 to 20 microns) defects coveringabout 4% of the mirror sur-

face, and relatively widely spaced. The greater portion of the mirror
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surface has comparatively negligible scattering. Close correlation between
the scattering of laser light and the scattering of white light permits a
simple check for mirror scattering defects, by inspection under a medium
power (about 50X) microscope.

Because of the small size of the scattering points, and the small
percentage of mirror surface area that they cover, the diffraction and
interference effects of the light scattered into the laser beamsare very
small. The laser beam fills in its weak spots by diffraction, and its
pover is much greater than the power of the light scattered into the beam.
For beam lengths greater than an inch or so, no effect of the scattering
points on the beam i1s observable.

The largest effect of the scattering points is the reduction in stand-
ing wave energy storage. It will cause a loss of less than one percent of

the cavity traveling wave power per transit.
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APPENDICES
PART IT
APPENDIX E

INFINITE STRIP PLANE-PARALLEL MIRRORS RESONATOR EQUATION

Maxwell's equations for the electromagnetic field vectors in

a source-~free uniform dielectric medium are

VxE= - jwuﬁ
vV x H= jmeﬁ
E.1
v+ E=0
v H=0
Silver (68) uses the vector Green's theorem in the form
[ F - 7x7xG-G 7x7xF) av=
v
E.2
S @xFTxF-oTxTx® - Tas
+g 4.+
517% °n

where F and G are two continuous vector functions of position in
the volume Vv with boundary surfaces 81 + So + 0. 0+ S, and n
is the unit vector normal to s directed into v . By letting G be

the wvector function
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e—gkr

G=atl =a -
where a 1is an arbitrary constant vector and r is the magnitude of
the radius vector 1 from the field point to the source point, and

letting F become E or ﬁ', sultable transformations of Eq. E.2

yield

E? = g;- J C-jou ¢ (nxH)+ (nxE)xv ¢+ (n-E)v¢]ds
s

+s + ..+ 8
1 2 n

H, = ﬁ%' J Liwe ¥ (nxE) + (mxH) x7 4+ (a-H V] ds

S.tst..t s
1 2 n

E.b
where E? and ﬁé are the electromagnetic field vectors at the point
P in volume v due to the sources within the surfaces S s their
effect taken into account through the fields that they produce on the
surfaces N

These equations are the analytic formulation of the Huyghens-
Fresnel principle, which states that each point on a given wavefront s
can be regarded as a secondary source which gives rise to a spherical
wavelet, and that the wave at a field point P is to be obtained by
superposition of these elementary wavelets, with due regard to their
phase differences when they arrive at the point P .

By adding a surface integral of value zero, Eq. E.4 can be

converted to (69)
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E.5
EP:"l%%?j (wg—g—ﬁ%)
s
where
L@y w E.6

If the electromagnetic field vectors are written in Cartesian
coordinates, then each of the components of Eé and ﬁ% separately

satisfies the equation

B 1 Ju oy
=i s - st B
S

By writing out of/0on from Eu. E.6, Eq. E.7 becomes

-Jkr _ ;
up = - ﬁ%-f < - (u(jk + %) cos(n,r) + %%] ds . E.8
s

For the optical resonators of interest, the field can be taken
approximately as a plane wave, so that only one component of E and H

is needed, satisfying Eq. E.8. The assumed planar wave permits the

approximation

3 :
8%;% - jku . E.9
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For the plane-parallel mirrors, n = e, and a mirror sepa-

ration 4 yield

—_— d
cos(n,r) = - o E.10
Equation E.8 becomes
-jkr
1 e kd d
LI [ ” u(-j - -3 " jk) ds E.11
o r
which for
kd > 1 , E.12
reduces to
-jkr
jk [ e + 4
=i | u(L r) ds . E.13
s

For the case of an infinite strip resonator of half width b ,

with no variation with the y coordinate (along the slit), Eq. E.13

becomes
ik —jkr a
= 8 A + = .
up(x,) = £ ] ax, j" ay, S ux)(1+ D) .1k
_...b y =
with
5
2 2 2 -
T = [(x2 - Xl) ty, td 1. b.l5

The integration over yl can be performed by the method of stationary
phase (70), since k is much greater than one. In the integrand r

can be gset equal to



1

p =%+ (xy - x)°1 5.6

except in the argument of the exponential. The result of the method

of stationary phase integration on the exponential is

[es}

o 2 iy
lay exsl-ik(o” + ¥°) 1~ (1/30)% (1 + /o) exp(-1ko) B.17
so that Eq. E.1hk becomes
s b
i 0 :
RN - exp(-Jkp) d
uP(xg) s (3/2) | oax Y (1 + p) u(xl) . E.18

Xl:—b

When the resonator dimensions satisfy the conditions

bg/xd << (d/b)2

£.19
2
Iy bg/d <1 ,
p can be set equal to d in the denominator, and set to
2
DA d + (x2 - xl) /2d E.20
in the exponent, yielding, for P a point on mirror two,
E
uy(x5) = ()% exply(n/% - xa))
b E.21

. j Xm exp[—jk(x2 - Xl)g/Zd] ul(xl)
-b
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APPENDIX F

METHOD OF CALCULATTON AND COMPUTER

PROGRAMS FOR MASKED MIRRORS EQUATION

The methods used to solve the matrix eigenvalue equation for
the dominant mode eigenvector and eigenvalue are the Von Mises, or

power, iteration method (71,72), and the Rayleigh-Aitken quotient

(73,74).
The eigenvalue problem we wish to solve is
Ax, =\, X, F.1
i i
where xi s, 1i=1,2,. . .1n, are the n orthonormal eigenvectors

associated with the n eigenvalues xi in the n-dimensional space of
the matrix A . The eigenvalue of largest amplitude, the one for the

dominant mode, is chosen to be xl .

The power iteration method starts with an arbitrary initial
vector v given by

n
v = .E Bi X F.2
i=1

where 51 is, 1f possible, chogen to be large compared to all others.

Multiplying v by A gives

n
v, = AV = .E Bi xi X, F.3
i=1

This can be written
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n
vy o=y ”lBi (xi/xl) X, F.b

do==

Multiplying again by A gives

2 2
vy, = AV =y izagi (Kl/Kl) x, F.5
and, for s multiplications,
s 2 s
= v . ] .
vy =N iflai (/)™ %, F.6

If s 1is taken sufficiently large, the magnitude of all other com-
ponents can be made as small relative to the component of X, @as is
desired. Then the vector v is a multiple of the eigenvector. The

eilgenvalue is given by

AL =

y vs+l/vS . F.7

Provision to handle the cage of ]Kll = !XZI > . . . 1is
buillt into the eigenvalue problem solution subroutine, but it was not
needed.

The Rayleigh-Aitkens quotient evaluates the eigenvalue by

forming two sequences,

F.8

where the prime indicates the transpose of a vector. As s and t©
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increase, vy converges linearly to the eigencolumn x and o'

1 t
converges to the eigenrow vy corresponding to Kl . The scalar
product

ktm
1 — ' 4
WLV = A v F.9
becomes
k- K+ -
o Ay 2@ x DF Ty F.10

where D 1s the matrix of the eigenvalues and X 1is the matrix such

that
AX=XD . F.l1
Equation F.10 is a polynomial of degree k + m in the xi‘s
The quotients

— 1 1
SR W WOV

.12

—_ t 1
M=y Vo)V

give a better result for Kl than does Eq. F.7.

The Fortran IV programs written for use with the IBM 7094 to
carry out the procedures outlined above are reproduced on the following
pages.

The SLF deck i1s the main program, in which the parameters are

read in, the kernel is calculated, and all data writing is done.

The EIGCM deck solves the complex matrix eigenvalue problem.
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The CMVMUL deck performs complex matrix fimes complex vector
nmultiplications.

The CSPV deck performs complex vector scalar product multi-
plications.

The RITOAP deck converts a complex vector in real and imaginary
parts form to an amplitude and phase in degrees form.

The NORMAL deck converts a complex vector to an amplitude and

phase in degrees form, normalized to the component of largest amplitude.
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$IBFTC SLF DECK
COMPLEX KeCEXPsLAMBDASEVALLSEVALZsEIGVIEIGV29APZ09219229sV0eV1,V2

DIMENSION K(50$50)'Ap(50’50)920(50)921(50)922(50)’V0(50)0V1(50)9
1 v2(50)
DIMENSION ISYM(2)sETA(50)sY1(50)4Y2(50)
DIMENSION EIGV1I(50)+E£1GV2(50)
DATA ISYM(1)sISYM(2) /4HEVEN,3HODD/
DATA P1/3,1415926/
PLOSSI{X) = 10060 * (140 =~ (X % PLF) *% 2)
PHASH(X) = 450 + X
10 READ (5+500) Ns ALPHA, BETA
SCALE = (140 —~ ALPHA) / (FLOAT(N) ~ 1,0}
PLF = BETA * SCALE
PIBETA = Pl * (BETA*BETA)
SIGN = le0
ISET = ISYM(1)
15 DO 30 I = 14 N
cCl =1 -1
XSIR = ALPHA + Cl # SCALE
ETA(I) = XSIR
DO 25 J = 1y N
= J -1
2S = ALPHA + CJ #* SCALF
K(IsJ) = CEXP((0e09~140)*#PIBETA*(2S~XSIRI*(Z2S=XSIR))
1 + SIGN * CEXP({0e0s—1e0)#PIBETA*{2S+XSIRI*(2S+XSIR))
25 CONTINUE
30 CONTINUE
DO 40 1 = 1N
K({Isl) = o5 % K(Ie1)
K{IoN) = o5 * K{1sMN)
40 CONTINUE
CALL EIGCM(NsKSEVALLsEVAL2+sFIGV1ZEIGV2sNUMBERSAP 20921
1 Z2+V0sV1,eV2)
WRITE (64512) ISETsNsALPHABETA
L = NUMBER + 1
GO TO (100+70+80)s L
TO0 CALL RITOAP{1+EVAL1SEVALY)
CALL NORMAL (NsEIGVISsEIGV14EIGV]sJLARG)
WRITE (6+510) EVAL1+EIGV]
A = PLOSS(REAL({EVAL1))
B = PHASH(AIMAG(EVAL1))
WRITE (6+4530) AsB
DO 73 I = 14N
Y1(1) = REAL(EIGVI(I))
Y2(1) = AIMAG(EIGVI(I))
73 CONTINUE
CALL XYPLOT{(S50+sETAsY1s+0e0942459+0e09+1e25+DD40)
CALL XYPLOT(50+ETAsY29~1459+1e09=60e09+40.04DDy1)
GO TO 75
B0 CALL RITOAP({1+sEVAL1+EVALL)
CALL NORMAL(NSEIGV1IIEIGV1EIGV]I+JLARG)
WRITE (6+510) EVAL1EIGV]
A = PLOSS(REAL(EVAL1))
8 = PHASH(AIMAG(EVAL1))
WRITE (6+530) AsB
DO 83 1 = 14N
Y1(I) = REAL(EIGVI(I))
Y2(1) = AIMAG(EIGV1(I1))
83 CONTINUE
CALL XYPLOT(S50+ETAsY19+0e09+2e50+0409+1e259DD40)
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CALL XYPLOT(S509sETASY24~1e59+1009-60,09440s04DDs1l)
CALL RITOAP({1sEVAL2sEVAL2)
CALL NORMAL(NSEIGV2sEIGV24+EIGV2eJLARG)
WRITE (69511) EVAL2sFIGV2
A = PLOSS(REAL(EVALZ2))
B = PHASH(AIMAG(EVAL2))
WRITE (6+530) AsB
DO 95 I = 19N
Y1(1) = REAL(EIGV2(I))
Y2(1) = AIMAG(EIGV2(T1))
95 CONTINUE
CALL XYPLOT(S50sETAsY1940e09+2e594+0409+1e254DD0)
CALL XYPLOT{50sETAsY2s=1459+1403~60e09+40+0+DDs1)
75 IF(SIGN +LTe 0e0) GO TO 10
SIGN = - 1.0
ISET = ISYM(2)
GO T0O 15
100 WRITE (6+520)
sSTOP
500 FORMAT(I1542F1044)
510 FORMAT(/1X 13HEIGENVALUE = 2FE15484 10X13HEIGENVECTOR = 2F1548,
1/7(67X2E1548))
511 FORMAT(/1X18H2ND EIGENVALUE = 2E15.8910X13HEIGENVECTOR = 2FE15489
1 7(72X2E15.8))
512 FORMAT(1H1 10XA6+2XBHSYMMETRY 95X4HN = I545X8HALPHA = F1l0e4e5X
1 THBETA = F10e4/7)
520 FORMAT(1H111HNO SOLUTION /)
5300FORMAT ( // 5X33HPERCENT POWER LOSS PER TRANSIT = F1l0e5s15X34HDEGR
1EES PHASE SHIFT PER TRANSIT = F10.5)
END

1BFT1C ?RMAL
S %UBROUTINE CALLS SUBROUTINE RITOAP TO CONVERT A COMPLEX

$
C
C VECTOR COMPLX IN REALsIMAG TO A COMPLEX VECTOR CONVRT IN
C AMPPHADEGs AND NORMALIZES IT TO THF JLARGETH COMPONENT HAVING THE
C LARGEST MAGNITUDE IN A COMPLEX VECTOR NORMLT IN AMPPHADEG.
C DIMENSION = DIMEN, COMPLX = CONVRT = NORMLI IS POSSIBLE

SUBROUTINE NORMAL(DIMENsCOMPLX s CONVRT ¢NORML I s JLARGE)

COMPLEX COMPLX(DIMEN) s CONVRT(DIMEN) s NORMLI (DIMEN)

INTEGER DIMEN

CALL RITOAP(DIMENCOMPLX s CONVRT)

JLARGE = 1

A = REAL{CONVRT(1))

DO 1 J = 2+DIMEN

IF (REAL{CONVRT(J))eLT4A) GO TO 1

JLARGE = J

A = REAL(CONVRT(J))

1 CONTINUE

P = AIMAG(CONVRT(JLARGE))

DO 2 J = 1+DIMEN

AMP = REAL(CONVRT(J)) / A

PHA = AIMAG(CONVRT(J)) -~ P
2 NORMLI(J) = CMPLX(AMP,PHA)
RETURN

END



$IBFTC EIG DECK -
GREATEST FIGENVALUE(S) WITH EIGENVECTOR(S) FOR NONSYMMETRICAL COM-KWJ

C
C

10

20
30

32

40

50

100

110

120

PLEX MATRIX (VeMISES ITERATION AND RAYLEIGH QUOTIENT)
SUBRDUTINE EIGCM (MeAsLALsLAZIEIGVIZEIGV2sNUMBIAP+Z209Z219722+V0sV1s

1 v2)

DIMENSTON A(50sM)sEIGVIIM)ISEIGVZ2(M)sZ0(M)9sZ1(M)Z2(M)sVOIM)sV1(M)

195V2(M) sAP(50M)

COMPLEX AsEIGV1SEIGV2+sZ209Z219Z229sV0sV1sV2eLAL2LA24K19K29K39K4,

1A0sA19DsLAPRIAOPRAPLCSQ
DO 101 = 1¢ M

22(1) = (le90e)

V2(I) = (1e900)

K4 = FLOAT(M) * (1le90.)
AOPR = (04904)

LAPR = (04904)

1C = 2

1S =0

10 = 0

DO 20 1 = 1¢ M

DO 20 K = 1¢ M

AP(KsIY = A(IsK)

IF(IC «GTe 50) GO TO 100
CSQ = CSQRT(K4)

DO 32 U = 1y M

200J) = Z22(J) /7 CSQ
vVo(Jd) = Vv2(J) 7/ CSQ
CALL CMVMUL (MsA$Z20,21)
CALL CMVMUL (MsA9Z21422)
CALL CMVMUL (MsAPsVOsV1)
CALL CMVMUL {MsAPsV1sV2)
CALL CSPV{MsVOsZ14K1)
CALL CSPV(MeV0s229K2)
CALL CSPV(MeV19Z29K3)
CALL CSPV(MyV24224K4)
LAl = K4 / K3

D = K2 ~ K1%#%2

1C = 1C + 2

100

IF(REAL(CABS(D/K2)) ~14E=6) 40940450

ID = 0

IF(REAL(CABS({(LA1-LAPR)/LAL))

IS = I8 + 1

LAPR = LA1

IF(IS «EQs 2) GO TO 110
GO TO 30

1s = 0

AQ = (K1#K3-K2%%2) / D

IF{REAL(CABS(({AQ-AOPR)/AD))

ID = 1D + 1

AOPR = AQ

IF{ID +EQs 2) GO TO 120
GO TO 30

NUMB = O

RETURN

NUMB = 1

DO 112 L = 1o M
EIGVI(L) = Z0(L)
EIGV2(L) = (Oes04)
LA2 = (0es0e)
RETURN

NUMB = 2

l1eE~6)

l1eE-6)

KWJ

KwWJ
KWJ
KWJ

KWJ

KwJ
KwJ
KWJ
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KWJ
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KwJ
KWJ
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KwJ
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521
521

s21
s21
521

s21
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s21
s21
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s21
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S21
S21
s21
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s21
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s21
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521
s21
s21
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101

Al = (K1#K2-K3) / D

K1 = CSQRT(s25%A1%#2-A0)

LAl = = Al * o5 + K1

LA2 = = Al # o5 - K1

DO 122 L = 14 M

EIGVI(LY = Z2(L) - LA2 * Z1(L)
EIGV2(L) = Z2(L) = LAl * 21(L)
RETURN

END

i

$IBFTC CMV DECK

C

10

MATRIX - VECTOR - MULTIPLICATION(COMPLEX)s A * X =Y
SUBROUTINE CMVMUL (NsAsXsY)
DIMENSION A(50sN)s X(N)s YIN)
COMPLEX As X Y
DO 10 1 = 14 N
Y(I) = (Qes0s)
DO 10 J = 1s N
YOI) = YUIY + XUJ) * A{l.)
RETURN
END

SIBFTC CSP DECK
C

10

$
C
C
C
C

20001

SCALAR PRODUCT OF VECTORS (COMPLEX)y XP * Y = C
SUBROUTINE CSPVINsXPsYsC)

DIMENSION XPI(N)s YN}

COMPLEX XPs Ys C

C = (0e904)

D0 10 1 = 19 N

C = C+ XP(I) #= Y(I)

RETURN

END

IBFTC RITOAP DECK

THIS SUBROUTINE CONVERTS A COMPLEX LINEAR ARRAYs COMPLX(DIMENS),
IN REAL ~ IMAGINARY FORMs TO A COMPLEX LINEAR ARRAY,
CONVRT(DIMENS)s IN AMPLITUDE - PHASE IN DEGREES FORM

COMPLX = CONVRT IS POSSIABLE

SUBRIUTINE RITOAP(DIMENS sCOMPLX 9 CONVRT)

INTEGER DIMENS

COMPLEX COMPLX{DIMENS)+CONVRT (DIMENS)

DO 20001 I = 1sDIMENS

AMPLIT = SQRT{REAL(COMPLX(1)) *%* 2 4+ AIMAG(COMPLX(I)) *%* 2)

PHASE = ATAN(AIMAG(COMPLX({I)) / REAL(COMPLXI(1))) * 57,29578
CONVRT(I) = CMPLX(AMPLITPHASE)
RETURN

END

KwJ
KwJ
KWJ
KWJ
KwJ
KWJ
KwWJ
KwJ
KWJ

KWJ
KwJ
KWJ
KWJ
XWJ
KWJ
KwWJ
KwWJ
KWJ
KWJ

KWJ
KwWJ
KwJ
KWJ
KWJ
KWJ
KwWJ
KwWJ
KwWJ

§21
s21
§21
s21
$21
521
s21
§21
521

S19
S19
S$19
S19
$19
S19
519
519
S19
519

520
520
S20
520
520
520
s20
520
520
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