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Abstract

A new method for simulating underwater acoustic signals in range de-
pendent environments is presented, and the approach utilizes Maslov
asymptotic theory as developed by C. H. Chapman for synthetic seis-
mograms. The simulated range dependent signals are then used in
active underwater acoustic tomography exercises, where changes in
observed acoustic transmissions are inverted to obtain information
about ocean sound velocity structure. The inversions are performed
with both the generalized inverse and the maximum entropy inverse,
and a new numerical method for finding the maximum entropy inverse
with noisy data is presented. The numerical technique follows the €

statistic approach proposed by Bryan and Skilling.
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1.0 INTRODUCTION

There are three purposes or goals of this work. First, a new method of
simulating underwater acoustic signals is presented, and it is based on
Maslov asymptotic theory (10) and techniques from seismology. Second,
range dependent acoustic amplitude inversions for active underwater
acoustic tomography are performed. The tomography seeks information
about ocean sound velocity structure by comparing observed acoustic
signals with nominal ones, and aspects of resolution and linearity are
discussed. The last goal of this work is to compare maximum entropy in-
versions with the most common method used in underwater tomography,
the generalized inverse. A new numerical technique, based upon the

€ statistic approach of Bryan and Skilling (6), for maximum entropy

inversions of noisy data is presented.

The Maslov asymptotic theory signal simulation is the major contribution
of this work, and it does appear to be a useful, informative alternative
to the standard parabolic approximation. The method should be faster
for some applications, and it should lend insight into range dependent

effects.

The maximum entropy inverse is an interesting concept based on sounder

principles than the generalized inverse, minimum norm, approach. It



looks for the most probable solution, adding no new constraints, and it
has been used effectively in image processing. Results given here show
it can resolve structure better than the generalized inverse for some cases.
In a high noise environment, however, it allows too many degrees of free-
dom and errant inversions to occur. The numerical method for the maxi-
mum entropy inverse that is described in this thesis is more stable and

converges better than other ones.

The linearity and resolution of the simulated underwater acoustic tomog=~
raphy exercises did not permit accurate inversions. Higher order deriva-
tives and more source and receiver pairs are required, but some sample

inversions have been performed with limited success.

This paper is divided into seven chapters. Chapter 2 gives the uses,
issues, and types of underwater acoustic tomography. Chapter 3 pro-
vides a derivation of the Maslov asymptotic theory technique for simu-
lating range dependent acoustic signals, and numerical methods are
presented. Chapter 4 discusses inverse theory, and the generalized
and maximum entropy inverses are explained and compared. Chapter 5
presents results for simulated underwater acoustic amplitude inversions,
and Chapter 6 summarizes the conclusions of this thesis. Chapter 7

provides listings of some of the key computer programs.



2.0 UNDERWATER ACOUSTIC TOMOGRAPHY

2.1 USES AND ISSUES

Ocean structure or weather is important to physical oceanography, global
weather patterns, ocean shipping and mining, and submarine warfare, and
ocean remote sensing has recently received a considerable amount of at-
tention. Infrared sensors, altimeters, synthetic aperture radars and other
sensors on satellites such as SEASAT in 1978 give oceanographers the op-
portunity to remotely measure temperature, velocity currents, ocean cir-
culation and sea surface structure. These remote sensors are a consider-
able improvement over a system of point-by-point shipborne measure-
ments because they provide a complete, nearly instantaneous ocean image.
However, only the very top layer of the ocean can be penetrated by these
satellite sensors, and they therefore do not provide information about the
ocean structure below the surface. Active underwater acoustic tomography,
proposed by W. Munk and C. Wunsch in 1979 (30), is a remote sensing
technique that probes the part of the ocean that is opaque to satellite

instruments.

Active ocean acoustic tomography combines medical tomography, conven-
tional seismology, and underwater acoustics. In medical tomography,
from the Greek word for "slice," X-rays are passed directly through a
patient, and transforms of the X-ray data produce a three-dimentional
image of the inside of the patient's body. In seismology, perturbations

in signals between pairs of sources and receivers are used to infer the

structure of the earth.



Active ocean acoustic tomography utilizes perturbations in acoustic
signals sent between transmitters and receivers to identify ocean
structure below the surface. Acoustic travel time or signal perturba-
tions are used to infer ocean sound velocities or velocity currents,

and sound velocity information leads to temperature, salinity, and
density measurements. As in medical tomography, a three-dimensional
image of the ocean structure is produced. However, due to the compli-
cated geometry and incomplete sampling, transform techniques cannot

be used in active ocean acoustic tomography.

Due to the conflicting effects of temperature and pressure, ocean
sound velocity profiles typically reach a minimum value about one
kilometer below the surface. This configuration leads to multipaths,
and acoustic signals emitted at various launch angles from a single
source travel over many different paths to reach one receiver. The
paths travel at distinct depths, as shown in Figure 2-1, and they
therefore sample or probe different portions of the water column. This
phenomenon is put to use in active acoustic tomography, where a
single source and receiver pair can provide p pieces of information
if the signal travels over p paths. Thus, m sources and n receivers
on n+m moorings give mxnxp pieces of information as compared to

m+n pieces for conventional shipborne instruments, and p is approxi-

mately ten.



Figures 2-2a and 2-2b depict sample results from the 1981 travel time
acoustic tomography experiment described in B. Cornuelle's thesis of
1983 (15). Figure 2-2a is the true sound velocity disturbance at a depth
of 800 m and over a range of 300 km by 300 km, and Figure 2-2b is the
comparable inverse solution. Four sources and five receivers were
used in the experiment, and the transmissions were at a carrier frequen-
cy of 224 Hz with a 20 Hz bandwidth. Munk and Wunsch proposed
ocean tomography to monitor ocean mesoscale weather that has scales
on the order of five days, 500 km in range and 5 km in depth. It is

this mesoscale structure that appears in Figure 2-2, and the 1981
experiment vielded a map every three days for seventy consecutive
days. Entire ocean basins can eventually be watched in this way, or
regions of high currents, where conventional measurements cannot be

taken, can be surveyed.

Problems in analysis, instrumentation and logistics must be solved
before an active underwater acoustic tomography system can be de-
veloped. As with any sensing problem, ocean tomography consists of
a forward problem and an inverse problem. For the forward problem,
underwater acoustic signals in all kinds of ocean conditions must be
analyzed and predicted and this is the topic of Sections 2.2,2.3,
and Chapter 3. Acoustic wave travel times and amplitudes for various

source and receiver geometries and ocean profiles must be simulated



so that observations can be compared to them. The difference between
the observed and the predicted data is then used in the inverse problem,
where the solution is a three-dimensional image of the sound velocity
in the region between the transmitters and receivers. The inverse
problem consists of deriving 8§C(x), the perturbed sound velocity that

is a function of position x, from observed data, d. Typically, an

underdetermined matrix equation

d=E & (2-1)
is solved for 8C, a vector of discrete sound velocity values. E is the
matrix of derivatives relating a data point, di’ to a sound velocity value,
cSCj . Since the problem is underdetermined, additional constraints are
assumed to give a unique solution, and methods are discussed in

Section 2.2 and Chapter 4.

Other key aspects of the tomography problem are ray identification,
mooring localization and timekeeping. The p different pieces of informa-
tion from a single source and receiver pair can only be unraveled if each
arrival over a different ray path can be identified. If the receiver is an
array, angle of arrival can be used, but otherwise only the nominal

travel time will be available. Mooring motion must be minimized,



and a simulation of tidal motion is of use. Precise timekeeping is

required for travel time data and ray identification.

In their initial paper, Munk and Wunsch stated several design require-
ments. To identify arrivals, signals should be coded and distinguished
by matched filters at the receivers. Multipath arrivals can be separated
only if the time resolution is less than 50 msec, and a precision of

25 msec is required for travel time inversions. Mooring motion should
be less than 35 meters, and timekeeping must be precise to 25 msec
over one year. Cornuelle's thesis in 1983 (15) describes the results

of a 1981 travel time inversion experiment where the expected signal
was only 40 msec, and he simulated mooring motion to get reasonable

results.

The logistics of an active tomography system are complicated. Shore
based receivers may be attractive, although they complicate the model-
ing problem. Satellite data should be used in consort with the acoustic
data, but a transmission link would be required. Certain transmitter
and receiver configurations would be theoretically optimum but too

difficult to implement.



The methods discussed here can be applied to other inverse problems,
such as ultrasonic imaging or passive acoustic tomography. Passive
ocean acoustic tomography was proposed by A. Rockmore in 1982 (33),
and it produces a three-dimensional image of the acoustic structure be-
neath the sea surface. An array of receivers and a detailed analysis

of the ocean sound velocity structure are required, and this technique

should be of interest to the antisubmarine warfare community.



2.2 TRAVEL TIME INVERSIONS

A schematic of a travel time tomography exercise is shown in Figure 2-3,

where fourtransmitters send acoustic signals to fivereceivers. Only four

paths per source are available, so there are only twenty-four pieces of in-

formation, but thirty-six 6Cj values are sought, one for each block of

water indicated. The travel time for each signal i is

(2-2).

T‘gfdA
i J O

“r
1

where C(x) is the sound velocity, l“i is the path for ray i and d.e is incre-
mental path length. If Tio is the nominal travel time, Co is the constant

nominal sound velocity and §C(x) is the perturbation sound velocity, then

T T — ﬁm __d.f____ ; ._di (2 3)
i~ toi C *o6CK J C,

r T,
i io

By Fermat's principle, the change in the ray path due to 8C(x) is secon-

dary to the change in arrival time, so after linearization equation 2-3 be-

comes

4
—-—'fz 5C(x) (2-4)
(¢]

[
L —
— 2 nmm»-@’

io
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and after discretization

J R,.
8T, = = 3 —121 5C. . (2-5)
! =1 ¢ J

Here Ri)‘ is the distance that ray i travels in block j, the sum is over all

thirty-six blocks, and equation 2-5 fits the form given in equation 2-1.

Real ocean travel time inversions are similar to the one shown in the
schematic except the ray paths are three-dimensional and difficult to
predict. The ocean inverse problem is usually divided into separate
horizontal slice and vertical slice problems, and no direct three-
dimensional inversions have been performed to date. In the schematic,
thirty-six unknowns are sought from twenty-four relations, and this

sort of underdetermined problem usually occurs in the ocean as well.

Munk and Wunsch state that the underdetermined nature of the tomog-
raphy system, which defines its spatial resolution, is the single great-
est problem facing system development. Munk, Wunsch and Cornuelle
suggest several ways to improve this situation, and any available
piece of valid information about 6C(x) can be used. Satellite data
about ocean eddies or circulation can be used, and measurements
taken over periods of time can be averaged together if tidal or other

~edictable effects are accounted for by numerical codes and Kalman
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filtering. Coruelle added hydrodynamic constraints, requiring that
vertical structure in §C(x) satisfy certain modal relations that had been
observed in mesoscale fluctuations. He also had the horizontal struc-
ture fit a Gaussian covariance form with a 100 km correlation length,

and he used the stochastic inverse described in Chapter 4.

As with any measurement system, good resolution and good noise per-
formance are conflicting requirements, and a tradeoff must be made.
Noise factors for underwater travel time inversions are mooring motion,
timekeeping errors, ray identification, peak resolution, and nonlin-
earities. The ocean is a severe noise environment but fortunately the
mesoscale structure evolves slowly and simple averaging can be
applied. Cornuelle averaged for an entire day, correcting for mooring
motion. Cornuelle's inverse estimator was the minimum variance
biased estimator because he desired maps of the evolution of mesoscale
dynamics and was not primarily interested in the magnitude of the

disturbance.
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2.3 AMPLITUDE INVERSIONS

The resolution and noise performance of a tomography system can also

be improved if signal waveform information is used with the travel time
data. An ocean experiment on amplitude inversions has not yet been
attempted, but some analysis and simulation has appeared in the litera-
ture. J. Cohen and N. Bleistein have done synthetic amplitude inver-
sions with a method described in a text edited by J. DeSanto in 1979 (13).
Their analysis yields the following relation between Po(g_c_ ,t), the nominal

pressure waveform, and §P(x,t) the observed difference

VA -ZSC@') dt' P (&I,t')P (t-t', x')
C™ (x') 0o o
o= o
t
= Jgdt‘ (t-t') sP(x,t') . (2-6)
(o]

This integral over time t and space x' is derived with Green's theorem,
and it has been successfully inverted for very simple nominal sound
velocity profiles, co(g. It is obviously too cumbersome to be used

on realistic profiles, and it does not address noisy measurements.

M. Brown's thesis of 1982 (5) approached acoustic amplitude inversions

in a way that is more compatible with active ocean acoustic tomography,
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and his technique is extended to range dependent environments in this
thesis. Brown derives linear, discrete relations for acoustic amplitude
and intensity perturbations as functions of sound velocity fluctuations,
and they fit the form given in equation 2-1. He neglects ray path geom-
etry changes, as is standardly done in travel time inversions, and he

justifies this simplification by the following analysis.

Brown's amplitude function is determined by a time function 6(p) that is
defined in Chapter 3, with p the horizontal wave slowness. § can be
expressed in terms of a Taylor series around T(pj), the geometric arrival
time for a given ray j with horizontal slowness pj

- 06 | _ 2
olp) = T(pj) + apa (p pj) + > (p pj)/z.(z-7)

15 O 1

Geometric arrivals, which will produce the largest observable amplitudes,

have

08 - 0 (2-8)

so the variation of 6(p) from T(p) is second order in p - pj . Therefore

path changes are negligible for the dominant amplitude signals.

Brown's simulation added Gaussian white noise at a five percent level to

waveform measurements, and he used amplitude and intensity inversions
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in consort with travel time inversions. He performed travel time inver-
sions first and used those results as the nominal cases for the waveform

inversions. The travel time data included noise with standard deviation

s = —Li , (2-9)
4
i 2amaf o I/8

where S/N is the signal to noise ratio and Afrms is the root mean square

frequency resolution, approximately equal to one-third of the bandwidth.

Brown drew the following comparison between travel time, amplitude and

intensity inversions:

1. If individual ray arrivals are clearly resolvable, amplitude

and intensity inversions do not add much information.

2. If the ray arrivals are confused and low frequency energy is
present, waveform inversions can significantly improve the

quality of the inversion.

Brown's simulation and analysis are expanded upon in this thesis, but
real-world problems complicate amplitude inversions. Random ocean

fluctuations cause a large degree of randomness in ocean acoustic
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amplitude signatures. This effect is evident in Figure 2-4, where
single realizations, an hourly average and a daily average of an

acoustic signal are portrayed, and Section 2.4 provides further in-
sight. Mooring localization and the fact that absolute amplitudes

are not available in the ocean will also degrade amplitude inversions.
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2.4 RANDOM FLUCTUATIONS IN ACOUSTIC SIGNALS

Random effects in the ocean can cause large random fluctuations in
acoustic signals. Ocean internal waves and turbulence cause random
microstructure in the sound velocity profile, and acoustic multipaths
are split into random micro-multipaths. Signals traveling over the ran-
dom paths interfere with one another, and large scale variations can
occur. This randomness can obviously impact ocean acoustic tomog-
raphy, and it is discussed in S. M. Flatte's text of 1979 (16) and in

M. Brown's 1982 thesis (5).

Random effects become more important as range or frequency is in-
creased and Figure 2-5 from Flatte predicts when stochastic modeling
must be considered. Flatte's analysis only considered ocean internal
waves according to the Garrett and Munk spectrum, and it predicts

that deterministic geometric ray tracing is valid for frequencies below
200 Hz and ranges less than 100 km. For low frequencies at ranges
beyond 100 km the Rytov extension is required, and this solution gives a
first order perturbation term for mean square phase and intensity fluctua-
tions. Nominal ray paths and waveforms still follow the geometric optics

model, however, so mean or average received signals are unaffected.

By Flatte's analysis, therefore, low frequency long range active acous-

tic tomography can be carried out with deterministic models applied to
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averaged signals. As demonstrated in Figure 2-4, and by the 1981 to-
mography experiment described by Cornuelle, 1982 (14), acoustic sig-
nals stablize over a period of about a day, and a viable tomography

system could monitor mesoscale structure on a daily basis.

M. Brown attempted to invert averaged acoustic signals in his 1982
thesis, but his efforts failed. His present opinion, revealed in personal
communication, is that nonlinear effects caused his difficulty and that

his examples did not fit the small angle approximation

W 6Ti << 1 . (2-10)

Here  is the frequency and 6Ti is the travel time perturbation.

Higher order moments of the sound velocity disturbance will also compli-
cate inversions of averaged data. The relationships between travel time
or acoustic pressure and the sound velocity are nonlinear, but a lin-
earized relation such as equation 2-4 can be iterated in the inversion
process to yield the nonlinear solution. If the sound velocity is
stochastic, however, higher order moments appear, and the iterations

cannot solve directly for the mean value.

For example, the nonlinear travel time relation is
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P

_ . de
T —j Co+6c(§) ) (2-11)

or for the mean value with a deterministic path

. .
= _________> -
<T> f< CO T 500 de . (2-12)

In series form, eguation 2-11 is

2
- T 6C(x) 6C(x)
T = fd,a/c |1-—% +( = ) ] (2-13)
O O (@)
while equation 2-12 is
de <8C(x) > <E>C(1<)2> 7
<T> = == (1- + oo | (2-14)
c L C 2
o e} C

Since the mean square value is not the same as the mean value squared,
equation 2-14 cannot be linearized and then iterated to find <8C(x) >

without introducing errors due to higher order terms.

Despite the complications stated above and M. Brown's failed attempt,
it is anticipated that signal inversions for ocean acoustic tomography
can be performed even in a random medium. Further work is required

in this area before experiments can be carried out.
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2.5 FUTURE APPLICATIONS

The ultimate role for active underwater acoustic tomography should be
as a key component of a comprehensive remote ocean sensing network.
Satellite ocean measurements of surface conditions should be combined
with tomographic observations made at depth. This procedure will de-
crease the number of unknowns required from the tomographic inversion,
and it will probe the subsurface ocean structure that is not observable

with spaceborne instruments alone.

The computer codes, inversion techniques, and instrumentation required
for active acoustic tomography should speed the development of passive
ocean acoustic tomography. This concept, introduced by A. Rockmore (33)
in 1982, aims to provide three-dimensional maps of the acoustic struc-
ture in the ocean. Data from passivereceivers will be inverted to locate
acoustic sources, and this approach should offer improved signal proe-

essing for some acoustic array configurations.
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FIGURE 2-2a: CONTOURS OF MEASURED
SOUND SPEED AT 800 m DEPTH
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FIGURE 2-2b: CONTOURS COMPUTED
FROM TRAVEL TIME INVERSION
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CHAPTER 2 NOTATION

sound velocity

nominal sound velocity
observed measurement differences
incremental path length
derivative matrix

noise

pressure

nominal pressure

horizontal wave slowness
distance ray i travels in block j
signal

geometric arrival time

path for ray i

vector of sound velocity values
observed pressure perturbation
observed travel time differences
approximately equal to 1/3 bandwidth
time function

travel time noise standard deviation

frequency
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3.0  SYNTHETIC UNDERWATER ACOUSTIC SIGNALS

3.1 INTRODUCTION

Underwater acoustic tomography requires solutions to two distinct
problems: the forward problem of predicting ocean acoustic signals
under various conditions and the inverse problem of obtaining ocean
structure from signal data. This chapter describes methods used here
to simulate range dependent underwater acoustic signals, and there-

fore it presents a solution to the forward problem.

Historically, ocean acoustics has been concerned with predicting the
steady state, single frequency propagation loss versus range for a
given signal. Seismology and underwater acoustic amplitude tomog-
raphy, however, require detailed analyses of the signal waveform
versus time. Due to these distinctions, the methods used here are
taken from seismology rather than conventional underwater acoustics.
In addition, these methods are faster and simpler than the parabolic
approximation, finite difference or finite element techniques, and it
is this speed, with acceptable sacrifices in accuracy, that makes the

lengthy inversion process feasible.

Synthetic waveforms for seismology, also called synthetic seismo-
grams, have often been generated using either asymptotic ray theory
or transform methods. Asymptotic ray theory is valid in laterally in-

homogeneous media, but caustics, shadows and critical points must
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be treated as special cases. Transform methods have been utilized
in laterally homogeneous media where the independent variables in
the wave equation separate. One transform solution derived by C. H.
Chapman (8) was successfully used for range independent acoustic

tomography by M. G. Brown (5).

The approach used here to produce synthetic underwater acoustic
signals uses Maslov asymptotic theory that combines asymptotic ray
theory and transform techniques to vield one simple, general method
applicable in laterally inhomogeneous media. Maslov asymptotic
theory extends transform solutions to inhomogeneous media by a
canonical transformation, and it utilizes asymptotic ray theory

when the transform solution breaks down.

The approach used here was developed primarily by C. H. Chapman,
and the range independent version or the WKBJ solution was first used
by M. Brown to simulate ocean acoustic signals. The range dependent
solution utilizes Maslov asymptotic theory presented by Maslov

(27, 28) and in English by Kravtsov (24). This derivation closely
follows Chapman and Drummond's 1982 article (10) and Kravtsov's
review, and asymptotic ray theory and the WKBJ range independent

solution are discussed separately first.
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3.2 ASYMPTOTIC RAY THEORY

Asymptotic ray theory or ART is the mathematical basis for geometrical
ray theory, and it is widely used for synthetic seismograms and to com-
pute underwater acoustic travel times. It is used here under Maslov
asymptotic theory when the transform solution breaks down and to com-

pute geometric arrival times for travel time inversions.

The wave equation for excess acoustic pressure P is

2
SR -—— L v =0 , (3-1)
C™(x) ot
or in the frequency domain
vz ﬁ(zc_,w) +w2/ 2 ﬁ(&,w) = 0 , (3-2)
C™(x)

where é(g, w) is the Fourier transform of P(x, t). Under asymptotic ray
theory, an asymptotic series solution to equation 3-2 is sought, so the

relation

(n) _
AT (x) LW T(x) (3-3)

is substituted. Coefficients of like powers of w must be zero, and the

eikonal equation
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vo© - > = 0 (3-4)

and the transport equation

2va° . yT+A° T = o (3-5)

result.

The Maslov asymptotic theory result to follow requires the Hamiltonian

form of the eikonal equation, and the Hamiltonian H is

Hx, p) = %(22-112(&)\) : (3-6)

where p is the wave slowness vector,

B = vT ’ (3-7)

i i 1 ] ; ; -
and u is the magnitude of p or /C(z) . The eikonal equation then is re
duced toH = 0, and the solution is obtained by the method of character -
istics with the characteristic lines defined by

dx, dT -dp,

) OH
dy 2D, P, /api a‘7*/6Xi
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or
dxi
dv I T (3-9a)
_ 1 _° 2
dpi T2 8x u (3-9b)
/dv 1
and
ar  _ uz(gc_) ] (3-9¢)

Here dv = ude, with de representing incremental ray arc length.

The travel time derivative (3-9c) can also be expressed in terms of the

Lagrangian that can be found by the Legendre transformation. The vari-
e

ables (x, p, t) are transformed to (x, x, t), and the Lagrangian is re-

lated to the Hamiltonian by (Goldstein (18))
cx,%2) = pex -JHEx.p . (3-10)

The travel time for geometric arrivals is then related to the Lagrangian

by

T, x) = f L% dv
Y

4 —
=f ude = f p ° dx . (3-11)
= %,
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Equation 3-11 gives the solution to the eikonal equation expressed in
terms of use to Maslov asymptotic theory. The transport equation 3-5

must now be solved, and the first result is

2
(X) 6(X 'Y Iz)
02, . _ U, 0'?0'%0
A = AT(x) Loy 0.y, 2)

(3-12)

The amplitude term is infinite at caustics, but solutions can be obtained

at either side of a caustic. The general result is

1
2 -inolx,x)
e °/2 | (3-13)

«u(go) ax,
u(x) l ,

o] _ ,0
AQ{‘)-A(E"O) ox

where o (x, 50) is an integer representing the KMAH index (Ziolkowski
and Deschamps, 1980 (34)). o (_>_<_O,_>go) is zero, and o is'constant be -
tween caustics. The index is incremented when a ray crosses a caustic,
and the increment agrees with the number of dimensions a ray tube loses

at the caustic.,

The final result for the ART acoustic pressure waveform is then

P(x,t) = 2 Real [AOQQ 5(1:— T(_}g,g{_o)>=

-t

rays
e ) - P 1 —1110(_)5, 50) _
) o | 2 [.o (. 2
= r%s o) 360 Re| A7(x ) 6it T(>_<,§0)> e ]

(3-14)
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The summation is over all rays, and the solution is invalid if the Jacobian
is zero. Higher order terms from the series in equation 3-3 do not rectify
the problem at caustics, but the methods given in the next two sections

are valid alternatives.
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3.3 WKBT TRANSFTORM SOLUTION

The integral transform solution given here is valid when the sound velocity
C is only a function of depth. The transform coordinates are w, p, and z,
where p is the horizontal wave slowness, and the WKBJ solution to the
ordinary differential equation in z is used. The key to the solution, intro-
duced by C. H. Chapman in 1978 (8) , is evaluating the frequency trans-
form first and keeping the wave number real. The derivation here follows

M. G. Brown (5).

The wave equation for excess acoustic pressure due to an impulsive point

source in a laterally homogeneous medium with r as cylindrical range is

V2 Plr,z,t) - —= 622 P(r,z,1)
C™(z) oot
= —‘26'%2 é(z—zo) a(t) (3-15)
with boundary conditions
p(t,r,0) = 0
P 4rh) = 0 (3-16)

oz
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A
Taking the Fourier transform, denoted P, and the Hankel transform, de-

noted by ?, equation 3-15 becomes

A AN
<= P(up.2)+ 0’0" @ -pY) P lwp,2)

= - 6(z—zo) . (3-17)
Here p, the horizontal wave slowness, is

p = C_l(;) cos ¢(z) , (3-18)

where ¢ is the angle of the ray to the horizontal.

The WKBJ solution to equation 3-17 is found irom substituting the asymp -

totic series (Ahluwalia and Keller (2) )

1n A% (2) eif.uv'(p,z)
n=0 (iK)

g >
S
]

(3-19)

into equation 3-17, Here wave number K is w/C , with CO an arbi-
o
trary reference value of C, and the WKBJ solution retains the lowest

power terms of K to give



2
( dT _ .2 2
\ & > = u(z) - piz) (3-20)
and
~O 2 _
47 d& 4T 7o _ 4 | (3-21)
dz dz dzz

The condition on equation 3-20 is that T is zero at z

The general transformed result for an omnidirectional source is

-imo(x,x )
='=0

A o 2 eicu"r(p,z)
P(w,p,z) = —Z 1 , (3-22)
rays "

. 2 2\ / 2 \
2iw (u x)"-p ) QU(§O) P )
with c(g,;o) as the KMAH index, u as wave slowness and p as horizon-

tal wave slowness. T(p,z) is the delay time function

Z

1
f(uz(z') - p2>2 dz' (3-23a)

z
o

7(p, z)

= T(p,z) - pRp,z) . (3-23b)

T is the travel time given by equation 3-11, and R is the range where

the ray last crosses the receiver depth,
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z

R(p,z) =£ p_dz' 2 dz' . (3-24)
)
z
o

(u(Z')2 -p

The integrals in equations 3-23 and 3-24 are evaluated for the entire ray
path, and the KMAH index in equation 3-22 counts the number of refrac-

tions or reflections.

The amplitude is proportional to

N

1.0

il

L
8o, zi z_) ((uz(zo)_ 5% 2k - o)) 4)

1
1.0 = _
B /(qo q)2 ’ (3-25)

1 . . .
where g is the vertical wave slowness, /C(z) sin ¢(z). This amplitude

term is singular at ray turning points where q is zero.

The integral transforms now must be inverted in

P(r,z,t) = 21 Z dp p b, Blp,ziz )
8m C rays :
o
o0
“l(l.)(t - T! (plz))
dw w]o(wpr) e , (3-26)

— o0
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where ]’O is the Bessel function with the asymptotic form for wpr >> 1 of

) SR
. 2 iwpr - 17%1 -iwpr + 171'4
Io(wpr) ~< ) e + e , . (3-27)

TTwWPT,

In equation 3-26 bﬁ has been used for the KMAH index term, and 72

denotes T for a ray type /. Using equation 3-27, the Fourier transform

identity
-2- irr/
7{-1‘17%— - (L) e , (3-28)

Lt

and retaining only terms for outgoing waves gives

1
2
Pz = -—1 (5 6m S {20
4.” CO L L
1
: 2 ) (
%;s [dpp bl ,B(p,z,z.o) 8 t- e(p,r,z)>} . (3-29)
Here
At) = H() + 1H(-t) , (3-30)
/1 (-2

and © is given by
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e (p,r,z) t(p,z) + pr

T(p,2)+p<r—R(p,Z)) . (3-31)

The function ¢ is the time for the plane wavefront for a given ray to hit
the receiver since (r-R) is the distance from the range where the ray last
crosses the receiver depth to the actual receiver location. Stationary
points of ¢ with respect to p correspond to geometric arrivals where

R equals r.

The delta function in equation 3-29 can be evaluated to yield

1
P(r,z,t) = - 21 (%)2 g*m _dd—t [A(t) *
41 C
o
pl/2 Blp.ziz )
D b 2. — 1 (3-32)
frays t=e[ dp

and the summation is over all ray types and all rays with 8 wvalues equal
to the desired time values t. Equation 3-32 is singular for geometric
arrivals, however, so an alternative smoothed solution is sought
(Chapman, 1978 (8) and Chapman and Dey-Sarkar, 1978 (9) ). For the
smoothing, P(r,z,t) from equation 3-29 is convolved with the boxcar

function
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B(t) = j; (H(#1) - H-D) | (3-33)
to give
1/2

1 1 2 d
P(r,z,t) * B(t, .) =- (=) bm < r@) =

bt Y/ 8ﬂ2AtCO r dt [

1/2
> b, > P 8(p,z) dp] (3-34)
grays 6=t+ at

The summation in equation 3-34 is over all rays with ¢ falling within the
interval t+at. If B(p,z) and p vary smoothly and slowly, the integrals
in equation 3-34 can be approximated to give the following final WKBJ

transform solution

P(r,z,t) = - —2— (%) $m -d% [A(t) *

1/2
Z b Z (—2-) Ap] . (3-35)

2 rays “/ olp, z)=t+ At 99,

Now A p is the interval defined by t+ At = g(p,z), and equation 3-35 is
valid at caustics and geometric arrivals. This solution is invalid, how-

ever, at turming points where g is zero.
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Eguation 3-14, the ART result, is invalid at caustics but valid at
turning points, and equation 3-35, the WKB]J transform solution, is
acceptable at caustics but singular at turning points. Maslov
asymptotic theory, described in the next section, provides a
method to utilize each of these solutions in their respective regions
of validity, and to extend the WKBJ result to laterally nonhomo-

geneous media.
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3.4 MASLOV ASYMPTOTIC THEORY

Ray paths involve nine variables: x, p, and ?io' If 50, the source posi-
tion, is specified, thenany three other variables will completely define
the ray. Standard ray solutions trace the ray in coordinate space x, but
Maslov asymptotic theory (Kravtsov, 1968 (24), Maslov, 1965 (27) and
1972 (28) and Chapman, 1982 (10)) seeks a solution in a mixed x and p
frame thatis applicable in laterally inhomogeneous media. Forawave veloc-

ity C that varies in x and z but not in y, the solution basis is designated

y = (p,v.2z) . (3-36)

If the wave velocity C is a function of x, v, and z, the optimal solution
basis is

z = (p,r,z) . (3-37)

Note that q is used as the z or vertical component of wave slowness

while r corresponds to the y or out of plane slowness.

The modified wave equation in space will now be solved. The equations
are initially much more complicated than the x frame equations, but, due
to a Legendre transformation, the end result is simple and totally analo-

gous to equations 3-14 and 3-35.
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TAY
The pressure in the (y,w) frame, P(y,w), is related to the pressure in

A
the (x,w) frame, P(X,w), by the Fourier transform

) 1l
L jw |2 A ~iwpx
P(y,w) = Ton P(x,w) e dx , w>0. (3-38)

The inverse transform is
L o
A iw 2 4 iwpx
P(x,w) = o Ply,w) e dx, (3-39)
=00

and the following three results are useful

1 o
iwp Ply,w) = |-°0 ax PE.0) e
1
- cO
8 R iw 2 A - iwpx
—.“Tp Ply,w) = —E?—T -iwx P(x,w) e dx (3-41)
= Q0
1
1 5 | & i) ? A -iwpx
“io 3p Ply,w) = T f(x) P(x,w) e dx . (3-42)
= C0

The function f is arbitrary, and on the left hand side of equation 3-42 it

is a function of the differential operator.

The new wave equation from equations 3-1 and 3-38 to 3-42 becomes



43

2 A
(0" p" + 97 ) P (y,w)
L
2 2, 1 @& Y
+ -_— = = -
w U(mJ ap'z) P(y,w) o , (3-43)
2 62 62
with ¢ = ) + —7 . Equation 3-43 can be solved by an asymptotic
L oY 0z

series method, letting

A > A" (W of
P = 2 (3-4)

with ~ used to distinguish the P, A, and T values from those in equation
3-3 for the x frame solution or in equation 3-19 for the Hilbert transform

solution.

Modified eikonal (equation 3-4) and transport (equation 3-5) equations
can be derived, but these involve the term u(—g—g- , ¥, z) and are too com-
plicated to solve. Instead, T~(y) and Ko(z) can be found by the properties

of Legendre transformations. The travel time or x frame phase function

T(x) was found from equation 3-11

dv

dT(x) )

The new phase function 'f(x) in mixed y space can be found from a partial

Legendre transformation
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dT (y) ~
= Y (3"453.)
dv L, v
= ry + gz - H (3-45b)
_ 4T | _dx
T dv Pay (3-45¢)

Equation 3-45c can be integrated to give the valuable result

Tly) = Tx,v.z) - pxly . (3-46)

The x(y) represents the range as a function of the (p,v,z) coordinates of
the ray. If the source and receiver are in the (x,z) plane, and out of
plane or y variations are not considered, equation 3-46 becomes equa-
tion 3-23b. Therefore x(p,z) is the same as R(p,z) in equation 3-23b,
and

Tp,z) = 7(p,2)

T(x(p,z),z) - px(p,z) . (3-47)

I

The new phase function "f(p,z) for laterally inhomogeneous media is
functionally the same as the intercept or d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>