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ABSTRACT

A systematic approach is given for finding similarity
solutions to partial differential equations by the‘usé of transformation
groups. |

If a one~parameter group of transformations leaves invariant
a partial differgntial equation and its accompanying boundary conditions,
then the number of variables can be reduced by one. In order to find the
group of a given partial differential equation, the "classical” and
“non-classical® methods are discussed. Initially no special boundary
conditions are imposed since the invariances of the equation are used to
find the general class of invariant boundary conditions.

New exact solutions to the héat equation are derived., In
addition new exact solutions are found for the transition probability
density function corresponding to a particular class of first order non-
linear stochastic differential equationé. The equation of nonlinear heat
conduction is considered from the classical point of view.

The conformal group in n "space-like” and m 'time-

like" dimensions, C{(n,m), Wwhich is the group leaving invariant

n n+m .
2 .

Z - z 9—-}3-2 = 0, 1is shown to be locally isomorphic to
X

i=l  i=ntl !

S O(nt+l, m+l) for n+ m = 3, Thus 1ocally compact operators,
besides pure rotations, leave invariant Laplace's equationin n = 3
dimensions, These are used to find closed bounded geometries for which

‘the number of variables in Laplace's equation can be reduced.
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Intr oduction

In this thesis using group theory we give a systematic

approach for finding similarity solutions to partial differential equations.

. Originally ([1], [2], [3] ) the group-theoretic method was
applied to ordiﬁary differential equations., If we are able to find a one-
parameter group of transformations which leaves invariant a given
ordinary differential equation, then by using a simple recipe we can
reduce the order of the equation by one.

In the case of a system of partial differential equations,
invariance of the given system and its accompa.nying boundary conditions
under a one-parameter group of transformations leads to a reduction of
one in the number of variables. The invariants of the group become the
new variables. A familiar example of such a reduction is the class of
self-similar solutions which corresponds to invariance under the
similitudinous (stretching) group. These are solutions of the form
u(x,y) = x% £ <xyﬁ> where .a and | p are to be determined such that
the original partial differential equation with dependent var.ia.ble u and
independent variables x and y, is reduced to an ordinary differential
éq\iation with variables { and xyﬁ.

Since a Lie group is generated by its infinitesimals, it would
seem natural to try to find the largest possible set of infinitesimals
leaving invariant a given system of equations. The set of infinitesimals
correspondingly determines boundary conditions for which a reduction in

the number of variables is possible. Sometimes (e.g. equation of non-
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linear heat conduction, Fokker-Planck equation) the given system of
partial differential e.quations contains some arbitrary function. Appiying
the group-theoretic method, we would try-to find the most general form
of this function which leads to a reduction in the number of variables.

It turns out that for most problems we are able to find the
Uclassical® set of infinitesimals (which form a Lie algebra) since the
classical set of "determining equations” corresponding to the original
system is usually ;solvable by elementary means. However the "non-
classical" set of infinitesimals is much harder to find since here the
determining equations (fewer in number with the classical case included
as a subcase_) are often more difficult to solve than the original system.
But it must be emphasized that, in principle, any solution to the deter-
mining equations reduces the number of‘ variables.

| In applying group theor& to differential equations a knowledge
of representation theory is\unnecessary although sometimes helpful as
shown in the final part of the thesis, ‘Moreover in using the similarity
;nethod it is immaterial whether or not the equations are linear. How-
" ever, we show that for linear equations one can set up eigenvalue
problems by the superposition principle.

We consi:der examples of elliptic, hyperbolic, and parabolic
equations. The one~dimensional heat, Fokker-Planck, and nonlinear
_ diffusion equations, and also a special hyperbolic equation, are studied
in detail for similarity solutions.

For the linear heat equation we obtain new "classical®
solutions corresponding to particular moving boundary conditions. Some

examples of "non-classical" solutions to the heat equation are also given.
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Looking at the Fokker~Planck equation from the classical
point of view, we are able to extend the class of forcing functions which
lead to "exact" solutions.

A systematic classical analysis of the equation of nonlinear
heat conduction is given in Chapter V.

In the final part of this thesis we investigate the conformal

group C(n,m), i.e., a particular subgroup of the group leaving

n ntm =
2
invariant [z - Z J -g—:-{—l-l-z =0, We prove that for n+m=3 this
i=l  i=ntl !

group is locally isomorphic to SO{n+l, m+l), the group of "rotations”
n+l n+m+ 2

which leaves invariant the quadratic form z - x.2,
ixl i=nt+2

From the proof we are able to find compact transformation in addition
to elliptic rotations and using these we show that for Laplace's equation
in n dimensions there exist closed bounded geometries other than
concentric spheres for which the number of variables may bé reduced.
| After reading Chapters I and II, one cculd read independ-

ently as a unit any one of Chapters III to VI

Thr 6ughout this thesis a repeated index implies summation
over the index.

The most complete recent works on group properties of -

partial differential equations are found in [4] , [5].
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Chapter I
The Reduction of the Number of Variables of a System of Partial

Differential Equations due to Invariance under a One-parameter
Transformation Group

1.1 Definition of a One-parameter Lie Group of Transformations..

‘Liet

n

x'i = fi (xl' xz, oes 3 X ; 6) (1'1'1)

for i=1, :.., n be a set of transformations of the n variables
%!, .., X" depending on the continuoﬁs: parameter €, Then in order
that these transformations form a Lie group of tra.ﬁsformations it is
sufficient that: .

(i) For ea::h i, x'i= xi when € =0, i.e., the identity element
exists.

(2) If x"i= £i (x'Y, x'2, ..., x'®; 8), then there exists a function
¢ defining the law of combination between parameters such,that
x"i= fi(xl, X2y eer sy xnscp(e,ﬁ)), i.e., the closure property is satisfied.

(3) o@la, glbsc))=plpla,b),c), ‘i.e. the associative property is satisfied.

(4) For each ¢ 3 a6=€¢ ! suchthat cp(e,e") = 0.

(5) The functions x'"' are differentiable as many times as is

necessary with respect to x and the parameter € (_:_c_=(x1, X2 vees xn) )

1,2 Infinitesimal Transformations

We now expand x'*  about the identity, i.e. we consider

i 4 n i | BE'\ , €? (93¢
0l = 80, w2, ey 16 = £, s x50 4 (304 S (320) + 0 (e
. €=0 €=Q
Let

: 1 :
) -
€=0
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{gl} for i=1l, wes, n is known as the set of infinitesimals of the
group (lLL1l), The operator L = gJ -a—- is defined to be the infinit-

T oaxd
esimal operator of the one-parameter group of transformations (l.l.1)

Under the action of transformations (l.1.1) a function u(x)
is transformed to a new function wu'(x) by the formula u' =u(x')

Expanding u' about € =0 we see that

- du €2 (32! n+l
u' u(x)+€ ae20+'ZT =r )0+...+-- ) +0(e )

But .
i ,
au) (2 () -gian g,
€=0 €=0 ox' =0 ax*
ou! . y[ou’ P
= 8622=0 <ae 7e) ) s Mae) s

€=0 €=0

In general,

n
i R
o€ ‘e=0

'We see that a Lie transformation is completely specified by
its infinitesimal operator. Symbolically, we write u‘=eeL u. From

now on our study of a continuous group will concentrate on the study of

the infinitesimals generated by the group.

* 1.3 Extended Groups.

In studying group properties of differential equations one
must know how ‘derivative_s are transformed under group transformations,
Let

u. , i=l, veey, m

H

¥, 551 w,on
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represent dependent and independent variables respectively,

a Lie group of transformations:

=
f

n
u'i(xlg xzp oo » x ’ ul' uz’ ese ) um;e)

f

. . o
W = xt(x1, %2, ..., x%, Uj, Uzy eeep U_ 3 €)

m

[}

with ¢ orresponding infinitesimals
)‘D

We define the total derivative operator

. n )
and XJ<x1‘xz’ ‘eve g X » ul, uz, see um

du
m

D ) )
- = s 4 =~ 5a
Dx}  ax)  ax m
so that
Du, ou.
— Z e—— =\
Dx, B3 isJ
Consider
au'. Du'. Du', m
Loyl me—d o1 DX
ox B pxd D™ Dx"
' ) m m
D [ui+ €U, ¢+ O(e?)] . D X' - eX 4+ O(e?) ]
Dxm Dx'J
DU. m ' .
= u., .+ € --—?--DX. u, +O(ez)=u..+ev.3+ O(e?)
1,J Dx‘] DxJ 1, 1s) 1

Expanding the right side by using (1.3.2) we find that

ox™ ax™

n
Ui(xl’ xz' o g X » ul’ uz’ ®ce g u

Consider

(1.3.1)

)

m

(L3.2)

(1.3.3)

oU. 0U.
1 - __1_ 1 - - 2
ui.j-ui.j”[ e, g T Tl e ey g u~i.m]”°‘” (1.3.4)

oxJ

This gives us the first extension of group (l.l.1). -
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We get the second extension by finding how u, 5k
4

Formula (1.3.3) tells us that

J
! = + € Dvi -Dxmu + O(ed)=u, ., + evjk+ O(e?) (1.3.5)
ik T MeT S TR T DR YLjm e 1 »3e

Expanding the right side of (1.3.5) we find that
92U, . 92U, ¢ 02U,
i i

1
b emee— ]

Bxka u m, j
m

Kk
V.J e + - u
i aadax™ axdou__ m, k

92U, ouU,
+ g u ‘u, .+ x=— u
_ 6um3u£ m,j U4,k ou m, jk
gax™ o2x™ -
- u - u.

oo bm T ST Yk Yim

ax™ g™
- ammmaeitt—— u

o bkm TSRS Ui Yim
y

- azxm u u u .- gzc_r-x.l u
Bu e, “pk i “im T oy, [i,m Ve, ik

ax™

+ v, . u
Bxk

£, i,mk + ul,k ui,jm:] -

u

i,jm

Similarly to find the q-th extension one' "merely" applies

- the oper_atof tothe (q-l)th extension and adds the term

Dx 4
: DX™ a -
ijq 1,J132 Jq-lm

transforms.
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where
=1, 2, eee, N

| Jrpy
t

for i

1. 2’ vee q 14

1.4 Translation Gr oups‘

We now prove that any one-parameter Lie group of transfor-
mations is equivalent to a one-parameter group of translations.

‘Proof.

Let a group '(1.1.1) be given. Consider n functions Fi

such that

Fi(g_c_') = Fi(_zg) s 125 seey 1
P (&) =F(x) 4 e }
) =

Since xW =3 + X + Ole?), =1, 2, eeu, 1 we have:

dF  ax

dx? dx™
o TXTXET'" TTa

x" (L.4.1)

i=2, vsey n

The solution of (l.4.1) leads to n-l integrals which are
independent invariants of the given group. These become pn-l1 new

variables F,, F; .., Fn . The canonical variable F; 1is found by

solving
dF, _dx! _ dx? ,  _ dx"
1 T XT T X - xn'

Thus from a given one~parameter group we have generated a one-para=

meter translation group. Of course, in practice it may be too difficult

to solve (l.4.1). |



L5 Reduction of the Number of Variables of & System of Partial

Differential Equations.

Let
ou. 9%y,

Gxi,u., ].“, .1>=0
Al ax) | ax'0x"

q=1 .., 1, .represent a system . S of second order partial differ~-

ential equations. The Lie group of transformations (1.3,1) is said to
leave system S invariant iff-
u', Bzu'..‘
1

- : o
G (x*, ut, -, SN ) = 0
4 ( T ax"¥ axvax'®

for
q=l. z’ veour p l‘

which, from (1.3) is true iff

. 3G 8G Rl i 0G
X "—""Ea i -+ Ui '_—jau. + Vi ga‘.-&: + vi _—_'ﬂ—au. . = 0 fOl‘ q=1. 2. o T .
x i is] i,jk

We now introduce canonical variables. Let the first n such
variables be the new independent variables labeled Y Y% eees yn and
the remainder will be our new dependent variables labeled v;, vz e, Vi
Then, without loss of generality, in terms of these variables the group

of transformations (l.3.1) becomes

y' =¥, i=2 w,on (L51) ,
vi = V. ’ j= l, see gy I
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with system S being transformed to a new system S':

( ; | avi azvi
H (y, v, ™, . ) =0 for q=l, ses, T {l.5.2)
q ey aylay®

Before proceeding any further in this discussion we show how
one passes from S to 8'.
Consider
Du, 8ua, du, 8y du, {axa \ 5x? ka} du, @

- = - T - = - - = :
Dy ay' Pk oy 8x?® |ay) Vi ayd | 8 Dy

.D<x1, e uz,xaﬂ, cee s xn)

u X ' 1 2 n
==> symbolically i = D{y!y v% ooy v )
ox™ : D(x!, x2, ,.., x)

D(Yls sz seey Yn) o

Thus we demand that

Dx! Dx!
1
DY DYn

D(x!, %%, vee, XO0) t

D(Ylo YZI seey Yn)

Dx
Dy’

i.e. the transformation from x to y is locally one-to-one.

det # 0
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2 4
D u, i 6u£ D . 0 u, Dl Dxﬁ
Dy Dy*  ax? Dy Dy*  ax® axP Dy Dyt
2 2
) 8'11iz . 17} -uz BVa
oy’ oy oy av, 3y
9%u ov 9%u ov_ 9v

. Y T
oy ov, oy’ %% %% 8y oy*

2
du ] va
* ov j K
a 3yj oy

One can show that

det Picfx- DXB
Dy’ DYK
i i
= det B£®P—)f-.-
Dy Dy
- [ e Dx! | ]‘m'
Dy’

Thus, for example -



2
D, 9y, 1@ Dx} Dx® - ...  Dx" Dx"
Dyl* 9x2 Dy Dy’ Dyl Dyl Dy! Dy!
5 .
D Yy . au}z D% Dx! Dx% ... Dx” Dx"
Dyl Dy* gx@ DY} DY* Dy! Dy* Dy! Dy*
2
D . 8u.€ D2x% Dx! Dx? Dx" Dx"
3 - Z oS, ——— ¢ 00 S—— Sm—
52 Dy?"  ax® pDyn Dy" Dy" ~ Dy™ Dy"
u - ,
1 -
ax! ax!
2n
Dx"
e

[Det

Since system S' is invariant under (1.5.1), there exist

solutions vj which are independent of y! since both v'j = \3 and

V'J- ‘3(}’". le, ves y Y‘n)

Ayl 4 €y ¥R ey ¥

are solutions to (l.5.2). Assuming that (lL.5.1) also leaves the boundary
ov.

conditions invariant and that the solution is unique, we must have 'é"‘Ji =0

for j =1, 2, eeey m. Thus the number of variables has been reduced

by one.
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Chapter 1II

The Linear Heat Equation

2.1 Derivation of the group for U, mu = 0

We now find the group of the one~dimensional heat equation
u - = 0 (2-1.1)

Let the Lie group of transformations

w = u'({x,t,u;€)
x!' = x'(x,t,u;€) (2.1.2)
t' = t'(x,t,u;€)

leave (2.1.1) and its accompanying boundary conditions invariant,

- Invariance implies that v =u' satisfies
- vt' = 0 . (201.3)

iff U~ U F 0, andin terms of the new variables the original

boundary conditions must be satisfied.

If us= G(x,t). is a solution to (2.1.1), then, of course,
v = 9(x',t') is a solution to (2.1.3).' But having found the group (2.1.2)
leaving invariant (2.1.1), we obtain another solution to (2.1,3), namely,
v = ul(x,t, ) {x,t) ie ) Assuming a unique solution to (2.1.3), we must

demand that |

| u'(xt,0 (x,t) ;€) = 0(x',t") o (2.1.4)
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We consider the O(€) terms in the expansions of u',x',t':

ut = u-+ €eU(x,t,u) + O(e?)
x' = x+ €X(x,t,u) + O(e?)
t' = t+ €T (x,t,u) + O(€?)

where : , '
o= (42) L ox=(2) Lra ()
€=0 €=0 €=0

Expanding (2.1.4) and equating O(€) terms, we get' (after

replacing 0(x,t) by wu)-
| du Y\ du
U (x,t,u) = X(x,t,u) F + T (x,t,u) 5t (2.1.5)

(2.1.5) is the general partial differential equation of an invariant surface.

The characteristic equations corresponding to (2.1.5) are:

du = dx _ dt :
Tx,5u) ~ Xxtu) - TELGu) : (2.1.6)

In principle (2.1.6) is solvable, and thus we obtain

u.= uxt,n; F(n) ) (2.1.7)

where the dependence of u on x and t is known expli:citly, T
is some similarity variable found from solving (2.1.6) (which will be |
independent of u if _’_}I‘C_ =fn{x,t) ) andthe dependence of u on n
involves some arbitrary function F (7). Substituting (2.1.7) into
(Z.i.l), we redu.ce it to an ordinary differential equation of at most
second _o'rder with independent variable 1 and dépendent variable

F(n).

Obviously our first problem is to find the largest possible
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'ciass of infinitesimals U, X, T for (2.1l.1).

In general, for linear equations

%{%%%} = u fo(xt).
: ) (2.1.8)
I’I-Z‘T(;:’E,E) = u  fn(xt) + fn(xt)

t et

For illustrative .purposes, in considering the heat equation initially we
shall assume arbitrary U, X, T and show that lfinally we arrive at the
form (2.1.8).

We now find the O(€) terms in the expansion of ul = Ul ?

¢! t x X1

i
&
4
£

ul

- - - 2
[ut + e(Ut + Uuut):] I:l eTt eTuut:l éuxl:Xt+qut]+ O(e?)
= u € [-qutux - Tuutut+ (Uu - Tt) u, - )%ux-i- U%] ’+ O(€e?)

In the same way

= - - - - 2
u' ux-i-e[ Tuutux quxux+(Uu Xx)ux Txut-mb]+ O (e?)

Thus for invariance

ulx'x'. (ux‘)x x! * (u'x')ttx' = Yex * e[ T uuxuxut-xuuuxuxux

- ZTuu -(3X +2T )uu 'I'uu +(U ZXux)uxux- ZTxutx

+ (Uu- ZXX- Txx) u, (ZUxu- Xxx) u t Uxx]+ O (e2) =ul, (2._1.9)
with u't;, as given above.. In deriving (2.1.9) we have made use of

the given eqﬁation (2.1.1),
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2. 2 The Classical Group of the Heat Equation

S. Lie [6] found the classical group of the heat equation
although he did not proceed any further to derive the resulting ordinary
differential equations for the different cases, The classical group

corresponds to equating to zero the coefficients of terms with the same

derivatives of u, i.e., the coefﬁcxen‘@ of WU U, U W, , U,
Uy U and the remaining terms in the expansion of u'x'x' - u‘t,. This

is clearly a sufficient, but, as will be shown in 2.4, not a necessary
condition for finding similarity solutions. However, for any problem,
linear or nonlinear, the classical group results from solving a set of
linear equations, whereas this is not the case non~classically, even if
the original equation is linear. |

Successively equating to zero the coefficients of LY
wu inv (2.1.9), . we find that:

T. =0
u

a 0 (2.2.1)

= 0

uu
=> "._ U{x,t,u) = £(xt)u + g(x,t)
K(x,tyu) = X(x,t) ' (2.2.2)
T (x,t,u) = T(x,t)

Then successively equating to zero the coefficients of L

u

,1,u andthe remaining terms, we find that:
t" X _
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T, =0 => T = T(t) (2.2.3)
eX =~ THt)=0 ' (2.2.4)
X, - K T 2f = 0 (2.2.5)
Nex - ft = O (2.2.6)
8eyp = 8, =0 (2.2.7)

Thus g(x,t) is any solution to (2.1.1). At first we shall
only consider the subgroup for which g(x,t) =0 and deal with the
contrary case in 2.3.

Solving (2.2.4) for X we are led to:

s =3‘-Ié'-(-t—) + A(L) (2.2.4')
with a'rbitrary A(t).
Substituting (2.2.4') into (2.2.5) and solving for £ we

obtain:

= - X gy o XA(R)
f=- T -2

+ B(t) (2.2.5")
where B (t) is arbitrary,
Substitution of (2.2.5') in (2.2.6) vyields:

-T”(t) XZT”‘(t) X_All(
I T2

B _Bi(t) = o (2.2.61)

Solving (2.2.6') we finally obtain the classical group of the
"heat equation:

X =K + 6t + Bx + yxt

T =a+ 2Bt + yt2 (2.2.8)

2
f=-y[-}54-+%:l--§-z>5+)\
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where @, B,Y, 5, ;{‘, A are 6 arbitrary parameters.

In x-t space, the group (2.2.8) is a subgroup of the
.projective group. All of the parameters, except for vy, individually
represent "trivial” transformations. K represents translation
invariance ip X, o translationin t, & represent's invariance under
a Galilean transformation, and 8 repreéen’cé similitudinous invarié,nce
which is the invariance used to find the source solution to the heat
equation.

Since we are concerned with a linear homogeneous equation,
we notice that one of the parameters, A, does not enter in the

invariance of a boundary curve. If x =a(t) is an invariant boundary,

then infinitesimally X =a'(t)T, i.e.,

dx _ dt '
$ o= (2.2.9)

Next we solve (2.2.9) to find the most general invariant

"classical” boundary:

dx _ x T'(t)  St+tk
dt ~ 2 T(t) T (t)

Setting  x =yvVT(t), . we get:

8t + K
(o + 2pt+ ytz)%

iy

In general, four cases are distinguished:
Case I  B%#ay. Then

x - (At + B)
va+ 2pt + yi?

(2.2.10)
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where

A:"X'GE’ B=KE-60¢
ay-pe ’ oy - B2

and, as the constant of integration, m becomes the independent

variable. Solving for u, we find that i

a = F( )[: 1 :](W 18 -VBEay V.- - [A%-ynde VAT 25 ¥ viE }
= m 1 e 4 p/
(a+ 2Bt + yt2)/* | Myt + B +VB2-ay

(2.2.11)

where
N S
2VB%-ay

Of course (2.2.11) only makes sense if B2 > ay and here t is

{% +A 4 ;L% (624 a%(ay - ﬁz)]}

restricted to one of the ranges
lyt+p | >VpF-ay ,

| vt+p | <Vp¥-ay .

e TP
If p% <ay thenthere is no restrictionon t and Qt-fﬁ 2 DW)

t+B+Vpi-ay
becomes

1 {8 L . . Yay - ¢
exPi: T {Z.+>"+7¥\7 [52+A2(01Y ﬁz)]} arctan NET ]

Substituting (2.2.11) into (2.11) we obtain the following

ordinary differential equation for ¥(n):

Fi' 4+ gnF' + [Dnz + EJ F=0 (2.2.12)
where primes denote differentiation with respectto v and D= O—é&x ’

_AZ(Z-a) 62
cme el b
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, = Y32 = ~Bn%/4
Now let z =073 -ay and F(n)=Gi(z)e . Then (2.2.12)

becomes
G+ [-3- 4y -1 zz] G=0 T (z2a2n

where

The parabolic cylinder functions Dv(z) are particular solutions to this
equation, which, for the values v = n = integer, are easily related to

the Hermite functions.

Case II B2 =ay, yv# 0, Thus weset y=1

Here the invariant boundary is:

n = {x-&- 5+ (£20 t_ip} t-lt-ﬁ (22

where 1, as the constant of integration, becomes our similarity

variable. Solving for u, we get:

[ Az B Ax _nzt]

F(n) _ L3G+pP "T3p T THp 4

VBt

alx,t) = (2.2.14)

where

A =S5BK
Z
- . 52‘
B = - [%+x+-4-]

Substitution of (2.2.14) into | (2.11) results in the following ordinary

differential equation for - F (1) :
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g 52
F'' 4+ pOF 4 (=02 4280 - A4 ) ¢ F=0 (2215
_ 1 - N
Letting 2z = (K = SB)/3'q and F(n) =G(z)e P /4, (2.2,15) becomes
Z

G 4 [_..Z.W]c;:o (2.2.15)

where

- [7\ + %ﬁ + %]
[5p _sz/s

Airy's integral is a particular solution of (2.2.15').

v =

Case III B¢ = ay, B=y=0, a% 0.

Here the invariant boundary is of the form
- % | |
M=xX- 5— - Kt (2.2.16)

As before, M plays the role of a similarity variable, and

the resulting solution is

82 .5  bkt? 8
[—th -T’i‘lt-—z-ﬂt]

u(x,t) =F(n)e (2.2.17)
with F({v) satisfying
F'' 4 KF' 4 [-g-n-A] F=0 (2.2.18)

L '2’7
3n and F(n) = G(z)e ,» then

Ifwe let z = -6

(2.2.18) becomes

G' 4 [-.ZZW] G=0 (2.2.18*)
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with [K"‘

VR - sam . as in Case II
-—g—?g—— ( ’e eqqn i )

Burgers [7] recently consider this case, deriving this class of

solutions by other special means.

CaselV., a=p=vy=0, 6#0

The invariant boundary here is n =t. (2. 2.19)

The resulting solution is

| X N
¢ = F(t) & 2T [-x]

u(x, (2.2.20)
with F(t) satisfying i
2.
F' = [&(Hi()g“‘)] F(t) (2.2.21)
l A. 2
REIGTY (% - 3)
— ux,t) = ¢ S , | (2.2.22)

vVt
with ¢ an arbitrary constant.

Next we consider a boundary condition in more detail. If
x = a(t) ' (2.2.23)

is an invariant boundary along which | u(x,t) = W(t), then in each case
(2. 2.23) 'corresponds to some value of n =0, say, along which

U(s) = 7. Referring to Case IIl, an invariant boundary would be

x =0+ 6t3/2.+ Kt along which

52 Sk So
_ - t3 « =22 ¢ At - t]
W(t)=7e[_’£’2‘4 4 Z
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Often we are interested in the situation where along some
boundary U =0 (v =0) and a source is present {7], Under such
circumstances, in each of the four cases the parameter A does not
enter in the boundary condition. Thus we can pick those values of A
(v in the first fhree cases) which allow the soulrce to be represented
and lead to the proper behaviour for x = oco. Here A (or v), in
fact, plays the role of an eigenvalue and the superposition principle is

used to find the required solution.

2.3 An Example Where g(x,t)# O.

- Up to now we have assumed that g(x,t) = 0. A trivial
solution to (2.2.7) is g(x,t) = C = constant, We find the resulting

solution wu ,  assuming that =0, X=x, T =2t. Then

—
—

du Q}_:__dt
C x 2t

=> u=Cinx+F(n) Letting F(n)=-Cinn + G(n) we find that

V(n) satisfies

G+ 7 T:% (2.3.2)

> | G!' = Ce
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2.4 The Non-classical Group of the Heat Equation.

In deriving the classical group of the heat equation we did not

make use of relationship (2.1.5}) which connects w and U In

addition from (2.1.6) we see that it is not the functions X, T, U which

are heeded, but the ratios -}Tcr ' -}% , provided that T # O,

Let

|.<:
n

Ha  HIX

(2.3.1)

<
]

Then

u, =V.- Yux (2.3.2)

= - - 2y - |
= u (Vx YV)+(Vu YX+Y)ux Yuuxux°

* To derive the non-classical group of the heat equation

'we substitute in these expressions for u, and U, in the expansion

of u’x'x' - u't - and then successively eéquate to zero the coefficients of

uu, uu, u andthe remaining terms
Uit YUy Yk g terms,

The resulting non-classical determining equations are:

Y =0 | - (2.3.3)
V- 2Y, +2YY = 0 (2.3.4)
Yt - zﬁrYu +2V, - ¥+ 2YY = 0 | (2.3.5)
Ve =2VY -V, =0 | " (2.3.6)

Differentiating (2.3.4) with respectto u
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=> ' Vuuu + ZYu Yu = 0

Then differentiating (2.3.5) thrice with respectto u leads
to |
= 0

Y
uuu u

Then ﬁsing (2.3.4) again we find that

A = 0
uu
(2.3.7)
Y =90
u .

- Therefore the determining equations now become (we let

V = uF(x,t) + G{x,t) )

Y, + 2F, = Y, +2YY = 0 (2.3.8)
F - 2FY, -F, =0 (2.3.9)
G, -2GY, -G, = 0 . (2.3.10)

i = = - - 2
Letting Y va, (2.3.8) = F LR va-i-'M(t)..

If M(t) =0 then (2.3.9) =>

- ' - - 2 =
LA thxx 4v_v 8vxxvxx+ 4vxxvt+ SVXXVx + 4vxvxt 0 (2.3.11)

Clearly nonlinear (2.3.1l1) is a more complicated equation
than the original linear heat equation. However any solution to (2.3.1ll)
reduces the heat equation to an ordinary differential equation.

The classical case results when we set v =0 (Yxx = 0).
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It is interesting to note thatif F =0, then (2.3.8) becomes
the Burgers equation. Setting Y = -HX/H where H solves the heat
equation, we can show that the resulting solution u satisfies the

relation wu_ = H.
xX

We now give particular examples of non-classical solutions.

v {x,t) = yi{nx .is a solution to (2.3.11) if y= -% ’ -%.

!
Here Y--;{-
V=0
-"—"3’._ T]-T-Z—‘i't

Substituting u =F(n) into (2.1l.1) we find that F'' = 0 =>

2
= A (-}-{2— +t)+b with a,b arbitrary constants,

Case 1II y=-%
Here V=:-§£-J-
) x
Y= = 2
x

2
Thus n =->-f7_—-+ 3t and u=xF(n) Again F''(n)=0 =>

2
U = ax ( 3;:- + 3t} +b -with a,b arbitrary constants,
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Chapter III

Classical Invariances of the Fokker~Planck Equation.

3.1 Derivation of the classical group of the Fokker-Planck equation.

In this chapter we shall find the most general classical set of
functions C(u). leading to analytic similarity solutions of the Fokker~

Planck equation
. .8 (c())=0‘ (3.1.1)
Py 7 Puu " B0 u/P o

where p{u,t) 1is the transition probability density for haviﬁg velocity
u attime t giventhat u=uy, at t=t;, and C(u) represents
someﬂ dissipative force,

The following physically significant conditions are imposed on

C(u) and p(u,t): -

C(-u) = -C{u) (3.1.1a)
P(1,to) = 6(u ~ u) ' (3.L1b)
R/2
p(ut)du =1 where R is the range of interest (3.llc)
-R/2 -
and, of course
plut) 2 0 ¥u,t (3.1.1d)

The dynamic equation leading to (3.1.1) is

| m%—%-ﬁ- R(u) =F(t)

where R(u) is some resistive force depending on the velocity u and

F(t) represents white noise. It can be shown that C(u) = &rﬁ—:—l}.
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We now find the classical Lie group of transformations leaving
invariant (3.l.1, b, c) and show that a Lie group exists for only a

restricted class of functions C(u). As for the heat equation, let

p' = p + €£(u,t)P + O(€?)
u' =u + €U (u,t) + O(e?) (3.1.2)
t' =t + €T (u,t) + O(€?)

correspond to a Lie group of transformations leaving (3.lL.1) invariant.

Then
Plor = Plyigr - %.(C(u')p'> = zit = Puu ~ 3%- (C(u)p>
+ € { pu<-Ut + Uuu - qu + C(u)Uu - C'(u)U-C(u)f)
+p (ft -£__ - Cl{u)f - C'(u)U - C(u) £u)
+ puu(ZUu - f) w2p T }--+ O(e?) (3.1.3)

I 0 [ .
Substituting P " 30 (C (u)p) for Py, i (3.1.3) and then
successively equating to zero the coeifficients of Pup Pp Py and p

we obtain the following determining equations for the classical group of

(3.1.1): SR
T =0=> T =T(1) (3.1.4)
2U_ - T'(t) = 0 (3.1.5)
Clu) U, + U, + 26+ C'{a)U = 0 (3.1.6)
Cr{u) T/ (t) = £, + £+ "' (u) U + C(u)f;l =0 (3.1.7)

Solving {3.1.5) for U we obtain
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- uT'(t)

U > + A(t) ) (3.1.5%)

where A(t) is an arbitrary function of t.
Substituting (3.1.5') into (3.1.6) and solving for £ we find

that

uC (u)
4

Clu) A(t) uA'(t) u?
(uz ‘uz g

f=B(t) - T'(t) - T''(t) (3.1.6')

where B(t) is arbitrary.

Substitution of (3.1.6') into (3.L.7) yields:

T (t) [CZ(u) + uC(ué)‘Cl(u)_ czl‘(u) N uC;’(u) }

+ T () [1]

o [-4]

A(t) [c(u)g'(u) _Ci'(u) ]

’ 2
v -3

B'(t)

4

3 + +
v

]
o

{3.1.8)

(3.1.1a) implies that only two cases are allowed.

Case I  T'=B'=0, A"(t)=2 a2A(r)
Case I A =0, TV (t)=a T'(t), B'(t) = bT' (¢)

Both cases lead to the same equation for C{u) and so we
shall only consider Case I. Only the case A''(t) = + 2A(t) is of

interest since the contrary case leads to solutions p(u,t) which are
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negative for some u,t. Thus the equation for C(u}) is

CC'-C""-qa?u = 0

. 2 2442
= c--%_+9.2£_+p = 0 (3.L9)

with &, B arbitrary constants, a > 0, say.

YZa D(v)

Now let - C(uw)

u -
_B
vEg
Then
D'(v) =D2+v:i+y =0 - (3.1.10)
NOW let
1
D(v) = - LY
Then

V"(v) “=(v2+y)V(v)=0 (3.1..11)

(3.1.11) is a confluent hypergeometric 'equation. Because of (3.l.1la),

V(v) must be an even function of v. Thus [8]

-l 2
Viv) =e 72V M(%: v+ ;1;, %+, v¥) where M(a,b,z) is
Kummer's function. (The notations @(a;b;z) or ,F;(a;b;z) are also

used). Using the properties of Kummer's function [8] we find that

o (B33 L,
C(u) = -au [ E+1) M3 +f" i' Zl,auz> - 1} (3.1.12)
' 2
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It is more instructive to investigate C(u) in the phase plane,
D' =D% -v%2 -y with D(0) = 0.

There are five cases to consider. In each case either D=v or D==v

is used as a reference line.

(i) 1<+vy . (repulsive force)

(ii) . 0<y<l1 (repulsive force)
(i1d) =~1<vy< 0 (attractive force for finite region only)

{iv) v =-1 - (attractive force - harmonically bound particle)
(v) v < -1 (attractive force too large, leading to impossible
situation)
A D(V') | D(V')
L
v ¥ oo

) e Lt oeyet
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4 0 | 5 DO

(iil) -1<¥<0 | ' Giv) T=-1

Div)

'

(v)  Ye=i
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As v — 0, inall cases D(v) = -yv + O(v3}.

As v — 00, in cases (i) to (iv) D(v)~-v + }-2:—1 .

- v

For case (iii), as y = 0, the extrema of D(v) occur at

v = iﬂ[ 1+ O(y%2)]. Case (iv) corresponds to the situation where

the extrema of case (iii) — ot co as y — -1,

w

2Ny

In case (v) if y << -1, then D(v) —~ o when v —

since D(v) ~N [\/]-.Vz tan(v Iiyl -v<} as Vv ~—T — g0 that the
2NV
range R is ~= /N | [ . However it can be shown that here

R/2
S p{u, t)du = fn(t) so that this case does not lead to a probability

-R/2 '
distribution.

We are now restricted to those cases where y=§ >=1 and

examine the condition Plu,ty) = 6(u=-uy).

3.2 The solution of (3.L1, a, b, c) and the computation of W

From (3.1.5"), (3.1.6'), (3.1.8), and (3.1.9) we obtain
e h
T = A

U=;<eat+ ve

{ f-'=|_,, _,.C_Z(El {Keat*_ 've—at\J

at

> (3.2.1)

where k, A p, v, are arbitrary constants.
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Since we must leave t =t, invariant, A =0

p' (uo. to) = & (u'=uy)

U (up, to) = 0

flug,to) = _Uu (ug»to)

Thus
(i (':—'%EQ') [Keat" +ve-at°]- %f [Kem:0 -ve-at":l =0

and
Keat" tve @0 = g

Then
gp . du_ 4t
fp U T

> dp

pla{uy -~ ucosh aft-ty)} - C(u)sinha(t-ty)]

du dt

Zsinho(t-ty) O

Thus our similarity variable n =t.

=Clu) du _ dV(v)
2

Since TV we get

[0 ~ 2uu
: - = {uz[l+cothaft-ty)] - 9 }
plut) = gl6) M(25 +3, 3, om?)-e © S IR 5 o)

where g(t) is an arbitrary function of t.
Substitution of (3.2.2)' into (3.l.1) leads to a first order

ordinary differential equation for g(t) whose solution is
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- [%t + 9%9-2 cotha(t-to)]
gley = ¢ T . (3.2.3)
[sinha(t-to)]”?

where K is some arbitrary constant to be fixed by the normalization

condition {3.l.lc).

Let t-tg =7. Then

B
1 -a{l+cothor)

. Ke B 11 ~QUT
plu,t) = M( 4 % s *Ozuz>' exp[—-———-—-—— {u-uge }"](3.2.4)
’ [sinh a*r]sa daan e 4

‘We now use two relations

ve

: eér‘ l_'.‘.‘i. - X
(91 M(-%,—é—,%v-’-) - 2/, @ {Dv(v)+ DV(-v)} ' (3.2.5)

N

and

o (U-v): 2 | U2
[10] ge G g 4 D, (v)dv = VZmp (1-p)1/2” e Hi-t) D, [U(l-p.)-%‘:](l 2.6)

where Dv(v) is a parabolic cylinder function.

Thﬁs
o _ ({U-v)? % ' _
2 2 .
§ e m(-% 14, -é-v’-)dv =V ZAn(1-p) M(—%%% %) (3.2.7)
-co

We now substitute into (3.2.7)
v = yau

U= JYa uoe-aT.
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S

Yy =
- 2 _ . -QT _ - 20T
k=TT comay - Asimharie T =l-e
= l - P. = -zaT
U2 2
= Qo
Tep 0
Therefore, since we demand that
0
o 1
g plu,t)du =1, K= [="
-0 " ZM %*%'%R%auoz)
and
p(u,t)
B o111 1,2 By
_ 1 o M(éa ta.2. 200 e 2 . -g{ltcothar) -arj?
=3d7 5 : 7 exp v u=-uge ‘
M zat 4,3,3(.!_%3) [Slnha‘T] _

(3.2.8)

Thus - p(u,t) 1is not a Gaussian distribution if C(u) is nonlinear.

Next we compute the mean square displacement, u?% Let

. U2 '
MeM(-%h b ) eme M= M(-%i.)

Then after computing _B(Zﬁ " of {3.2.7) and performing some

simple manipuiations, we get:

. |
S" vetU-v)¥/2p Mdv = UVZ7. (1) [M + -lij-“-; M‘] (3.2.9)
-0 ‘ |

Computing '630 of {3.2.9) and again manipulating, we obtain
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Using the relation [8] zM'' = -3 M+ (z-3)M!, we find
that '
P2
FVERR (1) 2 U1 M (1) e - VM UM
Then after making the necessary substitutions and combining terms,

we find that

5 31
N M(-z}'i‘%, --Quoz>

— . ; >
u? =yl e zar,, é%(sinha'r)z-b ﬁf—%—%—gj-b o -l f Zl -
O M) |
-~ 2aT
8 e’ " -1
[a £ 1 L . (3.2.10)
In deriving (3.2.10) the relation - M(a,bz) = 2 Mia+1,b+1,2)

has been used. Other important relations for the Kummer functions are

(v =-1) M(0,b, z) =1
(y=1 M(b, b, z) = e”
The case vy = -1 corresponds to a harmonically bounded

particle and here we get the well known result for C(u)=qa u:

T

S a e ~a{l+cothar) ~aTi?
p(u:t) = ‘é‘ —_ . exp[ {u-uoe }
n [sinha'rjsz 4

IR
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with

- o ar

1, =2ar

- -é— (sinh aT)? + Sinh2aT _ =
If v>-l, as canbe seen from the phase plane diagram for

C(u), or directly from (3.2.10), u?-~c0 as t— oo Bsince C(u)

is repulsive.
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Chapter IV

Application of Group Theory to a Particular Hyperbolic Equation

.

4.1 Derivation of the Group

In this chapter we shall find the Riemann function of

LN WA + 'i% u, = 0, i.e. ' the solution of
U ~u, tu - 6(x-£) 6 (t-7) = 0 (4.1.1)
xX tt x x o

" by group theoretical methods. This particular problem is discussed in

[{11]. First of all we find the classical group of (4.L1).

- Let
u! = u + € f(x,t)u+ Oe?)
x' =x 4+ € X(x,t) + O(e?) : (4.1.2)
t' =

t e T(xt)+ O(e?
. leave (4.l.1) invariant. Then

Y .
Ul ” u,tltl t o ouly - §{x'-§) &6(t" ~7)

Su ot U +ZL>E u, - 6(x-£) 6(t-7)

+

. 4 " A,
€ g Zu‘cx (Xt - Tx) + ut (Ttt - th - Txx X Tx)
u(f £ s >+ u (f - zx)
xx "t x'x XX X,
utt(ZTt - £> 4 ux(zgc-xxyxtt -

A X+ %;-f) 4 (xx+ Tt) § (x-£) 6 (t-7) £ (4.1.3)

+

+

X
x

A
x
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with ' -
X(&7) = T{&T) = 0 (4.1.3a)
e N A .
Substituting w__ =u, ~=u 6{x-£) 6(t~T) into (4.1.3)

and equating to zero the resulting coefficients of the different derivatives
of u, we obtain the following determining equations for the classical

group of (4.1.1) :

T, -X =0 (4.1.4)
T -T _ -2 -L2T =0 (4.1.5)
tt XX t x 'x et

f-f +hi =0 (4.1.6)
XX tt x'x oo
T-X, =0 (4.1.7)
. A AX
2, =X TR AFX - =0 (4.1.8)
(6, 7) + T (&) = X (E,7) = 0O {4.1.9)

(4.1.7) and (4.L9) => £(&7) = 0 ‘ (4.1.9")

Substituting (4.1.4) into (4.l.5) and using (4.1.7) we get:

26 + %x = Alx) (4154

with arbitrary A (x).
(4.1.4) and (4.1.7) = X .- X, = 0. Thus, solving for f
in (4.1.8) we {ind that Alx)=a= arbitrary constant, However, because

of (4.1.3a), (4.19'), a=0.

Jeo X = 52 (4.1.10)
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Next we compute

Comparing this equation with (4.1.6) we see that
£ =0=> f,=0.

Thus

f =p(t-7) using (4.1L9")

X = - -2-;{.9 (t-7) from (4.1.10)
(4.1.4) and (4L7) => T =L [at7v-12 - 2] 4 v,

- Using (4.l.3a), we finally get (setting p =1):

f = (t-7)
x=-% (t=7) (4.111)

_ (&% - x?) - (t-T)?
T = X

. o du _ Adx - Adt
: rha - T Zx(t-T)  (EF-xF) - (t-T)2

4.2 The Solution of (4.1.1)

First of all we find the similarity variable, defined by the

integral of

Z#(t-T)
(t-7)e + (x2 - g2)

ax
dt

lLet y=t-r. Then yx;ix —nyj-l-dx--)%- dx =0
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=> x-y—{-i-:const:z
x x
du _ _ Adx
u 2X
Y
= u=x 27 g(z) (4.2.1)

with u(§,7) =1. and g{z) an arbitrary function of 1z,

Substituting (4.2.1) into (4.l.1) we find that

Letting ¢ = E_‘:LE.Z_Q, (4.22) becomes the hypergeometric

equation
) L& dg 2. 2yg-
¢{l-¢) 35 + (1-2¢) g -Z(l 7) g=20 (4.2.3)
The solution of (4.2.3) having the desired properties is
glp) =AF (1, 1- -7&- ; <p) where A is some arbitrary constant to

be determmed by normalization.

We now use two relations

F({a, b;c;z) = (1-2)"% F(a, c-b; c; _:___i)

and
F(a,bjc;z) = %ﬁ—%&{—:; (-z)"® F(a,l-c'+ a; l-b + a; z'l)
4 (-z)7P %E%F(b, I-c 4 bj 1-a 4 bj 274
Thus

u=B (x<p) F(’L 21 '1> with Bg™™2 <1
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= u(x,t) =

(2 p(3, byl (et )
[etg)e = (car 2] 2h T NE 277 xdg)E - (E-m)e

The result is the same as that found in [11] by different methods.
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Chapter V

" Nonlinear Heat Conduction

5.1 Derivation of the Classical Group for the Equation of Nonlinear

Heat Conduction

In this chapter we shall study the equation of nonlinear heat

conduction

(c:(u) 3--) bu | (5.1.1)

and find the classical set of functions C(u) for which (5.1.1) can be
reduced to an 6rdinary differential equation. Of course we assume
C(u) # constant. Ovsjannikov (4], [13], was the first to work on the
group theoretical éspects of (5.1.1), He derived the classical group of
(5.1.1) but did not proceed to find the resulting ordiﬂary differential
’ equations.' | |
Lei:

| u' = u+ €U(x,t,u) + O(e?)

th.= t + €T (x,t,u) + O(€?) | (5.1.2)

D x! = x4 €X(x,t,u) + O(€?)

" represent, as previously, a Lie group of transformations leaving (5.1.1)

invariant. ‘Then

g (CH 5r) - = aw (Cw §E) - &

e 3 u, (Xé +2CH{u) U, - C(u) xxx% ZC(u)Uxu>
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+ (C(u)Uxx-Ut> -2u, C(u) T,

-2u_u. C(u.)"]f'u +u ut(Xu ~ 2C'(u) Tx- 2C (u)Txu> '

- uxuxut<2C' ()T, + C(u)’I‘uu>

- uxuxux(zc' () X_ + C(u) qu>
- uxxutC(u)Tu- 3uxuxxC (u)Xu + ut<Tt- Uu- C (u)Txx> + ututTu
+uu (UCH(u) - 2G1 (WX + 2CHw) Y, - 2C(u) X, + C(u)Uuu)

4 uxx<C(u) U, +UCH(u) - ZC(u)XX)} + O(e?) (5.1.3)

. ‘ - . .
Next we substitute ug C(u) u  * CY(u) uw u  into (5.1.3)

and solve for the classical group by the method outlined in 2.2.
Setting the coafficients of U and u v, eqqal to zero,

we obtain

T = T(t)

Equating to zero the coefficient of uu ., We have

Now equating to zero successively the coefficients of

u_, u and the rémaining terms, we are led to the

Ouu)
X pod X X

following relations:
Xt +2C' (u) U - C(u) X 1 2C (u) Uxu =0 (5.1.4)

C(u) T'(t) + UC'(u) - 2C(u) X_= 0 | (5.1.5)
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CH{u)T(t) + C'(u)Uu + UCH{(u) ~ ZC'(u)Xx + C(u)‘Uuu =0 (5.1.6)

Cwu, -U,=0 . | (5.1L.7)
| = C(u) |
(5.1.5) =» U = &y [2x_ - T*(t)]

Substituting for - U in (5.1.7), we obtain

X = Z{Z-T'(t)+axz+ﬁx+'y\
T = T (t) > (5.1.8)
U= g-,-(% [4ax + 28] J

where @, B, Y are arbitrary constants.

Substituting‘(5.l.5) into (5J).6) and using (5.1.8) we findthat
C R
(-C-r) =0
Thus, if ode of @ p+# 0, classically,
Cu) = A{u+k) (5.1.9)

where A, K, v are arbitrary constants.

Now we investigate (5.1.4). Substituting (5.1.8) into this

equation, we obtain

i 4C c” =
S T(E) + zavc(u> [7 ) <é‘f<’u> )z(u)] =9

Thex;efore for arbitrary C(u), T'"(t)=0, a=0

.

=> T(t) =2A + 2Bt, where A,B are arbitréry constants.

If a+# 0, we have an additional group which corresponds to
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functions ' C(u) satisfying

7<c'(u)>Z - 4C(u) C''(u) = O

-4 ,
=> C(u) = A{u+k) /3 Thus for a# 0, v ==-% in (5L9).

In summaxry we have the following three cases:

Case 1 C(ﬁ) arbitrary

X = Bx + v
T = 2A + 2Bt ' (5.1,10)
U=0 |
Case II C (u) é)L(u + &)Y
X=(p+B)x+ vy
T = 2A + 2Bt (5.1.11)

U=-§Vﬁ(u+ Ky

A limiting case here is C(u) = et

o4
Case III Cu) =A(u+ k) /s

X=(p+B)x+ax?+y
T = 2A + 2Bt (5.1.12)
U =-2(utk) [2ax + B]

For each case we consider the resulting ordinary differential

equation.
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5.2 C{u) arbitrary

If we assume that B # 0, then

dx  _ dat - du
XxX+y 2B+t 0
. cs . . . X b
« « the similarity variable is n = 7]
‘ (A + 1)

u=F(n) => C(u)=D(F)

The resulting or dinary differential equation is

198, 4 (pep) &) -
> n+dn D(F) & =0

53 GC{u)=x{u+ k)

Again, we assume B # 0. Thus

dx dt du

-~ a—

(T+Bx+vy ~ 2(&+t) ‘zg_(u“{)

Here the similarity variable is

<x+-1——_\{_Lﬁ->

grL

(A-l-t)z

with u+ K = (A + t)ﬁ/v F(n).

The resulting ordinary differential equation is
p+l dF _B d v dF |
=& "y F(n) +A [F(n)] e 0 (5.3.1)

(5.3.1) is invariant under the following one parameter group

of transformations
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n'=un

P«z/{’ F

(5.3.2)
Fl

Therefore as new variables we choose the invariants

F
[ d
g 7 an
vl (5.3.3)
F dF
h = h = —_—
(g) o
d 1
Then —a% = 3 [vh - Zg]
dh

Col Fl[ - (5 "*h)]

<+ (5.3.1) is reduced to the following first order ordinary differential
equation:

ng -vh{2x(h+g) + (B+1)]
dg 2Av glvh - 2g]

(5.3.4)

which may be solved by looking at the phase plane and picking the pai:h
appropriate to given data.
After solving (5.3.4), to pass from the, (h,g)-plane to the

(U,n)-plane, we solve

5.4 C (u) =>\.(u+}{)-4/3

We assume that B # 0

Here’ dx - dt - du
B+lx+ax?+y 2(A+vt) T o= 3(u+tk)2ax+p)




-48 -
For illustrative purposes, we consider the special case
(B+1)” =4ay.. Then the similarity variable

2
e- Zax+ B+l

(A + t)l/2

and u+tg =

oo FE 3 F a? A -
F 5 7 452—"'-2-an Fit =90 (5.4.1)
Let
3
g = Fn /2
) (5.4.2)
h = Flns/z
Then
dg . 1L T3
an 7|2 g+h

dh _ 1 [4n%2, 3 5
@ Tw |[3gtgetzh-ae h]

Thus (5.4.1) is reduced to

6ot %,
16h? + 9g2 + 30gh - 2 g/5
—3—}3 = with -El-r-)-=-—-g——-2d
g 6g(3g + 2h) n  3g + 2h
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CHAPTER VI. THE CONFORMAL GROUP

In this chapter we discuss the conformal group, C(n,m), which
is a subgroup of the classical group of transformations leaving invariant

the equation

n n+m
B z 9¢u  _ 0
ox.2 ~
i=l  i=n+l :

© We show that 'C(n,m) is locally isomorphic to the group  SO{n+l,m+l)

which leaves invariant the quadratic form

ntl ntm+ 2

‘- z x.z )
) 1

i=l§ i=n+2

A consequence of this result for Laplace's equation in n dimensions
_ is the existence of closed bounded geometries other than concentric
spherical boundaries for which the number of variables may be reduced
by one sinc:e compact‘transformation other than rotations leave the
equat.ion invariant,

The following notation will be used in this chapter:

{L2,eee, n} if i=1, 2, vs, n
{ntl, nt2, ..., ndm} if i =+l 042, .., ntm
_ 0
»(2) 3i'-§3§

(3) Repeated indices = summation over the index.

n n-i‘-m
23 (55
i=l i=n+l

(5) We shall.be using the space R™™  with metric '?-?=2xi3.
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- 2
(6) v1ri,m - z %

6.1 Matrix Groups

Up to now (cf. Chapter I} we have only considered group trans=-
formations on functions. In this section we give a brief introduction to
matrix groups. A matrix group is simply a set of'matrices which
satisfy the group axioms with rhatrix multiplication as the law of
combination.

Let a be a linear transforrﬁation whichleaves invariantthe real
non-singular bilinear form G.E x xm This is equivalent to finding a

m

matrix & such that (a—é},a?m) =(€}’?m)=01m where the -51 are

basis vectors and G is the metric matrix,

i.e., aTGa =G (6.1.1)

where (aT)ij= aji'A The set of all @ satisfying (6.1.1) form a

- matrix group.

For Euclidean space, Rn, one may choose G = Identity matrix=1I

and {a} = {orthogonal matrices}.

For our purposes we are only interested in connected continuous
matrix groups, whose study may be reduced to considering one -para-
meter sub~groups which are canonical in their respective parameters,
i.e., we have a set of matrices +v(t) such that

(1) v(0) =1
(2) v(ty) v(tz) = v(t +¢tz) | (6.1.2)

=> vy Xt) = y(-t)
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(6.1.2) => v(t) = ¥'(0)

B =‘y'(0) is called the infinitesimal generator of the one-
parameter matrix group {v(t)}.

In order to give some interpretation to B, as an example we

consider the rotation matrices

coswt - sinwt O
v(t) = sinwt coswt 0

0 0 1

which represent rotationabout the z-axis with angular velocity w.
Let

x(t)

T(t) = y(t)
2 (t)

and say z(t) = y(t) T (0)

Then T '(0) = y'(0) T (0)

0 -1 0

= w 1 0 0 1°7F(0)
0 0

=w X?(O) where. @ = WK .

Thus in this example +v'(0) =w X and corresponds to angular velocity,

6.2 Lie Algebras

A linear space [ is called a Lie algebra with ° as the

law of combination if for any A,B,Cé€¢/ ,q, 8 scalars:
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(1) A°Be/

(2) (@A+BB)°C =a(A°C) + B(B°C)
(3)  A°B = -B°A

(4) A°(B°C) + B°(C°A) + C° (A°B) =0

A familiar example of a Lie algebra is the set of all vectors in
R3 with X (vector product symbol) as the law of combination,

Both the infinitesimal operators corresponding to group trans=-
formations on funétions and the infinitesimal generators of a matrix

group form Lie algebras with
A°B = [A,B] = AB - BA

'f_A,B] is known as the commutator of the elements A and B.

6.3 The Lie Algebra of the Group SO(n,m)

For small t, vy(t)= I+tB+ O(t?) .. from (6.l.1) we obtain
. _
B G+ GB =0 | (6.3.1)

R

Now we specialize G to the space (n "space-like¥

and m "time-like" dimensions).

Here Gaﬁ =-'€0550q8 where
1 if «a€A(l)
-1 if «€ An+l)
= ekBki*‘éiB-ik = o. {6.3.2)

oo i Ak) ='A(i), i.e., if k and i are relatively space-like,



-53-

i ® ..Bik (elliptic rotation); if A(k)# A(i), then BkizBik

(hyperbolic rotations). . The Bik satisfying (6.3.2) constitute a basis

N for the Lie algebra of SO(n,m).

then B

6.4 Derivation of the Conformal Gzroup

In this section for the space R™™  we derive the conformal

group, which is a subgroup of the Lie group of transformations leaving

invariant
2 u=90 (6.4.1)
n, m
Let
x'i =x, + GXi + O(€?), i = l; 2y, sesy, ntm
(6.4.2)
u! =u + e€fu + O(e?)
where
f=1(x;,%; eee s xn+m)
Xi = Xi (Xl, XZ, vee 3 xn+m)
- represent the classical group of transformations leaving (6.4.1)
invariant. Then
12,1 = 92 - - 2
9{%u' = 92u + e[ 2% 39385 = Xy 10, 4 26,8, + £, + £02 Tu
+ O(€e?) : (6.4.3)

In (6.4.3) there is no summation over i.

From (6.4.3) we obtain:
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2 = 2 = 2 2 . -
AR Zai u! -z (81 + € [£9] 2K, ; 98, = X, 10,4 Zf,iai-ff,i.l:[)u
+ O(e2) (6.4.4)

Then the classical group results from solving the following

determining equations:

(% =%, if A()#A()
‘ (6.4.5a)
L5 =00 - X5 i A =A()
21, = Z X,y i jea()
(6.4.5b)
2, = - xj.ﬁ- if  jeA(n+l)
zf’ii = 0 | (6.4.5¢)

We assume that { = n+m 2 3.
In order to systematically analyze the determining equations it

is convenient to first consider Xi ik where i# j# k#1i
4

(a) LikeAli)

Then Xi,jk = -Xj,ik = Xk,ji = -Xi,jk =0

(b) - i,je A(i), A(k)# A(i)
Then Xi,jk = -Xj,ik = _Xk,ij = -Xi,jk =0
Next we consider X. ... = %f,.. where there is no summation

JJ
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over i and j.

j) = i - = -'_1" ve ®
If A(j)=A(i), then :Xl,lj_] xj,jii Zf’u
If k#1i,j but A(k) =A(i), then f’kk = -f'ii and
f’kk = -f'jj = f’ii = Q.

If k+#i,j and A(k)# A(i), then X ikk = %k, ikk

=3 f’kk = f,ﬁ = f’jj = 0 since f’ii = —f'jj oo if 223
X, ..=0 )
1,13)
_ (6.4.6)
Xi,jk=0 if i#fj#+k#1
with no summation over i and j.
We note that 3 indices were needed to derive (6.4.6).
(6.4.6) => Xk-a +bka+C xkx +koJJ (6.4.7)
Applying (6.4.5a) to (6.4.7), we find that
(1) gk’k=g for k=1, 2, veeyp 4o
(2) Ekj =2C; foreach k=1, 2 wu, L
(3) dkj = --Ck if A(k) = A())
(4) dkj = Ck Af A(K) # A(])
(5)  byy =byg = by i A(K) = AL k#
(6) bkj = bkj = bjk if A(k)# A(j)
where g, Cj’ bjk (j < k) are arbitrary constants. Then
- 24 2 i
a’k+bijj Ckz x + Zijkxj-i-gxk Cif keA(l)
X = ' (6.4.8)

2 . .
a, + bijj + CkE X2+ Zijkxj +gx,  if kéA(ntl)
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Then (6.4.5b) =>

£ = (2-0)C % +h (6.4.9)

k

where h is an arbitrary constant.

The conformal group, C{(n,m) is defined to be the subgroup
for-which h = L%ﬁ)_g We must select this value for h in order that
C(n,m) be isomoxrphic to the usual conformal group which leaves
invariant z dx;2 = 0.

Next we consider the infinitesimal transformations individually
and form their corresponding infinitesimal Opex-'ators. This is accom-~
plished by setting one of our constants equal to one, and the rest equal
to zero.

(1) £ =n+m translations

(a) n "space"' translations for which Xj = 6'i’ 3 =1,2,400,n,

J
A )
infinitesimal operators T, = -5;-1- (6.4.10)
(b) m "time" translations for which Xj = aji’
j = ntl,nt2,...,ntm, with infinitesimal operators
_ 8 ‘ . -

(2} 1 stretching corresponding to

Xi =x,, foreach i

1.
. [2-4
= (39)
The infinitesimal operator is

S = x, gf‘-; + (i‘;‘—f)u% B (6.4.12)



-7

(3) _@__L%;_l_) frotations”

(a) P—(—‘—zr-l-ﬁelliptic rotationsl for i,jeA(l)

X,

i

X,

1 J§i,j=1,z,.,..n, i# ]
X, = ~x,
J 1

The infinitesimal operators are

- 9 )
UlJ = [Xl-g;c; - Xj 3;;; ] (6.4-13)
m (m-1) . . .. '
(b) ——" elliptic rotations for 1i,j€A (n+l)
Here the infinitesimal operators are
_ ) )
uij = [Xl g}%‘ - xj -8—}2-1- i] (6.4.14)
for 1i,j = ntl, nt2, .o, ntm.
{(c) nm hyperbolic rotations corresponding to A (i)# A {j)
.' Xi=xj i=12,.,n
) Xj = Xj J = o+, nt2, .0, ntm
The infinitesimal operators are
- 0 ) .

(4) 2 distortions

(a) n "space" distortions

—
reT

X TR TS

Xj;-:xkxj if j#k
£ =(-2-.2:’L> X k=L 2,.,n
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Of course we are not summing over k., The infinitesimal

operators are

2 i (T T ) 2,22 9
Dk = -5 (1 r)axk + xkxj axj +. 5=% U e (6.4.16)

(b) m "time" distortions

i

”

»”

-+
Nr?*
4]

Xk‘ K k

+h
I

N

v

fa
o

== < k = ntl, n+2, ¢e., ntm

with infinitesimal operators

i e B 2= 0
4, = (7 ”ﬁ;“‘kjax +(52) %, (6.4.17)
We note that, in all, we have Wl)é——-——ﬁz-‘) independent infinites~

imals. The bésis of the Lie algebra of SO(n+tl, m+l) has the same

number of elements.

6.5 The Distortion Transformations

n,m

Let ¢ = (X1, Xz 000, XI) represent a vector in R and let
—i; represent a unit vector for the ith component so that
o Pi;-?=xi'if ieA(l), .
li- T o= =X, if ie A(ntl).
In our manifold Rn,m' we define a "hypersphere" of radius
a about the origin M as . { (X1,Xz) 00 ,xl) } such that
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— —pn
sz.. Z_Z x2=r¢r = g® = constant > 0
i

i=l i=n+l

Let ¢ denote inversion about the unit hypersphere. Then
—

_Q(?) =»r_’ . In addition a transformation in the large will be denoted
rer : €D1 ~ eT €S
by a'tilde. Thus, e Di(e), e = Ti(e), e = S(e), etc., It can

be easily shown that
T(€) (xlle) "':xl llx » x1+1) LA ] x )

%)

—(XI,XZ,.H,X l, x+€, x1+l’o¢o’ 1

and g(e) (?) =ef 7

We now prove that in the large  a space distortion Ei(e)
corresponds to an inversion, followed by a space translation of x. by

-te, . followed by another inversion, i. e
() Dy(e) = 9T, (-}e) d

' Similarly it can be proved that

(b), - d;(e) = 9t (~}e) g

Proof

() 9T (-3

[{]
P
=32
(S
2
AN
"i.l Hl
\l./

it
'S
NN
i
Hl r-gl

N[H
ﬂ\ m
n Hl
4

I
~——



1~¢€ x, +:1;€3(?-?)

T +1e[-(F-TIT + 2x, T ]+ O(e?)

which agrees with (6.4.16).

6. 6 The Conformal Group for R?

It is easily shown that for R2 , in terms of complex
variables, the local conformal group corresponds to all analytic
functions. However we now could consider those conformal trans-
formations which‘we have derived for R™™(nt+m = 3) in R% We prove

that in RS2, these correspond to the 6 parameter Mbbius (bilinear)

az+b

group which is vrepresented by the complex valued functions £(z) =<77d’

ad"bC¢ O-
It is well known that the Mdbius group can be built up from the

following fundamental transformations:

(a) 2, tz) =z + a (@ complex) (translation)
(b) 1:(z) = dz ' (¢ complex) (rotation and stretching)
(c) 4 (z) = -%- =_9(z) (inversion about the unit circle)

Using the results of 6.5, in order to prove thé equivalence of
C(2,0) and the Mdbius group, we only need to prove that ¢(z) can be

obtained from stretchings, translations and distortions.
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Proof » : .
One can easily show that
~ - Z
Dy(2¢) (2) = 12
~ z
Dal2€) (=) = 1375
Consider

S (1og o) T (e) By2) Ty (e Na)

S(1og 25 Ty(e) By(2) (z 4 €)
= S(0g &) T(e) (£5)

~ 1 __2
= S(log =) ()

= - -i— Then after rotating =z =re19 by angle m

we finally get -i—z_g(z)

6.7 C(n,m) =S O(n+l), m+l)

In this section we prove that C{(n,m) is locally isomorphic
to SO(ntl, m+l) by showing that their respective Lie algebras satisfy

the same commutation relations.

The commutation relations between the infinitesimal operators

of C(n,m) are:
[Ti’Tj:l= [Ti’tjjz [ti "ltj]=[Di’Dj] =[Di’dj] =.[di’dj]‘ =

=[T1’ujk] =[Di’ujk] =[ti'Ujk] =[di'UJk] =O;

[Ti , Ujk] = 51ka - éiij :
“?5. » Uyl = 85Dy = 85D 3 ,
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{ti, ujk] = aijtk - ‘Siktj ;

65..d, =~ 6..d
i

[di’ujk] Z %% T %k
[Ti.ij] = ﬁijtk + 6iktj ;

[Di,ij] = <[ Gijdk + 6ikdj] ;

_[ti’vjk] =655 + 8y

’I‘J.;
[a;, Vi) = -L8;,D, + 8, D ;
(T,,s] ;Ti;[ti,31 =t
[D,,s] =-D;;14,8] = -4 ;
[Tj,di] =[t.1,Dj] =V..;
[ti,dj] =6ijs-uij;

[Ti,Dj] = aij S-U,. ;

j

[Aij,AM] = 5J.kAu-5j1Aik + GuAjk"SikAjz ;.
[Vij,szl = BjkAu + 53.1Aik + GuAjk + SikAjl ;

(8550 Vied = 850Vig * 85 Vie = 850 Vine = 8V 0
[A,.,8] =[V..,8] =0 where A =u or U.

Let Eij represent an elementary (f+2)X(£+2) matrix, i.e.,
the only nonzero element in the matrix Eij is a 1 in the ith row and

jth column. Then a basis for the Lie algebra of SO(n+l, m+l) is:
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Eij-Eji' i,j=l,2,_ ses n

Eij + Eji » for each 1i,j =1, 2,4, 4 with A(i)# A(j)

Eij - Eji 9 i’j = n+1’ n+2’ sse 3 2

Eovy, 062 Bpez, 441

E E T i = n+1, n+2, sed g —e

i,g+2." g2, i

E ,i=1 2, <., n

i, 041 - Tel, i

E E

i, 042 F

Ei g41 ¥ By, 30 15 0tL nt2, oo, nim

We see that (f£+1) acts like a "space" index and (4£+2) like a "time®"
"index. |
We show that C(n,m) is locally isomorphic (the global
structure of the group will not be discussed here) to SO(n+l, m+l) by
letting: 4 |
Uij = [Eij - Eji] » 1,3 = 1’ 2, see n
vij = [Eij + Eji] , for each i,j =1, 2, oo, £ suchthat, A(i)# A(j)

u.. =E.. ~E..], i,j=n+l, nt2, eee, 2

S=E 1 27 Bz, g4l

{[Eﬁl’i-Ei’HI] -[El+2,i+Ei'1+z]}' s i+1,2,0ee,1

{[Ei’ﬁz --EI+2’1] +[E1+1,i+Ei,1+l]} s, 1=n+L 042, ey d
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-Ei’i'i‘l]+[E1+2.i+Ei'1+2]} ,1=1,2’o.0’ ) o

{[Ei’ﬁz -Eﬁz,i] -[E“l'i+Ei’Hl]} , i =n4l, 042, wey L.

1 {[
—— E .
i VZ 1+1, 1
s
V2

6.8 The Compact Operators 'I'i + Di’ t, + di

From the proof of relations 6.7 we note that ¢ more locally
compact operators Ti+ Di’ ti-i-di exist in addition to the elliptic ro-

tation operators Uij’ uij since Ei,1+z‘ EI-FZ, . and Ei,/z+2'Ez+1,i

represent elliptic rotations. We now find the surface which Ti+ Di
leaves invariant for the case n = {, i.e., for Laplace's equationin n
dimensions Wé try to find additional closed boundaries (besides concen-
tric spheres) for which the number of variables may be reduced by one.

As an example we take T; + D, « To find the invariant surface, we

solve
dx
dx, dx, _ dx; _ - n
= XX, X X. T %%
145l %= %2 %32 = o0 =~ x 2] 172 173 1%

n

Let B=-%[1+d32+a4,2+..- 'l:arlz]

| dx, _ 1 1 X Xz
Then ' dx, = X%, t 2 X, + P X,
' X, Xy *h
2 - . 2 3 4
= X4 = =2 ¢ 2B%,° + x, f'n (Xz P X, R,

. . %
Taking the arbitrary fn tobe 2y ;{-1; and using the formulas

~for P andthe a's one finds that the following set of surfaces is left

invariant (k= 2): - \

xf + X% 4 ees # xfo] +'(xk-y_)2 txg gt et x =y2-2
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which corresponds to a family of non~concentric spheres. This implies |
that the nuﬁqber of variables in Lfa.place's equation may be reduced by
one for special boundary conditions imposed on any two non-intersecting
spheres (since after rotations and stretchings they may be made

members of the above family);

2
Consider 28 = 0 (6.8.1)
1

We now derive the reduced form of (6.8.1) due to invariance

under T,; + Dj;.

Our similarity variables will.be

*
gl = -}—{-—2- s 1 =2 3
N .
2 x| 42
1
A\i=l C
1 %,
2-n
2
u =X, U(§3, g#s see y %n.ﬂ)

with U satisfying the fdllowing partial differential equation:

92U 94U 02U 22U ou 0Uu
2ey) = *+ + 2 . —
(n*-v) 512 5&‘12( 0 gk é_gk"'a"‘n + gng E'é,"j'—agk"' nny N + ngk aék'
+—n(—‘jl'—7=-)- U=0  where w2 2vV2

We consider the special case when U =TU(n). Then

' 42y . dU |, n(n=2)
2 — o L =
(m 8)d——-7n + nmn I + i U=0
It n=2, then U =Alog (ﬂ—-%-—- /2 + M

'r)+2-\/z
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; ‘ A u
If n=3 then U n-2+ )

Sa—a——

(M-2v2) 2 (mi2vz) °

By performing a simple transl_ation in 7 these solutions
contain, as special'cases, the Green's functions for Laplace's equation
in a half-space or in an n~dimensional sphere which are usually found
by the method of images and application of the Kelvin transformation. [11]

Having found the invariant suzifacesvfor T+ D; we now show
what T + D represents in the large. Since from the commutation
relations T,D,S span a Lie algebra (which in fact is nothing but C(1)),

ee(T;fD)

we expect to be able to express as a product of E‘, g, D. Thus

" we shall assume that we can find functions ©= 8(e), y=vyle), such that

S{T+D) = % (6) S(y) D(o)

Differentiating both sides of this equation with respect to €

we find that

(T+D) eE(T+D)

= 6'T T(6)5(y) D(6) + y' T(0)S8(y) D(6) + 6'T(6)S(y) DD(4)
From the éommutatiorx relations,

TS=ST+T
= T =8 T™ + nT"

Thus T(6)s = [S + 6T] T(6)

Next, we consider
SD=DS +D =D [8S+1I]

== | s"D=D[s+ 1%



-67-

Thus S{y)D = &YS(y)

Finally, we need to consider

TD =DT + S

— T"D = DT" + nsT" 4 222l oot

. ~ ) eZ -~

<. T(8)D'= [D+ 85 +=> T ]T(6)

. v Lk

s T+D=0'T+y'[S+06T]+ 0'e’ [D+65+—T]

= y' + 610 ey = 0 (6.8.2)
gle? =1 (6.8.3)

Z

o+ yo+Torey =1 (6.8.4)

Substituting (6.8.3) into (6.8.2) we find that y'+6 = 0.

Difierentiating this expression and again substituting in (6.8.3) we

obtain
v +e V=0 with y(0)=y'(0)=0
- 2 £
=> y = log cos —
V2
- rran &
=> 0 = 42 tan ‘[Z
(It can be shown that (6.8.2) and (6.8.'3) => (6.8.4) ). Thus
26(%+DJ N - -
e oz Ti(Jz tanv2€) S (log cos2€) D, (V2 tan 2 €) (6. 8. 5)

applied to a point’ X involves an inversion about the unit hypersphere,

then a translation of %, by = .-Jl'- tany2 €, followed by another
2
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inversion about the unit hypersphere, then a stretching of coordinates
by cos?/2€, and finally a translation of %, by V2 tan+v2e.

An alternative approach for checking (6.8.5) (we take the
two-dimensional case) involves finding the group in the large by solving
for the integral curves of the group. Thus we solve (i =1)

dx! dy!

- - = = d¢€
2 4 (x,z_y,z) 2xty!

Letting 2' =x'+ iy', we have

dz!

— =dé where z'(€=0)=2z
2+ =t

Thus
z' = Y2 tan (V2 € + @) .
Using the initial cc-mditiOn, we find that
z = V2 tan -

and finally

Zl = _\/2 V2 tan\/-ZE + z
’ 1[2 -2 tan\fZE

Now applying the right side of (6.8.5) to 2z, we have

it

z! %1 (V2 tang €) S (log cos2y2€) 51(«/:7. tanv2 €) (z)
zZ
1 -2 tanv2 €
V2

%I(JZ tanv2 €) 8 (log cos?/2 €)

1]
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= T, (V2 tan+2e) o Ve
1~ — siny2 € coszé}
V2 ,

z cos2 2 € ++2 sinv2 € cosV2¢€

1- -\-;— sinV2€ cos V2€ -~ sin®y2 €
Ve

2 z.+ V2 tan+2 €
'w[Z.- ztan\/’ZE

1]

This method may be extended to higher dimensions.
It is also rather interesting to check (6.8.5) algebraically by

using the well-known Pauli spin matrices:

q

v

il

q
< H

1} i

|- ol
O — O
o L Q-
~——— S



Then ig_ io‘+
—y — = o-z
V2 V2

Thus we have an isomorphic representation of the Lie algebra
of {T,D,S} by associating:
io‘+

D+~ —

V2

io
T e —

V2

S +~— ¢
_ z

=> 2(T+D)~—iv2 [o, + o_] =i2V20

In fact the Lie algebra of {T,D,S} is isomorphic to the Lie.a.lgebra of

the Lorentz group SO(2,1). This incidentally demonstrates the theorem

of 6.7 for the case n=1 m=0.

We make use of the following easily proved relations:

i2aco

e ={cosa)l + 2i (s'ma)o‘k for k=13,2,3.,
ib0'+

e —
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e o ib
i€2V2 o - 200 5%
2
Setting e F=ze v e e v ’
we find that
cosv2e isinv2e ea -}-]?— ea
. ) 12 -
isinvZe cosv2e€ -I-E-ea -—g——ea+ e
V2
2 -
e cosv2é€ = e = - l:)z-ea+ P
Qa
sinv2e = 25
V2

=> a = log cosv2¢

b =+2 tan+v2e€

which checks (6.8. 5)
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