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FRAMEWORKS FOR ANALYZiNG AND TESTING THEORIES CF GRAVITY
By David Li Lee

ABSTRACT

This thesls presents theoretical frameworks fér the analysis and
testing of gravitation theories - both metric and non-metric. For
non—metrié theories, the high—precisibn Eotvos-Dicke;Braginskii.(EEB)
éxperiments are demonstrated to be powerful fests of thelr gravita-
tional coupling to electromagnetic interactlions. All known non-metric.
theéries are ruied ouf to within the precision of the EDB experiments.
We.present a new metric theory of gravit& that cannct be distinguished
from general relativity in all current and planned solar'system ex-
perimenté. However, this theory has very different gravitational-
wave properties. Hence, we point out the_need for further tests of
metric theories beyond the Parametrized Post-Newtonian formalism, and
emphasize the iﬁportance of the observation of gravitational waves‘as
a_tool for testing relativistic gravity in the future. A theory-
indepeﬂdent formalism delineating the properties of weak, plane gravi-
tational waves in metric theories is.set up.

General consérvation laws that follow from variational principles

in metric theorles of gravity are investigated.
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PART ONE

INTRODUCTION



Until about ten yeafs-agb, the study of gravity was theorists'
paradiée and expetimenters' hell, The weakness of gravitational
'effécts precluded. earth-bound laboratory tests of anything beyond
‘Newtonian gravity.. Even in the solar system, the relativistic
effects of gravity are tiny. The three classical tests suggested
by Einstein ( i/ the gzavitational red shiff of spectral lines from
the sun; ii/ the deflection of star light by the sun; and 1ii/ the
precession of the perihelion of orbits of inne; planets) éhowed
Newton to be wrong, but yielded only inconclusi&e evidence_about
the details of post-Newtonlan gravity. The difficulty lies in the
isolafion of the gravitational paxrt of the observed effécts from
other, generally much bigger influences. Meanwhile, theorists put
forward theories after theories, that (in today's language) can be
divided into two classes: "met:ic" and "non-metric", Roughly speak-
ing, all mebtrlc theories incorporate gravity inté hon—gravitatibnal
physics through a metric by demanding that in the local Lorentz
frames of the metric, all physical laws take onltheir gpecial rela-
tivistic forms. Non-metric theories do not have this uniform feature.
To be "cémpleté", they must spell out, for each and every gspect of
physics, how it is to be modified by gravity. The constraints on eacH
new theory were minimal: pass the three Einstein classical tests and
1t could be the “correct” theory of gravity for all one knew!

| This situation has changed, In the last few years, improving
technology has finally had an Impact on the experimental tests of

gravitation theorles. As scientists began to fly atomic clocks on



space crafts,‘bounce radar signals off planets, land radio béacons and
transponders on the moon and planets,... it became crucial to have good
theoretical frameworks to-compare the relative values of various ex~
periments'and to pr5p0se new Ones., Séveral years ago, Thorne's group
here at Caltech initiated a project of constructing theoretical frame-
works for experimental tests of gravity. Mainly through the efforts
of C.M, Will here at Caltech and X. Nérdtvedt Jr. at Montana State
University, there emerged an elegant theoret;pal framework, the Para-
metrized Post-Newtonian (PPN) formalism for testing gravity in the
solar system. The PPN framework specifically tests the slqw—motion,
weak-field 1limit of metric theories of gravity, of which the two most
renowned protagonists are Einstein's general relétivity theory (GRT)
and the Dicke-Brans-Jordan theory (DBJ).

Two and a half years ago, the PPN formalism neared its comple-
tion and the post-Newtonian limits of metric theories_hecame suffi-~
ciently understood. It was then that I began to broaden our horizons,
in close collaboration with A.P. Lightman and under the direction of
K.S. Thorne. Our aims were twofold: (1) to analyze non-ﬁetric theories
and (ii) to discover new effects to further test relativisfic,gravity
in metric theories. This thesis reports results of our 1nfeétigations
in both of these fronts.

Central to our analysis of non-metric theories in Part TII is the
high-precision, "unigueness of free-fall" experiment. It was Tirst
developed by Eotvos in the late nineteenth century and later redesigned

and extensively improved by Dicke in the 1960's. In recent experiments,



Dicke's group‘at Princeton:and Braginskii's group at Moscow have mea-

sured the relative acceleration toward the sun of several different
substances. Roll, Krotov.and Dicke (1964) found an agreement of 1

| part in 1011 between the sun's acceleration of aluminum and gold,

while Braginskil and Panov (1972) reported an agreement of 1 part in

1012

for aluminum and platinum. From this agreement, one can easily
~ infer the response of nuclear binding energies, electrostatic binding
energies,... to the sun's gravity. All metric theories predict a muill
- result for experiments of this type, since in the local Lorentz frames,
test bodies of different composition (such as the gold or aluminum
ball used in Dicke's experiment) behave identically. What about non-
metric theories? We note that these theories incorporate gravity
into other physics in a piecewlse manner. Perhaps this very léck of
"uniformity" in the gravitational couplings in non-metric theories
will turn out to be their Achilles' heel:-it may force them to flunk
the high-precision Dicke-Eotvos-Braginskil experiments! This idea;
first conjectured by Schiff (1960), then reformulated in the present
form and pursued Vigorously by Thorne a decade later, provides the
key to our analysis of non-metric theories. '

The nain difficulty in the early phases of our ventu:e Was
communication. Concepts and definitions used by theory builders
are often vague and imprecise. To remedy thls situation, we presént
in Part II, Paper I, a glossary of concepts relevant to spacetime
theories. We also formulate-precisely the conjecture due to Schiff

and give plausibility arguments for it.



Part IIT deals with non-metric theories. In Paper II, we pre-
sent a partial proof to Schiff's conjecture, restricted to bodies
made of point particles that interact electromagnetically, and 1o
theories in which the gravitationally coupled Maxwell equations
have a particular (but ratherlgeneral)_form. These restrictions
are necessary since the Conjecture in its fullest generality is so
sweeping that a complete proof would require a deep underétanding
of non-metric theories - including thqse not yet.invented. Our
efforts were made easier by the intuition galned from the analysis
of extant non-metric theories. (A typical analysis of a non-metric
theory - the theory of Belinfante and Swihart - is presentéd in
Paper IIT.) It turned out that in all non—metric theories known
to us, the electromagnetic field equations in the pfesence of
gravity have the form of "Maxwell's equations in a medium", with
the "dielectric constant" and the "magnetic susceptibllity constant"
now characterizing the effects of gravity. With this model of
electromagnetic interactions, we calculate in Paper II of Part III,
the centre~of-mass gravitational acceleration of a collectlon of
electromagnetically interacting point particles. The acceleration
turns out to be body-independent if and only if 'the Maxwell equations
can be put into a metric form. This is the essence of our "partial
proof" of Schiff's conjecture, It is fortunate that with this res-
tricted framework we are able to rule out all known non-metric
theories to within the precision of the EIB experiments. Two of those

ruled out by our analysis were previously belleved to agree otherwlse



with all current experimenfs;

4Part_IV preéents further analysis of metric théories. We begin
by‘presenting in Paper IV an. analysis of the structure of Lagrangian-
based metric theories. We focus particularlj on the "conservation -
laws" assoclated with varlational principles. We were motivated to
carry oﬁt éuch'an investigation because many theories are Lagranglan-
based. Furthermore, previous analysis of the post-Newtonlan limits
of metric theories suggested the equivalence -of being Lagranglian-
based and the posession of some "physical” conservation laws - the
ones that allow a physical interpretation, at least in an averaged
sense, of the gravitational wave stress-energies.

Paper V presents a two-metric theory of gravity by A.P. Lightman
and myself, Thig is one of four new theories invemted during 1972-
1973 that are virtually indistinguishable from one another and from
Einstein's general relativity theory in the slow-motion, weak-gravity
limit. With a suitable cosmological model, this theory has five
arbitrary constants in the post-Newtonlan limit which can be adjusted
‘to yield predictions indistinguishable from GRT on all existing aﬁd '
' prop05ed solar-system experiments. In considering_such a contrived
theory, we aimed malinly to find out in what respects it differs from
GRT outside of the post-Newtonian limit. Our efforts were not in
vain. In addition to prior-geometric effects, this.theory furns out
td exhibit the most general type of gravitational wave admitted by
~any metric thedry. Furthermore, we found out that zll the theories

unresolvable by solar-system experiments differ markedly in the



observed polafization properties of their gravitation waves., Thus
with‘a mere change of viewﬁoint, we adapted our analysis of gravita-
tional waves in the new theory to a theory-independent foundation
for testing relativistic gravity.

In Papers VI and VII we present a formalism that encompasses
all metric theories of gravity to use gravitational wave observations
as a tool for ruling out certain gravitation theorles. Paper VI sum-
marizes the more detailed acgounts given in Paper VII, The formalism
is limited to metric theories and to detectors of negligible self-
gravity so that a uniform, theory-independent treatmept is possible,
We find that the most general weak, plane gxavitational'wave in any
metric theory has six modes of polarization, which an experimenter
can completely resolve, at least in principle, We classify waves
(and hence theories) based on the Lorentz transformation properties
of these six modes.

In Paper VIII, we apply our results on conservation laws to the
study of the behavior of observable masses when gravitational waves
are emitted in the context of Dicke-Brans-Jordan theory of gravity.
It turns out that in this theory, there are two independent, measur-
able masses in the asymptotic reglion of a bounded system., They are
respectively the Keplerian masses measured by orbiting test particles,
which have no self gravity, and orbiting test blaék holes., Test
black holes probe only the "tensor" part of the mass, since £hey
have no "scaler hair" (Hawking, 1972). Test particles probe both the

tensor aspect and the scalar aspect of the mass. These observable



masses are evéluated for an isolated system, using our conservation
‘léws.. The tensor.mass can only be decreased by the emission of
gravitational waves. The scalar mass is unconstrained: it can in-
crease, decreasé or oscillate, The waves have three independent
degrees of freedom (2 in the "tensor" mode, 1 in the "scalar" mode),
The scalar mode has two distinct, measurable manifestations. It
will cause"breathing" motions on a ring of test particles placed

on a plane transverse to the propagation direction of the wave; it
will also cause a change in the local "Cavendish" gravitatlonal cons~
tant. The former effect, along with the tensor mode, can be.detected
by standard gravitational antennae. The latter effect can be

detected only by antennae with significant self gravity.



PART TWO

FOUNDATIONS: DEFINITIONS AND BASIC CONCEPTS

A) Foundations for a Theory of Gravitation Theorles
( Paper I; in collaboration with K.S. Thorne and
A.P. Lightman, published in Phys.Rev. D, 7, 3563,
1973 )
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Foundations for a Theory of Gravitation Theories*

Kip S. Thorne, David L. Lee," and Alan P. Lightman'
Culifornia Institute of Technology, Pasadena, California 91109
(Received 10 January 1973)

, A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any
theory formulated in 1erms of geometric objects defined on a 4-dimensional spacetime manifold. The
foundation consists of (i) a glossary of fundamentel concepts, (i) a theorem that delineates the overlap
between Lagrangian-based theories and metric theories; (iii) a conjecture (due to Schifl) that the weak
equivalence principle implies the Einstein equivalence principle; and (iv) a plausibility argoment
supporting this conjecture for the special case of relativistic, Lagrangian-based theories.

L. INTRODUCTION

Several years ago our group initiated' a project
of constructing theoretical foundations for experi-
mental tests of gravitation theories. The results
of that project to date {largely due to Will and Ni)
and the results of a similar project being carried

out by the group of Nordivedt at Montana State
University are summarized in several recent re-
view articles.>*"* Those resulis have focused al-
most entirely on “metric theories of gravity” (rel-
ativistic theories that embody the Einstein equiva-
lence principle; see Sec. I below).

By January 1972, metric theories were suffi-
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ciently well understood that we began to broaden
our horizons to include nonmetric theories. The
most difficult aspect of this venture has been com-
munication. The basic concepts used in discussing
nonmetric theories in the past have been defined so
vaguely that discussions and “cross-theory analy-
ses’” have been rather difficult. To remedy this

- situation we have been forced, during these last
eleven months, to make more precise a number
of old concepts and to introduce many new ones.
By trial and error, we have gradually built up a
glossary of concepts that looks promising as a
foundation for analyzing nonmetric theories.

Undoubtedly we shall want to change some of our
concepts, and make others more precise, as we
proceed further. But by now our glossary is suf-
ficiently stabilized, and we have derived enough
interesting results using it, that we feel compelled
to start publishing. 3

This paper presents the current version of our
glossary (Secs. II-1V), and uses it to outline some
key ideas and results about gravitation theories,
both nonmetric and metric {Secs. V and VI). Sub-
sequent papers will explore some of those ideas
and results in greater depth.

Central to our current viewpoint on gravitation
theories is the following empirical fact. Only two
ways have ever been found to mesh a set of gravi-
tational laws with all the classical, special rela-
tivistic laws of physics. One way is the route of
the Einstein equivalence principle (EEP) - (i) De-
seribe gravity by one or more gravitational fields,
including a metric tensor g,p; and (ii) insist that
in the local Lorentz frames of g, all the nongrav-
itational laws take on their standard special rela-
tivistic forms. The second way of meshing is the
route of the Lagrangian — (i) Take a special rela-
tivistic Lagrangian for particles and nongravita-
tional fields, and (ii) insert gravitational fields in-
to that Lagrangian in 2 manner that retains gener-
al covariance. The equivalence-principle route
always leads to a metric theory. (Example: gen-
eral relativity.) The Lagrangian route always
leads to a ‘“Lagrangian-based theory.” [Example:
Belinfante-Swihart theory (Table IV, later in this
paper).l Thus, in the future we expect most of our
attention to focus on metric theories and on La-
grangian-based theories; and in the nonmetric
case we might be able to confine attention to theo-
ries with Lagrangians.

Since metric theories are so well understood,*
it would be wonderful if one could prove that all
nonmetric, Lagrangian-based theories are defec-
tive in some sense. A conjecture due to Schiffs
points to a possible defect. Schiff’s conjecture
says® that any complete and self-consistent theory
that obeys the weak equivalence principle (WEP)

must alsc, ungvoidably, obey the Einstein equiva-
lence principle (EEP;. (See Sec. Il for precise
definitions.) Since any relativistic, Lagrangian-
based theory that obeys EEP is 4 metric theory,
this conjecture suggests that nonmetric, relativ-
istic, Lagrangian-based theories should always
violate WEP.

The experiments of EStvos ef al.® and Dicke e/
al.,” with modifications by Braginsky et a!.® (ED
experiments), are high-precision tools for testing
WEP. Hence, the Schiff conjecture suggests that,
if one has a nonmetric Lagrangian-based theory,
one should test whether it violates the ED experi-
ments. (Such tests for the Belinfante-Swihart and
Naida-Capella theories reveal violations of ED and
WEP.%)

In this paper, after presenting our glossary of
concepts {Secs. II-1V), we shall (i) derive a crite-
rion for determining whether a Lagrangian-based
theory is a metric theory (“principle of universal
coupling,” Sec. V), and (ii) discuss and make
plausible Schiff’s conjecture {Sec. VI).

[l. CONCEPTS RELEVANT TO SPACETIME THEORIES

This section, together with Secs. IIT and IV, pre-
sents our glossary of concepts. To understand
these concepts fully, the reader shouid be familiar
with the foundations of differential geometry as
laid out, for example, by Trautman.?® He should
also be familiar with Chap. 4 of Anderson’s text-
book!? (cited henceforth as JLA), from which we
have borrowed many concepts. However, he
should notice that we have modified slightly some
of JLA’s concepts, and we have reexpressed some
of them in the more precise notation and terminol-
ogy of Trautman'® and of Misner, Thorne, and
Wheeler (MTW)."

The concepts introduced in this section apply to
any “spacetime theory” (see below for definition).
In Secs. IIl and IV we shall specialize to “gravita-
tion theories,” which are a particular type of
spacetime theory. To make our concepts clear,
we shall illustrate them using four particular
gravitation theories: the Newton-Cartan theory
{Table I), general relativity (Table II), Ni’s theo-
ry {Table II)," and the Belinfante-Swihart theory
(Table IV).1-15 Of these theories, general relativ-
ity and Ni’s theory are metric; the Newton-Cartan
and Belinfante-Swihart theorics are nonmetric.

Mathemalical vepresentations of a theory. Two
diiferent mathematical formalisms will be called
“different representations of the same theory” if
they produce identical predictions for the outcome
of every experiment or observation. Here by “out-
come of an experiment or observation” we mean
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TABLE I, Newton-Cartan thecry.

1.

Reference for this version of the theory:
Chapter 12, and especially Box 12.4 of MTW
Gravitational fields,

a. Symmeirlc covariant derivative (affine connection)................ [T e "4
b. Spatial metric............... e PPN PP PPN J P 4
c. Universal time............. et iesaacenetstestaeeirosacarrensisusentarnonas [P

Gravitational field equations:
a, V dat=0,
b. ﬁ(u. rw=0,

where & is the curvature operator formed from V; uand n are arbitrary vectors; w is any spa-
tial vector ({dt,w) =0),
Ry, w) =0
for every pair of spatial vectors, v,w, [Note: a,b,c guarantee the existence of the metric, y or
“e  defined on spatial vectors only, such that
Vatw- o)=Y, @) v +w* (V1)
for any x and for any spatial , v.]
ve J@pwl =ws [z, 2)2)
for all spatial v, and for any u, 2, where
Ju,n)p=HR(p, 7)u +R(p,u)z] .

Ricci=4mpdt @ dt ,
where Ricei is the Ricei tensor formed from ¥, and p i1s mass density,

Q
.

[=9
.

[
.

Influence of gravity on matter:

a. Tost particles move along geodesics of V, with¢ an affine parameter,

b. Each test particle carries a local inertial frame with orthonormal, parallel-transported spatial
basis vectors (g3 * e5=6py, ¥ vep =0 and with ¢§=d/dt = (langent to geodesic world line},

c. All the nongravxtatxonal faws of physics take on their standard, Newtonian forms in every local
inertial frame.

the raw numerical data, before interpretation in on geodesics but the field equations differ signifi-
terms of theory. Any theory can be given a vari- cantly from those of Einstein; and (it} the confor-
ety of different mathematical representations. mally transformed representation,®® in which the '
[Example — The Dicke-Brans-Jordan theory has scalar field produces deviations from geodesic
two “standard representations: (i) the original motion but the field equations are nearly the same
representation,'®'? in which test particles move as Einstein’s.] A theory can be regarded as the

TABLE II, General relativity theory,

w
h

Reference: Standard texthooks, e.g., MTW.1?
Gravitational ficld:

The metric of spacetime. ,.......... e e

e 4

Gravitational field equations: .

g=8T,
where G is the Einstein tensor formed from g, and T is the stress-energy tensor.
Influence of gravity on matter: .

a, Test particles move along geodesics of g, with proper time T an affine parameter.

b. Each test particle carries a local inertial (“local Lorentz”) frame with paraliel-transported, or-
thonormal basls vectors ¢, and with ¢§ =d/d 7 = (tangent to geodesic world line}.

c. All the nongravitational laws of physics take on thelr standard, special-relativistic forms in ev-
ery local Inertfal frame (aside from delicate points associated with “curvature coupling”; see
Chap. 16 of MTW?),
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TABLE III. Ni's “New Theory.”

1. Reference: Ni'*

2. Gravitational fields:

a, Background metric (Signature + ). .. . i e e e, e '_71
bo Universal tme. ... .o e e e e ¢
e. Bealar Feld, oo e e @
d. One-form field. .o oo e e e ¥
€. Physical metric. . ..o e e e e e £

3. Gravitational field equations:
a. Background metric is flat,
Riemann(z) <0 .
b. “Meshing” of 1, t,. ¢:
Lapg=0,

butign®8=—1,

L dan®P=0,

where “|” denotes covariant derivative with respect to 7, and | n*f] is the inverse of || LTR R

c. g5V Lf20)—f1l@)Idi@ dt ~pdt -dt By .
Here f(¢) and f,{¢) are arbitrary functions to be determined finally by experiment.
d. TField equations for ¢ and ¢ follow from the action principle

6-[ Ld'x=0, where =L, +L ,

141
'E’G:_'a;{ e ‘puly %515 ”aanﬁ—'Plu‘P!B"uﬁ*'[fa('l’)*l"%at[a 77&812} T

e is a constant to be determined by experiment, Lyg=LycV-g , and L is the standard Lagran-
gian density of special relativity with the metric of special relativity replaced by £

4. Influence of gravity on matter:

Governed by action principle

6[]:,:1‘:::0,

where particie world lines and nongravitational fields are varied,

equivalence class of all its representations. Ta-
bles I-IV present particular representations for
the theories described there.

Spacelime theory. A “spacetime theory” is
any theory that possesses a mathematical repre-
sentation constructed {from a 4-dimensional space-
time manifold and from geometric objects defined
on that manifold. (For the definition of “geometric
object,” see Sec. 4.13 of Trautman.'®} Henceforth
we shall restrict ourselves to spacetime theories
and to the above type of mathematical representa-
tions. The geometric objects of a particular rep-
resentation will be called its variables; the equa-
tions which the variables must satisfy will be
called the physical laws of the representation.
[ Example - general relativity (Table II): The

physical laws are the Einstein field equations,
Maxwell’s equations, the Lorentz force law, ete.]
[Example — Belinfante-Swihart theory (Table IV);
The physical laws are Riemann (n) -0, and the
Euler-Lagrange equations that follow from 6 [ £d'x
=0.] :

Manifold mapping group (MMG). The MMG is
the group of all diffeomorphisms of the space-
time manifold onto itself. Each diffeomorphism
h, together with an initial coordinate system
x™(®), produces a new coordinate system

2 (@)=x"(h '@} (1)

(Events are denoted by capital script letters.)
Kinematically possible lrajeclory (kpt). Consid-
er a given mathematical representation of a given



TABLE IV. Belinfante-Swihart theory.

1. References: Summary and analysis of the theory by Lee and Lightman!*; original paper by Belinfante

and Swihart.!?

2. Gravitational fields;

............................................ n
b. Symmetric second-rank tenSOT. .. cauiineee et ienreterteetnetarncsosentnresocasnnsnasns L3
3. Nongravitational variables:
a.. Electromagnetic vector potential, . ..vevuvnercornnrsonan tracesssasanans ceseamsecnesananes A
b. Electromagnetic field tensor (gecond-rank, antisymmetrie)........... tracasececsccavasnaas H
e. World line of particle J, parametrized in an arbitrary manner.............. eecaccans .- z‘} [£9)
" [in & given coordinaté system, world line is x* =2z (A ).
d. Velocity vector of particle J {defined along world line). ..ccovuncnniianianaaniaianaones. az{is)
e. Momentum vector of particle J (defined along world line}.............. gecescsecsascace LEILY))

4, Gravitational ficld equations:
a, Metric is flat: Riemann(n)=0 .

b. Field equation for k follows from varying k,p in 6 [ £d% =0, where £ is given below.

5. Influence of gravity on matter:

Equations for A, H, z,, a;, 1, follow from varying these quantities in [ Ldi =0,

6. Lagrangian density:

a, £=L;+8y -
b

£‘G :'(1/167{)4’7(!s 7’”’ npa(athiahpuls "'fhx;xlahpolb)("n)ln »

where *, ” denotes covariant derivative with respect to 1); @ and f are constants to be determised

by experiment, and 7= det | nyl.
Erng= /AT A E P, , — B2 A ) ()2

=]

“+o
D f Tmyb, + g, —e; A2 —75,a5164x — 2,0 )ld2,

4+
TPy, +KZ)f m by n%Bhag8tlx — z, (A NdA, .

d. Here ey and m, are the charge and rest mass of particle J; £ = dzJ/dA,; b, = (~aja, V% K is
a constant to bo determined by experiment; indices are raised and lowered with 7,4; and

THY = (1/4n) (HM Hy ¥ - 9PV BB H, 5)

+w0
+;}f al w6z — 2, (A 0dA, .

e. In the action principle one varies hy,, Ay, Hyy, zﬁ(k,), ay(r,), ¥y(A ;) independenily; but one

holds 7, fixed.

spacetime theory. A kpt of that representation is
any set of values for the components of all the
variables in any coordinate system. A kpt need

not satisfy the physical laws of the representation.

- (Example - general relativity (Table H): A kpt is
any set of functions { g,¢{*) =g (x); Foal*)
==F g, (x); 28(7,);...} in any coordinate system,
which - if they were to satisfy the physical laws ~
would represent metric, electromagnetic field,
particie world lines, etc.) (Example — Belinfante-
Swihart theory (Table IV): A kpt is any set of
functions { 7, 5(x) = e {X), Realx) =haq{x), A,(x),
Hoplxy=Hgolx), 22(7,), af(A;), 75(A,)} in any co-
ordinate system.)

Dynamically possible lrajectory (dpt). A dpt is

any kpt that satisfies all the physical laws of the
representation.

Covariance group of a represenltation. A group
¢ is a covariance group of a representation if (i}
¢ maps kpt of that representation into kpt; (ii) the
kpt constitute “the basis of a faithful realization
of $” (i.e., no two elements of § produce identical
mappings of the kpt)'¥; (iii) $ maps dpt into dpt.
{Example — MMG is a covariance group of each of
the representations of theories in Tables I-IV.)
{Example ~ Electromagnetic gauge transforma-
tions, A,~ A, +¢ ,, are a covariance group of
the representation of Belinfante-Swihart theory
given in Table 1V.) By complele covariance group
we shall mean the largest covariance group of the
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representation. By generally covariant represen-
tation of a theory we shall mean any representation
for which MMG is a covariance group. (An argu-
ment due to Kretschmann® shows that every
spacetime theory possesses generally covariant
representations.) By inlernal covariance group
we shall mean a covariance group that involves no
diffeomorphisms of spacetime onto itseif. (Ex-
ample - Electromagnetic gauge transformations
are an internal covariance group.) By exlewnal
covariance group we shall mean a covariance
group that is a subgroup of MMG. The complete
covariance group of a representation need not be
the direct product of its complete (i.e., largest)
internal covariance group with its complete exter-
nal covariance group. It may also include trans-
formations that are “partially internal” and “par-
tially external” and cannot be split up. |Example -
When one formulates Newton-Cartan theory in a
Galilean coordinate representation (see the Appen-
dix, which should not be read until one has fin-
ished this entire section), one obtains a complete
covariance group described by Eqs. {A5). The
complete external covariance group consists of
(A5a) and (A5b). There is no internal covariance
group. The transformations (ASc) are mixed in-
ternal-external transformations that belong to the
complete covariance group.]

We shall use the following notation to describe
a particular element G of the covariance group,
and its effect. G consists of a diffeomorphism #
[Eq. (1), above] and an internal transformation i:

G=(h,H). - 2)

I G is an external transformation (element of
MMG), thenH must be the identity operation; if G
is an internal transformation, thenk is the iden-
tity mapping; if G is a mixed internal-external
transformation, then neither 2 nor f is an identity.
Denote the variables of the representation {(geo-
metric objects) by y, and their components at a
point @ in a coordinate system {x°} by v,(®,{x*}).
The set of functions

ya®,{x°}), @ varying and {x°} fixed (3)

constitute a kpt. The diffeomorphism s maps this
kpt into y,(@, {x*}), where {x®"} is the coordinate
system of Eq. {(1). The internal transformation H
converts y into a new geometric object,

y'=Hy. (4)
The net effect of G on the kpt (3) is
G: yal@, {xP-yu@, {="h. ®)

1t is often useful to characterize G by the functions

Syal@, {27 = 34@, {2} = vath 2, {x%h)
=¥ 4 |evatusted a1 xo (1)

—.\’Alcvalua(edal PLEAT (G)

Note that these “changes in y”’ satisfy the relation
8w, )@, { ) = [Bw @, {2 1) e, ™

where a comma denotes partial derivative, and
also the relation

By =(Hy) @, {x* ') = (hy)a@, {22}, {8)

where 2y is the geometric object obtained by
“dragging along with 2 (see p. 86 of Trautman'®),

Qf particular interest are the infinitesimal ele-
ments of a covariance group. [From them one can
generate that topologically connected component®’
of the group which contains the identity. The other
connected components, if any, are typically ob-
tained by bringing into play a discrete set of group
elements (space reflections, time inversions,
etc.).] Let G, =(k,,H,) be a one-parameter family
of elements (curve in group space parametrized by
€), with G, the identity. Denote by § the infinites-
imal generator of the diffeomorphism k,:

g=ld@)/del, . . ®)

Then, to first order in €, Eq. (8) reduces to

sy,,w,{xa}>=<{<££y>,,<@,{x“})

[ e, en] L

10

where £, is the Lie derivative along £ (Sec. 4.15
of Trautman'?). -

Equivalence classes of dpt. Two dpt are mem-
bers of the same equivalence class if one of them
is mapped into the other by some element of the
complete covariance group. (Example — When
MMG is a covariance group, 2ll dpt that are ob-
tained from each other by coordinate transforma-
tions belong to the same equivalence class.) If a
generally covariant representation possesses no
internal covariance groups, then there is a one-
to-one correspondence between equivalence clas-
ses of dpt and the geometric, coordinate-indepen-
dent solutions of its geometric, coordinate-inde-
pendent physical laws.

Confined, dbsolute, and dynamical variables.
The variables of a generally covariant represen-
tation split up into three groups: “confined vari-
ables,” “absolute variables,” and “dynamical vari-
ables.” The confined variables are those which do
not constitute the basis of a faithful reallzation of
MMG. (Examples — All universal constants, such
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as the charge of the electron, are confined vari-

ables. The world line of a particle is not a con- .

fined variable, as one sees by this procedure: (i)
- Characterize the world line by the scalar field

0, if® is noton world line;
T(®®) = { proper time of particle, (11)
if ® is on world line.

(ii) Verify that an element of MMG can be charac-
terizud uniquely by the manner in which it maps
the set of all kinematically possible world lines
lall functions 7(x) that are zero everywhere ex-
cept alohg a curve, and are monoctonic along that
curve) into each other. (iii) Thereby conclude
that a particle world line does constitute the basis
for a faithful realization of MMG, and therefore
that it is not a confined variable.) To determine
whether an unconfined variable B is absolute or
dynamical, perform the following test; Pick out
an arbitrary dpt, and let B,(x*) be the functions
which describe the components of B for that dpt.
Then examine each equivalence class of dpt to see
whether these same functions B, appear some-
where in it. If they do, for every equivalence
class and for every choice of the arbitrary initial
dpt, then B is an ebsolute variable. If they do not,
for some particular choice of the initial dpt and
for some particular equivalence class,, then B is
a dvramical vaviable. Some dynamicaI\variables
contain absolute parts, and some dynamical and
absolute variables contain confined parts. (Ex—
ample - Belinfante-Swihart theory (Table IV): 7,
is an absolute variable; k.4 and all the nongravi-
tational variables are dynamical.] [Example ~Ni’s
theory (Table Ifl): 7and ¢ are absolute variables;
¥, ¢, and g are dynamical. Although y is dynam-
ical, it contains an absolute part —the projection
of g on dt (i.e., Pt yn*?). The remaining, “spa-
tial” part of ¥y + Y4t 1pn°°dt) is fully dynamical.
Although ¢ is absolute, it contains a confined part —
~ its “origin,” or equivalently, its value at some
fixed fiducial event ®;. One can remove this con-
fined part from ¢ by passing from { to the 1-form
field dt.] [Example - general relativity (Table I):
All the unconfined variables are dynamical, and
they contain no absolute parts. It is this feature
that distinguishes general relativity from almost
all other theories of gravity (see JLA!; also
Chap. 17 of MTW, where absolute variables are
called “prior geometry”).] (Example ~ Newton-
Cartan theory: In the representation of Table I,

t and y are absolute variables; V is dynamical.
As in Ni's theory, the origin of { is a confined
variable and can be split off by passing from ! to
di. Although the covariant derivative ¥ 1s dynam-
ical, it contains absolute parts. A decomposition
of V into its absolute and dynamical parts is per-

formed in the Appendix {Eq. (Ale)|. After that de-
composition the theory takes on a new mathemaii-
cal representation with absolute variables 8, y, D,

and dynamical variables ¢ and v.)

Irvelevan! variables. A set of variables of a
generally covariant representation is called irrel~
evant if (i) its variables are not coupled by the
physical laws to the remaining variables of the
representation, and (ii) its variables can be elim-
inated from the representation without altering the
structure of the equivalence classes of dpt and
without destroying general covariance. A variable
that is not irrelevant is called ‘“relevant.” Some
variables contain both relevant and irrelevant
parts. (Example - The gauge of the electromagnet-
ic vector potential is irrelevant. So is any other
variable that can be forced to take on any desired
set of values by imposing an appropriate internal
covariance transformation.) [Example ~In Ni’s
theory (Table IV) and the Newton-Cartan theory
(Table I) the origin of universal time ¢ is an irrel-
evant variable.}

Fully reduced, generally covaviant represenia-
tion. A generally covariant representation is
called “fully reduced” if (i) it contains no irrele-
vant variables, (ii) its dynamical variables con-
tain no absolute parts, and (iii) its dynamical and
absolute variables contain no confined parts. [Ex-
ample ~ Newton-Cartan theory: The representa-
tion of Table I is generally covariant, but not fully
reduced. To reduce it one must {ollow the proce-
dure of the Appendix: (i) Remove the irrelevant
origin of ¢ by passing from ¢ to 8=di; (ii) split ¥
into its absolute and dynamical parts. The result-
ing representation is not quite fully reduced be-
cause it possesses the internal covariance trans-
formation (A3’a) with an associated, irrelevant
“gauge arbitrariness™ in D and . When one re-
moves that irrelevance by fixing the “gauge” once
and for all (e.g., by requiring, for an island uni-
verse, that {3,}=0 in any Galilean frame where
the total 3-momentum vanishes), then one obtains
a fully reduced representation.]

Boundary conditions, priov geomelric con-
straints, decompositicn equations, and dynamical
laws. In a given mathematical representation of
a given theory, the physical laws break up into
four sets: (i) boundary conditions ~those laws
which involve only confined variables; (ii) prior
geometric constraints® — those which involve ab-
solute variables and possibly also confined vari-
ables, but not dynamical variables; (iii) decom-
position equations - those which expregs a dynam-
ical variable algebraieally tn terms of other vari-
ablas; (iv) dynamical laws - all others. |Ex-
ample ~ Ni’s theory {Table Ill): Equations (3a)
and (3b) are prior geometric constraints; Eq. (3c)



is a decomposition equation; and the equations
that follow from the variational principle are all
dynamical. If one augments the theory by cosmo-
logical demands that y and ¢ go to zero at spatial
infinity, those demands are boundary conditions. |
| Example — general relativity (Table II): All phys-
ical laws are dynamical.| |Example — Belinfante-
Swihart theory (Table IV): Riemann (n)=0is 2
prior geometric constraint; the equations obtained
from the variational principle are dynamical.

| Example — Newton-Cartan theory (Table I} In
the mathematical formulation of Table I, Egs.
(3a)~(3d) are all dynamical laws. One has the
feeling, however, that they ought not to be dynam-
ical, because they involve only gravitational
fields; they make no reference to any source of
gravity. Only (3e) contains a source, so only it
“ought to be” dynamical. The failure of one’s
“ought-to” intuition results from one’s failure to
aplit ¥ up into its absolute and dynamical pieces.
Such z split (see Appendix) results in a new math-
ematical formulation of the theory, with just one
dynamical gravitational law: (A1lf), which is
equivalent to (3e) of Table I. Of the other gravi-
tational equations in the new formulation,
{Ala)~-(Ald) are prior geometric constraints, and
{Ale) is a decomposition equation.]

Symmetry group. Let G be an element of the
complete covariance group of a representation.
Examine the change produced by G in every vari-
able B that (i) is absolute, and (ii) has had all ir-
relevant, confined parts removed from itself. If

5B,®,{x*})=0at all ® and for
all coordinate systems {x*'}

(12)

for every such B, then G is called a symmelry
transformation. Any group of symmetry transfor-
mations is called a symmelry group; the largest
group of symmetry transformations is called the
complele symmelry group of the representation.
[Note: That component of the complete symmetry
group which is topologically connected to the iden-
tity is generated by infinitesimal transformations.
One can find all the infinitesimal generators by
solving Egs. (10) and (12) for £, and for (dH./
de), .o.] |Ancther note; If the absolute variables
B are all tensor or affine-connection fields, then
6 B are all tensor fields, so

(6B,=0 for all @ in one coordinate system)

= {615, 0 forall® in cvery coordinate
system). (13)

Hence, in this case one can confine attention to
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any desired, special coordinate system when test-
ing for symmetry transformations.] |{Example -
Belinfante-Swihart theory {Table IV): The com-
plete symfmetry group consists of the Poincaré
group (inhomogeneous Lorentz transformations)
together with the electromagnetic gauge transfor-
malions. One proves this most easily in a global
Lorentz frame of n; one can restrict calculations
to this frame because the absolute variable 5is a
tensor.] |Example — Ni’s theory (Table III): Sym-
metry transformations are analyzed most easily
in a coordinate system where x“ =/ =(universal
time), and 7,4 has the Minkowski form. Any
symmetry transformation must leave 577,,ﬂ :5",r~
=6(1"%1 ,45)=0. Thus, the symmetry transfor-
mations are (i) electromagnetic gauge transfor-
mations; (ii) spacetime translations, A =X rg”
with a® a constant; (iii) time-independent spatial
rotations, x° -x%and x' = R*x* with |R*| a
rotation matrix; (iv) spatial reflections.| [Ex-
ample —general relativity (Table II): There are
no absolute variables, so the complete covariance
group and the complete symmetry group are iden-
tical; they are the MMG plus electromagnetic
gauge transformations,; (Example — Newton-Car-
tan theory: See Appendix.) An extewnal symnelry
group is a symmetry group that is a subgroup of
MMG. An inlernal symmelry group 15 a symmetry
group that involves no diffeomorphisms of space-
time onto itself. The complete symmetry group
need not be the direct product of the external sym-
metries and the internal symmetries; it may also
include symmetries that are partially internal and
partially external and cannot be split up. [Ex-
ample - Newton-Cartan theory in the representa-
tion of the Appendix: Transformations (A5c) are
partially internal and partially external. |

1. GRAVITATION THEORIES AND
EQUIVALENCE PRINCIPLES

We now turn from general spacetime theories
to the special case of gravitation theories. We
cannot discuss gravitation theories without making
somewhat precise the distinction between gravita-
tional phenomena and nongravitational phenomena.
There seem to be a variety of ways in which one
might make this distinction. Somewhat arbitrari-
ly, but after considerable thought, we have chosen
to regard as “gravitational” those phenomena
which either are absolute or "go away’ as the
amount of mass-energy in the experimental labo-
ratory decreases. In other words, gravitational
phienomena are cither prior peomeltric ctfects or
effects pgenerated by mass-energy. This means
that the flal background metric 5 of Belinfante-
Swihart theory is a gravitational field; the metric



18

of general relativity is a gravitational field; but
the torsion of Cartan’s modilied general relativi-
ty,*® which is generated by spin rather than by
mass-energy, is not a gravitational field.

We try to make the above statements more pre-
cise by introducing the following concepts.

Local test experiment. A “local test experi-
ment” is any experiment, performed anywhere in
spacetime, in the following manner. A shield is
set up around the experimental laboratory. When
analyzed using the concepts and experiments of
special relativity, this shield must have arbitrar-
ily small mass-energy and must be impermeable
to electromagnetic fields, to neutrino fields, and
to real (as opposed to virtual) particles. The ex~
periment is performed, with freely falling appara-
tus, in the center of the shielded laboratory, in a
region so small that inhomogeneities in all exter~
nal fields are unimportant. One makes sure that
external inhomogeneities are unimportant by per-
forming a sequence of experiments of successive-
ly smaller size (with size of shield and external
conditions unchanged), until the experimental re-
sult approaches a constant value asymptotically.
{Examples - The experiment might be a local mea-
surement of the electromagnetic fine-structure
constant, or a Cavendish experiment with two lead
spheres, or a series of Cavendish experiments in-~
volving lead spheres and small black holes.)

Local, nongravilalional, test experiment, A
“local, nongravitational test experiment” is a lo-
cal test experiment with these properties: (i)
When analyzed in the center-of-mass Galilean
frame, using the Newtonian theory of gravity, and
using all forms of special relativistic mass-ener-
gy as sources for the Newtonian potential ¢, the
matter and fields inside the shield must produce
a ¢ with

|® (at any point inside shield)

— ¢ (at any point on shield){< 1.

(ii) When the experiment is repeated, with succes-
sively smaller mass-energies inside the shield
{as deduced using special relativity theory) - but
leaving unchanged the characteristic sizes, intrin-
sic angular momenta, velocities, and charges
(electric, baryonic, leptonic, ete.) of its various
parts — the experimental result does not change.
(Examples: A measurement of the eleciromagnet-
ic fine-structure constant is a local, nongravita-
tional test experiment; a Cavendish experiment is
not.)

Gravilalion theory. A “gravitation theory,” or
“theory of gravity,” is any space-time theory
which correctly predicts Kepler’s laws for a bina-
ry star system that (i) is isolated in interstellar

space (“local test experiment”); {ii) consists of
two “normal stars” (stars with |&|< 1 throughout
their interiors); and (iii) has periastron p large
compared to the stellar radii, p> R. The theory’s
predictions must not deviate from Kepler’s laws
by fractional amounts exceeding the larger of
|®],.x and p/R. (Note: To agree with experiment
in the solar system, the theory will have to repro-
duce Kepler much more accurately than this.)
(Examples — The theories in Tables I-IV are all
gravitation theories.)

In the absence of gravity. The phrase “in the
absence of gravity” means “when analyzing any
local, nongravitational test experiment for which
the shield is spherical, has arbitrarily large radi-
us, and is surrounded by a spherically symmetric
sea of matter.” “To turn off gravily” means “to
pass from a generic situation to a situation where
gravity is absent.” “To turn on gravity” means
“to pass from a situation where gravity is absent
to a generic situation.”

Gravitational field. In a given representation of
a given gravitation theory, any unconfined, rele-
vant variable B is a “gravitational field” if, in the
absence of gravity, it reduces to a constant, or to
an absolute variable, or to an irrelevant variable.
In particular, every absolute, relevant variable
is a gravitational field. [Example - general rela-
tivity (Table II): For local, nongravitational test
experiments, analyzed using Fermi-normal coor-
dinates, one gets the same result whether one uses
the correct g or one replaces it by a flat Minkow-

.ski metric 7 (absolute variable). Thus gisa

gravitational field.] {Example — Newton-Cartan
theory (Table I): f and y are already absolute, so
they are gravitational fields; ¥V can be replaced
by the Riemann-flat D of the Appendix without af-
fecting local, nongravitational experiments, so it
is also a gravitational ﬁeld.] {Example — Cartan’s
modification of general relativity, with torsion®3:
The torsion is generated by spin. Therefore, it
must remain a dynamical variable in analyses of
local, nongravitational test experiments. It is not
a gravitational field.)

Dicke's* weak equivalence principle (WEP).?’
The weak equivalence principle states: If an un-
charged lest body is placed al an initial event in
spacelime, and is given an initial velocity theve,
then its subsequent world line will be independen!
of its intevnal slvucture and composition. Here
by “uncharged test body” is meant an object (i)
that is shielded, in the sense used above in defin-
ing “lacal test experiments”; (ii) that has negligi-
ble self-gravitational energy, when analyzed using
Newtonian theory; (iii) that is small enough in size
so its coupling (via spin and multipole moments)
to inhomogeneities of external fields can be ig-



nored. These constraints guarantee that any test
of WEP is a local, nongravitational test experi-
ment. ] )

WEP is called “universality of free fall” by
MTW, and is called “equality of passive and in-
ertial masses” by Bondi.?®

The experiments of EStvds et al.,® Dicke et al.,”
and Braginsky e! al.® are direct tests of WEP.
Braginsky, whose experiment is the most recent,
reports that the relative acceleration of an alumi-~
num test body and a platinum test body placed in
the sun’s gravitational field at the location of the
earth’s orbit is

(relative acceleration) < 0.9 x107*(G M /¥omi®)
=0.5x10"1 ¢m/sec?
{95% confidence).

If WEP is correct, then the world lines of test
bodies are a preferred family of curves (without
parametrization) filling spacetime — with a single
unique curve passing in each given direction
through each given event. But WEDP does nof guar-
antee that these curves can be regarded as geode-
sics of the spacetime manifold; only if these
curves have certain special properties can they
be geodesics.?’

Einstein equivalence principle (EEP). The Ein-
stein equivalence principle states that (i) WEP is
valid, and {ii) the outcome of any local, nongravi-
tational test experiment is independent of where
and when in the universe it is performed, and in-
dependent of the velocity of the {freely falling) ap-
paratus. (Example - Dimensionless ratios of non-
gravitational physical constants must be indepen-
dent of location, time, and velocity.) The experi-

- mental evidence supporting EEP is reviewed in
Secs. 38.5 and 38.6 of MTW."

Dicke’s* strong equivalence principle (SEP).
SEP states that (i) WEP is valid, and (ii) the out-
come of any local test experiment — gravitational
or nongravitational - is independent of where and
when in the universe it is performed, and indepen-
dent of the velocity of the (freely falling) appara-
tus. {Example - The Dicke-Brans-Jordan theory,
with its variable “gravitational constant” as mea-
sured by Cavendish experiments, satisfies EEP
but violates SEP.) .

- Two types of effects can lead to a breakdown of
SEP: “preferred-location effects” and “preferred-
frame effects.” Perform a local test experiment,
gravitational or nongravitational. If the experi-
mental result depends on the location of the freely
falling experimenter, but not on his velocity there,
the phenomenon being measured is called a pre-
ferred-location effect. If it depends on the velocity
of the experimenter, it is called a preferred-
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Sframe effect 2 [Examples - A cosmological time
variation in the “gravitational constant” {(as mea-
sured by Cavendish experiments) is a preferred-
location effect. Anomalies in the earth’s tides
and rotation rate due to the orbital motion of the
earth around the sun and the sun through the gal-
axy®® are preferred-frame effects.]

A theory of gravity obeys SEP if and only if it
obeys EEP, and it possesses no preferred-frame
or preferred-location effects.

Any theory for which the complete external sym-
metry group excludes boosts will presumably ex-
hibit preferred-frame effects. But preferred-
frame effects can also show up when boosts are in
the symmetry group. (Example ~ The vector-ten~
sor theory of Nordtvedt, Hellings, and Will*® ex-
hibits preferred-frame effects but possesses MMG
as a symmetry group.) For further discussion
see “metric theory of gravity,” below.

1V. PROPERTIES AND CLASSES
OF GRAVITATION THEORIES

Completeness of a theory. A gravitation theory
is “complete” if it makes a definite prediction
{not necessarily the correct prediction) for the
outcome of any experiment that current technology
is capable of performing. {(Standard quantum-
mechanical limitations on the definiteness of the
prediction are allowed.) To be complete, the the-
ory must predict results for nongravitational ex-
periments as well as for gravitational experiments.
Of course, it can do so only if it meshes with and
incorporates {perhaps in modified form) all the
nongravitational laws of physics. If a theory is
complete so far as all “classical” experiments
are concerned, but has not yet been meshed with
the quantum-mechanical laws of physics, we shall
call it classically complele.

Self-consistency of a theory. A gravitation theo-
ry is “self-consistent” if its prediction for the out-
come of every experiment is unique —~i.e., if, when
one calculates the prediction by different methods,
one always gets the same result.

Reference 2 discusses completeness and self-
consistency in greater detail, and gives examples
of incomplete theories and self-inconsistent theo-
ries.

Relativistic theory of gravily. A theory of grav-
ity is “relativistic” if it possesses a representa-
tion (“relativistic representation”) in which, in
the absence of gravity, the physical laws reduce
to the standard laws of special relativity. (Ex-
amples — General relativity, Ni’s theory, and the
Belinfante-Swihart theory are relativistic; the
Newton-Cartan theory is not, nor is Cartan’s tor-
sion-endowed modification of general relativity.?®)
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Melric theory o) gravily, By “metric theory”

- we mean any theory that possesses a mathematical
representation (*metric representation’) in which
(i) spacetime is endowed with a metric; (ii) the
world lines of test bodies are the geodesics of

that metric; and (iii) EEP is satisfied, with the
nongravitational laws in any freely {alling frame
reducing to the laws of special relativity.?® Any
theory or representation that is not metric will

be called nonmelric. |Examples — General relativ-
ity and Ni’s theory are metric theories, and the
representations given in Tables II and III are met-
ric; the Belinfante-Swihart theory is nonmetric,'*
but can be made metric by suitable modifica-
tions,'*¥* The Newion-Cartan theory is nonmet-
ric. The Dicke-Brans-Jdordan theory is metric;
the representation of Ref. 16 is a metric repre-
sentation; the representation of Ref. 18 (“confor-
mally transformed representation”; “rubber meter
sticks”) is nonmetric. |

In any metric theory, the metric that enters in-
to EEP is called the “physical metric.” All other
gravitational fields are called “auxiliary gravita-
tional fields.” Relevant auxiliary scalar fields
typically produce preferred-location effects; other
relevant auxiliary gravitational fields (vector,
tensor, etc.) typically produce preferred-frame
effects. This is true independently of whether or
not the auxiliary fields are absolute variables or
are dynamical ~i.e., independently of whether the
complete external symmetry group is MMG or is
more restrictive.

Clearly, every metric theory is relativistic,
but relativistic théories need not be metric [ex-
ample: the Belinfante-Swihart theory]. Ni®! has
given a partial catalog of metric theories. Will
and Nordtvedt® have developed a “parametrized
post-Newtonian formalism” for comparing metric
theories with each other and with experiment.

Prioy geomelric theories. Any gravitation theo-
ry will be called a “prior geometric theory” if it
possesses a fully reduced, generally covariant
representation that contains absolute variables.
(Examples - The Newton-Cartan theory, Ni’s the-
ory, and the Belinfante~-Swihart theory are prior
geometric; general relativity and the Dicke-
Brans~-Jordan theory are not.)

Loventz-symmetric representations and theo-
ries. A generally covariant representation is
called “Lorentz symmetric” if its complete exter-
nal symmetry group is the Poincaré group — with
or without inversions and time reversal. We sus-
pect that, for any theory, all fully reduced, gen-
erally covariant representations must have the
same complete external symmetry group. As-
suming so, we define a theory to be “Lorentz sym-
metric” if its fully reduced, generally covariant

representations are Lorentz symmetric. (Ex-
ample — General relativity is not Lorentz symmet-
ric; the complete external symmetry group of its
fully reduced, standard representation is too big -
it is MMG rather than Poincaré.) (Example - Ni's
theory is not Lorentz symmetric; as with the New-
ton-Cartan theory, the complete external symme-
try group is too small.) (Example -~ Belinfante-
Swihart theory is Lorentz symmetric.}

Elsewhere in the literature one sometimes finds
Lorentz-symmetric theories called “Lorentz-in-
variant theories” or “flat-space theories.”

Lagrangian-based represeniations and theovies.,
A generally covariant representation of a space-
time theory is called Lagrangian-based if (i) there
exists an action principle that is extremized with
respect to variations of zll dynamical variables
but not with respect to variations of absolute or
confined variables, and (ii) from the action prin-
ciple follow all the dynamical laws but none of the
other physical laws. The issue of whether the
other physical laws (boundary conditions, decom-
position equations, and prior geometric con-
straints) are imposed before the variation or
afterwards does not affect the issue of whether
the representation is Lagrangian-based. A theory
is called Lagrangian-based if it possesses a gen-
erally covariant, Lagrangian-based representa-
tion. (Examples ~ General relativity, Ni’s theory,
and the Belinfante-Swihart theory are all Lagran-
gian-based.)

The Lagrangian density £ of a Lagrangian-based
representation {(which appears in the action prin-
ciple in the form ﬁf,f,d ‘x=0) can be split up into
two parts: £=£,+8£y;. The gravilational part
£ is the largest part that contains only gravita-
tional fields. The nongravitational part £ is the
rest,

V. UNIVERSAL COUPLING

We turn attention, now, from our glossary of
concepts to some applications. We begin in this
section by analyzing the overlap between metric
theories and relativistic, Lagrangian-based theo-
ries.

As motivation for the analysis, consider any
relativistic representation of a relativistic theory
of gravity. In the absence of gravity that repre-
sentation reduces to special relativity - so, in
particular, it possesses a flat Minkowski metric
5. By continuity one expects the represeatation
to possess, in the presence of gravity, at least
one second-rank, symmetric tensor gravitational
field ¢, 5 that reduces to 7, as gravity is turned
off. Indeed, this is the case for all relativistic
theories with which we are familiar. (Example -
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general relativity: The curved-space metric g,z
* reduces to 1,4 when gravity is turned off.) (Ex-
ample — Ni’s theory: There are a variety of sec-
ond-rank, symmetric tensor gravitational fields
that reduce to 1,5. They include the flat back-
ground metric 7,5, the physical metric g,5, any
tensor field of the form [ 1+ f(p)ln,a, where (o)
- is an arbitrary function with f(0)=0, etc.) [Ex-
ample — Belinfante~-Swihart theory: n,s, Tes+8ass
Roell +3k,") =17k, k" all reduce to 7,4 when
gravity is turned nff.r

Next consider any Lagrangian-based, relativis-
tic theory. Being relativistic, it must possess a
generally covariant, Lagrangian-based represen-
tation in which, as gravity is turned off, the non-
gravitational part of the Lagrangian £y, ap-
proaches the total Lagrangian of special relativity.
Adopt that representation. Then, in the presence
of gravity £y, will presumably contain at least one
second-rank, symmetric, tensor gravitational
field y, 4 that reduces to 71,4 as gravity is turned
off. Roughly speaking, if £y, contains precisely
one such i, and contains no other gravitational
fields, then the theory is said to be “universally
coupled,*3

More precisely, we say that a Lagrangian-based,
relativistic theory is universally coupled if it pos-
sesses a representation (“universally coupled rep-
resentation”) with the following properties: (i)
The representation is generally covariant and La-
grangian-based. (ii) £y contains precisely one
gravitational field, and that field is a second-rank,
symmetric tensor . with signature +2 through-
out spacetime. "(iii) In the limit as gravity is
turned off §,, becomes 2 Riemann-flat second-
rank, symmetric tensor field n,,; and whenever
¥, is replaced by such an 7,5, £y becomes the
total Lagrangian of special relativity. (iv) The
prediction for the result of any local, nongravita-
tional experiment anywhere in the universe is un-~
changed when, throughout the laboratory, one re-
places 4, by a Riemann-flat second-rank, sym-
metric tensor.

The following theorem reveals the key role of
universal coupling as a link between Lagrangian-
based theories and metric theories: Consider all
Lagrangian-based, relativistic theories of gravity.
Every such theory that is universally coupled is a
metric theory, and, conversely, every melric
theory tn this class is universally coupled.

Proof: Let ¥ be a Lagrangian-based, relativis-
tic, universally coupled theory. Adopt a univer-
sally coupled representation. Use that represen~
tation to anaiyze any local, nongravitational test
experiment anywhere in spacetime. Use the
mathematical tools of Riemannian geometry,
treating the unique gravitational field ¥,z that ap-

-n

pears in £y as a metric tensor. In particular,
introduce a Fermi-normal coordinate system (.4
=Nga I'“s, =0 at the center of mass of the labora-
tory). Condition (iv) for universal coupling guar-
antees that the predictions of the representation
will be unchanged if we replace J 5 by N,
throughout the laboratory. Do so. Then condition
(iii) for universal coupling guarantees that £ is
the total Lagrangian of special relativity. The dy-
namical laws that follow from

DI(SG+£NG)d‘x=O

by varying all nongravitational variables also fol-
low from

bf.ﬂmd“x=0;

in this representation and coordinate system they
are the laws of special relativity. Thus, the out-
come of the local, nongravitational test experi-
ment is governed by the standard laws of special
relativity, irrespective of the location and velocity
of the apparatus. This guarantees that theory ¥ is
a metric theory.

Proof of converse: Let  be a Lagrangian-based,
metric theory. Adopt a Lagrangian-based, metric
representation. Since all unconfined, nongravita-
tional variables are dynamical, they must all be
varied in 6f£d‘x=0. Moreaver, since they appear
in £y but not in £g, their Euler-Lagrange equa~
tions are obtained equally well from

bf.(’,NGd‘x=D.

Call those Euler-Lagrange equations (obtained by
varying all unconfined, nongravitational variables
in 5 £ycd*x =0) the “nongravitational laws.” Let
a {reely falling observer anywhere in spacetime,
with any velocity, perform a local, nongravitation-
al test experiment. Analyze that experiment in a
local Lorentz frame of the physical metric g, us-
ing the above nongravitational laws. Because the
theory is metric, the predictions must be the same
as those of special relativity. Hence, the nongrav-
itational laws —in any local Lorentz frame of g4
anywherye in the universe — must reduce to the laws
of special relativity. This is possible only if (i)
those laws — and hence also Lyg — contain no refer-
ence to any gravitational field except g4, and

(i) £y 1s some version of the total special rela-
tivistic Lagrangian, with 1., replaced by g, .
These properties of £,;, plus the definition of
“metric theory,” guarantee directly that the four
conditions for universal coupling are satisfied.
Hence, theory $ is universally coupled. QED.
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V1. SCHIFF’S CONJECTURE

schiff’s conjeclure’ states that any complele
und self-consistent gravitation theory that vbeys
WEP must also, unavoidably, obey EEP.

General relativity is an example. It endows
spacetime with a metrie; it obeys WEP by pre-
dicting that all uncharged test bodies fall along
geodesics of that metrie, with each geodesic world
line determined uniquely by an initial event and an
initial velocity; it achieves completeness by de-
manding that in every local, freely falling frame
the nongravitational laws of physics take on their
standard special relativistic forms; and by this
method of achieving completeness, it obeys EEP.

The Newton-Cartan theory is another example.
It was complete and self-consistent within the
iramework of nineteenth century technology. It
endows spacetime with an affine connection; it
obeys WEP by predicting that all uncharged test
bodies fall along geodesics of that affine connec-
tion, with each geodesic world line determined
uniquely by an initial event and an initial velocity;
it achieves completeness by demanding that in
every local, freely falling frame the laws of phys-
ics take on their standard nongravitational New-
tonian form; and by this method of achieving com~
pleteness, it obeys EEP.

Before accepting Schiff’s conjecture as plausible,
one should search the literature for a counterex-
ample —i.e., for a theory of gravity which some-
how achieves completeness, and somehow obeys
WEP, but fails to obey EEP. Several Lagrangian-
based theories which one finds in the literature
might conceivably be counterexamples, but they
have not been analyzed with sufficient care to al-
low any firm conclusion. Subsequent papers®:!*
will show that the most likely counterexample,
Belinfante-Swihart theory, actually fails to satisfy
WEP, violates the ED experimental results, and
is thus not a counterexample at all.

One can make Schiff’s conjeciure seem very
plausible within the framework of relativistic, La-
grangian-based theories (the case of greatest in-
terest; see Sec. I) by the following line of argu-
ment.3*

Consider a Lagrangian-based, relativistic theo-
ry, and ask what constraints WEP places on the
Lagrangian. WEP probably forces £yx¢ to involve
one and only one gravitational field (and that field
must, of course, be a second-rank symmetric ten-
sor g, which reduces to 7,, far from all gravi-
tating bodies). If £y were to involve, in addition,
some other gravitalional field , then to satisfy
WEP g5 and ¢ would have to conspire lo produce
identically the same gravitational accelerations
on a test body made largely of rest mass, ason 2

body made largely of electromagnetic energy, as
on a body made largely of internal Kinetic energy,
as on a body made largely of nuclear binding ener-
gy, as on a body made largely of ... . This seems
implausible, unless g, and ¢ appear everywhere
in £y in the same “mutually coupled” form
f(®)g, s —in which case one can absorb f(p) into
E.s and end up with just one gravitational field in
£ys. Thus, it seems likely that WEP forces L£y¢
to involve only g,s. This means that the theory is
universally coupled — and, hence, by the theorem
of Sec. V, it is a metric theory.

This argument convinces us that Schiff's conjec-
ture is probably correct, when one restricts atten-
tion to Lagrangian-based, relativistic theories.
And it is hard to see how the conjecture could fail
in other types of theories.

A formal proof of Schiff’s conjecture for a more
limited class of theories will be given in a subse-
quent paper.®

.

APPENDIX: ABSOLUTE AND DYNAMICAL FIELDS
IN NEWTON-CARTAN THEORY

In order to separate the absolute gravitational
fields of Newton~Cartan theory from the dynamical
fields, one must change mathematical representa-
tions. In place of the representation given in Ta-
ble I, one can adopt the following.

1. Gravitational fields.

a. Symmetric covariant derivatives (two of
them): D and V.

b. Secalar gravitational field: &.

c. Spatial metric [defined on vectors w such that
{Bw)=0} y. :

d. Universal 1-form: 8.

(Note: ¢ has been replaced by 8 in order to remove
from the theory the “irrelevant” choice of origin
of universal time; see “irrelevant variables” in
Sec. IA. D and @ will turn out to be absolute and
dynamical parts of ¥; see below.)

2. Gravitational field equations.

a. B is perfect: dg=0. (Ala)
b. g8 is covariantly constant: DA=0. (Alb)
c. D is flat: Riemann (D)=0. {Alc)

d. Compatibility of D and y:

.D_a(ﬂ'.“_’)=(2a v) -zi;+2-(21u_)) for any vector n, and
for any spatial vectors v, w. (Ald)

e. Decomposition of ¥:

V= D+ AwpeI, where A is the spatial vector

“dual” to dd: (dd,m) —-—-A-:g for all spatial w.

{Ale)
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. Field equation for &:

D - A =(divergence of A)= 4up. {Alf)

3. Influence of gravity on mattey. Same as in
part 4 of Table I where { is any scalar field such
that g =d!.

To prove that this and the formalism given in
Table [ are different mathematical r epresentations
of the same theory, we can show that they become
identical in Galilean coordinate frames. The re-
duction of the formalism of Table I to a Galilean
frame is performed in Exercise 12.6 of MTW."?
The reduction of the above formalism proceeds as
follows: (i) Let ¢ be any particular scalar field
such that g=d¢. (ii) At some particular event in
spacetime pick a set of basis vectors {eqt such
that (a) e,, e, €, are spatial, {8, e, =0, and or-
thonormal, e, -e,=0;; (b} ¢, is not spatial, (B, eo)
#0. (iii) From each vector e, construct a vector
field on all of spacetime by parallel transport
with D. The resulting field is unique because D is
flat; and it has De,=0. Hence, the commutators

vanish:

[ewesl=Dses— Dae,=0.

This guarantees the existence of a coordinate sys-
tem {x°} in which e, =3/8x%. {iv) The condition
{valid in any coordinate frame) {dx® e;) =0, when
compared with {d¢, e,) 0, guarantees that the sur-
faces of constant x % and constant { are identical,
i.e., t=f{x°. Moreover, because the connection
coefficients of D vanish in this coordinate frame,

{ gy}g(gx&agy‘iB) =0’

the condition Ddt =0 becomes a"'t/ax “px2=0; in
particular, a%t/5x%x°=0, s0 t= ax °+b ior some
constants ¢ and b. Renormalize x° so t=x° (v)
In the resulting coordinate frame 8, y, andé have
components

Bo=1, B;=0, 7u=0u,
A°=0, A'=ad/ax’;

so the field equation for & is Poisson's equation

(A2a)

(A2b)

8%p i
——Ta—;T =47np; (AZC)
and the connection coefficients of ¥ are T'%,
= Aat.ﬁt_,, i.e.,

; _b% " .
= P all other T'“y, vanish. (A2d)

This Galilean coordinate version of the above
formalism is identical to the Galilean coordinate
version of the formalism of Table I, as given in

Chap. 12 of MTW.'" Thus, the two formalisms are
different mathematical representations of the same
theory.

In the above formalism it is easy to verify that

B B and y are avbsolute gravitational fields,

“Wwhile & is a dynamical gravitational field. In fact,
D, 8, and y are the absolute parts of V; @ is its
‘dynamical part; Egs. (Ala)-(Ald) are the prior
geometric constraints of the theory; Eq. {Ale) is
the decomposition of ¥ into its absolute and dynam-
ical parts; and Eg. (A1f) is the dynamical field
equation for &.

The covariance group for the above mathematical
representation of Newton-Cartan theory is slightly
larger than that for the representation of Table 1.
For Table I the covariance group is MMG. For the
above representation it is the direct product of
MMG with a group of internal covariance transfor-
mations. In a Galilean frame the internal trans-
formations are

{ ojo} "{ ojo} = {ojo} ra(=d'(),

$~d'=d -a'(t)x? +constant, (A3)

all other variables, including Ty,
left unchanged.

In coordmate-frne form the internal transforma-
tions are ,

D-D'=D+a®BBB,
(A3'2)
o—@'=d-b,

where a is any vector field which is covariantly
constant in the surfaces of g,
D,a=9,2=0 for all spatial vectors w;
(A3D)

and where b is any scalar field such that

{dbwy=a-w for all spatial vectors w .
(A3'c)

The complete symmetry group for the above
mathematical representation of Newton-Cartan
theory is best analyzed in a Galilean coordinate
system. [Because the absolute objects are all ten-
sors or affine connections, one can restrict atten-
tion to a singde coordinate system; see Eq. {13)
and associated discussion in the text.| The sym-
metry transformations are those which ieave

B5yn=58,=0 { Br} =0. (a4)
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‘Clearly, the syminetry transformations include
(i) spacetime translations )

O x® =x% 5, (A5a)
where c® are constants, and (ii) spatial rotations
xf e x? =R E (A5D)

i{R’*}| a constant rotation matrix. They also in-
clude (iii) the combination of an arbitrary time-
dependent spatial translation with a carefully
matched internal covariance transformation

,
xt~x! =x? +c’(1), where ¢’ are arbitrary

functions of {,

AU RN (ASc)
%00}‘}00} '{00} 4rcj(t)('where 'c"=d;c:.
&~ =0 - ()’ S t

Note that these symmetry transformations are
precisely the transformations that lead from one
Galilean coordinate system to another (cf. Sec.
12.3 of MTW™).
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Schiff has conjectured that the weak equivalence principle (WEP: free-fall trajectories independent of
test-body composition) implies the Einstein equivalence principle (EEP: ali nongravitational laws of
physics the same in every freely falling frame). This paper presents a proof of Schiff’s conjecture,
restricted to (i) test bodies, made of glectromagnetically interacting point particles, that fall from rest in
a static, spherically symmetric gravitational field; and (if) theories of gravity within a certain broad
class—a class that includes almost ell complete relativistic theories that we have found in the literature,
but with each theory truncated to contain only point particles plus electromagnetic and gravitational
fields. The proof shows that every “nonmetric” theory in the class (every theory that violutes EEP)
must violate WEP. A formula is derived for the magnitude of the violation. Comparison with the
results of Edtvds-Dicke-type experiments rules out various nonmetric theories, including those of
Belinfante and Swihart and of Naida and Capella—theories that previously were believed to agree with
all current experiments. It is shbown that WEP js a powerfu} theoretical and experimental tool for
constraining the manner in which gravity couples to electromagnetism in gravitation theories.

1. INTRODUCTION

In a previous paper' we have discussed the con-
tent and significance of Schiff’s conjecture. In
brief, the conjecture states that all theories of
gravity which satisfy the weak equivalence prin-
ciple! (WEP), i.e., predict a unique composition-
independent trajectory for any test body at a given
point of spacetime and with a given initial veloc-
ity through that point, must satisfy the Einstein
equivalence principle (EEP), i.e., must show that
the nongravitational* laws of physics are the sume
in every freely falling frame. When specialized
to “relativistic theories of gravity”' (as will be
done throughout this paper), Schiff’s conjecture
says that every theory satisfying WEP is neces-
sarily a “metric theory.”* Plausibility arguments
(e.g., Refs. 1 and 2) have frequently been given
for the conjecture, but there have been few de-
tailed calculations that bear upon its validity or
invalidity. Indeed, the conjecture is so swecping
that it will probably never be proved with com-
plete generality. {Such a proof would require a
moderately deep understanding of all gravitation
theories that satisfy WEP—including theories not
yet invented, and never destined to be invented.
Such understanding is well beyond one’s grasp in

1973.)

On the other hand, one can gain useful insight
by proving restricted versions of the conjecture,
and by searching for the most general versions
that are provable. For example, one might first
analyze test bodies with purely electromagnetic
internal interactions and thereby attempt to show
that particles and electromagnetism must interact
with gravity in the manner of metric theories
(EEP) in order that WEP be satisfied; next ana-
lyze purely nuclear systems and attempt to show
that nuclear fields must couple to gravity metri-
cally; etc. Unfortunately, for our purposes, nu-
clear interactions have not been given an adequate
mathematical representation even in the absence
of gravity; and the nonmetric theories known to
us make no attempt to write down nuclear force
laws. Hence our present program must end one
way or ancther after the first stage. Even a gen-
eral proof of the first stage (Schiff conjecture for
bodies with internal electromagnetic interactions)
is too much to expect. To make it manageable,
one must assume some restricted (but hopefully
quite general) form for the interactions. This we
shall do in the present paper—with an interaction
form general enough te include all metric theories
plus almost all nonmetric theories we have found



in the published literature. As a byproduct of our
proof, we can rule out several nonmetric theoriés
in the literature.

In order not to prejudice ourselves, the lan-
guage and concepts used in the calculation will be
those employed in standard classical field theory
with gravity treated as just another ordinary field,
In particular, we will not use such phrases as
“curved spacetime” and will not make any co-
ordinate transformations to real or pseudo- “free-
ly falling frames.” The concept of gravity as a
metric phenomenon should be forced upon us by
‘WEP.

As spelled out in Sec. I, we shall take a non-
quantum-mechanical approach and shall use a
particle rather than a fluid picture for the test
body. Since the gravitation theories with which
we attempt to tie in are largely classical theories,
we feel that a classical approach is completely
justified and perhaps essential. There are two
reasons why a particle approach has been taken:
first, more often than not, classical field theories
formulate the interaction of gravity with matter
in the form of point particles; second, a charged-
particle approach allows one to deal with the ex-
act “gravitationally modified Maxwell equations”
of a given theory, rather than with their smeared-
out averages.

Our calculation is not the first of its type. For
several particular theories, and at.lower orders
of approximation, the acceleration of electromag-
netic test bodies in a gravitational field has been
previously calculated. Nordtvedt® and Belinfante
and Swihart* have both done calculations, to first
order in the gravitational field potential and
squared particle velocities; Nordtvedt for general
metric theories, and Belinfante and Swihart for
their theory of gravity. In addition, Post® has
done a calculation, at post-Newtonian order, of
the acceleration of a confined quantity of eleciro~
magnetic energy in a gravitational field. Had his
calculation been carried to higher order it is con-
ceivable he could have obtained part of our result:
that € =p [ef. Eq. (21)].

Section 1T of this paper gives an outline of the
assumptions, procedure, and techniques of our
calculation, including the resuits; Sec. IO pre-
sents the details. Section IV compares the pre-
dictions for WEP viclation with the resulis of
Eotvos-Dicke-type experiments, and thereby rules
out the nonmetric theories of Belinfante and Swi-
hart,*'¢ Capella,” Naida,® and Whitehead.® Also
discussed is the manner—both quantitative and
qualitative—in which WEP is an experimental
probe of the “gravitational-Maxwell equations,”
as contrasted to previously recognized experimen-
tal tests of those equations.
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1. GENERAL FRAMEWORK AND RESULTS

In calculating the center-of-mass acceleration
of an electromagnetic test body, we would like to
set up a formalism which includes as many types
of gravitation theories as possible, but which is
not too complicated. In particular, our formalism
should be able to deal with scalar, vector, tensor,
scalar-tensor, ete. theories.

We have found that all of these different types
of theories can be put into a somewhat universal
form when describing a static, spherically sym-~
metric (SSS) gravitational field—providing their
dynamical law® for particle motion is derivable
from a Lagrangian. (The restriction to SSS fields
is certainly a limitation in principle, but it allows
us to handle many different theories at once; and,
as discussed in Sec. IV, is not a limitation in
practice.) The quasiuniversal description of par-
ticles and electromagnetism in an SSS field is as
follows: :

The motion of charged particles under the joint
action of gravity and the electromagnetic field
A, can be derived from the Lagrangian'®

L= 2.; f[—muk(T —HG v e, A, v Jat, (1)
where we have used the bar above the L to indi-
cate that I may be only a part of the iotal Lagran-
gian, and where the various symbols will be de-
fined below. The “gravitationally modified Max-
well equations” (GMM: Maxwell's equations in
the presence of a gravitational field) are of the
form

- (eE)=4np,
X(p B =477 + Bit (cE).

@
3

Definitions of the quantities in Egs. {1) - (3) and
of other quantities that will be used in the calcula-
tion are given below:

x' = spatial coordinates; they are nearly Carte-
sian when gravity is weak,

t=a time coordinate associated with the static
nature of the S8S field, nearly equal to proper
time for slowly moving particles when gravity is
weak,

my=rest mass of particle 2, a constant,

e,=charge of particle &, a constant,

x{{t)=world line of particle &,

vh =dxf/dt,

x0=t,

V2= 6,0 v with b, the 3-Kronecker b5,

v
v

U{r)=a gravitational potential equal to M,/r,
where M, is a constant (“active gravitational
mass”) characterizing the source of the 5SS field,
and 7 is coordinate distance, {{x - x>+ (y—9v,)’



+{z =2z )]""3, from source of field point,

¥, V- =the usual differential operators of gravity
free Euclidean space,

f = VU =the gravitational acceleration to be ex-
pected if the theory in question were Newtonian
theory,

T, H, €, p =functions of the gravitational potential
¢/; functions that are arbitrary in this calculation
but that have a specific form in each theory of
gravity when the coordinate system has been suit-
ably specified,

A" =components of an electromagnetic vector
potential, a four-vector,

(A) =A, =spatial part of vector potential,

p==-A,,

J= T e, T, 0%(FE ~%,(1), (4a)
F

P e E-%X,0), (4b)
k

E=Va,-0A/0t, (4¢)

B=VxA (4d)

Although in most theories the form of I in Eq.
(1) is typical only of SSS fields, it turns out that
all of the results we shall obtain hold even if U
is an arbitrary, but time-independent function of
position. )

For an SSS field in a given theory, 7, H, €, and
u will be particular functions of U (and hence of
position). Here we assume that T, H, €, and p

«~have been given and we seek the relations among
them, if any, that are requived for compliance
with WEP, Tt is clear irom Eq. (1) that we have
sacrificed general covariance of the particle La-
grangian in order to encompass a wide range of
theories.

Note that Egs. (2)-(3) can be reinterpreted (dif-
ferent physics; same mathematical representa-
tion) as the usual Muxwell equations for a perme-
able medivm in which the free sources originate
from charged particles labeled by 4. Thus € and
i play the role of “gravitationally induced di-
electric and permeability parameters,” respec-
tively. We require that 7, H, €, u all approach
unity as U vanishes so that the special relativistic
limit is maintained.

Given the SSS restriction, one may ask how gen-
eral are Egs. (1)-(3). Except in the most general
{nonmetric) case of Jordan’s theory," which is
incomplete! in the sense that it involves unspeci-
fied processes of particle creation, all theories
we know of which are complete enough to formu-
late the interaction of the electromagnetic field
with gravity have GMM equations of the form of
Eqs. (2)-(3)."* In fact, the “e-u formulation” of
the sourceless Maxwell equations in metric theo-
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ries has sometimes been used in calculations.™
The particle Lagrangian L [cf. Eq. (1)} also ap-
pears to be fairly general, except for a class of
theories discussed by Naida® which includes the
theory of Capella.” We treat the Capella-Naida
theory on an individual basis in Sec. IV, using the
methods developed in this section. We point out
that it is sometimes necessary to perform a re-
formulation (same theory; new “mathematical
representation”) of a theory in order to put it into
the form of Egs. (1)-(3) (see, for example, the
Belinfante-Swihart theory as analyzed in Ref. 14).
Finally, we should emphasize that, even more
important than the generality of Egs. (1)-(3), are
the technigues and methods developed in this sec-
tion, since they can also be applied on an individ-
ual basis to that handful of theories which is not
included in Egs. (1)-(3). We now proceed with
an outline of our caleulations.

Variation of Eq. (1) yields an expression for
the acceleration of the kth particle, which, togeth-
er with Egs. (2) and (3) constitutes three coupled
equations. We seek a perturbation solution.
There are two obvious, small dimensionless quan-
tities in which one could expand: the gravitational
potential U and the squared particle velocities v,2.
Since we prefer a result correct to all orders in
the gravitational potential, we expand only in ¥v,2
and leave 7, H, €, and p as arbitrary functions
of U. We do, however, expand these latter func-
tions in a Taylor series about the instantaneous
center of mass of the test body (defined below),
i.e.,

T=Ty+E-X)Th+--, (5)

where

T’ =dT/dU and T,=(dT/dU);.,. (6)

We shall assume that the body is small enough
so that second derivatives of U make negligible con-
tributions. Indeed, this is part of the definition
of “test body” (Ref. 1) and is a necessary and in-
tegral qualification in Schiff’s conjecture.

We define the center of mass for the test body
by the following sequence of equations:

my=my{l+ FIUGE) I} + 3 mo v, 2{1 + GlUE)}
+3 e,,zi)eili“]"{l ~KUE)M +sluE,) )}

(7

+0(m oY),
= > =
Xia=SXy =Xy,
M=y, m,,

x

Xem =M™ T m, %,
I3

(8)

(9)

Here F, G, K, S are again arbitrary functions of the
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potential (/. (Whenever two indices, e.g., i and &,
occur in terms, in double or single sums, it is -
always assumed that 7 # 4 in the sum.) Any cred-
ible result should be independent of the particular
definition of the center of mass as long as it re-
mains inside of the body, thal is, the resultshould
not depend on the specific forms of the functions
F, G, K, and 5.

We now assume that at £=0, the center of mass
of the test body is momentarily at rest, at the
origin of the coordinate system,

(ié.m. )£=o = (dic.m, /dl)g=0 =0.

By differentiating Eq. (9) twice and combining
with Egs. (10), we obtain for the instantaneous

(10)

3

{typical charge of a particle)®

center~of-mass acceleration
Ao =M"(Zﬂ) MRy 42311,V + ; m,,i,,), (11)
where ’
Ko =d?%,, sar,
Z,=dV,/dt,
m,=dm,/dt, etc.

Return for a moment to the details of the expan-
sion scheme. Our expansion is in the quantity

¥# = (typical squared particle velocity) < v,°.

(typxcal mass)(typical separation of neighboring particles) <

(12a)
The virial theorem guarantees that
e’
= . 12b)
my %, ¢

Thus, without serious error, we may treat both terms on the right-hand sides of Eqs. {12a) and (12b) as

O(v?) when ordering the terms in the expansion.

Besides the dimensionless quantity ¢* in which we do expand, and the dimensionless quantity U in which
we do not expand, there is a third, less obvious dimensionless quantity:

gs= |g|{size of test body) = [g}]%,]-

(13)

We shall expand in this quantxty—mdependently of the v* expansion—but, in practice, by examining powers

of g rather than gs,
Now, if A, is to be body-independent in general,

*it must be so for each order in ¢* and each order in

g, independently. Surprisingly, perhaps, it will be sufficient to work to first order in ¢* and to first order
in g. The imposition of WEP at this order will force the dynamical equations {1)—(3) to take on metric
form, thereby guaranteeing that EEP (and hence WEP a fortiori) is satisfied at all orders.

To first order in ¢® and g, after solving Egs. (1)-(3) for &, and substitution into Eq. (11), we find (de-

tails given in Sec. II)

K. =—-38(T{H™ +§M,,"[%(HD’ Hy ) mggv? +3 ‘Z.) nu} T MW ‘zz Z‘.+M,,“e'2 mg,(E-V,)%, ,
i ' +

where
M,= ‘E Myi s
=T N g€, ™+ T 1o Hy ™),
D=3 (THM Y T H, gt S T Ty
+ (1+F°)"[Fo’ T, 2 Hy e -
=T, T," —HJ Hy™' +2(1 + F) '[F§
nu=e &, ™,

Wi, = 0,248 - X K | 7K, -

11 +Gy) Ty T2 H, %, Y,

-31+G,) T H,

(14)

W

(15a)

(150}

—H!H, ;™)

(15¢)

(154}
{15¢e)

(15f)

Equation {14) becomes much simplified when we use some gravitationzlly modified virial relations (see

Sec. IIC for details):
<2 o, vp Ul + 3 TM2H™!

-l) €y Xp X .n‘xml-3> O(My1°gs),

(16)

where m, p refer to to components of the appropriate vectors and () denotes the usual time average. Using

Eq. (168), Eq. (14) becomes
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(Ko )= =2 BTy ™Y = SE M TN, H T e T H™'~2el €™ = Ty €, uono‘l)<z; 71n>
ir

M TE TR Hy eV H Ty - E0p°)<E a“> . %))
0.k

The first term of this acceleration is body-in-
dependent (satisfies WEP); the second term de-
pends on the body’s self-eleciromagnetic energy;
the third term depends on the electromagnetic en-
ergy, the shape of the body, and the orientation
of the body with respect to the gravitational field
gradiert. Thus (A, ) will always be body-in-
dependent only if the second and third terms al-
ways vanish, i.e.,

H/Hy—2€(/€g~ Td€qito/Hy=0, (18a)
Ho/To"'Eo“'o=0 (180)

(the other factors in the body-dependent terms
must be nonzero for correct Newtonian and spe-
cial relativistic limits), or equivalently,

€l /€= bl /Hy— Tg/T,), (19a)
o= H ATE) - (19b)

Since we have not specified the initial location
of our test body with respect to the external grav-
itating source, and Egs. (19) should be satisfied
at any point we choose to deposit the body, the
naught subscript can be removed from quantities
in those equations, yielding, upon integration,

€=ClH/TY"?, - (20a)
pu=C YH/T)?, (20b)

where C is a constant. Since, “in the absence of
gravity,”! we must have e=H=T=1, C must also
be unity. Therefore we finally obtain, as a nec-
essary condition for our electiromagnetic test
body to fall with a composition-independent accel-
eration:

€=p=(H/TV2, (21)

It is worth noting that, using heuristic argu-
ments (see, e.g., Ref, 15) about the electromag-
netic energy content of atoms and the expression
for the fine-structure “constant” « in a dielectric
medium

a={ep)’?e*/(ek)

one can see why WEP should require constancy
of the ratio (¢/u).

Comparison of Egs. (21) and (1)~(3) with the
discussion in Sec. MIIE reveals that Eq. (21) is a
necessary and sufficient condition for the dynami-
cal equatious (1)—(3) to take on the familiar met-
ric form

-
Z=E f ~Mgpds,+ e, A pdx# ’ (22)
]
F®® g=4nJ°, (23)
In this metric form
ds?=g o dx%dx8, (24a)
£00=T, (24b}

g;; = —0,;H (spherical coordinates
turn out to be “isotropic”), (24c)
" s denotes the covariant derivative
with respect to g,3,

szﬂ :gnfgﬂu(Au'r -Ar.u)a» (24d)

=% f €,6%(x - 2(s))(dx3/ds) (~g)M2ds,
(24€)

Note that all dependence on the arbitrary func-
tions used in the center-of-mass definition, Eqg.
(7), has vanished by the time one reaches Eq. (17).

Higher-order calculations [v* or (gs)?, for ex-
ample] could only yield results consistent with
Eq. {21), since WEP a! first order implies thal
gravity has a metric-theory descviption (auto-
matically satisfying WEP) to all orders.

Our theoretical results can be summarized by
the following statement: Considev the class of
gravitation theories that possesses a mathematical
vepresentation of the form of Eqs. (1)-(3). For
that class, with each theory writien in that repre-
sentation,

(WEP)«=[Eq. (21)]es[the theory is metric with
the metric given by Egs.
(24b)—(24¢)]} .

11l. DETAILS OF THE CALCULATION
A. Single-Particle Equations of Motion
Variation of Eq. (1) with respect to the coordin-
ates of particle & yields

- dHW™)

(HW i, +7, -+ LT - He ) = AL,

(25)
where

W=(T-HeAY?, (26a)



32

K,_(i,,) = Lorentz acceleration of particle k

= (en/m )~V (%)) + 9174 (%)
} g

d - .
- m A(X.)} 3 (26b)
and all functions of U are evaluated on the par-
ticle's world line, e.g., H=H(U[Z()]). Using
Eqgs. (5)—(6_) and the discussion following Eqs. (13),
we can write, to the order of our calculation,

VH=H,E, etc. (27

We shall‘ regard § as spatially constant [see dis-
cussion following Eq. (6)]. Equation (25) can then
be written as

>

,=1EHWSE-THH,™
TG BNH L H ™ ~ T, - v, 2H)W ™)
T T BIHW 2+ WH ™A, . (28)

Note that whenever functions like H,T, ¢, etc.
occur in terms multiplied by §, we may evaluate
them at naught, i.e.,

Hé" Hoé ’
because we work only to first order in g.

We further expand W in a power series in v? and,
since we are only working to O{v?), we can set
W=TY?in Eq. (28). This follows from the fact
that KL ~0(v®) and from the explicit velocity depen-
dence of other terms in Eq. {28). [It should be
mentioned that when a term is considered 0O(v?),
it is not necessarily intended that the term is
dimensionless, but only that v° {(or the expression
in Eq. (12b)} is a multiplicative factor in the term.
The same applies to the notation 0(g).]

By dotting ¥V, into both sides of Eq. (28), solving
for (,-¥,), and substituting the result back into
Eq. (28), we obtain

-

8,= 5 (Hv, - TOH,™

+H G BNT T - HAH™

+(TY21)E, + oY)+ 0(g?). (29)
B. The Gravitationally Modified Maxwel Equations

We must now solve Maxwell’s equations and com-
pute the quantity A; which occurs in Eq. (29). If
Eqgs. (4c) and (4d) are substituted into Egs. {2) and
{(3) and one uses the gauge

<€u;%‘tﬂ+a-z -0, (30)

the result is

3%y = [= aK\
2= ey O ~I_ e =1, did
Vig=ep Y 4npe e VE (V(p+at/, (3ta)

3%A

57 -4 ud + (ep)"N(V-A)F(ep)

VA =ep

+ 1T A)x Ty (31b)
We can now do a perturbation solution of these
equations by expanding simultaneously in powers
of v* and g, treating formally 12~g:

PPt PPy, (32a)
K=ZO+K,+K2+---, (32b)
Vipo=—4neip, (33a)

Vi, =ep(0%9,/3 1) ~¢, e B (Voo + 8A,/81)) ,

(33b)
Vi, = en0%p,/81%) ~¢, ey [§-(Vo, +0R,/21)],
ete., (33c)
V2R = —4nuJ, (34a)
VIR, = €07, /57 + (e )y (VA )V (e p)
+u (T XA ) xE, etc, (34b)

{One should not confuse the perturbation order of
A,A,, with the kth component of the vector A,.)

The solution of these equations is far simpler if
we remember from the beginning that since the
particle acceleration is required only to O(v? and
O g) we need KL only to the same order. Remem-
ber also that &, = 0(v?) + 0(g) whenever the solu-
tion of Eqgs. (33)-(34) requires a particle accelera-
tion as a source term (right-hand side of equa-
tions). .

We solve the equations for A first. Clearly,
from the expression for J [ef. Eq. (4a)],

A F) =T e pE) Rl (35)
T

Equation (35) gives the lowest-order vector poten-
tial at particle k due to all other particles (i+ k).
Note that p(X,) is considered to be a constant with
respect to the d’Alembertian operator acting.on
functions of X,. The above A, can produce terms
of the desired order in KL. For example,

i) =75 0104, (%) |Rid Tiees (38a)
T

d

29 a;
=; eae.'g'u(i;)lf.d" +ocy, (36b)

where we have substituted 3;=§ + 0(»%) + 0(g3).
The indicated term in Eq. (36b) is bilinear in v?
and g and is therefore acceptable. However it can
be shown that no higher orders of A after Ko can
contribute. For example, the second source term
on the right-hand side of Eq. (34b) makes the con-
tribution

A~ 0(g)&,~ 0(g)0(",
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2

3 - = -
KL dji\[l +9TA )= O(gv) +0{g W) __!X_ = %;e &%) EK)E, 71+ 0%, (40c)
From the expression for p [cf. Eq. (4b)], we can where we have carefully interpreted the partial
write down the lowest-order solution for the sca- time derivative on functions of X, as acting on co-
lar electromagnetic potential: ordinates of particles labeled i with i# k. From
Eq. (40c¢) it is clear that the second source term in
oNE n)=??|f-'(”‘;”§u‘-‘ . 37 Eq. (39) does not contribute and the remaining

. equation is trivially integrated to yield
The source term proportional to 3A,/8¢ in Eq. " :
(33b) doesn’t contribute to our order of calculation. ¢, =c,,;.—--—K ~ eﬂ“e,’](g'-'ﬁx). 41)

Now, define a “superpotential” y by the equation er
Vi =g, . " {38) Using Egs. {40a) and (40c}, Eq. (41) becomes
Using x we can write Eq. (33b) as, to appropriate @, ~3o T e, B K )Rl
order, n
32 Lo =3¢ == \1E -1
Y — 36,7l Y e, (E R ) % il (42)
Vi, Vz(cu t") ZV( ('572') 2o o3t BT
.= and, using Eq. (29) for &,
- Ve, BV (39) !
=5 T Hy ™ - b€, %€l T e (B Ky X ™!
Using Egs. {(37) and (38), we obtain #1714 oko Mo 20 To Z‘; ! BT
=y _ L g (43)
x(Ey) = EZ{)E{E ENxy !, (40a)
In the same manner as with the vector poten-
g—’t‘- = b e (T % e TR IR 1T tial, one can show that g,, ¢,, ete. do not con-
s tribute to the Lorentz acceleration at the desired
AT e @ TR e sl (40b) ordgr. Using Egs. (26b), (35), (37), (43), one
¢ cbhtains
Xr_(in) = (ek/moh)z{{ikie.-l(ii}'ikl!-3 - iau(fi)lful"]ea}“ HETopoH, ™ —€,™ ')E{wn e/ mue ElXal,
13
(44)
where L’J,,; is as defined in Eq. (15f). From Egs. (29) and (6) we obtain the relations .
i,= ~HT H, B+ 0, {45a)
e{X) =€+ (% ey, {45b)

which, when substiiuted into Eq. (44), yield

K€t €le,2ER )R 1 (e, %+ 5 TiuHy™Y) & - - -
Az(xn) Z(eleﬂ/mon)[ﬁ‘ a “{x(:’ %)%, 2( o € [;,,?‘ kb ] BE TonoHo™ €, 2‘6)?“‘“ .
I

(46)
C. Virial Conditions

We now have enough information to derive some useful virial conditions. Substitution of the expression
for A, [ef. Eq. {46)] into Eq. (29) reveals

Mm@y = Tol/ ey e e Y &4 +0(g), (47)
H
where p denotes a particular vector component. Multiplication of both sides of Eq. (47) with (x,)' yields

d(xt v8)

maxial =mqy, ———————— — Mo UhvE

=Tn‘“ﬂo"cu"Z)efe.(x“)’A‘Jixul" . (48)
7
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If we sum Eq. (48) over the index k, use the antisymmetry of %X,,, and take a time average, the result is
Egq. (16). Summing Eq. (16) on ! and p produces another useful virial relation:

@mmv,z URY 2110"60"’22e,e,}§,.{“> =0+0(g). (49)

D. Center-of-Mass Acceleration

We now have all of the necessary tools at our disposal for calculating the test-body acceleration, We
begin with Eq. (7). To the required order

Pty =My [FHET) +(1+G)(E, 7)) + 3 v,5GLET,)]

* %Z‘;eie»{KG(é""t) +SHET) ~ [ + SE) H& i i) 1K) 2HE I, (50)
By =gl FoE-8,) + (F 31+ G)). (51)

In obtaining Egs. (50)-(51) we have, as before, used the fact that &, ~ 0(g)+ O(¢?). To be exact, Eqgs. (29)
and (46} show that .

B,=-38(T{H, ™+ Tol/ 2H e D eien/ M on) Ry %)% + O(gv?) . (52)
1

Using Eqs. (50)-(52), the first two termé in the expression for Kc,,,,‘ {ef. Eq. (11}] become

MR = SM T, e T Y B = (14 GITLH ™5 o (53a)
k ik
MG i X, = 2M—‘[Ft’z - 301 +GO)T6H0'1]Em°k(Vk-E‘)V, . (53b)
3 L]

Again using Eqs. (29) and (46) to get the O{gv®) contribution to &, [ef. Eq. (52)], the third and last term
contributing to Acn, is

M m B, =M B - M T 1+ FH  + 37, {HY L+ Fo) - $TH1 + G ) o mav, 2+ 57, Z}n,,}
N x ix

+{1+ F)TIT,™ —IIéHO")M"};J‘ma,(V,-é)V,+-‘gT,M"Eau , : (54)

where o
1,2 T 4, U FMeg e+ 3 Toug Hy ™) = $TLH, "1 4K, +8,) (552}
T,= T 3y {1+ F)H, " ME Th o ~ €7 HL) + €, Fh + 3(1 + F e, "t T T, (55b}

with M,, M., @;, defined in Egs. (15).
Now, expand the expression for M~! using Eqgs. (7) and (8):

SOV P £ A NN £ 02 2N ,
M =M1+ F,) [ 2M(1+F)2mo,z - gn‘k]+0(v)+0(g). (56)

With Egs. (53)~(56), the expression for A .., Eq. (11), becomes that given in Eq. (14). Use of Eqgs. (16)
and (49) then yields Eq. (17), and subsequently Eq. (21).

T
E. The“e-u”Formulation for Metric Theories relativity.) For the problem at hand we can re-
gard g,, and f as functions of U=M,/r rather than
as functions of . In such a coordinate system,
the standard metric-theory Lagrangian for the
motion of charged particles reduces to

In any static, spherically symmetric, locally
Lorentz manifold with metric, one can introduce
“spatially isotropic coordinates,” for which

£00= Eoo(7) » (57a)

£=0, ] ) (57b) L =? [—m,,kj (gesdxSdxiy 240, I A, dx‘,‘]
=8, f(n),

iy if =5 J' [ttt goa~ [ 21, A 08 dl . (58)

el - (o x )+ (R - PP (5T0) : ’

(For proof, see any standard textbook on general and the metric-theory Maxwell equations read
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F“B;g=(—g)_l/Z[FQB(—g)I/ﬂ,B=-41IJ°, (593)

where
J¥=3 e, J(dxi/ds,,)ﬁ‘(gc_ - Z‘.)(_g)-x/ 2ds,
k
= e (-g) M 263 (% - K Mdx§/dl) . (59b)
k

Here g=determinant of g,5, and commas and
semicolons denote partial and covariant differen-
tiation, respectively. Combining Eqs. (59) gives

(8o gP F, (=) 2], g = 47 T 0,8 (R~ X, )(dx 3 /dt)
k

(60)

Equation (60), when written out for the diagonal,
spatially isotropic metric of Eq. (57), has the
“e-u1” form of Eqs. (2) and (3), with

E;=F, etc.
and
e=p=(f/g,)". (61)

Conversely, for a theory with GMM equations of
the form of Egs. (2) and (3) and with

€= p (62)

one can define an “effective electromagnetic
metric” by

oo =¥, (63a)
8=~ €W, . {63b)

then the GMM equations will take on metric-theory
form. In Eqs. (63) ¥ is an arbitrary function and
reflects the well-known conformal invariance of
Maxwell’s equations. If, in addition to satisfying
Eq. (62), the effective metric determined by Egs.
(63) is correctly related to the functions appearing
in the particle Lagrangtan [cf. Eqs. (57)-(58)],
then the entire theory of particles and electro-
magnetic fields can be consistently put into metric
form.

IV. CONCLUSIONS AND APPLICATIONS

A. Theoretical Implications of the Results

We have shown that, in a spherically symmetric
gravitational field, a theory of gravity described
by Egs. (1)—(4) can be put info metric form (with
respect to the dynamical equations for particles
and electromagnetic fields) if and only if it satis-
fies the weak equivalence principle.’® -Equivalent-
ly, if such a theory is nonmetric then Eq. (21) will
not be satisfied, the acceleration of test bodies
will have body-dependent contributions [ef. Eq.
{17)), and WEP will be violated. The result has

far-reaching consequences if one accepts WEP as
a valid principle: Having proved, from WEP, the
metric nature of the GMM equations inside of an
electromagnetic test body, one knows how to de-
scribe all gravitational-electromagnetic phenom-
ena-—e.g., the bending of light by the sun, electro-
magnetic radiation in a gravitational field, etc.

There are two potential weaknesses of our cal-
culation. First we have assumed a spherically
symmetric gravitational field. Now, it is conceiv-
able that a theory could be of “metric form” for
spherically symmetric gravitational fields, but
nonmetric in other cases. Such theories would
have to be analyzed on an individual basis, to see
whether their non-88S fields violated WEP. How-
ever, we feel that such a theory would be difficult
to formulate and, in fact, have seen no examples
in the literature. In practical applications, one
considers a particular nonmietric theory, solves
the spherically symmetric problem, and finds
that Eq. (21) is not satisfied, thus constituting a
violation of WEP at some order. Examples will be
given below.

A second possible weakness, discussed previ-
ously, is the limitation to the types of equations
discussed in the beginning of Sec. II. However,
except for the Naida-Capella nonmetric theory,
discussed below, Eqs. (1)-(4) appear to be quite
general among “complete” theories. (There are
many theories which are not explicit as to the
formulation of the GMM equations, and we must
require that such theories be completed before
given further consideration.)

Finally, we point out that WEP and Eq. (21) de-
mand that the center-of -mass acceleration be
body-independent at each order in the external
gravitational potential U. As will be seen below,
a given theory violating the WEP will do so at
some order of U. To be more explicit, suppose
that one expands the functions H, T, u, € appearing
in Eq. (17) in a power series in U, i.e.,

H=1+2yU+306U0%++--, (64a)
T=1-2aU +280%+-++, . {64b)
e=l+eU+e U2+, (64c)
p=tl+p U+pU% +eee, (644)

Then, Eg. (17) can be written in the form
(Bem) = —3E(T3H,™) —%EMO“< b n..)
X(Do+T Uy +T,UE +404)
+‘—;~ Mo‘"ln<?._‘: I)“>

X{To + T Uy +T U 4244}, (65)



‘where
reEy-¢ +a, ' (66a)
1,70, : (66b)
I, =2(36-2y% =€, = B+e?)
tye, +a{p, -5 v¢; ~a), (66c)
T, =2y +2 —€, -y, (66d)

etc.

(For the correct Newtonian limit, one must re-
quire that ¢ =1, but we leave o arbitrary here,)
Each theory will yield certain values for the I'’s
and T's. We have shown that nonmetric theories
must have some of the I'’s or T’s nonzero—the
first nonzero I" or T determines the order at
which the theory viclates WEP.

B. Experimental Verification of WEP and
Applications of Our Calculations

Thus far, our results have been completely
within a theoretical context. We now investigate
the experimental and practical applications.

Experimental support for WEP comes from the
type of experiment developed by E6tvds in the
late nineteenth century, and redesigned extensively
by Dicke in the 1960’s.'7 The particular Eotvos-
Dicke (ED) experiments of highest reported preci-
sion are the Princeton experiment of Roll, Krot-
kov, and Dicke,'” and the Moscow experiment of
Braginsky and Panov.!? These experiments mea-
sure the relative acceleration toward the sun of
two different substances (gold and aluminum in
the Princeton experiment; platinum and aluminum
in the Moscow experimeni). The reported resulis
are

|$Kcm ZA}_‘: ch,m,zall l = { -A.c.m. -_. Xc.m. Au ]
[{(Aemd] gl
<107, {67a)

] Kc.m.‘)Al Dl Kﬂ.ﬂh x -12
A—WW <10 . (67b)

Qur calculation involved a test body dropped in
a static field. The following argument justifies
direct comparison of our calculation with the re-
sults of the above experiments:

(i) The 24-hour component of the acceleration
can easily be isolated so that the sun can really
be considered as the sole external source of grav-
itation (see page 173 of Ref. 17). To make this
more clear, if one uses the 24-hour period varia-
tion to select out Eua from o, +Eewns then Eg.
{17} has body-dependent terms of the form

<Kc.m.>=gun1"‘lo-l En|l>
ik
Xlr‘o‘* FL(Uum“‘Ucunh) +ere j
=§sunMo-l<En"*> ‘F0+ r“ U toe ]
i.k

since Uy 10U -

(ii) The fact that the earth is rotating rather
than at rest can only contribute inerlial accelera-
tions; in particular no relalive accelerations be-
tween the two test bodies can be introduced in
this manner.

(iii) We have considered only electromagnetic
test bodies; but we wish to apply our resuits to
the actual atoms used in the experiments, atoms
which have nuclear as well as electromagnetic
interactions. Thus the complete equation for
(Kc_m_) for realistic atoms has, in addition to the
terms shown in Eq. (17), terms which involve
nuclear energies. Is it possible that the nuclear
and electromagnetic terms would cancel each oth-
er? The only mechanism by which the terms
could be combined and related is through the vir-
ial relations; yet an examination of Eq. (17) re-
veals that p, does not even occur in the electro-
magnetic portion of the virial relations. In partic-
ular, given the combined viriat relations for both
electromagnetic and nuclear interactions one
could construct an infinity of different theories
merely by changing u (and thus changing the body-
dependent terms in (Kc,m_)). Thus there is no cred-
ible mechanism by which nuclear and electromag-
netic body dependent terms could conspire to can-
cel each other. The “electromagnetic violation”
of WEP thus constitutes a lower limit to the total
violation (allowing for possible nuclear violations).

We can now ask to what order does Eq. (67) test
the GMM equations of a theory. Equation (17) has
the form

= _ <[ electromagnetic energy
(Acm) g[ total mass ]

X F(Hoy Toa €0, ‘-"ov H(l)q T[’); Ea)
+body-independent term, (68)

where F is a function of the indicated variables.
Now, the largest contribution to the electromag-
netic energy of the total atom certainly comes
from the nuglear protons and for platinum or gold
this amounts to, using the semiempirical mass
formula,'®

[electromagnetic energy

~ -3
total mass ],,‘ of Au 3x107%.

{69a}



For aluminum, the corresponding quantity is
em energy
total mass |,

o (ZPAT, [em energy
(Z°A7)p, or au | total mass

] =2x1073,
Pt

(69b)
Noting that U, has the magnitude
U, =potential of sun at earth~107®

and using Egs. (65) and (67), we see that current
experimental accuracy bears upon the I, and T,
only for k<1, The accuracy®? of the experiment
must go up by a factor of 107 to requive that Ty
and T, vanish. Equations {66) show that the ex-
periment thus measures H, 7, and € to O(U?),

but u only to O(U/). We expect that almost all theo-
_ries will do well enough to have I';=0.

Before continuing with direct applications to the-
ories of the current experimental verification of
WEP, let us return to Eq. (17) and analyze the
specific way in which it constrains the GMM equa-
tions of a gravitation theory. The second body-
dependent term in Eq. {17)—the “directional Cou-
lomb energy” term~involves the GMM equations
only through the product €. This particular pro-
duct is also equal to the square of the index of re-
fraction, #%, and is tested by light-bending and
time-delay experiments (see, e.g., Ref. 21 fora
discussion of these experiments—although in the
context of metric theories). In fact, exploiting
the “e-u” analogy for the GMM equations and tak-
ing the geometrical optics limit, one sees that
the current experimental tests, with the exception
of WEP, are sensitive only to the product ep—

. and only to first order in U of that quantity. On
the other hand, the firsf body-independent term
in Eq. {17)~the “nondirectional Coulomb energy”
term—samples the GMM equations in a deeper
manner, both qualitatively and quantitatively. Not
only is € distinguished from p (magnetic and elec-
tric effects distinguished) but also is ¢ explored
to second order in U (cf. the €') for the current
experimental verification of WEP. Thus WEP
is revealed as a powerful tool for probing the
GMM equations—the most sensitive probe of those
equations existing in 1973.

On purely theoretical grounds one can require,
as we have previously remarked, that the I's
and T’s vanish independently. However, in prac-
tical experimental applications, the second body-
dependent vector in Eq. (65) has some particular
relation to the first for any given experiment.
Since the nuclei of the atoms in the ED experiment
are approximately spherical,

' ‘z}t;,b = 4F §n1.>- (70)

Usings Egs. (65) —(70), one finally obtains, for
a =1 (correct Newtonian limit)

(Aemde, T h (Bemlal « _3x107[r,+107T, - 3T))] .

(1)
C. Applications to Specific Nonmetric Theories

In‘this section we discuss WEP for three partic-
ular nonmetric theories. The Belinfante-Swihart
and Whitehead theories have equations of the form
of Egs. (1)-(3). As an illustration of the formal-
ism of Sec. IVA and IVB, the WEP violation is
calculated explicitly in the case of the Belinfante-
Swihart theory. The Naida-Capella theory, which
is an apparently rare example of a theory not
having a particle Lagrangian of the form of Eq.
(1) in the 887 limit, is treated on an individual
basis, using the techniques developed in Secs. IT
and ITL.

1. Belinfante -Swihart Theary"?

An analysis of the Belinfante-Swihart theory in
Ref. 14 reveals that its particle Lagrangian can
be put into metric form with

Zon =L — KRN g +hyg +h o hay 1T + OGN,
(72)

where K is an arbitrary constant, h=9°®h 5, and
N.6 i8 the Minkowski metric. The GMM equations
are of “e-u” form [i.e., have the form of Egs.
(2)-(3)], with, in the SSS limit,

€=t~y + i, ), (13a)

B =1 3o+ hy)]. (73b)
In the 8SS limit, k,, has the form

ko =GU, (742)

hyy=8,CU, (74b)

hu=0, {74c)

where C,, C, are arbitrary constants, but with
the implicit relation

2K(3C, ~C)+Co—2=0 (75)

in order to satisfy the Newtonian limit (g, =~1
+20U + +++). Defining T and H by comparison of
Egs. (72), (74) with Egs. (24) and then evaluating
the various T, and T, [cf. Eqs. (64) and (66)],
one finds

=0, (76a)



T, —$7T,=-3Co(Co+C,) 0. (76b)

In order to predict an amount of light bending and
perihelion shift compatible with experiment, one
must require that C,and C, satisfy

0.9s3C,+C, -2)< 1.1, (77a)
0.8 }Cy +1)=<13. (17b)

The combinations of C, and C, occurring in Egs.
(77a) and (77b) correspond to the y and 8 param-
eters, respectively, of the “PPN formalism”?!
and the experimental limits indicated above are *
discussed in Ref, 21.

Using Eqs. (71) and (77), we find that the non-
metric theory of Belinfante and Swihart predicts

(Kc.nl.>l’l or Au <Kc.rn.>A1‘

4x1071 g B
(A}

s1x107'0,
(78)

H one requires the light-bending and perihelion-
shift predictions of the Belinfante-Swihart theory
to be same as in general relativity, Eq. (78) be-
comes

<Kc.m.> AuorPt ™ (A:.m. )A!

(ACVm.)

Thus, the Belinfante-Swihart theory violates seri-
ously both the Princeton and the Moscow versions
of the ED experiment.

2. Whitehead's Theory’

=6x107H,

(79)

Synge analyzes only the motion of uncharged par-
ticles and the sourceless GMM equations in White-
head’s theory;

5_f (24pdx%dx®)"*=0 [Eq. (1.7) of Ref. 8]
(80a)

(g4g*"F,,) s=0 [Eq. (1.9) of Ref. 8] (80b)

Fos.y +Faya +Fye,s=0 [Eq. (1.9) of Ref. 8].
(80c)

A straightforward generalization of these equations
to include sources shows that the GMM equations
have “e-p” form in the SSS limit, with

€=(=gxf), (81a}
pn=f* (81b)
" [in the notation of Egs. (57)]. Using Eqgs. (17),
(57), and (81), one can then show that
(Kc.m. )Au or Pt —<Xc,m_ )AI
{Acm.)

=107? 'é%'] [ln(_gmfa)] ]
(82)

so that, for experimentally acceptable values of
&4 and f3, this version of Whitehead’s theory vio-
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lates WEP at the order of 1073, [Note that in
Whitehead’s theory the product €u is the same as
in metric theories, so that the coefficient of the
second body-dependent term in Eq. (17) vanishes
identically. In some sense one can say that, with
respect to the light bending and radar time-delay
experiments, Whitehead’s theory is a metric
theory.]

3. Naida-Capella Theory

The nonmetric theory of Capella’ as completed
by Naida® has the following Lagrangian [cf. Eq.
(2.1) of Ref. 7}

L =m°I ds[ _(nasuauﬂ)uz + Xhaa uuua(npoupua)-uzl

—e f Apdxt,
where 1,4 is the Minkowski metric and
ds = (1) 45 dx*dxB)2 |
x= (772,
u® = (dx* /ds).

The GMM equations are of “e-u” form [cf. Eq.
(3.7) of Ref. 7] with

(83)

€=1+x(hg+h,,), {84a)
p={l=ylhgy+ 2,017t (84b)

Solutions to the SSS gravitational field equations
yield

ho=Cox~'U,
hy=Cx~'UB,,,

(85a)
(85b)

where C, and C, are arbitrary constants, Vari-
ation of Eq. (83) and use of Eqs. (85) gives the par-
ticle equation of motion [analog of Eg. (29)]

F,=8[C, ~ ColCy + 2C U+ C 052
= U0,2(2C,C, + C2 + 2C, %))
~2%,(F, - B)Cy+ C, - 2C,(Cy+ C,)U,]
+& [1-u(c,+20)]. (86)
Using Eqs. (84)-(86), the GMM equations give
B &)= 0ny) (1= ClU,+ CEUO")Z.) PICRE 79 a9
+m, ) HC, - U207 - coc,)léj)_:, Nin
~3(mg) e+ C - U202+ cocl)Jgkg By
—(mg, Y ICL - 2CU)YY eiea@ - R KWl Ky
) (87)
with C=C,+C,.

Using the same center-of-mass formulas as
given in Eqs. (T)-(9) and the virial theorem
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<E moy(2, ¥ (0)% + L1 - U,(3C, +2C) 1T e x ) (x“)ﬁlxu['3> =0+0(g) (88}
i x .

one finally obtains

(e )=BC L+ U(~2C, + Co)] = 301, ™(C2+3C 2)ng<2 m,>+M0 H3+3C, -5C2-CR=4C,CU(T w,,,>

Now, with Egs. (69)~(71) we get

Ixc.m.) Ptor Au — <Xc.m.>»\l|
Ig

~107'(1+3C, - 19C,% = 5C2 ~

i
(89)

8C,C,) . (90)

The correct Newionian and light-bending results require, respectively,

Co=1,
0.9 3(C, - 1)s 1.1,
Equations (90) and (91) indicate then the relation

l( cam. >Au ur Pt "’(Acm )A!
(Kem.)

2x107'1%< <€4x10719,

(91a)
(91b)

(92)

Thus the Naida-Capella nonmetric theory seriously violates both the Princeton and Moscow versions of the

ED experiment.
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We show that the Belinfante-Swihart (BS) theory can be reformuiated in a representation in which
uncharged matter responds 10 gravity in the same way as in metric theories. The BS gravitationally
modified Maxwell equations can also be put into metric form to first order in the deviations of the
physical metric from flat space, but not to second order; consequently, the theory is nonmetric except
in firsy order. We also show that the theory violates the high-precision Eotvds-Dicke experiment, but
cannot be ruled out by the gravitational precession of gyroscopes.

1. INTRODUCTION AND SUMMARY

This paper analyzes the most complete and ex-
tensively developed nonmetric theory that exists:
the 1957 theory of Belinfante and Swihart.}™?
Belinfante and Swihart (BS) constructed their the-
ory as a Lorentz —symmetric* linear field theory
which would be easily quantized. However, as we
shall show, in terms of measurable quantities the
theory has ull the nonlinearities of typical “curved-
spacetime” theories. Moreover, it is nearly a
metric® theory: We construct a new mathematieal
representation which has metric form to first

order in deviations of the physical metric {from
flatness, but does not have metric form to higher
orders.

Section II gives a brief summary of the original
BS representation. Included are discussions of
nonlinearities and the behavior of rods and clocks.
Section Il presents our new mathematical repre-
sentation of the theory. Section IV gives a pre-
scription for obtaining the post-Newtonian limit*®
of the theory, and Sec. V considers various exper-
imental tests. Contrary to previous caleulations?
it 18 found that both the geadetic and the Liens-
Thirring precessions of gyroscopes® cannot dis-



tinguish the BS theory from general relativity

{for a particular choice of adjustable parameters).
However, using results of another paper,® we show
that the failure of the theory to be metric at second
order causes a violation of the EStvds-Dicke!®!!
experimental results. Our calculations confirm the
the Belinfante -Swihart conclusion that their theory
agrees with the three classical tests of gravitation
theories (perihelion shift of Mercury, bending of
light by the sun, and red shift of light), and also
agrees with the weak equivalence principle® (WEP)
{o first order.

where

£G == (16")-x"aﬂ Ux" qpa (athh! huul ;] +fh)\ul‘ahpo': B)(" fl)'lzy

ho

{l. THE BELINFANTE-SWIHART REPRESENTATION
OF THEIR THEORY

A. Lagrangian and Equations of Motion

The original representation of the BS theory is
Lagrangian-based,* but is not in generally covari-
ant form.* In this section we generalize, ina
trivial manner, the original representation so that
it is generally covariant. The dynamical equations
are obtained by extremization of the following
action:

I=f£cd‘x+f£,d‘x+f£,d‘x, (0

@)

~ dx N , .
2,53 f [—m,‘b,\ A1, 4 end,) F)‘:-u“aﬂ 0 (rm 2 () dhs + (4 (L HMH,, ~ A 1) (=), (3)
o -
- .

Ly =T " hy, +§;me1\5!«")‘)‘ 6 (x-zaa ) dry

THY = (4m) (W HLY -4 18 10 ) (-2 T a6 (xza ) s,
A

= ¢
by=a,,al .

Equations (1)—(5) describe the interaetions of a
collection of charged particles (labeled by A)
with the eleciromagnetic and gravitational fields.
Conventions and definitions for the above are the
following:

(i) We use units such that c= G=1.

(ii) 744 is 2 Riemann flat background metric
(absolute gravitational field*). In some coordinate
system, it therefore takes on Minkowski values,
Tp = diag(~1,1,1,1). All tensorial indices
occurring in Egs. (1)—(5) are raised and lowered
with 7,4s.

{(iii} Greek and Latin indices run through 0-3
and 1-3, respectively.

(iv) a,f,K are adjustable parameters.

(v} kyy =k, is a symmetric second-rank dy-
namical gravitational field.*

(vi) The world line of particle A is paramet-
rized by an arbitrary, monotonic parameter A,
which varies from -« to +e. Particle A is de-
scribed by its coordinate 24 and its “velocity and
momentum variables” a} and Il%, which are all
functions of A,.

(vii) - The electromagnetic field is described by
the tensor fields A, and H,, = -H, .

(viii) T** is a “stress-energy tensor” for par-
ticles and electromagnetic fields. (The bar above

(4)

(5a)

(5b)

r

is used to distinguish it from a different “stress-
energy tensor” defined in Sec. IV.)

(ix) Slashes denote covariant derivatives with
respect to the flat background metric nq,-

(x) n=determinant of ny5.

Equations (5a) and {5b) are decomposition equi‘t—
tions® for T*¥ and b4. The dynamical variables
which one varies independently in the action are
ky, (%), 25(0,), ai(r), TAOG), AL (x), and H,,(x).
Variation of the matter variables yields the follow-
ing dynamical laws™:

ma* (1-Kh)=b(Il¥ -3 1, *N1") {BS, I,(29)], (6)

dzb/dx,=al -t h}F(z,)a% [BS, I, (30)] , (7
Fyp sl ~Aun

=Hy, (1—ghY+ Hy\ b =1, 3k,

. {BS. II, (11}, (B)

: [
pr':‘hﬁ :"A f:%‘i oHx—za)dAa(-n)
A A

{Bs, 1, (10)], (9)



43

dll,p . day
Do =e, F,, a‘)‘:*léflfx“X"no\'p“KmAbAhhx

[Bs, I, ()], (10)

where h=h,”.
Variation of h,, yields

alih, g +MqaCh

= dnTyp —8ukn Y [mab, 6*(x-2,)dAs .
A

(11)
Here we have used the symbol Ok, =n*Bh, 1 ,1a.

B. Nonlinearities in the Theory

Linear gravitational field equations do not pre-
clude a nonlinear form for the response of parti-
cles to gravity. The BS theory is an example:
Equations (6) and (7) endow the canonical vari-
ables a4 and 11} with gravitational contributions.
Consequently, the equation of motion for a parti-
cle, Eq. (10), is nonlinear in the gravitational
field &,,. Indeed, although the BS theory is often
called a “linear” theory, its linear first-order
matter Lagrangian produces qualitatively many
of the nonlinear effects of general relativity (GRT),
for example (see Secs. Il and IV). Hence one
should be cautious in the labeling of theories as
linear or nonlinear on the mere basis of the linear
forms of their gravitational equations.

C. Behavior of Rods and Clocks

in the third paper of their series,? Belinfante
and Swihart quantize the theory and obtain a
gravitationally modified Dirac theory. We remind
the reader that all nonmetric theories must ex-
hibit explicitly the manner in which all the laws of
physics are changed in the presence of gravity.
Belifante and Swihart find that, in the case of a
static spherically symmetric (S8S) gravitational
source, the standard solutions to the unmodified
Dirac equation are related to those in the pres-
ence of gravity in the following way:

¢o(§o:to)=N¢(§yl), . (12)

%,=Cx [BS, I, (18)], (13)

t,=(1-U)t, (14)
Py 1-U ~-3/2

N=CTHe (1_0/2”) (13)

Here the subscripted quantities are those in the

absence of gravity, ¢ is the electron wave function,
U is the Newtonian gravitational potential for an
88S source, and a is the previously mentioned
adjustable parameter. The coordinate system is
one in which n,g=diag (~1,1,1,1). The energy
eigenvalues, i.e., E in ¢{X,!)=¢(X) exp(~iE t/k),
are shifted in the presence of gravity:

E,=(1+UV¥ [Bs, I, (82)] (16)

—a result following essentially from Eq. (14). It

is Eq. (16) which produces qualitatively the correct
red shift. Equations (12) and (13) also indicate

the effect of gravity on the coordinate sizes of
atoms. Consider the expectation value of the
coordinate size of an atom:

(r)=fl¢(:’<, Oi2r dx . an

Using Egs. (12) and {(13) we obtain

{r)= fN—21¢n(§o» ) Clry C3d3 2, =C ™ (r,)

_1-U/2a
g 7

<[1- Ua -1)](ry) (18)

According to Eq. (16), the coordinate ticking
rate of an atomic clock decreases in a gravita-~
tional field:

w={1-Vw, .

According to Eq. (18) the coordinate size of a
rod made of atoms decreases in a gravitational
field:

1={1-U(ea - 1)1, .

Since a ~ } to agree with the light bending experi-
ment {see later sections), the above results are
the same, to first order in U, as one obtains in
GRT, using an “isotropic, post-Newtonian”
coordinate system.®

HI. ATTEMPTS TO PUT THE THEORY
\ INTQ METRIC FORM

The BS theory is a Lagrangian-based relativistic
theory of gravity.* Thercfore, according to a
theorem proved in Ref. 4, it is a metric theory if
and only if the “nongravitational part” of its
Lagrangian,
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R 2T R Then, from Eq. (7), obtain the relation
" can be put into universally coupled form.? Letus a” =4, "dz¥/dx . : (21)
try to achieve universal coupling by a change of
variables, i.e., by introducing a new mathematical Equation (21), which is obtained after variation of
representation of the theory, the Lagrangian, suggests that one define a new

variable v* to replace @* in the Lagrangian:
A. Particle Part of Lagrangian

Begin with the terms in £, that refer only to a’=a, ", (22)
particles and define the following tensors:

Then, the relation v" =dz*/dx will presumably

Ab=6,Y ~sh,M (19) turn out to be an Euler-Lagrange equation. Using
Egs. (19)-(21), bring the particle portion of the
A= (R, de., A.%A5"=6,". (20} Lagrangian into the form
b = [ £4atxs [2i00x] 23)
=Z f —{1-KR)nipby +epA, 44 0 (d"" ~ab+in,"” aﬁ)]dh
o AYA A d Ap dlA A 4
=3 [-mil-0-KrP A A, 240 a4, %, (B4 24
_ZA: ( v DA] +€, “dl Al dT—‘UA dXA ( )

In obtaining Eq. (24) from Eq. (23) we have performed the integrations over d*x and, thus, all of the space-
time functions should be evaluated at the particle position 24.
If we now define an “effective metric,”

gaBE(l"Kh)zAap Au 6=na5(1_2Kh)+haB+O(hz) ’ (25)

Eq. (24) takes the universally coupled form, with £, being the only gravitational field occurring in fpu: .
Variation of I1, then yields the desired relation

v =—— .

an . (26)

To make our results look simpler, we explicitly introduce Eq. (26) into Eq. {24), thus eliminating i,
completely and obtaining

g dzf \** dz*
Tpar =ZA J— [—m,. ( gaadh dr, ) +e,A, d_l: ] dx, . 27

Variation of Eq. (27) yields equations of motion which, by the use of Eqs. (6), and (19)~(21), can be shown
to be identical to the BS equations of motion, Eqs. (10). Equation (27) is the familiar “metrie theory”

action principle describing the interaction of charged particles with the gravitational field g,, and the
electromagnetic field A .

B. Electromagunetic Part of Lagrangian

’

It will now be shown that, to first order in h,,, the electromagne_tic Lagrangian can also be put into
metric form. Change variables from H,, to an antisymmetric tensor F,, by

Hyy=Fuy (14 3h+30)+2F, 0 (14 5) = 2F by * B%, ~2Fy %0 by M + O(F R (28)
Equation (28) is s:imply the result of an inversion of Eq. (8). Square brackets around indices denote anti-

symmetrization of indices {with the usual normalization of a factor of ). Variation of F we in the new La-
grangian presumably will yield the relation



Fuy=Ay,, —Au, - (29)
Substitution of Ed. (28} into the eléctromagnetic portion of the action yields
Lom z(4n)"f{~; Hoghy, [£1% (1= Sk + 1% ] o ~A,, Hae ™0} (-m*2a%x
= (@) [ [ F a1+ 504 2Py (oligy ] [Fy (15 50) 4285 oy M) o T
=AM F (1 +3R) +2F, 1oy M} (=P 2 d % (30)
=(4n)‘*f(Aw +:—Fw) Fap[n®n™ (1+3h) -h*n® —kPq™ ] (-n)2d% +0(#?) , 31

where
T =P tn)+hB* |

If one now uses the inverse of Eq. (25), i.e.

y

gaB=T’aB _hns +2Kh77°‘5+0(h2)

and
(=)= (~m)"2[1+h(; - 4K)] +O(F?) ,
one finds Eq. (31) can be written as

L,m=(4u)"f @i +5F0)

X Faﬂgaugeu(‘g)”zd‘x"‘l'wn »

(32)
where

Lmrl(47’)—l,‘[Fﬂl’( %Fuﬂ "A[alB] )rﬂdVﬁd'lx

= O(i?) (332)

and
rreds 1 Keq® “n"a—hq’w‘h"ﬂ
+ 3R oh B+ 3pPopt8, (33b)

Thus L, has universally coupled form at O(h}); at
O(h?) deviations occur, arising from the L, term
in Eg. (32). Variation of F,, in Eq. (32) yields the
desired relation between F,, and A, i.e., Eq.
{29). Completely equivalent equations are obtained
if Eq. (29) is now substituted into Eq. (32), yield-
ing

Lop=~ (lﬁn)"‘fF,,ﬂ Fop 828 (~ gV 2d% + Legn
(34a)

= —(lGu)”fF,,s FoB(mgf/2d%% 4 Loy .
. (34b)

—

The relation given in Eq. (29) is now understood to
hold in Eqs. (34). Since we now have constructed
a second metric g, (the “physical metric™),
indices on all quantities except the constituents of
Zus (Maps hap, B op) henceforth will be raised and
lowered with g£,.. Equation (34), aside from the
O(h’) correction term, is recognized as the elec-
tromagnetic Lagrangian for metric theories. Thus
the BS theory is a metric theory at first order,
but nonmetric at all higher orders (in &).

€. Summary of Our New Representation

Our new representation of the BS theory is
summarized succinctly in Table I. In particular,
one sees that for uncharged particles the theory
is metric to all orders in &, with g, playing
the role of the “physical” metric.* When electro-
magnetic phenomena are included, and when one
goes beyond first order in k, the theory is non-
metric (cf £, in Table I).

IV. THE POST-NEWTONIAN LIMIT
OF THE THEORY

We now proceed to calculate the post-Newtonian
(PN) limit of the theory. The PN limit is a per-
turbation solution of the gravitational field equa-
tions - expanding in the small quantities occurring
in the solar system, e.g.,

v* = (macroscopic velocities of bodies = O(e?),

U=Newtonian gravitational potential = O{(¢?),

pressure
proper density of rest mass

p/p=

= 0(e?),

internal energy density
rest-mass density

=

=0(e?) .

We refer the reader to Ref. 5 for further details
of the expansion scheme.



A. The Metric-Theory Approximation

Using Table I, we write the field equations as

&, _ _ B&ng
ok, h

. ( S:IIH.IHE GLOOH)
uu

(wmcmc g 8uy ﬁan
* ok,

Ogyy 8hy,
_'_((_1;') 1/ v Chup 3 d) 6£cun)
B 2 ah,, oh,

(35)

where we have used the usual definition (as in
metric theories)

2 8L mewic

by _ Padinsiuindebadt
™ T s, (38)

To PN order, the first term on the right-hand
side of Eq. (35) is of order

4s

first term~ (total energy density)x€®

v

while the second term is of order (see Table 1)
second term = (electromagnetic energy density)Xe?.

Since the electromagnetic energy of a substance

is typically smaller than the total mass-energy by
a factor = 1072, the second source term in Eq. (35)
can be neglected at PN order, by comparison with
the first. Similarly, one can make a metric-the -
ory approximation for the response of matter to
gravity. For metric-theory (i.e., universally
coupled”) Lagrangians, one always has

T* ., =0 37

when the matter field equations are satisfied,
where the semicolon denotes covariant differen-
tiation with respect to the physical metric gqp.
In the BS case

)

6£mﬂ'
wv
7= 0

{38)

TABLE I. A new mathematical representation of the Belinfante-Swihart theory.

1. Gravitational fields:

. Absolute field. . ... .......oviiiiiiiniinnnnnna,, et ier e staaereiaes e eatan e rerasn i

b. Dynamical symmetric second-rank ten80r. ..o ve it teeirronrcaaraarcsracsorosesnenne h

c. “Physical” metriC. . ceieerrieriiivieiririrscnsnancnss eveiiiereneaa teeeneaenn Ay 4
2. Nongravitational variables:

a. Particle coordinates................. R R R, R Za

b. Electromagnetic vector potential ... ... oouuioiiiiiiiiiiii i i A

¢. Affine parameter of particle worldlines.......covviviienninnnnnennn.. eeataseneraniiaonas As

3. Gravitational field equations:
a, Flatness of 5: Riemann (n)=¢

b. Field equations , for  obt h obtained by variation of A,y in Lagrangian below
c. Decomposition equatton forg: g, S ={1— Kh)zAu“A s Where we have defined A B(15 s - ih aT1=6,",

K is an arbitrary constant, k=1%

heps

4., Influence of gravity on matter:

and. mdices are raised and lowered on kyg, A g With 1,4.

Equations for 4,z ,, obtained by variation of those quantities in Lagrangian

5. Lagrangian density:
a. £=L6 +O6
b. £G=—(1ex)“(ah"°.ah,,o

o3 [

= r’mcuic"' Leorr +

a2 dzd
TEab I, A,

lee +fh Imh lu)(_n)llz

2
4 ) +ey A

]dAAﬁ (x —zA) (16T Py g FOB ()2 + £

where £, the “correction term” in the Lagrangian, which represents the amount by which the
purely electromagnetic portion of the Lagrangian fails to have metric form, satisfies

Lon=O0(F%?) [see Egs. (33)] .
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so-apain one can conclude that effects resulting

" from ihe deviation in the matter response equa-
tion from Eq. (37) will be =~ 107% of PN effects.
Thus for all PN phenomena we can neglect £eox
and treat the BS theory as a metric theory.

B. From Point Particles to Perfect Fluid

In one of their original papers® Belinfante and
Swihart, when solving their gravitational field
equations with the sun as the external source, use
an ad hoc perfect-fluid stress-energy tensor for
THY rather than the expression given in Eq. (5).
Their 7,, is precise enough to vield an adequate
treatment of the “three classical gravitation tests”
but is not precise enough to adequately handle
such effects as the effective gravitational mass of
gravitational energy (cf. “Nordtvedt effect” in Ref.
5). To avoid such problems, and to ensure self-
consistency of the theory when dealing with gravi-
tating sources in the solar system, we will build
up the fluid BS stress-energy tensor T*" asan
average over charged point particles and their
electromagnetic fields [cf. Eq. (27) and Table IJ.

The kinetic -theory procedure for constructing
a perfect fluid out of interacting particles is the
same in any metric theory as in general relativity,
and the same in general relativity as in special
relativity (“equivalence principle”).® By following
that standard procedure and by neglecting the
resulting nonperfect fluid terms, we obtain the
standard stress-energy tensor:

THY=(e +p) vPu’+pg"” . (39)

Here #” is a suitable macroscopic average of the
microscopic particle 4-velocities, ¢ is the density
of total mass-energy (rest mass plus kinetic ener~
gy of particles plus electromagnetic energy) as
measured in the macroscopic rest frame, and p

is the similarly measured averaged pressure.

C. The Parametrized Post-Newtonian (PPN) Formalism

References 5 and 6 present a “parametrized
post-Newtonian formalism” in which the PN limit
of every metric theory is summarized by the
coefficients of various integral functions in its
metric. These coefficients, the so-called PPN
parameters, are obtained by the previously men-
tioned perturbation solution (PN limit) of the
gravitational field equations. We have constructed
such a solution for our new mathematical repre-
sentation of the BS theory, using Eqgs. (35) and (39}
and Table I. The details are spelled out in Ref.
14, (Actually Ref. 14 is the presentation of an
exact gravitation theory closely related to the met-

‘ric-theory approximation of the BS theory.) We
refer the reader to Ref. 14 and here quote only
the PPN parameters of the BS theory:

7='F+O(w), gz"zoy a):O(w) )
B=B+0w), £,=0, a,=0W), (40)
£,=0, £,=0, o,=90

Here ¥ and B are given implicitly in terms of a
and f by

a=1/(27+2), (41)

10B+67F-17"-87-6 ,
S e DG +5 4 FF  ’ (42)

and to obtain the correct Newtonian limit one must
require

16K?% -4aK+ a+3f
—————— L =2

ala +47) (43)
By O(w), we denote terms involving the cosmo-
logical boundary values of k,, (see Ref. 14 for

‘further details). Imposing Eq. (43) reduces the

number of arbitrary parameters to two (¢ and f,
for example); so we may regard ¥ and B as being
arbitrary. For comparison, general relativity
has no arbitrary parameters and its only nonzero
parameters are y=f§=1.

V. EXPERIMENTAL CONSEQUENCES
AND TESTS OF THE THEORY

In his 1972 Varenna Lectures, Will® summarizes,
within the PPN framework, the constraints which
may be placed on a metric theory’s parameters by
current solar system gravitation experiments. As
has been indicated in Sec, IV, the difference
between the BS theory and a metric theory for
PPN-type experiments is less than one part in 10°.
For most experiments the microscopic internal
energies play a minor role; e.g., it is the macro-
scopic rotation of the earth which produces the
macroscopic Lens-Thirring prgcession of gyro-~
scopes, For such experiments the BS theory
is effectively a metric theory to a much higher
accuracy than indicated above. In summary. so
far as PN experiments are concerned, to the
precision of the technology of the 1970’s the BS
theory is accurately summarized by the values of
its PPN parameters, Eqs. (40). We refer the
reader to Ref. 8 for the experimental consequences
of those values. Here we merely point out a few
salient features.
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Perhaps the most important feature is this: I
the O(w) terms in the parameters are sufficiently
small, and if the arbitrary parameters are chosen
so that ¥=p8=1, then the PN predictions of the
metric-theory approximation to BS are the same
as the PN predictions of general relativity. In
particular, the predictions for the “three classical
. tests” are the same as Belinfante and Swihart!
themselves deduced by complicated calculations.

A. Preferred-Frame Effects

For the coordinate system in which 7 is Min-
kowskian, it is natural to set the boundary values
of k to zero when treating the solar system, as
was done originally by Belinfante and Swihart.
However, the correct way to determine the bound-
ary values of k is through the solution of the
cosmological problem. If the solution produces
nonzero cosmological boundary values of %, then
those values will effect certain of the PPN param-
eters [ cf. O(w) terms in Eqs. (40)]. In the case of
the BS theory the presence of such terms isa
direct consequence of the presence of the “absolute
gravitational field” 7 (cf. Table I), and leads to
various preferred-frame effects® such as anom-
alous solid earth tides and contributions to the
perihelion shift of mercury. We refer the reader
to Ref. 14 for a more complete discussion of the
derivation of such effects in the BS theory.

B. Precession of Gyroscopes

We specifically mention this experimental test
only because there seems to be some confusion®®
as to the prediction of the BS theory. Using for-
mulas from Ref., 8 and the BS PPN parameters,
Eq. (40), one obtains for the precession of the spin
§ of a gyroscope orbiting the earth

= 0x§ (24)

&2

where

) =§uummg +8 geodetic 5 (45a)

Q.7 =3[47+4+O0w)] (0.05'' of arc/year),
' (45b)

Qs=3[1+27+0W)] (¥’ of arc/year). (45¢)
Thus the results of the upcoming Everitt-Fairbank®®
gyroscope experiment {to be launched before 1977)
can only place upper limits on the cosmological
boundary values of k,, | cf. O{w) terms in Egs.

(45)] for a given choice of y.

C. The Weak Equivalence Principle and
Edotvis-Dicke-Type Experiments

We conclude by considering the E6tvos-Dicke
(ED) type experiments, '°-** which test gravity
so precisely that they fall outside of the PN realm
of precision. Braginsky," in his recent version of
the ED experiment, reports that the difference in
accelerations of test bodies of aluminum and
platinum in the gravitational field of the sun is
smaller than one part in 10", Such a resull rep-
resents a strong validation of the weak equivalence
principle? {WEP). Consider the contribution of
electromagnetic energy at order F?/? (see bottom
of Table I) to the gravitational mass and accelera-
tion ¢ of a test body:

é ks @ elect.romagnetic energy) h"’]
gl g total energy
_ electromagnetic energy .,
- total mass v, (46)

where =~ U? and §= $U. For platinum, the follow-
ing relation holds:

electromagnetic energy 107
total mass '

and the Newtonian potential due to the sun at the
earth is

U= 1078,

BEquation (46) and the above numerical estimates
indicate that the ED experiment can distinguish
between the BS theory and its metric-theory
approximation (cf. £con in Table I). All metric
theories satisfy WEP identically. The BS theory,
however, as is shown in Ref. 9, predicts

(Ew ~(Ey
g

~ Bx1071

~ (electramagnetic energy) U o@n
total mass

in clear violation of the Dicke'? and Braginsky"!
versions of the experiment. The reader is re-
ferred to Ref. 9 for complete details as to the
derivation of Eq. {47) from considerations of par -
ticles interacting with gravity and electromagnet-
ism.
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ABSTRACT

Using the generalized Bianchi and Noether identities that apply to all
Lagrangian-based theories, we specialize to Lagrangian-based, generally covar-
iant metric theories of gravity ("LBGCM theories") and prove a number of
theorems. Our most important results are the following: (i) The matter
response equations .., = 0 of any LBGCM theory are a consequence of the
gravitational field eqliations iff the theory contains no absolute variables.
{ii) Almost all LBGCM theories possess conservation laws of the form © =0
{where © ¥ reduces to T Y in the absence of gravity). (iii) for asymptotically
flat systems the integral Pu = f e Vdszv is a conserved {hypersurface-
independent) quantity which one naturally interprets as energy momentum.

(iv) P is expressible as a surface integral at spatial infinity, and thus
can be measured by experiments confined to the asymptotically flat region
outside the source, if © Y is expressible in terms of a superpotential,

g,” = vl q+ In this case the existence of a conserved P, implies the
existence of’a conserved P* and vice versa. (v) While some ¥Bocu theories
(e.g., general relativity and scalar-tensor theories) possess superpotentials,
others may not. ({vi) For a theory with a superpotential P, and P} (as mea-
sured at "infinity") transform as L-vectors under Lorentz transformations,

if the variables of the theory are all tensors, tensor densities, and affine
connections. For other types of LBGCM theories, the P  constructed from a
given 0,° need not be a h-vector. (vii) In Will's ten-parameter post-
Newtonian ("PPN") formalism there exists a conserved P, if and only if the
parameters obey 5 specific constraints; two additional constraints are needed
for the existence of a conserved angular momentum J,,. (This modifies and
extends a previous result due to Will.) (viii) We conjecture that for metric
theories of gravity, the conservation of energy-momentum is equivalent to

the existence of a Lagrangian formulation; and using the PPN formalism, we
prove the post-Newtonian limit of this conjecture. (ix) We present "stress-
energy momentum complexes' qu for a wide variety of specific theories of
gravity.
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I. INTRODUCTION AND SUMMARY

The variational princiﬁle is an elegant and compelling foundafion upon
which fundamental theories are formulated. 1In fact, most complete and self-
consistent theories of gravity are derivable from variational principles
— i.e., are "Lagrangian—based."' In this paper, a member of a seriesl’e’s’h

of papers which discuss general properties of gravitation theories, we spe-
cialize to Lagrangian-based, metric theories of gravity. It would be very
helpful for the reader to have read Ref. 1 above (hereafter referred to as
Paper I) for definitions of the terms and concepts used in this-paper.5

Our discussion focuses on the identities and conservation laws that
follow from a variational principle. We demonstrate that for the case when
all fields present in the action are varied (when there are no absolute
variables), the resulting Euler-Lagrange equations contain redundancies,
i.e., identities. As a result of the specific form of these identities,

we prove that the matter response equation Ihv. = 0 is a consequence of

s VvV

the gravitational field equations if and only if no absolute variables até
present. We also prove that all Lagrangian-based, generally covariant,
metric theories in a certain broad class (denoted by "LEGCM*" — see Sec.
III.E) have conservation laws, so that a conserved energy m;mentum Pu can
be defined; Furthermore, we show that if the conserved Pp can be evaluated
solely in terms of the asymptotic properties of the gravitational fields at
asymptotic infinity, a conserved, contravariant, l-energy momentum P can
be defined and vice versa. In such cases Pp and P transform as L-vectors
under Lorentz transformations in the asymptotically flat region, if the

variables of the theory are all tensors, tensor densities, and affine con-

nections.

-,
»
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In the weak field, post-Newtonian {PN) limit6 we derive five constraints
on the "PPN parameters' of LBGCM* theories. Our ability to explicitly con-
struct a Lagrangian-based theory of gravity with five arbitrary parameters

in the post-Newtonian limit particularly proves our conjecture that for
metric theories of gravity, the existence of a conserved L-energy momentum
is equivalent to the existence of a Lagrangian formulation.

The fact that the action pfinciple admits a covariance group can be
expressed in the form of various differential identities. Excellent reviews
on this subject abound.7 We summarize the identities in Sec. II merely to
set the framework for later discussions. We then specialize to metric theories
of gravity in Sec. III, where because of a theorem proved in Paper I, the
nongravitational part of the Lagrangian must have a simple, universal form.
Section III.A sets up a model Lagrangian for metric theories, and Sec. II1.B
specializes the identities of Sec. II to such Lagrangians. 1In Sec. IIL.C
the resulting field equations are derived symbolically and our results regard-
ing absolute variables are proved. Section III.E makes use of the results
of Sec. I11.B to derive conservation laws. Section III.F discusses further
the conservation laws derived in Sec. III.E, emphasizing in particular the
role of the conserved energy momentum in asymptotically flat spacetime.
Theories with "singular Lagrangians" — a topic somewhat unrelated to the
rest of the paper — are discussed in Sec. III.D for completeness. Section
IV specializes to the post-Newtonian limit.

Appendix A lists for various exemplary metric theories, the g;avita-
tional portion of the divergence-free stress-energy pseudo-tensor and when-
ever available, the corresponding superpotentials. Appendix B gives the
“contravariant" and the "mixed-index" gravitational stress-energy pseudo-

tensor that enters into conservation laws in the post-Newtonian limit.



Appendix C presents a new theory of gravity with conservation laws, and its
post-Newtonian limit, which possesses the maximum allowed number of arbi-

trary parameters: S.

II. CONSEQUENCES OF COVARIANT ACTION PRINCIPLES

In this section, we summarize some well-known identities resulting from
the covariance of the mathematical representation of a given theory. There
is a generalized Bianchi identity corresponding to each transformation of
the covariance group. When specialized to the Manifold Mapping Group {MMG;
that covariance group corresponding to arbitrary coordinate transformation),
these identities can be writéen in different, but equivalent forms known as
the Noether identities. For derivations of the cited identities, see any
of Refs. 7.

Consider the action
L
1) = [ 2 %, %) 9% (1)
R

where for simplicity we assume the Lagrangian to be a functional of the
geometric objects ('variables" of the representation) {@k} and their first
and second order derivatives {Y, , ¥ }.8 Let the action principle be

_ A’ TAuv
invariant under some transformations characterized by the infinitesimal
descriptors £ (x). The number of descriptors g (x) is equal to the number
of arbitrary functions characterizing the set of transformations (the
covariance group). We assume henceforth that the functional change of {%A]

[ see, e.g., Eq. (6) of Paper 1] has the form

- no i i .
8Y, = d,,¢ ot Cuyb» i=1, ..o, n (2)
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where dii and CAi.are functions of the @k. This form is extremely general;
it holds; for example, whenever the gi are infinitesimal generators of MMG
_and the %k are tensors or tensor densities. Equation (2) and the subsequent
discussions can be generalized to include a term containing the second deri-
vatives of gi for the case when @k is an affine connection field.

Bianchi identities

Corresponding to each transformation of the covariance group described

by continuous functions gi, there is a generalized Bianchi identity:

oL o s _ ~
Cyy S (dy; 67,/A),u =0, 41=1, ..., n , ()
vhere
o3 Ay, SV
8Y, ~ Ty M Pf?xA’u N ayA’uv

is the usual variational derivative of # with respect to yk.

Noether identities

We now specialize to the case where the covariance group is MMG. Let

ER be the descriptors of MMG:
S . (4)
In order that the action principle
8I(¥) = O

be invariant under MMG, the Lagrangian density iﬂ@h, Y W Y pv) must trans-
. - 2 ]

form as a scalar density {(modulo a total divergence Qp p)
2

= p o o B o u
B s @ )= @@ ) e ) (s)



On the other hand, the functional change of £ is

= . &z <%
&L = s 8%, + a”“A,u 6'§JA’“ + B'UA,p.v 5?!A,uv
=2y, 22wy, - el ) Y (G |- ()
W At [T “Asuv

sH AuV’

Combining Eqs. (5) and (6), we obtain the Noether identity:

2 - 2S5 () o, --~—<zﬁr———
( aWl\,u WA ' a'yf\,uv ° A,pv 6%
- et - EQ“) 8'% Yy | | (7)

for all arbitrary functions é“.
The above items require some discussion and clarification.
(1) The Bianchi identities [Eq. (3)] and the Noether identities
[Eq. (7)] are satisfied by all "kinematically possible trajectoties“ {kpt;
set of values for the components of all variables, unconstrained to satisfy
the physical laws of the representation).
(i1) As an example of the Bianchi identities [Eq. (3)], consider the

following Lagrangian density:

2 p(&,, ) = (R§° + 68 6 &) /5, (e)

where

R

#

Equation (8) is the gravitational Lagrangian of the Dicke-Brans-Jordan theory9

1]

curvature scalar formed out of the metric gp

scalar field.

for w = -3/2. The Lagrangian iﬁ-D’ in addition to being generally covariant,

is also invariant under the "scale transformation of the second kind':
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- -% LI
gU.V = € gUV P) (98')

g = e¢g' . (9b)
where ¢ is some arbitrary spacetime function. The infinitesimal version of

Eqs. (9) are.

v < " Eoguv , (10a)

o
o«
1

o
=
i

of . (10b)

Here o plays the role of the descriptor of the transformation and comparison

with Eq. (2) gives the C,, and d (the latter being zero in this case).

Further comparison with Eq. (3)‘yie1ds the Bianchi identity corresponding to

this "scale transformation of the second kind”:

354 &L,
B-D B-D_o . (11)

..2g + =
hv B8, Y

(iii) The Bianchi identities [Eq. (3)] corresponding to gi;being the
descripfors of the MMG [Eq. (4)] can be obtained from the Noether identities,
Egs. (7), by substituting in Eq. (2), performing an integration by parts,
and utilizing the arbitrariness of the descriptors, gi. Thus Eqs. (3) hold
for any Lagrangian which is a scalar density (modulo a total divergence).

(iv) From Egs. (7) and (3), we also obtain the identity

_ig”_#g'y +2(8'# ) S’yA- (g.-y:— 5'(/)
s 1

A, uv s BV

P Dl-l_—u =0
8,,/ g - - s (12)

for all infinitesimal generators E,"1 of MMG.

Equation (12) is known as a "strong conservation law" (see Ref. 7¢) because

it is an identity holding irregardless of imposition of the field equations.
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. YII. LAGRANGIAN-BASED METRIC THEORIES

A. The Lagrangian

We now apply the general discussions outlined in Sec. II. to generally
covariant, Lagrangian-based metric theories of gravity. We first group the

variables {%h} into three categories:

1]

() = (2.} + (8,) + a1, (15)

where

#l

{za} dynamical gravitational fields, (identified in (1ka)

our notation by lower case a in symbolic sums),

nondynamical (absolute) gravitational fields, (1hb)
(identified by lower case b),

L]

9}

nongravitational fields, (identified by ?). {1ke)

it

e}

The Lagrangian density can be separated into two parts, the gravitational

part (containing no matter variables) and the nongravitational part:
i: £G +{NG - (15)

In Paper I, we have shown that for relativistic metric theories, £NG can
contain only one gravitational field, the metric gpv' To be more general,
we assume that guV may not actually appear in ib, but rather may be an
algebraic-fﬁnction of {za}, [¢b}, and perhaps some {Wc} that do not appear

in gb at all.10 Symbolically,

=£G - :Zc(za, ¢b’ za, o’ za,pu’ ¢b,p’ ¢lZ;pU-) (16a)
e = a8 B By o Buv,or Byt tt) (16b)
By T guv(za’ ¢b’ 11Ic:) . (17)

TRV
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There will also be some '"postulated" field equations of the form

F(¢b’ WC) =0 , (18)

- for the absolute objects ¢b and Wc. Our results do not preclude the possi-

bility that gpv may in fact be identical to one of the za's.

B. The Identities and Their Consequences
In this subsection, we write down identities and relations for the
Lagrangians in Eqs. {16), assuming they admit MMG as & covariance group.

We take the functional changes of the variables to be

5za = daoégp,g - za,pgp s (19a)

o, = 4,08 -8 0 (19b)

BY, = d 8% - (19¢)

S PR WU (194)
and, in particular,

o6, = - 2,0t - gy, 8 (19¢)

where the §p are the descriptors of the coordinate transformation and are
arbitrary functions. [Equations (18) must be generalized to include gp’cT
if one of the variables is an affine connection field.] For simplicity, we
further assume that db and i%C are scalar densities (which is usually the
case) so that the Q° in Eqgs. (7) and (12) may be set to zero. We now pro-

ceed to list some useful identities,

(1) Bianchi Identities for £

Comparison of Eqs. (19) with Eq. (2) and use of the fact that Jb is a
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scalar density by itself reduces the Bianchi identities, Egs. {3),

. Ty Fo 0% 0 By (20)
a,p 8z, b,p @ a P 5z, b p 8¢b o ’

{11) Bianchi Identities for Lye

Similarly, Eqs. (3), when applied to #ye» yield

(g)l/E,Iuv j‘ﬁp__ _ 1/2 6,40 Esﬂmc;

1
28 ,p aq} p AP 6q7\ e}

=0 , (21)
where we have used the usual definition of the matter stress-energy tensor:

1 1/2 e
™ = 5(-g) 5};: . (22)

(iii) Noether Identity for 2,

Equation (12), for #., becomes

4 &ec &
o. & Y G
- =ng - Bza 8z, - w—b 5¢b + 2 (az

s 0 I1e) a,po

_ o, o _
),paza + 2 655;:;;),95¢b

&7 %4 &t 4 ' '
G - G - o WP G , 0 ,p
-5 8% o - g o) - 40w %ot =0. (23)
aza,m a,p b,pG b s P 528 ap B b db o] sa
Since the t¥ are arbitrary functions, the coefficient of each derivative of

£9 in Eq. (23) must separately vanish., Using Egs. (19) to write outgza

and 5@, and equating to zero the coefficient of §p yields the identit
b y

i

- J 6 6 + G z + ¢ _ 2 ( a{c )‘z ) 2 ( MG ) ¢
€p' T 0z, o &P éEb,o B, P g, 10 1 &P Eéb,cr ,v P
> &f Bib &L,
G G o} G40
— 2 T—_—. - — d - T d = 0 - l"
¥ (aZB)TG a,p),T ' (a b)TG ¢b,p)’T Sza an 5 b bo »0 (2 )

[Equation (24) can also be obtained from Eq. (23) by setting ¢° = apo.]
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C. The Field Equations
Variation of the action yields the dynamical equations, which may be
placed in two categories:
1. gravitational field equations

SJ% 6=£NG

—_+
Bzav Bza

=0 , (25a)

2. nongravitational field equations

&xg

Sq%

=0 . (25b)

If we impose the nongravitational field equations, Eq. (25b), on the Bianchi

identities for i&G’ Eq. (21), we obtain the "matter response equations"

3y (26)

where the covariant divergence is with respect to the metric goﬂ' A further
useful relation may be obtained if we impose the gravitational field equationms,

Eq. (25a), on Eqs. (20) to obtain

2 _—&{NG-¢ &EG-(dU ¥ 40 E"CNG) -0 . (27)
a,p 8z, b, 5¢b bp 5¢b ap bz, 50

Equations (25a) and (25b), together with the prior-geometric constraints
Eq. (18) and a possible decomposition Eq. (17) for'gpv in terms of (za, ¢b’ Wc),
comprise fhe "physical laws" of the representation. These laws can determine
the field variables Zas ¢b’ Wc, and qx only up to four arbitrary functions
corresponding to coordinate freedom. In the case where no absolute variables
are present, this means that the field equations, E£qs. {25), cannot be all

independent of one another; the number of independent field equations must

be fewer by four than the number of variables [za, qx}. This 1is the case,
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‘ for example, in general relativity (GRT), where four of the gravitational
field equations reduce to Tﬁv;v = 0. The same is true for all other theories
that are devoid of absolute variables:
Theorem: The matter response equations Thv;v = 0 of a Lagrangian-based,
generally covariant, metric {LBGCM) theory of gravity follow from the gravi-
tational field equations if and‘only if there exist no absolute variables in
the theory (no ¢b and Wc).

Proof: The dynamical Egs. (25a), plus Eqs. (22), plus the functional

dependence of JﬁG imply

&L, & O og
G _ NG v 1 1/2.uv “Suv
5z. B8 - —Sf;-* - 2(-g) ™ oz ‘ (28)
a v a a :
Also, one has identically
g g g
= 1 uy — py —
%8,y = Sz, 0% * S, b * T, Ve (29)

which, when Eqs. (19) are used and the arbitrariness of the gp is invoked,

implies the relations

agpv o8 v agpv
Buv,0 7 oz, a,p aéb ¢b,o * oV, Ve,0 (30)
‘ g og og
-2 g. Vg0 BV g0 , BV g4q0 |
&0 (uPv) cz, ap * P, boe * o, cp (31)

On the left-hand side of Eq. (31) we have used the explicit form for the
daPp function belonging to the functional change in guv [see Eq. (19e)].

1f Eq. (28) is now multiplied by %4 b

t4

and then daop' and Eqs. (30) and

{31) are used, one obtains the two relations:

ﬁib 1 1/2 v % v 0 v
%087, " "2 T o T, Poe T, Veo) O
&g 1, \1/2 o8 %
G = 4 =(_ v g, _ B0 __HY 4 g
4% 5z, + 5(-8) ™ 28 (5" + 49+ s 47 (33)

b c ¢
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. Equations (32) and (33), when substituted into the identity, Eq. (20), yield
: og og ety &

1 1/2,uv v v g .G

—(- - - - - {d

2( g) /o (%pv,p Sﬁb ¢b,p 5$c llIc,p ¢b,p a@b ( b p 65;10

Ll _oyt/2pv(p —é#d +—“—ag"df’ =0 (3k)
T z|E gpuV) bp " ., cp/l,0 ’

Finally, using the identity

('3)1/2"7;;& s (Taa(-s)l/z),e O e T o

v, o ) (35)

(34) becomes

2

dg og
1/2
(-g)l/eTp”,.Cy = - %(“g) / T‘“’(séf ¢b,p + ?f:v q’c,p> B ¢b,o E@'ﬁ

&g 1/2
_(dbUp 5_95;), - (- ) 1“"(% d Up + ——“l’ dfp) o (36)

Only the gravitational field Eq. (25a) and identities were used to obtain

(36); hence it is equivalent to the gravitational field equations. Obvi-
ously, if there are no absolute variables (wc = ¢b = 0), the right-hand side
of Eq. (368) vanishes and one obtains Eq. {26). On the other hand, if some
of the ¢b and ¥, do not vanish, the right-hand side of Eq. (36) does not in
general vanishl1 and Eq. (27) is not implied. Thus the theorem is proved.

This theorem makes it clear that in theories with no absolute variables,
one has four fewer independent field equations than variables, so the field
equations leave the coordinate system unconstrained.

By contrast, generally convariant theories with absolute variables
typically do not contain any redundancies among the field equations. 1In
this case it is the responsibility of the prior geometric constraints (18)

to avoid constraining the coordinate system. One must be able to satisfy
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.them in any desired coordinate system — and after having picked a specific
coordinate system, in which the absolute variables then take on specific
forms, one can solve all of the field equations (which are now all independént)

for the specific forms of all of the dynamical variables.

D. Singular Lagrangians

In the previous subsections, we have delineated the identities and field
equations resulting from the particular form of the Lagrangian given in Egs.
(16). Throughout the discussions, and also in the proof of the theorm in
Sec. III.C, we have tacitly assumed that the gravitational field equations
are consistent with the nongravitational field equations. In general, Euler-
Lagrange equations obtained from the variation of an action should be con-
sistent among themselves. Anomalies may occur, however, when the action
integral admits a partial gauge group12- i.e., when a portion, but not all,
of the action integral is invariant under a group of transformations generated
by arbitrary functions (called gauge group). We can find no general rule to
detect such "singular Lagrangians' but shall illustrate with some examplesT
We will see that the "inconsistencies" can be expressed as some extraneous

constraints on the field sources.

(1) Dicke-Brans-Jordan Theory with w = - 3/2

1-[(rg®+ 6 ¢,iu¢,vng /B dx f{NG(guv, 5,) d'x . (37)

The gravitational part of the Lagrangian has been considered in Sec. II. It
is invariant under the '"'scale transformation of the second kind." This

yields identity Eq. {11). The gravitational field equations are

o &L '
S __ s v G _
88,y 2 = % ° - (38a)
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Substituting these into Eq. (11) yields

gwt”" =0 . (38b)

This is definitely inconsistent with most of the sources one would want to

put in'JhG.
(ii) Lorentz Symmetrie Spin-2 Theory
L
1=j‘(,£G+£NG)dx , (39a)
where
_ 0B 75 o1 - :
Fe=n o (2 Bas 188ytls ~ Bas BByt T Ba8|oBys it
1/2
- - 39
B [oBs ) () (39b)
Riem(n) = 0 . (39¢)
We denote by a bar “]“ covariant derivatives with respect to quv. The

gravitational Lagrangian ib, admits a gauge group G{G is unchanged under

the transformation)

Bg . = -2 0P oo 50
P8y To®) ¥, v, ot (k0)

This leads to a Bianchi identity corresponding to Eq. (3),

( vy Lo (41)
Mu(cPB) B8 [V~

Substituting in the gravitational field equations, we obtain a constraint on

the matter stress-energy tensor:

[nu(opﬁ)v (-g)l/eToﬁ]w =0 . (k2)
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Equation (42) is inconsistent with the matter response Egs. (25) for most

sources 'l*lv.

E. Conservation Laws
We now derive conservation laws useful for defining a physical total
energy momentum for matter and fields. We will be interested only in con-

servation laws of the forms

s (43a)

e} =0 , (43b)

where ¢V or qu reduce to T or Tuv in flat spacetime ("in the absence of
gravity"; see Paper I). In some cases, identities resulting from invariance
under MMG can also be put in the form of a vanishing ordinary divergence
[see e.g., Eq. {23)]. However, the quantity that has an identically vanish-
ing divergence typically does not reduce to the matter stress-energy tensor
in the absence of gravity. Hence Egs. (23) and (24) do not directly yield
the conservation laws we seek.

Once established, Egs. (43) enables us to define conserved quantities;

- [V, (b4a)
£

v.3

P goudzv . (4hb)

The integrals in Egs. (44) vanish when taken over a closed three-demensional
hypersurface zv. If a coordinate system is chosen in which zv is a constant-
time hypersurface and extends to asymptotically flat infinity in space,

then P and Pp are time independent and are given by

P - [ %% , (k5a)

Pu = f Ouodsx . (45b)
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If, in addition, € BV is symmetric, we can likewise define the following
-set of conserved quantities

MY -2 f (B g V] Odszd = 2 f g vl 083 . (45c)
z

Since o™V reduces to the matter stress-energy tensor in the absence of gravity,

we can in fact interpret PO or P

ij

o as the total energy, P’ or Pi as the total

momentum, and J - as the total angular momentum. JOi determines the motion
of the center of mass. (See, e.g., Box 5.6 of Ref. 13.) Note that for con-
served angular momentum to exist, one must have a.contravariant stress-energy
"complex" MY,

For general reference, and for purposes of clarifying the following

theorem, we define the following:

LBGCM theory: lagrangian-based, generally covariant, metric theory of
gravity.

LBGCM* theory: LBGCM which has at least one symmetry group (group that
produces §¢b = 0 for all absolute variables ¢b) with
these properties:

i) The group has at least U dimensions.
{1) If g“ is a generator of the symmetry group, then
§u + const.

and

g,
c o8 o
4% u F, B, (8%q)

vhere + denotes the limit to asymptotically flat
infinity. )
*
All LBGCM theories with no absolute variables are automatically LBGCM

theories. In all prior-geometric theories we have seen in the literature,
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. *
constraints i) and ii) are obeyed; hence, the class of LBGCM theories covers

all LBGCM theories that we have seen,

It is well known that in general relativity, quantities & uv’ Pp, MY
can be found. The following theorem generalizes the result:

Theorem: Conservation laws of the form of Eq. (L3b) exist for all LBGCM
theories.

The Lagrangians given in Eqs.A(le) and (17) will be used for a model
theory in the proof. They are general enough to include all specific metric
theories known to us. The theorem will be proved in two steps: first for
theories without absolute variables, then for theories with absolute variables.

Case (i) No absolute variables are present.

In this case, Eq. (23) simplifies, with the help of the field equations,

Eq. (25a), to become

{- 20 - igz + 2(—3—{&*) Bz, - g‘-*—&c (s2)
G aza,o 8 aza,cr T8 za,UT ‘a T
&f ' .
NG ,0 ,P - o
* 52, da’p & ],U =0. v . (hea)

This is already in the form [Eq. (43)] we seek because aiké/aza vields,
among other things, the matter stress-energy tensor TY. We note that there
are in fact an infinity of conservation laws embodied in Eq. (46a) since the
gp's are completely arbitrary. This richness of conserved total energy-
momentum complexes is to be assqciated with the absence of absolute variables,
i.e., all gravitétional fields are dynamical.
With some particular choice of t°, we can rewrite Eq. (46a) in a more
o)

transparent form. Let gp =5 o Then, with the help of Eq. {25a) and Eq.

(33) [remembering that ¢b and Wc do not exist], we obtain
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aﬂG a<G aib
Sz %a,p ~ E(Bz ) 1%a ot 52 *a
a,g P a,gt 7’ a,ot

0]
{- 20,

This agrees with Einstein's prescription for obtaining the stress-energy
pseudo-tensor in GRT.

Case (1i) Absolute variables present.

Letting £ be the total Lagrangian in Eq. (3), use the dynamical field

Eqs. (25a) to obtain

8y + syg) o By + i)
LT A L A P &7

If Eq. (47) is now multiplied by arbitrary functions t" (and summed over p)

and Eq. (19c) is used, the result is

8y + yg) BLg + dyg)
gudbcu %, o 58, 5 - .(ua)

Equation (48) can be rewritten, with the help of Eq. (16b), as

0,0 |78 L Lg) V2 Tagoﬁ el . -——-ﬁ———&(’e"‘ ) g (19)
If one now chooses g“ to be a generator of that symmetry group which appears

*
in the definition of LBGCM , i.e., a descriptor such that

E¢b =0 ; (50)

and uses the defined properties of LBGCM* theories, then Eq. (49) takes on
the form of Eq. (43b). 1In a coordinate system in which the absolute objects
are constants, the total stress-energy tensor in brackets on the LHS of Eq.
(49) reduces to a form identical to that in Eq. (L6b).

As an example, consider conformally flat theories.nl The absolute

object is an and one has

o ()21 0. (ueb)



70

!G = paG(nQﬁ’ Y (51a)
8og = Nopf(®) . s (51b)
Riem(qoﬁ) =0 , (51c)

where f is some function of the dynamical scalar field ¢. For an’ the dqu
function is just

dbca = -2 np.(CPUV) . (52)

If one now uses Egqs. (51) and (52), then Eq. (49), with its RHS zero, becomes
6ib

— =0 . 53
uo SHOU e (53)

821210 4 2y

Note that the conserved stress-energy tensor in Eq. (53) is a true tensor
{density), as opposed to the corresponding éuantity in theories without
absolute objects (GRT, for example). Such “true" stress-energy tensors,
which typically exist in prior geometric theories of gravity (theories with
absolute objects), are associated with the syﬁmetry group of the absolute
ob jects.

To summarize: integral conservation laws are associated with the Symme;
tries of the representation. When there are no absolute objects the symmetry
group is MMG, the conservation laws are the result of covariance under
coordinate transformations, and the "energy-momentum complexes" Guv are
typically not tensor demsities. On the other hand, when absolute objects
are present, their symmetry group (smaller than MMG!) produces the conserva-

tion laws; and Opv typically are tensor densities.

F. Further Discussions

In Sec., III.E we obtained conserved energy and meomentum Pu for LBGCM*
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theories in terms of a volume integral over Opo. We will limit our ensuing

treatment of_such quantities to their roles in asymptotically flat spacetime,
because only there are they definable in a physically meaningful way.15 To
correspond as closely as possible to the experimental situation, we would
like to know if we can evaluate these conserved quantities in the asymptotic
region without any detailed knowledge of the near-field behavior.

It is clear from Eqs. (45) that if and only if MY and Ouv are deriva-

tives of a "superpotential’:

ARV eI S R (sba)
oVoavE ., gV, (5k4b)
H po,a u 1

can PL and P be expressed as surface integrals:

P - [t OO‘]’ adsx - § 0 A (55a)
B, - IAp[ 0] adz’x =8 AuOidzz L (55b)
r

(Here square brackets [ ] denote antisymmetrized indices.) The general
argument in Sec. III.E has no direct bearing on the existence of such
superpotentials in LBGCM* theories. In fact, we do not at present know of
any feature'in the structufe of the mathematical representations of a theory
that is tied directly to the existence of superpotentials. While it is true
that the existence of a divergenceless ¢"Y (or Ouv) in a certain region
;ecessarily implies the existence of a superpotential from which the v
is derivable in that region (using the mathematiés of differential forms),
we have found16 that such superpotentials either must be defined in the

interior of the region, or are nonunique when defined on the boundary of

the region. Consequently, no superpotential is guaranteed to exist which
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aliows a unique Pp to be defined in the asymptotically flat region around
a gravitating source. Thus the existence of physically useful superpotentials
associated with a divergenceless M is theory-dependent (depends upon the
detailed properties of qu). Some consetvative theories may have super-
potentials and some may not.

One immediate consequence of.superpotentials, when they exist, is that
for every.divergence—free Ouv (and hence conserved Pu), a corresponding
divergence-free MV {and hence a conserved Pp) can be constructed, and vice

tvaly,

versa: Given a Ouv (with a Au one simply defines a A,u[va] by, e.g.,

(04
AnH[V ] = gﬂTAT[Va] , (56a)
and a divergenceless oV is defined by

,Q

Thus all LBGCM* theories that possess superpotentials have a divergence-
free " (and a conserved Pp). The conservation of angular momentum hinges,
however, on the symmetries of GPV, and thus far, our general arguments do
not yield any useful information on this issue. In Sec. IV, we will take
a different approach and derive empirical conditions in the post-Newtonian
limit for the existence of a conserved angular momentum.

It was noted that Eq. (h6a) gives an infinity of divergence-free qu.
What about the éorresponding Pu; are there infinitely many of them? To
sgek insight into this question, one of us (DLL) has examined in detail the
Dicke-Brans-Jordan theory and has found two conserved P 's that can be
evaluated solely in terms of the asymptotic properties of the gravitational
field.17 This leads us to conclude that the PH.S in general are not unique.

Once we know how to evaluate P and Pu in the asymptotic region, we
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would like to know their behavior under Lorentz transformations. From Egs.
(55) we see that, if in the general covariant mathematical representation
of a theory the variables {@h} consist of nothing but scalars, vectors,
tensors (and their respective densities) and affine connections, then the
conserved ? and Ph thus constructed will transform as W-vectors under
Lorentz transformations at asymptotic infinity. .In Appendix A we give (g
for various exemplafy theories. 1In cases where superpotentials exist, we
give them along with oMV, (As remarked earlier, there is no theory inde-
pendent way of deriving superpotentials — those given in Appendix A are
quoted from various references.) When Opv is given, we use the formulas

derived in Sec. III.E.

IV. CONSERVATION LAWS IN THE POST-NEWTONIAN APPROXIMATION

In this section, we complement the analysis in Sec. III by discussing
conservation laws in the larger domain of general metric theories, not
necessarily Lagrangian-based, but restricted to the post-Newtonian approxi-
mation (gravity weak, stresses small compared to mass-energy density, and ‘
relative velocities small compared to that of light) In this domain the
Paramatrized Post-Newtonian-formalism6 is applicable. Our analysis is
patterned closely after the work by C. M. Will,lB except that we consider
a 10~paramefer metric in the PPN gauge" rather than the standard6 9-
parameter metric. This 10-parameter metric was introduced recently in Ref. 19 by
Will. It allows one to encompass in the PPN formalism the theories of
Whitehead,eo Deser and Laurent,21 and Girotti and wfsnivesky,22 theories
requiring, in addition to the standard nine potential form of the metric, a

"Whitehead term."” To date, the l0-parameter metric encompasses all metric
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t‘heories known to us.

Following C. M. Will, we will obtain the conditions at the post-
Newtonian order for any metric theory to have a conserved P (and P ). We
will also obtain the appropriate conditions for there to exist a conserved
M.

We now proceed with the details.

A, The Metric

In the PPN coordinate system, we take the generic metric to have

the form
Boo = 1 - 2U + 25_112 ~bo vt a2, : (57a)
81 = %(h7+3+a1 -a2+;1) Vi+—1é(1+oz2-cl) v, o, {57b)
B9 = - Bij(l +2y0) , (57¢)

where

U(}E, t) = J‘—T—’(‘i:% dsx'

N R R N R p(;'., t)(;?f1 + ¢2 + ¢3 + ¢h) ax
o(x,t) = 0,(x,t) +0,(x,t) +05(xt) + o, (x,t) = ) R :
¢15i—(a3+27+2+§1) v2, ¢2§%(!;2- 28 + 3y + 1) U, ¢5- 2(t;5+1) 1,

8, = 3(t, + ) »/o
.(;tlt "_"‘l).“"‘! 3, a p(x', t)v(x) 3‘
a(;t‘,t) = J‘ o) i (Xlxx— = '})’(X )1 dx' , Vi(x, t) = % x'l
- o(x', e)[v - (% - ;:')](xi - x',) Oxt

Wi(x,t) = 3

Jx - =*|
o (x,¢) = [ pG?' ,t) p(;" t) {ﬁx :_f')‘ ﬁ.'ﬁ.’. ] (x - %) dx'dx"

x - x'

Each metric theory is characterized in the PPN limit by its values for the
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ten PPN parameters B, 7, Oﬁr ob, O%, §1’ gg, CS’ gh, gw. For simplicity

we have chosen to work in a coordinate system which is at rest with respect
to any "preferred frame" that may exist in the generic gravitation theory.
Hence our metric of Eqs. (57) does not contain "w terms" (see Ref. 23 for

further discussiom).

B. Conservation of Energy Momentum

We attempt to construct quantities MY and Ouv of the form

M- (1 - at) (s ™Y, (s8a)
v v vy
2] = (1 - aUj(t T 58b
AENCEFLICREE RN | (s8b)
satisfying
M =0V -0 . (59)
sV K,V

In Eqs. (58) "a" is an undetermined constant and tuv and t*Y are the mixed-
index and contravariant gravitational stress-energy pseudo-tensors. We
will now sketch the calculations for a law of the form of Eq. (58a) and
quote the results for a law of the form of Eq. (58b).

Using the matter response Eqs. (25) present in all metric theories and
Eqs. {58), we find that t*Y must satisfy the equation

uv v TR, | v v
v aU’th‘l +T, T+ rb vTuU + aU’vT“ s (60)

>

where the Pogy are the Christoffel symbols. The ability to construct a

t*¥ and consequently a MY rests upon integrability conditions for Eq. (60).
We now calculate the Christoffel symbols te PPN order from the metric

of Egs. (57) and use the following identities

hapf .5-2(a/axi)[u uv,1+U vgf for any £ , (61a)
s 1 y ,1

1
f .\-=5,.0
’(i ,J) 2813 s k
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R T ) S L LU TN L
+Ui[-— 200 + vp ‘VX+()-Hr) V(VU 'VX)] )

[p'U' i - plji] 3 (p'U;k - p')k)(xk - x'k)(xi - xli)

; 3
- - ¥) d”x' - '
a, 4’1,1,’(,001*‘[‘ Ny x - [ ap ax
=0 , . ’ (8lc)
X&) = - Lo, 0)fx - % &x . (614)

Then, Eq. (60) can be put into the form

bt = he(e%0 4 OF J)

sV ,0 L.
= ~§t— [% |vU|2 (67 + 2a - 5)]
3 _
- ;,;I [(3y + a-2) U,OU,]._ +2(3r + a -~ 3) U,jv[j,i]] , (62a)
PR v = hn(tio o+ 1k k)
=.§E[%(a1 -2y e by 4242y 4 BE)U UL - (S +a - 1) uvgv]L

+ (Cl1 + by + 1) U,jv{j,i]]
*S‘i‘j [1- —12- (2, - 2a - 3¢ ) U] Pij(U)
+ (24, - ty) Fij(ﬂ) + (o + 2y + 24+ ¢, +20) Pij(tbl)
+2(t, - 28+ 3 + 1) Pij(“’e) +2(tg + 1) rij(c»s)

+ 16ty +7) + b 1T, (0))
+ U,(i[ (al - a, + hy + 3 4 gl) Vj) + (012 +1 - gl) wj)]’O -2.r (v)

i}
1 .
3 Siju,k[ (o -, + by +3 + £) Ve + (o, + 1 - ty) Wk],o

- Cwsij(u,o)g (62b)



77

- 2(oy + by 4 4) Vg, k5,5 - If 813V x, 2171k, t]) * 2 1ﬂij(x o)

-.ﬁ (0 + 2oy + by + 2+ 2t,) Sij(u,o) + 2gwrij(u,tx’t)

+ (57 +a-1) U(pvivj + 5ijp) + Bﬁgwpx’(iU,j) -t X,ij¢k,k
+ 821300 i), 1 Gt hnQ" (62b con't.)
where
1 .
Pij(X) = (i ) " 513” x , (63a)
e . p(x 9t) u! (X - x' )
‘l’(x, t) s lx ,-jx':ll . dsx' y (651))
- Uy 3
¢k (x, t).‘ = J‘—‘x_jl—x_'[ ax' : (63c)
and
Qi = U [2 (o% +by 2; ) pv + ——-{VU[ (§2 w)
+ Lgpll + (3§u + 2 Y p o+ = vd(§1 + 2t Y1 . (634d)

We have been utterly unable to write the terms in Qi as a combination
of gradients and time derivatives of matter variables and gravitational
i
fields. Therefore the integrability conditions on t V are that each term

in Qi must vanish sepafately, i.e.,

Tl +t, )+t =0,  (eha)
-ty =0 ' (6bb)
ts=0 (6hc)

3y, + 2, =0 , (6la)

e
fan
+
o
U
£
L}
o
.

{6be)
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Equations (84) represent constraints that must be satisfied by the PPN
parameters of a metric theory in order that there be conservation laws of
the form of Eqs. {58a). A parallel calculation has been carried out for
the integrability conditions on tuv for conservation laws of the form of
Eq. (58b); the result is that the same five constraints, Eqs. (64), must
hold. The resulting Y and tuv are given in Appendix B. Will18

obtained the results givén in Eqs. (64%), except without the ¢, parameter
appearing, since his geﬁeric metric did not contain the Whitehead term Qw'

Since we have proved in Sec., III.E that "mixed index" conservation
laws of the form of Egs. {58b), (59) exist for all LBGCM theories, we can
now state the following theorem:

Theorem: For all LBGCM  theories with metric given by Eq. (57), the PPN
parameters satisfy the five constraints given in Eqgs. (64).

A survey of the literature reveals that not only do all the Lagrangian-
based metric theories satisfy the constraints in Egs. (64), but there is no
known theory‘satisfying these constraints that is not Lagrangian-based.

We are thus persuaded to present the following conjecture:

Conjecture: For metric theories of gravity, the existence of a conserved
energy momentum P [defined by Eqs. (hla) and (43a)] is equivaient to the
existence o£ a Lagrangian formulation.

From Eqs. (64) we see immediately that any metric theory admitting a
_conserved P! can have at most five arbitrary PPN parameters. To complement
this result, we have generalized "Ni's New Theory"Eh to obtain a Lagrangian-
based metric theory (see Appendix C) which has five ;rbitraty parameters in
the post-Newtonian approximation. This, together with the theorem presented

in Sec. III.E proves our conjecture at the post-Newtonian order.
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C. Conservation of Angular Momentum

Equations (84) ensure that globally conserved energy-momentum vectors
P and Pu exist. As mentioned previously. a conserved angular momentum
tensor J*V can be defined if and only if 6" (and hence t"Y) is symmetric.
What constraints are required for a symmetric t"Y? An examination of Egs.
(62a), (62b) reveals that ¢ is manifestly symmetric, but %% 35 not equal
to 30, However, Eqs. (62a) and (62b) determine t*V only up to a total

divergence. We now seek quantities s*V such that

s =0 , (65a)
,V

and

eV o2 Y stV s oW (65b)

Clearly, we can choose Sij = 0. Setting p = 1 in Eq. (65a) and using the

fact that t1j = tji, one concludes that S10 = 0. An SOi must then be found

such that

s01 (tiO - tOi) - . S00 . (66)

With the help of Eqs. (62a) and (62b), Eq. (65) becomes

(hﬂ)-l[AU,iU,o + BU, (vj,i - vi’j) + cuvi, jj],i = - soo,0 , (67)
where

As%(a1—2a2-2+2§1)+2§w+57+a s (68a)

35%1a1+57-1+a , (68b)

c=-(57+a-1) . (68¢c)

Now, using the identity

s )
55 [0 1“,0 - Uvi,jj + “,_1("1,1 - vi’j)] * 5§ (bmou - u’ju’j) =0 , (69)

2
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we see that an g0 exists. satisfying Eq. (67) if and only if A = B = - C,
or
o4y -t -2, =0 , (70a)
@ =0 . (70b)

Equation (70a), when combined with Eq. (6le), demands that @, = 0. Equations
(70), in addition to Eqs. (64), fepresent 7 constraints which must be satis-
fied by the 10 PPN parameters in order that there be conserved energy
momentum and conserved angular momentum in the PN approximation. Note that

the constant "a" appearing in Eqs. (58) has been left unconstrainted, contrary

to the results of previous calculations.

D. Gauge Dependence of the Constraints
The metric given in Eqs. (57) is in the so-called "standard PPN gauge."
This is the gauge in which all solar system gravity experiments have been
analyzed. For prior-geometric theories, however, the "absolute frame"26 is
the most natural coordinate frame in which to solve gravitational field
equations for the mettic, to investigate the existence of globally conservéd

integrals, etc. We are thus prompted to redo the above calculations for a

_ more general gauge (with two additional parameters ¢ and T):

2 ' _
"8gg = 1 - 2U + 28U - by « 644 + 2 0.+ 2o*x’00 . (71a)

. _
Bog =3 (¥ =0+ by +3 4 4)V, + (0 +1-¢,) W] ,(7b)

835 - sij(l + 2yU) - 27X, (71c)

ij ’
where the X potential has been defined in Eq. (61d}. This metric form

encompasses the post-Newtonian limit of all known metric theories in the

absolute frame. The constraints [analogous to those in Eq. (6%)] necessary
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for there to be a globally conserved P are

%(03+g1)+1+gw=o, (72a)
ty+2r-¢t, =0, (72b)

Fs =0 , (72¢c)

3, +2g,+2t=0, (724)

L, + 2, +2t=0, (72e)

while the additional constraints [analogous to Eqs. (70)] for there to be
a conserved J*Y are

o, ~t, + 20 - bt -2t =0 , (73a)

@ -8t =0 . (73b)

The constraints [Egs. (72) and (73a)] can be shown to be invariant under
all gauge transformations that leave the form of the metric in Eqs. (71)
unchanged. Many prior geometric theories (see Appendix A) hgve a symmetric
o0 "V in the absolute frame. One wonders if the existence of such symmetric
quantities is independent of the coordinate system. The results in Egs. (72)
and (73a) have provided a partial answer to this question, i.e., if the

plobally conserved P and J*V (to the post-Newtonian order) exist in ome

coordinate frame, then they exist in all coordinate frames related by a

gauge transformation that leaves the form of the metric in Eq. (71) unchanged.
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APPENDIX A

In this appendix, we summarize the expressions for the gravitational
portion of the divergence-free MY or Ouv for some metric theories of gravity.
We also tabulate the corresponding superpotentials whenever they exist.

(1) GRT:

(g)(ehy + ) = A0 (Ala)

The gravitational stress-energy pseudo-tensor 1527

&Y = (1607 (e %1 OFB PO P - T ) (8787 - %)
g8 Py T B VT o p)
g” TQ(FO gl TBQ * FTHOTG B~ FO?BTUBT h o da B)
+ 7P P - T a"B)\ , (A1b)
while the superpotential is
N G R ICICAr A S ) (ale)

(i1) General Scalar-Tensor Theory by Bergman, Wagoner:28

We know of two distinct, conserved, energy-momentum P that arise from

the following two conservation laws:

(a)
(-8) (#/8) (Y + 1Y) = gilve] &9 (A2a)

O

where the gravitational stress-energy pseudo-tensor 1is

Y=gy + (8n¢)’1[[w(¢) SRV LA [w(¢) - 2] g"'¢ a¢'°‘

U (04
+ (8]‘() ¢ a[FU . T V . Ta GV) + F ( T u-a g g p‘)

Y o0 o v a va
+ T, T (2gu - g% - M)

( uc VT Y cr)] ' | {A2b)
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and the superpotential is
A = e PR @ - BT o (a)

[t in Eq. (A2c) is defined by Eq. (Alb).]
(b)
(-8) (BB (Y & ) = AP 1T (a2d)

,Q

and

[(-8)(F/D(Y + TN =0, (A2e)

where the gravitational stress-energy pseudo-tensor is

V- gt 4 enu(g) oY - 3 V%8 )

+ ()P Ve ) (af)
and
ulval vy of nor vB A
A o= go(167)" N (-e)(e -2 8 ) og - (A2g)
(i11) Vector-Metric Theory of Will-Nordtvedt:So
(a) 1 .
s Y21 -0, (A3a)
where )
(v §v+__a_“‘§_K +__§;’s_g P T
" G aKa,v B Bgoﬁ’v o8, 1 Bsoe,w 08,10
fe——) & s A3b
agoﬁ’vo. "O' w’u
and :
2, = () /2m 4 I S\ (a3c)

(R is the curvature scalar constructed out of guv and the semi-colon denotes

covariant derivative with respect to guv')
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{(b) This conservation law does not satisfy the requirements set out in Sec.

III.E, but its superpotential allows a physical interpretation:

(-g) (™ + ) = A”[va],a , - (A3d)
and
[e) (Y + )] =0 . (Aze)
The gravitational stress-energy pseudo-tensor is
2
N S N (CLO M A I (as¢)

where 6"V is defined in Eq. (A4Y) of Ref. 30, and ti{ 1s defined in Eq. (Alb).

The superpotential is

AHLV o = [16x(1 + 1! [ (-g) ("™ - guagvﬁ)]’oﬁ . (a3g)

b

(iv) Hellings-Nordtvedt Theory:31 [w#0, n=0]

(a)
[tuv + (-g)l/2 Thv]’v =0 , : (aka)
where
t V.. £.5 Vo —jﬁ%i— K +-—Egé—— g g
M 1 BKa,v AGu " gy, OB OBug, vy OB HO
a£G
" agCﬁ Yo t1e) gceyﬂ ’ . (Ahb)
b
aﬁd

_ 1/2 o Bv pv uv
£ = (-g)"/ “[R - (Kv,“ - Ku,v)(Ka’B - Kﬁ,a) grg . + wKquRg + nKquR ] . (Albe)

(b)
(1 s o)L () (Y o ) o vl (Aka)

, O

The gravitational stress-energy pseudo-tensor is
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- ; -1
& = - (80)7h W(RIR + FHY - @ePY ) - b THER v VR ®)
+ (1 +up) (Ake)
and the superpotential is

R (L R (CO[Car il s AV U (Ab)

(v) Ni's Lagrangian-Based Conformally Flat Theo :11‘l
Ty

[tpv + (-g)l/e Thv].v =0 . : {A5a)

The gravitational stress-energy pseudo-tensor in the preferred frame [in

which Ny = diag. -1, 1, 1, 1)7 is

tuv B 2f1(¢)¢,o§”,aﬂwﬁuv - ’*fl(¢)¢,a¢’pnm’ . (a5b)
(vi) Lightman-Lee Theory:32
[t“v - (e Tuv],v =0 . (A6a)

The gravitational stress-energy pseudo-tensor in the absolute frame [ in

which Ny = diag. (-1, 1, 1, 1)] is

- -'1 vy 179,68 ’ - 0B, v sV
= (1607 (5 "(ab " h o 4 fh ah’a) 2(ah®’ Yh +fh WY)] . (A6b)

o8, n
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APPENDIX Bl
Contravariant Gravitational Stress-Energy Complex for Metric Theories in the

PN Limit [satisfying the constraints of Eqs. (6k4)]

1f the Qi is zero in Eq. (62b), thern from Egs. (62) one may read off
%0 ana 01 [Eq. (62a)] and tio,and ik [Eq. (62b)]. We therefore do not
write down t"¥ here.
L
APPENDIX B2

Mixed-Index Gravitational Stress-Energy Complex for Metric Theories in the

PN Limit {satisfying constraints of Egs. (64)]

t,0 = (807! (67 + 20 - 1) [w0)® (B2-1)

e} = -t [2(3y +a - 1) U gy @+ 30 v Y, (B2-2)

5 - @07 (v 3 - 1) Wy -2 W, (B2-3)
t#’ = (1 -a-37) Ulpv,v) + p,) - ()"t {1 - (6, + &, - 2)1 1, (0)

(07 1y 0) + 107 @) + (207 gr )

+ (eﬁ)-l (O& - a + g1 +hy o+ 3)(vﬁgk m, ! ] 6tk,vm,svm,s)
+ (8“)-1 (a +1-t )(Vm t'm,s Vuym,tk +2v w[m,[]k - 6zk.v[r,s]v[r,s]
+ V0 Ok é 51k.”,02)
+ (2n)” CWPE U 25£k +-% LI %-x P xxak,(U U ﬁ),m
- X,tm.U,mU kY é X (U U ) ,m %x,mkU mv,l %'x,rsu,r ,sslk] (B2-4)

The potential X, and rij(x) have been defined previously and

' 3.
0. a2 f U(x'),r,U(x ),s'd x .
f 3xF 3" [x - x'] .
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APPENDIX C

A Lagrangian-Based Theory of Gravity

In this appendix we present a Lagranglan-based theory of gravity. It
is a generalized version of Ni's New Theory; 2h and it is designed to have
the maximum number (5) of unconstrained PPN parameters allowed for any theory

with conserved Pu'

a. Gravitational fields present: A flat background metric l", scalar fields
¢ and t, a vector field ¥, a symmetric tensor field h, and the physical
metric g.

b. Arbitrary parameters and functions: Three arbitrary functions £1(¢),

f2(¢), f3(¢) and three arbitrary parameters e, k;, k,; in the post-
Newtonian limit, with appropriate choice of the cosmological model,
there are five arbitrary parameters: a, b, d, e, and (kE/kl)'

c. Prior geometry: The following constraints are imposed, a priori, on the

geometrical relationships among the gravitational fields:
(1) flatness of the metric
{Riemann tensor constructed from q) =0 ; (Cla)

(1i) "meshing constraints" on t, fland ¥

th“’ =0 , {Cl1b)

v

t t =+ 1 . - Cle
sH ’Vq ( )
(Here and below a slash denotes a covariant derivative with respect

v .
to Q, and o'V is the inverse of quv.)

HY .
t p"/vn = 0 ; (c1d)

E4

pv
t h =0 . Cle
v (cle)
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(iii) algebraic equation for the physical metric in terms of the "auxil-

iary gravitational fields" N, ¢, t, ¥, h

g- f2(¢) n-+ [f1(¢) - f2(¢)] dt@de + Y @det + de @V + h . (Clf)

d. Preferred coordinate system: The prior-geometric constraints (Cl)

guarantee the existence of a preferred coordinate system in which (1)
the time coordinate is equal to the scalar field t; (ii) the components

of l] are Minkowskiian

Ny = diagonal (1,-1,-1,-1) ; (c2a)
(iii) ¥ is purely spatial
V. =0 ; (c2b)

(iv) h has only space-space parts non-vanishing

ho‘1 = huo =0 ; (cac)
(v) the physical line element goﬁd:»rad:\:B is
as® = £,(¢) at® - £ (F)(ax® + dy® + dz°)
+ 2V dxdt + 20 _dydt + 2v,dzdt + h, dx dx (c2d)
1 2 3 11 y

e. Lagrangian: The field equations are determined by an action principle

s [+ d'x = 0 ' (C3a)
where the Lagrangian density # is
- -~ uv ot uv
£ = Iyg /-8 + 21(1/e) ¥\ ¥ AT - B
w2
+ Ff3(¢) + 1](¢,ut’vq )

Uy v Ot Wt Vo
UL R M L P YT S i M AL
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Here LNG ié the_standard interactidn Lagrangian metric theories of gravity.
The quantities g and n are the determinants of {Igpv[{ and {lquv{[. In
the action principle (C3) one is to vary the standard matter and non-
gravitational fields that appear in LNG and the gravitational fields ¢
and ¥, while maintaining the prior-geometric constraints (Cl). 1In the

preferred coordinate system (C2) the Lagrangian density reduces to

£ = Ly Ve + (’2‘)(‘”1, V1,97 Ve, b, ) P48y 2550000

- 2k.h + 2k.h + 2k h

1 ij,khij,k 1 ij,thij,t 2 ij,j¢,i . {ck)

Field equations: The nongravitational field equations derived from this

action principle take on their standard metric form. The gravitational

field equations derived from the action principle are

upy)” = 2ol VB /U PR [y - ey,

¢|V|v - 58 + 1] ¢,u|vt‘utiv 3 f'3(¢)(¢lvt‘v)2 - 3 kehuv‘uv
- 2nyg T“v(agpv/a¢) =0

h, U!G - [é k2¢|0}1 + ox( VE /Y Tm(agm/ahm)]

X (quo - tlutlg)(nVT - t‘vt!T) . (csa)

In the absolute coordinate system, these equations reduce to

o1
RTRARTS L v

811~ 508 *% £5(08 . = % Kahygpag * 20 /-8 I“V(aguv/ags)

1 -1
By ki~ Prgee = 7 3kl 9 gy - ()T Ve Ty (csb)
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Here

S 3(/-8 Ly;)
uv -~ Bn V:—- agp.v ’
v uOl vB
™o T

Post-Newtonian limit: The solution of Eqs. (C5a) or (C5b) proceed along

the same lines as in Ref. 21. We present only the results here.

In the preferred frame, the physical metric is

2
oo = - {1 - 2U + 2b0° - 2[(1L + a - k2/5k1c) o, + (3a - 2b + 1 - kz/hckl)tb2

by + (58 - lefhck)) 0] - (p/hel) @ - [d = 1w B)/®Ix i+ 0(6)

Bog = * &V (ceb)

By = gij(l + 2aUl) - (kz/hckl) X iy - (cec)

We now perform a gauge transformation

Ot 0 2

x 2 (d-1+c)/c

X

it
X

1

i
x4+ (k2/8c:k1) X,i ;-

and bring the metric into the "standard" form:

+ .
800 = 1 - 20+ 2(b + k2/8ck1) .21 +a- k2/8ck1) ®y
-2(3a-2b +1 - k2/8ck1) o, - L 85 - h(a - k2)12ck1) o),
- (ke/hckl) a + (kz/hckl) 8, » (c7a)
t 2
g, = le- (a-14D/2P1v + (a- 14 A auy (cb) .

8y = - 511(1 + 2al) . (cc)

(cea)
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" The PPN paraﬁeters are thus [cf., Eq. (C7)]

B=>b + k2/8ck1, y=a, o =-2--ha-4 |,
o = -1 - kg/(hckl) +(d -1+ c2)/c2 » =0,

by = - kyflick) ,  t, = kyf8ck,, t =0

¢y, = - ky/l2ck; , L = ky/8ck . (c8)

Where a, b, ¢, d are defined by the power series expansions of the

functions f1(¢), f2(¢) and f3(¢):

f1(¢) =1 - 2cf + 2bc2¢2 Foeee - (csa)
f1(¢) =1+ 2acf + ... , (cob)
f3(¢) =d 4+ eo. , (coc)

and ¢ is set to have the value
2, 2
c=1+ hke /k1 , {cad)

to obtain the correct Newteonian limit.



10.

92

REFERENCES

K. S. Thorne, D. L. Lee, and A. P. Lightman, Phys. Rev. D 7, 3563 (1973).
D. L. Lee and A. P. Lightman, Phys. Rev. D 7, 3578 (1973).

A. P. Lightman and D, L. Lee, Phys. Rev. D 8, 364 (1973).

D. M. Eardley, D. L. Lee, and A. P, Lightman, Phys. Rev. D

8, 3308 (1973).

To avoid sounding overly pedantic, we are a little less careful in our
terminology than we were in Paper I. For example, we often use the

word "theory” when we mean “"mathematical representation of the theory."
For a review of the PPN formalism see, e.g., C. M. Will, Lectures in

Proceedings of Course 56 of the International School of Physics "Enrice

Fermi," ed. B. Bertotti {Academic Press, in press); also avallable as
Caltech Orange-Aid Preprint 289 (1972).
See, e.g., (a) J. Goldberg, Phys. Rev. 89, 1, 263 (1953)

(b) P. Bergmann, Phys. Rev. 112; 1, 287 (1958)

(e¢) A. Trautman, in Cravitation An Introduction to Current

Research, ed. L. Witten (J. Wiley & Sons, New York,
1962).

(d) J. L. Anderson, Principles of Relativity Physics

(Academic Press, New York, 1967) Chapt. L.
Throughout this paper, Greek and Latin indicies take on values 0-3 and
1-3, respectively; commas and semi-colons denote partial and covariant
derivatives, respectively.
C. H. Brans and R. H. Dicke, Phys. Rev. 12k, 925 {1961).
For all theories in the literature known to us in which the metric {s

an algebraic function of other variables, there exists a mathematical



11.

1k,
15.
1s6.
17.
18.

19,

21.

22.

2k,

25.

26.

27.

28.

93

representation in which the func;ional dependence is not on derivatives,
but only the variables themselves.

This is certainly the case for all theories for which we have explicitly
calculated the RHS of Eq. (38).

R. P. Feynman, private discussion (1973).

C. W. Misner, K. S. Thorne,.and J. A. Wheeler, Gravitation

(W. H. Freeman and Co., San Francisco, 1973).

W.-T. Ni, Astrophys. J. 175, 769 (1972).

See page 463 of Ref. 13.

F. Estabrook and A. P. Lightman, unpublished calculations.

For details, see David L. ﬁee, paper in preparation (1974).

C. M. Will, Astrophys. J. 169, 125 (1971).

C. M. Will, Astrophys. J. 195, 31 (1973).

A. N. Whitehead, The Principle of Relativity (Cambridge University

Press, Cambridge, 1922); see also J. L. Synge, Proc. Roy Soc. 211A,

303 (1952).

S. Deser and B. E. Laurent, Ann. Phys. (N.Y.) 50, 76 (1968).

H. O. Girotti and D. Wisnivesky, Nuovo Cimento 43, 205 (1971).

K. Nordtvedt, Jr. and C. M. Will, Astrophys. J. 177, 775 (1972).

W.-T. Ni, Phys. Rev. D 7, 2880 (1973). |

We refer to Will's wo;k in Ref. 17, in which "a" was constrained in
order to have conserved angular momentum. w111's>error was the failure

to add divergenceless quantities s*Y g0 MY

upon integrating.
That coordinate system in which all absolute objects are constant.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields

(Addison-Wesley Co., Reading, Mass., 1962) pp. 343.

R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).



29.

30.

31.

32.

9L
Y. Nutku, Astrophys; J. 158, 991 (1970).
C. M. Will and K. Nordtvedt, Jr., Astrophys. J. 177, 757 (1972).
R. W. Hellings and K. Nordtvedt, Jr., Phys. Rev. D 7, 3593 (1973).

A. P, Lightman and D. L. Lee, Phys. Rev. D 8, 3293 (1973).



95

B) A New Two-Metric Theory of Gravity with Prior

| Geometry. ( Paper V; in collaboration with
A.P. Lightman, published in Phys. Rev. D, 8, 3293, -
1973 )




96

Reprinted from:
PHYSICAL REVIEW D

VOLUME 8, NUMBER 10

15 NOVEMBER 1973

New Two-Metric Theory of Gravity with Prior Geometry*

Alan P, Lightman' and David L. Lee!
California Institute uf Technology, Pasadena, California 91109
 (Received 14 May 1973; revised manuscript received 23 July 1973)

We p a Lagrangian-based metric theory of gravity with threc adjustable constants and two tensor
fields, one of which is a nondynamical “flat-space metric” 3. With a suitable cosmological model and a
particutar choice of the constants, the “post-Newtonian limit” of the theory agrees, in the current
epach, with that of general relativity theory (GRT); consequently our theory is consistent with current
gravitation experiments. Because of the role of 7, the gravitational “constant” G is time-dependent and
gravitational waves travel null geodesics of n rather than the physical metric g. Gravitational waves
possess six degrees of freedom. The general exact static spherically-symmetric solution is a
four-parameter family. Future experimental tests of the theory are discussed.

I INTRODUCTION AND SUMMARY

Within the past few years an elegant theoretical
formalism, the “parametrized post-Newtonian”
(PPN) framework, has been developed' to analyze
metric® theories of gravity. The PPN framework
is structured around the “weak gravitational fields”
and low velocities of the gravitational matter which
characterize typical solar-system tests of gravity.
It classifies each gravitation theory as to its form
“in the post-Newtonian (PN) limit.” At first it was
hoped, and indeed seemed to be true, that the PN
limit of each theory of gravity is unique—~thus by
solar-system experiments alone, one could, in
prineiple, determine the “correct PN limit,” which
would then correspond to one and only one “correct
theory of gravity.” In addition, it was hoped and is
hoped that the “correct PN limit” is that of gener-
al relativity theory (GRT) (although we try not to
let this fact prejudice our investigations). To play
devil’s advocate, a program was initiated to at-
tempt to formulate theories of gravity with the
same PN limit (and hence PPN parameters') as
GRT. The aims of such a program are twofold,
as one can ask the following questions: (i) If such

‘theories exist, how complex and contrived are

their formulations? (ii) Do such theories have
anything in common and in what respect do they
differ from GRT outside of the PN limit? The
first question is primarily only of aesthetic inter-
est. But the second has the possibility of identi-
fying powerful new theoretical and experimental
tools for testing relativistic gravity——indeed, that
has been the case (see Sec. V and Refs. 3 and 4).

In this paper® we present and analyze a new the-
ory of gravity—one which has the same PN limit
(for the current epoch) as GRT, given a suitable
cosmological model and a particular choice of the
adjustable constants. Analysis of our new theory
provides partial answers to questions (i) and (ii)
above.

A further motivation for study of this particular
theory is to analyze in detail the role of prior ge-
ometry,? and its influence through cosmologicat
boundary values, in gravitation theories, a role
which -will be investigated in more general terms
in another paper.®

To date the authors are aware of three other
new metric theories which are candidates for
sharing the property of having the same PN limit
as GRT (candidates in the sense of contingency
upon the existence of special but acceptable cos-
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 mological solutions and certain choices of the
available adjustable constants). These theories
are the Hellings-Nordtvedt theory,” Ni’s theory,®
and the Will-Nordtvedt theory.® Of these three,
only Ni’s theory contains prior geometric elements
like our own; but no discussion of the detailed re-
lationship between prior geometry and cosmologi-
cal influences has yet been given.

A. The Lagrangian Formulation

The equations of the theory are obtained, in the
usual way, by varying the dynamxcal variables in
the Lagrangian:

L= [ Lolphdins [Snlgavdts,  (12)
g=gln,k), (1b)
Riem(n) =0, (1c)

where n,h, g are second-rank symmetric tensor
fields: 7 is an absolute variable? (not varied in L),
kis dynamlca.l and g is constructed algehraically
from nandhk. The Riemann tensor constructed out
of nis denoted by Rlem(n), and consequently Eq.
(1c) states that 7 is a s a “flat-space metric.” It is
Eq. (ic), the “field equation” for 7, that introduces
geometrical structure into the theory which is in-
dependent of the matter distribution—thus the
“prior geometry.” The gravitational Lagrangian
density is denoted by £ while the nongravitational
Lagrangian density,® £yg, is the same as the cor-
responding quantity in other metric theories (e.g.,
GRT), with g, representing the matter fields. The
“physical metric,” governing the response of mat-
ter to gravity, is denoted by g.

Explicitly, £¢ and g are defined by the following:

£’G -—(161{)" -] kpnpa

X(Gh Ap! ahno 18 "'fh Xuluhpol a)('-ﬂ)”a [

(2)
uy=(1 _Kh)zAuTAru’ (33-)
AH(5,% — 3R, %) =0%,. (3b)

Conventions angd definitions for the above are the
following:

(i) Greek indices run 0-3, Latin 1-3.

(ii) Units are chosen such that G=c =1 (gravita-
tional constant today and speed of light) (see Sec.
V).

(iii) Vertical slashes and semicolons denote co-
variant differentiation with respect to the flat-
space metric 7, and the curved-space metric g5,
respectively. A comma denctes a partial coordi-
nate derivative.

(iv) n is the determinant of 7,4.

(v} 6%, is the Kronecker delta.

(vi)a," is defined by Eq. (3b).

(vii) lndxces on a,pandh ,p only are raised and
lowered with 7, i.e., R, =h%®n.p=h, and n° nB,
= 6“7; indices on all other tensors will be raised
and lowered with g.4.

{viii) Signatures of nand g are +2.

(ix) a,f, K are adjustable constants.

Motivation for the rather ungainly expression for
the metric [Eqs. (3)} comes from an analysis'® of
the Belinfante-Swihart theory of gravity''—a theory
which can be reformulated, at lowest order, into a
metric theory with “effective metric” of the form
of Egs. (3). From that suggested algebraic form
for the metric we have constructed the present full
metric theory.

B. Summary

Section IT includes a discussion of the field equa-
tions and a calculation of the PN limit of the theo-
ry. It is shown that there are mathematically ten
degrees of freedom in the initial-value problem
for #,, (compared with two for g, in GRT). In
the PN limit there are, in general, “preferred-
frame effects”!; such effects are, however, func-
.tions of only the cosmological boundary values of
h,,. By a certain choice of the cosmological model
one can make these effects vanish for the current
epoch. We suspect that such time-dependent pre-
ferred-frame effects are a commmon property of
prior-geometric gravitation theories. At any rate,
the observed absence of preferred-frame effects
can only place upper limits on the cosmological
boundary values of# ,.

Section III discusses the spherically symmetnc,
static problem. The exact exterior, static spheri-
cally symmetric solution is obtained and is found
o be a four-parameter family.

Section IV discusses time-dependent solutions,
conservation laws, and gravitational waves. Birk-
hoff’s theorem!? does not hold in this theory, i.e.,
the exterior geometry of a spherically symmetric
and asymptotically flat spacetime need not be stat-
ic-—collapsing stars can radiate monopole gravita-
tional waves. The general plane gravitational
wave has six physical degrees of freedom, the
maximum number possible in a metric theory of
gravity.®**

As the theory is Lagrangian-based, conservation
laws follow and one can construct a gravitational
stress-energy complex. Appropriately defined,
the stress energy-density of this object is posi-
tive-~definite for all possible polarizations of plane
waves.

Section V discusses the time dependence of the
gravitational “constant” and further possible ex-



perimental tests of the theory. In particular, a

‘search for time delays between reception of gravi--

rational and electromagnetic bursts and a search
jor “non-GRT” type polarizations of gravitational
waves promise to be important future experimental
:ests of the theory. Such tests would also be cru-
cial in the theories of Refs. 7, 8, %; and their
identification represents an important success in
our program of “devil’s advocate.”

1. FIELD EQUATIONS AND POST-NEWTONIAN LIMIT

Variation of Eq. (1) with respect to the dynamical
field variable # ,, yields the following gravitational
field equations:

(-n)"2@Dh* + fn*" Qi k)= 47T *H(~g)/?

x {88 a8/ ),
(4a)
where
Oh* =P ¥ e, (4b)
T8 =2(-g) " ""*(6LnG /02aa), (4c)

and 0 is the variational derivative.

From the matter equations, obtained by variation
of ¢, in Eq. (1), one can shcw in the usual manner
(seé, e.g., Ref. 13)

Tus:5=0. (5)

Equation (5) is the typical “matter-response equa-
tion” in metric theories.

Contraction of Eq. (4a) with 7, yields an equa-
tion for 4 alone, which can be substituted back into
Eq. (4a) to yield

TR * = ~(4n/a)(-g)"*(-n)"?T*"
x[ 844 - fla +4f)0%am,m**],  (6a)
where
058 =08 g/ /00 .
The linearized limit of Eq. (6a) is
Ok ¥ = —(4n /a)T=®
x[ 848% — nuan”*tf +2Ka)a +45)7].
' N

Unlike metric theories without prior geometry,
the four Egs. {(5) do not follow from the gravita-
tional field equations; they are additional equa-
tions.® However, there is no problem of overde-
termination because all of the 10 components of
k" are now dynamical variables; i.e., if all of
the essential coordinate freedom is used up in
choosing a frame in which n,s has a particular set
of components [usually diag(~1,1,1,1)], then

{6b)
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there is no cnordinate freedom left to adjust the
components oi k.

For example, for a perfect fluid, 7%% is de-
scribed by four matter variables once an equation
of state is given {three components of the four-
velocity and the energy density, for example).
Thus Eqgs. (5) and {6a) comprise a system of four-
teen independent equations for the fourteen un-
knowns.

We also note that all of the ten Egs. (6a) involve
second time derivatives of £ ,,. Thus in the Cauchy
problem all of the k ,, are to be regarded as dy-
namical variables and there are ten degrees of
freedom. Once g, has been constructed from 7,4
andk s, however, coordinate transformations can
be performed and so there can only be six “physi-
cal” degrees of freedom. This is to be contrasted
with GRT in which not only can four of the g, be
chosen arbitrarily by coordinate conditions, but
also four of the field equations involve only first
time derivatives. Thus in the corresponding
Cauchy problem, the Einstein gravitational field
has only two physical degrees of freedom.

The PPN framework of Nordtvedt, Will, and
others can be used to analyze the predictions of
all metric theories with respect to solar-system
experiments (e.g., light bending, perihelion shift,
gravimeter data, earth-moon separation, etc.).
The reader is referred to Ref. 1 for a complete
summary of the PPN framework.

We now calculate in our theory the PN limit,
which will involve a perturbation solution of Eq.
{6a). For calculational ease we assume a coordi~
nate system in which n,, takes on Minkowski val-
ues. Before we begin, a crucial point must be
recognized!* The metric g, has the form

Bap = Nas +O(h)’ (8)
and we know that far away from the solar system
there is some coordinate system in which g,
takes onp Minkowski values. However, this coordi-
nate system will, in general, not be the same
frame in which 7,5 takes on Minkowski values;
there is no a priori reason why the boundary val-
ues of h,, should be zero in this coordinate sys-
tem. Thus in solving Eq. {6a) we are not at liberty
to set equal to zero for all time the “arbitrary
constant” which may be added to# ,,; this compli-
cates considerably the construction of the PN limit
of our theory. However, we feel that this compli-
cation and its origin—the prior geometric element
Nuu—are of sufficient educational value to warrant
a detailed discussion.

Denote the nearly constant boundary values of
k,, by w,, (w,, canonly change on a cosmological
time scale by definition) and the part tied directly



to'the solar system by h },; i.e.,
hy,=hl, +uw,,. _ (¢2]
Now use the six-parameter invariance group of

the Minkowski metric to pick a coordinate system
in which w,, is diagonal, reducing w,, to four

components. Without justification, but for simplic-

ity, we now assume that the three spatial compo-
nents of w,, are equal. Such an assumption does
not affect the qualitative conclusions of this sec-
tion. Further, assume that

fwyl=t. (10)

Equation (10} will turn out be an assumption con-
sistent with the ultimate experimental limits on
the w,,.

Next expand Eqs. (3a) and (3b) in a power series
inh,,.

—

guu:nun"th Nuv +h uu+K2h2nuy -2Khh v
FRR T e (11)

When Eq. (9) is substituted into Eq. (11) one ob-
tains

Boo =Dy +EchYy = Foh %~ K2h¥* —2Kh X h *

LI (12a)
81y =Dbiy+ER Y +Fb,;h*-2Kh*h §;

+ KR %0, +3h 37, ' (12b)
8o =HIG,, (12¢)

where all of the constants appearing in Egs. (12}
have the form D,=1+0{(w), etc., and are given ex-
plicitly to O(w?) in Appendix A, along with other
constants appearing below. Using Egs. (12) and a
perfect fluid for the matter stress-energy tensor,
one obtains from Eq. (6a)

Ok *Y = —(4u/a) “pv*oB (1 +1 i % +1h * +1,0°) (1 = 2Kw)8* ;6% + L, gn*" +%6"au"§ + M"Y wap + N o0 gh *
+36% m Mg - 2KR A" B + MR E,]. (13)

In Eq. (13} 1,1,,1,,14, M, N are all functions of
a,f,K,w,, (see Appendix A) and

WE3Wyy = Weo s (14a)
v =dx®/dt, (14b)

p=proper mass-energy density measured
in the rest frame of the fluid. .

(14c)

To simplify an already complex presentation, we
have omitted the pressure from the perfect fluid
stress-energy tensor and included the internal en-
ergy in the total proper energy density p. (Such

"terms are not omitted in quoting the final PPN pa-
rameters.}) We now write

h *"”=“’h *pv +(2)h L ) (15)

in 2 perturbation expansion and obtain (see Appen-~
dix A for notation)

w2y 200 o _4nrp{{l - 2Kw) + L — wy(3 + M)

= —47pC,, (16a)
V2R * =~ _4mpT(Mw, - L)8Y = —4mpC, 8%,

w20 % o _anrpl v*(1 - 2Kw) +3w,0"]

= —4npC, 0", (16c)

vz(z)h *00 _, _4ﬂ7p(so(l)h *00+s‘(l)h t+BévZ)+(l)h :&00(:) ,

{16d)

(16b)

r

V2@ ¥ < _aarpl Rty

+64(R, R +R, D0 * + B,17)]

+ W (16e)
where
T=(al)™t, (171
Solutions of the equations are
(1) 400=CBU, . (182)
(1)h *i_ 6“C1U, (IBb)
Wy %% = C.Va, (18¢)

@ #90  7] §,Co +S43C, = Co)l @, +7Bi®, +CoX 005
(18d)
@ 2R 89+ 76 R,Cy + R, (3C, ~ C)) 0,
+7B,6Y%,+C,6" x o0, (18e)

where we have defined the five “potentials” U, V,,
&,, &, 8¥, and the “superpotential” x as follows:

UG, 1= [p&", 0I%-%"|"2%, (192)
ACIE j p@E”, )% - %" "ot d %", (18b)
&,@&, 0)= f PE”, 1P |% - %" |71 %%", (19¢)

2, )= o6, D)% -X"| V", D", (194)
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gy, 0= J'p(i",z)m-i" iyt (19€)
iy =U. . (191)

Using Eqgs. (12) and our sclutions, Eqs. (18), we
now compute the metric:

Goo = =D+ K \U+K,U% 1K @, + K, + K, Y 00

(20a)
g1, =64,(D+K,U), (20b)
£on = —HC,V,. (20¢c)

Notice that the metric does not approach the stan-
dard Minkowski tensor far away from the solar
system (when the potentials U, &,, &,, V,, x ~ 0) be-
cause of the leading constants D, and . We must
therefore make a “‘scaling” transformation:

=DV, (21a)
x=D"Y%’, (21b)
In the tensor transformation law for the metric
, ax® ax?
Zhrkx')=gqp(x) 327 52®
- . ax™ axt
=ga8[ U(x)t)’ d’l(x’ t);---]axlu a_xT;

(22)

we also need to express the potentials as functions
of the new (primed) coordinates. An example of
the procedure is the following: Since p is a scalar

PR, D=pE, 1), (23a)

UG, 1) = f oG", )|E -%"|"1d %"
= fpr(im’ t I)'i __in l -ldsxn ,

=D-l J-pl(im’ t I)’i! __iml -xdsxm

=D, LY. (23b)

In 2 similar manner one finds
&,(&, 1) =D"?61', 1), (23¢)
%, 1) =D, DX, t"), (23d)
V%, )=D V2 D-32ViE", "), (23e)
x,oo=D-2DoX:o'o' . (231)

Making the transformation indicated in Eqs. {22)
and (23) and then dropping the primes, g,, be-
comes

Lo ==1+D, ' DTVK U7 +D," DR U
+Dy7 DT K @, + DR @y + DT X o
{24a)

& =08, +DRK ), (24b)
Eow = "HCQD-‘ZV‘; . (24c¢)

A final coordinate transformation must be made to
remove the x ,, term from g,, and reduce the met-
ric to “standard PPN form.” However, additional
transformations of the form of Egs. (23) are now
negligible corrections and no distinction need be
made between functions of new and old coordinates.
The result of the final transformaticn, {—¢

1D K o, IS

goo"goo"Kll)-zx.oo: (25a)
81y~ &ii s (25b)
o~ B + 1K\ DTV, = W), (25¢)

where W, is a new potential defined by

W= [ol¥- G-%I% %" E - %)%
(26)
We now demand the proper Newtorﬁan limit, i.e.,
Gl =2U+:--,
which requires
K,D,”'D"'=2 today 27

(a consequence of our choosing units in which the
gravitational constant is unity today). Equation
(27) expresses a constraint between the three ad-
justable constants a, f, and K for a given set of
w,,. Comparing Egs. (24)~{25) with the definitions
of the PPN parameters' and using Eq. (27) to sim-
plify, one finds

y=3D%K.=vy'(a,f,K)+0(w), (28a)
B=-1D,"'D*K,=p"(a,f,K)+0(w), (28b)
£1=8,=83=L,=03=0, (28¢)
a,=2HC, D™ - 4y —4=0(w), (28d)
a,=DgD7' ~1=0(w), (28e)

where 7’ and B’ are defined implicitly by the rela-
tions

a=@2y +2)", (29a)
F=(108"+6y'8’ =TTy’ %~ 8y’ ~ 6)
x[ 24 +1)(3y' -5 - 48], (29b)

In GRT, y=#A=1 and the other seven parameters
vanish. In our theory it is clear that the two ad-
justable constants, a and f, may be so chosen to
give any value to » and f. For example, if the w,,
are all zero, one can satisfy Eq. (27) and have y
=fA=1 with the choice '

(a!flK)=(%’—-6%’l T’E’)' (30)
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It has been shown'® that the nonvanishing of a,, «,.
or o, leads to noninvariance of the functional form
of the metric of Egs. (24)-(25) under post-Galilean
transformations (curved-space versions of Lo-
rentz transformations). New terms, involving the
velocity of the Lorentz boost with respect to the
current “preferred frame” and multiplied by com-
binations of @, «,, o4, appear in the metric.
Nordtvedt and Will'" have calculated the experi-
mental consequences of the resulting “preferred-
frame effects” and find that they lead to periodic
anomalies in such phenomena as the solid earth
tides, secular perihelion shifts, etc. The reader
is referred to their paper for further details and
we quote here only the current experimental limits
on o, and ¢,

o, s0.1, (31a)
@, <0.02. (31b)

We have calculated explicitly the quite complicated
functions a,(w,,), a,(w,,)and have examined their
numerical values over a large range of constants

a and f {consistent with the experimental limits on
y and B). We find that the experimental constraints
indicated in Eqs. (31) require approximately

Jwg i+ |w, ]S 0.015. (32)

Even if we had not made the simplifying assump-
tions about the form of w,,, its individual elements
presumably would still be reguired to satisfy
roughly the constraint of Eq. (32).

Since the w,, are cosmological boundary values
ofh,,, one must solve the cosmological problem
for a particular cosmological model to obtain the
theoretical values of the w,,. Because of the abso-
lute nature of 17,5, it should be possible to con~
struct cosmologies such that, during the current
epoch, the curved and flat-space metrics approach
Minkowski form, far from the solar system, in
the same coordinate system. Such a cosmology
would guarantee that the w,, vanish at present,
although a time-dependent cosmology would cer-
tainly cause nonzerc values of w,, to occur over

a,/r -2a,/r? 0
p | ~2a/r? afr-2ay7v? 0
i 0 0 r*a,/r +a,/v3)

0 0 0

cosmological time scales. Indeed, preliminary
results from a cosmological solution'? indicate
that it is possible to make all of the w,, arbitrar-
ily small for the current epoch—and still have a
reasonable cosmological model. Thus, a consis-
tent solution exists for which the PN limit of our
theory is arbitrarily close to that of GRT in the
current epoch.

Further details regarding the time dependence

- of the w,, are given in Sec. V.

I, THE GENERAL STATIC SPHERICALLY
SYMMETRIC SOLUTION AND EQUATIONS
OF STELLAR STRUCTURE

A. The General Exterior Static Spherically
Symmetric Solution

Before writing down the equations of stellar
structure for a static spherically symmetric star,
let us construct the general static spherically
symmeiric exterior solution (which must then be
joined onto the solution inside the star).

First of all, choose a coordinate system in
which '

2 : (33)
r?sing
The most general form of’ ,, in this coordinate

system which satisfies the symmetry requirements
isle

o(r) plr) O 0

Bo= ulr) 9br) 0 0

uy 0 0 7rIxv) 0
0 0 0 7r?sin*ar(y)

(34)
The homogeneous field equations for % ,, are
simply
n*EhHY | 5 =0. (35)

The solutions to Egs. (35) which are well behaved
at infinity are®®

0

0

r*sin*6la, /v +a,/r?)

where a,, a,, a,, and g, are arbitrary constants, We remind the reader that the » coordinate in Eg. (36)
has, at this point, no interpretation other than its relation to the group-theoretically defined assumption
of spherical symmetry. Construction of g, from#h ,, is purely algebraic [see Egs. (3)], and the details
will not be given here. Sinceh ,, has off-diagonal terms, so will g,,. However, having obtained g,,, we
can make the coordinate transformation :
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t~14 J fj"Ld‘r, (37
0o
which then diagonalizes the metric, and we {inally obtain
c(1knyr O (1 L8, g\
oo =(1-Khr Yy [1,4 (\1 3 r*"ra)‘}’ | (38a)
={1=-KhP 2.( .1_ &\2 - gﬂj_ (“427" q){ 2+ 2"”1 ‘_az)"-l iy "—3}2
Brr=(1=ERPy |<1+ 2 r ) r? lal/r ) —[1=ila,/r)+la,/rF |’ (38b)
1 a 1a,\?
e T (8e)
8oo =Sin*6gee, (38d)
h=v"Y(3a,~-a,), (38e)
ye{1l4+dle, —a)r ' = ta,a, 72 +a v 3 + (a2 + a0 r )72, (38f)
ds® =goodt 2 "'gyfdrz +g89d92 +gw¢d(pz . (39)

Equations (38) for the metric indicate a four-parameter family of solutions for the general static spheri-
cally symmetric exterior metric. One can convince himself that all four of the parameters are physical
(not removable by coordinate transformations) by transforming to curvature coordinates and verifying that
four arbitrary parameters remain.?’ In Sec. IV we will investigate more closely a particular member of

the four-parameter family.

B. Stellar Models

The equations of stellar structure are quite com-~
plicated in this theory; and, even for a constant-
density star, there is probably no analytic solution
of the equations. One unusua) feature of the equa-
tions is that a central pressure and equation of
state do not uniquely specify a stellar model. The
reader is referved to Ref. 5 for details.

1v. GﬁAVlTATlONAL WAVES
AND CONSERVATION LAWS

In the full theory (no linearized approximation)
the homogeneous field equations are, as indicated
previously,

naﬁhuu (40)

and gravitational waves travel geodesics of 5 rath-
er than g. The implication of this last fact will be
explored later.” The simplicity of the vacuum field
equations {cf. Eq. (40)] is of great help in con-
structing solutions.

Ia!B'_‘O)

A. Linearized Theory and Plane Gravitational Waves

In analyzing weak gravitational waves, one should
restrict one’s attention to the form and behavior of
the Riemann tensor, not only because it is gauge-
invariant {under infinitesimal coordinate transfor-
mations) but also because it is that feature of the
gravitational wave which interacts directly with
test bodies. To analyze the decomposition of R,
into independent “wave modes” in as invariant a
manner as possible, one should investigate the

¥
transformation properties of R,,s under those Lo-
rentz transformations which leave the wave direc-
tion fixed. With such transformations in mind, one
selects a basis in which the components of R, g,s
are to be computed—the quasiorthonormat tetrad
basis (see, e.g., Ref. 22 for a complete discussion
of the “tetrad formalism”);

k=27141,0,0,1), (41a)
1=272(1,0,0,-1) (41b)
m=27112(0,1,4,0), (41c)
m=2"V2(0, 1, -i, 0). (41d)

Note that one of the “tetrad legs” points along the
direction of the wave. In such a basis the compo-
nents of the Riemann tensor are

Rosmi =Rapyst®®m?1%, etc. (42)
y

For waves, one can show that the only nonvanish-
ing components of the Riemann tensor are those
with two I’s—thus, there are six possible degrees
of freedom. Since there are no restrictions on the
Riemann tensor once Eqs. {40) are satisfied, all
six tetrad components will in general be nonvan-
ishing and our theory thus has six independent
gravitational wave modes. In our case, each of
these modes corresponds to a degree of freedom
and our theory exhibits the maximum number of
gravitational wave degrees of freedom possible in
a metric theory—six. In GRT, as a contrast, the
field equations R,z =0 imply vanishing of Ry,
Riyims Rimm, and Ry,,7 so that there are only two



degrees of freedom—those represented by R; ;.
and its complex conjugate B,;,;%.

The reader is referred to Refs. 3 and 4 for de-
tails of the transformation properties of the ob-
jects indicated in Eq. (42). Here we quote only the
results: We denote the six wave modes by ¥,, ¥,,
¥, ¥, ¥, &, ; interms of the tetrad compo-
nents of the Riemann tensor and “electric” coordi-
nate components of the Riemann tensor (those
which are directly physically measurable) these
are

¥, = =% Ryge= =% Recte -(43a)
o= =% Rim ==+ Rycra = iRuyee)s (43b)
3= =3 Ripm == T Ryzpa +iRoye) s (43c)
¥,= ~Rigtm == Royty + Rizge + 2R sty (43d)
Ty Rimtm = ~Riyty+ Riuse = 2iRpsy, (43e)
2= ¥ Rimiz = ~Rixts = Regty - (43f)

The presence or absence of a ¥, component in a
gravitational wave is Lorentz-invariant. If ¥, is
absent in a particular wave, the presence or ab-
sence of ¥, (or ¥,) in that wave is also Lorentz-
invariant. As outlined in Refs. 3 and 4, if either
¥, or ¥, is present in a wave (in many theories
they are always absent, but not in ours), then it is
impossible to decompose the wave into states of
definite helicity (spin) in a Lorentz-invariant man-
ner: What one observer identifies as “pure spin 0”
another observer will identify as “pure spin 0”
plus “pure spin 1,” etc. Only waves containing on-
ly $,,, ¥,, and ¥, can be decomposed into pure
spins: spin O and spin 2. In general, then, there
is no unique spin decomposition of waves in our
theory and it is of class II; (see Refs. 3 and 4 for

,a complete discussion of the “classification
" scheme”). The physical imprints of the various

modes will be discussed in Sec. V.

B. The Stress-Energy Pseudotensor
for Gravitational Waves

Using the method of Noether,?® which applies to
all Lagrangian-based theories, a conserved quan-
tity may be constructed, including a stress-energy
pseudotensor for gravitational waves. The gravi-
tational stress-energy pseudotensor has positive
definite energy. We refer the reader to Ref. 5 for
details.

V. THE GRAVITATIONAL CONSTANT AND
FURTHER EXPERIMENTAL TESTS

A. A Time-Dependent Gravitational Constant

As discussed in Sec. II, a number of existing so-
lar system experiments place upper limits on the
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cosmological boundary values of 4 ,, {cf. Egs.
(31)-(32}). These constraints can always be satis-
fied in a given epoch. A more relevant point is the
time dependence of the w,,, which is directly re-
lated to the time dependence of the gravitational
constant G. With the choice of adjustable constants
given in Eq. (30), and using the explicit functional
forms for K, D,, D, one finds from Eg. (27)and Ap-
pendix A that

1= {5 (19w, +Twy} +O{?) =G . (44a)
Thus

1dG 1 {19dw, . Tdw,

car= 16( a t ae ) (44b)

Shapiro et al.** have placed limits on the time de-
pendence of the gravitational constant by compar-
ing the periods of planets with the ticking rates of
atomic clocks. They find

1dG

—_— — -10
ca <4 x1071°/year . 45)

This constitutes an experimental constraint on the
magnitude of the time derivatives of w,, occurring
in Eq. (44b). Preliminary results from our cos-
mological solution'® indicate that the time depen-
dences of w, and w, satisfy Eq. (45), but an im-~
proved Shapiro experiment might still prove to be
a crucial experimental test of our theory.

B. Gravitational -Wave Experiments

The analysis of Sec. IV reveals two crucial new
experimental tests of our theory involving gravita-
tional waves—two tests which have blossomed
from our current program {see introductory
remarks in Sec. I} and which emphasize grav-
itational wave detection as a powerful new tool for
probing metric theories of gravity.** The two
tests are: (i) time delay between simultaneously
emitted gravitational and electromagnetic waves,
and (ii) polarizations of gravitational waves.

Since gravitational waves travel along geodesics
of the “fast metric” 5.4 and electromagnetic waves
travel along geodesics of the “slow metric” g4,
there should be a time delay in reception of the
two waves—emitted, for example, in simultaneous
bursts by a supernova explosion. For waves emit~
ted at the center of the galaxy, an order-of-magni-
tude estimate indicates

Time delay =~ (m /7 ) gy (Light travel time)
~(5x10"7)(3 x10* light years)
=5 days. (46)

Much longer delay times would hold for the Virgo
Cluster.
Polarization information is also a crucial exper-
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imental test. Equations (43) indicate a purely lon-
gitudinal mode (¥,}, muxed longitudinal-transverse
quadrupole type modes (¥, \13), a purely transverse
“preathing” mode (¢,,), and the familiar trans-
verse guadrupole modes of GRT (¥,,¥,). If an ob-
server knows the direction of the wave, he can

use Eqs. (43) to unambiguously catalogue the
modes. If he does not know the direction of the
source, he can still draw some conclusions. For
example, if displacements do occur in more than
one plane, then either the longitudinal-transverse
modes (¥,; ¥,) are present, or the purely longitudi-
nal mode (¢,) is mixed in with one of the purely
transverse modes (¥, ¥,, &,,).

It is important to note that until the problem of
the generation of the various types of waves by
particular sources is solved, our theory can only
be verified by the presence of —but not ruled-out
by the absence of—the various possible modes in-
dicated in Egs. (43). This is unfortunate. But new
doorways have been opened in the area of experi-
mental tests and it is clear that gravitational tests
outside of the PPN formalism must be contem~
plated in the future,
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APPENDIX: CONSTANTS APPEARING
IN PN LIMIT (SEC. IN)

The constants appearing in the PN limit calcu-
lated in Sec. II are

Wy = Wy,
W Ew,,
WEJWw, - w,; .
in Eq. (12a)
D=1« 2Kw +K20® + 2 Kww, +iwg® ~ wg,
E El-ZKw—%wo,
=E=2K +2K*w +2Kw,;

in Eq. (12b)
D=1-2Kw+w, +K%u? - 2Kww, +iw,?,
E=1-2Kw+iw,,
F=2K(1+w,)+2Kw;

in Eq. (12¢)
H=1-2Kw - jw, +iw,;
in Eq. (13)
IEDQIIZD-SIZ’
Ei(ﬁ Eo
2\D "D,
LoL(3 _Fo, E)
L=3\p b, )

I

3 ’

mn
ob l o

L=—(@a+4f) [ f(1 -2Kw)+2Ka(l ~Kw)],
Ms-(a+4fy 2Ka+3f),
N=2K(f +KaXa +4f)";

in Eq. (164)

. =1, (1-2Kw+L~3w,- Mw)-3-M,
S,5l,(1 -2Kw+L ~Fw,— Mw)+N-2K,
Bo=I,(1-2Kw+L - 3wy~ Muw,)~L~Mw,;

in Eq. (165;) '
Rys1-2Kw+3w,,
R,=1,{Mw,=-L)+M,

Ry=1,(Mw,—L)~N,

Bi=l,(Mwyg~L)+L+Mw,;
in Eq. (20a)

K,2E,C,~Fo(3C,~C,),

K=~ KP(3C, —CoP +2KC (30, - C) +3C %,
K= 7(8,C,+5,(3C, =~ COI E,+ Fy)
- 37F [ RC, +R,(3C, = C I,
K,=1 E,By~F(R,+3B,~By)l;
in Eq. (20b)
K,=EC, +F(3C, - C,).
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Gravitational-wave observations can be powerful tools in the testing of relativistic the-
ories of gravity. Future experiments should be designed to search for six different types
of polarization, and for anomalies in the propagation speed of the waves: lcg," waves

—~Com waves |2 107Cem waves. This Letter outlines the nature and implications of such

measurements,

Several viable gravitation theories now exist
that differ radically when describing strong gravi-
tational fields, but that can be made to be identi-
cal to each other and to general relativity in the
“post-Newtonian limit.” During the next twenty
years, one will probably not be able to distin-
guish these theories from general relativity or
from each other by means of “solar-system ex-
periments” (gravitational redshift, perihelion
shift, light deflection, time delay, gyroscope
precession, lunar-laser ranging, gravimetry,
Earth rotation, ...). However, gravitational-
wave experiments offer hope: These theories
differ in their predictions of (i) propagation speed
and (ii) polarization properties of gravitational
waves.

(i) Some of the competing theories'™ predict
the same propagation speed for gravitational
waves (cp) as for light (c.r,). But others®™" pre-
dict a difference that, in weak gravitational fields,
is typically -

(¢g— €em)/c ~(1/c®) X |Newtonian potential |

~1077, for waves traveling in our region of the
Galaxy or in the field of the Virgo cluster, An
experimental limit of < 107® would disprove most
such theories and would stringently constrain fu-
ture theory building, Perhaps the most promising
way to obtain such a limit is by comparing arriv-
al times for gravitational waves and for light that
come from the onset of a supernova, or from
some other discrete event, If current experimen-

tal efforts continue unabated, by 1980 one may de-
tect gravitational-wave bursts from supernovae

in the Virgo cluster (~three supernovae per year,
11 Mpec from Earth). Then a limit of

‘cg- Ceml/€c £107°x (time-lag precision)/

(1 week)

will be possible.

(i1} All of the currently viable theories fall into
a class called “metric theories of gravity.”®®
Recently, we have completed an analysis of the
polarization properties of the most general weak,
plane, null wave permitted by any metric theory.
In general, the wave involves the metric field g,
and also auxiliary gravitational fields, such as
the scalar field ¢ in Dicke-Brans-Jordan® theory.
We include all these contributions by basing our
analysis on the resultant Riemann tensor, the
only directly measurable field. Our analysis al-
80 applies to waves that are approximately, rath-
er than exactly, null.’*® Details will be published
elsewhere.!

Our main result is that the Riemann tensor of
the most general wave is composed of six modes
of polarization, which are expressible in terms
of the six “eléctric” components Ry, (i, spatial)
that govern driving forces in a detector.!* Conse-
quently, curvently feasible detectors can obtain
all measurable information conlained tn the most
general wave permilied by any metric theory of
gravity. It is important that future experiments
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be designed to measure 2il six “electric” compo-
nents. .

'The amplitudes of the six polarization modes
are related to the “electric” components R,,,, in
the following manner: Use coordinates ixyz; let
the wave propagate in the +2z direction. The six
amplitudes are, in the notation of Newman and
Penrose,'® two real functions V¥,{x), ®,,(4) and
the real and imaginary parts of two complex func-
tions ¥(u), ¥,(u), whereu=t-2z/c is the “retard-
ed time.” Then

¥, =~ 4R e

V=4 (= Ropu +iRyomw)s

¥, =R 030 = Ryoro + 2R 10505
o0 = = (Ryge0 + B yo50)-

Figure 1 shows the action of each mode on a
sphere of test bodies. ¥, and ¢,, are purely
transverse, ¥, is purely longitudinal, and ¥, is
mixed. General relativity permits only the two
¥, modes. :

The entire Riemann tensor of any observed
wave can be reconstructed from these amplitudes.

-
-

p

(e) Re ¥y {f)

FIG. 1. The six polarization modes of & weak, plane,
null gravitational wave permitted in the generic metric
theory of gravity. Shown is the displecement that each
mode induces on a sphere of test particles. The wave
propagates in the +z direction (arrow at upper right)
and has time dependence cos{wt). Solid line, snapshot
at wt =0; the broken Une, one at w¢ =x, There is no
displacement perpendicular to the plane of the figure,

ImVy

Comparison with waves permitted by various met-
ric theories of gravity then allows one to rule out
some theories. To facilitate this comparison,

we have set up a classification scheme for waves
based on the properties of the six amplitudes un-
der certain Lorentz transformations. We choose'
a restricted set of “standard observers” such

that (a) each observer sees the wave traveling in
the +2 direction, and (b) each observer sees the
same Doppler shift, e.g., each measures the
same frequency for a monochromatic wave. These
standard observers are related by the subgroup
of Lorentz transformations that leaves the wave
vector k, k=vu, invariant (“little group”). The
six amplitudes {\Dz, v, ¥, ®,,} are generally ob-
server dependent. However, there are certain
“invariant” statements about them that are true
for all standard observers if they are true for
one. These statements characterize invariant
classes of waves:

Class II;; ¥,#0. All standard observers mea-
sure the same nonzero amplitude in the ¥, mode.
{But the presence or absence of all other modes
is obgerver dependent.)

Class I,: ¥,=0#¥,. All standard observers
measure the absence of ¥, and the presence of ¥,.
{But the presence or absence of ¥, and @,, i{s ob-
server dependent.)

Class Ny ¥,=0=¥,, ¥ #0¥¢,,. Presence or
absence of a1l modes is independent of observer,

Class N,: ¥,=0=¥, ¥ #0=9,, Independent
of observer.

Class 0;: ¥,50=¥,, ¥, ,=0#¢,,. Independent
of observer. Class II, is the most general; as
one demands that successive amplitudes vanish
identically, one descends to less and less gener-
al classes. The class of the most general per-
mitted wave in some currently viable metric the-
ories is, for general relativity,' N,; Dicke-Brans-
Jordan,? N,; Will-Nordtvedt,® IlI,; Hellings-Nordt-
vedt,* N,; Ni's new theory,® II,;; and Lightman-
Lee,® I,. All these but Dicke-Brans-Jordan theo-
ry can be adjusted to have the same post-New-
tonian 1imit as general relativity, for certain
choices of possible cosmological models and ar-
bitrary theory parameters.

We see that measuring the polarization of grav-
itztional waves provides a sharp experimental
test of theories 'of gravity. The class of the “cor-
rect” theory 18 at least as general as that of any
observed wave, The observation of a wave more
general than N, would contradict general relativ-
ity but would be consistent with other viable theo-
ries.?"® Weber'® has initiated such experiments
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by searching for the ¢,, mode, with negative re-
sults,

To test theories, an experimenter must classi-
fy the waves thatl he detects, If he knows the di-
rection of a wave a priori (e.g., from a particu-
lar supernova), he can directly extract the am-
plitude of each mode from his data and determine
tbe class. If he dces not know the direction, he
cannot extract the amplitudes or determine the
direction without 2pplying some further assump-
tion to his data {e.g., that the wave is no more
general than N, and is therefore purely trans-
verse). But he can always place limitations on
what the class may be (e.g., if driving forces in
his detector do not remain in one plane, the wave
must be more general than N,, i.e., I, or I).

We now sketch the arguments that lead to these
results. Consider a weak, plane, null wave de-
scribed by a linearized Riemann tensor Ras, ),
with Vu- V4 =0. Work in an approximately con-
stant quasiorthonormal null tetrad® {k, I, i, m*),
where k=vVu. The Bianchi identities imply that
there are six functionally independent real com-~
ponents of the Riemann tensor; take them to be
{¥,, ¥, ¥, &,,}, as above. (The other components
are &, =¥, —2A=%d, =¥, &= =0, =¥,=¥,
=0,) Consider the “little group™® E(2) of Lorentz
transformations of the tetrad which fix k. k' =k,
M’ =e" (B +ak), 7" =T+a*H +ai*+aa*k, where a
is complex and ¢ is a real phase. The action of
E(2) on the amplitudes {¥,, ¥, ¥,, ¢,,} is

\I‘?' =¥, ¥ /'=e (¥, +3a *¥.),
¥, =e 2 (¥, +da ¥, + 6a*2,), (1)
%, =P, +20%,+ 20+ * + Ba*a¥,.

The invariant classes of waves that are defined
above correspond precisely to the different repre-
sentations of E(2) that can arise through Egs. (1).

The helicity (spin) decomposition of a wave is
E(2) invariant only for classes N,, N,, and O,.
Theories in classes N,, N,, and O, provide a uni-
tary representation of F(2) which i8 a direct sum
of one-dimensional massless-particle representa-
tions,'¢"1® containing at most spins 0,+ 2. Theo-
ries in classes II, and III; provide a reducible
representation of E(2) which is not completely re-
ducible and is therefore nonunitary'®; it is likely
that such theories cannot be quantized. No other
representation of E(2) (such as one with “continu-
ous spin”'®) can occur.
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Gravitational-wave observations can be powerful tools in the testing of relativistic theories of gravity—
perhaps the only tools for distinguishing between certain extant theories in the foreseeable future. In this
paper we examine gravitational radiation in the far field using a formalism that encompasses all “metric
theories of gravity.” There are six possible modes of polarization, which can be completely resolved by
feasible experiments. We set forth a theoretical framework for classification of waves and theories, based on
the Lorentz transformation properties of the six modes. We also show in detail how the six modes may be
experimentally identified and to what exteni such information limits the “correct™ theory of gravity.

I. INTRODUCTION

Within the past few years, as experimental
tests of gravity have been analyzed and refined,
and as gravitation theories have been systemati-
cally compared,! most extant theories have been
ruled out. Indeed, analysis of data from existing
“solar system” experiments promises to distin-
guish more and more clearly hetween the theories
that today remain viable. [For example, within
the next two years, a search for the Nordtvedt
effect® in lunar laser-ranging data® should either
rule out general-relativity theory (GRT),* or place
3 limit of w > 30 on the Dicke coupling coustant of
Dicke-Brans-Jordan theory.’] An elegant theoret-
jeal formalism. the “parametrized post-Newtonjan”
PPN) framework ® exists for analysis of metric
theories” in the limit of weak gravitation and slow
motion. All gravitation experiments that have
played key roles in ruling out theories. axcept the
Ebtv8s-Dicke experiment.® fall within the PPN
framework. The EStvds-Dicke experiment itself
probably forces the “correct” theory of gravity to
be a metric theory™® and, in fact, there are no
known complete” nonmetric theories which do not
violate the E8tv8s-Dicke experiment.

But the PPN framework has fundamental limita-
tions, In the last year or so, new metric theories
of gravity, 27" with widely varving structures,
have been invented which are virtually indistin-
wuishable from one another and from GRT in the
post-Newtonian limit. Existing and proposed solar-
system expen’ments cannot hope to distinguish be-
tween such theories in the foreseeable future.

There is, however, a strong element of hope: that
new theories’® ™ and GRT differ markedly in the
observable properties of their gravitational waves.
With this motivation, we have embarked upon a
program to develop a theoretical foundation for
the analysis of gravitational waves in arbitrary
metric theories of gravity~—a foundation which is
theory-independent and analogous to the PPN
framework. (Gravitational-wave phenomena fall
outside of the PPN framework.) We feel that ex-
periments to detect gravitational waves from as-
tronomical sources can prove to be a powerful -
experimental tool, in the foreseeable future, for
ruling out gravitation theories,

The idea of building a theory-independent frame-
work for analyzing gravitational-wave experi-
ments was first conceived of by Wagoner.!? At
about the same time, and independently, our
group was analyzing the gravitational -wave prop-
erties of a particular metric theory—one that two
of us had recently invented.'* When our analysis
was near compietion (several months after we
learned of Wagoner’s ideas), we suddenly realized
that our theory exhibits the most general type of
gravitational wave admitted by any metric theory-—
and that, therefore, with a mere change of view-
point, our analysis would become the general
framework that 'V.Vagoner had proposed construct-
ing. Upon contacting Wagoner we discovered that
he and Will had already proceeded a long way
toward the construction of this same framework.
We therefore published a brief account of the
framework joinily with them.'® This paper pre-
sents a more detailed account of our “Caltech”
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version of the framework. )

In a future paper we hope to treat the generation
of waves by particular sources in arbitrary theo-
ries and thereby “move in from the far field.”

Our fundamental results are that the most gen-
eral null or nearly null wave has six independent
polarization modes, which can be classified ac-
cording to their behavior under Lorentz trans-
formations. Various theories admit some subset
(perhaps all) of the six possible modes. If the
wave direction is known, the modes can be re-
solved uniquely by feasible experiments; if the
direction of the wave is not known, partial but not
complete resolution can be obtained. In either
case detection information limits the correct the-
ory of gravity.

Section I summarizes the properties of the gen-
eral waves, while Sec. III gives the details of
derivations. Section IV discusses application to
particular theories and their classification within
the formalism; Sec. V gives a complete prescrip-
tion of how to analyze and classify waves that are

observed by means of gravitational-wave detectors.

(For a review of the prospects of gravitational-
wave astronomy, we refer the reader to Ref. 16.)

II. PROPERTIES AND CLASSIFICATION OF
WEAK, PLANE, NULL WAVES:
A SUMMARY OF RESULTS

A. Definition of Gravitational Waves in Metric Theories

In any metric theory of gravity,” just as in GRT,
the response of matter to gravity is determined
solely by a universal, covariant coupling to the
physical metric g (Einstein’s equivalence prin-
ciple’). The equation of motion of matter is given
byl7

v'T=0,

where V is the covariant derivative associated
with g,—and T is the matter stress-energy tensor.
This equation ensures that test particles and pho-
tons travel along timelike and null geodesics of
g, respectively. Metric theories differ only in the
manner that matter acts back to generate g—i.e.,
only in their gravitational field equations. Some
theories postulate auxiliary gravitational fields,
such as the scalar field ¢ in Dicke-Brans-Jordan
theory,® which enter into the field equations but do
not act on matter directly.

It is the universality of the coupling to the metric
that permits a theory-independent discussion of
the propagation and detection of gravitational
waves for metric theories., On the other hand, the
emission of gravitational waves involves the de-

tailed structure of field equations, and is there-
fore thenry-dependent. Emission will not be treat-
ed in this paper.

Consider an experimenl employing matter of
negligible seli-gravity in a local region to mea-
sure the static or wavelike gravitational fields
from faraway sources. One cannot define the
absolute acceleration due to gravity at a point in
the region (Einsiein’s equivalence principle?); only
the relative, tidal acceleration between two points
has observable significance. The Riemann tensor
Riem, formed from & determines these relative
accelerations, and is the sole locally observable
imprint of gravity.

Consider a freely falling observer at any fidu-
cial point J* in the region, Let him set up an ap-
proximately Lorentz, normal coordinate system

) ={t,2'},

with P as origin. For a particle with spatial co-
ordinates x' at rest or with nonrelativistic velocity
in the region, the acceleration relative to P is
{for sufficiently small |x* |)

af®*¥=—R g2, (1)

where R, are so-called “electric” components
of the Riem due to waves or other external grav-
itational influences.

A gravitational wave in a metric theory involves
the metric field £ and any auxiliary gravitational
fields that might exist. But the resultant Rjem is
the only measurable field. So for this paper we
define a “gravitational wave” in terms of its Riem:
A “weak, plane, null wave” in a metric theory is
a weak, propagating, vacuum gravitational field
characterized, in some nearly Lorentz coordinate
system, by a linearized Riem with components
that depend only upon a null “retarded time,”
ust-z/c:

Ryyor =Ryyor (u) .

Vu, which is proportional to the wave vector, is
null with respect-to the physical metric g Yu-vu
=0. Inu=t-2/c, cis the speed of light, and the
coordinates are oriented such that the wave travels
in the +z direction.

Two restrictions appear in this definition: (i)
Waves must travel at exactly the local speed of
light; (ii) waves must be exactly plane. These
restrictions turn out to be good approximations in
feasible experiments for all viable metric theories
of gravity: see Secs. IIl and IV for a discussion
of these points. -

The fundamental properties of these waves fol-
low immediately from the algebraic and differen-



tial identities that Riem obeys. There are six
algebraically independent components of Riem in
vacuum (Sec. III proves this assertion and suc-
ceeding ones), which correspond to six modes of
polarization. In a given, rnearly Lorentz coordi-
nate frame of the above type, we group these six
components into amplitudes of definite helicity s
{where s =0, + 1, £+ 2) under rotations about the

z axis. There arise two real amplitudes

¥, (s=0), @, (s=0),

and two complex amplitudes

Vo) (s=21), ¥,(u) (s=22).

Here and throughout this paper one complex am-
plitude is equivalent to two real amplitudes. We
will always describe a gravitational wave by its
six amplitudes {¥,, ¥, ¥,,¥,,} in the six polariza-
tion modes of a given coordinate frame.

These amplitudes are related to the “electric”

"
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FIG. 1. The six polarization modes of weak, plane,
null gravitational wave permitted in the generic metric
theory of gravity. Shown is the displacement that each
mode induces on a sphere of test particles. The wave is
propagating in the + z direction (arrow at upper right)
and hag time dependence coswt. The solid line is a
suapshot at W = 0, the broken Hne one at 0t 5. There
is no dispiacement perpendicular o the plane of the -

~ure.

components of Riem, which govern relative ac-
celerations through Eq. (1), by

O, () = = 4R, 0.002) (2a)
V()= = YR, 0+31 Rygo (2b)
9, (1) = ~R 000 + Royoy0 + 28 Rygyo s (2¢)
B0 () = —Rg00 =R yoy0 - (2d)

Figure 1 shows the displacement that each polar-
ization mode induces on a sphere of test particles;
¥, and &,, are purely transverse, ¥, is purely long-
itudinal, and ¥, is mixed. If an experimenter knows
the wave direction, he can uniquely determine
{¥,, ¥, %, &} by measuring the driving forces ing
his detector (see Sec. V for further details), and
he can reconstruct Riem. Therefore, currently
feasible dectors can obtain all the measurable in-
formation in the most general wave permitted by
any metric theory,

B. Lorentz-Invariant E(2) Classification of Plane Waves

In any metric theory, the local nongravitational
laws of physics are those of special relativity. So
it is fruitful to sort waves into Lorentz-invariant
classes, depending on the behavior of the ampli-
tudes under Lorentz transformations. Observers
in different Lorentz frames (e.g., in relative
motion) can then agree on the classification of any
wave.

Rather than use the entire Lorentz group re-
lating observers in all frames, we choose a re-
stricted set of standard observers such that (1)
each observer sees the wave traveling in his +2
direction, and (ii) each observer sees the same
Doppler shift, e.g., each measures the same fre-
quency for a monochromatic wave. These stand-
ard observers are related by the subgroup of
Lorentz transformations that leaves the vector
Vu invariant (little group, E(2)]. The parts of
the Lorentz group left out of the little group are:
(a) [owing to requirement (i)] pure rotations of
Yu which merely change the direction of wave
propagation, and (b} [owing to requirement (ii)]
pure boosts along Vu which merely change the
observed frequency and scale each amplitude up
or down independently. Without requirement (ii),
different observers would see the wave traveling
along the +z direction, but generally at different
Doppler shifts, The subgroup relating the stand-
ard observers would be bigger {four-dimensional),
but the invariant classes would be the same.

The six amplitudes {¥, ¥, ¥,,4,,} of a wave are
generally observer-dependent; their transforma-
tion law is given in Sec. Ilil. However, there
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are certain invariant statements about them that
are true for all standard observers if they are
true for any one. These statements characterize
invariunt E(2Y classes or waves (Notation is ex-
ptained in Sec. J1I}):

Class Il;. ¥,#0. All standard observers mea-
sure the same nonzero amplitude in the ¥, mode.
(But the presence or absence of all other modes
is observer-dependent.)

Class Ifl;. ¥,=0#¥,. All standard observers
measure the absence of &, and the presence of ¥,.
(But thé presence or absence of ¥, and &, is ob-
server-dependent.)

Class N3. ¥,=0=%,; ¥, # 0#&,. Presence or
absence of all modes is independent of observer.

Class N,, ¥,=0=¥; ¥,#0 =&,,. Independent of
abserver.

Class 0;. ¥,=0=¥,; ¥ =0# &,,. Independent of
observer.

Class 0). ¥,=0=¥%; ¥ =0=&,. Independent of
observer. All standard observers measure no
wave.

Class II, is the most general. As one demands
that successive amplitudes vanish identically, one
descends to less and less general classes. Figure
2 exhibits these relations of generality among the
classes. In this paper, “more (or less) general”
for classes always refers to Fig. 2. (For ex-
ample: 0, is less general than N, IIi,, and II,,
but neither more nor less general than N,.) The
E(2) class of a particular metric theory is defined
as the class of its most general wave (see Sec. IV
for illustrations).

I

6

I,

/ N3
N, \o
Cs

FIG. 2. The E(2) classes of weak, plane, null waves,
displayed in order of increasing generality towavd the
top. Desecending along a line represents specializing
the class by demanding that some amplitude vanish for
all observers. One class is said to be more general than

another if it is possible to descend from one to the other
along lines.

The fundamental theoretical implication of our
paper is that the class of the correct theory of
gravity is at least as general as the class of any
observed wave.

Once theorists are confident of a particular
classical theory of gravity, they will wish to quan-
tize it. Then it should be possible to associate
the amplitudes {¥,, ¥,, ¥,, &,,} with massless quanta
of definite and Lorentz-invariant helicity. Section
III demonstrates that the helicity content of class
I, is not Larentz-invariant, nor is that of IL;.
Furthermore, an associated pathology arises for
these classes: The amplitudes form a nonunitary
representation of the inhomogeneous Lorentz
group, contradicting the tenets of relativistic quan-
tum mechanics.’® Attempts to quantize theories of
class I or III; will therefore face grave difficul-
ties.

These difficulties do not arise for theories of
class N, or less general: There, ¥, and &,, act
like massless quantum fields with s =12 and 0.

III. DERIVATIONS

This section may be skipped without essenﬁal
loss of continuity.

A. Tetrad Components of Riem for Waves

A quasiorthonormal, null-tetrad basis' is es-
pecially suitable for discussing null waves. At any
point P, the null tetrad (&, I,m,m) is related to the
Cartesian tetrad introduced in Sec. I by

E=(2 (et o), (32)
1=(@)er-es), - (%)
m=(2Y"(e; +ieg), (3¢)
W= (2" ey ieg). (3d)

Throughout this section we follow Sec. II in ori-
enting the axes such that the wave travels in the
+z direction; u={-z/c. Equivalently, we choose
&, one of the tetrad legs, proportional to the vec
tor Vu. It is easily verified from Egs. (3) that
the tetrad vectors obey the relations

“kelemefiel, @

while all other dot products vanish.
We adopt the following notation for null-tetrad
components oftensors X:

Ky n =Xy e e b7, L)

where (a,b.c, ...) range over (&1, m,m).

Central to our later discussions will be the
transiormation properties of the components of
Riem under the action of some subgroup of the |
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Poincaré group. In view of this, we first split
Riem into irreducible parts: the Weyl tensor.
the traceless Ricci tensor, and the Ricei scalar.
We follow Newman and Penrose'® in naming their
retrad components ¥, ¢, and A, respectively.

In general, the ten ¥’s, nine &’s, and A are al}
algebraically independent. When we restrict our-
selves to nearly plane waves, however, we find
that the differential and algebraic properties of
Riem reduce the number of independent compo-
nents to 8ix by the following arguments.

Consider a weak, plane, null wave. It is charac-
terized by the fact that the components of its Riem
are functions of the retarded time u only. Of their
derivatives, only those with respect to the re-
tarded time u will be nonvanishing:

R e 5=0, (6)

where {(a,b,c,d) range over (&1, m,m), while
(b,q,7, ...} range over (k,m,m) only.

The covariant differential Bianchi identities and
the symmetry properties of Ry, are necessary
and sufficient to guarantee that the linearized
Riem is derivable from a metric perturbation,?®

Lo “go + Py - (7

Using Eq. {6) we see that these identities imply
the relations

Rapioa 11505 Rappert » (8)

where [ is a fixed index. Equation (8) implies
that

Rappe =0=Rpear » (9

except for a trivial, nonwavelike constant. Con-
sequently, all nonvanishing components of Riem
must have the form R,,, . Taking into account the
symmetries of Riem, we thus see that there are
only six independent, nonvanishing components.
Corresponding simplifications are induced among
the Newman-Penrose quantities. For a plane wave,
they are'®

{i) Weyl tensor:

=¥, =0, {10a)
¥, = ~3= Rz (10b)
¥=~% Rium, (10c)
¥, =~Rimm (10d)

{i1) traceless Ricci tensor:

Byo = Poy =Py =Py =85, =0 (11a)
=~ R (11b}

d,=2y,, (11c)

dy, =4y, =, (1td)
(iii) Ricei scalar:

A==3¥. (12}

As indicated in Sec. I, we shall choose the set
{8, ¥, &) (b, and ¥, complex) to deseribe, in
a given null frame, the six independent compo-
nents of a wave in the generic metric theory. Equa-
tions (10) and (11) give the members of this set in
terms of the null -tetrad components of the Rie-
mann tensor. Equations (2) give the members of
the set in terms of the directly observable “elec-
tric” components of the Riemann tensor.

In those cases where one calculates the Rie-
mann tensor from a metric perturbation &,

Eq. (7), the relation between {¥,,¥,, ¥,, &,,} and
derivatives of ,, may be found in Appendix A.

B. Behavior of Tetrad Components Under
Lorentz Transformation

Consider two standard observers O and 0’, with
tetrads (&, I, m,m,) and (2, I, m’, m'); then k=%
« Vu. Suppose O has measured the amplitudes
{%,,%,¥, &,} of a wave; how do we predict the
amplitudes {¥ , %, ¥, &,} measured by 0'?

In group-thecretic language, we are asking the
transformation properties of the amplitudes under
the little group of Lorentz transformations that
leaves the wave vector fixed. The various group
representations formed by the amplitudes {&,, ¥,,
¥,, &,,} provide us with a means for classifying
waves.

The most general proper Lorentz transformation
relating the tetrads that keep k fixed 1s%

=k, (13a)
m =e'im+ ak), (13b)
m'=¢ ¥ (m + ak), (13¢)
U=l+am+am+aak, {13d)

where a is an arbitrary complex number that pro-
duces null rotations,®® (particular combinations of
boosts and rotationg), while ¢, which ranges
from Oto 27, is an arbitrary real phase that pro-
duces a rotation about ¢;. The transformations
deseribed in Eqs. (13) form a subgroup of the
Lorentz group which is globally isomorphic to the
abstract Lie group E(2), the group of proper rigid
motions in the Euclidean 2-plane. In the latter
group, ¢ represents the rotations in the plane and
o the translations. We denote a particular ele-
meant of E(2) in Eqs. (13) by (¢, a). The law of
composition is (@', o’ ), a) =(9’ +y, a’+ ¥ a).
The transformation induced on the amplitudes of
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a wave by g, a) is

¥ o=, ' (14a)
W =TV + Ba,), (14b)
W =e Ty, +4ad, + 607Y,), (14¢)
@, =8, +20¥, + 2a¥, + boa ;. (14d)

Now consider a set of observers related to one
another by z-axis rotations (¢, 0). A quantity W
that transforms under these rotations as M’
=explis ¢ )M is said to have helicity s as seen by
these observers. We see from Eqs. (14) that:
the amplitudes {¥,.¥,.¥,. ®,,} are helicity eigen-
states. Furthermore, their helicity values can
be read off easily from Egs. (14) (setting a=0=0):

¥,: s=0, {15a)
Yis=-1, ¥:s=+1, (15b)
¥ s=-2, W,:s=+2, (15¢)
&yt 5=0 . (15d)

~C. E{2) Classification of Waves

1t is evident from Eqs. (14) that the various
amplitudes {¥,,¥,,¥,, ®,,} cannot be specified in an
observer-independent manner. [Bxample: O may
measure a wave to have as its only nonvanishing
amplitude ¥, (helicity 0), while O, in relative
motion with respect to O, may conclude {hat the
wave has, in addition, ¥, and ¥, components
(helicities 0, 1, and 2).] We classify waves in
an E{2)-invariant manner by uncovering all rep-
resentations of E(2) embodied in Egs. (14). Each
such representation, in which certain of the am-
plitudes {¥,,¥,,¥,, &,,} vanish identically, is a
distinet, invariant class. The name of each class
is composed of the Petrov type of its nonvanish-
ing Weyl tensor®® (except that we do not distinguish
between II and D) and the maximum number of
nonvanishing amplitudes {»1:2,@3,\1'4,4,22}' as seen by
any observer {dimension of representation). Both
the Petrov type and the dimension of representa-
tion are independent of observer.

The various classes were delineated in Sec.

II; they are

Class I, L, #0.

Class ll;. ¥,=0#¥,.

These two classes form reducible, indecompos-
able representations of E{2). (See Appendix B for
a brief resumé of the relevant proup-theoretic
concepts.) The maximal invariant proper sub-
space is the three-dimensional one spanned by ¥,
and &,,. The helicity content of classes Il; and
III; is observer-dependent.

Class Ny, ¥,20=49,; ¥, #0% 0,,.

Class Ny, W,=0= ¥, ¥, #0=d,,.

Class 0;. ¥,<0=d; ¥, =0 2 d,,.

Classes N,. N,, and 0, form decomposable rep-
resentations of E(2) which decompose into one-
dimensional invariant subspaces spanned by ¥,
and &,,. respectively. Each of these invariant
subgpaces forms a unitary, massless-particle
representation of definite, Lorentz-invariant.
helicity (spin). The are well studied as they oc-
cur in relativistic quantum field theory.?®

Class M. W,=0=¥; ¥, =0=,,.

Class 0, forms the trivial representation.

The foregoing classification scheme is patterned
closely after Wigner's classic analysis® of wave
functions of relativistic quantum particles as
members of unitary, irreducible representations
of the Poincaré group.?” Wigner showed that each
such wave function may be taken to have a definite
four-momentum g, and to transform asa member
of some unitary, irreducible representation of
the little group that leaves g invariant. One de-
termines the “spin” of the particle from the eigen-
values of the helicity operator and its square; the
spin of the particle is completely determined once
the representation formed by its associated wave
functions under the little group is known.

For our gravitational waves, Vu is null and
nonvanishing, and the little group is E(2). Un-
fortunately, Wigner's analysis does not apply since
we are not restricted to unitary representations
of E(2). In fact, as we have seen, the representa-
tions generated by {¥,,¥,, ¥, &,,} are, in general,
nonunitary and indecomposable. The amplitudes
in classes II; and NNl cannot be identified with
massless particle fields. Consequently, it is
impossible to give a spin decomposition for these
waves.

A representation which is reducible and inde-
composable can never be unitary. This applies
to the little group E(2), and hence also to the
Poincaré group. In relativistic quantum theory,
all invariance groups must be realized by unitary
representations.’® We therefore obtain the fol-
lowing result: If a theory is of class Ii; or IIl,, it
is impossible to quantize it in a way that is Poin-
caré-invariant with respect to the local Lorentz
metric.

. Spherical Waves

Thus far, we have based our discussions on the
properiies of plane waves. The most physically
satisfactory definition of a radiation field is one
that carries encrgy off to infinity from a bounded
source. For metric theories of gravity, this cor-
responds to that part of the Riemann tensor that
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falls off as 1/(distance) asymptotically. Far
away from radialing sources, one may locally
approximate these approximately spherical waves
as plane waves. The following argument shows in
a theory-independent manner that the plane-wave
approximation will not aifect the classification
scheme.

. Adopt a (u,r.8,p) coordinate system in the wave
zone, which is assumed to be almost Minkowskian,
The line element is given by

ds?= —di? — 2du dr +v*(d6? + sin®8 dp?). (16)

Place the origin of the coordinate system some-
where inside the source. Single out the 1/r part
of the outgoing spherical waves:
1 1

Ropea = - Sapea (.8, ) + 0('7__2) . (17)
In the wave zone, observer O(r=r, 6=¢ =0) car-
ries with himself a Cartesian tetrad (eg, €3, €5, ;)
oriented such that e¢; is along the incident direction
of the wave. The two coordinate systems are re-
lated by

u=t -z, (18a)
r=2+7,, (18b)
x 1
o=+ (7). (18e)
=2 1
¢ ,r.o"'o(yuz)' (18d)

Thus O would measure

1
Rapea =7~ Sapea

1
- (u :—0 a}o *O('r?)' (19)

The differential Bianchi identities then imply

8 =R ypeic) =0(1/7"), ifc#l, {20a)

OERubl'Pa-.l]=%Lro Swms + O(L/rd),  (20b)
where semicolon and comma denote covariant and
partial differentiation, respectively. It follows
immediately from Egs. (20) that the classification
scheme based on the 1/r part of the Riemann ten-
sor is identical to that based on the plane waves.

V. APPLICATIONS TO PARTICULAR THEORIES

A. Two-Metric Theories

In all of the preceding discussion we have as-
sumed that the components of the Riemann tensor
are functions of the retarded time associated with
the “physical metric” guq, i.e.,

Ropys = Ranysl) (21a)
where
# qu pg*8=0. (21b)

This is indeed the proper approach, since the
physical metric is associated with the physical
local Lorentz frames, which are in turn the basis
for our classification scheme. In some theories
of gravity.!”'® however, gravitational waves trav-
el along null geodesics of a flat space, global,
background metric 1, while electromagnetic waves
{and neutrinos) travel along null geodesics of the
physical metric g. Equations (21) are then not
rigorously satisfied. On the other hand, if g dif-
fers from 7 locally by only a small amount in the
above-mentioned theories, Eqs. (21) are approxi-
mately correct and all of the formalism developed
in Secs. Il and 0 is applicable to a high degree of
accuracy. Call such a theory a two-metric theory
(not to be confused with a two-tensor theory,
which contains two dynamical fields). In all such
two-metric theories that we have studied, present
experimental limits on “preferred-frame ef-
fects”!+!! require, in the mean rest frame of the
solar system,

——G-ﬂ,——‘Tng “Magl 1072,
Mg

where {n,5| refers to the magnitude of a typical
element of 7,5, etc. In fact, if the difference be-
tween gqp and 7,5 is due entirely to solar system
or galactic matter, then the 1072 in Eq. (22) be-
comes 107, Equation (22) is equivalent to the
relation, again as measured in the mean rest frame
of the solar system, ‘

(22)

Ex—;—”—‘"‘—' <1072, (23)
where ¢, and c,, are the speeds of gravitational
and electromagnetic waves, respectively. Thus,
for all Lorentz observers who move at low speeds
(v << ¢) with respect to the mean rest frame of the
solar system, two-metric theories that are viable
[in the sense of no preferred frame effects and so
compliance with Eq. (22)] may be included in the
formalism of Secs. II and III.

A further important point is that Eq. (23), a
distinctive feature of two-metric theories, sug-
gests that a search for time delays between simul-
taneously emitted gravitational and electromagnet-
ic bursts could prove a valuable experimental
tool. An experimental limit of <107° for Jg-c¢, |/
¢ would disprove most two-metric theories and
would stringently constrain future theory-~building.
If current experimental efforts continue unabated,
by 1980 one may detect gravitational-wave bursts
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from supernovas in the Virgo cluster (~3 super-
novas per year). Then a limit of -

| €, —Cen | /0% 107°% (lime-lag precision}/(1 week)
will be possible.

B. Degrees of Freedom Versus Polarization Modes

We have enumerated the various independent
gravitational wave modes in the general metric
theory. This does not mean, however, that for a
given theory the maximum number of nonvanishing
modes for any abserver is equal to the number of
dynamical degrees of freedom®® in the gravitation-
al field. For a given theory, there may be- fewer
or more degrees of freedom than the number of
modes; if fewer, amplitudes in the various modes
are linearly dependent in a manner dictated by the
detailed structure of the theory (see discussion
following Sec. IVC 4 below).

C. Classification of Particuiar Theories

Table 1 gives the E(2} classification (see Secs.
1I and IH) of some metric theories in the literature
{(some of which have already been ruled out, e.g.,
the conformally flat and stratified theories®). The
classification procedure involves examining the
far-field, linearized, vacuum fieid equations of a
theory and is illustrated below by several ex-
amples. In the examples, the relevant approxi-
mated vacuum equations of a theory will be quoted
whenever necessary.

1. Geneval Relativity'

RaB =0. (2421)

From Eqs. (10), (11), and (A3) one can deduce
that

Rypn = Rimiz = Bigpen = Ryym =0, (24p)
or
¥, =¥y = 3, =0. (24¢)
Since there are no further constraints, ¥,# 0 and
the E(2) classiyication is N,
2. Dicke-Brans-Jordan Theory®
Uy =0, (25a)
Ryp—218aa R =000 0@ 5 ~18ap0y 0"
+ @ Mpias—Las ¥ *Prys), (250)
R=we ¢ ,07. (25¢)

The monochromatic plane wave solution to Eq.

(25a) is®®

= ig.*
Q=@+t etE,

(254d)

where ¢, and ¢, are constants and the wave vector
g is null. The quantity ¢, is the cosmological
boundary value of the scalar field, and @, is a
small amplilude of a wave (work only to first order

in ¢,). Then from Eq. (25¢).

R=0, (25¢)
and Eq. (25b) yields
RaB= "90—1(% e‘.\l_'l. 4adp - (25f)

Thus R, is the only nonvanishing tetrad com-
ponent of the Ricci tensor and one can conclude
that

Rinn = Riggm = Rinw =0 Rypim (25g)
or
W,=¥,=0,

&,, and ¥, #0 . {25h)

Therefore for the Dicke-Brans-Jordan theory, the
E(2) classiyicalion is N,.

3. Will-Novdtvedt Theory'!
0K, =0, (26a)
Rup—4R8s= KyyKg'' + Ky oK' p ~$&as K7 s Ky?
+ 3 K"K, g+ Kpg o) ~K (K7 g+ Kg?y

~KaKY o+ KN, (26b)
The plane-wave solution to Eq. (26a) is
I{a =Au elg_°x_+ Ba ’ (266)

where A, and B, are constant vectors and the
wave vector g is null. Again, assume A, is small
and work only to linear order in that quantity. The
vector B, is of cosmological origin. Taking the
trace of Eq. (26b) and using Egs. (26c), (A2b), and

(A4), we obtain
R=0=Y¥,. (26d)

Equation (26b) then reads

Ryp=e"*[(g-A) g, By, ~(B-q)Aadp] - (28€)

Equation (26e) indicates the relations

R,,#0, R,;;#0, R,#0, (261)
or, from Eqs. (A3),
v, 20, $,#0. (26g)

Using Eqs. (26g), Eq. (26d), and the fact that
there are no other constraints on the Riemann ten-
sor (\Iﬂ,#o), one concludes that for the Will-Nordt-

vedt theory, the E(2) classification is I,
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TABLE I. I{2) classification of various metric theories ol gravity., See Sec. IV.

E(2) Degrees of Currently  Egual to GRT in
Theory class freedom?® Cp =Cem? viable? PPN limit??

GRT* N, 2 yes yes yes
Dicke-Brans-Jordan®? Ny 3 yes yes no
Conformally flat theories® 0, 1 yes no no
Stratified theories?’ 19 1 ¢ no no
‘Will-Nordtvedti! ju s 5 yes yes yes
Lightman-Leel I, 6 no yes yes

Nit0 0 1 ng yes yes
Hellings-Nordtvedt!? N, ? yes yes yes

3 If a theory can be made to coincide with GRT in the PPN limit® by a particular choice of
arbitrary constants and/or possible cosmological boundary values, we put a “yes” in this

column,
b Typical of scalar-tensor theories.?®
¢ Depends on the particular theory.

4. Stratified Theories™

Qe =0, (27a)

g=e2h(w)ﬂ+ (ezf(w) -e”“”)_t_i__t_@ éi’ (27D)
or

Lop =€ g + (€% —€?)8%, 6%, (27¢)

in a particular coordinate system, where f and &
are given, unequal functions of the scalar field ¢
and d¢ is a timelike one-form. The wave solution
to Eq. (27a) is

o= gt o, e''x, (27d)
as in Eq. {25d) and one can compute the Riemann
tensor from g, ; using Eqs. (A1), (27e), and (27d).

Contraction with g, then gives the linearized Ricci
tensor:

Rps=g e ({(F+ 8" gp4s
-2(f'*g')qnéo(545)] ) (27e)
where f'=df/d¢, etc. From Eg. (27e) one finds

R=-2¢,(f' -g" )e'CE (" =0. (274)

From Eq. (27f), one concludes that ¥, #0 [ef. Eq.
(A4)], and consequently, for stratified theories,
the E(2) classification is II;.

Here we have a perfect example of a discrepancy
between the number of dynamical degrees of free-
dom and the number of nonzero modes in the E(2)
classification. Stratified theories clearly have
only one dynamical degree of freedom, arising
from the scalar field ¢ —yet some Lorentz ob-
servers see all six gravitational wave modes.

The reason for this apparent paradox is that the
“prior geometric”” oneform dt introduces another
vector into the problem in addition to the wave vec-
tor g—a vector which transforms in a complicated
way under the Lorentz transformations which leave
g fixed. The Ricei tensor does not “point” only
along the ¢ direction (cf. Eq. (27¢)] and any pure
mode feeds all the other modes under Lorentz
transformations.

V. EXPERIMENTAL DETECTION AND
CLASSIFICATION OF WAVES

A. The Ideal Detection Experiment

An experimenter attempting any foreseeable ex-
periment to detect gravitational waves™ faces two
fundamental limitations which hinder the E(2)
classification of detected waves: {i) He can mea-
sure only the six “electric” components R, of
Riem, not all twenty,* and (ii) he may not know
the wave direction a priori; he may be hoping to
infer it from his data, as does Weber.3> We will
find that the consequences of these limitations are
that the experimenter can generally classify a
wave unambiguousiy only if he knows the direction
a priori, and that he can never determine the di-
rection using a single detector. Other limitations
(antenna pattern, noise, time resolution, band-
width, need for coincidence detection) complicate
the task further, but.to treat the heart of the clas-
sification problem, we will ignore them.

Consider an ideal detection experiment: The
experimenter uses the coordinate system of Sec.
I. He measures the relative accelerations of test
masses and obtains via Eq. (1) the six components
R4y of Riem, with perfect accuracy and infinite
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time resclution.
symmetric,
components

He expresses his data as a 3x3,
“driving-force matrix” §(t), with

Sy (‘)Eﬂtoja(u) )

here ¢ is his proper time, and he takes his spatial
origin at his detector, so {=uwu.

The experimenter knows, by time coherence of
the signal or by some other means, that the wave
originates in a single, localized source. He
denotes the wave direction (which he may or may
not know a priori) by a spatial unit vector k. (In
previous sections we have taken k=2;; here it
is arbitrary.)

Let us rename, for this section only, the am-
plitudes of a wave with direction k, measured at
the detector:

b, & t)=%0) , (28a)
(K, t)= Rey(a), (28b)
pa(K, £)=Im () (28¢)
bk, t)=Re¥, (), (28d)
s (&, t)=Im¥, (), (28e)
1k, t)=@,,(u) (28)

Let the indexA =1, 2,...,6 run over these six
modes. The amplitudes P,(k, ¢) are real.
For the case k=e,, Egs. (2) imply

"%@44— be) 'lips -2p,

S= iy 3o-p) 264 ],
—2p2 2PS —spl
or
s(t)=2p,,(‘,-,t)§A(€;), (29)

where “basis polarlzation matrices” E A(' ) belong-
ing to wave direction k=¢; are defined by

.foo0o0 001
E(6;)=-6{ 000 |, E,e)=-2{000 |,
001 100
ooo\ . f1 00
EyE)=2{ 001 |, g(é;):-i 0-10},
010 0 00
(30)
(foro f1o0
Ey)=5( 100}, EEp)=-3{ 010
000 000

Equation (29) represents 5(1) as a superposition
of modes with k =&;.

For any other k, just rotate these matrices: Let

R be a 3x3 rotation matrix™ that takes € into k:
k=R%; .

Define unit polarization matrices EA(E) for wave
direction k by

E ®=RE,GE)RT.

Then for any $(¢) and any &, there is the unique
representation

s(t) =y &, ) E,R); (31)
A

the amplitudes p,(%, t) may be extracted from S(t)
by

pak, t)=C, Trace(E,&)S(#)) , (32)
where C, are normalization constants:
C,=(%,3%,4,2,2,2).

Equation (32) follows from Eq. (31) and an orthog-
onality property of the E,(k):

C, Trace(EA(f()EB(E)) =08, .

Equations (31) and (32) embody an important
principle: Any measured §(t) can be represented
uniquely as a superposition of the six modes be-
longing to any arbitrary wave direction k. Equa-
tion (32) specifies the amplitude in each mode of
this wave. This wave is generally of class II;, but
it can be less general for certain S() and certain E.

The classification procedure now splits into two
cases: k known and & unknown.

[Do driving forces remain n a fixed fine? : J
1{Yes ]No
{ Do driving forces remain in o fixed plane? J
2 [ves 3 ‘No
Are dnvmg forces "pure '
monopole®?

a1!Yes ]No
Are driving forces

pure quodrupole"'ij

a.ii lYes e |No

Is there o fixed & kvei
such that koS(i)uklO’?

lls there o ﬁxedE l
| such that ReS(1)eR=0"? !

No iYes No

jul A\ 10,
@ \ Ny QH‘>
FIG. 3. Prescription for findlng posslble E(2) clnssos
for n wave of unknown directlon k givon the driving-
force matrix S(£). Boxes contain tests involving S(t)
and circles contain possible classes. See text of Sec. V.

-
&

(no)

=




B. The Case of Known Direction

The experimenter knows K « priori if the source
of a gravitational -wave that he detects can be iden-
tified with an object observed by means of electro-
magnetic radiation (light, radio, x ray). There are
also purely gravitational methods for determining

. k. For example, if several detectors a distance
- I apart, each with time resolution << D. ¢,
detect a sharp wave burst with pulse width << D¢,
then experimenters can determine k from the
relative time of arrival at each detector. For D
~ radius of Earth. D c~13 msec.

Knowing k, the experimenter extracts from S(¢)
the amplitudes p,(k, t) by Eq. (32). Knowing the
amplitudes, he classifies the wave unambiguously,
using the prescription given in Sec. Il. The theo-
retical implications of his results are discussed in
Sec. VE below. )

C. The Case of Unknown Direction

If the experimenter does not know K a priori, he
cannot hope to determine it from §_(f ) without fur-
ther assumptions; he can fit $(¢) equally well for
any k in the sky by using Egs. (31) and (32).
Neither can he extract the p, unambiguously. How-
ever, knowledge of S(¢} always provides informa-
tion which limits the E(2) class of the wave and al-
so the class of the correct theory of gravity (see
Sec. VE below).

He limits the possible class of the wave in the
following way: For each arbitrary k in the sky,
he computes the va(}?, ¢) via Eq. (32) and determines
the E(2) class associated with that k. By letting
% range all over the sky, he obtains the set of
possible E(2) classes for that wave.

For a given $(1), the following recipe yields a
complete analysis of the possible E(2) classes of
the wave: One distinguishes several cases ac-
cording to the form of S(¢). Figure 3 diagrams this
recipe as a flow chart.

Case 1. Driving forces remain in 2 fixed line.
There is a fixed coordinate system in which

(1)

The pattern of forces is as in Fig. 1(d); but prop-
agation direction need not be as in Fig. 1(d). Con-
clusion: The wave is II; or N,.

Case 2. Driving forces remain in a fixed plane,
There is a fixed coordinate system in which

).

A(2) 0 0
000
0 00

(33)

Ae) p(e)o
S{H)=1 u{t) (1) 0
c 0 0

(34)
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but none in which Eq. (33) holds. The wave may
always be Il;. In addition, two separate deter-
minations must be made: (a) Can the wave be0,,
N, or N;? (b) Can the wave be ITI,?

Test 2a. For 0,, N,, or Nj.

(i). Driving forces are “pure monopole”:

M&y=p(t), uw(t)=0. (35)

The pattern of forces is as in Fig. 1(c¢); but the
wave need not be pure &,,. Conclusion: The wave
may be 0,. (Furthermore, the wave cannot be
II,; test 2.b is always failed.)

(ii) Driving forces are “pure quadrupole”:

Miy=—-v(t). (36)

The pattern of forces is as in Fig. 1(a) (and the
principal axes may rotate with time in the trans-
verse plane); but propagation direction need not
be as in Fig. 1(a). Conclusion: The wave may be
N,.

(ili) Driving forces are neither “pure monopole”
nor “pure quadrupole”: Neither Eq. (35) nor Eq.
(36) holds. Conclusion: The wave may be N,.

Test 2b. For I;: The wave may be I, if, and
only if, there exists a {ixed unit vector & not nor-
mal to the plane of the forces [i.e.,

E *E; B
in the coordinates of Eq. (34)] such that
keS(t)rk=0. (37)

The complete set of possibilities for Case 2 is I,
plus the outcomes of test 2a and test 2b.

Case 3. Driving forces do not remain in any
fixed plane: Equation (34) does not hold in any
fixed coordinate system. The wave may always
be II;. It may be III, if, and only if, there exists
a fixed unit vector k such that

k-s(¢)-k=0. (38)

Note that when the driving forces do not occur
in one plane and Eq. (38) is violated, the wave
must be I,.

D. Guessing-f

We have emphasized that k can never be ex-
tracted from $(t). However, the fact that a cer-
tain §(1) can be fitted by a wave of a certain class
less general than II; must weigh as strong circum-
stantial evidence that the wave is actually of that
class. If one is willing to assume that the sim-
plest allowed classification is correct, the kis
generally fixed uniquely (up to an inevitable anti-
podal ambiguity, k- -E).

Referring to the recipe above, the itnformation
that one can guess in this way is as follows.
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Cnse 1. If the wave is N,, K lies anywhere in
the plane spanned by Eg and e; in the coordinates
of Eq. (33).

Case 2. 1i the wave is 0,, N,, or N,, k is nor-
mal to the plane of the forces:

E=:5t s
in the coordinates of Eq. (34). If the wave is III,,
k is as in Eq.. {(37). :

Case 3. If the wave is ML, kis as in Eq. (38).

One can never limit the direction of a II; wave
in this way.

E. Theoretical Implications of Experimental Results

The E(2) class of the correct theory of gravity is
at least as general as that of any observed wave:
This is always the fundamental implication of any
observation. We must always qualify, “at leas?
as general,” because in any particular theory a
particular source may couple poorly or not at all
to some of the admissable modes, and therefore
it may radiate only special classes of waves. But
the observation of a wave of a certain class al-
ways rules out all theories of less general
classes.

H the wave direction is unknown, an observed
wave cannot be classified unambiguously (except
for some waves of class II;), However, there is
always a least general possible class for each
such wave, which limits the correct theory.

There are still sharper implications for particu-
lar theories. In the case of a well-understood
source (c.g., binary star system), each particular
theory should make a precise prediction about the
mixture of modes radiated, leading to a crucial
test. We shall discuss this point in a future paper.
In the case of a theory for which the number of
degrees of freedom is less than the dimension of
the E(2) class (see Sec. IV B), the various ad-
missable modes should appear only in definite
mixtures for.any source, again leading to 2 crucial
test. Finally, the difference in propagation speed
for light and for gravitational waves leads to a
crucial test for many theories (see Sec. IVA).
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APPENDIX A: USEFUL FORMULAS
FOR PLANE WAVES

General linearized Riemann tensor in terms of
flat space perturbation hy,:

Ragys = Mhus oy + Royas —Hay, 85 —Hpsay) - (A1)

Tetrad components of Riemann tensor in terms
of hyy:

Y24 Ry = & T (A2a)
=-i Ryum =4l (A2p)
Y, =- Rimm =3 e (A2c)
@5 = = Bypi =% mm {A2d)
(where = d?h/di?).
Tetrad components of Ricci tensor:
Ry =Ry » (A3a)
Ry =2R 7 » {A3b)
Ryn=Rypm » (A3c)
Rz=Rium - {A3d)
Ricci scalar:
R=-2R,,=—2Rus- (a4)

APPENDIX B: INDECOMPOSABLE
GROUP REPRESENTATIONS

Let G be a group and § ‘a linear representation
of G on a linear space V. § i8 reducible, if it has
an invariant proper subspace, V,CV. §isde-
composable, if V is the direct sum of invariant
proper subspaces. A decomposable representa-
tion is always reducible but not vice versa; § is
indecomposable, if it is reducible but not de-
composable. § is decomposable, if, and only if,
there is a basis of V for which each g€G is rep-
resented by a block-triangular matrix

&0
& &)

with not all g; vanishing.

Indecomposable representations never occur for
a finite group G, for finite-dimensional represen-
tations of a semisimple Lie group G, or for uni-
tary represeniations of any Lie group G. Because
of these facts, physicists are not well acquainted
with indecomposable representations. Fora
physicist, indecomposable representations have
two unpleasant attributes: (i) They are always
ponunitary, and (i) there is no analog of Schur’s
lemma: An invariant operator is not generally
constant on an indecomposable represgentation;
e.g.. “spin” is undefined. (Sec Ref. 27 or Ref.
34 for a discussion of these concepts.)

For waves of E(2) class II, or II,, we deal
with six- or five-dimensional indecomposable
representations of E(2). The only finite-dimen-



sional decomposable representations of E(2) de-
compose to the familiar one-dimensional unitary
representations that describe a2 massless quantum

particle of integral or haif-integral helicity®*~%";
some of these representations arise for E(2)
classes N;, N,, and 0,.
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Ref. 16, also F. B, Estabrook and H. D. Wahlquist, J.
Math. Phys. 5, -#629 (1984). Using such a detector in
conjunction with # conventional one, an experimenter
could uniquely clagsify any wave and determine its
direction.

52J. Weber, Phys. Rev. Lett. 22, 1302 (1969); 24, 276
(1970); 25, 180 (1970).

3 There is actually 2 one-parameter family of such R;
the members differ only in a final rotation about %
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This final rotation only changes the phase of Wy and ¥,
and hence cannot change the ultimate classification,
MY Weyl, The Theory of Groups and Quantum Mechan -

ics (Dover, New York, 1831), Chap. II, Sec. 4. Weyl
says “‘completely reducible” where we say ‘“‘decompos~
able.”
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the Dicke-Brans-Jordan Theory of Gravity
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ABSTRACT

in the Dicke-Brans-Jordan theory of gravity,ifar away from a
bounded system, orbiting test particles measure the tbtal, active
gravitational mass M while orbiting test black héles measure the
"tensor'" mass Mt' Their difference (M-Mt) is the scalar mass Ms
[Hawking (1972)]. 1In this paper, conservatioﬁ laws for M_, M, and
M are delineated and are used to show the following: (i) A spin-2
gravitational plane wave carries tensor mass, but does not carry
scalar mass; fhe flux of tensor mass is proportional to the square
of the time-integrated amplitude of the Riemann tensor {f?hdtlz.
(ii) A spin-O gravitational plane wave carries both tensor mass
[flﬁx proportional to square of time-integrated Riemann émplitude
{f@22dt|2], énd scalar mass [flux proportional to Riemann amplitude
®pp == OT, equivalently, proportional to second time derivatives of
amplitude of scalar field 82¢/6t2]. (1ii) The tensor mass in a
gravitationai wave curves up the background spacetime through which

the wave propagates; the scalar mass does not. (iv) The tensor mass

N .
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in a wave is positive definite; the scalar mass is not. (v) If a
dynamical sphe:ical Syétem émits gravitational waves that change
its scalar mass by MM, in time 'r_(AMs may be positive or megative),
then these waves will also reduce its tensor mass by an amount

> (AMS)Q/T.

The response of gravitational-wave antennae to scalar waves is
discussed. It is shown that, whereas antennae of negligible self~
gravity respond only to the tidal forces of the wgve'(¢22), antennae
with significant self-gravity respond about equally to the tidal
forces (QEE) and the oscillating Cavendish gravitation constant (¢).
Because of the uqique phase and amplitude relations of o and ¢,
the two responses are coherent -- and can even cancel each other

perfectly for a “carefully designed" detector.
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I. INTRODUCTION

In the Dicke—Brans—Jordan theory of gravity, the coupling of
the scalar field ¢ to.a body's gravitational self-energy causes
bodies éf different gravitational binding energies to move on différ~
ent trajectories {the "Nordtvedt" effectl). Consequently, in the
asymptotié region of a bounded gravitating system, orﬁiting "test
particleé" (particles with negligible self-gravity) will measure a
Keplerian mass M different from Mt , the Keplerian mass (''tensor
mass") determined by orbiging test black holesz.

Test particles move on geodesics of the metriec in the "canoni-
cal reﬁresentation" of the theory. In this representation the field

R 3
equations are

1 _ 1 B
+o 0, ~g P ) | . @a)
HhY uv saB” 7
_ ga8¢;a8 = 81 (3 + Zw)*; gaBTaB s (1b)

where ié aﬁ adjustable constant which has a suggested value of
about 6. We use a comma to denote partial differentiation, and a semi-
colon to denote covariant differentiation with respect to the metric.
We set c=1 and also G =1 . 'Note that G and c¢ are merely con-
version factors between units (¢ converts seconds into centimeters;
G/c2 converts grams into centimeters); setting them equal to 1 by no

means imﬁlies that the "Cavendish" gravitational constant G, is unitcy
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. identically4. In fact, in § IV we will explicitly calculate consequences
of a changing Gc .

In the asymptotié region of a bounded source, the metric takes on.

the following formS:

8y, = (1 - 2M/1) - (2a)
g5 = ~8yy[1 + 200-20)/x] (2b)
¢ = (1 + ZMS/I)- (2c)

(We have set the asymptotic value of ¢ to unity for simplicity.)
Thus, asymptotically the source is characterized by two con—
étants, M and MS -- M is the Kepleriaa mass measufed by brbiting test
particles, while MS is the "scalar" mass. In general, they are not
expressible as integrals over the.densities of energy and stress

within the source. Their relationship to Mt s
M=M +M _ .(3)

[Hawking (Ref. 2)] can be deduced as follows: Test black holes move on
geodesics of the metric in the "Dicke" representat10n6, which is ob-
tained from the canonical representation by a conformal transformation.

The transformation is

Bv T 9Byt *) _

Hence, the asymptotic ferm of the metric is

0Q

oo =TI1 - 201-M)/x] , (5a)

857 = ~6y571 + 2(M-M)/x], (5b)
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from which we can read off the mass which governs test-black-hole
motion, M_ = MF-MS .
In Ref. 2, Hawkiﬁg showed that when a star collapses to form a

black hole, it must radiate away all of its scalar mass. In this

paper we consider the question of mass loss further, basing our analy-

"+ gis on conservation laws of the fomm

euV’v =0, (6)

with Gpv obtained from a superpotential

eu\) - AP[VCC} . _ e
,a' .
Using such laws, mass loss can be evaluated in the asymptotic region
without any knowledge of near-field behavior.7 In §II wé delineate
such conservation laws for MS, Mt and M resbectively. In §III we
épply these laws to the study of gravitational waves from dynamical
systems. We find that a change of M induces a reduction in 'Mt
‘through nonlinearities of the gravitational interactions. The gravi-
tational waves have three independent degrees of freedom. Tensor mass
losées are transported by WA and @22 waves (respectively "trans—
verse—-traceless" and transverse-~trace' metric éerturbations)g, while
scalar mass change'(positive, negative or oscillatory) is transported
by ¢-waves (waves of changing "Cavendish" gravitation constant). @éz
.waves and ¢- waves are uniquely related--they are two aspects of one
degreé of freedom in the gravitational field. We point out the incom-
pleteness of conventional analysis of the genérationg, polarization

and detection (see Ref. 8) of gravitational waves in the context of
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the Dicke-Brans-Jordan theory of gravity since they ignore the ¢-wave
aspect of the scalar waves. In §IV we discuss the response of a simple

model of a self-gravitating antenna to ¢ waves.

IXI. CONSERVATION LAWS

In this section, we present conservation laws for Mé, Mt and
M . These masses are determined operationally in the asymptotic region
of a boﬁnded source, i.e., they can be evaluated solely in terms of
the asymptotic forms of the dynamical fields. This is possible only if
the corresponding conservation laws_involve superpoten;ials [c.f.,

| Egs. (6) and (7)].

A. Conservation Law for Mt

Y._Nutkulo and, independently, J. Dykla [see Ref. 5] obtained a

conservation law from the field equations (1), based on the following

relations:

o + ™) = s Tt e @V -1 . @
where

V= aem™ly T+ (816" [(m—1)¢’“¢’“]

+ (8Tr)— ¢ a[ qs(gw o8 -g%% vB)*‘I' (g% o8 - g% "B) 9)

0B\

+ FBB(Z uv ao guag

va uoc \)cr)+ FOB( ucng _ gu\)goﬁ)] ,

and
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tz (= Landau—Llfshltz pseudotensor)
B -1 B ¢ B @ BOVT_ uv gT
= (16 - 1(2 — u
(16m) {< P UT af OBI 1O oo TB)(g -8 8
uo T,V B v o8 _ v B v B
+g g (T cBF o T mI‘ oB r of” ot T crr ocB)
vag TOL TR U B 1 B u B
te T GBF T +T mP o8 -T OLBF oT -T crrr aB)
oT OLB H - M ‘
+g Sy TB ~IH Tt - (10)

A conservation law follows immediately from-the antisymmetry of indices

o and y on the right hand side of Eq. (8):
[(-g) o(t*Y + TW)]’V =0, (11)

The associated conserved mass is given by

m, = (L6m ™" j 167 ) (™8™ - %61

]

Mt for time independent systems. . o (12)

The second eduality follows from a substitution of the gsymptotic forms
of ¢ and giﬂ)'given in Egs. (2).. Heré the integral is performed over
a 2-dimensional surface in the ésymptotic rest—-frame of the source.
(For a discussion of asymptoiic rest frames, see Chapter 19 of Ref. 4.)
Here and below, we denote by the script letter % any mass de-
fined in terms of the surface integrals, and by the Roman letter M

the corresponding Kepler—orbit mass when a system is (temporarily) sta-

tionary.
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Equations (8) and (12) show that for an isolated system (Tpv =0
outside some boﬁndary), the loss rate of Wh: is given by a flux inte-
gral over outgoing gravitational radiation:

dn
—?t—t- - - § (- ot°t &1, . (13)

(at «) |
To date, this ;onserQatioﬁ law has provided the basis for the analysis
" of the emission of gravitational radiation in the Dicke-Brans-Jordan
theory of gravity (Refs. 8 and 9). The conventional approach is to
evaluate the metric perturbations and the scalar field of a dynamical
éystem—~e.g., a binary star system or a collapsing body-—and to sub-
stitute them into Eq. (9) to obtainm the outgoing gravitational energy

‘ _
flux. It is evident from Eq. (13)'£hat such energy flux can only ac~
count for the tensor mass loss, not the loss of total active gravita-
tiopal mass ‘M . To properly analyze mass losses for M and Ms s WE
need analogous conservation laws for them. But do such laws exigt? We

answer this gquestion in the next section.

B. Counservation Laws for MS and M

From a general analysis of variational principles (see Ref. 7)
we know that since the Dicke-Bramns-Jordan théory contains no prior-
geometric variables, it admits an infinity of conservation laws of the
forn |

v

RO (14)

However, the analysis of Ref. 12 cannot automatically produce conserva-

tion laws with the desired "superpotential form" [Eq. (7)]. Such



13L
conservation -laws for ‘M and MS can only be found by trial and error.

. The following identity provides the key to our search:

T S O (& A LB ROV
(15)
Comparing Eq. (15) with Eq. (la), we see that in general11
)™t @+ Ty = 6m) oM (-g) (8MVe™ - g”ang)]’ag, (18)

where qu is a complicated expression involving derivatives of gu\J
and ¢ , and n ranges over all integers. [Equation (8), the conser-

vation loss for 7n£, is cbtained if we set n = 2.] We now set n =0

in Eq. (16) and obtain the following conservation law:

) T+ ™)y = em (- g)(guv of BRI

RV
with M < paem el vuceme) oMoV 3 8% e 0 )
+ g e - gV o (18)

By analogy with Egs. (12) and (13), we find the conserved mass for this

conservation law to be

(l6w)_1 J[( g)(goo ij oi 03)]

mfmsz i
= Mt- MS for stationary sources, _ (19)
and the mass loss rate to ge
d( Wlt;tms) _ _J )0 -1 oi 2.7.l o (20)

(at =)
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Thus the n = 0 case of Eq. (16) expresses the conservation of

(m-M ) - By combining this law with the Nutku-Dykla law for T

[Egs. (12) and (13)}, we obtain the conservation laws for 7%3 and M:

af .
m, = aen | (e %% - et 1 P, e
am ¢ .
=== | oyt - o7 ¥ (22)
J
m = (16m [ [(-8)(e°%™ - & °3><2¢ -u1 A, @)
an. [ peot - o P . e

Note that for any stationary system and any integer =n ,
(1emyt f [¢-89 g%t - g% °J)J 4 = M- -0 .

Thus, setting n equal to any integer other than 2 in Eq. (16), énd
combining with the Nutku-Dykla law for m . will also yiéld conserva-
tion laws for scalar mass and total mass. The conservation 1a§s ob-
tainéd will all be different (different "localizations" of.mass;

~ different values of 7] and 7ns during dynamical epochs), but they
will all éive the same masses M and MS for stationary systems and
the same total mass loss M and MS for a system that is stationary,
tﬁat emits a burst of gravitational waves and that becomes stationary
once again. Oﬁr choice of .n = 0 in Egs. (19) and (20) is merely a

matter of convenience.
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.III. WAVES 'FROM DYNAMICAL SYSTEMS

"We consider a bounded dynamical system which emits gravitational
waves. The.ﬁack action of the waves ('radiation reaction') changes the
.observable masses MS, Mt.and M . In this section, we relate the
changes in these masses to the emission of waves through the conserva-
tion laws of the last section. We do this by two different methods:
the "shor£wave approximation“,ﬁwith no assumptions of symmetry but ap—
plicable only to "weak" waves (8IIIA); and the "Bondi-Goldberg news
function method", which for simplicity we specialize to the spherical

case (8ITIB).
A. Shortwave Approximation

In the vacuum outside a general dynamical system, the field equa-

tions (1) become

-2 -1 - ' :
Ry =0 ¢ 0T 0 00y =Ky, - (252)
06=0. o | (25b)

Here (O i1s the curved-space wave operator ,
- o
E:gBVuVB .
: : . . L. N12 .
We adopt the following viewpoint (shortwave approximation)  in this sub-
section: The waves are short-wavelength ripples propagating on a large-

scale smooth background:

2 ®

Elv 1V pv?

{(26a)
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o =B +y (26b)
X << R, (26c)
where X is the reduced wavelength of the waves and f 4s the radius
of curvature of the background. As in general relativity (Ref. 12b),
the production of background curvature by the energy of the waves will

guarantee that AS k/ﬁ (where A 1is the amplitude of the waves),

and hence that

gl v Wl v A S x/R) < 1n Is‘B’l v e® L e

We set ¢(B) to uﬁity in the asymptotic region far from all masses.

We define

— (8)
hyw = LT 2 By B s 27)
and denote by a vertical bar "|" covariant derivatives with respect to
the background metric g( ). By imposing the gauge condition
— O -1
= !
o= 20, (28b)

we bring the first order vacuum field equations [Egs. (25), linearized

in A] into the form

- a
B vle

it

O(A/xR) .(29a)

It
(=
-

-

Vi

1t
Lo

O(A/xR)

[ ]

(29b)

[The gauge condition (28b) is imposed, without affecting (282), by
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choosing an ,appropriate generator Ea that 'satisfieé EQI'SB =0 .] We
now calculate the smeared;out stress—energy of the gravitational wave
in the asymptotically flat region far from the source by the following
two methods: the ."Isaacson method" (see below), and the method of aver-
aging over several wavelengths the integrands of Egs. (13) and (22).

The second method gives the following result [when one uses for the
()
[I3Y)
field ¢(B) = 1 ~-as one is required to by the analysis that underlies

flat background a Lorentz coordinate system, g = ni-t\) ,» and scalar
Egs. (13) and (22); and when one uses Egs. (27), (28) and (29) at ap~

. propriate points in the calculation]:

H
i

"tensor" T '\ N | —oflu- v
(stress—energy) = TGw(t) <(-glt =~ 355 B hoas
+ Gorayplipls (30a)
"scalaxr” = }_ MWV el wv_ -l pve 1 ,!u\)
(stress-—energy)‘ Gw(s) <(-g) (9t ¢ u)> = 8T <p'* ">, (30b)
Meootal - cHV WY uv
(stress-energy) = T = TGw(t) + TGw(s) . (30¢)

Here < > denotes an average over several wavelengths, discarding
terms of order Azlk and smaller. Note that lph‘w does not average
to zero because 1ph‘w n A/}:2 implies < wlu\g ~ (A/kz)(k/ﬂ.) R A.2/?~:2 .
~ Recall that the scalar-mass conservation law [hence the flux in Eq.
(30b)] is obtained by combining the n = 0 case of Eq. (16) with the
Nutku-Dykla law. Other choices of n yield different exact conserva-
Ition laws for &b bﬁt the averaged conserved. fluxes are all identical

(Eq.' 30b) if the gauge conditions (28) are adoptédlB.
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The Isaacson method (c.f. Ref. (12b) averages the vacuum field
equations, with their linear parts [(which went into Egqs. (29)] removed.

The result is

1 1

: 1 .
- X - _1 (B) _ (B) ~,.Gw 2
R T Ko ~ 2 g K] 8¢ Ty 04 AR,
| (314)
a®6® - oa’/xp) . (31b)
where Tﬁg(t) is the covariant component of the right-hand side of Eq.-

(30a) and va is defined in Eq. (25a). Thus, it is the tensor mass

in the gravitational waves, not the scalar mass or the total mass,

which curves up the background spacetime.

We can rewrite the various stress—energies for gravitational
waves given in Eqs. (30) in a more transparent form in terms of the
amplitudes in the various polarization modes. We use a background that
is flat and coordinates that are Lorentzian in the region of interesﬁ,
g(B) = 7 and ¢(B) = 1 . The general plane—wave sélution to the

1) uv

linearized field eguations has the form
haB = Aus(u) , ¥ =Bu) .

We orient the axes so that u = t-z . The perturbatioh amplitudes

satisfy the gauge condition [Eq. (28a)]

a - - -
KA =kB
- P
where i is proportional to Vu , (kp =k = w ’ =k = 0) and a

dot denotes differentiation with respect to u . By making an ap~-

proximate coordinate transformation of the form
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1
o=+ cu(u),.

we Bring the plane-wave solution [Eq. (33)] into the form

h = -h
XX Yy

A 5 hoo=ho F A, (32a)

#
1
I
<
n

22 00 = B(u) . | (32b)

(A1l other components of E&B vanish.)

This general plane-wave solution has three independent polariza-—
tion states: The transverse-traceless spin-two states embodied in the
amplitudes A+ and 4, , and the spinfzero state embodiéd in the ampli-
tude B . In the language of gravitational waves in general metric

theories ([see Ref. 8], the plane wave has a spin-two part with

v, =7 B - 1K), | (33a)

and a spin-zero part with
%,, = = B 33b
22 2 y ¢ ‘)_

In terms of these plane-wave solutions, the tensor mass-energy,
scalar mass-energy and total mass—energy carried by the waves simplify

to the following form:.

] flux of _ m0Z - , . -1, 2 .2 .2
(tensor energy) B TGw(t) (16m) “[A, + A+ (Zwi3)B 1

(34a)
= (én)—l< ]] ?4du]2-+(2w+3)1 j Gzzdu!2> R

i

{ flux of . OZ -1 3 _ -1
(scalar energy)‘_ TGw(s) = (8m) © B = (4m) <Dy0> (34b)
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flux Of - 0Z - s A : le¥A ) ’ '
(total energy) _.TGW TGw(t) + TGw(s) . (34c)

Notice that the scalar energy carried is linear in @22 , while the
tensor energy is quadratic.in W4 and @22 . The tensor energy density
is positive definite. The scalar energy density is not.

Consider, now, a source in asymptotically flat spacetime which
emits .gfavitational waves. Far from the source, the waves are lpcally
plane. They propagate in the radial direction, and have amplitudes

that die off as 1/r :

¥, = £ P, (t-r,0,4) + 0(z-2),
o, = r TF,_ (t-r,0,6) + 0(r-2)
=22 22 3¥> ’
o -2 -3
w =X F(t-r;ead)) +r G(t"r:69¢) +0(I )!

Fop =

o b

F o, chsz=o.

Here the dependence of the amplitudes PA’ F22’ F and G on (t-r) is
rapidly varying compared to r (shortwave approxiﬁation); the relation
| F22 = %-E folléws from equation (33b); and the vanishing angular inte-
.gral for. G follows from the fact that the general monopole solution
to .w ; Q0 has vanishing l/r2 part.
The amount by which these waves modify the tensor mass of the
source.can be calculated by integrating expression (34a) over a 2-sphere

far from the source
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| 1y a0 = ™ J <« || viacenl®

<d'/71t/dt>‘

+ (2w+3) | I 2,5, d(t—r)|2> dQ (35a)

~¢my L J < | I ?, a(e-r) | 2+ (2w+3) | j Fzz(t—r)}2> a .

A similar calculation of the scalar mass loss using expression (30b) for

HY

Gw(s) gives

<dmsldt> = [ Tg:;(s) rzdﬂ = —(8“’)—1 J dane r2<lb’°r> ae

it

+ (81;)"1 I 1-2 <(¥/r) c’1_> dQ + 0(1/x)

~(em™t f 2<F /> aa - (8m™t J <F> dQ+0(1/r) . (35b)

There is a term proportional to r . Some clarifications are in order,

When integrated over time, Eq. (35b) gives the charge in Zﬂs over a
" finite interval of time (an inteval long comparéd to the characteristic

period of the radiation)

<am > = ~(sm L J 2 < L aq - em~t J <AF> 4Q ,

AA = A(ty) - A(tl) N Tt ko,

<AA>£E<A(£2)> - <A(tl)> . (35¢)

The spirit of the shortwave approximation dictates that rnlA?,

being the difference of two perfect time derivatives, average Lo zero,

<r~1A§> = 0 , so that

<A77(S> —(sqr)“l J <AF> aQ . (354)
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Unfortunately, the mathematics of the shortwave approximation may have
difficulty reproducing this spirit: rz(r—lA?) is v r/Xk>> 1 larger

than AF . We wish to discard its average from equation (35c), while
2

" keeping fhe averagé of AF . Typically ~r <r“lA§> may not vanish with
sufficient precision to allow this.

This difficulty can be traced back to the original, unaveraged
scalar conservation law (21),(22)--where it is far more serious than
here: The mass ”}S defined by the surface integral becomes the scalar
contribution to the Keplerian mass Hs when one restricts oneself to
stationary systems. However, for dynamical systems, Zﬂs will contain
terms analogous to j rF di’~terms which diverge linearly Qith increas—
ing radius v . Such terms vanish before and after all waves have
passed, but they wreak havoc with one's dgsire to interpret 273 as
the "true" scalar mass of the source during_a dynamical epoch.

{The conservation laws for tensor mass, equations (12), (13), and
(35a), have no such difficulty. They are just as "good" in an instan-—
taneous sense and in a time averaged sense as their generél relativistic
counterparts; c.f., chapters 19, 20, and 35.of Ref. 4.1 |

Notice that the above "defect" in the sﬁalar mass ﬁ?s causes ﬁo
problems so long as one applies the conservation law oanly to systeﬁs
that are initiaily stationary, that emit a wave train, and that then
settle down into a statiomary state once againla. For such systenms thé
total charge in Keplerian mass MS will be given cofrectly by all ver—
sions of our .qu conservation laws [equations (12), (13), (35b), (35¢)]

—-s0 long as the waves do not change the momentum {and therefore the

asymptotic rest frame) of the source significantly.
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We can repair the above "defect" in our conservation laws for
scalar mass at the price of a loss of elegance. Consider a system that
emits waves which do not change its asymptotic rest frame significantly.
Let T be radius in the agymptotic rest frame, _and define a new scalar

mass by the (instantaneous) asymptotic form of the scalar field ¢

$ =1 +2_7f(_s (t~r)/r + (dipole, quadrupole and higher poles)/r

+ o/t . (36)

Then ‘Z’(s is given by the surface integral

M (t-r) = lim <8w)'1jr{¢(z—r> ~uw@, @7

r = o

which clearly is equivalent to expression (35¢) minus the offending term

2, -1

r“<r “AF> ; and the rate of change of -77[8- is

‘d'ﬁs(t—r)/dt = lim (817)’1 J r{é(t-r) - 1] 42 . - (37b)

r > o

Once again we emphasize that when applied to systems initially
static and finally static, all our conservation laws give the same,
correcﬁ result for M = A??ls = A _W—(—S .

Notice from Egqs. (35) that 7 ¢ can only be decreased by the
emission of wavés, while 7713 ‘(and hence 7}) is unconstrained-—it can
increase, decrease or oscillate. We point out that anjr change in 77(s
is accompanied by the emission of (i) "¢" waves-—i.e., a change of the
locally measurable Cavendish gravitational constant propagating outward
along null cones, and (ii) @22 waves——the spin 0, transverse-trace met-—

ric perturbation waves that cause breathing motions on a ring of test
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pafticles placed on a plane_transvarse to the propagation directiomn.
The ¢-waves and-@zz waves are related by Eq. (33b); they are two aspects
of the same physical degree of freedom.

The above analysis and discussion were based on the shortwave
formalism, which examines the ripples of spacetime perturbations on a
smooth background. In the.next subsection we sketch a Bondi-Goldberg

15a,b calculation which yields mass losses in terms of news func-

type
tions. These two approaches are completely equivalent whenever they
are both applicable. The Bondi-Goldberg type calculation is presented
mainly to confirm the results derived in this section and to complement

the present analysis by considering "strong" waves as well. For sim-—

plicity, we specialize to the case of spherical symmetry.

B. Spherical Dynamical Systems

Consider now a spherical,dynamical gravitating body. We study

the changes in the body's masses M, Ms’ M_ produced by the ocutflow of

t
gravitational waves.

The static spherical metric given in Egs. (2) is not applicable
to a dynamic spherical body, because it does not adequately portray the

wave modes. In order to study the waves, we adopt null coordinates

(u,r,g,4) so that the line element takes on the following form:
ds? = o (u,r)du® + 28 (u,r)dudr =Y (u,r)r> (@2 sin’® a%) -  (38)

In accordancée with the assumption of spherical symmetry we allow the

functions o ,8,y and also the scalar field ¢ to depend on u and r

only. The null coordinates are designed to avoid logarithmic terms in
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asymptotic ekpansions of the functions «,B,y and the scalar field ¢

(see Ref. 15), so that astptotically

1+ A(u)/r + ee- ‘,

o =
B=1+B/r+ - ,

| (39)
Yy=1+Clu)/r+ -0 ,

i

¢

1+ D(u)/r + -~

Thus at infinity, the system and its outgoing waves are described com—
pletely by the functions A(u), B(u), C(u) and D(u). These functions
are not all independent, but are constrained by the vacuum field equa~

tions (1) to satisfy the following relatiomship:

B(u) = C(u) = -D(u) .

Separate the case where the waves are "weak" from the case where
. the waves are "strong''. If the waves do not carry off, in a few wave-
lengths, mass-energies comparable to that curving up the backgroﬁnd,
then a separation of ripples from the background is ﬁossiblé (shcrtwa#e
approximation; §IIIa). The two independent functions A(u) and B(uw)

are [superscfipt (B) denotes background quantities]}
A = A® 1+ a)

B(u)

it

8@ & pew

and the observable background masses at infinity are

MéB) = - % g(B) (40a)

(3) .1 ® _1,(@®) :
Mt =5 B 2 A ’ (40}3)_
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1 ,(B)
-5 A

M) - . o (40c)

The rate at which the background masses are changed can bé evaluated
either from the field equations themselves (Bondi approath), or by sub-
stituting the metric given in Eqs. (38),(39) into the formulae for
energy fluxesl7 (Goldberg approach). Both methods give the same result
[Recall.thaf the scalar mass conservation law can be used bnly in a

time—integrated sensel!l]:

ar, Brae = - @un@/an? . G ege) (e

u ®

y ®

2 -1 By = - Fbey) - bepl - (41b)

(The system is static at ty and tz.)

Hence b(ﬁ) is the news function (see Ref. 15a). The above result
agrees with the analysis in the previous subsection [Eqs. (35a),_(35d),
specialized ﬁo spherical waves].

Turn now to the case where the waves are so strong that the
shortwave formalism breaks down. Consider the whole dynamical functions
A(u), B(u) instead of splitting them into ripples and,backgrOund; Inter—
pret the time-integrated conservation laws [Egs. (13), (22), (24), (35d)}:
A Eounded system, initially (at time tl) in an equilibrium configuration,
undergoes a ﬁeriod of dynamical changes, then settles to amother equili-
brium configuration at t, . Beforé gnd after the dynamical'period,
functions‘A and B are constant, and the observable masses can be evalu—~
-ated in terms of them [see<Eqs. (40)]. The chaoges in MS and Mt

are given by the time—-integrated conservation laws:
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M_(£,) =M (t;) = - 5 [B(t)) - B(t)] (42a)
. y

M (e =M (x)) = —.—}; (2wt3) j (—3%—)2 de . (42b)
' t

1

Note that in view of Eq. (40a), the dynamical equations (41b) and (42a)
are identically satisfied. ihe change of scalar mass is totally uncon—-
strained.

Suppose that a spherical system evolves dynémically sé that in
time T is loses an amount of scalar mass AMS . Then the induced ten—
sor mass loss (through the emission of @22 waves) has thg minimum value

[c.f., Eq. (42)]

B > e @/ .
In Ref. 2, Hawking showed that a star must radiate away all of its
scalar monopole moment (Ms) when it collapses to form a black hole. We

now gsee that in such a collapse the active gravitational mass M. is

reduced by at least
M = AMC+ AM:S ="‘MS[1 + (2(&)’*’3) (MSIT)] s

where T is the characteristic timescale for the change of MS —which

will be of the order of the light travel time across a distance M :

TVvHM .

For a star, Ms Y lO—lM (Ref. 2). Thus the tensor mass loss through
nonlinear gravitational interactions is mot negligible at all compared

to the scalar mass loss.
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IV. DETECTION

We now discuss some experimental ramifications of the foregoing
analysis. Currently, attention in the design and analysis of gravita-
“tional wave dete;tﬁrs is concenﬁratéd primarily on antennae with
negligible self—graviﬁy. .They detect only metric—perﬁuxbation waves,
whose action invariably shows up as a &riving force'describable by a
Riemann teﬁsor on the detector: Thus in the context of Dicke-Brams-
Jordan ﬁheory, these standard antennae detect only £he Y, waves and
the @22 éspect of the scaiax waves. They are ccmpleteiy unaffected
by the ¢ waves. By contrast, an antenna whose structure is affected by
its self—gravitationl8 (e.g., the earth) will respond to ¢ waves as .
well as Y4 and @22 waves. To understand such antennae better we
consider the following simplified model:

Two masses, each of magnitude m , are supported against their

mutual gravitational attraction by a spring, of spring constant k .

The equation describing the motion of one of the masses is

d2 mz
m-*-% = ~k(x-x ) - Gc
dt e

5 + (force due to waves) , (43)
(2x)

where 2x0 is the natural length of the spring (without the masses on),
2x dis the separation between the masses, and Gc is the Cavendish
gravitational constant. Before the arrival of the waves, Gc is comnstant

(£ 1 in our units) and the equilibrium separation 2X is given by

k(X - x,) + 02/ 20t =0,

while the resonant frequency is
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o, = (e/m - w/2x®) 2 o (w/2®) /2 (2xfal - 1)M2 e

>

=g (m/2X3)1/2 .

The constant f measures the relative importance of selfugraﬁity:
If self-gravity is important, B 1 and w " (m/2X3)1/2, (45a)

1/2

1f self-gravity is unimportant, 8 >> 1 and w, >> (m/2X§) . (45b)

The waves from a dynamical system (mot pecessarily spherically
symnetric) affect our antenna in two ways. Firstly, the metric pertur—
bation waves (Y4 and @22) induce a tidal force on the masses, given by

(symbolically)

£ v m{Riem) (2X) . . (46)

tidal

Secondly, the passing ¢ wave will, through the change in the Cavendish
constant, cause a change in the equilibrium separation, resulting in a
force

f¢='—cm2/4X2)(§c— 1) | (47)

towards the new equilibrium configuration.

The response of a detector to ?4 and ¢ waves is well knownm.

22
For the remainder of the discussions, we focus our attention on the
response to § waves, and compare that response with the effects of the
accompanying ¢,, waves. The tidal force [Eq. (47)] due to @22 waves
from a dynamical source is

Sy

== ZS » (spherical source) (48)
R dt :

fi1aa1(®90) = -

while the change in the Cavendish constant is



—£ =% __F . (spherical source) _ (49)

Consequently, the equation of motion for the antenna is

dgrac® + wle = W) (e f . + e4fe)
- + e g2 ‘2-93—]L—EL— AR ] 50)
= —{s¢ st wp dt2 ZXZ s ‘- {

Here £ 1is displacement from the unperturbed eqdilibrium state,

dﬁi; is the charge in the source's scalar mass (defined by Eq. (372)]

from its initial value,

s initial

A =M -7 ;

and €, and €¢ are "tracers" with value unity, uvsed to trace the
effects of the tidal (@22) driving force and the Cavendish (¢) driving -

force. The solution to thé equation of motion (50) is
t
......__).(____ — 2 — — 2 L] 2 -1
£ = o [-e.8 A7§;(t) @, ] (s¢ 8 st)Ali;(t )sin w_(t-t")dr'} .
: 0
’ (51)
Since A-Wis changes during time T £rom its initial value of zero to

a final value of A£77; » after the pulse has passed, the antenna is

left ringing with an amplitude of

-'e(bx AT : Af772

S .
s t~
R € mo( T)

e | ]
sinwo(tt)wo dat'} .
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Notice the following properties of these oscillations: (i) The dis-

placement of the mean value of £ to its new equilibrium state

<€> = ~x/8HWT_/R)

is produced by the Cavendish force; (ii) the waves deposit into the

antenna a total energy given by

E = %az-m'(final amplitude of & )2 wg
22 AT -dw T TAT -iw ¢! 2
m—2 (g - 8% e ° w1 e % wac' -
5 t R R ©
(52)

Hence, for a self-gravitating antenna (B " 1) the effects of the tidal
force and Cavendish force are comparable, whereas for a "test" antenna
(B >> 1) the effects of the tidal force &ominate. (iii) Because the
tidal force and Cavendish force‘always accompany each other with a
unique, well-defined relative phase and amplitude, their effects super-
impose in a unique, coherent way. For example, for a detector with
B =1 the two forces counteract each other, and no energy at all is
deposited into the anténna.

"In a cfude approximation, we expect the abhove analysis to be valid
for the fundamental ﬁode of the earth in detecting the ¢ waves and @22
waves from a distant source, provided these waves have wavelengths at
1east comparable to the earth's radius. A supernova explosion within
our galaxy is the strongest source of waves that we can hope for in our
1ifetimelg. It should produde waves with wavelength X % ‘%3 so that
the above formalism is applicable, at least roughly. If we estimate

the change of 7%; in such an explosion to be v 10~3MG , then the emitted
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waves will excite the radial mode (period = 24 min) of our earth with an
= ' -12
i Qv n ; .
ampllitude (Afms/ R) R€B 10 "Tem
Let us assume that these ogscillations are monitored with a gravi-
meter on the surface of the earth. This instrument measures the local -

gravitational acceleration g , which is changed by the waves because:

(1) the Cavendish gravitational consg@nt is changed:
bg; =86, -1 | _ (53)

(ii) the distance (gg) from the center of the earth is changed:

Ag, = -2g(E/R,) - (54)

where & is the oscillation amplitude;

(iii) the gravimeter moves relative to the center of the earth:

2
Mgy = -‘3—% i (55)
dt

All three effects given by Egs. (52), (53) and (54) are comparable, and

the rms change in g dis approximately

<agh v UM IR v WD - (56)

The noise spectrum of the earth in the vicinity of w, v lO-BSecul

has been estimated by Weber aad Larsonzo, who found that during quiet
periods

N{w) 6.9><10—14(cm/sec2)2rad—lsec .

The bandwidth in the fundamental mode (Q = 25,000, w_ = 42X 10"3sec“1)21 is

- - -7
) Amo = wolQ = 10 rad/sec .

Hence by Eq. (49) we find that the detectable amplitude in earth's
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fundamental made is

g 107%m -
- Thus the excitation due to the passing waves from a supernova explosion
in our own galéxy would not be detectable in earth's radial mode even

if both the phase and amplitude of excitation were monitored, because

in that case the detectability limit will be decreased by, at bes
1/2 2
/oY

v {w v 10 to.lO—scm.

T
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