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ABSTRACT

The bulk thermal constitutive behavior of flowing,
neutrally buoyant suspensions is considered theoretically
and experimentally. A general theoretical expression relat-
ing the macroscopic heat flux in the suspension to micro-
scale velocity and temperature distributions on the length
scale of the particles is derived from statistical consider-
ations of the microstructural configuration of the suaspension.
Evaluation of the relation for specific conditions is dis-
cussed with particular attention given to the role of random
Brownian motions of the particles. Constraints imposed by
simple shear flow are considered, and it is seen that the
flowing suspension may not be described by a compiete effec=-
tive conductivity tensor Kij’

The effective conductivity transverse to the flow of
a dilute suspension of slightly deformed droplets is cal-
culated in‘the limit of small particle Peclet number for the
undisturbed bulk shear, u = 7y, and the linear bulk temper-
ature field, T = ay. Two distinct cases of small deformation
are considered; deformation dominated by interfacial tension
forcés, and deformation dominated by viécous forces in the
drop. The microscale velocity and temperature fields are

obtained as regular, asymptotic expansions in the small



deformaticn parameter, €, the governing thermal cnergy
equation is then solved for small Peclet number using the
methods of matched asymptotic expansions. The results ob-
tained disvlay the possible fundamental change in the dom-
inant flow contribution to the effective conductivity due
to the deformation in shape of the particles.

The bulk heat flux of a dilute suspension of rigid
prolate spheroids is evaluated in the limit of small particle
Peclet number for the undisturbed shear flow, u3 :‘Yx?, and
the linear bulk temperature fields T = @, X, and T = & 5X5e
Microscale velocity fields near the particle are calculated
from the Stokes equations for small particle Reynolds number
for arbitrary orientation and rotation of the particles, and
temperature distributions for the small, but non-negligible
Peclet number bv the methonds of matched asymptotic expan-
sions. The components of the effective conductivity tensor
for a stationary suspension is obtained, and the bulk heat
flux due to the temperature gradients orthogonal to the flow
evaluated for the case of significant rotational Brownian
motion of the particles.

A rotating cylinder apparatus designed for the inves-
tigation of the hulk heat flux transverse to the flow of =
suspension undergoing simple bulk shear flow is described,

with special consideration given to describing and minimizing

secondary effects such as natural convection, particle
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migration, viscous dissipation, and Taylor instability of
the flow. Results obtained for the etfective conductivity
of suspensions of spherical polystyrene particles suspended
in a Newtonian fluid are vresented and comvared to the
theoretical prediction of Leal (1973) for the effective
conductivity of dilute suspensions of spherical particles at

low particle Revnolds.and Peclet numbers,
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CHAPTER 1

INTRODUCTION



INTRODUCTION

The attempt to understand and predict the behavior of
rheclogically complex fluids is an old problem which has
been the subject of a great deal of theoretical and experi-
mental regearch activity. One class of such fluids is
suspensions, which consist of dispersed 'psrticlesa', of
gither a solid or fluid nature, suspended in a continuous
matrix of another material, which, in general may be either
sclid or liquid, Such fluids occur in various technological
applications relating, for example, to polymer processing,
pulp and paper making, and processing of paint. Naturally

gccurring systems include dispersions in the form of aerosols
in the atmosphere, biologicgl fluid systems such as blood,
and in flows through porous media. In addition, suspensions
provide an idealized model for the much wider class of

fluids which include solutions of macromolecules.

From an engineering point of view, suspensions fre-
quently appear in a context where it iIs possible to model
their macroscopic¢ behavior in terms of an equivalent homoﬁ
gensous continuum, using the normal field conservation equa-
tions for momentum, thermal energy or mass. In this case,
however, one must have available constitutive relations for
the diffusive flux of momentum, thermal energy or molecular

species concentration. The attempt to deduce such consti-



tutive laws for the mechanical or rheological properties

has been the prime focua for much of the research on suse
pension-like materials. In many applications, however, ths
constitutive behavior of the material for heat or material
trangport is of at least egual importance. Nevertheleas,
comparatively little attention has been given to this topic.

Congidering the syatem as a whole, there are two ap-
proaches available for the development of constitutive re-
lations. The first, which we shall refer to as the phenom-
enological approach, deals with the formulation of general
relations describting the bshavior of the material based on
a 'guess'! or hypothesis of the appropriate functional form
between dependent and independent variables. The apparent
virtue of this classical continuum mechanical method, namely
its generality, is in fact its major weakness. Having pos-
tulated a constitutive form without reference to any speci-
fic material, the theory haa no way of predicting the value
of the physical parameters of the model, or of even distin-
guishing a specific material which it describes, from thoae
for which the general form is not applicable,

In the second, or microstructural, approach one sttemptls
to deductively obtain the appropriate transport relations
from a detailed study of the system on a smaller scale. The
kinetic theory of gases and liquid state theories are con=-

cerned with the deduction of materligl behavior from a know=-



ledge of the arrangement znd motion of molecules. 1In the
present case, however, the material exhibits a structural
gcale which is assumed to be large in comparison to molecu-
lar dimensions, yet at the same time, small compared to the
overall dimensions of the sample of the material, so that it
can still be modeled as homogeneous in a macroscopic sense.
In general, the microstructural approach thus begins with

a description of the 'microstructural state'! of the material,
then models its microscale behavior in a deductive fashion
using the well~known methods of continuum mechanics, and fi~

" nally passes from this micro-behavior to a prediction of mac~-
regcopic of bulk properties by an appropriate statistical
averaging process. The phrase 'microstructure state® (or sim-
ply microstructure or configuration) is taken to mean the rel-
ative positions, orientations, and shapes and sizes of the
dispersed particles, azlong with the relevant parameters
describing the material properties of the two phases. The
microstructural derivation of macroscopic material properties
from a detailed knowledge of the behavior of the particles
and suspending media serves as a powerful tool for the engi~
neer or physical scientist. Although one must be content
with the study of simple idealized materizls in order to ob-
tain a tractable microscale problem, the materials are real
(i. e. experimentally realizable) and the theory not only

allows prediction of the form of the constitutive relations
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describing the material behavior, but also an evaluation of
the generated physical coefficients. It is work relating to
this gecond, or microstructural épproach that we will be pri-
marily concerned with herse. A number of excellent review
articles describe much of the work that has been carried on

in this field, e, g. Brenner (1970) and Batchelor (1974): only
a few specific works shall be referred to below,

The starting point for the study of rheological behavior
from this point of view is generslly considered to be Einstein's
(1906) calculation of the effective viscosity of a dilute sus-
pension of rigid, neutrally buoyant spheres, Laier workers
have considered a number of different kinds of dispersed par-
ticles, higher concentrations, and the complete state of stress
of the suspension rather than merely the effective viscosity
coefficient.

Detailed considerations of constitutive relations for
other transport properties of suspensions are not so numerous,
with most studies to date dealing with the diffusive properties
(to heat or molecular species for instance) of stationary sus-
pensions, Maxwell (1873) successfully treated the case of a
stationary, dilute, dispersion of solid spheres. This work
was extended much later to include more concentrated suspen-
sions (Jeffrey, 1973) and inclusions of‘arbitrary shape {Rocha
and Acrivos, 1973). Little attention seems to have been given,

however, to the important problem of the thermal properties of
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flowing suspensions. The imposed bulk flow can cause consid-
erable changes in the microstructure of the suspension. Fur-
ther we might expect convective transport of heat on the
microscale to provide an additional mechanism for enhanced
heat flux. Leal (1973) considered the change in the bulk
heat flux of a dilute suspension of spherical drops immersed
in a simple bulk shear flow at low microscale Peclet numbers.
The resulting flux of heat on the bulk or macroscale was only
changed at O(PeB/Z) from that for a stationary suspension,
degpite the fact that the microscale temperature distribu~
tions were significantly changed at 0(Pe). Nir and Acrivos
(1976) considered the corresponding large particle Peclet
number problem for a suspension of spheres, obtaining signi-
ficant enhancement of heat flux transverse to the flow, inde~
pendent of the thermal properties of the dispersed phase.
Analysis of this high Peclet microscale problem, even for the
relatively simplified case of spherical inclusions, is com=-
plicated by the devslopment of regions of closed streamlines
for the flow surrounding the particles. A bounding streamline
surface exists, relative to an observer translating with the
particle, causing an effectively isothermal region within this
boundary to be established. The microscale temperature dis-
tribution must then be determined by an appropriate boundary
layer analysis on this bounding streamline, introducing con~

siderable complexity to the problem., Consideration of the



thermal properties of flowing suspensions of non-spherical
particles, in either low or high Peclet number limits, has
not previously appeared in the literature.

The work reported in this thesis deals with the thermal
properties of flowing suspensions, both from a theoretical
and experimental point of view. The theoretical work will
be concerned with the microstructural derivation of consli-
tutive relations describing the flux of heat in a flowing sus-
pension. In Chapter II, we derive and describe the gensral
relations between the bulk heat flux and the microscsle dis-
tributions of velocity and temperature in a suspension. In-
cluded in this discussion will be a model for the inclusion
of effects resulting from Brownian motions of the particles.
Following this, in Chapters III and IV we present specific
predictions for dilute suspensions of neutrally buoyant;

(1) slightly deformed droplets and (2) rigid prolate spher-
oids, for the case of simple bulk shearing motion in the
presence of constant bulk temperature gradients orthogonal
to the direction of flow. In both cases, the microscale
temperature distributions are solved in the asymptotic limit
of low, but non=-zero Peclet numbers in order to avoid the
complications inherent in the high Peclet number problems.
Rotational Brownian motion is included in the rigid spher-
oid analysis. The microscale velocity fields are calculated

from the creeping motion Stokes equations, reflecting the



expected low Reynold's number nature of the motions on the
(small) particle scale. The restriction to linear variations
of the imposed velocity and tempsrature fields is a reflec-
tion of the small length scale of the microstructure when
compared to the macroscopic scale of the suspsnsion as a
whole. When viewed on this smaller scale, the suspension
predominantly reacts to the local value of the gradients

of velocity and temperature, so that the results obtained
will be a useful first approximation to the behavior in more
complicated situations. Finally, the last Chapter V details
the design of an apparatus for the experimental investiga-
tion of the thermal transport properties of flowing suspen-
sions, and presents some preliminary results for a suspen-

sion of rigid spherical particles.
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CHAPTER 11

The Relation between Macroscale Heat Flux and the

Microstructural State of a Suspension

1; The general relation

We consider a suspension of neutrally buoyant particles
in the presence of a bulk shear flow and a bulk temperature
field. Our objective is the development of a constitutive
equation which describes the effective thermal diffusivity
of the suspension considered as an equivalent homogeneous
material. The point of view adopted is the conventional one
in the fileld of suspension rheology. We assume that the min-
imum dimension & of the particles is large compared to the
intermolecular length scale o of the suspending medium. The
latter may then be treated as a continuum and is modeled for
present purposes as an incompressible Newtonian fluid in
which a simple scalar Fourier heat conduction law is appli-
cable,

At any arbitrary point in the suspension, when viewed
on a length scale of order £, the local variables such as
velocity, temperature, enthalpy, or conductive heat flux are
random functions of time whose values at any instant depend
upon the proximity and motion of suspended particles. The
description of bulk or macroscopic guantities for the suspen-
sionthus becomes a problem of statistics. At the fundamental

level, the most appropriate definition of the bulk variables
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is as an ensemble average of the corresponding microscale
quantities for a large number of realizations of the system.
Instantaneous local values of the velocity, temperature,
enthalpy, and conductive heat flux may then be expressed as
a sum of the ensemble averaged quantity, and an additional

microscale or fliluctuating component, i. e.
(1)

where by definition the averages of the fluctuating compo~-
nents are zero,
R R ERHEE N £
As suggested in the introduction, we wish to obtain an
uperational definition for the bulk conductive heat flux,
<;» which is consistent with the thermal energy balance for

the suspension, viewed as an equivalent homogeneous medium,

AR
~§§§L4% QH) j%%%»+ =90 . (3)

sgz
A convenient, if heuristic, method of determining the proper
definition of Qj for this purpose, is to simply apply the
same ensemble averaging used in (1) to the exact, instanta-
neous thermal energy balance which is applicable for cach

realization of the system,



1h

aq.
Bh Bh 1
ot F e, Tew, C 0 - (4

Taking account of (1) and (2), as well as the continuity
relation for an incompressible fluid

du

the result is

7@%1}# SRR CHERSTD ST

comparing (6) and (3) it follows that
9y Qﬁ) * @ﬁh> . (7)

It may be seen that the bulk conductive heat flux as
defined here, consists of an ensemble average of the instan-
taneous, microscals conductive heat flux, plus an sdditional
'convection' term which accounts for the transport of heat
by means of the local fluctuating velocity and enthalpy
fields.

To proceed further it is necessary to replace the en-
semble averages in (7) with the more easily calculable spa~-
tial (volume) averages. For this purpose it may be assumed
that there exists in the suspension a volume V, containing
a statistically significant number of particles, whose lin-
ear dimensions of O(V1/3) are therefore much larger than

the particle length scale %, yet smaller than the length
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scale L over which significant variations occur in the bulk
velocity or temperature gradients, or in the concentration

of particles. The suspension is statistically homogeneous

on this scale, and the ergodic hypothesis may be invoked

to replace the ensemble averages of (7) by volume averages,

i.e.

@) - @) =5 {V 959V

These volume averaged quantities clearly vary only on a scale
of 0(L). They are thus point quantities with respect to the
overall macroscopic description of the material, and for this
reason we may concern ourselves only with macroscopic veloc-
ity and temperature fields which vary linearly in space,
The local fluctuating variables, €.8. Q; vary randomly over
distances of o(%) due to the random nature of the position
and motions of the particles in the volume element V.

With the above conditions of statistical homogeneity
on the scale of 0{V) satisfied, the ensemble averages of (7)

may be replaced exactly with volume averages to give

0 = &)+ L) | (8)

Expressing the averaging symbols in terms of the appropriate

volume integrals, and dividing the averaging volume into its
component parts, ZVO and V~ZVO, representing the sum of the

volumes Vo of the individual particles and the volume of the
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surrounding fluid respectively, we obtain

0 1 f v o+ X J QCP
0, = = q.dv + = g.dv + —% f ulrT'av
T Vigapy 1t Vilgy 1 Vo yopy *
O O O
(9)
pTC
+ ““\7‘9'[ ulT'av
Y
O

Here, the enthalpy of the fluid and particles have been

exprassed as

h = p1C T (10)

fluid hparticles p

where p is the density of the particles and fluid (assumed

= pC T ;
P p

equal), andT(i)and(f are their respesctive heat capsacitiss,

P
We have assumed these material properties are constant, in-
dependent of the tempsrature, so that they may be taken out-
side the integral in (9). In the more general case they
would be included inside the integral. We assume that the
microscale conductive heat fluxes in the fluid and particles

satisfy a simple Fourder law for heat conduction, with

scalar conductivities k and mk respsctively, Then

% j q,av + % f q,av = - £ I vTav
V-3V TV V-5V
O 6] 0]
- %? J yrav . (11)
IV
o]

Here, again we have assumed the physical properties k and
mk are independent of temperature, and may therefore be

tasken outside the volume integrals as constants. We ma
g



rearrange (11) to the form,

- % J VTav - 2; f VTav =
v-1v v
e} O (12)
- % f vTAv + kii%@l [ VTdV
v NY

Similarly the volume integrals of uiT' may be rearranged,

oC pTC pC
mv‘g [ uiT'dv + —*\7‘8 { ulT'av = —"\']‘Q j \liT‘dV
V-1V vt \
o) o)
QCD(T~1) (13)
L J SuiT'av
’ v
Thus the expression for the bulk heat flux becomes
; - pC_(1t-1)
Q. = -k 28 + Kil m) j VTAV + —Ee J ulrT'dv
1 90X, v - v i
ki Y IAY
o o
oC (14)
+ —E f ulT'av
by
wher83£§~ = Qﬂ?, is the bulk average temperature gradient.



Before explicitly discussing the evaluation of the integrals
in (1) 1t is useful to consider the terms in this general
expresgaion in some detail. The first term on the right hand
side of (1l4) is just the conductive heat flux which would
exist in the absence of the particles 1f the same average
temperature gradient were maintained. The remainder of the
terma represent the additional contributions to the bulk

heat flux due to ths presence of the particles.

The expression (1) for the bulk heat flux may first
be considered for a suspsnsion which is completely motion-
Jess. 1In this case, the last two terms are identically zero,
and the bulk conductive heat flux differs from that for pure
suspending material only when the conductivity of the
particles differs from that of the suspending material (m#l),
and in this case Q; will depend not only on the conductivity
ratio, but also on particle geometiry, concéntration, relative
location, and orientation distribution, For a stationary
motionless suspension this microstructural description will
be determined by the process of manufacture,

It is generally expected that the flux of hsat in the
stationary suspension may be related to the gradient of temp-

erature by an 'effective' conductivity tensor Kij definsd by

o/

T (15)

X,
J

Q, = K, .

|

L)
Q/
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When the suspension is locslly isotropic this tensorial de-

scription will reduce to a simple scalar Fourier law for the

heat flux Qi = 38 . To show that such a description in

Bxi
terms of an effective conductivity tensor is possible for
the general stationary case we merely note that the steady
state microgtructural behavior of the system is described,
in both the continuous and dispersed phases, by the Laplace

equation for the microscale temperature distributions:
vir =0, v, =0 . ~(16)
c d ,

T, represents the distribution of temperature in the con-

c

tinuous phase and Ty the distribution in the dispersed
particles. Since these governing equations are linear,

we may decompose the solution for any arbitrary imposed
. 00 % . ?
temperature gradient,  x-— 1., = I a.1. .,
: Xj ] 3 33
: : : A (3) (i)
into three corresponding solutions, called here T - T

is the solution resulting from the component g gradient in
]

the X3 direction. The complete microscale temperature dis=-

tribution is merely the superposition of the three component

()

solutions. The solutions, T , are each linear in the

strength of the gradient aj’ and may be written as

) (1) 7
T = ¢. F (xl,xz,x3) . (17)
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The relation (1l) for the stationary case i3 also obviously
linsar in T, hence the total bulk heat {lux Qi may be ex~
pressad as the superposition of the resulting hest [luxes,
Q(g}, for each of the component problems. As a result of
this linearity we may evaluate the individusl comﬁonents of

the tensor K, by the formula

J
{(3)
Q Q. X
o i i (m-1) J (3)
K., = - == - X -~ s, . + vrF 3 gy (18)
ij OLJ (xj i v -

(g) depands on aj. For a given microstructural

state, the effective thermal conductivity will thereforse be

gsince only Q

a unique, materisl property of the stationary composite.

In the presence of flow ths situation becomes congider-
ably more complicated. Not only are the geometry, location,
end orientation of the particlea important, but the bulk
conductive heat flux, Qig depends critically on bhoth the
type and strength of the flow. Indeed, even when ths thermal
properties of the dispersed and continuoug phases are iden-
tical, the presence of the last term in (1) suggests that
the existence of flow may altar the bulk flux Qi from that
of the motionless composite. The bulk conductive flux Qi is
a function not only of the material, but also of the flow.

In the gsneral case, the presence of flow has two dis-
tinct, though related, effects. First igs ths flow-induced

change in the local temperature distributions for a given
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microatructural configuration by the action of local convec-
tive heat transfer. As the local temperature distribution
is altered, =so are the contributions from each of the
thres volume integrala of (14). For a given microstructurs,
the local temperature field will respond to any variations
in flow or temperature conditions on a time scale which de-
pends on the thermal properties of the two phases and the
nature of the flow or bulk temperature profile will general-
ly induce a transient response in the heat flux. At steady
state the heat flux will clesrly depend dirsctly on'the
strength and magnitude of the flow, since both the local
temperature fields and the volume averaged quantities
LuiT are directly influenced. The flow has a further
effect, however, in that the hicrostructure of the suspen-
sion is related to the flow. Changes in the flow will thus
produce transients in the response of the system on a second
time scale associated with the establishment of the result-
ing microstructural configuration. As noted previously the
bulk heat flux ig sensitive to the shape, motion, orien-
tation, and configurational distributions of ths suspended
particles. For example, rigid nonspherical particles under-
go flow-induced rotations, causing changes in the orientation
distribution from that for the motionless composite and de-
formable particles may expsrience changes in shape due to
hydrodynamic interaction with the surrounding fluid. In

both examples, the effects depend critically on the type of
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bulk flow which is imposed on the material, resulting in =
dependence on flow type of the bulk heat flux Qj. Theae
hydrodynamically induced changes in microstructure are all
deterministic (initial-value) procsesses, thus conferring on
the bulk conductive heat flux a perfect 'memory' for past
microstructursl statsa of the material. In any real suspen~-
sion thess flow-induced changes in the microstructurs are
resisted by one or mors 'restoring mechanisms, such as rota-~-
tional Brownian motion or particle elasticlty, which would
maintain the equilibrium or rest configuration in the absence
of the flow, The existence of a mechanism which acts to
restore the rest state of the material on a finite time
scals insures that this memory is 'fading' in the sense that
the dependsnce of Q3 on the recent microstructural states

is stronger than its dependence on earlier states., The
steady state microatructural configuration will represent 2
balance betwean the hydrodynamic and restoring mechanism
forces. The dependence of this microstructural state on the
type of flow, and the relative strengths of the flow and re-
storing mechanism will regult in bulk heat flux dependence
on the type and strength of the flow, ths thesrmal properties
of the particles and fluid, as well as those gecmetrical and
mechanical properties of the particlea and €lnid wnich play
a role in thes restoring mechanism,

We shall only be concerned with steady state situations
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in what followa, for even in thisg simplified situation thers
will be considerable complexities in the constitutive behave
lor of the flowing suspension, The results obtained for a
specific type of flow, consequently the thermal transport
properties of a flowing composite will therefore no longer

be a unique property of the material.
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2) Bvaluation of the general relation in the cage of dilute

conegntrations

Having made these general statements regarding the in-
terpretation of the various terms in (14) we may now consi-
der its evaluation for certain cases, It is convenient to
seperately congider the particle contribution to the f{lux,

denoted by Qi, defined by

~ pC_ (t=1)
o = k(1-m) ( vTav + —Bo u'lTray
1 v . v 1
J >‘\70 FV
pC
e jvuirr‘dv : (19)

We may further define the average contribution per particle
ﬁ? by simply dividing the contribution Q? by the number n
of particles in the averaging volume V

6§ S 0f/n . (20)
Although in the gsneral cass, ths contribution Q? depends
on the configuration and orientation digtributiona of all the
n particles in the voluma V of the suspension, 1t has been
the assumption in much of the previous work on suspension
problems of this general type, that for small concentrations,
the flux could be exprsssed as a series in integral powers
of the volume fraction $. The first, 0(f), term was calcu-

lated by assuming the particles were non-interacting. Single

particle problems for ths microscale fields near a repressn-
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tatlve particle could then be solved and the bulk properties
related to this single particle solution. Highsr order (ﬁm)
corrections wers then caleulated by considering succeaalvely,
m=particle intsractions. In order to establish the exact
circumatances under which this method of evaluation of the
bulk properties was valid, as well as to clear up certain
amblguities ariging in the evaluation of each of the m-
particle interactions, Jeffrey (197l ) rigorously developed
an expansion technique for the evalustion of the succesive
#" corrections. We shall only be concerned, here with the
result obtained for the non-interacting particle case. As
long as the configuration end orientation distributions are
established by hydrodynamicinteractions, with or without ths
additionel effects of Brownian motion, Jeffrey demonstrates
that the 0(#) correction to the heat flux may be calculated
by consgidering an isolated particle immersed in a flow and
temparature field corrsaponding to the bulk average values.
If the particles are all identical, and have exactly the
aame deterministic orientation and motion, then values ob-
tained for the integrals is (19) upon substitution of the
gingle particle, deterministic, fields may simply be multi-
plied by the number of particles in the volume V to obtain
the contribution Q? to the flux., Often it will be the case
that the particles are small enough to be subjected to ths
influences of random Brownian motions. The motions and

orientations of the individual particles will therefore bs
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of a2 random nature, aboul which we will only have statis-
tical knowledge. In this case the individual single parti-
cle contributions are not equal and @? must still ba re~
garded as the averazs contribution per particle. Becsgusse
of the assumption that the volume V contains a statisticale
ly large sample n of particles, the average contribution
per particle can be calculated either as the ensamble av-
erage over all possible realizations of the aingle purticls
problem or a3 a long time sverags for the single particle
problem; both averages being identical to ths value ob~
tained by dividing the total contribution Q? by the number
of particles, according to the ergodic hypothesis. We may

therefors express the bulk heat flux Qi for the dilute case

as

where, using the relation n = %y, \Y% being the volume of

each identieal particle,

v - pC_(1-1)¢ o
Qi - E(\lr m) ¢ [ VTay + mwgv_—m j uiT'dV
‘o \Y o) A\
o o
pC ¢
P O N (22)
Vo v

s

The final volume integral is evaluated in the limit
V + «, and the overbar over the integrands indicates that

the quantity must be considered as an appropriate statis-
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tical average of the quantity. A more detailed discussion
of the treatment of (22) in the preaence of Brownian motions
of the particlss will be delayed until a little later.
Application of the Gauss ~divergence theorsm to (22) sllows

ug to write

oC_(t-1)

< - ] T
nr = BTG T Sehan 4 alT Ay
h \Y 1 v i
o] A o) v
o o]
oC_a
v —22 [ vy (23)
\Y% ] i
o) Voo

Here, Ay is the surface of the particle and ng the i-com=-
ponent of the unit-vector normal to the surface directed
outward. We shall drop the Ooverbar in the following, un-
derstanding the integrals to bes averaged, snd nondimension=-
a2lize the quantities in (23). We nondimensionalize lengths
with respect to the characteristic length scale of the par-
ticle, 2. Arvreas snd volumss are therafore nondimension= .
alized with respect to a velocity scale Vc characteristic

of the bulk motion. As we are primarily concerned here with
simple shearing motions with shear rate y, the characteristie
velocity scale is U, = vi. The governing differential
eguations for the microscale temperature distributions in
the particle and the suspending fluid are linsar in T, as

is the bulk heat flux relation (23), so that we may sepa=

rately consider gradients in each of the principal direc=-
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tions, l.e. T(j) = ajxj (no summation implied). A
characteristic temperature scale is therefore ujﬂ. In terms

of nondimenaional veloecities, temperatures, areas, and

volumes, (23) is then

(3),
Q. _ . (1-*1)?8 (1) .
~l.k = (lvm)¢ J n.T(j)dA + V_““gm uiT(])'dv
o) o - o v
o)
Pe ¢) " :
TR St [ arr 37 ay (24)
\Y 1
O Vo0

whers the Peclet number for the microscale advective~-diffu-

sion heat problem, based on fluid properties, is
2

Pef = ES%;ﬁw .

For the stationary case we found that the bulk heat
flux could be expresgsed in terms of an effective conducti-
vity tensor that was a unique material proparty of the aps-
cifie composite; The existence of a bulk flow has noi only
added the complexity that the bulk heat flux is no longer
a unique materisl property, but has apparently precluded
the sxzistence of an effective conductivity tensor for the
specific flow being considered, The differential equation
describing the local distribution of temperature cannot
be satisfied for a linear bulk temperature distribution hav=-
ing any component gradient in the direction of flow, since

the far field boundary conditions do not satisfy the ad~

vective~diffusion equation for any non~zero Peclet number,
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The requirement that the final volume integral in {2L) be
taken over a volume tending to infinity requires, therefore,
the consideration of the exact bulk flow and temperature disg-
tributions, not just their linear (first derivative)} parts,
so that the governing differential equation may be satisfied.
In the case of simple shsaring flow, we ars limited *~ ths
ronsideration of temperature gradients orthogonal to the
flow. The resulting heat fluxes are linearly related to the
gradients of temperature in the two principal directions
orthogonal to the flow direction, snd the gensral case of

an arbitrarily orilented temperature gradient in the plane
orthogonal to the flow may be considered by superposition

of the flux resulting from the two component gradients.

It will therafore be convenient to express a psrticular com-
ponent of the bulk heat flux in terms of the proportionality
constants hetwsen the flux and the particular tempevrature
gradients, which will be referred to as particular effective
conduetivities, To emphasize the critical distinction be-
tween the flowing and stationary cases we summarize the
differences caused by the motion of the suspension:

1) The motion of the suspenaion introduces the addi-
tional mechaniam of convective transport of heat on
the microscale,

2) The microscale structure of the suspension will be

influenced by the nature and strength of the flow,
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as well as any mechanisms tending to restore the
structure to an equilibrium sfate,

The bulk heat flux cannot be expressed in terms

of an effective conductivity tensor since the
existenca of locally non-orthogonal, linsar, velo-
city and temperature fields on the bulk scale,
violates the governing differential equation on

the microsacale.
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3) The effects of Brownlan motion

We have seen that evaluation of the particle contri-
bution to the bulk heat flux, Qi’ reducesa to evaluation of
the average value, for an isolated non-interacting particle,

of the integrals

- ¢ pC_(1-1)9¢
Qi = EL%TELQ ) VT dv + ~«ET7-,~W j uiT' av
o) JV e} \Y
o] el
oC_¢
+ ~rEv [ ulT' av o, (22)
\,O J v—-)-oo

where the overbar indicates averaging of the integrand over
an ensemble of possible realizations of the isolated par~
ticle problem, If the single particle problem is complete=
ly deterministic and all the particles have identical size,
shape, and orientation, then evaluation of the average is
equivalent to determining the values of the integrals for
the deterministic one particle problem. If on the other
hand, the particles are small enough to exhibit significant
Brownian motions, then the single particle problem will no
longer be deterministic in nature. In particular, ths
orientation and motions of the particle will exhibit a ran-
dom component, and the effects of thess random motions on
the bulk heat flux must be accounted for in some rational
manner, Fortunately, this can still be done within the

general framework of equation (22).



Y

Brownlian motion is a reflection of the essentially mo-
lacular nature of the suspending fluid at the scale of the
sufficiently small particles. Nevertheless, it is not nsc-~
easery to completely surrender the bsnafits of a continuum
model for the suspending fluid in order to model the Brown-
ian moticns of the particle. In the present context, our
concern is not merely with the random motions of the parti-
cles, but the resulting fluid motions and temperature var-
iations es well, Thus, the usual treatment of Brownian mo-
tion by the addition of random or fluctuating forces to the
gsystematic hydrodynamic forces in ths equation of motion for
the particle (i,e. the Langevin equation) is unsuitable for
our prasent purposes. An siternative whicn ‘ieces satisiy our
objertivaeg, ard ctijl retuina s continuum view of the sve~
pending fluid, is the theory of hydrodynamic fluctuations,
described by Landau and Lifshitz (1959) and recently ex-
tended to include Brownian motions of a particle by several
investigators, i.e. Fox and Uhlenbeck {(1970), Chow and Her-
mans (1972), Hauge and Martin-Ldf (1972), and Hinch (1975).
For convenience, we shall refer to these works as FU, CH,
HML, and H respectively.

The main assumption of the theory of fluctuating hydro-
dynamics is that the governing continuum equations of motion

and thermal energy are valid for the complete problem, in-

cluding fluctustions in a8ll the independent variables.
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Fluctuations in the stress tensor and heat flux vector occur
not only due to the fluctuations in the velocity and temp-

erature gradients, but also as a result of spontaneous lo-

cal stresses and heat fluxes, denoted by S and 3, which are

v

independent of each other, and of the local velocity and

temperature gradients (c.f. Hinch 1975). The quantities

v-s and V‘% drive fluctuations in the other hydrodynamical
ang thermal variables, and these fluctuations in the fluid,
away from any macroscoplic boundaries, are regponsible for its
disaipative transport properties. Relations between the
statistical properties of s and é and the continuum trans-
port parameters such as yu gr k, are contained in so~called
fluctuation-dissipation theorems which may be derived from
certain postulates of non-equilibrium thermodynamics, (c.f.
Hinech (1975)).

The introduction of colloidal particles into the fluc-
tuating fluid introduces a possible source of random motions
on a much longer time scale than that characterizing V-s.
The key property of particles (whether solid, elastic, drops
etc.) which is responsible for these longer time scale ran-
dom motions is that they resist deformation of shape so that
at least part of the fluctuating force in the suspending
fluid can be sustainad with no local deformation. In these

circumstances, the random fluctuating forces can contribute

to random translations) and rotational motions of the par-
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ticles, but only on a relatively slow continuum time~-scale.
For translational motion this time scale 1s a measure of the
time required for a particle to slow down following an ini=
tial impulse, and is given bym/y where m is the mass of the
particle, and v the fluid mechanical drag which ascts on it.
These random motions éf the particle will also induce ran-
dom motions in the suspending fluid with the same relatively
slow time-scale, which are superpossed on any determinigtic
local motions which may be present due to the bulk flow of
the suapsnsion. We shall refer to the random motions of
particles and suspending fluid on the time scale m/y (or
its equivalent for rotational motion) as 'Brownian’, in
order to distinguish them from the much more rapid fluc-
tustions which occur at the molecular scale.

It is thus convenient, for discussion purposes, to
split the fluid velocity and stress fields for the single-
particle microscaie problem into three parts: deterministic
contributicns G and L, assocliated with the motion of the
suspension as a whole; Brownian contributions, v and ég
asgsociated with the random continuum level motions of par-
ticles and fluid: and fluctuating parts O, gf and 3 due

g

directly to molecular fluctuations, i.e.

at

<b
+

- &Y
u = U +
(25)

+ g$+ s

Hae
-+

and

fa
it
g
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The equations governing these distributions will be charac-
terized by small Reynolds numbers for the velocities ﬁ and

v , and small amplitude for the fluctuation a%, so that the
linear Stokes equationa are applicable. As a result of the
linearization we may pose the single particle microscale
problem in a coordinate frame of reference that instanta-
neouszly is centered in the particle with axes concident to
the particle axes. The velocities in the governing e~uations
are still the velocities measured relative to a fixed coor-
dinate frame (c.f. HML).

We shall be primarily concerned here with suspended
particles whieh are rigid but not necessarily spherical. We
congider first the governing equatiohs of motion for the
rigid particle of mass m, volume Vog surface area SO, momant
of inertia tensor gp, and density p, in an incompressible
fluid of equal density p and of viscosity . The linearized

equations for the complete velocity and pressure fields in

the fluid are

29 )
Ven = 0 - XeV-V (27
L = ~PL + p(Vu + Vu")
- N AT '
c = =pl + (Vv + Vv7) (28)

f = -pfz + uvat + vt

Ha
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, and

a

Here VST is the transpose of the tensor va, and gz,
g* are the Newtonian stress tensors related to the determin-
istiec, Brownian, and fluctuating fluid velocities regpective-
ly. As a result of the linearization of the problem, we may
for convenience consgider the Brownian and fluctuating velo=-
city problems separately from the deterministic motions, the
complete velocity fields being merely the super-position of
the separate parts, Considering just the y and oF fields,
and averaging the governing equations (26) - (29) over the
time scale §t - m/y characteristic of the relatively Slow

Brownian motiong of the particle, we obtain:?

a
oV 2
0o f < Vp + uvVv v (31)
A
xeV-V
O
Vev = 0 (32}

Comparison of (31) and (32) with (26), (27) end (28) shows

that the fluctuations satisfy the equations

~ )

; %%5 = —vpt + w7 Gt + veg (33)
XEV--VO

v.aft (34)
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Wa note that the time derivative must be included in the
averaged equation (31), as was first pointed out by Lorentz
in 1911, and recently restuled by Zwanzig (1972}, CH, HML.
and Hiren, JSubstitution of a typical Stokes law drag for-
mula v ~Apg for steady motion, into the expression m/g
for the characteristic decay time 6t shows that the latter
is precisely equal to the time for vorticity to diffuse
over the length of the particle, 22/\)f » whare Ve is the
kinematic viscoaity of the fluid. The flow, 3, induced by
the Brownian motion of the particle can therefore not
possibly be stesady when viewed on this time scale, and un-
steady contributions to the particle drag must be as impoure
tant as the gteady viscous forces.

Boundary cordi*ions for the Brownian field 3, are that

it vanish far from the particle
5.
v o0 o, x| e | (35)

so that the total velocity field 2 simply reduces to the de~
terministic macroscopic undisturbed velocity at infinity.
At the particle surface, the Brownian velocity additionally

satisfies the no-slip condition,

S - _ [/ N S -~ (36)
v = vp = D + prx P xeSO .
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Here, the motion 39 of any point inside the particle hss
been split into a translational motion Vp of the center of
mass, and a solid body rotation of the particle given by

I 3
its angular rotation w (3imilar to the fluid velocity

p »
-
U ywe have considered the particle velocity distribution
Gp to be composed of a deterministic, 6 , and Brownian part.
P

The deterministic motion ﬁp may also be split into a trans-
. N " . - - -~ Y
lational and rotational motion, defined as Up = up + QpAX.)

The fluctustions are required to be bounded every-

where, and to vanish on the particle surface.

oF
ut = 0 X6 8 (37)
o

This last condition is & result of the fact that the par-
ticle cannot itself move on the short time gcale of fluc-
tuationg in the fluid, coupled with the no slip condition a%
the particle surface. The fluctuating motion of the fluid
is thus sean to derive from the divergence of the fluc~
tuating atress tensor s. The particle moves on the longer
continuum time scale, ;nd its motion results in random
motions of the surrounding fluid due to the condition (36).
A4 direct result of the splitting of the governing equations

into the f'Brownian' and fluctuating parts is that the guane

tities in {(31), {32), (35) and (36) are independent of

thoae in (33), (3} and (37), (HML). The formulation of

the problem is completed by specifying equations for the



particle velocities, Up and ap, These are simply the

equations of motion for the particle

av R L
n ol = F(4) = n*(qc + g? + g)ds . {38)
dt P - = = =
\)O
dh)r) = A > ~
Jp —+— = M (t) = J xA{n+ (G + oFf + s)ds . {39)
=G ol o = = =
g)o

Here, in the absence of externslly applied forces and cou=-
pleg, the force ?p(t) and torque ﬁp(t) on the particle ars
equivalent to integration of the stress over the surface of
the particle. Hinch (1975) has clearly demonstrated that
the spontansous fluctuating stress s must be allowed to

act on the boundary of the particlet as well as in the fluid.
Equations (38) and (39) can be written in the form of gen-
eralized {Non-Markovian) Langevin equations, (HML,H).

The friction tensor of the equation is fownd from the zo-
lution of the average problem (31), (32), (35), and (36),
and is8 known for simple particle shapes such as spheres.

A fluctuation ~ dissipation theorem may be constructed re~
lating this friction to the spectrum of the fluctusting
forrce on the particles, [vom which the statisiical nro-

. . - . -
pertiss of the moliornsy Op and L%)may be calculated. VFinally,
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for a time scale very long compared to the Brownian time
gcale 6t, the description of the motion of & particle re-

duces to the traditional Einstein-Smoluchowaki theory of
Brownlan motion, with the only parameter describing the evo=-
lution of the particles position or orientation distribution
being the diffusion tensor, D

=BT
As we have previously seen, this long time average is pre-

» defined over the seme space.

cisely the average denoted in (22) by the overbar. Even
on the shorter time scale, the average of the fluctustions
of is zero, 80 that averaging of the total distributions G,

2
u, over the longer tims=-acale results in

3

= U +

=24
|
<l
S vl
n
Sl
+

(40)

The most important implication of these relationships is

that the random Brownian velocities ¥ and Gp will have a non~
zero mean on this long-time-scale, whenever there exiat
gradisnts in the statistical distribution of psrticle con-
centration or orientation. Having made the assumption of
local homogeneity of the concentration @ in the pressnt work,
only longer-time-scale or 'mean' valuss of 7 and 3p result-
ing from gradients in the orientation distribution will be
of concern hers. For example, if we consider axisymmetric
particles which are characterized by a rotational diffusion
coefficient, Dr’ the mean velocity fields 3 and cp are those

associated with a rotation of the particle in the orienta-

tion apace Bg st a rate
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€ vl

= =D _73lnF(d) (41)
“Br

in a quiescent fluid. Here F ( 4 ) is the probability den-
sity function for particle orientation, which may be obtained
by solution of a Fokker~Plank equation representing the
compatition between purely hydrodynamic and Brownian ro-
tation, (ses, for example, Hinch and Leal (1972) who have
considered the orientation distribution function F(8,d,)
for rigid spherocids in a simple linear shear flow). For
future raference, we denote the parts of 3 and $p wnich have
zero mean relative to the long tims average 2s $% and ?p,
i.e.
E}i' > S

+ ok v+ 42
v ; v = v v &
D p D (42a)

A second implication of (LLO) which may appear surprising at

3.
first is that the average g is not simply U. TInstead, in
the presence of Brownian rotation, the velocity field 5 is
the fluid motion induced by the deterministic rotation of
the particle and the imposed bulk motion of the suspension,

caleculated as a functlion of the instantansous particle

orientation, and then averagsd with the probability dene-
sity function for orientation as s weighting factor. The
difference between these mean velocity distributions g

and apand the instantaneous fieldai3 andi%) will similarly

be denoted by U amiap*, i.e.



-~ A >

Having formulated the description for the velocity
distributions we now consider the effects of fluctuations
and Brownian motions on the temperature distributions in
the suspension, and on the hsat flux Qi‘ We begin with
the governing aquations for the temperature distributions
in the suspending fluid and particle. The basic eguations,
including the fluectuating nature of the velocities in the
fluid and the fluctuations of temperature and heat flux

in both the fluid and particle, are

foT > 2 > >
Ned e 'RYAIL == — . - 4
chlat o .ﬁ} kvoT Vg XeV-V (43)
ntC {ifﬁ + i AV T } = mkV2T - v-S icv (44)
pl ot PP p p o

in whieh T and Tp denote the temperature in the fluid and
particle resgpectively, and g and 5; the corresponding fluc-
tuating heat flux vectors {(c.f. FU). We restrict ourselves
to temperature fields that are everywhere bounded and con-
tinuous, so that the boundary conditions at the particle

surface are



- D (K9T - g) (46)

jo
E)
y
<1
5

!
Q)

Analogously to the tempsarature problem, we have allowed the
fluctuating hest fluxes § and gp to act not only in the
fluid snd particle, but also across the boundary.

The most convenient procedure at this peint, is to
simply expand the temperaturs distributions as & sum of
three parts, 8nalogous tg the expansions for the velocity

fields,

=T+ T + TT

(47)

The last terms in these expressions are the temperature

5N 3
fluctustions arising from g and gp, which vanish identically
when averaged over the Brownian motion time scale. The

remaining two terms in each expansion, T and Tp are Brownian

motion contributions defined in suvuch a fashion that

T =T =0 . (48)
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The physical significance of the 'mean' temperstures T and
Tp will become evident shortly. To proceed further it is
necegsary to subatitute the expansions (Ii7) into the gov~
erning equations {43) and (k4li) and the boundary conditions
(4S) and (L6), linearized for the small amplitude fluctua-
tions, and average over the Brownian time scale, Tnis ra-

sults in the equations

ocp{ﬁiligl ol ) ev(T 4 %)} = kV3(T + %) (49)

ot
XeV—VO
8 . ~ o, .Y
01C {5 (T_ + T + (U + . =
p{Bt p pl T v VT Tp)}
mkvz(T + T ) ;€V (50)
P p e

with ths mateching conditions at the surface,

T +T =T+ (51)
xXeS
0

N ~ Y
mn~V(Tp + Tp): n+V(7T + 1) . } (52)

and the condition that the temperaturs distribution bacomes
merely the macroscopically imposed distribution far from
the particle, 1In terms of a coordinate frame that 13 at
any instant centersd in the particle and asligned with its

axes, we will find that the outer boundsary condition is in
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general a function of tima (due to the changing position
and orientation of ths particle) so that this condition be-

comes,

T+ T =T (x,t) as [;l > oo (53)

- bulk

Comparison of equations (49) -~ (53) with (L43) - (L6) shows

that the fluctuations satisfy separately,

i
. D 2_% -
oTCp{—aé} = mkV Tp - Vgp {54)
. ot = w20 S
OCp ~5~* = kV™TT - Vg {(55)

subject to the conditions that T*, Tip, § and é are every-

p

where bounded and that at the surface

ot o
ot =y (56)
§€S
o
S (mkITE - o 2 2 2
n-.mAVT? - qp) = n+* (kYT" - g)j (57)

We note that the separation, like that for the velocity

problem, means that the quantities in (49) - (53) are in~
dependent of those in (5L) - (57). Further we note there
is no systematic temperature distribution induced by the

purely random fluctuating heal [iuxes % and ?p. Tnoge
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heat fluxes mersly drive fluctuactions in the temperature
distributions both inside and outside of the particle, which
producs no measurable effect on the bulk heat flux. The
temperaturs distribution insids the particle, unlike the
corregponding vesloeity of the particle, can react on the
much shorter time-scale of the fluctuations, resulting in a
coupling between ths fluctuations in the fluid and particle,
but no systematic heating or cooling of the particle on the
time acale St. The random portions of tha more slowly
varying composite temperature fields, T + T and Tp + 5p
thus exist solely as a result of the Brownian motions of
the particle in a non-uniform ambient temperature distrie
bution (i.e. from the condition (53)).

To perform the final averaging over the longer-time
scale denoted by the overbar it is first necessary to sube
stitute the expansiona for the mean and ‘random' velocity
fielda (L2) into {(49) and (50) and formally expand the op=-
erators. We then obtain

pC ar + o7 + g-VT + §~VT + ﬁ*'VT +ovReUT o+ 5-V%
pi{ 9t at ‘

2

P A ~ N ~ 2 -
+ YT 4 FeUT + yw*eYT = kV T 4+ kKV'T (58a)

A
xe V-~V
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QTCP{ s o + Up vT + vp vT + Up gT + vp vT
=~ 3 RS ~ N ~
+ Up-VT + veYT + U*-YT + v*-VT}
= k2T 4+ mkyoF (59a)
D P

We may now perform the long time gcale averaging, remem-
bering thatT, T , 3, 3, ﬁp and 3 are already averaged

P
guantities, and that the fluid and particle are incompresa-

ible., The resulting equations for the mean temperature

fields are then,
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. 5T > kY 3 2 Bl A~
ocp{ T + (U + v) VT} = kV*T - pCpV~(UfP+ V*T)
A-.
}’.rV’-VO (60a)
37 — -
A p - X 2
0 1C e (U + v ) -VT } = kV°T
P{ t P p P p
coe@E v iy 3
— [‘ . T m - .
o) pV pp Vp b xtvO (61la)

Before explicitly discussing the interpretation of the
various terms in sequations (60) and (61) it 1s useful to
nondimensionalize the equations (58) and (59) and the'mean'
equations (60) and (61) in order to characterize the magni-
tudes of the various terms. For this purpose we nondimen-
sionalize all lengths with respect to the characteristic
particle length scale. There are two characteristic velo-
city scales of interest in the problem; the first being a
scale characteristic of the bulk imposed deterministic mo-
tions Vguiks, which for simple shearing motion of shear rate
v would bs Vgyui) ~ v4. It is convenient to not only scale
the deterministic motions U and Gp with this scale, but the
effective Brownian velocities 5 and gp as well. The exsact
magnitude of these effective velocitiés will be determined
by equation (41) and the probability density function Fl$)
resulting from the Fokker~Plank equstion, which similarly

i2 nondimensionalized with the velocity scale chsracteristic

of the hydrodynamic motions, (c.f. Hinch & Leal 1972)}. The
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. . . =% =% .
Purely random velocity fields V. and V_ are characterized

(KT/m)% of the

by the second velocity scale, VBrownian ~
ghort-time scale Brownian motions. These two velocity
scales will in turn vield two characteristic Peclet num-
pers for each of the equations (58) - (61). It is conven-

jent to define a single Peclat number for the fluid and

particle based on the characteristic velocity scale Vpuiks

pC_V 1) ptC V R
p Bulk . pe = p Bulk™ _ Pe

Peg = X mk & ¥

and further define the nondimensional ratio of the velocity

scales by the parameter €= VBrowﬂian, For the simple shear

vBulk

flows of interest here ¢ = (KT/p25y2 )%. The time depen-
dence of the Brownian and mean temperature distributions
are due mersly to the Brownian movement of the particle in -
the non-uniform temperature distribution, so that the times
are sealed by the characteristic times 2/Vpyjy for the mean
temperaturs distributions T, and &/Vppownien fOr the

Brownian temperature distributions T, In nondimensionsal

terms, the equations are
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~ - = > -
Pef{ %% + G‘VT + ve¥T + ﬁ* vT + G'VT + J'VT 4+ U*xeyT
3T . 307 4 k. o2 o2
tE] ae bV VT + v*-VT|¢ = VT + VT (58Db)

N
XeV-V
o

=
3
32
+
< b
e
=3

an s B TT 4 v YT 4 DEevT 4
Pepl 3 T YT T Y e T YT

9T
D + **.\ b*- ~ == 2 + Vz%
rr vD JT -+ vp V%J} v Tp b

{
J—

x eV (59h;
o

and the mean equations,

2 IR K
VT - Pef Ve(u*T)+ V- (v*T)

i

Pef{ 3T 4 (i + $)-VT}

§€V~V (60Db)
o

o T = Y ) A= i
Pe { £ 4 (U o+ VB)'VT } = VT~ Pe {-V(U*T )+ eV (v*T)
p P P P PP

D
xeV-V (61h)
c o
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The long-time mean temperature fields T and Tp, defined
by (60) and (61), would reduce in the absence of Brownian
motion (¢ -~ 0, D, +0), to the local deterministic temper-
ature field near a single particle. This mean temperature
distribution is affected by Brownian motion in three dis~
tinct ways: first, the deterministic fluid motions in the
mean convection term is weighted with reaspect to the or-
ientation distribution for particle orientation, which is
itself affected by the Brownian motion; second, there is an
additional mean convection velocity which corresponds to
the effective particle rotation due to Brownian motions in
the presence of gradients in the orientation distributiong
and third, there are additional convective fluxes of heat
associated with the long-time corrslations of the (zero-

mean) velocity and tempercture fields: ﬁ*%, 3*5, ﬁgfﬁ,
- b
and 3;ip - We may note that in the absence of bulk flow

w
both U = 0, and the mean field V = 0, the latter becruse

the orientation distribution will then be uniform at steady

state. However, the added flux terms U*T and SET
will parsist even if the suspension is macroscopically ata-
tionary, provided the particlea are free to move sabout in
the suspending matrix.

These Brownlan motion effects on the microscale temp-
erature distribution will similarly be reflected on the

bulkscale through equation (22). Substituting the expan~
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sions for the velocity and temperature distributions in-

side and outside of the particle and performing the aversages,

we obtain

- 9T for §av (62)
o o
> > 3 T E ) + U*T  + VT
h (Up + Vp bulk)( 9 l‘b 1k Be Vp 0
-~
weV (63)
0o+ v -0 T O*T + I%
(v = Uy ! Tpuik! * v
-3
XeV-V (64)
o

With these expressions, the calculation of the particle asso-

ciated bulk heat flux Qi may now proceed in principle. From

equations

(38) and (39) the statistical propsrties of the

particle Brownian motions may be calculated. The orienta-

tion distribution is calculated from the Fokker~Plank equa-

tion, and

the mean Brownian motions from (41). The fluid

Brownian velocity fields for arbitrary orientstion and mo~

tion may be calculated from (31) and (32) along with the

voundary conditions (35) and (36). From equations (58) ~

(61) one may then in principle obtain the temperature dis-

tributions resulting from any arbitrary orientation and

motion of

the particle, which may then be statistically

averaged with the known probability density functions for
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orientation and velocity of the particle, to obtain the
mean temperature and micro-convective contributions (62 )
(6L,). The spatial volume averages of (22) may then be e-
valuated to obtain the thermal constitutive behavior of the

sugpension,
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The Lffect of Deformation on the Effective Conductivity
of a Dilute Suspension of Drops in the

Limit of Low Particle Peclet Number

T. J. McMillen and L. G. Leal
Chemical Engineering
California Institute of Technology

Pasadena, California

Abstract

The effective thermal conductivity of a dilute suspension of slightly
deformed droplets is calculated in the limlt of small particle Peclet
number for the uadisturbed bulk shear, u = Yy, and the llnear bulk tempera-
ture gradient, T = oy. The theory is based upon the general relationship,
derived by Leal (1973), between the bulk heat flux of a dilute suyspension
of particles and the microécale tenperature and veloclty fields, Two distinct
cases of small deformation are considered; deformation dominated by inter—
facial tension forces, and deformation dominated by viscous forces in the
drop. The mlcroscale velocity and tesperature fields are obtained as regular,
asymptotic expansions in the small deformation parameter, €. At each order
in the deformation parameter, €, the governing thermal energy equation 1s
then solved for small Peclet using the methods of matcged asymptorlc ex—

pansions.



INTRODUGTION

Leal (1973) has considered the effective conductivity of a dilute sus-
pension of neutrally buoyant spherical drops in the limit of low particle
Peclet number for the case of a simple bulk shear flow (u = Yy, v = w = 0)
and a lineavr bulk temperature distribution (T = ay). A general expressions
was presented relating the effective (bulk) conductivity of the suspension
to the microscale velocity and temperature fields assoclated with each
individual particle. Using this relationship, the effective conductivity
was evaluated for Re << Fe << 1, with the velocity fields obtained from
the classical creeping flow solutlon of Taylor (1932) for a spherical drop
in shear flow, and the microscale temperature field calculated using the
method of matched asymptotic expansions.

Provided that either the surface tension or the droplet fluid viscosity
1s sufficiently large, the solution of Leal will provide an adequate first
estimate of the rodification of the effective conductivity due to the pre-
sence of fluld droplets in a flowing suspension. Of course, the droplet
shape will never be exactly spherical in any real system, and in some in-
stances the deviations from a spherical shape may become quite large, so
that one may logically ask whether the assumption of a spherical shape has
any major influence on the results for the effective conductivity. In par—
ticular, ir was found in the earlier study that the first order modification
in the local temperature field due to the fluld wmotion actually makes no
contribution to the bulk conductivity, which is only f?nally influenced at
0(Pe3/2). Since this result 1s essentially caused by the symmetry of the
problem, it might be expected that the dependence of the conductivity on
Peclet number would be altered fundamentally when the shape is allowed to

deviate from spherical. In the present communication we conslder only the
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case of small deformations of the shape due to the action of the lmposed
shear field. The effects of the deformation on the mlcroscale velocity

and temperature flelds are obtained as a perturbation expansion in tcrmé

of a small parameter £, following the basic method of Cox (1969). The per-
turbed temperature and velocity fields are then used to calculate the effec-
tive conductivity of a dilute suspension of such slightly deformed droplets.
There are two separate physical cases of small deformation; one in which

the interfacial tension forces overwheln viscous forces (e ~ aypfo << 1),

and the other where viscous effects inside the drop predominate (& &~ 1/A <<1).
Here p is the viscosity of the suspending fluid, A the ratio of internal to
external viscoslities, a the undeformed radius of the drop, and O the inter-
facial tension. The case when both effects are the same order of magnitude
will not be considered. 1In the followlng analysis all lengths have been
nondimwensionalized by the undeformed radius of the particle a, all velocities

by the characteristic velocity va, and all temperatures by Qa.



THE PARTICLE SHAPE, LOCAJ, VELOCITY FITLD, AND TEMPERATURE DISTRIBUTTON

Following Taylor (1932}, the nondimensional equation for the surface

of the nearly spherical drop may be expressed in the form
- . 2
r =1+ ef(8,¢) + 0(e7) (¢))

with respect to a spherical coordinate axis system (r, 0, ¢) which has its
origin at the geometric center of the drop. The precise nature of the de-
formation parameter € and the shape function £(6,%) depends on the rhysical
1imit which is considered. For the case of dominant surface tension forces,
Taylor has shown

_ ayu {191 + 161 _ 5
c o [16). + 16} i £(0,9) = sin"® sinZd 2)

on the other hand, for dominant internal viscosity the corresponding results

are (Taylor, 1932),
2
€ = == 3 £(6,0) = sin" 0 cos2¢ (3

The creeping flow velocity fields outside and inside the drop may be rep-
resented, in either case, by the asymptotic expansions

" sﬁl + 0(82)

] 1

2, 2
= u <+ Eu

a
= u

%)

el et

+ 0(e%)

The functions Go and ﬁo are the solutions for a spherical drop as given by
Taylor (1932)--see also Batchelor (1967). The 0(g) solutions for the surface
tension dominant case were glven by Chaffey, Brenner, and Mason (1965). The
0(e) velocity fields in the dominant internal viscosity limit can be calcu-

lated using Lamb's general solution of the creeping motion equations

rz(n+3)VP n??n
2 } (5)

u = !{1 {Vx(rxu) VT TEa ey (D) (2n+3)u



where Xn’ ¢n, and Pn are spherical harmonics of order n. The velocity
S =

fields u1 and u1 require only harmonics of order 4 and 2, and

these are given in Table 1 for the nondimeusional velocity fields.

Proceeding from the velocity fields (4), we now turn to the calculation

of the deformation-induced modifications of the temperature flelds inside

and outside of the drop. he governing equations, nondimensionalilzed, are
2~ 2 S
v = Pez(u - V1) (inside) (6)
2 -
VT = Pel(u - V) (outside) (7
where
2 Coy 2 c
Pe, = waE—EL H Pe, = 2 xptp2
1 K 2 k
1 2

and-the subscripts 1 and 2 refer to the suspending fluld and the fluid in
the drop, respectively. As noted previously, we shall assume that both
Pel and Pez are small. Thus, the temperature distributions are calculated
as perturbation expansions for the double limlt € << 1 and Pel, Pe2 << 1.
The expansion in the deformation parameter € is regular. However, at each
order in €, the expansion in Pc is slngular, and most convepiently obtained
by the well-known method of matched asymptotic expanslons, with the equations
in the region far from the body re-scaled in a manner consistent with the
fact that convective terms must be retained at large distances, even In the
lirit as Pe > 0.

Tn the inner region, which includes the drop, the temperature distribu=-
tion 1is expressed in the asymptotic form

T = £0(Pe)TY + £9(Pe))T) + Fo(Pe )Ty + ..
(8a)
+ a[fé(?el)'ré + O (ReT] + Ty(Pe )Ty + :I + 0(e?)
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= _ 0 =0 . .0 =0 . .0 =0
T = £(Pe )Ty + £ (Pe))T) + £5(Pe,)T) + ...
(8b)
1 =1 .1 =1, .1 =1 2
+ e[fO(Pez)To + £ (Pe,)T] + £,(Pe,)T, + ] + 0(e”)

where as usual,

fm
lim n+l >0
Pel + 0 fm
n

The precise form of the gauge functions fi(?el) is found as part of the
solution. Substituting (8a) and (8b) into (6) and (7), it may be easlly

shown that the governing equations.at the first two orders in € are

2:-0 20 =0
VT, = Pe,(u ¢ VI))
di=0,1,2, ...) (Sa)
2,0 _ )
VT = Pel(ﬁo vr,)
2-1 21 =0, 20 =l
VT = Pe, (0 ¢ VI +uw - VI)
(i=0,1,2, ...) (9b)
2,1 ! 0, 20 1
vir = ey (U - VI, 4 W0 - V)

which are to be solved subject to the conditions of temperature and heat
flux continuity at the drop surface,

T (10)

- ey —
kl(n - V) = kz(n « V1) (11)
T=r_ rer

plus boundedness at r = 0 and matching for large r with the solutlon in
the outer region.

In the outer region, the radial coordinate r is rescaled according to

1/2

p = rPel

and, for convenience, T* is used to denote the temperature. The exact form
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of the convectlve~diffusion equation 1n this outer reglon depends on the
physical limit which 1is considered. For the case of deformation dominated

by surface tension forces:

2
3A
% -
VZT* -5 22C'= Pe3/2 —§-sin29 sin2d + € 3 sinze cos2$
p ox 1 4 2 2
p 20
(12)
5A
- *
+ 2 (2 - 3s10%0) |} L2 4+ o(ped’?)
2 ap 1
l4p
where (2,¥) = [Peilzx, Peilzyi, V2 represents the usual Laplacian operator

with p replacing r, and AE and A__3 are coefficients glven by Chaffey,

3
Brenner and Mason as:
W2 oAnis 2t eanes o (2450
-3 15(x + 1) -3 (A + 1)

2500 + )2

For the case of deformation dominated by internal viscous forces, we obtain

2 ATH 5/2
VoT - § S - ey }.pz sin“0 sin2¢ Bp} + 0(pe]’”) (13)

As in the inner region, the temperature distribution is expressed in the

2 n OT* 3/2{ c

asymptotic form:

0 0 .0 0. .0 0
= * * 3
1 = 50 (pe )T + L (pe )0 + B (e IS + ...
(14)
1 1,2 1 ol 2
+c{?0(Pel)T8 + ¥ (Pe,)TH +F§(lel)12 . 0D

with

1im ﬁLJA+ 0
Pel'+0 Fi

In this outer region, the solutions must satisfy the condition

T®% »> EEE;’L“%/J;M as p »> w (15)
Pel
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gnd the matching condition

lim
p+0

im

>

T(r,08,0) as Pe, + 0 (16)

T*(p,9,9) = rl 1

At first order in €, the solutions Tg, Tg and T;O are simply the solu-
tions for a perfectly spherical drop which were evaluated previously by
0 =0 0 A 0 =0
Leal (1973) up to TZ’ TZ’ and T; . However, the two solutions Tl and 11
were slightly in error in the earlier work, and have thus been given in

corrected form in Table 2 of the present paper.

The task here is to obtain soiutions for the 0{g) distributions of
temperature in the expansions (8) and (14), in order to evaluate the role
of shape deformation in contributing to the effective conducciviﬁy of a
dilute emulsion of drops in simple shear flow. In the outer region,
the flrst nonzero 0(c) term will be elther O(Pel), arlsing from the
non~homogeneous right hand side of (12) (or (13)) with T#* replaced by
Fg(Pel)Tgo, or perhaps a larger term arising from the matching condition
with the inner solution, equation (18). Hence, before investigating the
solution in the outer region in any detall, it is convenlent to consilder

the first terms in the Inner reglon, which satisfy

Té >0 as r > an

In the inner regilon, the solution is generated at 0(c) by any wmismatch in
the temperature or heat flux which occurs in the 0(1) solutions (i.e.
8, Tg, Tg, Tg, etc.) when they are evaluated at the deformed surface r = L

= 1 + €f(8,¢) according to the conditions (10) and (11). At O(c}, these

T

conditions become simply

1

e}fi(?el)[Ti - Tiﬁﬂ = - z:f(i)(?el) (frg - ri’fﬂ (18)

r=1
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1 = (4] =0
31 T aT
1 i 1 0 1 1774
CEf (Pe ) == ~ mT, = == Xf (Pe )| - |=— - n1, =~
{ i 171 dr i 9r =1 i i 71 r i or =14 f
(19)
0 0 0 o
bedt [ 0 e 3 |M oy
90 | 88 i 99 =1 in29 39 | 3¢ i 9¢ =1
where m = kz/k1 and Ti = fi(Pez)/fg(Pal). Evaluating the right hand side

of these equations using the sphere solutions of Leal (1973), it can be
shown that nonhomogenecous terms arlse at each order in Peclet number, i.e.
at O(fg(Pel)), O(ff(?el)) ete. Thu§ the first order solution at 0(g) in
the inner region 1s generated by the mismatch of temperature and heat

flux represented by the right hand sides of (18) and (19) withvi = Q.

The gauge function fg(Pal) = 1, thus clearly fg(Pel) Z 1 also and the
governing equations at the first approximation are the pure conduction

1:"0, ;I“O. ’ (20)

The solutions satlsfying these equatlons, with the conditions (17), (18)
and (19) are listed in Table 3. Examining these solutlons, it is clear
tgat the mismatch with T% = O in the outer‘region is O(Pel), and this mis~
match will generate O(Pel) terms in the outer solution. However, before
investigating the solutlon in the outer region 1t is most convenient to
obtain one further term in the inner region since it too produces O(Pel)
terms in the matching condition at the region of overlap.

Thus, again examining equations (18) and (19), the next nonzero term
on the right hand side is fg(Pel) which Leal (1973) has shown to be O(Pel).
It follows that fi(Pel) = Pel, so that the governlng equations for Ti and

1

T] are
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2.1 1 0 0 1

v Tl u VTO +u V’I‘O
(21)

2=1 -1 | =0 , =0, o=l

v Tl = u VTO + u VTO

The solutions of (21), satisfylng (18) and (19) are quite long, and, in
the interest of brevity, will not be given here explicitly.

Of prime importance for present
purposes 1s the form of the first two inner solutions in the reglon of over-
lap, since 1t is the largest term of these solutions, together with the non-
homogeneous term of the equation (12) (or (13», which is responsible for the
largest nonzero term in the outer solution. Expressing the inner solution
in terms of the outer variables, and putting the coefficlents of all terms
of O(Pe"n) equal to zero in anticipation of the obvious implications of the
matching condition, equation (16), we obtain for the case of dominant sur-

face tension forces

2
D 210A°, 4 504 _ - 14D
lim o1 1 11 .1 -3 -3 11) 1
oIy + PeyTy) v Pe {55 Py cosd + =5 P sla¢
e (22)
2 2 2
_ [7ualy +20aa 4 + D, o otn - aAly - Dy 03 otnas +0'[—1e1
840 3 240 3 l\inPel
while for the case of dominant viscous forces
D 3D* D
1im (.1 1 11 .1 11 .1 e |
r > co[TO + PeTl} ~ Pel{ pz Pl s#n¢ + o Pl cosd iia-P3 cosd
2 (23)
*
DTy 3 Pey

" 740 F3 °°S3¢} * 0| Tmpe;

We now turn to the 0(£) solution in the outer region. In view of the
fact that the largest nonhomogeneous term in the governlng equation (12)(or

(133, and the largest term generated by the inner solution in the overlap
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region are both O(Pel), it 1s clear that the first nonzero term in the
outer region is also of that magnitude. For convenlence in comparing with
Leal (1973), and in maintaining symmetry between the subscript/superscript
notation in the inner and outer regilons, we arbitrarily set Fé(Pel) and

Fi(Pel) equal to zero, and begin the outer expansion with T§0 and

F;(Pel) = Pel .
The governing equation for the case of deformation dominated by surface

tension is

20 0 [, shy ) omg
Vo™T#™ ~ ¢ = [z cos2p + —= — , (24)
2 dx 202 2 7p2 21 9p
and for the case of internal viscosity dominating
21, 0
E 3T
Vo Tz b S 0. (25)

The required boundary conditions are T;l »> 0 as p » = (from equation 15},
plus matching with the expression (22) or (23). The relevant homogeneous
and particular solutlons of the equations (24) and (25), which go to zero
at Infinity have been discussed, in effect, by Leal (1973) in solving for
Tgo in the spherical drop problem. It is sufficient here to note that the
particle acts as a heat dipole, both at 0(l) and at 0(c). Ve denote the
present 0(c) dipole strength, which must be obtained by matching with the
inner solution, as 2A, The dipole lies ia the xy plane, with an arbitrary
orlentation which must also be detérmined from the matching condition. We
denote by ¢0 the angle between the dipole axls and the'x—axis of the co-
ordinate system.

Comparing the solution of equation (24) with the matching requirement

(22), 1t may be shown for the surface tension domlnated case, that



A= -~ 8D11

and

by = /2

That 1is, the 0(g) hcat dipole is oriented along the y-axls. With this
choice, the outer solution becomes, for p » 0,

2loA , + 50A | ~ 14D

1 ll 1 -3 -3 11} 1
* P oty
T2 pz Pl cosd + 75 Pl sind
[7(11\2 + 100A , + 7D w? -1
-3 -3 11¢ 1 -3 11 3
l 840 P3 sing - i P3 8in3¢ (26)

1 i . 2
- .06761)11;)?l cosd + .0963D11pP1 sing + 0(p") + ...

For the case of deformation dominated by viscosity forces, it may similarly
be shown that A = - D* /2 and ¢ = 0, so that the dipole is oriented along
the x—axls. In this case, as p + 0

D* 3p*
pal o AL pl g0y T Pl ! pl My 3

P h i0 osd ~ 755 Py cosd - 55 Py cos3t

27

1 1 2
* *
+ .392D11pPl sin + ’0963DLIDP cos¢ + 0(p7)

1
In both cases the first four terms match exactly with the O(Pel) contribu~
tions from the inner solution. The remaining two terms (of order (pPel))

3/2

give rise to an O(r?el ) mismat;h which is resolved at the next order in

the inner expansion. As we shall see in the next section, the first de-
formation-induced flow contribution to the effective conductivity in the
surface tension dominant case arises from the soluciong which we have already
obtained. However, in the case of domlnant internal viscosity, it is

necessary to obtain ore further term in the inner expansion in order to

obtain a nonzero flow contribution to the effective conductivity at 0(g).
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Clearly, the next inner solution can be easily generated in both cases,
however we shall limit ourselves here to the dominant viscosity case where
it 1s critical in determining the influence of drop deformation on the
effective viscosity.
From (27), we see that the next inner solution in the dominant viscous
3/2

1
' case nust have fz(Pel) = Pel , so that

2=1

T, =0 (28)

vl =0 v
which are to be solved subject to the matching condition

1 1 1
T2 -> 0.392D11rPl sind + .0963DllpP1 cosp, as ¢ >

and the interface conditions (18) and (19) with 1 = 2. The solutions are

Hl

1 1 1 e S |
T2 = ’392Dler1 sing + .0963D11rP1 cos¢ + rz Pl sing
I H I H
11 1 731 .1 31 1 33 .3 P
+<~754Pl cos¢ + % 13 sind +~~7r P3 cosd +-77 P3 sinld 29)
r x b r
I
+<~§§«P3 cos3¢
4 "3
bd
and
=1 1 1 3,1 3.1 )
T2 Jlerl sind -+ Klerl cosd + J3lr P3 sing + KBlr P3 cosd
(30)
3.3 3.3
+ 333r P3 sin3d + K33r P3 cos3d .

The constants Hll’ Ill’ Jll’ Kll etc. are quite long, and hence again will

not be presented here in order to preserve reasonable brevity.

We now turn to our main objective, namely, the calculation of the first
deformation-induced flow contributions to the effective conductivity of a

dilute suspension of slightly deformed drops.



CALCULATION OF EFFECTIVE CONDUCTIVITY FROM MICROSCALE FIELDS

A general expression for the effective conductivity of a dilute suspen~

sion of identical particles was obtained by Leal (1973) for heat transfer

across a linear bulk shear flow. For the case of slightly deformed particles

this expression is:
Kegf " k1 " o Gh

where in terms of nondimensional quantities

30k, - k)8 p2mm
o

2
i e . (n,7)  xl sin 2039

0 Y Tr=x
s

3k1 2T 2
+ g Pe ¢ [ f [” u'T'r” sinb 3rd8dd (32}
i 1 o ‘ol ¥

3k2 21 o1 Te . 9

+<T§F-Pe2¢[ f [ u;T'r sinf 9rd03d
070’0

Here, ¢ is the volume fractlon of suspended particles, u; and T' are the

disturbance veloclity and temperature fields, u; = uy, T = T - ay,

and ny is the 3 component of unit outer normal to the particle surface.

In the present work, the asymptotic expreésions for T, T, T*, u, u and ny

in terms of £ and Pe are used to evaluate this general expression for the

effective conductivity. Fo; the case of surface tension controlling de-

formation, we obtain

eff _ 3@~ 1) 1.176(m ~ 1) SA + 2 [5) + 2[
Bl sk =14 ¢ + + 1228 2=
K eff (o + 2) o+ 2y A+ 1 X F1
- .028}2 - ii Peilz + I(m,),DePe, + oy + O(Pei) + O[EPe;IZ} +...

where I(m,A,7) is a rather complex function of the ratios m, A, and T

(33)



which is given explicitly in Table 4.

For the case of internal viscous forces controlling deformation, we

find

2
- 3(m - 1) _el(m -~ 1) | 1.176(m = 1) 3/2
keff 1+ ¢ (n ¥ 2 + 13.00 @ +2) + Pe

(m + 2)°

3.6(m - 12 1L.41ln(m - 12 [[)3/? 168(m - 12| 372
5 |€ + 3 = - 1f - ePel
(m + 2) (m + 2) (m + 2)

2

+ 0(e?) + 0(pel

)+ O(EPei) +ea. : (34)

3/2 terms are from the calculation

In each caée, the 0(1) and O(Pel)
of Leal (1973 for a spherical drop. The new terms arising due to drop de-
formation are sezen to be of order (ePel) for the case of deformation domi-
nated by surface tension forces, and of ordera (&) and (a?eilz) for the
case of viscous forces dominating. The fact that these coxrections occur
at different levels of approximation is apparently due to the differences
in the nature of the pgrticle deformation in the two cases. In the flrst
case the drop deforms along the principal axis of strain of the flow in
the xy plane, hence elongating along an axis 45 degrees away from the posi-
tive x-axis and contracting along an axls 45 degrees away from the positive
y-axls. In the second case, however, the axls of elongation lies along the
x-axis while the axis of contractipn is coincident with the y-axis.

For the case of deformation controlled by surface tension forces, the
dominant deformation Induced correction, O(EPel), can'be either positive
or negative depending on the values of the ratio of internal to external

conductivity, m, the ratio of heat capacities, T, and the ratio of vis—

cosities, A. The general characteristics of the function I(m,},T) are
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demonstrated graphically im Figure 1 where we have plotted I(m,A,T) as a
function of m and A for several values of T. (Note that X < 0(1) is
required for validity of the expressions (2) and (4) which we have used
for the fluid velocity and drop deformation.) For moderate to large values
of the internal to external conductivity ratio, the deformation-induced
correction to the effective conductivity can be either positive or negative
but is small in magnitude.

Indeed, in the limit as m -+ «, the correction term is easily showm

to have the asymptotic form

Iepe, ——~—l~—————2{'t(.12}\3 — 2202 = .884A - 0.534) + .663A% +..351
QO+ 1) (35)
- 1‘.644} EPe] as m > ©
with a corresponding expression for szf
i} 5M + 2 50 + 2 3/2
Kb v L+ 413+ 1,176 + g .12{A+1} - .028}] e}
+ePe, —--1—————2- {(.12>\3 — 2232 = .884% - .536)T + 66327+ .351 A
(A + 1)
—1.644} ¥ o (36)

There are two polnts worth noting in these limiting results. First, both
of the corrections of O(Peilz) and O(EPel) remain small for A < 0(1), so

that the relative importance of each depends upon the maganitudes of € and
Pel. Second, it is important to remember that some care must be taken in
considering limits such as m -~ « in order to assure that the basic theory

remains relevant. Hence, for example, the limit m - ® must be applied for

small, fixed values of Pel in order that both Pel, Pez remain small. This
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latter polnt is more graphlcally i1llustrated by considering the limit of
small m. As evident In Figure 1, I(m,A,T) is very strongly negative iIn
this case, apparently approaching negative infinity as m goes to zero.
Indeed, for m ~» 0,

I(m,\,T) v —l~»-~l——~7 {(~9.382 Xz ~17.640 A —24.543 )1 + 1.341)2

32m
(A + 1) 37

+ 7.096X + 2.940} ; m~=>0

In this case, the limit m - 0 must be taken with Pe2 << 1 and fixed, in
orxder that both Pel, Pez remain small. Thus, while I becomes very large
(positive or negative depeuding on the magnitude of 1) as m > 0, the

effective conductivity approaches a constant value for A, T and Pe2 held

fixed (the latter swall),

3/2
! 3 N 5M+ 2 Sh+ 2 m 3/2
kéff O B A 5 + 0.294 +~—X—Iff~[ 12 TF +<.028] 373 Pe2
eFey 2 2
4-————w*—~——5~'{(—.9.382A - 17.640A ~ 24.543)T + 1.34107 4+ 7.096A
32(A + Dt

+ 2.940} w1+ - % + [(— 9.38222 ~ 17.640 ~ 24.543) +% (1.36122

EPe2

+ 7.096) -+ 2.940%} 3
32(A + 1)

+ ... ; m- Q. (38)
It 1s particularly noteworthy that in this surface~tension dominant case,

the deformation-induced flow contributlon to kgf may dominate the largest

£
flow contribution which occurs for a spherical drop. Hence, as we sug-
gested in the introductilon, the presence of the shape deformation in this

case causes a fundamental change in the nature of the dominant flow contri-

bution to the effective thermal conductivity.



One further 1imit of special interest is the case when the conduc—-
tivities of the two flulds are equal so that the partlcle contribution to
the effective conductivity is produced entirely by the comvective action

of the fluid. For thils case

2
G+ 2) 3/2
kgff =31 + ¢ .12{ 2"‘} Pel -+ eeenene (39)
(A + 1

Here, the 0( Pel) term identically vanishes for the equal conductivity;
i.e. m=1, case, so that to order Peilz; the only contribution arises from
the convective contribution for a perfect sphere.

“When all physical properties for the two fluids are equal, m =1,

A=1,~and T = 1, we have simply

Kige = 1+ ¢{1.48Pei/2 b oneenens } (40)
Finally, for the case of deformation dominated by internal viscous
effects, we have plotted in Figure 2 the magnitude of the deformation—
{nduced convective contribution to the effective conductivity as a function
of the conductivity ratio m for several values of the heat capacity ratio T,
i.e. the last term in equation (34). Although behavior of this term may
seem to depend strongly on the value of the heat capacity ratio T, in all
cases it is positive for m sufficlently small, negative when m is large,
and zero at m = 1. Between these limiting cases, T =1 is the critical
value of the heat capacity ratio which separates two distinct regimes. In
particular, for T < 1, the contribution to the effective conductivity is
negative for all m 2 .176T3, except for m = 1 where it is zera. For T > 1
on the other hand, the behavior is more complicated. In this case, the
contribution is positive for m < 1, goes through zeré at m = 1 and subse-

quently incrcases again to a positive maxioum before ultimately decreasing
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[op]

to negative values for large m. It thus follows that for m -+ «, with T,

€ and Pe, fixed (£ and Pe, being small), the deformation-induced convection

1

contribution to k:

1

£F is always negative and asymptotically approaches the

value

3/2

M2 3.6e - 1.5795?«33/2} (=) )

k¥ co v 1t ¢{3 + 4.13Pe

for arbitrary T. In thils limit, both deformation-induced terms are small
corrections to the dominant terms which correspond to a strictly spherical

drop. For the limit w0,

3/2 3/

3 o 2 3/2
Ko v 1+ ¢ -5+ 3.36 ar Pe,’ " - 0.9¢ + .176mePe

2 (m > Q) (42)

and both of the convectlve corrections are positive and vanishingly small.

However, the deformation-induced convective correction vanishes more slowly,

3/2 3/2, 3/2
2 Pez 7Y

for € and Pe2 both small but of fixed value. Finally, whenm = 1

O(mePe ), than the convective correction for a spherical drop, O{u

2

3/2 2
1 + 0(e”) + 0 Pe1

kree =1+ ¢{3Pe + O(EPei) + } (m=1) (43)

Thus, not only do the pure conduction contributions to szf vanish, as ex—
pected, when the thermal conductivities are equal, but, surprisingly, the

O(EPeilz

) deformation~induced convective term &lso vanishes. The results
(41), (42), (43) and Figure 3, would seem to imply that, unlike the surface-
tension dominated case where the deformation-—induced flow correction can

be of the sume magnitude or even larger than the corresponding contributions
for a spherical drop, the deformation contributions in the present case

are small compared to the contributions of a spherical drop, except for

the case when m + 0 when both are very small. This 1s especlally £rue when

the internal and extexrnal couductivities are of similar magnitude, as indi-

cated by the expression (43).
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Table 1: Required Harmonic Functions for the

0(c) Velocity Fields

in the Case of Deformation Controlled by Internmal Viscosity

-

outer field :l (nondimensional) inner field ul (nondimensional)
P o= -2 p¥(cos8)sintd X, = TP (cosh)
=5 ed 4 1 1M

r

1 4 -1

¢ = P, (cosf)singd P, ¢,, and x, all of order (X 7)
-5 54 4° 74 3

336r

1
X__4 = ——Z-P3(c056)

6r
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Table 2: Corrected O(Pe) Temperature Distributions

for a Spherical Drop Outside the Particle (Mondimensional)

c
0 11 aC 3k axeC oKD 1
T, = { ~=7 - 2 - S b S o 2 AP (cosB) cosd
1 r2 20 10 20r3 20[5 1
C31 aC ax ab s axD 1
17 Y20 T120 T .37 T3 T3 (Pylcosd) cost
T ) 120r 180r 120r
C33 aC Q ab axC agD 3
+{ =T+ i - ﬁ% - - -——K——'gf —-—K-—g P (cos6) cosd
x 2401 360r 2407

inside the particle:

=0 K(b-1) 3, € 5 {1,
'I‘1 Allr + 70 rm 4+ 780 x Pl(cose) cosd

3, ¢k 511 X
+ A31r + <670 ¢ P3(c058) cosd
3 ¢k 5| .3 .
+ A33r + 11340 © P3(cosﬂ) cos3d
vhere g o172 .
k2 + 2kl k2 + 2kl
S Sh+1 = _ 3 =
P €T TR D

c = [ 30xC oD, %2 foc 3, occ ) P2 kS T)
) % 1207 10 T 20 T 20 cp,
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Table 3: The Temperature Fields '1'(1), "f‘(l)
For Deformation Dominated by Surface Tension Forces
D D D
1711 .1 31 .1 33 .3
T0 = Pl cosd + % P3 cosd + 7 P3 cos3¢
T r r
=1 1 3,1 3.3
TO = Blltpl cosd + }}311‘ P3 cosd + 333r P3 cos3d
where
300l + m ~ 2m%) 9a(m ~ 1)
Dy = 2 LS 2
S5(m + 2) 5(m + 2)
2
D . a(On” - 5m-4) B = - 8a( m - 1)
31 15(3m + 4) (m + 2) 31 15(3m + &) (m + 2)
a(9m2—5m—4) 4ol m -1)
D, = B ;

33 30(3m ¥ &) (m + 2) 33 T 150Gm + &) (m + 2)

For Deformation Dominated by Intermal Viscous Forces

1P D31 1 D33 3
Ty =% Pl sing + % P3 sing + % P3 sin3¢
x T r
=1 1 3.1 3.3
= R% * > ; *
TO Blerl sind + B31r P3 sind + B33r P3 sin3d
2
D&, = 6o(m - 1)5— Bil . - 18a(m ~212
N s+ 2) S(m + 2)
-0 g3m2 +m~ 4)
DX, = B% = O
31 S(3m + 4)(m 4 2) 31
—a (3n’ - 4)
D#% B, =0

= %
33 10(3m + 4)(m + 2) 33



Table 4: O( Pe,) Contribution to the Effective Conductivity for
P

Deformation Controlled by Surface Tension Yorces

(m - 1)
Gm + &) (0 + 2)°m(A + )2

x vl 360" + .84m> - .24m?

I(n, A7) =

.96m]23 + [-.66m" ~ 1.607n> + .807m + 8.714n + 9.382]2\

3 2

[~2.652mA -~ 9.430m” ~ 1.108m” + 22.769m + 17.640]A

o+

4 3 2

+ 61.970m"” + 83.779m + 24.543

t

1.604m + 12.473m

3

[ 1.990n" - .659m3 - 48.344m% - 21.753m - 1.341]2%

+

+ [ 1.053m4 - 3.786m3 - 39.684m2 - 27.892m — 7.096]1A

4.931m6 + 18.011m3 + 32.118m2 - 6.830m - 2.940

where m =k /i, » A =, /u, T= Cp,/Cp,y
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FIGURE CAPTIONS

Figure 1: The O(EPel) term, I(m,A,T), in the effective conductivity when
interfaclal tension forces control, as a function of the con-
ductivity ratio, m = kzlkl, and the viscosity ratio, A = uz/pl,
for several values of the heat capaclity ratio, T = sz/Cpl.

Detail A: T = .5 Detail B: T =1 Detail C: T = 2.

Figure 2: The G(c?ei/z) term in the effective conductivity when viscous
forces control, as a function of the conductivity ratio, m = kzlkl,
for several values of the heat capacity ratio, T = CpZICpl.

a: T=3,b: tT=2,¢c: T=1,d: T= .5 e T= 0.
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THE BULK HEAT FLUX FOR A SHEARED SUSPENSION
OF RIGID SPHEROIDS AT LOW PARTICLE

PECLET NUMBER
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I. INTRODUCTION

There have been many theoretical studies in recent
years concerned with the rheological properties of dilute
suspensions. Such investigations play a dual role: on the
one hand, providing definite predictions of the macroscopic
behavior of specific, realizable materials, and, on the
other, serving as idealized model studies from which one can
gain insight into the qualitative relationships between
microstructure and macroproperties for a more general class
of 'suspension-like' fluids.

Recently, work has also begun to appear which is con-
cerned with the equally important constitutive behavior of
flow suspensions for conductive heat transfer, diffusive
mass transfer, and other related transport processes. Of
course, investigations of these properties for stationary
suspensions have a long history, extending back at least to
Maxwell (1873), who obtained a correct prediction of the
effective thermal conductivity for a dilute dispersion of
solid spheres. Our concern here is the effect of motion,
specifically of shearing motions, on the macroscopic thermal
properties of a suspension. Three papers exist, so far as
we are aware, which address this question for dilute systems;
the work of Leal (1973) for a suspension of spherical drops
in simple shear flow, under the assumption of small particle
Peclet number; of McMillen and Leal (1975-1976) for slightly

deformed drops in simple shear flow, again with small Peclet
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number, and of Nir and Acrivos (1976) for a suspension of
rigid spheres in simple shear flow, but with large particle
Peclet number. In all of these studies, the particles were
either spherical or at least near-spheres, and, in addition,
assumed implicitly to be sufficiently large (or massive)
that Brownian motion could be completely neglected. Even
with these simplifications, however, the thermal properties
of the suspension were found to depend not only on the
thermal and mechanical properties of its constituents, but
also critically on the strength and type of any bulk flow
which is present (cf. McMillen and Leal, 1276).

The present paper is concerned with the transport of
heat in a sheared suspension of rigid, prolate spheroids.
The particle Peclet number will be assumed small, as in our
previous studies. However, no restriction is placed on the
axis ratio for the particles, which may thus range from
perfect spheres to highly elongated slender bodies. Further-
more, we explicitly include contributions of Brownian rota-
tion in the analysis. The limit of small Peclet number (Pe)
is, of course, the limit of weak local convection heat
transfer relative to conduction, and the bulk heat flux is
dominated by the stationary suspension results. In spite
of the relatively weak effects of motion, however, this
limit is of considerable qualitative interest since calcu-
lations can actually be completed for a variety of particle

shapes and flow types including time dependent problems.



The other limit of large Peclet number is potentially of
greater practical interest since the effect of convection is
dominant at the particle scale, and the magnitude of flow
effects on the bulk heat flux therefore potentially large.
The disadvantage for analytical investigation is that very
few problems appear to be tractable. For example, in shear
flow, even the problem of steady flow with spherical par-
ticles has not yet been completely resolved (cf. Nir and

Acrivos, 1976).



1I. BACKGROUND

We consider a suspension of neutrally buoyant prolate
spheroids in the presence of a general bulk shear flow and a
bulk temperature field. Our objective is the development of
a constitutive equation which describes the effective thermal
diffusivity of the suspension considered as an equivalent
homogeneous material. The point of view adopted is the con-
ventional one in the field of suspension rheology. We
assume that the minimum dimension 2 of the particles is
large compared to the intermolecular length scale o of the
suspending medium. The latter may then be treated as a con-
tinuum and is modelled for present purposes as an incom-
pressible Newtonian fluid in which a simple scalar Fourier
heat conduction law is applicable.

At any arbitrary point in the suspension, when viewed
on a length scale of order %, the local variables such as
velocity, temperature, enthalpy, or conductive heat flux are
random functions of time whose values at any instant depend
upon the proximity and motion of suspended particles. The
description of bulk or macroscopic quantities for the sus-
pension thus becomes a problem of statistics. At the funda-
mental level, the most appropriate definition of bulk
variables is as an ensemble average of the corresponding
microscale quantities for a large number of realizations of
the system. Instantaneous local values of the velocity,

temperature, enthalpy, and conductive heat flux may then be
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expressed as a sum of the ensemble averaged quantity, and an

additional microscale or fluctuating component, i.e.,

u; = (ui) +oug
T = (T + T'
(1)
h = <(h) + h'
qi=<qi)+q3!. r

where by definition the averages of the fluctuating compo-

nents are zero,
") =T = " = g!) =20 (2)

An operational definition for the bulk conductive heat

flux Q.l may now be derived, from the requirement that the
thermal energy balance for the suspension, viewed as an

equivalent homogeneous material, take its usual form

XA
+ () 3%, + 7%, =0 . (3)

9 {h
ot

As shown by Leal and McMillen (1976), the appropriate form

for Qi is

0; = (g + Gih? (4)

Thus, the bulk 'conductive' heat flux consists of the
ensemble averaged local values, plus an additional contri-

bution due to the local, instantaneous convective heat flux

as measured in a frame of reference which is translating

with the ensemble average velocity, (W) . For present
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purposes, it is convenient to assume that the suspension is

l/3), which is

statistically homogeneous on a scale of 0(V
much larger than the microscale, %, yet still much smaller
than the macroscale, L, over which significant variations
occur in the bulk velocity or temperature gradients, or in
the concentration of particles. In these circumstances, the

ergodic hypothesis may be invoked to replace the ensemble

averages of (1) or (4) with volume averages, e.g.

1

Starting with volume averages in (4), the volume
integrals may be split into two parts, ZVO and V - ZVO,
representing the sum of the volumes Vo of the individual
particles in V and the volume of the surrounding fluid,
respectively, and re-expressed using the Fourier heat conduc-

tion law in each phase to give

_ pC_(1-1)
Q; = -k aie + k(lvm) J vrav + —E f ulT'av
i IV Ay
o] (o]
pC
+ 5 J ulT'av (5)
v

Here, ae/axi is the macroscale temperature gradient, k and
mk the thermal conductivities of the fluid and particles,

Cp and TCp the respective heat capacities and p the density
(assumed equal for fluid and particles). Temperature varia-

tions of the physical properties have been neglected in

writing equation (5).
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The expression (5) for the bulk conductive heat flux,
Qi' is not restricted to any particular range of particle
concentrations. However, its evaluation in the general case
would require the existence of a solution to the many-body
microscale problem for all of the n particles in a typical
averaging volume V. Here, we restrict our attention to
dilute suspensions (i.e., small volume fraction, ¢ << 1),
where the first 0(¢) correction to Qi may be determined by
considering the average contribution for a single, isolated
particle, subject to the macroscopic or bulk average temper-
ature and velocity fields as boundary conditions at infinity
(Jeffrey, 1974). It should be noted, that the motions and
orientations of the particles will exhibit a random nature
in the presence of significant Brownian motion. In these
circumstances, the (instantaneous) individual particle con-
tributions to Qi will be different for each particle and the
average contribution per particle can then only be deter-
mined in a statistical sense. In view of the assumed
steadiness of the macroscale velocity and temperature fields,
one approach is to simply average the contribution from a
single particle over a period which is long compared to that
characteristic of Brownian motion. An equivalent approach,
more convenient for calculation, is to first determine the
instantaneous, orientation-dependent contribution and then
average over all possible orientations with the probability

density function for orientation as a weighting factor. 1In
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either case, we shall denote the averaging process by the use
of an overbar, and with this understanding, the particle con-
tribution to the bulk heat flux may be expressed in the form

pC_(1-1)¢

0% = 5%%291 ¢J JTav + v J hiT'dV
1 o] \Y% o \Y
@) (@]
pCp¢
+ j ul'T'av . (16)
v 1
o 'V

Here, V, is the volume of a particle (assumed equal for all
particles), while V is the fluid volume which is assumed to
extend to infinity in the single particle microscale problem.
It should not be supposed, however, that the only

influence of Brownian motion is a thermally passive random-
ization of particle orientation or motion. In general, when
averaged on the long time scale (compared with a Brownian
motion time scale), any random rotation which occurs in the
presence of a nonuniform orientation distribution will pro-

duce a mean rotation of the particle at a rate

w ge = “Dp¥3 (2 () (7)

where DR is the Stokes-Einstein rotational diffusion coeffi-
cient and P(g) is the probability density function for
particle orientation. Thus, in the presence of Brownian
rotation, the convection velocity at the microscale which

is relevant to the determination of Qs is not simply the
deterministic field associated with the presence of motion

for the suspension as a whole, but also includes the fluid
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motions corresponding to the effective rotational motion
(6). In addition, the particle and fluid motions which are
purely random on the long~time scale will generally be corre-
lated with random fluctuations in the temperature and this
constitutes a direct mechanism for heat transfer, which must
be ‘added' to the local conductive transfer in each phase,
and the local convective transfer in the fluid associated
with the overall bulk motions of the suspension. Further
details for the general Brownian motion problem may be found
in McMillen (1976), or in a slightly abbreviated form in
Leal (1976).

Here, we consider only the case of small local (particle
Peclet numbers, and specifically only the first, 0(Pe), con-
vective contributions to the bulk 'conductive' heat flux,

Qi' At first order in Pe, the microscale thermal energy
problem is pure conduction. At second order, the first con-
vection effects come into the analysis, including all
Brownian motion effects, since these are due to fluid motion
at the microscale of single particles. At each order, the
governing equations and boundary conditions are linear. fhe
most important consequence of restricting ourselves to the
low Pe limit is that the random temperature field, relative
to the long-time average, is completely independent of the
velocity fields so that the direct flux of heat due to
Brownian motion is negligible through 0(Pe). Thus, to 0(Pe),

the only effects of Brownian motion on Q; are due to the
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influence of the orientation distribution on the bulk motion
of the suspension, (called the "indirect" Brownian effect in
suspension rheology), and to the microconvective effects of
the mean Brownian rotation, (6), resulting from inhomo-
geneities in the orientation distribution of the particles
(called the "direct" Brownian effect). Since the governing
equations and boundary conditions, plus the expression (6)
for Qi’ are all linear in the temperature at 0(Pe), the
deterministic and mean Brownian convection contributions

may be calculated independently of one another at the same
level of approximation. Our approach in the present work is
to first calculate the microscale temperature fields asso-
ciated with the deterministic velocity field and a specific
(but arbitrary) particle orientation, from this solution to
determine the instantaneous and orientation dependent con-
tributions to the integrals in (6); and then finally, to
average these orientation dependent quantities by integrat-
ing over the complete orientation space with the probability
density function for orientation as a weighting factor. The
additional convection contribution due to the long-time
averaged Brownian rotation, is similarly determined by first
considering the temperature field associated with steady
rotation of the particle in a quiescent fluid; from this and
(6) to determine the instantaneous and orientation dependent
contributions to Qi and finally again average the results

using the orientation distribution function.
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The probability distribution function for particle
orientation is governed by a modified Fokker-Plank equation,
and can be solved analytically for either strong or weak
Brownian motion (cf. Leal and Hinch (1971) and Hinch and
Leal (1972) where references to earlier work are also given).
The present calculation is restricted to the limit of strong
Brownian motion, DR/Y >> 1, where y is the bulk shear rate

for the suspension.
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III. THE MICROSCALE PROBLEM

In order to evaluate the volume integrals in the expres-
sion {6) for the 0(¢) particle contributions to the bulk con-
ductive heat flux, we have seen that it is necessary to cal-
culate the microscale velocity and temperature field near a
particle, with the bulk velocity and temperature distribu-
tions as boundary conditions at 'infinity.' Since hydro-
dynamic interactions are completely neglected at this 0(¢)
level of approximation, and the flow is creeping, the center

of mass of a typical particle will translate with the macro-

scale mean velocity, (ui> = % f uidV. In view of the

assumed homogeneity of the suspZnsion on the scale O(Vl/3),
it is thus convenient to formulate the single particle prob-
lem in a frame of reference fixed to the particle, i.e.,

also translating with velocity (ui). This shift of reference
frame requires no modification of (6) since the simple trans-
lational motion of the particles makes no contribution to

the bulk conductive heat flux.

We are interested here in the influence of a general
shearing motion on the conductive transport of heat. How-
ever, the small scale of the averaging volume V relative to
spatial variations in the macroscale velocity or temperature'

gradients suggests that it is appropriate to consider

locally linear temperature and velocity fields, e.g.,

i
T = 0 and (uw)i = Yijxj (8a)
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as boundary values for the single particle microscale calcu-
iations. It is important to note, however, that some further
restriction on the possible values oy is required in order
that this far-field behavior for the microscale temperature

field be compatible with the general advection-diffusion

equation. In particular, as x] » », it is required that

u.a. = 0 {2)

where uy represents the macroscale velocity vector. In the
case of simple linear shear flow, we are thus restricted to
temperature gradients which are orthogonal to the undis-
turbed flow. To calculate the bulk heat flux due to tempera-
ture gradients in the flow direction, it would be necessary
to consider the exact macroscale velocity and temperature
distributions locally, not just their linear approximations.
This fact apparently precludes the existence of an effective
conductivity tensor since the resulting bulk heat flux could
not possibly be linearly related to VI. We shall be con-
cerned here with the bulk heat flux due to gradients of the
bulk temperature field which satisfy (9).

We consider a prolate spheroid of major axis 2a and
minor axis 2b, whose axis of revolution is at polar and
azimuthal angles 61 and ¢l relative to a non-rotating
Cartesian coordinate system (xl, Xqr x3) which has its origin
fixed in the center of the particle. The geometric relation-

ship between el, ¢y and the undisturbed shear flow, which is
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U3 = Y%, (8b)

relative to this coordinate system, is shown in Figure 1.
The orientation of the particle will, in general, be a
function of time. In the absence of all external forces
and couples and Brownian motion, Jeffery (1922) has shown
that a particle in creeping flow will rotate in closed

orbits, given by the equations

-1 I' vyt
¢l = tan I _tan ~§E—-
P rf+l
{10)
...l FP
ﬁl = tan

1/2 -
2 2 .2
C[chos ¢l + sin ¢l)

Here Fp is the particle axis ratio, Fp z a/b, and C is an
undetermined constant of integration, having possible values
0 £ C ¢ ». The orbit for a particle is determined by the
constant C.

For purposes of the microscale analysis, it is conven-
ient to utilize a coordinate system which is coincident, at
any instant, with the principle (major and minor) axes of
the particle. We may transform from the system (xl, Xo x3)
to this new system (xi, xz, xi) by means of the orthogonal
transformation given by the direction cosines of the orienta-

tion angles;

i
Xi = %i9%y (11)

where
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ccsel 51nelcos¢1 81n6151n¢l
i3 = —31n81 coselcos¢l cos@ls:md>l
0 “Sln¢1 coqul o

A further convenience is to use prolate spheroidal coordi-

nates (£, n, ¢) defined by the equations

xf = ¢ coshf cosn

xg = ¢ sinhf sinn cos¢ (12)

x§ = ¢ sinhf sinn sing
where , , 1/2 , 1/2

o = (a®™ ~ b*) - (I'p = 1)

- [ - I.1/3
p

and the surface of the particle is given by £ = § = ctnh“lr.

O

Typical coordinate lines for this system are illustrated in

Figure 3.

a) The microscale velocity field

The motion of the fluid, as well as the particle
(equation 10}, for a general ellipsoidal particle in a
general linear flow was obtained by Jeffery (1922), under the
assumption of small Reynolds number. Unfortunately, the
solution is expressed in terms of a Cartesian coordinate
system instantaneously aligned with the particle major and
minor axes, and thus involves complicated integral functions

of a parameter A which is the positive root of the equation
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Xg X2
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Transformation of this solution to prolate spheroidal
coordinates which are suitable for the thermal problem, is
therefore extremely difficult, and we have adopted the
alternative of simply rederiving the solution directly in
spheroidal coordinates.

The problem which we consider is the motion of a prolate
spheroidal particle, together with surrounding fluid, which
is subjected to the linear shear flow given by eguation @@b) .
A convenient approach to this calculation, which we follow,
is to first solve for the case in which the particle is

rotating at some instantaneous rate (wl, W w3) relative to

the axes (xi, xz, X;). An appropriate characteristic length

2]1/3, and the relevant velocity scale is

scale is ¢ = [ab
v%. Because the particles are assumed to be very small, the

Reynolds number at the microscale is also very small

Finally, we assume that there are no imposed changes of
particle orientation which occur faster than those arising
naturally from the shear field, equation (10). In these
circumstances, the microscale velocity field in the fluid is

governed by the creeping motion equations

v =Vp , V-d=0 (13)
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The velocity field in the particle is simply the solid body
rotation described by the rotation vector 5, referred to as

the instantaneously aligned Cartesian coordinate system

(X§)° The microscale velocity field in the fluid must match
the particle velocity at the surface of the spheroid, £ = go,
and reduce to the non-dimensional simple shear field u; = x,

(referred to the non-rotating Cartesian coordinate system
xi) far from the spheroid. For convenience, we actually

solve for the disturbance velocity field

> - >
u* = u - u,

which satisfies the same equations (13), but vanishes at
infinity.
-5

The velocity field in the particle, u, will simply be

that given by the solid body rotation,

0 = wxd - wpd
ﬁz = w3x§ - mlxz (14)
ﬁ§ = wlxg - wzxi
and at the particle surface, § = £ , must equal the velocity

o}
in the fluid, u* + ﬁm .
We therefore have the following governing equation for
the disturbance flow field;
Veu* = 0

(15a)

2

V *;—-_v*
4= Y
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subject to the boundary conditions
- -> Z >
u* » 0 as £ + oo u* = u - u_ at £ = EO {15b)

Following Lamb (1932} or Jeffrey, the general solution to
(15a) can be written in terms of four harmonic functions,

Xp” ¢n’ Rn and Sn in the form

Tx = z{vX(Fxn) + Ve + rZVRn - ?sn} (16)
n

> . L . .
where r is the normal position vector associated with a

point in space,

> _on(u? - 1)1/2 Y c (1 - 2)1/2 s
r = ; , 173 e‘E - ) ; 1732 en , (17)
(n™ - %) (= - 7
in which
U = coshf
vV = cosn .

»> + . . .
and eg, en, and g¢ are unit vectors in the £, n, and ¢ direc-

tions. The distance of a point in space from the origin of

our coordinate reference frame is simply

2

r = c[pz + v - l] (18)

The harmonic functions R and §, are related through the

continuity equation

5 {Vr2~VR ~ Teys_ - 35 } =0 (19)
n=0 n n n



In prolate spheroidal coordinates, the general harmonic

function which is continuous in n is given by

_ =] ~ w© e o n o
F= I F_o= z z [{Aann(u) + BnmPn(u)}Pn(v) cosmod
n=o m=0 n=m

m r m .
+ {Cann(u) + DnmPn(u)}Pn(v)51nm%] (20)

where Pﬂ(u) and Qg(u) are the associated Legendre functions
of the first and second kind, of degree n and order m.
However, since the disturbance vanishes at infinity in the

present problem, the harmonic functions Xp ! ¢ . R_and Sn

n n

must not contain terms involving the associated Legendre
functions of the first kind. To further restrict the general
form (20), it is necessary to consider the boundary condi-
tions at the particle surface, including the simple shear
field as a result of (15b). For this purpose, we first
transform these conditions to the (¢, n, ¢) prolate spher-
oidal coordinate system. For the solid body rotation given

by (14), this results in

- _ C 1w3 1 1
g = 2 5 1/2 5 1/2 {* 3 Pl(u)Pz(v) coso
(W™ = v7) (™ - 1)
iw
+ _§£ Pi(u)Pé(v) sin¢}
o = ¢ fwg 4 1
Um T 5 2 1/2 5 1/2 {‘ 3 Pz(u)Pl(\)) coso
(u™ - v%) (1L -~ v9)

iw
2 .1 1 .
+ 3 Pz(u)Pl(v) 31n¢}
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,  1/2 1/2
- c(u“-1) (1-v) {2
u, = = W, P ()P _{V)
¢ (u2_v2) 3 7172 o

. 1 1
iw, PS(u)P5 (V)
% w P (WP, (V) + [- 92 2 2

{

(l“UZ)

iw, P%(u)P%(v}- | i, Pé(u)P%(v)
+ 9 5 cose + |~ 5 5
(L-v7) - (1-u7)
. 1 1
iw, PS(H)P5 (V)T
+ 93 2 ; sin¢} (21)
(L-v7) -~

The imaginary number i arises in the coefficients of the
terms involving Legendre functions of odd order because we
have chosen to define these functions by

m/2 avp
PMz) = (1 - 29 n

o (22)
z

Since the variable p assumes values from one to infinity
along the real axis, the odd order functions Pi(u) are
purely imaginary.

The flow field far from the particle is re-expressed in
the prolate spheroidal system by first transforming from the

fixed Cartesian coordinate system, u into the system

= x
3 27
(xj) aligned with the particle, using

%..xT =1 a,.xT (23)

¥ oo
u: = 4 & C X .
j i 3371 PR

i2
The matrix dij is a function of the orientation 81, ¢l of

the particle,



a ia ~-ia
4

o 3
i = ia4 a;-a ~a (24)
i(az—a3) ag-ac -ay
with a, = sin26l sin¢l cos¢>l
a, = simbl cos¢>l
a, = —isinel
ay = -isine, sin®p, (25)
a, = --isinel cosel sind)l cos¢l
ag = cosel

_ .2
g = cosel sin ¢l

Using (23), the far-~field condition, uy = X,, may be
expressed in terms of the prolate spheroidal coordinate sys-

tem as

_ C 2 2
ug = > 172 5 173 E aOP3(u)P2(v) - aOPl(u)Pz(v)
(u"=v%) (u™-1) .

Pores

da a
+ Tﬁg Pg(u)Pé(v) - 7? Pi(u)Pé(v{}cos¢

B (a,+3a

)
71'2§ (a2—-2a3)P]§(u)Pé(\)) + _._?E“.L P]]:(u)P:é(v)]sinq)

.

a (2a_.~-a.) )
i Pg(u)P‘;‘(\)) cos2¢ + “’“g‘b‘“?‘“ Pﬁ(u)Pg(v) sin2¢

(=]

- c 2 _ 2
Uuoo = NSV 172 T 8 P, (W) P4 (V) § 3P, (WP (V)
(n==v%) (1-v7)




4a4 a4

+ | o= PROOPI(V) - 7;‘P%(H)Pi(v)} cos¢ (26)

(a,+3a.)
1 1 1 1 .
f% (a2—2a3)P2(u)P3(v) + -zig—§—-P2(u)Pl(v{]51n¢

a (2a

9
90

6> Pg(u)Pg(v) sin2é

90

4

Pg(u)Pg(v) cos2¢ +

1/2 1/2
2 2 a a
_clpg™1) (1L~-v7) 5 5
ud’m = (112—\)2) 3 PZ(U)PO(\)) - 3 PO(U)PZ(V)

9 2

1 1
[(a3—a2) PoPL(M  (ag-ay)By ()P (V)
+ 5 - cosd
(1-u*) 9 (1L-v©)

- e

1 1 1 1
[a4 Py ()P, (V) a, Pz(u)Pz(v)} .
5 sing

(1-p2) 2 (1-v?)
(ag-2a;) P2(WPI(V)  (ag-2a) P2(u)P2(v)
+ 18 3 - 13 7 cos2¢
(1-12) (1-v2)

(a,-2a;) PSO0PS(V)  (a_-2a)) P2(W)PI(W)]
* 18 2, T 18 2, | sin2
(1-1%) (1-v?)

From the expressions (21) and (26), plus the general solution

forms (16) and (19), it follows that

z

_ 2
I¢ = c z GnOQn(u)Pn(v) + c

1 1
z x . Glen(u)Pn(v) cos¢

2

1 1 . 2 % 2 2
+ c niz Hlen(u)Pn(v) sind + ¢ niz anQn(u)Pn(v)cos2¢
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o«

2 2 2 .
+ C niz anQn(u)Pn(v) sin2¢
[¢] [ee]
- 1 1
an =c I Cnan(u)Pn(V) + c E Clen(u)Pn(v) cos¢
n n=3 n=1
> 1 1 : - 2 2,
+ ¢ I DnlAn(u)Pn(v) sind + ¢ I Cn2 Qn(u)Pn(v) cos2¢
n=1 n=3
+c 7 Dani(u)Pi(v) sin2é (27)
n=3
« ® 1 1
IR = ni4 KnOQn(u)Pn(v) + n£4Klen(u)Pn(v) cosd
b 7 10t GoPE(v) sine + & K 0Bl
z n1%, (WP (V) sing z len(u) . v) cosd
n=4 n=4
+ o3 angi(u)pi(v) sin2é
n=4
T *® 1 1
ZSn = 24 MnOQn(u)Pn(v) + n§4Mlen(u)Pn(v) cosd
* 1 1 . > 2 2
+ n£4 anQn(u)Pn(v) siné -+ ni4Mn2Qn(u)Pn(v) cos2o

o
s N_,02 (1 P2 (V) sin2¢
It can be seen that when a particular summation begins
with an even or cdd number, such as n = 1 or n = 4, only
even or odd degree functions are required in that expression.
However, an infinite number of terms_is still required in

each summation to exactly describe the velocity fields for a

+ -
general rotation w of the particle. Fortunately, as we shall



see, not all of the terms needed for the velocity field are
required in the computation of the bulk heat flux via equa-

tion (6). The unknown constants, G etc. are related

no'’ Gnl
via algebraic equations expressing the no slip condition on
the boundary of the particle of which the following are

typical;

6 8 _
g Gzo[Q3(w) - Ql(w)J + Tgw K40[Q5(w) - Q3(¢) -

9
2 6 16 =
- g aO{PB(w) - Pl(w)} g G20Q2(w) + ?I K40Q4(¢)"

N

- & a P, (V) (28)

where

Y = cosh{io} = cosh{ctnh“le} = Fp/(F;—l)l/2 (29)

is the value of j at the surface of the particle. We there-
fore obtain values of the "constants" G20’ K40, . « ., which
may be expressed as a function of orientation, say a or
rotation vector 5, multiplied by a function of shape of

the particle only, for instance

K40 = absl (30)

where a is defined by (25) and

S = . - 5/6
200 200 40 40
{189Q5(W)Q2(¢)‘189Q3(w)Q2(¢)“EIQ4(¢)Q3(¢)+§IQ4(¢)Q1(w)}

We may, with increasing complexity, evaluate as many of the

coefficients as are necessary. It will turn out, however,
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that to evaluate the 0(Pe) correction to the bulk heat flux

we will require only

G = a.S

20 551
Kgo = 3,5,

Cyg = (a3 = 2018,

Ci1 = 335789 = 108584 + @58, 45,
C3p = 3387 = dw,y8g + 3,8,
Dyy = 335789 = 1w3SgS,

D3y = 3457 = 1wsSg

Gpp = 24517 + w38y,

Hyp = ~33831 — 10y8;5 + 3,54
Kgp = 34814 * 103555

Lgp = ~33514 ~ 10354

Ga2 = 3524

Hyp = (235 = 35)8,,

Kg2 = 3523

Lyy = (235 = a5)5,3

Cypy = 0

Dy, = 0

The shape functions Sl - 824 were evaluated numerically.
Exact expressions for these functions are available in

McMillen (1976).

b) The microscale temperature field
Having calculated the components of the velocity field

for an individual particle, we may now turn to the task of
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calculating the corresponding temperature distributions for
the particle immersed in simple shear flow, and subjected to
a nondimensional linear temperature field T(j) = Xj (i = 1,2),
where we have nondimensionalized the temperature with respect
to the characteristic temperature ajﬁ. The disturbance
temperature field will be a function of both position and
time, resulting from the fact that the particle changes its
orientation with time, and therefore "sees" a different
boundary condition at infinity at different times. The
microscale temperature problem is governed by the usual
(non-dimensional) convective-diffusion equation of thermal

energy both outside and inside the particle,

Pe, {-g—'{- + E-VT) = g2 (31a)
o >
Pez[gz + G-vi‘) = V4% (31b)

where the Peclet numbers, Pel and Pez, for the suspending

fluid and the suspended particle respectively, are defined

by 2 2
pCpl Y p1C_L%y T
Pel e H PeZ = ————R—-——mk = - Pe2

and are assumed small, but non-negligible.
The equations (31) describing the temperature field
outside and inside the particle are solved subject to the

boundary conditions

@
31

= 3T _
T =T and§-€~ m

|

o
[z3
oy
i
¥y

(32)

Q|
Ty,



and

T ﬁ>Tj = Xj as & » o (33)

As usual in problems of this type, a uniformly valid
solution for Pe << 1 can only be constructed via the tech-
nique of matched asymptotic expansions, with the equations
in the fluid region far from the particle expressed in terms
suitable to the fact that convective terms must be retained
at large distances even in the limit Pe -~ 0. Since the
techniques involved in the expansion procedure are standard,
we shall concentrate primarily on those portions of the
analysis and results that are pertinent to evaluating the
bulk heat flux.

In the inner region, the temperature distributions are
governed by (3la) and (31b) subject to the conditions (32),
plus an appropriate matching condition at large u with the
solution in the outer region. We assume that in this inner
region, the temperature field can be expanded in asymptotic

expansions of the form

T = fO(Pel)TO + fl(Pel)Tl + fZ(Pel)T2 + ...
(34)
T = fO(Pez)ﬁo + fl(Pez)‘f‘l + fz(Pez)'f’2 + ...
where
lim fn+l >0 .
Pe. ~ QO fn

1

As usual, the precise form of the asymptotic gage functions
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fn(Pel) is to be found in the course of the analysis.

In the outer region, the "radial" coordinate p = coshg,

is re-scaled according to

p = pPel/2 = Pel/2 coshg (35a)

and the convective-diffusion equation is expressed as

20 - 5 3L 3T - §ipe ) (35b)
2 £ 1

3

where T is utilized to denote the temperature function in
this region. The symbol Vi represents the usual Laplacian
operator with p replacing p. The Cartesian coordinates Xi
are similarly stretched according to ﬁi = Pei/zxi. In terms

of the (p, v, ¢} coordinates (35b) is written as

1/2 1/2

2 a 2 . 2 . 2 ..
vp T - {aov + 21a4v(l—v ) cos¢ + 1(a2 - 2a3)v(l—v ) sing

+ (a5 - 2a6)(l—v2)sin¢ cos¢ + (al - ao)(l—vz)cosz¢

2, .. 2 T 3
- al(l—v )sin ¢}p 35 + ab(v-v )

5 3/2 ) , 1/2 5 3/2
+ ia4(l—v ) - ia4v (1-v7) cos¢ + ~ia3(1—v )

1/3
- ifa, - ay)vi-vd ]sin¢ - (a3 - a_) (v-v3) cos?y

s3]
3>

+ al(v—v3)sin2¢ - (ag - 2ag) (v-v’)sing cos¢

V)
<
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+ {ia, _—~«m»i7~ sing + i(a, - aj) —~7~*COS¢ (36)
(1-v ) (1-v )
+ (a, - 2a;)sing cos¢ + ag Sin2¢>+(a5 - a6)0032¢ %%
3T _ AT j 5T 3/2
+ 5t = 0(Pey) 35 * 0(Pey) .55 + 0(Pey) 5% F 0(pe

It may be noted, that to first order in Pe the stretched

1’
p coordinate appears to play the role of a radial coordinate
in a spherical coordinate system (p = r, n = 6,¢). This is
merely a reflection of the fact that in the outer region the
particular geometry of the particle is lost, and the particle
is merely viewed as a point singularity. The time deriva-
tive must be retained, however, since the outer boundary
condition is a function of time when expressed in the instan-
taneous coordinate axes (p, n, ¢).

As in the inner region, we assume an asymptotic expan-

sion for T of the form

T = Fo(Pel)To + Fl(Pel)Tl + FZ(Pel)TZ + ...
with

(Pe )
lim Fn+1Pe1) >0 .

Pel + 0 Fn(Pel)

In this outer region, the solutions are to satisfy the
condition that

T -» Pe-l/zﬁj

as p > o« {37a)
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which may be expressed as

T > Pe-l/zc{lljpv + zsz(l~v2)1/2cos¢ + £3jp(l-v2)1/zsin¢}
+ O[Pei/z) as p > e 5= 1,2 (37b)
plus the matching condition,
pl_if“o T(p,v,0,t) = ulimm T,V 0,t) . (38)

As usual, the solution sequence alternates between
approximations in the inner and outer regions, and begins
with the observation that the condition (37) provides a
uniformly valid first approximation to the temperature

distribution throughout the outer region. Therefore

-1/2
1

oo

TO = FO(Pel) = Pe (39)

The first approximation in the inner region satisfies

the pure conduction equations
v'r =0 ; vetr =0 . (40)

Obviously TO and TO are harmonic, and may be represented
by expressions of the form of (20). The solution which
satisfies the zero-order matching condition and the condi-

tions (30) at the particle surface (u =R coshgo),

surface

is simply
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L _ LT T 51,4l T 1 1 .
T, = A 01P1(“)Pl(\’) + AllPl(MPl(v)cos + BllPl(u)Pl(v)sm
(41a)
T T 1 1 T .1 1 .
+ COlQl(u)Pl(v) + C llQl(u)Pl(\))cos + DllQl(u)Pl(V)51n
U T 1 1 T 1 1 )
T, = EOlPl(u)Pl(v) + EllPl(u)Pl(v)cos¢ + FllPl(u)Pl(v)51n¢
(41b)
where
T T {(1-m) 1
= .. = cf..
o1 = *15%1 T 15 A (o, = 1I/9)
T . —T . {(1-m) 1
= —if... = ~ich..
€11 1424611 Y723 TwoA,) (o (0 = /%)
T _ ., =T
Dy = ~1%35Cq
(41c)
T s _ .
AOl Cllj ’ All lchj R Bll 1cJL3j
EL = 0. .BL = cf (-2,
01 15701 13 (m-A&))
(1-a.)
T =T _ 2
Epp = ~iy4Fpy = —iciyy (m-a)
T, T
Fi1 = ~%43381
{Qo(w) - —ék“} )
A, = v -, {IAlI <o ; M oa oo



2
{Q (v) - L2
~ o ¢3“4 A <0 ; lim P
Az - w ! 2 7 r ‘*l AZ ]
Qo(l.b) - 5 p
Pyo-1

The Ql(u) and Qi(u) terms in the solution (41), which
occur solely due to the difference in the internal and
external conductivities, give rise to terms that behave as

j? as u - », They consequently give rise to a mismatch of

3/2 in the overlap region between the inner and outer

u
O(Pel)
solutions.

Before turning to the next outer solution we therefore

consider the 0(Pe) inner solutions. Here fl(Pel) = Pel,

fl(Pez) = Pe,, and equations (3la) and (31b) become

g2 = DevT + ?Ecl (42)
1 o) ot

7% = 5evF 4 %o (43)
1 o ot

with boundary conditions at the particle surface,

LN d

5 T TW% at g = EO .

| —

el
it

Y

and the matching condition (38).
After considerable algebra, both equations (42) and (43)

may be written in the form

o

VZT R S ) Fg(u)Pn(v) + I Fi(u)Pi(v)cos¢

(u2—v ) |n=o n=1
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Lad

@D

+ 3 Gi(u)Pr{(v)sinq) o3 Fi(p)pi(v)cosw

+ I GI0RZ(vsin2g + & 7300 P3 (v)cos3p
n=2 n=3 n
=3 3
+ 7 Gn(u)Pn(V)sin3¢ (44)

n=3

where Fg(u) and Gﬁ(u) are known functions of yu, not neces-
sarily associated Legendre function of degree n. The solu-
tion to these equations may then be represented as a combina-
tion of the general, homogeneous solution of the form of (20),

plus a particular solution of (44) of the form

£ (el (v) coss

o
Tparticular Z fn(U)Pn(v) + i

n=0o n

1
e

<o

+ I gj(u)Pi(v)sin¢ + I fi(u)Pi(v)0052¢

n=1 n=2
22 2 . ) 2
+ I gn(u)Pn(v)s1n2¢ + I fn(u)Pn(v)c052¢
>3 3 :
+ I gn(u)Pn(v)51n3¢ . (45)
n=3

Here, the functions fﬁ(u) and gﬁ(u) are particular solutions

of the inhomogeneous Legendre equation

2. m
e, afi . [(n)(n+l) 2 )fm(u)
ap? (1-p%) ap (1-p?) (1-p) % m
2.
c”F_(u)
= n (46)

(1-u?)
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If the function Fi(u) is an associated Legendre function
Wg(u) of either the first or second kind, where the degree
g is not equal to the degree n of the term P?(v) for the (V)
dependence of the inhomogeneous term in the equation (44),

then the particular solution to (39) is simply

o CZWq(u)
— £
£p(w) = g (g+l) - n(n+l) (q # n)

(47)

If, however, the degrees are equal (q = n), or the function
Fg is not expressable as an associated Legendre function of
order m, then the solution must be constructed by the method

of variation of parameters,

m m
My - 2Pm( ) u Qn(Z)Fn(u)dz
ntH/ TG FLtH m m
2 m dPn(z) m dQn(z)
(1-27) Qn(z) T dz - Pn(z) Tdz
(48)

pg(z)Fﬁ(z)dz

u
+ czQﬁ(u) f

ao™ (z) ar™ (z)
2 m n m n
(1-27) \Pp(2) —gq7— — 9, (=2) “"HE“"}

In either case, we may obtain explicit representations
for the particular solutions f?(u) and gﬁ(u). The appro-

priate solutions, taking into account the inner region-outer

region matching, are

- it T
T, = I Ty,

- « 1
P+ E e (] a0
n=o n=1

Iln n
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- @ -1 1
fi(uﬂ Pi(v)cos¢ N nil{JinPi(U) + gn(u))Pn(v)sin¢

(. 2 =2 2 AT 2
niz[lznPn(u) + fn(u)JPn(v)cos2¢-+n£2(J2nPn(u)

éi(u))pi(v)sinm + nigilgnpim + Ei(u)]?i(v)cos?:(b

(T .3 -3 3 .
E3KJ3DPH(U) + gn(u)]Pn(v)51n3¢ . (49)

oo,T o« T]_
E[Conln (W) Eplw) B0 nil{Gann(“)

1 1 ; T 1 1 1 )
fn(u))Pn(v)COS¢ + 2 HinQ, (W) + gn(u))Pn(v)s1n¢

T 2 2 2 ST 2
n£2 GZnQn(u) + fn(u)}Pn(v)cos2¢ + niz{HZnQn(u)

g2 () P2 (v) sin2o + n§3[6§n9i<u> + £2a0 |22 (v cos3s

o8

T 3 3 3 .
[HBnQn(U) + gn(u)]Pn(v)51n3¢
n=3
The boundary conditions at the particle surface (32) are

satisfied if

,

ar™ (u) ar? (n)
= i fm(w)[ a ] - fm(w>I a ] - L pM(y)
Lm n du n=y n du )=y m n
@E () L om o (GER () m. o (4PL ()
n ) + 1 Pn<w)[ n ) Qn(w)[ 0 ]
\ u=y p=y p=y
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ol

and
m m m
Tt £ ) dQn(”)J ) dQn(n) . dfn(u)
mn n du n=y du L=0 n dyp n=y
a£™ (p) ar™ (u)

m m n I N
cw [B) Hd aw @5 -
[in(U)} l

du

U=y }
T

with similar relations involving Hgn, J ., 92(¢): and §§(w).

mn
The solution (49) in the fluid gives rise to terms
that behave like a constant as p » ». These terms arise

from the particular solutions fi(u) and gﬁ(u), (for example,

lim _Lo 2. T T T T
fl(u) > ¢“/30 {aoCOl + 2a4C11 - 4a2Dll - 2a3Dll} -

p>co

T T . . . .
1/3 AllDll + 1/3 Bllcll) which give rise to a mismatch of
OOPei/z) in the overlap with the outer sclution region. The

mismatch with the zero order (TO) solution was of this order

also, causing Fl(Pel) = Pel. Contributions to the effective
bulk heat flux from this outer solution will be of O(Pei/z)

however, whereas the two inner solutions so far generated
give rise to contributions of O(Pel). Thus, we will not
consider the next outer solution here. As in the case of

the velocity description, it is evident that we again



N
K
3

require an infinite number of coefficients for an exact

solution for T, and Tl. However, only a finite number of

T T

T T s
the constants G , H Inm' and Jnm’ and only a finite

nm-  nm

number of the particular functions fﬁ(u), gﬁ(u), fﬂ(u), and

éi(u), will be needed to obtain the bulk heat flux to 0(Pe,).
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IV. EVALUATION OF THE BULK HEAT FLUX

a) General considerations

The microscale velocity distributions and temperature
distributions obtained in sections IIIa and IXIIb are valid
for any arbitrary orientation and rotation of the particle
and may now be utilized in expression (6) to evaluate the
bulk heat flux of the suspension, given the orientation
distribution and rotation of the particles. Leal and Hinch
(1971, 1972) have studied the steady state orientation dis-
tribution P(el, ¢l) in a suspension of spheroidal particles.
As we have previously pointed out, in the absence of all but
viscous forces the rotation of particles is pericdic and
described by the orbit equations of Jeffrey, equations (10).
The action of rotary Brownian motion is a randomizing in-
fluence on the particle orientation, and the steady state
distribution of orientation in the suspension represents a
compromise between the hydrodynamic-induced distribution
resulting from unopposed Jeffrey orbits and the uniform
distribution resulting from unopposed Brownian rotation.
The probability distribution function P(g,t) is governed by
a modified Fokker-Plank equation, and at steady state simply
expresses the conservation of probability in the orientation
space,

2

v-(YKHF) =D VT . (50)

Here, Dr is the rotational Brownian diffusion coefficient
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, 2
_ KT (1\31“P + Kl)
D, = 1g 2 2 ' (51)
~§—ﬂua*b* (Fp + 1)

K is Boltzmann's constant, K3 and K1 are shape functions

defined by
o rpdx
K3 ) o) 2 3/2
(T=+)) (1+X)
p
o0 dek
Ky = PN V5
(rp+x) (1+))

and the rotation vector y&H describes the time rate of change
of orientation due to the purely hydrodynamic motion about
Jeffrey orbits. The vector operator Vis defined on the unit
sphere~orientation space (61, ¢l), and P(Gl, ¢l) is
normalized by

271w '

Jo [o P(81,¢l)51n91 d61d¢1 =1 . (52)
As Leal and Hinch show, the resulting probability function P
depends essentially on two parameters--the particle aspect
ratio Fp and the non-dimensional measure of shear strength
Y/Dr, The results for the distribution function P(@l, ¢l)
may be obtained analytically in several limiting cases and
are briefly reviewed here. In the limiting case of weak
Brownian motion, Y/Dr >> 1, the particles are found to proceed
nearly undisturbed around closed Jeffrey orbits. The first

effect of the small Brownian rotations is to eliminate the
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dependence of the relative population of different orbits on
the initial orientation state of the suspension. A careful
examination of the conditions under which the resulting
expansion for the probability distribution function P is
valid suggests the existence of an additional regime corres-
ponding to intermediate shear rates for particles of
extremely large aspect ratios, Fp +~ « (rod-like particles).
This additional complexity will not be described here, the
interested reader is referred to the original paper, Leal
and Hinch (1972). For the case of strong rotational Brownian
motion, Y/Dr << 1, the function P may be represented by a
regular expansion in the small parameter Y/Dr, the first few

terms of which are:

\ Fz-l
1 Y 1 p . 2 .
I + EMJ e [ ] sin“6 sin2¢

P(e ' ) =
17?1 5_) T67 |7255
p

v 2[( 21y 1 4 1 2

+ Iﬁ’“} {5 [m cos 8y = y7gy COS 0
r L +1

'

7 1 .4

* 7207 ~ 2ser oM % C°S4¢’1:I
2

- EE:i L sin28 cos2d + 0| ’ (53)
2,7| 96m 1 1 5
p r

For this limiting case, the distribution of orientation is
significantly different from the purely hydrodynamic Jeffrey

orbits, at first order being merely the purely random
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orientation distribution resulting from unopposed rotary
Brownian diffusion. The effective Brownian mean rotation

gBr resulting from this distribution, from which the mean

-> -> N .
velocities v and vp will result, is therefore of comparable

order of magnitude to the hydrodynamically induced rotations,

and is found from (7) to be

(I’;—-l) sing .
w = cos2¢, + 0{~)
2Br (F2+l) 2 1 D
P (54)
(I'“-1) sinb.cosH
_ p 1 1 [y_)
w = - sin2¢. + 0 .
3Br (F2+1) 2 1 D
p
The mean velocity fields, G + v and ﬁp + $p, are linear
in the particle rotation rate, w = zBr + EH’ as is evident

from the governing equations and boundary conditions (13}
and (14). Furthermore, the temperature field is also linear

in 5 to 0(Pe), since TO and Tp are independent of 3, and
o
Tl and Tp depend linearly on w through the differential
1
equations (42) and (43). Finally, the bulk heat flux

expression (6) is linear in w to 0(Pe), since it depends

linearly on T and (G + v - )(r - 1T, (5 +v_ -1 )
pl o0 o P P o)
(T - T_). It therefore follows that we may either substi-

p
tute the total expression for w

> > +-+
W = Wgy T Wy

into the boundary condition (14) at the particle surface,

and calculate the microscale temperature distributions and
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the bulk heat flux directly for the full velocity fields

—— -

0+ 3, é + $p' or conversely, obtain separately the contri-
butions to tﬁe bulk heat flux arising from the purely hydro-
dynamic motions and the contributions arising from the
Brownian induced motions; with the total bulk heat flux
being merely the sum. For present purposes we follow the
latter course, since the separation more clearly identifies
the role of the two types of motion in the final result.

We proceed then as follows. Having obtained the micro-

-+

scale velocity fields U and U outside and inside the particle

for arbitrary orientation and rotation of the particle, we

formally split the velocity distributions into two parts,

.

> > > >
u((l)]el'q)l) - u (U) qu)l) + uBr(wBrrellqbl)

> z -
Hp(”ﬂ’61’¢1) + uBrp(wBr’el'¢l)

= 4

=9
Q. (0,0, ,0,)
UptWrUy s bq

The microscale temperature fields to 0(Pe), may then also

be written as a sum of the form

>
T =T,(67,9)) + Pecly (“1’81'¢ )+ PegTy plop,r0y,dy)

= To(el,(bl) + PepTl q

=1
|

Since the order one temperature distributions, TO and To,
are independent of B, splitting only occurs at 0(Pe). The

. : . -] 3 e g

individual fields Tl,H’ Tl,H’ Tl,Br’ Tl,Br may be evaluated
directly from the general solutions (49), by specifying w as

. > -> , -> -3
either Why O Wy Since W and w, are known to depend on
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orientation (cf. equations (10) and (54)), the individual
temperature and velocity fields can ba completely expressed
as functions of spatial position, with the instantaneous
orientation (el,¢l) as a parameter. The long-time or
ensemble average result for the bulk heat flux may thus be
calculated in two steps. First, the orientation dependent
temperature and velocity fields are used to calculate the
necessary volume integrals of (5), thus producing an instan-
taneous expression for Q, as a function of the instantaneous
particle orientation, plus the physical properties of the
two phases, and the axis ratio Tp of the particles. Second,
the relevant macroscopic heat flux is determined by averag-
ing the orientation dependent result, Qi(81,¢l), over all
possible orientations with the steady-state orientation dis-
tribution function as a weighting factor.

Following this plan, the orientation dependent results
3) a.xj, satisfy-

® J
ing (9) with (ui)00 = Yx26i3 may be expressed in the form

for an undisturbed temperature field, T

(3)*

Qi,hyd(e

1’ d)l) = "O,jk(i)

(3)
9o dndd
_ huh¢ ] &=t




| F‘(j)'
T em(m go uJ,hydro . 3/2
Y R h dgdld¢ - 0 (P £ )
5 T'0 ‘0’0o En ¢ b
2
+ 0(07) + ... (55)
o =(3)
. ~ 2 em |n.T
Q$];*(91,¢1) = —a.k¢Pef émwill j J -i %1BL dnd¢
TeEr ' ) Son Jodo | M |e=¢
o
1 2T pTp U, B (3), 27 W £O
 — i,8:0 d &ndé- 57— (
Srdodole PeMu 1,
3 o M 3 e}
R AELE
lfrhoh d&dnd¢ p + O(Pe3/2 + 0(q‘>2) + . . . (56)
S

The particle contribution to the bulk conductive heat flux

(3)*
at any arbitrary orientation is then Qltotal(el ,¢l)
i)

lhyd(el,cpl) + Qé%i (81,¢1) and the total orientation-

dependent bulk conductive flux corresponding to this is

simply
(1) _ (3o g (i) 1 .
Qf (01,09) = -kay + @{ 3o 0 + peafT 0,6
+ 0(pe)/?) } v o004 . (57)

Here, the superscript o, 1, etc., identifies the order of
Peclet number multiplying the specific term in the expansion
For example, Qij)o(81,¢l) is the purely conductive contri-
bution to the orientation-~dependent bulk heat flux Qi

resulting from a constant temperature gradient in the j
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direétion. The macroscopically significant bulk conductive
heat flux for the suspension is then calculated by integrat-
ing (57) over the probability distribution function for

orientation, p(el,¢l),

-
[}

(9 - [F"(" (D
Qi = Jo JOQi (81,¢1)P(61,¢l)81n918813¢l (58)

As noted earlier, we restrict our attention to the limit of
strong rotational Brownian motion where the distribution
function takes the form (53). A convenient form for the

resulting bulk heat flux expression is thus

. . : . 2 .
)
(o) = koo, + @{ @3 0>O ¥ LDYrJ @§3)°>1 ¥ [I—)Y;J <Q:{3)O>2

3

ol Pe<Qi(j)1>o + Pe{—g; <Q£j)l>l +o... }

J

+ 0(0%) + ... (59)

The brackets are used to indicate that the result has been
averaged with respect to the orientation distribution of the
suspension, and the subscripts 0,1,2,... identify the
particular order of the parameter (Y/Dr) multiplying each
term.

Although a sheared suspension does not have a complete
effective conductivity tensor Kij descrikbing its constitutive
behavior, as we have already noted, the restriction to
temperature gradients oy and 05, Orthogonal to the bulk flow

direction assures that the resulting fluxes Qij) will be
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linearly related to the strength of the gradient. Thus, for
this limited set of problems, it is convenient to represent
the results in terms of the specific effective thermal
conductivity components (non-dimensionalized with respect to
the fluid conductivity)
(3)*

Q.

= -
Kij = kaj . (60)

These effective conductivities will be expressed in the same
notation used for the general expansion of Q(j). Having
explained the notation utilized to express the results, we

may now proceed to the calculation.

b} The pure conduction contribution to the bulk

conductivity.

We turn first to the pure conduction contribution O(J)O.
This term has considerable significance in its own right,
since it is the bulk heat flux of a stationary suspension
of the particles. For the case of a stationary suspension
we may exactly relate the proportionality relation (60)

with the complete effective thermal conductivity tensor for

the suspension expressed as

The orientation specific results in this case are calculated

from
(j)
27T )
(el,qsl = %——%—)—J J hﬁ andd .
5T o 70 wo E“Eo
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We express the variables (f,u) in terms of (p,v) and utilize

thé results

T n. 1/2 1/2
i 2,. .2 f 2 2
— = c“(1-v7) Lo (PT=1)Po (V) + R0 (PT-1)
_?Uh;}u=¢ 171i 1 21
1/2
Pi(v)cos¢ + 23iW(w2~l) Pi(v}sin¢} (61)

and
- (1-A.) (1-A.) ) 1/2

(3] _ R i T2 el
ITO g c{glj may VPV Ay mmEy (Y
- = 1 2

(l—-A2) 9 1/2

1 # e
Pl(v)cos@ + 23j (m—Az)

(p=-1) Pi(v)sin¢} (62)
plus the identity

G -w =1
to obtain

o { (l'"Al) (l-—Az)
Kij8qr0g) = (@328 [ [255%04 + 235034 TE:K;T}

(63)
The matrix zij was defined previously (equation 11), and

the products Qn.x

i*n3 contain all the orientation dependence

of Kij' The expressions (l-Al)/(m—Al) and (1~A2)/(m-A2)
arise from the equivalence of microscale temperature and

normal heat flux at the particle surface and contain only
information regarding the shape of the particle and its

conductivity, these being the only relevant physical

properties in the pure conduction limit. Formulae for the
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specific components of sz may be obtained from (63) by
simply substituting from (11) for the orientation tensor Ry
and the results are listed in Table 1.

Examination of these results shows that the orientation-
dependent effective conductivity tensor in a stationary
suspension is symmetric, but that the particle contribution
can be anisotropic. We may also note that the formula (63)
properly reduces, in the degenerate case of a spherical
particle, to the scalar effective conductivity given by
Maxwell. This is easily seen, since Fp = 1 for a sphere,

and

. . 1-A 1-a
lim _ lim A, = =2 ; 1 _ 2 _ 3 ,

A =
Fp*l 1 Tp+l 2 m—Al m~A2 m+2

so that the off-diagonal and anisotropic terms identically

vanish, leaving

3 (m-1)

K..:K=k[l+m

2
o + 0(9 )) R (91,¢l) (64)

It is clear from this, that the anisotropy and the existence
of the off-diagonal terms in the orientation-dependent
effective conductivity for arbitrary particles, Pp > 1, is a
reflection of their non-spherical geometry. Particles with
a higher thermal conductivity than that of the suspending
fluid (m > 1) will enhance the conductive transport of heat
on the microscale, the enhancement being greatest parallel
to the (longer) major axis of the particle. Suspensions of

particles which have the elongated axis preferentially
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aligned in one direction will therefore show a larger
enhancement of the conductivity in that preferential direc-
tion, than in oxrthogonal directions corresponding to the
minor axes. For particles with a smaller thermal conduc-
tivity than that of the suspending fluid, the converse will
obviously be true. The off-diagonal terms exist when a
particle has its principal axes aligned in some direction
other than strictly perpendicular or parallel to the un-
disturbed temperature gradient. In that case, conduction
of heat along the particle's major axis, due to the tempera-
ture difference of the two ends, will produce an effective
flux of heat in the direction orthogonal to the gradient.

In order to transform the orientation-dependent effec-
tive conductivities to averaged values relevant to the sus-
pension as a whole, we must integrate the formulae of Table
1 over all possible orientations, using the orientation
distribution (53) as a weighting factor. Since 04 = 0 in
general with flow (cf. equation (9)), we restrict our atten-
tion here to the orientation averaged bulk conductive heat
flux corresponding to gradients ay and 0o The results of
this averaging process are most conveniently presented in

the form

(o2 4
&7 = &, %J ST 0[%)

o

=<

)2 (KC2)2>2 + 0[

5 i—<1

®35) = &9p)o *



o

o = 5 = off) 5w - ofy)

i

(1) oS+ ofy)’

We note, that the only contributions at 0(l) in v/D are the

(®3,)

. , o e} ,
diagonal components <Kll>o and <K22>o’ These are altered
at O(Y/D)2 by the nonuniform orientation distribution which
exists in the presence of flow. 1In addition, there is a
flow-induced contribution to ng

terms and corrections are O(Y/D)3 or smaller.

at 0(y/D). The remaining

o]
2

tribution to the effective conductivity of a stationary

The terms <K§l>o and (K 2)0 represent the scalar con-

suspension of randomly oriented particles, and are equal

(1-2.) 2(1-A.)
o _ o} — (m-1) 1 2
<K11>o - <K22>o - 3 (m~Al) + (m—Az)}

(65)

The right hand side of (65) is plotted in Figure 4 as a
function of the particle axis ratio for various values of
the conductivity ratio m. When the conductivity of the
particle is much smaller than that of the suspending fluid,
the particle contribution to the thermal conductivity of
the suspension is seen to be slightly negative (i.e., the
overall conductivity is decreased by the presence of the
particles) and relatively insensitive to the axis ratio.
On the other hand, as the particle conductivity is suffi-
ciently increased, the particle contribution is positive

and strongly dependent on the axis ratio, though still
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1]
approaching a bounded asymptotic limit as Fp > «© for any

fixed m < «, namely

lim (KO y = (m—-1) (m+5)
Fp+w 1170 3 (ra+1) d

¥ m < o« .

When the conductivity ratio m is allowed to increase without
bound, for any finite axis ratio, Tp < @, an asymptotic

limit is reached, denoted by curve (g), which is the line

. 3-A,-2A
lim o _ 1 2 -
m> <Kll>o B 3 P ¥ rp < :

Finally, we may note that <K§l>o increases without bound

when both m and Fp are allowed to increase indefinitely,
reflecting the unphysical situation of infinitely long,
perfectly conductive rods which would transfer an infinite
amount of heat for any nonzero gradient. The general result
of increasing effective conductivity, with increasing length
to width ratio and conductivity of the particles is
essentially a reflection of the tendency to this limit.

Let us now turn to a consideration of the simplest
effect of flow on the thermal conductivity of a dilute sus-
pension; namely, the changes induced in the pure conduction
results due to the presence of a nonuniform distribution of
orientations for particles of arbitrary axis ratio, Fp > 1.

First, we consider the O(Y/D)2 corrections to <K§l) and

o : .
<K22> which are given by
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&) = Tom 1" (mepy [ (17220 (-Ay) (66)
1172 F;+l 630 (m-Az) (m~Al)
2 2 .32
(KO Y = p~l (m=-1) _ Fp—l (m~-1) (1-A,)
2272 I2Dqu 180 F;“’l 1260 (m~A2)
(1-Aa.)
1
} W} (67

The expressions are plotted in Figures (5) and (6), again as
a function of Pp for several values of m. The main features
of interest are: first, that the O(Y/D)2 corrections are

strictly negative, and second, that the decrease in heat

transfer across the plane of the bulk flow (i.e., the X,
direction) is always larger than that in the direction of
the undisturbed vorticity (Xl)' The first of these facts is
easily explained, once it is realized that the effect of
flow is to change the random orientation distribution, which
results in isotropic behavior of the suspension, to one
exhibiting a slight preferential alignment of the major axis
of the particle in the direction of the undisturbed bulk
flow. The second, simply reflects the nonuniformity, with
respect to the 1 and 2 directions, of this alignment process.
Finally, we consider the orientation-induced, off-
diagonal contribution, <K§2), which reflects heat transfer

in the flow direction due to a temperature gradient across
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the flow in the presence of a particle alignment of the
particles with long axis parallel to the undisturbed flow.
This contribution is found to be

(r--1)

(m-1}
30

1 _ 2
m~Al m—A2

o =
(x3ql1 = (68)

1-Aa 1-A ]

(r-+1)

e BN ST o BN N)

and is presented in Figure (7). The contribution is seen to
always be positive, and of increasing dependence on the
axis ratio for increasing particle conductivity, as expected

on qualitative grounds.

c) The direct flow contribution to the bulk conduc-
tivity
Finally, we may now turn to the main results of the
present investigation, namely the 0(Pe) flow contributions
to the bulk conductive heat flux Qi‘ We begin with the
effective conductivity for arbitrary orientation (61,¢l) and
arbitrary rotation @ of the particle. The general result

Ky, = F,.(0,0,,0,,7,m,T_)
ij ij 1771 P

is of the form

1 15 iy, -
Kij == nil Cn(’f,m,rp)\:)n (FP'U)’el’(bl)

T (m~-1) ij (m-1) ij (m—-1) ij

= = { = + e U I
m | (m-Ay) "1 (m-A,) 72 (m-Al)z 3

(m-1) ij (m-1) ij (m-1) 1]

+ _ Pyl o =t + T{— U

(m Al)(m A2) 4 (m—A2)2 5 {(m Al) 6
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(m-1) ij (m~1) 1] (m—-1) ij
+ — U + + — Y
(m=3,) "7 (m__Al)z 8 (m=A,) (m-A,) "9
{m-1) ij {m-1) ij (-1 ij
+ — v + — Y sy Y
(m_Az)z 10 (m-A;) Y11 © (m-A,J "12
2 .. 2 .. 2
(m-1) ij (m~1) ij (m-1) ij
PR L L A + — - + s Y (69)
(m—Al)z 13 (m Al)(m AZ) 14 (m~A2)2 15
_ 1 (m~-1)

The fifteen material coefficients, C
(m-1) *
(m-A,) 2
and also on the particle shape through the two shape func-

> o o 7

n ﬁ'(m-Al) d
, depend on the thermal properties of the particles,

tions Al and Az, which were defined in (41lc). We note that
the 0(Pe) contribution identically vanishes whenever the
particle conductivity is equal to the conductivity of the
suspending fluid. The 0(Pe) contribution is hence dependent
on the difference in thermal properties of the continuous and
dispersed phases, in conjunction with the local convective
action of the fluid motion. The remaining fifteen functions
wij (rp,ﬁ, 01,¢l) depend on particle shape, instantaneous
orientation, and linearly on the instantaneous rate of
rotation, w.

We may first consider the case of a suspension of
spheroids with no Brownian motion, by sukstituting the
Jeffrey expressions for the particle rotation aH(61,¢1)

into (69). The result is orientation specific expressions

for the components Kij‘ In this case, each of the functions
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) may be resolved into expressions of the

1791

ij -+
wn (Fp,m,O

form

1]

i3 _ o i \
1pn 2 fnm (Fp)xnm

m

(051 6p) (70)

in which all of the dependence on particle shape is continned
in the functions fi% (Fp), and all of the orientation de-
pendence in Xig (al,¢l). The functions fig are complicated,
and will not be presented here in explicit form. The
interested reader may refer to McMillen (1976) for details.
The orientation functions are of direct interest and are
reasonably simple. They are listed in Table 2 for Kll’ K

227

K and K Significantly, the number which

Kip = Kpyr Ky 32°
are nonzero for each Kij is small, reaching a maximum of

seven for K In the absence of Brownian rotation, the

32°
orientation distribution is simply the distribution around
each Jeffrey orbit as determined by the rate of rotation at
each point on the orbit, coupled with the distribution of
various orbits as determined by the initial orientations of
the particles. It is therefore of considerable interest to
note that all of the 0(Pe) contributions to Kij vanish
identically when averaged around any orbit (0 < p ¢ «),
except K%z. Thus, with this one exception, contributions to
the bulk conductive heat flux (and particularly all com-
ponents orthogonal to the flow) will only be nonzero in the

presence of Brownian rotation, or deterministic couples which

act to move the orientation distribution away from that due
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to hydrodynamic rotation.
One case which can be examined readily (and which may
also be of practical interest in the context of ferro-fluid
technology) is that in which an external couple is applied

to the particle, causing it to remain permanently aligned

) (w.)

in some specified direction. 1In this case (mH 5 = (wy) g = o,

and the general expression (69) simplifies both because
wi]: ¢313, wzj, wéj and w;j are identically zero, and

s i
because the remaining wn]

are reduced somewhat in complexity.
This is reflected in simpler forms for the shape functions
fi% (Fp) in (70} . The orientation functions Xi% are the

same as those listed in Table 2. From the forms of these
orientation functions, we may immediately note certain
specific orientations of the particles for which the 0(Pe)

contributions to Kij vanish identically. Thus for example,

it may be seen from the forms of xii that Kil is zero if
61 = 0 or ¢1 = 0, %. This corresponds to situations in

which the particle major axis lies completely in the (xlx3)

plane or the (xlxz) plane. Similarly the 0(Pe) contribution

to K22 identically vanishes when ¢ = 0, %, corresponding
. . 1
also to alignment in the (xlxz) and (XlXB) planes. The K21
and Kiz 0 (Pe) contributions are found to vanish when ¢ = 0,
86 =0, * %, corresponding to alignment in any of the planes
- 1 .
(xlxz), (xlx3) and (x2x3). Similarly the K3l 0 (Pe) contri-
bution vanishes when ¢ = %; 6 =0, =* %, corresponding to
1

alignment in the planes (XIXB) and (x2X3). The K3,
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contribution at this order does not vanish in general for
any arbitrary orientations.

Finally, we may now turn to the evaluation of the 0(Pe)

contribution to the bulk conductive heat flux (or Kij)
the presence of simple shear and Brownian rotation. As

noted earlier, the calculation of Kéj

in

proceeds in two stages
from the general result (69). First, the deterministic
hydrodynamic contribution is calculated by substituting
$H(el,¢l) from Jeffrey (1923) into (69) to give (70), and
then averaging (70) with the orientation distribution func-
tion (62) as weighting factor. Second, the contribution due
to mean Brownian rotation is calculated using the same pro-
cedure but with gBr(el’¢l) from (7) replacing $H. For strong
Brownian motion (D/y >> 1), the effective or mean Brownian
rotation of the particle is of the same order of magnitude
as the hydrodynamic rotations. Furthermore, the rotations

J
m

give rise to the same orientation functions xi as were

found previously (Table 2) for purely hydrodynamic rotation,
this fortunate coincidence being due to the exact nature of
the Brownian rotations. The composite expression for <Kij> ’

including both the deterministic and mean Brownian rotation

contributions may then be written in the form

@ = Q) &, + oY)

' 3
L) = 1’-} Ly, + 0[3’—)
22 D 2271 D
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&) ¢ Kip) = O{%}B
3
W

2
(K3p) = (3, + O{g‘}

I

&5

Corresponding to (59), the full expression for those com-
ponents of the particle contribution to the bulk effective
conductivity which exist (i.e., excludes (K33>, <K23) and

<K13>) is then

2
&gs) = &P, + [g] (K3, + [g.] (K + --
(71)

L1 Y 1
+ Pe(z\ij>o + Pe{—D—} <Kij)l o

For a purely random distribution of orientations the 0(Pe)
contributions to the bulk heat flux vanish, just as they did
upon integration around any arbitrary Jeffrey orbit, except
for the contribution <K§2>. Upon allowing for inhomogeneities
in the orientation distribution due to the alignment of
particles due to the flow, contributions to the bulk heat
flux in directions orthogonal to the flow direction also
arise. Each of the three nonzero contributions up to 0[%},
i.e. <Kil>l' <k%2>l’ and <K§2>o are of the form
(Kl ) %; C (t,m,T )<wij>
ij7a 23 n TP Vn/gq

The <w;j>q functions are now strictly functions of particle

shape only, having been integrated over the distribution
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function, and shall be designated by aig for the purely
hydrodynamic contributions and Bi% for the contributions
arising from the effective Brownian rotations. To evaluate

the contributions for specific particle axis ratio requires

numerical evaluation of the various shape factors a;% and
B;%, which are quite complicated functions of the particle

axis ratio, Fp. The functional dependence on shape is
contained in the expressions by means of the shape factors
SO - 524 arising from the velocity fields, similar shape
factors Bo - 824 arising from the solution of tha 0(Pe)
temperature fields, plus additional shape factors coming
from the volume integration inside and outside of the
particle. In each of these functions, the Fp dependence is
contained in terms of assocliated Legendre functions of both
kinds evaluated at p = ¢ (c.f. Egqg. (30)). As can readily
be seen from {(29), Y » « as I' -+ 1., Since the associated

p
Legendre functions of the first kind have the property

lim
q)-—yoo

in the evaluation of the various shape functions u;% and

Pi(¢)“ wm, this causes considerable numerical problems

Bi% for particles which are nearly spherical. It was, in
fact necessary to evaluate a number of the functions by
means of series representations in 1/¢y to obtain values near
the spherical case. The numerical programs used to eval-
uate the shape factors are presented in McMillen's (1976)
thesis from which the complicated expressions for the

individual factors may be extracted. Let us now consider
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the qualitative behavior of the 0(Pe) contributions to (Kij}.

Turning first to the component of the bulk heat flux

orthogonal to the plane of the shear flow, the total

1
1

a function of the particle axis aspect ratio Fp, for several

O[% Pe} contribution <K l>l is presented in Figure (8) as
values of the conductivity ratio m, when 1t = 1. The contri-
bution is practically independent of T, as long as 1 is
0(1l), as can be seen from Figure (9), so that the values
plotted are essentially valid for any heat capacity ratio
of 0(1). Further, as long as the ratio of conductivities m,
is not very small compared to 1, the purely hydrodynamic
contribution dominates the effective Brownian rotation con-
tribution in all cases so that the total contribution is
effectively equivalent to the hydrodynamic contribution.

We see that the contribution vanishes for a sphere, and is
small when the particle is nearly spherical either positive
or negative depending on the exact value of Fp and m. As
the particles become more elongated, the magnitude of the
contribution increases, being negative for particles whose
conductivity than the £luid. In the asymptotic limit m » =
in which the particles are "perfect" conductors compared to
the fluid, the 0(Pe)} resulting contribution to <Kll> is
finite for particles of finite aspect ratio, but increases
rapidly as the particles become more highly elongated. This
contribution for "perfect" conductors eventually becomes

infinitely huge in the limit of infinitely long, slender
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kY

particles (Fp + «) in a manner reminiscent of the purely
conductive contributions. In the case where the conduc-
tivity of the particle is infinitesimally small compared to
that of the fluid, (i.e., m - 0, 'perfectly insulating
particles'), some care must be taken in interpreting the
results. In particular, the form of the first five material

ctd ~ L, would seem to imply that the contri-

coefficients,
n m

bution becomes of infinite magnitude as m - 0. In this
case, the limit m > 0 must be taken with Pep << 1 and fixed,
in order that both Pe

£
% Pep. Thus while the contribution (Kil)l becomes infinitely

and Pep remain small since Pep =

negative as m - 0, the actual effective conductivity con-
tribution is finite when expressed in terms of Pep, and in

fact is a function only of particle shape
<Kil>l ~ f(TP) , asm > 0.

This result is plotted in Figure (10) for the separate
contributions resulting from the purely hydrodynamic con-—
tribution, the Brownian contribution, and the resulting
total contribution. We see in this case that the Brownian
and hydrodynamic contributions are of the same order of
magnitude, and that the total result is actually more strongly
influenced by the Brownian contribution. The contribution
further changes rapidly for nearly spherical particles,
approaching the asymptotic result for very elongated

particles by Fp ~ 5.
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Ly o

The behavior of the contribution (K to the effec-

£2>l
tive bulk conductivity, for heat flux to the transverse to
the flow in the direction of the velocity gradient is sgeen
in Figure (11) to be somewhat more complex. Here again the
contribution is only weakly dependent on 1 for v ~ 0(1l) so
that only representative values for t = 1 have been pre-
sented. In this case the contribution again vanishes for
spheres, and is always small for nearly spherical particles.
However, as the particles become increasingly elongated,

the contribution is dominated by the Brownian contribution,
the purely hydrodynamic contribution being negligible in
comparison, and the contribution is séen to be mainly posi-

tive for any conductivity ratio m > 0, approaching the

asymptotic limit plotted for m -+ «. The magnitude of this

1
ll>l

term, indicating preferential enhancement of heat flux in

contribution is always larger than the corresponding (K

this direction. Figure (12} shows the effective independence
of the contribution on the value of t. As the conductivity
ratio becomes sufficiently small, the 0(Pe) contribution to
(ng) eventually becomes negative and in the limit m -+ 0

must also be expressed in terms of Pep. Figure (13) pre-
sents the limiting behavior in this case. We note that the
contribution is of smaller magnitude than that found for
<@il>l’ and that in this case the dominant term is due to

the purely hydrodynamic contributions, in opposition to the

. 1
previous results for <Kll>l‘
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We finally consider the <K§2>o contributions which are
presented in Figure (14), for 17 = 1. We first note that the
contribution is always dominated by the pure hydrodynamic
contribution and, becomes small for spherical particles, but
non-zero. Although Leal did not explicitly consider this
contribution to the bulk heat flux in his work on spherical
drops, the result is easily extracted from his results for

the velocity and temperature fields, and is found to be

(m-1) _ 5 (m—-l)2

= -.1
(m+2) 2 (m+2) 2

+ 3T

-

1 T
<K32>o(sphere) m (m+2)

The behavior of this contribution, even in the spherical
limit, is fairly complicated. The contribution vanishes
whenm = 1, and m = (.5 + .2T1) * (.25 + .21 - .3612)1/2.

As long as T < 1.16, these zeros will be real and the con-
tribution will change sign three times. Allowing for
elongation of the spheroid further complicates the result,
as is seen in the Figure (14). For m < 1, the contribution
is always positive, and increases in magnitude with increas-
ing Fp‘ For m > 1 the contribution is negative, and simi-
larly of increasing magnitude with increasing Tp. As m
increases, however, the contribution for nearly spherical
particles first is negative of increasing magnitude, but as
the particle becomes longer the contribution becomes smaller
than that for smaller m, Pp being fixed. For m >> 1, and
fixed, the contribution initially is negative, but rapidly

goes through a local minimum and becomes positive for Tp:>15,
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then increasing in magnitude rapidly with increasing Fp. The
asymptotic limit as m - « is plotted in Figure (15) for
three different values of T, showing the fairly weak depen-—
dence of the result on the exact value of the heat capacity
ratio. Finally Figure (16) illustrates the purely-
hydrodynamic contribution as m »+ 0, when expressed in terms
of Pep. The total contribution in this case is completely
dominated by the purely hydrodynamic contribution which we
have plotted, and is independent of the ratio t. The con-
tribution is initially positive for spheres, but rapidly
decreases in magnitude as the particle becomes elongated,
and is negative for Fp > 4 and rapidly approaching the
asymptotic value of -.008 for Fp >> 1.

The results cobtained here clearly indicate the complex
nature of the thermal constitutive behavior of the flowing
suspension. The heat transfer behavior is seen to not only
depend critically on the thermal properties of the contin-
uous and dispersed phases, but on the flow strength and
type as well as the magnitude of other forces involved in
the microstructural configuration of the suspension.
Although the mathematical difficulties of the analysis have
restricted us to the cases of small effects, the complexity
of the results in even these limiting situations should
serve as an indication of the wide variety of thermal con-
stitutive behavior that real fluids might be expected to

exhibit.
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TABLE 1

The orientation specific effective conductivity
for a dilute stationary suspension.

(1-A.)
= k{1 + (m—l)@li 1 sinz}l

(m-Al)
(1-Aa 1 ) in?
l) ) ( ~A2 sin 61
(m~Al) (m~A2) 2

(l—Az) (1-A,)

_ 1
Un—AZ) hn—Al)

=
|

11

(1~A2)

22 k1 + (m—l)@[}m_Az) +

=
il

(l"Al) _ (1—A2)
(m~Al) (m-A,)

sin26
5 cosZcbl

(1-a,) (1-3)  (1-a,) sinzel
K3z = Kb+ (m=D® gl m-a,) ~ (@A) 3
(1-A,) (1-2.) . 2
1 2 sin™ o
A7 ~ (@A) > COSZ¢{}
\
(1-3,) (1-a,) ' .
Kip = Kyy = k(m-1)9 (@5, - (m—AZ)» sin®,; cos6, cosd,

J

A
(1-a)  (1-a,)| _
Kiy = Ky = k{m-1)9 (m"Al) - Tm—Az)j sinf; cosb, sing,

. 2
(l—Al) (1~A2) sin“ 0

hn—Al) hn—AZ) 2

1

K = K = k(m-1)9

23 32 sin2gy
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FIGURE CAPTIONS
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Aspect Ratio for Various Vaglues of the Conduc-~
tivity Ratio, m = k?/k'l' a)m = 0 b)m= ,5;
c)m = 1; d)m = 23 e)m = 10; f)m= 100;

g) m 300,

The Purely Conductive, Flow-Induced Orientation
Contribution (K32)1 as a PFunction of the Particle
Aspect Ratio for Various Values of the Conduc-

tivity Ratio, m = k /k1, a) m = 03 b) m = .53

2
c)m=1; d) m = 23 e)m = 10; f) m = 100;

g) m Doo,

The Total 0(Pe) Convective Contribution (K,';l)1
as a Function of the Particle Aspect Ratio for
Various Values of the Conductivity Ratio, m =
kg/k1, when T= 1, a)m=.1; b) m = .53
c)m = 13 d) m= 2: e) m = 10; f)m= 100;
g) m D co,

The Total O(Pe) Convective Contribution (K,]?l)1

as a Function of the Particle Aspect Ratio for
Various Values of the Heat Capacity Ratio, T =

.5, 1, 2, whenm = 2,

The O(Pep) Convective Contribution (qu) as a

1
Function of the Particle Aspect Ratio when m = 0,

T= 0(1). a) Purely Hydrodynamic Contribution
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b) "Direct'™ Brownian Motion Contribution; <c¢)

Total Contribution.

Pigure 11: The Total 0(Pe) Convective Contribution (I<L212),l
as a Function of the Particle Aspect Ratio for
Various Values of the Conductivity Ratio, m =
kg/kq’ when T= 1. a)m= .13 b)m= .5;
c)m=1; d) m = 23 e) m = 10; f)m = 1003

g) m oo,

Figure 12: The Total 0(Pe) Convective Contribution (K?;)1
as a Function of the Particle Aspect Ratio for
Various Values of the Heat Capacity Ratio, T =

.5,17, 2, when m = 2.

Figure 13: The O(Pep) Convective Contribution (K2;)1 as a
Function of the Particle Aspect Ratio when m = O,
T=0(1). a) Purely Hydrodynamic Contributionj
b) "Direct" Brownian Motion Contribution; c)

Total Contribution.

Figure 1liz The Total O(Pe) Convective Contribution (KBE)O
as a Function of the Particle Aspect Ratio for
Various Values of the Conductivity Ratio, m =
kz/k1, when T= 1. a)m= .13 b)m= .5;
c)m= 13 A) m = 2; e)m= 10; £f)m = 100;

g) m =00,
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Figure 16:
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The Total O(Pe) Convective Contribution (K31P)O
as a Function of the Particle Aspect Ratio for
Various Values of the Heat Capacity Ratio, T=

.5, 1, 2, when m = 2,

1
32)0

as a Function of tht Particle Aspect Ratio when

The Total O(Pep) Convective Contribution (K

m = 0,
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Figure 13 The Orientation Angles 61 and ¢1
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Figure 23 The Jeffery Orbits Corresponding to

Different Values of the Orbit Constant
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7 =

Figure 3: The Prolate Spheroidal Coordinate

System
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APPENDIX
1) The General Solution to the Creeping Motion Equations

We shall demonstrate, in the following, that the general

solution to the creeping motion equations:
-
Vag = vp (a1)

Vo= o (42)

H

may be expressed as a combination of four general harmonic

functions, X, Qb, R, and S in the following manner,
T=Vx 3X) +VD + +2Vr - 3 (A3)

—-‘.' s L . .
where T is the usual position vector with magnitude r, and

the functions R and S satisfy the relation,
20 VR - Vs - 35 = o, (AL)

We begin by recognizing that we may express the solu-
tion to these linear, inhomogeneous partial differential

-
equations as the sum of a homogeneous solution Uh’ (that is
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ths solution in a constant pressure field) and a particular
——

solution Up gatisfying (A1) and (A2). It is simple to show

that the solution Uh to the homogeneous problemnm

-

Vay, = o, Vo, =0 (45)
is

U, = Vx(FXx) + VD (A5a)

How

V-u = V'[Vx(?m} +V20 = o (A6)

h

since(iiis harmonic and the divergence of the curl of any
vector is identically zero.

Furthermore
Vzﬁh = V(v"ﬁh) - VX(Vxﬁh) = -VX(VX:Sh) (A7)

and

-Vx(VxU,) = - Vx|Vx [Vx(“r-’m]] ~Vx(V xVD)
= - x|V [VX(?X)” (48)



181

since the curl of the gradient of eny scalar is identically

Now

- [v}:[vﬂ;x)] } = - Vx [V (U %7)]
- Vx[Vx X( V)]

bui
KZ@F = 0
and
- V= [Vx(v}( x"r?)] = -Vx(V-T)Vx =+ (V°x)7
= - Vx3Vx
since
V7 = 3.
Finally -

-Vx3VX = -V3xUx - 3(VxVX) = o

aince the gradient of a constant and the curl of the gradient

(49)

(A10)

(A11)

(A12)

(A13)

of a scalar are both identically zero. We have therefore

demonstrated that the representation (ASa) is the solution

to the homogeneous problem (AS).
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To show that the particular solution, Up, may be

expressed as

TJp = VR -~ TS , (a1l)

we begin by noting that the pressure, p, will be some harmon-

ic function P, satisfying K72P = 0, Now

VU, =V (" VR) - V" (Fs) (A15)
but |

V (r°VR) =V VR + 22(V2R) = 27°Vr (A16)
since '

Vré = 2r , (A17)
and

-Virs) = -Vs'r - s5(V'r) = -Vs'® - 38 (a18)
so that

V'Up =2r'VR - 7'Vs - 38 = o. (A19)

Now the remaining equation to be s