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ABSTRACT

The bulk thermal constitutive behavior of flowing,
neutrally buoyant suspensions is considered theoretically
and experimentally. A general theoretical expression relat-
ing the macroscopic heat flux in the suspension to micro-
scale velocity and temperature distributions on the length
scale of the particles is derived from statistical consider-
ations of the microstructural configuration of the suaspension.
Evaluation of the relation for specific conditions is dis-
cussed with particular attention given to the role of random
Brownian motions of the particles. Constraints imposed by
simple shear flow are considered, and it is seen that the
flowing suspension may not be described by a compiete effec=-
tive conductivity tensor Kij’

The effective conductivity transverse to the flow of
a dilute suspension of slightly deformed droplets is cal-
culated in‘the limit of small particle Peclet number for the
undisturbed bulk shear, u = 7y, and the linear bulk temper-
ature field, T = ay. Two distinct cases of small deformation
are considered; deformation dominated by interfacial tension
forcés, and deformation dominated by viécous forces in the
drop. The microscale velocity and temperature fields are

obtained as regular, asymptotic expansions in the small



deformaticn parameter, €, the governing thermal cnergy
equation is then solved for small Peclet number using the
methods of matched asymptotic expansions. The results ob-
tained disvlay the possible fundamental change in the dom-
inant flow contribution to the effective conductivity due
to the deformation in shape of the particles.

The bulk heat flux of a dilute suspension of rigid
prolate spheroids is evaluated in the limit of small particle
Peclet number for the undisturbed shear flow, u3 :‘Yx?, and
the linear bulk temperature fields T = @, X, and T = & 5X5e
Microscale velocity fields near the particle are calculated
from the Stokes equations for small particle Reynolds number
for arbitrary orientation and rotation of the particles, and
temperature distributions for the small, but non-negligible
Peclet number bv the methonds of matched asymptotic expan-
sions. The components of the effective conductivity tensor
for a stationary suspension is obtained, and the bulk heat
flux due to the temperature gradients orthogonal to the flow
evaluated for the case of significant rotational Brownian
motion of the particles.

A rotating cylinder apparatus designed for the inves-
tigation of the hulk heat flux transverse to the flow of =
suspension undergoing simple bulk shear flow is described,

with special consideration given to describing and minimizing

secondary effects such as natural convection, particle
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migration, viscous dissipation, and Taylor instability of
the flow. Results obtained for the etfective conductivity
of suspensions of spherical polystyrene particles suspended
in a Newtonian fluid are vresented and comvared to the
theoretical prediction of Leal (1973) for the effective
conductivity of dilute suspensions of spherical particles at

low particle Revnolds.and Peclet numbers,
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CHAPTER 1

INTRODUCTION



INTRODUCTION

The attempt to understand and predict the behavior of
rheclogically complex fluids is an old problem which has
been the subject of a great deal of theoretical and experi-
mental regearch activity. One class of such fluids is
suspensions, which consist of dispersed 'psrticlesa', of
gither a solid or fluid nature, suspended in a continuous
matrix of another material, which, in general may be either
sclid or liquid, Such fluids occur in various technological
applications relating, for example, to polymer processing,
pulp and paper making, and processing of paint. Naturally

gccurring systems include dispersions in the form of aerosols
in the atmosphere, biologicgl fluid systems such as blood,
and in flows through porous media. In addition, suspensions
provide an idealized model for the much wider class of

fluids which include solutions of macromolecules.

From an engineering point of view, suspensions fre-
quently appear in a context where it iIs possible to model
their macroscopic¢ behavior in terms of an equivalent homoﬁ
gensous continuum, using the normal field conservation equa-
tions for momentum, thermal energy or mass. In this case,
however, one must have available constitutive relations for
the diffusive flux of momentum, thermal energy or molecular

species concentration. The attempt to deduce such consti-



tutive laws for the mechanical or rheological properties

has been the prime focua for much of the research on suse
pension-like materials. In many applications, however, ths
constitutive behavior of the material for heat or material
trangport is of at least egual importance. Nevertheleas,
comparatively little attention has been given to this topic.

Congidering the syatem as a whole, there are two ap-
proaches available for the development of constitutive re-
lations. The first, which we shall refer to as the phenom-
enological approach, deals with the formulation of general
relations describting the bshavior of the material based on
a 'guess'! or hypothesis of the appropriate functional form
between dependent and independent variables. The apparent
virtue of this classical continuum mechanical method, namely
its generality, is in fact its major weakness. Having pos-
tulated a constitutive form without reference to any speci-
fic material, the theory haa no way of predicting the value
of the physical parameters of the model, or of even distin-
guishing a specific material which it describes, from thoae
for which the general form is not applicable,

In the second, or microstructural, approach one sttemptls
to deductively obtain the appropriate transport relations
from a detailed study of the system on a smaller scale. The
kinetic theory of gases and liquid state theories are con=-

cerned with the deduction of materligl behavior from a know=-



ledge of the arrangement znd motion of molecules. 1In the
present case, however, the material exhibits a structural
gcale which is assumed to be large in comparison to molecu-
lar dimensions, yet at the same time, small compared to the
overall dimensions of the sample of the material, so that it
can still be modeled as homogeneous in a macroscopic sense.
In general, the microstructural approach thus begins with

a description of the 'microstructural state'! of the material,
then models its microscale behavior in a deductive fashion
using the well~known methods of continuum mechanics, and fi~

" nally passes from this micro-behavior to a prediction of mac~-
regcopic of bulk properties by an appropriate statistical
averaging process. The phrase 'microstructure state® (or sim-
ply microstructure or configuration) is taken to mean the rel-
ative positions, orientations, and shapes and sizes of the
dispersed particles, azlong with the relevant parameters
describing the material properties of the two phases. The
microstructural derivation of macroscopic material properties
from a detailed knowledge of the behavior of the particles
and suspending media serves as a powerful tool for the engi~
neer or physical scientist. Although one must be content
with the study of simple idealized materizls in order to ob-
tain a tractable microscale problem, the materials are real
(i. e. experimentally realizable) and the theory not only

allows prediction of the form of the constitutive relations
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describing the material behavior, but also an evaluation of
the generated physical coefficients. It is work relating to
this gecond, or microstructural épproach that we will be pri-
marily concerned with herse. A number of excellent review
articles describe much of the work that has been carried on

in this field, e, g. Brenner (1970) and Batchelor (1974): only
a few specific works shall be referred to below,

The starting point for the study of rheological behavior
from this point of view is generslly considered to be Einstein's
(1906) calculation of the effective viscosity of a dilute sus-
pension of rigid, neutrally buoyant spheres, Laier workers
have considered a number of different kinds of dispersed par-
ticles, higher concentrations, and the complete state of stress
of the suspension rather than merely the effective viscosity
coefficient.

Detailed considerations of constitutive relations for
other transport properties of suspensions are not so numerous,
with most studies to date dealing with the diffusive properties
(to heat or molecular species for instance) of stationary sus-
pensions, Maxwell (1873) successfully treated the case of a
stationary, dilute, dispersion of solid spheres. This work
was extended much later to include more concentrated suspen-
sions (Jeffrey, 1973) and inclusions of‘arbitrary shape {Rocha
and Acrivos, 1973). Little attention seems to have been given,

however, to the important problem of the thermal properties of
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flowing suspensions. The imposed bulk flow can cause consid-
erable changes in the microstructure of the suspension. Fur-
ther we might expect convective transport of heat on the
microscale to provide an additional mechanism for enhanced
heat flux. Leal (1973) considered the change in the bulk
heat flux of a dilute suspension of spherical drops immersed
in a simple bulk shear flow at low microscale Peclet numbers.
The resulting flux of heat on the bulk or macroscale was only
changed at O(PeB/Z) from that for a stationary suspension,
degpite the fact that the microscale temperature distribu~
tions were significantly changed at 0(Pe). Nir and Acrivos
(1976) considered the corresponding large particle Peclet
number problem for a suspension of spheres, obtaining signi-
ficant enhancement of heat flux transverse to the flow, inde~
pendent of the thermal properties of the dispersed phase.
Analysis of this high Peclet microscale problem, even for the
relatively simplified case of spherical inclusions, is com=-
plicated by the devslopment of regions of closed streamlines
for the flow surrounding the particles. A bounding streamline
surface exists, relative to an observer translating with the
particle, causing an effectively isothermal region within this
boundary to be established. The microscale temperature dis-
tribution must then be determined by an appropriate boundary
layer analysis on this bounding streamline, introducing con~

siderable complexity to the problem., Consideration of the



thermal properties of flowing suspensions of non-spherical
particles, in either low or high Peclet number limits, has
not previously appeared in the literature.

The work reported in this thesis deals with the thermal
properties of flowing suspensions, both from a theoretical
and experimental point of view. The theoretical work will
be concerned with the microstructural derivation of consli-
tutive relations describing the flux of heat in a flowing sus-
pension. In Chapter II, we derive and describe the gensral
relations between the bulk heat flux and the microscsle dis-
tributions of velocity and temperature in a suspension. In-
cluded in this discussion will be a model for the inclusion
of effects resulting from Brownian motions of the particles.
Following this, in Chapters III and IV we present specific
predictions for dilute suspensions of neutrally buoyant;

(1) slightly deformed droplets and (2) rigid prolate spher-
oids, for the case of simple bulk shearing motion in the
presence of constant bulk temperature gradients orthogonal
to the direction of flow. In both cases, the microscale
temperature distributions are solved in the asymptotic limit
of low, but non=-zero Peclet numbers in order to avoid the
complications inherent in the high Peclet number problems.
Rotational Brownian motion is included in the rigid spher-
oid analysis. The microscale velocity fields are calculated

from the creeping motion Stokes equations, reflecting the



expected low Reynold's number nature of the motions on the
(small) particle scale. The restriction to linear variations
of the imposed velocity and tempsrature fields is a reflec-
tion of the small length scale of the microstructure when
compared to the macroscopic scale of the suspsnsion as a
whole. When viewed on this smaller scale, the suspension
predominantly reacts to the local value of the gradients

of velocity and temperature, so that the results obtained
will be a useful first approximation to the behavior in more
complicated situations. Finally, the last Chapter V details
the design of an apparatus for the experimental investiga-
tion of the thermal transport properties of flowing suspen-
sions, and presents some preliminary results for a suspen-

sion of rigid spherical particles.
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CHAPTER 11

The Relation between Macroscale Heat Flux and the

Microstructural State of a Suspension

1; The general relation

We consider a suspension of neutrally buoyant particles
in the presence of a bulk shear flow and a bulk temperature
field. Our objective is the development of a constitutive
equation which describes the effective thermal diffusivity
of the suspension considered as an equivalent homogeneous
material. The point of view adopted is the conventional one
in the fileld of suspension rheology. We assume that the min-
imum dimension & of the particles is large compared to the
intermolecular length scale o of the suspending medium. The
latter may then be treated as a continuum and is modeled for
present purposes as an incompressible Newtonian fluid in
which a simple scalar Fourier heat conduction law is appli-
cable,

At any arbitrary point in the suspension, when viewed
on a length scale of order £, the local variables such as
velocity, temperature, enthalpy, or conductive heat flux are
random functions of time whose values at any instant depend
upon the proximity and motion of suspended particles. The
description of bulk or macroscopic guantities for the suspen-
sionthus becomes a problem of statistics. At the fundamental

level, the most appropriate definition of the bulk variables
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is as an ensemble average of the corresponding microscale
quantities for a large number of realizations of the system.
Instantaneous local values of the velocity, temperature,
enthalpy, and conductive heat flux may then be expressed as
a sum of the ensemble averaged quantity, and an additional

microscale or fliluctuating component, i. e.
(1)

where by definition the averages of the fluctuating compo~-
nents are zero,
R R ERHEE N £
As suggested in the introduction, we wish to obtain an
uperational definition for the bulk conductive heat flux,
<;» which is consistent with the thermal energy balance for

the suspension, viewed as an equivalent homogeneous medium,

AR
~§§§L4% QH) j%%%»+ =90 . (3)

sgz
A convenient, if heuristic, method of determining the proper
definition of Qj for this purpose, is to simply apply the
same ensemble averaging used in (1) to the exact, instanta-
neous thermal energy balance which is applicable for cach

realization of the system,



1h

aq.
Bh Bh 1
ot F e, Tew, C 0 - (4

Taking account of (1) and (2), as well as the continuity
relation for an incompressible fluid

du

the result is

7@%1}# SRR CHERSTD ST

comparing (6) and (3) it follows that
9y Qﬁ) * @ﬁh> . (7)

It may be seen that the bulk conductive heat flux as
defined here, consists of an ensemble average of the instan-
taneous, microscals conductive heat flux, plus an sdditional
'convection' term which accounts for the transport of heat
by means of the local fluctuating velocity and enthalpy
fields.

To proceed further it is necessary to replace the en-
semble averages in (7) with the more easily calculable spa~-
tial (volume) averages. For this purpose it may be assumed
that there exists in the suspension a volume V, containing
a statistically significant number of particles, whose lin-
ear dimensions of O(V1/3) are therefore much larger than

the particle length scale %, yet smaller than the length
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scale L over which significant variations occur in the bulk
velocity or temperature gradients, or in the concentration

of particles. The suspension is statistically homogeneous

on this scale, and the ergodic hypothesis may be invoked

to replace the ensemble averages of (7) by volume averages,

i.e.

@) - @) =5 {V 959V

These volume averaged quantities clearly vary only on a scale
of 0(L). They are thus point quantities with respect to the
overall macroscopic description of the material, and for this
reason we may concern ourselves only with macroscopic veloc-
ity and temperature fields which vary linearly in space,
The local fluctuating variables, €.8. Q; vary randomly over
distances of o(%) due to the random nature of the position
and motions of the particles in the volume element V.

With the above conditions of statistical homogeneity
on the scale of 0{V) satisfied, the ensemble averages of (7)

may be replaced exactly with volume averages to give

0 = &)+ L) | (8)

Expressing the averaging symbols in terms of the appropriate

volume integrals, and dividing the averaging volume into its
component parts, ZVO and V~ZVO, representing the sum of the

volumes Vo of the individual particles and the volume of the
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surrounding fluid respectively, we obtain

0 1 f v o+ X J QCP
0, = = q.dv + = g.dv + —% f ulrT'av
T Vigapy 1t Vilgy 1 Vo yopy *
O O O
(9)
pTC
+ ““\7‘9'[ ulT'av
Y
O

Here, the enthalpy of the fluid and particles have been

exprassed as

h = p1C T (10)

fluid hparticles p

where p is the density of the particles and fluid (assumed

= pC T ;
P p

equal), andT(i)and(f are their respesctive heat capsacitiss,

P
We have assumed these material properties are constant, in-
dependent of the tempsrature, so that they may be taken out-
side the integral in (9). In the more general case they
would be included inside the integral. We assume that the
microscale conductive heat fluxes in the fluid and particles

satisfy a simple Fourder law for heat conduction, with

scalar conductivities k and mk respsctively, Then

% j q,av + % f q,av = - £ I vTav
V-3V TV V-5V
O 6] 0]
- %? J yrav . (11)
IV
o]

Here, again we have assumed the physical properties k and
mk are independent of temperature, and may therefore be

tasken outside the volume integrals as constants. We ma
g



rearrange (11) to the form,

- % J VTav - 2; f VTav =
v-1v v
e} O (12)
- % f vTAv + kii%@l [ VTdV
v NY

Similarly the volume integrals of uiT' may be rearranged,

oC pTC pC
mv‘g [ uiT'dv + —*\7‘8 { ulT'av = —"\']‘Q j \liT‘dV
V-1V vt \
o) o)
QCD(T~1) (13)
L J SuiT'av
’ v
Thus the expression for the bulk heat flux becomes
; - pC_(1t-1)
Q. = -k 28 + Kil m) j VTAV + —Ee J ulrT'dv
1 90X, v - v i
ki Y IAY
o o
oC (14)
+ —E f ulT'av
by
wher83£§~ = Qﬂ?, is the bulk average temperature gradient.



Before explicitly discussing the evaluation of the integrals
in (1) 1t is useful to consider the terms in this general
expresgaion in some detail. The first term on the right hand
side of (1l4) is just the conductive heat flux which would
exist in the absence of the particles 1f the same average
temperature gradient were maintained. The remainder of the
terma represent the additional contributions to the bulk

heat flux due to ths presence of the particles.

The expression (1) for the bulk heat flux may first
be considered for a suspsnsion which is completely motion-
Jess. 1In this case, the last two terms are identically zero,
and the bulk conductive heat flux differs from that for pure
suspending material only when the conductivity of the
particles differs from that of the suspending material (m#l),
and in this case Q; will depend not only on the conductivity
ratio, but also on particle geometiry, concéntration, relative
location, and orientation distribution, For a stationary
motionless suspension this microstructural description will
be determined by the process of manufacture,

It is generally expected that the flux of hsat in the
stationary suspension may be related to the gradient of temp-

erature by an 'effective' conductivity tensor Kij definsd by

o/

T (15)

X,
J

Q, = K, .

|

L)
Q/
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When the suspension is locslly isotropic this tensorial de-

scription will reduce to a simple scalar Fourier law for the

heat flux Qi = 38 . To show that such a description in

Bxi
terms of an effective conductivity tensor is possible for
the general stationary case we merely note that the steady
state microgtructural behavior of the system is described,
in both the continuous and dispersed phases, by the Laplace

equation for the microscale temperature distributions:
vir =0, v, =0 . ~(16)
c d ,

T, represents the distribution of temperature in the con-

c

tinuous phase and Ty the distribution in the dispersed
particles. Since these governing equations are linear,

we may decompose the solution for any arbitrary imposed
. 00 % . ?
temperature gradient,  x-— 1., = I a.1. .,
: Xj ] 3 33
: : : A (3) (i)
into three corresponding solutions, called here T - T

is the solution resulting from the component g gradient in
]

the X3 direction. The complete microscale temperature dis=-

tribution is merely the superposition of the three component

()

solutions. The solutions, T , are each linear in the

strength of the gradient aj’ and may be written as

) (1) 7
T = ¢. F (xl,xz,x3) . (17)
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The relation (1l) for the stationary case i3 also obviously
linsar in T, hence the total bulk heat {lux Qi may be ex~
pressad as the superposition of the resulting hest [luxes,
Q(g}, for each of the component problems. As a result of
this linearity we may evaluate the individusl comﬁonents of

the tensor K, by the formula

J
{(3)
Q Q. X
o i i (m-1) J (3)
K., = - == - X -~ s, . + vrF 3 gy (18)
ij OLJ (xj i v -

(g) depands on aj. For a given microstructural

state, the effective thermal conductivity will thereforse be

gsince only Q

a unique, materisl property of the stationary composite.

In the presence of flow ths situation becomes congider-
ably more complicated. Not only are the geometry, location,
end orientation of the particlea important, but the bulk
conductive heat flux, Qig depends critically on bhoth the
type and strength of the flow. Indeed, even when ths thermal
properties of the dispersed and continuoug phases are iden-
tical, the presence of the last term in (1) suggests that
the existence of flow may altar the bulk flux Qi from that
of the motionless composite. The bulk conductive flux Qi is
a function not only of the material, but also of the flow.

In the gsneral case, the presence of flow has two dis-
tinct, though related, effects. First igs ths flow-induced

change in the local temperature distributions for a given



21

microatructural configuration by the action of local convec-
tive heat transfer. As the local temperature distribution
is altered, =so are the contributions from each of the
thres volume integrala of (14). For a given microstructurs,
the local temperature field will respond to any variations
in flow or temperature conditions on a time scale which de-
pends on the thermal properties of the two phases and the
nature of the flow or bulk temperature profile will general-
ly induce a transient response in the heat flux. At steady
state the heat flux will clesrly depend dirsctly on'the
strength and magnitude of the flow, since both the local
temperature fields and the volume averaged quantities
LuiT are directly influenced. The flow has a further
effect, however, in that the hicrostructure of the suspen-
sion is related to the flow. Changes in the flow will thus
produce transients in the response of the system on a second
time scale associated with the establishment of the result-
ing microstructural configuration. As noted previously the
bulk heat flux ig sensitive to the shape, motion, orien-
tation, and configurational distributions of ths suspended
particles. For example, rigid nonspherical particles under-
go flow-induced rotations, causing changes in the orientation
distribution from that for the motionless composite and de-
formable particles may expsrience changes in shape due to
hydrodynamic interaction with the surrounding fluid. In

both examples, the effects depend critically on the type of
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bulk flow which is imposed on the material, resulting in =
dependence on flow type of the bulk heat flux Qj. Theae
hydrodynamically induced changes in microstructure are all
deterministic (initial-value) procsesses, thus conferring on
the bulk conductive heat flux a perfect 'memory' for past
microstructursl statsa of the material. In any real suspen~-
sion thess flow-induced changes in the microstructurs are
resisted by one or mors 'restoring mechanisms, such as rota-~-
tional Brownian motion or particle elasticlty, which would
maintain the equilibrium or rest configuration in the absence
of the flow, The existence of a mechanism which acts to
restore the rest state of the material on a finite time
scals insures that this memory is 'fading' in the sense that
the dependsnce of Q3 on the recent microstructural states

is stronger than its dependence on earlier states., The
steady state microatructural configuration will represent 2
balance betwean the hydrodynamic and restoring mechanism
forces. The dependence of this microstructural state on the
type of flow, and the relative strengths of the flow and re-
storing mechanism will regult in bulk heat flux dependence
on the type and strength of the flow, ths thesrmal properties
of the particles and fluid, as well as those gecmetrical and
mechanical properties of the particlea and €lnid wnich play
a role in thes restoring mechanism,

We shall only be concerned with steady state situations
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in what followa, for even in thisg simplified situation thers
will be considerable complexities in the constitutive behave
lor of the flowing suspension, The results obtained for a
specific type of flow, consequently the thermal transport
properties of a flowing composite will therefore no longer

be a unique property of the material.



2l

2) Bvaluation of the general relation in the cage of dilute

conegntrations

Having made these general statements regarding the in-
terpretation of the various terms in (14) we may now consi-
der its evaluation for certain cases, It is convenient to
seperately congider the particle contribution to the f{lux,

denoted by Qi, defined by

~ pC_ (t=1)
o = k(1-m) ( vTav + —Bo u'lTray
1 v . v 1
J >‘\70 FV
pC
e jvuirr‘dv : (19)

We may further define the average contribution per particle
ﬁ? by simply dividing the contribution Q? by the number n
of particles in the averaging volume V

6§ S 0f/n . (20)
Although in the gsneral cass, ths contribution Q? depends
on the configuration and orientation digtributiona of all the
n particles in the voluma V of the suspension, 1t has been
the assumption in much of the previous work on suspension
problems of this general type, that for small concentrations,
the flux could be exprsssed as a series in integral powers
of the volume fraction $. The first, 0(f), term was calcu-

lated by assuming the particles were non-interacting. Single

particle problems for ths microscale fields near a repressn-
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tatlve particle could then be solved and the bulk properties
related to this single particle solution. Highsr order (ﬁm)
corrections wers then caleulated by considering succeaalvely,
m=particle intsractions. In order to establish the exact
circumatances under which this method of evaluation of the
bulk properties was valid, as well as to clear up certain
amblguities ariging in the evaluation of each of the m-
particle interactions, Jeffrey (197l ) rigorously developed
an expansion technique for the evalustion of the succesive
#" corrections. We shall only be concerned, here with the
result obtained for the non-interacting particle case. As
long as the configuration end orientation distributions are
established by hydrodynamicinteractions, with or without ths
additionel effects of Brownian motion, Jeffrey demonstrates
that the 0(#) correction to the heat flux may be calculated
by consgidering an isolated particle immersed in a flow and
temparature field corrsaponding to the bulk average values.
If the particles are all identical, and have exactly the
aame deterministic orientation and motion, then values ob-
tained for the integrals is (19) upon substitution of the
gingle particle, deterministic, fields may simply be multi-
plied by the number of particles in the volume V to obtain
the contribution Q? to the flux., Often it will be the case
that the particles are small enough to be subjected to ths
influences of random Brownian motions. The motions and

orientations of the individual particles will therefore bs
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of a2 random nature, aboul which we will only have statis-
tical knowledge. In this case the individual single parti-
cle contributions are not equal and @? must still ba re~
garded as the averazs contribution per particle. Becsgusse
of the assumption that the volume V contains a statisticale
ly large sample n of particles, the average contribution
per particle can be calculated either as the ensamble av-
erage over all possible realizations of the aingle purticls
problem or a3 a long time sverags for the single particle
problem; both averages being identical to ths value ob~
tained by dividing the total contribution Q? by the number
of particles, according to the ergodic hypothesis. We may

therefors express the bulk heat flux Qi for the dilute case

as

where, using the relation n = %y, \Y% being the volume of

each identieal particle,

v - pC_(1-1)¢ o
Qi - E(\lr m) ¢ [ VTay + mwgv_—m j uiT'dV
‘o \Y o) A\
o o
pC ¢
P O N (22)
Vo v

s

The final volume integral is evaluated in the limit
V + «, and the overbar over the integrands indicates that

the quantity must be considered as an appropriate statis-
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tical average of the quantity. A more detailed discussion
of the treatment of (22) in the preaence of Brownian motions
of the particlss will be delayed until a little later.
Application of the Gauss ~divergence theorsm to (22) sllows

ug to write

oC_(t-1)

< - ] T
nr = BTG T Sehan 4 alT Ay
h \Y 1 v i
o] A o) v
o o]
oC_a
v —22 [ vy (23)
\Y% ] i
o) Voo

Here, Ay is the surface of the particle and ng the i-com=-
ponent of the unit-vector normal to the surface directed
outward. We shall drop the Ooverbar in the following, un-
derstanding the integrals to bes averaged, snd nondimension=-
a2lize the quantities in (23). We nondimensionalize lengths
with respect to the characteristic length scale of the par-
ticle, 2. Arvreas snd volumss are therafore nondimension= .
alized with respect to a velocity scale Vc characteristic

of the bulk motion. As we are primarily concerned here with
simple shearing motions with shear rate y, the characteristie
velocity scale is U, = vi. The governing differential
eguations for the microscale temperature distributions in
the particle and the suspending fluid are linsar in T, as

is the bulk heat flux relation (23), so that we may sepa=

rately consider gradients in each of the principal direc=-
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tions, l.e. T(j) = ajxj (no summation implied). A
characteristic temperature scale is therefore ujﬂ. In terms

of nondimenaional veloecities, temperatures, areas, and

volumes, (23) is then

(3),
Q. _ . (1-*1)?8 (1) .
~l.k = (lvm)¢ J n.T(j)dA + V_““gm uiT(])'dv
o) o - o v
o)
Pe ¢) " :
TR St [ arr 37 ay (24)
\Y 1
O Vo0

whers the Peclet number for the microscale advective~-diffu-

sion heat problem, based on fluid properties, is
2

Pef = ES%;ﬁw .

For the stationary case we found that the bulk heat
flux could be expresgsed in terms of an effective conducti-
vity tensor that was a unique material proparty of the aps-
cifie composite; The existence of a bulk flow has noi only
added the complexity that the bulk heat flux is no longer
a unique materisl property, but has apparently precluded
the sxzistence of an effective conductivity tensor for the
specific flow being considered, The differential equation
describing the local distribution of temperature cannot
be satisfied for a linear bulk temperature distribution hav=-
ing any component gradient in the direction of flow, since

the far field boundary conditions do not satisfy the ad~

vective~diffusion equation for any non~zero Peclet number,
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The requirement that the final volume integral in {2L) be
taken over a volume tending to infinity requires, therefore,
the consideration of the exact bulk flow and temperature disg-
tributions, not just their linear (first derivative)} parts,
so that the governing differential equation may be satisfied.
In the case of simple shsaring flow, we ars limited *~ ths
ronsideration of temperature gradients orthogonal to the
flow. The resulting heat fluxes are linearly related to the
gradients of temperature in the two principal directions
orthogonal to the flow direction, snd the gensral case of

an arbitrarily orilented temperature gradient in the plane
orthogonal to the flow may be considered by superposition

of the flux resulting from the two component gradients.

It will therafore be convenient to express a psrticular com-
ponent of the bulk heat flux in terms of the proportionality
constants hetwsen the flux and the particular tempevrature
gradients, which will be referred to as particular effective
conduetivities, To emphasize the critical distinction be-
tween the flowing and stationary cases we summarize the
differences caused by the motion of the suspension:

1) The motion of the suspenaion introduces the addi-
tional mechaniam of convective transport of heat on
the microscale,

2) The microscale structure of the suspension will be

influenced by the nature and strength of the flow,
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as well as any mechanisms tending to restore the
structure to an equilibrium sfate,

The bulk heat flux cannot be expressed in terms

of an effective conductivity tensor since the
existenca of locally non-orthogonal, linsar, velo-
city and temperature fields on the bulk scale,
violates the governing differential equation on

the microsacale.
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3) The effects of Brownlan motion

We have seen that evaluation of the particle contri-
bution to the bulk heat flux, Qi’ reducesa to evaluation of
the average value, for an isolated non-interacting particle,

of the integrals

- ¢ pC_(1-1)9¢
Qi = EL%TELQ ) VT dv + ~«ET7-,~W j uiT' av
o) JV e} \Y
o] el
oC_¢
+ ~rEv [ ulT' av o, (22)
\,O J v—-)-oo

where the overbar indicates averaging of the integrand over
an ensemble of possible realizations of the isolated par~
ticle problem, If the single particle problem is complete=
ly deterministic and all the particles have identical size,
shape, and orientation, then evaluation of the average is
equivalent to determining the values of the integrals for
the deterministic one particle problem. If on the other
hand, the particles are small enough to exhibit significant
Brownian motions, then the single particle problem will no
longer be deterministic in nature. In particular, ths
orientation and motions of the particle will exhibit a ran-
dom component, and the effects of thess random motions on
the bulk heat flux must be accounted for in some rational
manner, Fortunately, this can still be done within the

general framework of equation (22).
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Brownlian motion is a reflection of the essentially mo-
lacular nature of the suspending fluid at the scale of the
sufficiently small particles. Nevertheless, it is not nsc-~
easery to completely surrender the bsnafits of a continuum
model for the suspending fluid in order to model the Brown-
ian moticns of the particle. In the present context, our
concern is not merely with the random motions of the parti-
cles, but the resulting fluid motions and temperature var-
iations es well, Thus, the usual treatment of Brownian mo-
tion by the addition of random or fluctuating forces to the
gsystematic hydrodynamic forces in ths equation of motion for
the particle (i,e. the Langevin equation) is unsuitable for
our prasent purposes. An siternative whicn ‘ieces satisiy our
objertivaeg, ard ctijl retuina s continuum view of the sve~
pending fluid, is the theory of hydrodynamic fluctuations,
described by Landau and Lifshitz (1959) and recently ex-
tended to include Brownian motions of a particle by several
investigators, i.e. Fox and Uhlenbeck {(1970), Chow and Her-
mans (1972), Hauge and Martin-Ldf (1972), and Hinch (1975).
For convenience, we shall refer to these works as FU, CH,
HML, and H respectively.

The main assumption of the theory of fluctuating hydro-
dynamics is that the governing continuum equations of motion

and thermal energy are valid for the complete problem, in-

cluding fluctustions in a8ll the independent variables.



31

Fluctuations in the stress tensor and heat flux vector occur
not only due to the fluctuations in the velocity and temp-

erature gradients, but also as a result of spontaneous lo-

cal stresses and heat fluxes, denoted by S and 3, which are

v

independent of each other, and of the local velocity and

temperature gradients (c.f. Hinch 1975). The quantities

v-s and V‘% drive fluctuations in the other hydrodynamical
ang thermal variables, and these fluctuations in the fluid,
away from any macroscoplic boundaries, are regponsible for its
disaipative transport properties. Relations between the
statistical properties of s and é and the continuum trans-
port parameters such as yu gr k, are contained in so~called
fluctuation-dissipation theorems which may be derived from
certain postulates of non-equilibrium thermodynamics, (c.f.
Hinech (1975)).

The introduction of colloidal particles into the fluc-
tuating fluid introduces a possible source of random motions
on a much longer time scale than that characterizing V-s.
The key property of particles (whether solid, elastic, drops
etc.) which is responsible for these longer time scale ran-
dom motions is that they resist deformation of shape so that
at least part of the fluctuating force in the suspending
fluid can be sustainad with no local deformation. In these

circumstances, the random fluctuating forces can contribute

to random translations) and rotational motions of the par-



3

ticles, but only on a relatively slow continuum time~-scale.
For translational motion this time scale 1s a measure of the
time required for a particle to slow down following an ini=
tial impulse, and is given bym/y where m is the mass of the
particle, and v the fluid mechanical drag which ascts on it.
These random motions éf the particle will also induce ran-
dom motions in the suspending fluid with the same relatively
slow time-scale, which are superpossed on any determinigtic
local motions which may be present due to the bulk flow of
the suapsnsion. We shall refer to the random motions of
particles and suspending fluid on the time scale m/y (or
its equivalent for rotational motion) as 'Brownian’, in
order to distinguish them from the much more rapid fluc-
tustions which occur at the molecular scale.

It is thus convenient, for discussion purposes, to
split the fluid velocity and stress fields for the single-
particle microscaie problem into three parts: deterministic
contributicns G and L, assocliated with the motion of the
suspension as a whole; Brownian contributions, v and ég
asgsociated with the random continuum level motions of par-
ticles and fluid: and fluctuating parts O, gf and 3 due

g

directly to molecular fluctuations, i.e.

at

<b
+

- &Y
u = U +
(25)

+ g$+ s

Hae
-+

and

fa
it
g
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The equations governing these distributions will be charac-
terized by small Reynolds numbers for the velocities ﬁ and

v , and small amplitude for the fluctuation a%, so that the
linear Stokes equationa are applicable. As a result of the
linearization we may pose the single particle microscale
problem in a coordinate frame of reference that instanta-
neouszly is centered in the particle with axes concident to
the particle axes. The velocities in the governing e~uations
are still the velocities measured relative to a fixed coor-
dinate frame (c.f. HML).

We shall be primarily concerned here with suspended
particles whieh are rigid but not necessarily spherical. We
congider first the governing equatiohs of motion for the
rigid particle of mass m, volume Vog surface area SO, momant
of inertia tensor gp, and density p, in an incompressible
fluid of equal density p and of viscosity . The linearized

equations for the complete velocity and pressure fields in

the fluid are

29 )
Ven = 0 - XeV-V (27
L = ~PL + p(Vu + Vu")
- N AT '
c = =pl + (Vv + Vv7) (28)

f = -pfz + uvat + vt

Ha
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, and

a

Here VST is the transpose of the tensor va, and gz,
g* are the Newtonian stress tensors related to the determin-
istiec, Brownian, and fluctuating fluid velocities regpective-
ly. As a result of the linearization of the problem, we may
for convenience consgider the Brownian and fluctuating velo=-
city problems separately from the deterministic motions, the
complete velocity fields being merely the super-position of
the separate parts, Considering just the y and oF fields,
and averaging the governing equations (26) - (29) over the
time scale §t - m/y characteristic of the relatively Slow

Brownian motiong of the particle, we obtain:?

a
oV 2
0o f < Vp + uvVv v (31)
A
xeV-V
O
Vev = 0 (32}

Comparison of (31) and (32) with (26), (27) end (28) shows

that the fluctuations satisfy the equations

~ )

; %%5 = —vpt + w7 Gt + veg (33)
XEV--VO

v.aft (34)
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Wa note that the time derivative must be included in the
averaged equation (31), as was first pointed out by Lorentz
in 1911, and recently restuled by Zwanzig (1972}, CH, HML.
and Hiren, JSubstitution of a typical Stokes law drag for-
mula v ~Apg for steady motion, into the expression m/g
for the characteristic decay time 6t shows that the latter
is precisely equal to the time for vorticity to diffuse
over the length of the particle, 22/\)f » whare Ve is the
kinematic viscoaity of the fluid. The flow, 3, induced by
the Brownian motion of the particle can therefore not
possibly be stesady when viewed on this time scale, and un-
steady contributions to the particle drag must be as impoure
tant as the gteady viscous forces.

Boundary cordi*ions for the Brownian field 3, are that

it vanish far from the particle
5.
v o0 o, x| e | (35)

so that the total velocity field 2 simply reduces to the de~
terministic macroscopic undisturbed velocity at infinity.
At the particle surface, the Brownian velocity additionally

satisfies the no-slip condition,

S - _ [/ N S -~ (36)
v = vp = D + prx P xeSO .
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Here, the motion 39 of any point inside the particle hss
been split into a translational motion Vp of the center of
mass, and a solid body rotation of the particle given by

I 3
its angular rotation w (3imilar to the fluid velocity

p »
-
U ywe have considered the particle velocity distribution
Gp to be composed of a deterministic, 6 , and Brownian part.
P

The deterministic motion ﬁp may also be split into a trans-
. N " . - - -~ Y
lational and rotational motion, defined as Up = up + QpAX.)

The fluctustions are required to be bounded every-

where, and to vanish on the particle surface.

oF
ut = 0 X6 8 (37)
o

This last condition is & result of the fact that the par-
ticle cannot itself move on the short time gcale of fluc-
tuationg in the fluid, coupled with the no slip condition a%
the particle surface. The fluctuating motion of the fluid
is thus sean to derive from the divergence of the fluc~
tuating atress tensor s. The particle moves on the longer
continuum time scale, ;nd its motion results in random
motions of the surrounding fluid due to the condition (36).
A4 direct result of the splitting of the governing equations

into the f'Brownian' and fluctuating parts is that the guane

tities in {(31), {32), (35) and (36) are independent of

thoae in (33), (3} and (37), (HML). The formulation of

the problem is completed by specifying equations for the



particle velocities, Up and ap, These are simply the

equations of motion for the particle

av R L
n ol = F(4) = n*(qc + g? + g)ds . {38)
dt P - = = =
\)O
dh)r) = A > ~
Jp —+— = M (t) = J xA{n+ (G + oFf + s)ds . {39)
=G ol o = = =
g)o

Here, in the absence of externslly applied forces and cou=-
pleg, the force ?p(t) and torque ﬁp(t) on the particle ars
equivalent to integration of the stress over the surface of
the particle. Hinch (1975) has clearly demonstrated that
the spontansous fluctuating stress s must be allowed to

act on the boundary of the particlet as well as in the fluid.
Equations (38) and (39) can be written in the form of gen-
eralized {Non-Markovian) Langevin equations, (HML,H).

The friction tensor of the equation is fownd from the zo-
lution of the average problem (31), (32), (35), and (36),
and is8 known for simple particle shapes such as spheres.

A fluctuation ~ dissipation theorem may be constructed re~
lating this friction to the spectrum of the fluctusting
forrce on the particles, [vom which the statisiical nro-

. . - . -
pertiss of the moliornsy Op and L%)may be calculated. VFinally,
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for a time scale very long compared to the Brownian time
gcale 6t, the description of the motion of & particle re-

duces to the traditional Einstein-Smoluchowaki theory of
Brownlan motion, with the only parameter describing the evo=-
lution of the particles position or orientation distribution
being the diffusion tensor, D

=BT
As we have previously seen, this long time average is pre-

» defined over the seme space.

cisely the average denoted in (22) by the overbar. Even
on the shorter time scale, the average of the fluctustions
of is zero, 80 that averaging of the total distributions G,

2
u, over the longer tims=-acale results in

3

= U +

=24
|
<l
S vl
n
Sl
+

(40)

The most important implication of these relationships is

that the random Brownian velocities ¥ and Gp will have a non~
zero mean on this long-time-scale, whenever there exiat
gradisnts in the statistical distribution of psrticle con-
centration or orientation. Having made the assumption of
local homogeneity of the concentration @ in the pressnt work,
only longer-time-scale or 'mean' valuss of 7 and 3p result-
ing from gradients in the orientation distribution will be
of concern hers. For example, if we consider axisymmetric
particles which are characterized by a rotational diffusion
coefficient, Dr’ the mean velocity fields 3 and cp are those

associated with a rotation of the particle in the orienta-

tion apace Bg st a rate
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€ vl

= =D _73lnF(d) (41)
“Br

in a quiescent fluid. Here F ( 4 ) is the probability den-
sity function for particle orientation, which may be obtained
by solution of a Fokker~Plank equation representing the
compatition between purely hydrodynamic and Brownian ro-
tation, (ses, for example, Hinch and Leal (1972) who have
considered the orientation distribution function F(8,d,)
for rigid spherocids in a simple linear shear flow). For
future raference, we denote the parts of 3 and $p wnich have
zero mean relative to the long tims average 2s $% and ?p,
i.e.
E}i' > S

+ ok v+ 42
v ; v = v v &
D p D (42a)

A second implication of (LLO) which may appear surprising at

3.
first is that the average g is not simply U. TInstead, in
the presence of Brownian rotation, the velocity field 5 is
the fluid motion induced by the deterministic rotation of
the particle and the imposed bulk motion of the suspension,

caleculated as a functlion of the instantansous particle

orientation, and then averagsd with the probability dene-
sity function for orientation as s weighting factor. The
difference between these mean velocity distributions g

and apand the instantaneous fieldai3 andi%) will similarly

be denoted by U amiap*, i.e.
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Having formulated the description for the velocity
distributions we now consider the effects of fluctuations
and Brownian motions on the temperature distributions in
the suspension, and on the hsat flux Qi‘ We begin with
the governing aquations for the temperature distributions
in the suspending fluid and particle. The basic eguations,
including the fluectuating nature of the velocities in the
fluid and the fluctuations of temperature and heat flux

in both the fluid and particle, are

foT > 2 > >
Ned e 'RYAIL == — . - 4
chlat o .ﬁ} kvoT Vg XeV-V (43)
ntC {ifﬁ + i AV T } = mkV2T - v-S icv (44)
pl ot PP p p o

in whieh T and Tp denote the temperature in the fluid and
particle resgpectively, and g and 5; the corresponding fluc-
tuating heat flux vectors {(c.f. FU). We restrict ourselves
to temperature fields that are everywhere bounded and con-
tinuous, so that the boundary conditions at the particle

surface are



- D (K9T - g) (46)

jo
E)
y
<1
5

!
Q)

Analogously to the tempsarature problem, we have allowed the
fluctuating hest fluxes § and gp to act not only in the
fluid snd particle, but also across the boundary.

The most convenient procedure at this peint, is to
simply expand the temperaturs distributions as & sum of
three parts, 8nalogous tg the expansions for the velocity

fields,

=T+ T + TT

(47)

The last terms in these expressions are the temperature

5N 3
fluctustions arising from g and gp, which vanish identically
when averaged over the Brownian motion time scale. The

remaining two terms in each expansion, T and Tp are Brownian

motion contributions defined in suvuch a fashion that

T =T =0 . (48)
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The physical significance of the 'mean' temperstures T and
Tp will become evident shortly. To proceed further it is
necegsary to subatitute the expansions (Ii7) into the gov~
erning equations {43) and (k4li) and the boundary conditions
(4S) and (L6), linearized for the small amplitude fluctua-
tions, and average over the Brownian time scale, Tnis ra-

sults in the equations

ocp{ﬁiligl ol ) ev(T 4 %)} = kV3(T + %) (49)

ot
XeV—VO
8 . ~ o, .Y
01C {5 (T_ + T + (U + . =
p{Bt p pl T v VT Tp)}
mkvz(T + T ) ;€V (50)
P p e

with ths mateching conditions at the surface,

T +T =T+ (51)
xXeS
0

N ~ Y
mn~V(Tp + Tp): n+V(7T + 1) . } (52)

and the condition that the temperaturs distribution bacomes
merely the macroscopically imposed distribution far from
the particle, 1In terms of a coordinate frame that 13 at
any instant centersd in the particle and asligned with its

axes, we will find that the outer boundsary condition is in
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general a function of tima (due to the changing position
and orientation of ths particle) so that this condition be-

comes,

T+ T =T (x,t) as [;l > oo (53)

- bulk

Comparison of equations (49) -~ (53) with (L43) - (L6) shows

that the fluctuations satisfy separately,

i
. D 2_% -
oTCp{—aé} = mkV Tp - Vgp {54)
. ot = w20 S
OCp ~5~* = kV™TT - Vg {(55)

subject to the conditions that T*, Tip, § and é are every-

p

where bounded and that at the surface

ot o
ot =y (56)
§€S
o
S (mkITE - o 2 2 2
n-.mAVT? - qp) = n+* (kYT" - g)j (57)

We note that the separation, like that for the velocity

problem, means that the quantities in (49) - (53) are in~
dependent of those in (5L) - (57). Further we note there
is no systematic temperature distribution induced by the

purely random fluctuating heal [iuxes % and ?p. Tnoge
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heat fluxes mersly drive fluctuactions in the temperature
distributions both inside and outside of the particle, which
producs no measurable effect on the bulk heat flux. The
temperaturs distribution insids the particle, unlike the
corregponding vesloeity of the particle, can react on the
much shorter time-scale of the fluctuations, resulting in a
coupling between ths fluctuations in the fluid and particle,
but no systematic heating or cooling of the particle on the
time acale St. The random portions of tha more slowly
varying composite temperature fields, T + T and Tp + 5p
thus exist solely as a result of the Brownian motions of
the particle in a non-uniform ambient temperature distrie
bution (i.e. from the condition (53)).

To perform the final averaging over the longer-time
scale denoted by the overbar it is first necessary to sube
stitute the expansiona for the mean and ‘random' velocity
fielda (L2) into {(49) and (50) and formally expand the op=-
erators. We then obtain

pC ar + o7 + g-VT + §~VT + ﬁ*'VT +ovReUT o+ 5-V%
pi{ 9t at ‘

2

P A ~ N ~ 2 -
+ YT 4 FeUT + yw*eYT = kV T 4+ kKV'T (58a)

A
xe V-~V
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QTCP{ s o + Up vT + vp vT + Up gT + vp vT
=~ 3 RS ~ N ~
+ Up-VT + veYT + U*-YT + v*-VT}
= k2T 4+ mkyoF (59a)
D P

We may now perform the long time gcale averaging, remem-
bering thatT, T , 3, 3, ﬁp and 3 are already averaged

P
guantities, and that the fluid and particle are incompresa-

ible., The resulting equations for the mean temperature

fields are then,
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. 5T > kY 3 2 Bl A~
ocp{ T + (U + v) VT} = kV*T - pCpV~(UfP+ V*T)
A-.
}’.rV’-VO (60a)
37 — -
A p - X 2
0 1C e (U + v ) -VT } = kV°T
P{ t P p P p
coe@E v iy 3
— [‘ . T m - .
o) pV pp Vp b xtvO (61la)

Before explicitly discussing the interpretation of the
various terms in sequations (60) and (61) it 1s useful to
nondimensionalize the equations (58) and (59) and the'mean'
equations (60) and (61) in order to characterize the magni-
tudes of the various terms. For this purpose we nondimen-
sionalize all lengths with respect to the characteristic
particle length scale. There are two characteristic velo-
city scales of interest in the problem; the first being a
scale characteristic of the bulk imposed deterministic mo-
tions Vguiks, which for simple shearing motion of shear rate
v would bs Vgyui) ~ v4. It is convenient to not only scale
the deterministic motions U and Gp with this scale, but the
effective Brownian velocities 5 and gp as well. The exsact
magnitude of these effective velocitiés will be determined
by equation (41) and the probability density function Fl$)
resulting from the Fokker~Plank equstion, which similarly

i2 nondimensionalized with the velocity scale chsracteristic

of the hydrodynamic motions, (c.f. Hinch & Leal 1972)}. The
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. . . =% =% .
Purely random velocity fields V. and V_ are characterized

(KT/m)% of the

by the second velocity scale, VBrownian ~
ghort-time scale Brownian motions. These two velocity
scales will in turn vield two characteristic Peclet num-
pers for each of the equations (58) - (61). It is conven-

jent to define a single Peclat number for the fluid and

particle based on the characteristic velocity scale Vpuiks

pC_V 1) ptC V R
p Bulk . pe = p Bulk™ _ Pe

Peg = X mk & ¥

and further define the nondimensional ratio of the velocity

scales by the parameter €= VBrowﬂian, For the simple shear

vBulk

flows of interest here ¢ = (KT/p25y2 )%. The time depen-
dence of the Brownian and mean temperature distributions
are due mersly to the Brownian movement of the particle in -
the non-uniform temperature distribution, so that the times
are sealed by the characteristic times 2/Vpyjy for the mean
temperaturs distributions T, and &/Vppownien fOr the

Brownian temperature distributions T, In nondimensionsal

terms, the equations are
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~ - = > -
Pef{ %% + G‘VT + ve¥T + ﬁ* vT + G'VT + J'VT 4+ U*xeyT
3T . 307 4 k. o2 o2
tE] ae bV VT + v*-VT|¢ = VT + VT (58Db)

N
XeV-V
o

=
3
32
+
< b
e
=3

an s B TT 4 v YT 4 DEevT 4
Pepl 3 T YT T Y e T YT

9T
D + **.\ b*- ~ == 2 + Vz%
rr vD JT -+ vp V%J} v Tp b

{
J—

x eV (59h;
o

and the mean equations,

2 IR K
VT - Pef Ve(u*T)+ V- (v*T)

i

Pef{ 3T 4 (i + $)-VT}

§€V~V (60Db)
o

o T = Y ) A= i
Pe { £ 4 (U o+ VB)'VT } = VT~ Pe {-V(U*T )+ eV (v*T)
p P P P PP

D
xeV-V (61h)
c o
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The long-time mean temperature fields T and Tp, defined
by (60) and (61), would reduce in the absence of Brownian
motion (¢ -~ 0, D, +0), to the local deterministic temper-
ature field near a single particle. This mean temperature
distribution is affected by Brownian motion in three dis~
tinct ways: first, the deterministic fluid motions in the
mean convection term is weighted with reaspect to the or-
ientation distribution for particle orientation, which is
itself affected by the Brownian motion; second, there is an
additional mean convection velocity which corresponds to
the effective particle rotation due to Brownian motions in
the presence of gradients in the orientation distributiong
and third, there are additional convective fluxes of heat
associated with the long-time corrslations of the (zero-

mean) velocity and tempercture fields: ﬁ*%, 3*5, ﬁgfﬁ,
- b
and 3;ip - We may note that in the absence of bulk flow

w
both U = 0, and the mean field V = 0, the latter becruse

the orientation distribution will then be uniform at steady

state. However, the added flux terms U*T and SET
will parsist even if the suspension is macroscopically ata-
tionary, provided the particlea are free to move sabout in
the suspending matrix.

These Brownlan motion effects on the microscale temp-
erature distribution will similarly be reflected on the

bulkscale through equation (22). Substituting the expan~
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sions for the velocity and temperature distributions in-

side and outside of the particle and performing the aversages,

we obtain

- 9T for §av (62)
o o
> > 3 T E ) + U*T  + VT
h (Up + Vp bulk)( 9 l‘b 1k Be Vp 0
-~
weV (63)
0o+ v -0 T O*T + I%
(v = Uy ! Tpuik! * v
-3
XeV-V (64)
o

With these expressions, the calculation of the particle asso-

ciated bulk heat flux Qi may now proceed in principle. From

equations

(38) and (39) the statistical propsrties of the

particle Brownian motions may be calculated. The orienta-

tion distribution is calculated from the Fokker~Plank equa-

tion, and

the mean Brownian motions from (41). The fluid

Brownian velocity fields for arbitrary orientstion and mo~

tion may be calculated from (31) and (32) along with the

voundary conditions (35) and (36). From equations (58) ~

(61) one may then in principle obtain the temperature dis-

tributions resulting from any arbitrary orientation and

motion of

the particle, which may then be statistically

averaged with the known probability density functions for
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orientation and velocity of the particle, to obtain the
mean temperature and micro-convective contributions (62 )
(6L,). The spatial volume averages of (22) may then be e-
valuated to obtain the thermal constitutive behavior of the

sugpension,
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The Lffect of Deformation on the Effective Conductivity
of a Dilute Suspension of Drops in the

Limit of Low Particle Peclet Number

T. J. McMillen and L. G. Leal
Chemical Engineering
California Institute of Technology

Pasadena, California

Abstract

The effective thermal conductivity of a dilute suspension of slightly
deformed droplets is calculated in the limlt of small particle Peclet
number for the uadisturbed bulk shear, u = Yy, and the llnear bulk tempera-
ture gradient, T = oy. The theory is based upon the general relationship,
derived by Leal (1973), between the bulk heat flux of a dilute suyspension
of particles and the microécale tenperature and veloclty fields, Two distinct
cases of small deformation are considered; deformation dominated by inter—
facial tension forces, and deformation dominated by viscous forces in the
drop. The mlcroscale velocity and tesperature fields are obtained as regular,
asymptotic expansions in the small deformation parameter, €. At each order
in the deformation parameter, €, the governing thermal energy equation 1s
then solved for small Peclet using the methods of matcged asymptorlc ex—

pansions.



INTRODUGTION

Leal (1973) has considered the effective conductivity of a dilute sus-
pension of neutrally buoyant spherical drops in the limit of low particle
Peclet number for the case of a simple bulk shear flow (u = Yy, v = w = 0)
and a lineavr bulk temperature distribution (T = ay). A general expressions
was presented relating the effective (bulk) conductivity of the suspension
to the microscale velocity and temperature fields assoclated with each
individual particle. Using this relationship, the effective conductivity
was evaluated for Re << Fe << 1, with the velocity fields obtained from
the classical creeping flow solutlon of Taylor (1932) for a spherical drop
in shear flow, and the microscale temperature field calculated using the
method of matched asymptotic expansions.

Provided that either the surface tension or the droplet fluid viscosity
1s sufficiently large, the solution of Leal will provide an adequate first
estimate of the rodification of the effective conductivity due to the pre-
sence of fluld droplets in a flowing suspension. Of course, the droplet
shape will never be exactly spherical in any real system, and in some in-
stances the deviations from a spherical shape may become quite large, so
that one may logically ask whether the assumption of a spherical shape has
any major influence on the results for the effective conductivity. In par—
ticular, ir was found in the earlier study that the first order modification
in the local temperature field due to the fluld wmotion actually makes no
contribution to the bulk conductivity, which is only f?nally influenced at
0(Pe3/2). Since this result 1s essentially caused by the symmetry of the
problem, it might be expected that the dependence of the conductivity on
Peclet number would be altered fundamentally when the shape is allowed to

deviate from spherical. In the present communication we conslder only the
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case of small deformations of the shape due to the action of the lmposed
shear field. The effects of the deformation on the mlcroscale velocity

and temperature flelds are obtained as a perturbation expansion in tcrmé

of a small parameter £, following the basic method of Cox (1969). The per-
turbed temperature and velocity fields are then used to calculate the effec-
tive conductivity of a dilute suspension of such slightly deformed droplets.
There are two separate physical cases of small deformation; one in which

the interfacial tension forces overwheln viscous forces (e ~ aypfo << 1),

and the other where viscous effects inside the drop predominate (& &~ 1/A <<1).
Here p is the viscosity of the suspending fluid, A the ratio of internal to
external viscoslities, a the undeformed radius of the drop, and O the inter-
facial tension. The case when both effects are the same order of magnitude
will not be considered. 1In the followlng analysis all lengths have been
nondimwensionalized by the undeformed radius of the particle a, all velocities

by the characteristic velocity va, and all temperatures by Qa.



THE PARTICLE SHAPE, LOCAJ, VELOCITY FITLD, AND TEMPERATURE DISTRIBUTTON

Following Taylor (1932}, the nondimensional equation for the surface

of the nearly spherical drop may be expressed in the form
- . 2
r =1+ ef(8,¢) + 0(e7) (¢))

with respect to a spherical coordinate axis system (r, 0, ¢) which has its
origin at the geometric center of the drop. The precise nature of the de-
formation parameter € and the shape function £(6,%) depends on the rhysical
1imit which is considered. For the case of dominant surface tension forces,
Taylor has shown

_ ayu {191 + 161 _ 5
c o [16). + 16} i £(0,9) = sin"® sinZd 2)

on the other hand, for dominant internal viscosity the corresponding results

are (Taylor, 1932),
2
€ = == 3 £(6,0) = sin" 0 cos2¢ (3

The creeping flow velocity fields outside and inside the drop may be rep-
resented, in either case, by the asymptotic expansions

" sﬁl + 0(82)

] 1

2, 2
= u <+ Eu

a
= u

%)

el et

+ 0(e%)

The functions Go and ﬁo are the solutions for a spherical drop as given by
Taylor (1932)--see also Batchelor (1967). The 0(g) solutions for the surface
tension dominant case were glven by Chaffey, Brenner, and Mason (1965). The
0(e) velocity fields in the dominant internal viscosity limit can be calcu-

lated using Lamb's general solution of the creeping motion equations

rz(n+3)VP n??n
2 } (5)

u = !{1 {Vx(rxu) VT TEa ey (D) (2n+3)u



where Xn’ ¢n, and Pn are spherical harmonics of order n. The velocity
S =

fields u1 and u1 require only harmonics of order 4 and 2, and

these are given in Table 1 for the nondimeusional velocity fields.

Proceeding from the velocity fields (4), we now turn to the calculation

of the deformation-induced modifications of the temperature flelds inside

and outside of the drop. he governing equations, nondimensionalilzed, are
2~ 2 S
v = Pez(u - V1) (inside) (6)
2 -
VT = Pel(u - V) (outside) (7
where
2 Coy 2 c
Pe, = waE—EL H Pe, = 2 xptp2
1 K 2 k
1 2

and-the subscripts 1 and 2 refer to the suspending fluld and the fluid in
the drop, respectively. As noted previously, we shall assume that both
Pel and Pez are small. Thus, the temperature distributions are calculated
as perturbation expansions for the double limlt € << 1 and Pel, Pe2 << 1.
The expansion in the deformation parameter € is regular. However, at each
order in €, the expansion in Pc is slngular, and most convepiently obtained
by the well-known method of matched asymptotic expanslons, with the equations
in the region far from the body re-scaled in a manner consistent with the
fact that convective terms must be retained at large distances, even In the
lirit as Pe > 0.

Tn the inner region, which includes the drop, the temperature distribu=-
tion 1is expressed in the asymptotic form

T = £0(Pe)TY + £9(Pe))T) + Fo(Pe )Ty + ..
(8a)
+ a[fé(?el)'ré + O (ReT] + Ty(Pe )Ty + :I + 0(e?)
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= _ 0 =0 . .0 =0 . .0 =0
T = £(Pe )Ty + £ (Pe))T) + £5(Pe,)T) + ...
(8b)
1 =1 .1 =1, .1 =1 2
+ e[fO(Pez)To + £ (Pe,)T] + £,(Pe,)T, + ] + 0(e”)

where as usual,

fm
lim n+l >0
Pel + 0 fm
n

The precise form of the gauge functions fi(?el) is found as part of the
solution. Substituting (8a) and (8b) into (6) and (7), it may be easlly

shown that the governing equations.at the first two orders in € are

2:-0 20 =0
VT, = Pe,(u ¢ VI))
di=0,1,2, ...) (Sa)
2,0 _ )
VT = Pel(ﬁo vr,)
2-1 21 =0, 20 =l
VT = Pe, (0 ¢ VI +uw - VI)
(i=0,1,2, ...) (9b)
2,1 ! 0, 20 1
vir = ey (U - VI, 4 W0 - V)

which are to be solved subject to the conditions of temperature and heat
flux continuity at the drop surface,

T (10)

- ey —
kl(n - V) = kz(n « V1) (11)
T=r_ rer

plus boundedness at r = 0 and matching for large r with the solutlon in
the outer region.

In the outer region, the radial coordinate r is rescaled according to

1/2

p = rPel

and, for convenience, T* is used to denote the temperature. The exact form
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of the convectlve~diffusion equation 1n this outer reglon depends on the
physical limit which 1is considered. For the case of deformation dominated

by surface tension forces:

2
3A
% -
VZT* -5 22C'= Pe3/2 —§-sin29 sin2d + € 3 sinze cos2$
p ox 1 4 2 2
p 20
(12)
5A
- *
+ 2 (2 - 3s10%0) |} L2 4+ o(ped’?)
2 ap 1
l4p
where (2,¥) = [Peilzx, Peilzyi, V2 represents the usual Laplacian operator

with p replacing r, and