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ABSTRACT

The load parameter, &, and the ratio of the switching frequency to
the resonant frequency, F;/Fg, characterize the operation of resonant
converters. An accurate dc analysis of the series and parallel reéonant
converters is given in terms of these paramelers whereby the conversion
ratio, peak stresses, and diode conduction time are determined. An exact
and systematic method of small-signal analysis is given whereby the
control-to-output transfer function, audio susceptibility, and input
impedance are determined at a given operating point. In addition, simple

and approximate transfer functions are obtained under high-@ assumption.
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CHAPTER 1

INTRODUCTION

In the past two decades resonant converters have pgained
importance owing to certain advantages of switching sinusoidal voltages and
currents. The principal motivation behind the development of these
converters has been their ability, when operating properly, to provide
natural turn-off for the switching devices. This minimizes turn-off losses
and facilitates the implementation of thyristor switches which are
indispensable at power levels greater than 50kW. Operation at higher
frequencies is another desirable feature in power-processing circuits
because smaller filters can be used and consequently higher power densities
can be attained. When field-effect or bipolar transistors are used at lower
or moderate power levels, resonant converters can operate at higher
frequencies with greater ease than PWM square-wave converters.

Although, undoubtedly, the turn-on and turn-off switching stresses
are far less in rescnant converters than in PWM converters, the total
switching losses may nof necessarily be less in comparison, because the
ratio of peak resonant current to the average input current is generally
higher in resonant converters than in PWM converters. It is nof possible to
compare the efficiencies of rescnant and PWM converters in general, and if
such comparisons are made, they should be interpreted with caution.
Therefore, to help the engineer understand and design these converters, an

accurate analysis of their operation must be given. Whereas for PWM



converters numerous methods of analysis exist, to date only limited dc
analysis of resonant converters has been given while their small-signal
analysis has not even been touched The purpose of this thesis is to
provide an accurate analysis of resonant converters and characterize their
operation in terms of two simple and relevant{ parameters: the load
parameter & and the control parameter £/ F, which is the ratio of
switching frequency to the resonant frequency. A block diagram that
follows from this characterization is shown in Fig. 1.1a.

In Chapters 2 and 3 the dc analysis of the series and the parallel
resonant converters is given. The conversion ratic characteristics, peak
stress levels, output-network switching time, and diode conduction time are
determined in terms of & and Fy/Fy A systematic method of small-signal
analysis of resonant converters is outlined in detail in Chapter 4. In this
analysis the system equations are linearized at the operating point,
determined from dc analysis, assuming small-signal perturbations in the
switching frequency and the input voltage. A block diagram representing
the small-signal perturbations is shown in Fig. 1.1b. The results of the
analysis are determined numerically because of the occurrence of
exponential matrices which are difficult to determine in expression form.
In Chapter 5 simple and approximate transfer functions are obtained for

high-& approximation.
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Fig. 1.1 a) Block diagram of resonant converters and b) perturbations in
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CHAPTER 2

DC ANALYSIS OF THE PARALIEL, RESONANT CONVERTER

2.1 Introduction

In this chapter the steady-state operation and the dc analysis of
the parallel resonant converter are discussed. The basic operation is
reviewed in Sec. 2.2. The dc analysis is presented in Sec. 2.3 where first a
thorough treatment of the conversion ratic characteristics is given in terms
of the normalized load and control parameters. Other steady-state
quantities such as diode conduction time, output-network switching time,
and the initial state variables at the beginning of the switching interval are
determined. Maximum stress levels such as the peak capacitor voltage and
the peak inductor current are determined as well. Proper selection of the
the range of the normalized load and contrecl parameters for optimum
operation is discussed. In Sec. 2.4, the efficiency and the conversion ratio
are discussed in the presence of such nonidealities as parasitic resistances
and semiconductor voltage drops. Experimental results given in Sec. .5

are in good agreement with the theoretical predictions.



2.2 Operation

The parallel resonant converter with two different methods of
voltage excitation is shown in Fig. 2.1a and b. In Fig. 2.1a the capacitors
C. serve as voltage dividers and are assumed to be much larger than the
resonant capacitor, Cp, ie, C.>»>C,; The parallel combination of the
transistors and the diodes forms bidirectional switches which operate at
fifty percent duty ratio to generate a symmetrical square voltage waveform
Vr across the resonant circuit. For the converter in Fig. 2.ia the peak
value, V¥, of the square wave is equal to half the input voltage whereas for
the converter in Fig. .1b the peak value is equal to the input voltage. The
ideal circuit is shown in Fig. 2.1c. The switching times 7' and 7, are

shown in Fig. 2.1 and are defined as follows
Ty' = Switching interval
Fy = 1/ 7' = Switching frequency
s = 7'/2
The resonant frequency is defined as

1

Fo = erm——
7 envioC, (2.2)

The voltage across the resonant capacitor is rectified and applied
to a low-pass filter from which the output voltage is obtained. By analogy
to linear circuits it is clear that the output voltage can be controlled by
changing the ratio of the switching frequency to the resonant frequency.

This is shown in Fig. 2.2 where the converter is represented by a block
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Fig, 2.1 The parallel resonant converter with two different methods of
excitation a) and b), and ideal equivalent circuit c).



diagram with an input voltage V,, an output voltage V, across a load R,
and a control parameter F;/F,; In the following section the conversion
ratio characteristics, M=Vy/V,, will be determined for continuous

conduction mode operation and for the range of the control parameter

Fu/Fy> 5.
[ 1
v Parallel +v M= Vo
. 5 M==2
9 T Resonant Converter _ Vg
_ R
Qp* wolo

Fig. 2.2 Block diagram of the parallel resonant converter.

2.3 Analysis

The basic operation of the parallel resonant converter is discussed
in [1,2,3]. The analysis given in [3] is strictly an iterative computational
method whereby the circuit equations are solved numerically cycle by cycle
until the initial conditions converge. No attempt is made in [3] to
determine neither the initial conditions nor the conversion ratio for a given
load K and control parameter Fy/Fy. The analysis given in this section
begins with the determination of the conversion ratic characteristics and
the initial conditions for a given Fy/Fy and normalized load parameter, &

defined by



_ R
% = wolig (2.2)

The waveforms during a complete switching interval are shown in
Fig. 2.3. BSince the operation of the circuit is symmetrical over an entire
switching interval Tg', the analysis is performed over half the switching
interval 7s. It is assumed that the output filter inductor, L, is much
larger than the resonant inductor, Lg, so that the output filter section can
be represented by a current source Ip=Vy/FK. Because of the output
rectifiers, as the voltage across the resonant capacitor changes sign at
t =7, the output network, or the current source Iy, switches polarity. This
results in two switched networks over half the switching interval, Ty, as
shown in Fig. 2.4.

According to Fig. 2.4a, the equations for the resonant capacitor
voltage, Vz(t), and the resonant inductor current, /g(f), for the time

interval 0<{ <7, are given by

Vo 1 rV -V inwgt — ——
= | — + et R t
Ip(t) [1? Ip(0)|coswet + wolo |9 (0)]31 0 J7] (2.3a)

v
Ve(t) = —-[%-—VR(D)]coswgt + wOLO[R_O +1p(0)|sinwet + ¥}

(2.3b)
According to Fig. 2.4b, the equations for 7, <t < T are
Vo ¥ Vo
- ( - - g i - —
Ir(t) = |Ip{Ty) 7 coswg(t —T,) + ol sinwg(t —T,) + R (2.4a)
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|4
[R(Ta)__o

= sinwg(t —Tg) + Vg

Va(t) = —Vgcoswo(t —T,) + wolg (2.4b)

When Egs. (2.3) and Egs. (2.4) are matched at £ =7, and cyclic
stability required, i.e., Ip(T;)=~Iz(0) and Vp(Ty)=-Vz(0), the following two

equations are obtained

Ve(0) Ir(0)F
7 sinwg Tycos(y—tgTy) @V,

[1 +coswg Tgcos(y—twg Ty )

- Qﬁ [1 + cos(y—wp T, Y{coswy Ty ——2)] =sinwy Ty cos{y—we T, ) + sin(y—tg Ty )
o :
(2.5a)

I(O)R
Ve &b

Vz(0)
Ve

coswy Ty sin(y—wg Ty)

sinewg Tesin{y—we Ty ) — 1] -

- [coswo Ty — 2] sin(y—wgT,) =1 +sinwg Tysin{y—we T, ) —cos(y—wg Ty)

& (2.5b)
The requirement V3(T,)=0 in Eq. (2.3a) gives
Vz(0) Ip(D)R M

coswplyg + sinweTy + ——sinwgT; = coswpTe — 1
I/g (VEN:1 I/ng 0ia Qp Cia [VEX (2’5c)
where
- Fo
TETE (2.6)

Egs. (2.5) are three equations in which the three unknowns /z(0), Vz(0),

and M can be solved for :
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1+ cosy —Rcos(y—wy Ty ) + Reoswy Ty [cos{y—tweTy) —1]

Ip(0) = wolpsiny

sin(y—RwoTy) + sinwp Ty —sin{y—wq Ty )

& (O) = siny

_ cos(y—woTy) +coswT, —1 —cosy
B siny

&

(2.7a)

(2.7b)

(R.7c)

The unknown time 7, in Egs. (2.7) is determined by equating input

and output powers. The input power is given by
-1 rh
Py = fj; V,Ip(t) dt
and the output power is given by
Prt = 2/ Va(t)Ia(t) at
wt = 7y Vet Ia(t)

where

(2.8)

(2.9)

(2.10)

When the integration is performed and Fy, is set equal to P,y an implicit

equation of the form Gp(y.Qp,Ta)=O is obtained from which the time 7, can

be determined for a given &, and v :
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Go(7.@.Ta) = cos(y—ona){sinzona + cos2w0Ta]
+sinwg Ty | siny — sin(y—Rtyg Ta)] +(y =By Ty )siny —Rcoswy Ty

+ Qp'y{l + cosy —coswy Ty —cos('y—ona)] =0 (2.11)

Once 7, is determined, the conversion ratio # and the initial
conditions are determined from Egs. (2.7). A plot of M vs. Fy/Fy for
different values of ¢, is shown in Fig. 5.

It can be seen from Fig 2.5 that for a given €, the maximum
value of the conversion ratioc Mp.; and the control parameter {Fy/ Fo)mex at
which the maximum occurs depend on the value of &, A plot of
(Fs/ Fo)max 80d Mmax vs. & is shown in Fig. 2.6. The maximum value of ¥

for large @, is approximately given by
Mpex ™ & (R.1R)

Figure 2.5 reveals that in order to achieve significant control over
the conversion ratio # with a reasonable change in the control parameter,
&, should be selected larger than two or three. For instance, if €, =1,
then even a large variation of Fy/Fy produces very little change in M,
which clearly is not suitable for control purposes. Also, according to Fig.
2.5, when g is selected large and the converter is operated away from the
resonant peaks, the conversion ratio characteristics are less sensitive to
changes in the load K. Therefore, only when operating away from the
resonant peaks with &, larger than two or three , can the parallel resonant

converter be somewhat considered as a voltage-fed converter.
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Fig. 2.5 Conversion ratio characteristics of the parallel resonant converter
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in confinuous conduction mode.
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For a given design application, the range of the control parameter
F,/Fy can be selected either above or below (F,/Fg)max It is
advantageous, however, to operate this converter below (F,/ Fg)max because
the transistor steps conducting as the resonant current, or the collector
current, passes through zero. This eliminates problems of turn-off and
makes it very attractive for SCR applications. Actually, for a given &, the
critical value of the control parameter (Fy/ Fp),. below which this natural
turn-off occurs is slightly less than (Fy/ Fg)mex and is plotted in Fig. 2.6.
This is illustrated in Fig. 27 where it is shown how the shape of the
resonant_ current changes as Fy/Fy is swept through (Fy/Fy),.. When the
converter is operating below (Fy/Fy),., as shown in Fig R.7a, the transistor
conducts first because the resonant current at the beginning of the
switching interval is positive, i.e., /p(0)>0. As the collector current passes
through zero the parallel diode begins to conduct for a duration Tp. When
using SCRs, it is important to know this diode conduction time 73 in order
to allow sufficient turn-off time for the SCR. When operating exactly at the
critical value (Fy/ Fy),., the transistors turn on and off at zero current and
the parallel diodes never conduct. When operating above (Fg/Fyp),., as
shown in Fig. R2.7c, the diodes conduct first because [z(0) is negative. As
the diode current passes through zero, the transistor in parallel with it
_starts to conduct and is switched off while still in conduction. Therefore,
this range of operation is not suitable for SCR applications. (Fy/ Fyg)y is
determined numerically by requiring /3(0) = 0 for a given Q-

The diode conduction time 75 shown in Fig. 2.7a, is now
determined. The resonant current passes through zero at t =7, in the

interval T, <t <7y as shown in Fig. 2.7a. Therefore, Eq. (2.4a) is set equal



1.0

16

] (FS/FO)maX / - 1'0
5 / 49
- (Fs/Fo) zc 18
5 47
L 46
=
5 45
L ~44
5 43
5 42
s 41
1 2 3 4 5 7 8 9 10 11
Qp
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to zero for f{ =7, and is written here as Eq. (2.13) after multiplying it out

by &)oLg/ Vy
wolo M . M
In(T,) — =—|coswo(T, ~T,) + sinwy(7, —T,) + — =10
R\ig % Qp O\ f2 [+4 O\iz a) Qp (2'13)
The angle woat is defined as follows
- wolo _ M
tan(ﬁ)oa) - [R(Ta) Vg Qp (214)
which when manipulated further gives
tan(woo) = 14 cosy—Rcoswy T,
an{tgX; = sin‘y (215)

Substitution of Eq. (2.15) in Eq. (2.13) gives

M : =
) cos(woa) + sinwg(T, —Tg +) = 0 (2.16)
From Eq. (2.18) the diode conduction time Tp =T, -7, is obtained
woTp =7 —m + wola—T,) — sin™}( icos(woa))
¢ @ (2.17)

Therefore, for a given &, and 7, the time 7p is determined from Eq. (2.17)
where T,, M and o are determined from Egs. (R.11), (2.7¢) and (2.15)
respectively. The normalized conduction time or the conduction angle vs.
Fs/ Fy is plotted in Fig 2.8 for different values of &,. It can be seen from
Figs. 2.6 and 2.8 that if g, is selected small, the useful range of the control
parameter .5<Fy/Fo<(Fy/Fp),. gets smaller. For all practical purposes

then it is desirable to design the parallel converter with a minimum &, no
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weTp/m

Fig. 2.8 Diode conduction angle characteristics of the parallel resonant
converter,
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less than two or three. The condition at (Fy/ Fy),, corresponds to wgTp=0.

A review of the linear parallel resonant circuit shown in Fig. 2.9a
will now be given to show its similarity to the corresponding resonant
converter. The transfer function characteristics of the linear circuit for
different values of ¢}, are shown in Fig. 2.9b. A comparison of these
transfer function characteristics and the conversion ratio characteristics of
the parallel converter shown in Fig. 2.5 shows that the peak of the
characteristics and its position in both cases depend on & . Furthermore,
for large &,. the peak is approximately equal to &, and occurs
approximately at resonance. For the parallel converter this is shown in
Fig. 2.6 where it can be seen that (F,/ Fg)max approaches unity for large &
and Mp.y is approximately equal to &.

The critical value of the control parameter (Fy/Fy),. for the
parallel converter can be likened to the critical value wg/ wg=m of
the linear resonant circuit for which the input impedance is real. For the
linear circuit when the input impedance is real, the input voltage and the
input current are in phase. Figures 2.9c and d show the similarity of the
voltage and current relationship of the linear circuit at w./wy and the
converter at (Fy/ Fop)w; in both cases the voltage and current are of the
same sign. For large values of &, both w;/wp of the linear circuit and
(Fs/ Fg), of the parallel converter tend to unity.

For proper component selection, the peak stress levels must be
determined. First, the peak capacitor voltage and its dependence on &,
and Fg/Fg is determined. The variation of the capacitor voltage with

Fs/ Fy is shown in Fig. 2.10. TFor a given &,, as the control parameter is
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current relationships for the linear circuit at w./wg=
and d) for the converter at Fy/Fo=(Fs/ Fo)s.
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swept through (Fy/ Fo)max. the peak of the capacitor voltage shifts from the
interval T, <t <T; to the interval 0<f <7,. Therefore, depending on which
range Fg/ Fy falls in, the peak capacitor voltage is determined either from
Eq. (2.3b) or Eq. (2.4b). First, the range Fy/Fo<(Fs/ Fg)max is considered
where the peak capacitor voltage occurs in the interval T, <t <7;. The
capacitor voltage in the interval 7, <t <7; is given by Eq. (2.4b) which after

some manipulation is rewritten here as Eq. (2.18)

Ve(t) tolog M|,
= —coswg(t —Tg) + |Ip(Ty) —— — ——|sinwg(t =T7,) +1
Substitution of Eq. (2.14) in Eq. (2.18) gives
Va(t) _
v, - 1 —sec{won) coswp(t — Ty +ax) (2.19)

From Eg. (2.19) it is clear that the peak capacitor voltage Vpear 18 given by

Vpeak
L = 1 ¢+ Iseclwa F. / Fa<(F /F
2 ! ( 0 )l s o ( s O)ma.x (2'20)

When the converter is operating in the range of the control parameter
Fyo/ Fo>(Fy/ Fg)mex, the peak occurs in the interval 0<t <7, in which case
the capacitor voltage is given by Eq. (2.3b) which, after multiplying out by

wolo/ Vg, is rewritten here as Eq. (2.21)

Ve(t) _ [ v&(0) [ m Iz(0) ]
= —1|coswat + |— +plin—— t +1
V I Vg o8k lQp Pofo Ty T SINR0 (2.21)

The angle wof is defined as
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Fig. 210 Fzxplanation of the shift in the peak capacitor voltage from a)
the dinterval T,<t<T, to b) to the interval 0<t<T,, as the
control parameter is swept through (Fy/ Fp)mex-
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M/ @y + woLolr(0)/ V,
VR(0)/ 7, - 1 (2.22)

tan(wgB) =

where Ir(0) and Vgp(0) are given by Egs. (2.7a) and (2.7b) respectively.
When Eq. (2.22) is substituted in Egq. (2.21), the following equation is

obtained

[
'V;] = sec(cooﬁ)[ VP'VE’O) -1

coswg(t —8) + 1

(R.23)

Since the capacitor voltage in this interval is negative, it can be seen from

Eq. (R.23) that Vpeax is given by

V. Va(0)
peak P R
= =1+ sec(w -1 Fs/ Fo>(Fs/ F
Vg ( Gﬁ) T/;, ] s 0 ( s O)max (2’24)
The results are summarized in the following equation
14 |sec{woa) | s P/ Fo<{Fs/ Fo)mex
v})ea}c -
7 Ve (0
§ —1+ |sec(wgf) RV( ) —1] i Fo/ Fo> (Fs/ Fo)mex
g (2.25)

A plot of the normalized peak resonant capacitor voltage vs. Fy/ Fy
for different values of &, is shown in Fig. 2.11. These characteristics are
very similar to the conversion ratio characteristics because the output
voltage is equal to the average rectified resonant capacitor voltage.

The variation of the resonant inductor current, Ip(t), with the
control parameter is slightly different from that of the capacitor voltage,
Ve(t). The peak of Iz(¢), shown in Fig. 2.12a, occurs in the time interval

T, <t <Ty and is given by the maximum value of Eq. (2.4a). As the control
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Fig. 2.11 Normalized peak resonant capacitor wvoltage characteristics of
the parallel resonenl converter
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Fig. 2.12 Explanation of the change in the peak resonant current as
Fo/Fg  is swept  through  (Fy/ Fp)i. a) and b) For
Fo/ Fo<(Fy/ Fo)y, the peak is given by the mazimum value of
the resonant current in the interval T,<t<T, and c) for
Fo/ Fo>(Fy/ Fo)y the peak is given by Ip(T.).
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parameter is swept through some critical value (Fy/Fp),, the maximum
value of Eq. (2.4a) does not occur because the time interval 7, <t <7, is
not long enough. Consequently, when the converter is operating above
(Fs/ Fo)ie, as shown in Fig. 2.12b, the peak is given by the value of the
resonant current at the end of the switching time 7T,, ie.,
Ipeak =Ir(T5) =—Ip(0). First, operation in the range F,/Fo<(Fy/Fp), is
considered for which the peak inductor current is determined from Egq.
(R.4a) which, after multiplying out by wglo/V,, is rewritten here as Eq.

(2.28)

wolg | tolo M . M
Ip(t = |Ip{T, — —— |coswg(f =T,) +sinwa(t =T, ) + =—
R( ) vVg RA a) I/g QP 0( !l) 0( G) Qp (2.28)

Substitution of Eq. (2.14) in Eq. (R.28) gives

woplo M .
py 20 = M t—
Ip(t) 7 % sec(woa)sinwo(t — T +a) (2.29)
The maximum value of Iz(t) in Eq. (2.29) is
Tpeak wolo =M + | secwoat | Fo/ Fo<(Fs/ Fo)ic
Vi, & (2.30)

As explained earlier, for Fy/F¢>(F,/Fg)i. the peak is given by
Ip(T,)=—Ip(0). The normalized peak resonant current can be summarized

by the following equation
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M
— + |sec{wgx
L ke _ |G Iosctena)
peak V b
g

Fs/ Fo<(F3/ Fo)ic

—Ix(0) (Eq. (2.72)) Fo/Fo>(Fs/ Fo)ic (2.31)

The normalized peak resonant inductor current vs. Fg/Fy for
different values of &, is plotted in Fig. 2.13. According to Fig. 2.13, an
interesting feature of the peak resonant current is that, in a certain range
below resonance depending on &, it decreases with increasing &,. This of
course is expected because, as explained earlier, in this range of operation
the converter behaves like a voltage-fed converter. Conseguently, as the
output power decreases the peak current decreases while on the other
hand the peak capacitor voltage, like the output voltage, remains mostly
unaffected. Also, a comparison of the peak current below and above
resonance shows that, for the same conversion ratio, the peak current
below resonance is less than the peak current above resonance.

The critical control parameter {Fs/Fp); is determined numerically
and is plotted in Fig. 2.14. A comparison of Figs. 2.14 and 2.6 reveals the

following important relation
(Fs/FD)zc < (FS/FO)max < (Fs/FO)i.c (2'32)

According to the inequality in Eq. (2.32), when the converter is operating in
the more useful range of the control parameter, .5<Fs/ Fo<{(Fs/Fp)sc,
where natural turn-off of the transistors occur, the peak capacitor voltage

and peak inductor current can be summarized by the following equation
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V;

Bk — 1+ |sec{wpa)]

Ve
1/R= Fs/ Fp< (Fs/FO)zc
wol, M

Tpear [IJ, = Q_"' |sec(wat) |
‘ g P (2.33a-b)

2.4 Nonidealities

In Sec. 2.3 the analysis was carried out with the assumption that
all the active and passive devices were ideal. Nonidealities, such as
parasitic resistances of the resonant inductor and capacitor and the output
filter inductor, as well as the voltage drops in the active components, are
considered in this section. These parasitics introduce losses which
deteriorate the efficiency of the converter. The losses due to parasitic
resistances and voltage drops in the semiconductors are considered
separately to show the contribution of each loss mechanism to the
efficiency. Since these parasitics are small and do not affect the main
operation of the converter, the results of the analysis given in Sec. 2.3 are
modified slightly in this section by introduction of fudge factors.

The first nonideality to be considered is the voltage drop Vgp in
the output rectifiers. The two different methods of output rectification are
shown in Fig. 2.15 where the isolation transformer is assumed to be ideal
and of unity turns ratio. In Fig. 2.16a the output network is reflected to
the primary side of the transformer and the voltage drop in the rectifiers
is separated and represented by a voltage source Vpp in series with an
ideal diode. The voltage source, Vpp, is either equal to one diode voltage

drop, Vp, or two diode voltage drops, 2Vp, depending on the ‘method of
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Fig. 2,15 Two methods of implementing the isolation transformer in the
parallel resonant converter. a) center-lapped and b) full-
bridge.
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C
All diodes I
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Pig. 216 a) Nonideal circuit with woltage drop Vgp in the oufput
rectifiers and b) ideal circuit that delivers the same power Py’
as the mnonideal circuit in a).
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rectification

Vb center-tapped

Vap =
RVp full-bridge

The power flow is shown in Fig. 2.16a where P,y represents losses in the
diode voltage drops and F,, represents the power delivered to the load.

The input power is given by
Pm' = Pout +PLost (234)

Py,' is given by Eq. (2.9) and rewritten here as Eq. (2.35)
= Lt t)dt
P! = ?s'f; Va(t)Ip(t) (2.35)

It is clear that in the absence of losses P,'=P,y. Equation (2.11) was
obtained by equating input and output powers., In the absence of rectifier
losses, the power delivered at the terminals of the resonant capacitor is
equal to the output power. In the presence of these losses the power, P’
delivered at the terminals of the resonant capacitor must be correctly
accounted for. In what follows, an ideal circuit, such as the one shown in
Fig. 2.18b, will be determined which has the same power, P,,', delivered at
the terminals of the resonant capacitor as the nonideal circuit in Fig.
R.16a, and to which the same analysis given in Sec. 2.3 can be applied.
First, the power P,' in Fig. 2.16a is considered which is equal to the sum

of the power lost in the rectifiers and the power delivered to the load
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, V
Pip'= Vgplo + Vily ; fo=7?0" (2.36)

According to Fig. R.18a the output voltage Vp is equal to the average

rectified capacitor voltage <|Vz(t)|> less Vgp
Vo = <|Va(t)[> = Vap (R.37)
where

<| Vp(t)|> = -%;—fonl Va(t)| dt (2.38)

substitution of Eq. (2.37) in Eq. (2.38) gives

P = <| Vg(t)[>? rl— Vap |
i R <| Va(t)]> | (2.39)
Now let

V' = <|VR()]> (2.40)

b= Y
M= A (2.41)

R =—2E

| VD

m, (2.42)

Pin’ = R (2'43)

Equations (2.40) through (R.43) are satisfied by the ideal circuit shown in
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Fig. 2.16b which has a conversion ratio #' and a load R' According to Eg.
(2.42) the normalized load parameter, &,', of this ideal circuit is related to
the original g, of the nonideal circuit by

2

Vap
", (2.44)

g =

1-

The results of the analysis given in Sec. 2.3 will now be applied to the ideal
circuit in Fig. 2.16b. First, the conversion ratio M' is considered which
according to Eq. (R.7¢) is given by

" = cos(y—weTy) +cosweT, —1 —cosy o
- siny P (R.45)

Substitution of Eq. (2.44) in Eq. (R.45) gives

cos(y—woTy) + coswgTy —1 —cosy 0.+ Vap
siny L (R.48)

M =

Next, the implicit Equation (2.11), from which w¢7, is determined, is
modified. The last line in Eq. (2.11) can be seen to be equal to —M7ysiny.
Now, when M is substituted by M' a new implicit equation G,'(7.&.T;) is

obtained which is related to G,(7.&p,7Ts) by the following equation

. Ve
! T = N2 - —=

Gp (7-Qp a) Gp (7 Qp Ta) sy Vg 0 (2’47)

Once woT, is determined from Eq. (2.47) for a given &, and v, the

conversion ratio M' can be determined from Eq. (2.48). The actual

conversion ratio M, of the nonideal circuit can now be obtained from Egq.

(.37) as follows



_ Ve _ ., Ve
A 7 (2.48)

According to Egs. (2.46) and (2.48), the conversion ratio of the nonideal
circuit M, is still given by Eq. (2.7c), but the angle w7, is now determined
from the modified implicit equation given by Eq. (2.47).

The efficiency of the converter due to losses in the output
rectifiers is considered next. This efficiency 7, due to rectifier losses is

easily seen to be given by

1

Vap
v, 1 (2.49)

Nrp =

The first thing to note from Eq. (2.49) is that, just as in the case of PWM
converters, the efficiency deteriorates for lower output voltages. According
to Eq. (R.4B), substitution of Vy in Eq. (2.49) gives another expression for

the efficiency 7p

e ", (2.50)
The actual gain can now be written as
My = npM’ (2.51)

The efliciency myp vs. Fs/ Fp is plotted in Fig. 2.17 for two different
values of Vpp/V;. The efficiency is seen to be higher near resonance where
the conversion ratio is higher. These curves do not suggest that the
converter should be operated near the resonant peak; all they show is the

behavior of 7, in open loop operation. For a closed loop regulator with a
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fixed output voltage, 75 is given by Eq. (2.49).

The losses in the switches are now considered briefly. These switches
can be realized by implementing BITs, FETs [1,2], or SCRs [3]. In all these
cases the voltage drop during forward conduction, Vgg, is different from the

voltage drop during reverse conduction, Vpg. The losses in the switches are

given by

1 T, T /
Py = f{Vpsfo [p(E)]dt + Vs [ " |1(t) | dt (2.52)

where T, is the zero-crossing time of /z(¢). In Eq. (2.52), the resonant current,
Ip(t), must be determined taking into account the voltage drops Vrs and Vgs.
Such an analysis would be rather complicated, however, if Vms and Vzs are
small compared to Vg, which is generally the case for most applications, Ip(t)
in Eq. (2.52) can be determined assuming ideal switches. Therefore, for
thermal design, the losses can be estimated according to Eq. (2.562), in which
Ip(t) is determined assuming ideal switches. Experimental results given in
Sec. 2.5 are in good agreement with the predicted results assuming ideal
switches.

The losses in the parasitic resistances are considered next. The
losses in the esr of the output filter capacitor are not considered because in
the dc analysis given in Sec. 2.3 the current in the output filter inductor was

assumed to be free of ripple. The input power is given by

where J; is the average input current shown in Fig. 2.1a and b. The
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output power, in the presence of parasitics, is given by

Pout =7]me = Vo[o (254)

According to Eq. (2.53) and (2.34), the efficiency due to the parasities is

given by

= Vi T (2.55)

It will be assumed now that in the presence of these parasitics, the current
conversion ratio I/ /p remains unaffected and is still given by the ideal
voltage conversion ratio. Therefore, the actual conversion ratio,
My =Vy/ Vin, of the converter in Fig. 2.1a, according to Eq. (2.55) is now

given by

Mo = 1p (2.56a)
and for the converter in Fig. 2.1b, M, is given by
My =, M (2.56b)

The results given in Egs. (2.56) hold for PWM converters as well. The actual
conversion ratio for PWM converters in the presence of parasitics is derived
by the method of state-space averaging [4]. It was shown in [4] that the
current conversion ratio remains unaffected in the presence of parasitic
resistances and that the actual conversion ratio is given by the product of
the efficiency and the ideal conversion ratio. Since for resonant converters
the steady-state results are not as easily obtained, rather than deriving it,

the current conversion ratio is assumed to remain unchanged. The power
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lost in the parasitic resistances is given by
Prost = ILPry, +I%rc, + IgPry, (2.57)

where Tr, T, and T[, are the parasitic resistances of the resonant

inductor, resonant capacitor and output filter inductor respectively. The
currents /. and /I, are the rms values of the resonant inductor and

capacitor currents determined in Appendix A. The efficiency is now given

by

1
LT, I*Tg 7L

+ +
I R I R E (2.58)

M =

1+

As before, it will be assumed that the ratios f./ Iy and I,/ Iy remain
unchanged in the presence of parasitics. Consequently, the rms values are
determined from the expressions derived in Sec. 2.3. The following

normalized loss parameters are defined

_ ngg

Q=

) Qc = wOLD i Qf = QOLO
TLu Tco TLf (259)

The efficiency due to the parasitics can be written now as

1
T =
g‘—;— &, B + =41
M Ql Qc Qpr (260)

The constants B, and B, are determined in Appendix A, According to Eg.

(2.60) it can be seen that the efficiency due to the parasitics in the
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resonant capacitor and inductor depend on the operating point whereas the
efficiency due to the parasitic resistance in the output filter inductor does
not. In Fig. 2.18 the efficiency vs. F;/ Fy is plotted for two different values

of &, &, and & assuming 'rL!=O. It can be seen that the efficiency

deteriorates for increasing &, and Fg/Fy  Clearly the efficiency
deteriorates for small @, and large &; as can be seen by comparing Fig.
2.19a and b. It can also be seen that the efficiency is higher in the
important range of the control parameter .5<Fg/ Fo<(Fy/ Fp),c determined

earlier in Sec. 2.3.

2.5 Experimental Results

The experimental circuit used to verify the conversion ratio

characteristics is shown in Fig. 2.19. The circuit values are
Lg=49uH Co=.1uF Vg =1V (2.61)

The experimental and predicted results are shown in Fig. 2.20. The
predicted characteristics are obtained considering only the diode voltage
drops using Egs. (R.46) through (2.48). The experimental and the predicted
results are in good agreement except near the peaks. This discrepancy
owes to the fact that the analysis for the nonideal circuit is not exact. An
exact analysis with all the parasitic losses (including core losses) would
result in better agreement near the peaks, but since it is desirable to
operate the converter away from the peaks, such a tedious analysis would

be unnecessary.
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/ 10V

Fig. 221 FErperimentally measured waveforms, lgft, and predicted
waveforms, vight, of the parallel vesonant converter. a)
Resonant capacitor voltage Vp(t) and excitation voltage Vy, and
b) resonant inductor current Ip(t). Lo=49uH, Cy=.1uF,
@ =R.95, F;/ Fp=.75, and V, =15V.
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Figure 2.21 shows experimental and predicted voltage and current

waveforms for the following circuit values
& =R95 F/Fo=.75 Cp=.1uF Ly=49uH V,=15V
The following table summarizes the results relevant to Fig. 2.23

Predicted Measured
Voeak 41.4V 40V
Losak 1.57A 1.BA
Tp R.58usec  R.5usec

. 1.14usec  1.8usec

2.6 Conclusion

In this chapter the parallel resonant converter is first described as
a black box with a control signal F,/Fy input voliage source V;, and an
output connected across a lcad R. The output voltage is controlled by
changing the ratio of switching frequency to the resonant frequency, Fs/ F.
The conversion ratio characteristics are determined for continuous
conduction mode in terms of the normalized load parameter, &, and
control parameter, Fy/F, Only the range of the control parameter
Fs/Fg>5 is considered. The peak resonant voltage and current
- characteristics are determined likewise in terms of & and F / Fy.

The critical value of the control parameter (Fy/Fg),.. below which
natural turn-off of the switches occurs, is determined in terms of & Itis
shown that (Fy/Fy), tends to unity for large & . The diode conduction

time, 7p, in the range 5<F,/Fo<(Fs/ Fp),., which is an important design
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parameter when SCRs are used, is determined in terms of &, and Fy/ Fy,
The efficiency in the presence of parasitic resistances is discussed
and it is shown that the efficiency decreases for increasing Fg/ Fy,.
According to the conversion ratio, diode conduction time and
efficiency characteristics it is shown that it is best to operate this
converter below resonance and away from the peak with a &, no less ‘than
two or three. This will insure higher efficiency and minimum sensitivity of

the conversion ratio to variations in the load.
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CHAPTER 3

DC ANALYSIS OF THE SERIES RESONANT CONVERTER

3.1 Introduction

This chapter discusses the steady-state operation and the dc
analysis of the series resonant converter. After a brief review of the basic
operation in Sec. 3.2, the analysis is presented in Sec. 3.3 and Sec. 3.4. In
Sec. 3.3 the analysis in the range F;/Fp>=1/2 is given, and in Sec. 3.4 a
general analysis is given in the entire range 0<Fy/Fpy<ew The various
modes of operation in discontinuous and continuous conduction are
identified, and the conversion ratic for each mode of operation is
determined in terms of the normalized load parameter, &, and the control
parameter F,/ F;. The boundaries between the various modes of operation
are determined in terms of & and Fg/Fy as well. I is shown that certain
types of discontinuous conduction modes should be avoided because the
conversion ratio for such modes is insensitive to the control parameter.
For example, in the range 1/2<F;/ Fp<1 a simple equation is given for the
praoper selection of & in order to avoid the occurrence of dem. Other
steady-state quantities such as peak stress levels and diode conduction
time are determined as well. Nonidealities due to the parasitic resistances
and rectifier voltage drops are considered in Sec. 3.5. - The experimental

results given in Sec. 3.6 are in good agreement with the predictions.
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3.2 Operation

The series resonant converter was first introduced by Schwarz [5].
The major drawback of the converter described in [5] is that its conversion
ratio is fixed. The converter shown in Fig. 3.1a, which has an adjustable
conversion ratio, was introduced later by Schwarz [6]. The reason for the
drawback of the converter described in [5] is the absence of the diodes D1
and DR shown in Fig. 3.1a. It is shown in the next section that in the
absence of D1 and DR, the converter is forced to operate in a certain
discontinuous conduction mode for which the conversion ratio is
uncontrollable and fixed at unity. Other methods of exciting this converter
are shown in Fig. 3.1b-d. All these converters are equivalent to the ideal
circuit shown in Fig. 3.1e. Switches S1 and SR operate at fifty percent
duty ratio and generate a symmetrical square waveform, Vy, of amplitude

Vy across the resonant circuit. For the converters in Fig. 3.la-c, Vy is

g
equal to V;,/ R, whereas for the converter in Fig. 3.1d Vg is equal to V,.
In Fig. 3.1a the capacitors Cy/ 2 serve as resonant capacitors as well as
voltage dividers whereas in Fig. 3.1b the capacitors C, serve only as voltage

dividers and are much larger than the Cj, ie., C.» C,. ' The switching

times 7; and 7', shown Figs. 3.1, are defined as before
7y' = Switching interval

1
7'

F, = = Switching frequency
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T '
Ty = 23
The resonant frequency is defined as
P 1
) = ——————
2TV LQCQ (31)

The normalized load parameter is given by

_ wolg
&= % (3.2)
The constant K is defined as
Gy
K== (3.3)
where
_ .
YETER (3.4)

The resonant current, /p(t), is rectified and applied to a low-pass
filter from which the output voltage is obtained. It is then clear, by
analogy to linear circuits, that the output voltage can be regulated by
controlling the ratio of the switching frequency to the resonant frequency,
Fs/7 Fy. The same block diagram given for the parallel converter is

repeated here for the series resonant converter in Fig. 3.2.
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v + Series + Vo
T RS Vo M=—
9 - Resonant Converter %_0 Vg
wol
Q = Lo

TFs/Fo

Fig. 3.2 Block diagram of the series resonant converter.

3.3 Analysis: F,/ Fy, = 1/2

The analysis of the series resonant converter for the range of the
control parameter Fg/Fg=>1/R2 is divided into two parts; below resonance,
1/R<Fs/Fo=<1, and above resonance, F,/Fg=1. First the range

1/2=<F,/ Fp=<1 is discussed.

33.1 1/2<F,/Fy<1

According to Fig. 3.2 the analysis in this section begins by the
determination of the conversion ratio, M, in terms of @ and F,/Fp in
continuous and discontinuous conduction modes. The analyses given in [6]
and [7] have considered the operation of this converter in terms of the
diode conduction angle, wyTp and have not explicitly determined the
conversion ratio nor the occurrence of discontinuous conduction mode

(dem) in the range 1/2<F,/ Fy<1.
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The voltage and current waveforms in continuous conduction mode
(ccm) are shown in Fig. 3.3. In this range, the resonant current at the
beginning of the switching interval is always positive, i.e., /(0)=0. This
means that the transistor always conducts first and thereafter, as the
collector current passes through zero, the parallel diode begins to conduct
for a duration wg7p. This natural turn-off is very attractive for SCR
applications. For the parallel converter it was shown that the range of the
control parameter in which natural turn-off occurs is load dependent. In
the case of the series resonant converter this range is given by
1/2<F,/ Fg<1 and is independent of the load.

As in the case of the parallel converter, owing to the symmetry of
operation over an entire switching interval, the analysis is carried out over
half the switching interval, 7T;. It is assumed that the output flter
capacitor, C;, is much larger than Cy so that the output section can be
represented by a voltage source V. As the resonant current changes sign
at t=T,, the output section, or the voltage source V,, switches polarity
because of the output rectifier bridge. This results in two switched
networks over the interval 75 as shown in Fig. 3.4.

According to Fig. 3.4a, the equations for Ip(t) and Vg(¢£) in the

interval 0<t <7, are given by

Ip{t) = Igr(0)coswet + QOCO{I{,,-—VO—VR(O) sinwpl (3.5a)
N ‘P4 Ip(0) _
Ve(t) = —{Vo = Vo= Ve(Q)cosunt + lm sinwet + % = Vo 5oy

According to Fig. 3.4b, the equations in the interval T,<t <7, are
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Fig. 3.3 Volitage and current waveforms aof the series resonant converter
when operaling in conlinucus conduclion mode and in the range
1/ =Fg/Fy<1.
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[R(t) = WQCU[Vg + VO_VR(Ta)] Sinwo(t —Ta) (363)
VR(t) = -—{Vg+V0—VR(Ta)] coswo(t —=T,) + V; + Vp (3.6b)

For the series resonant converter, the initial conditions Vz(0) and
Ip(0) can be easily determined by the following simple approach which is

also given in [6]. The input power to the the circuit is given by

(4, -4p)

;3|ns<

Py = ;'L[ foT“IR(wdt + fT:’fR(“dt (3.7)

where A; and Az are the areas under the resonant current waveform shown

in Fig. 3.3. The output power is given by

_ Vgr T T, _ Vo
Py = flfo Ip(t)dt —fTa Ip(t)dt | = T (A; +4z) (3.8)
The requirement P, =Py, gives
Vi A -
M = _.0_= 1 Ag
V, A +Ag (3.9)

Since A; and Ap are positive, it follows immediately that # cannot exceed

unity
M=<1 (3.10)

According to Fig. 8.3, the peak-to-peak capacitor voltage is given by

2ot = V(1) = 7 (A1 +42) B.11)

Also, the output voltage is given by the average rectified resonant current
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multiplied by the load R

1 %
Vo= Rof "|Ipt)|dt = £ (4, +45)
7. Jo T,

(3.12)
Substitution of Eq. (3.12) in Eq. (3.11) gives
- - LV _
VelTa) = Vouwr = 57— = MKV, (3.13)

where K is given by Eq. (3.3). The initial capacitor voltage Vz(0) can be

expressed as

Vi (O) = Vynas = 2 fy Ip(Tu)E = Tpuge = B 610
which after some manipulation, gives
Ve(0) = —MPKV, (3.15)
The requirement /z(7;) =0 in Eq. (3.5a) gives
Ip(0) = —woCoIg{l —M + MPK |tanwy T, (3.16)

When cyclic stability conditions are required, ie., I(0)=—-Ix(7;) and

Ve(0) = —VR(Ty), the following two equations are obtained

1+ M -MK

tnnte = T M MK

Sin(?""wOTa) (3_17)

1+M -M*K

cos(y —woTy) = 1+ M —MK : (3.18)

In Appendix B.1 Egs. (3.17) and (3.18) are solved simultaneously and an
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implicit equation of the form G;(M.&.7)=0 is obtained from which ¥ can

pbe determined for a given &, and Fy/ Fy This is given by

_1-M+MPK
Go(M.Qy) = M(K+1)-1 cosy
_ N -WA UK -2)UK .
MK +1)—1 7
1+ M -MPK _ 0
1+M(1-K) (3.19)
Also, the angle wg7, is shown to be given by
_ 1-M+M*K
coswola = TR A1) (3.20)

A plot of the conversion ratio characteristics in cem is shown in
Fig. 3.5. These characteristics are obtained by solving G (M.&.y)=0
numerically for each &; and for values of F;/F, ranging from 1/2 to 1.
As expected, according to (3.10), the maximum value of ¥ for any &, does
not exceed unity. The characteristics for €, =4/m are seen to extend over
the entire range 1/2<F,/ F¢<1 while those corresponding to & <4/m are
restricted to a narrower range of Fg/F, For example, for & =3/ 7 the
characteristics for cem are restricted to the range 1/2<F / Fy<3/4. This
means that for § =3/7 the real solutions of Eq. (3.19) are restricted to
this range and that no real roots exist in the range 3/4<F,/Fy<1. This
restricted range of Fy/ Fy will now be determined analylically and it will be

shown that outside this range the converter operates in dem.
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| Fs/Fom3/4

fig. 3.6 Conversion ratic characteristics of the series resonant converter
when operating in continuous conduction mode and in the range
1/2 <sF,/Fg=<1.
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Since M =< !, an examination of the radical in Eq. (3.19) reveals

that
MK =2 (3.21)
which can be written as
Fs . MG
Fom 4 (3.22)

According to (3.22), the range of F,/Fy in which Eq. (3.19) admits a real

solution is given by

e

- MO
Fo 4 (3.23)

1e
2

Since the maximum value of M is unity, the upper bound in (3.23) can be

written as

Qs
4 (3.24)

<

NIH
A
EE

A comparison of (3.24) to 1/2<F,/Fy<i shows that for @ >4/
Eq. (3.19) has a real root M in the entire range 1/2< F,/ Fy=1, whereas for
&=4/7m this range is restricted to (3.24). This then explains the
characteristics shown in Fig. 3.5. For the example of @, =3/, (3.24) gives
1/2<F,/ Fy<3/4.

In order to complete Fig. 5, the characteristics for @ =4/
outside the range given in (3.24) is now determined. From the preceding
discussion and Fig 3.5, M reaches unity for @i <4/m below resonance at

Fy/Fo=@sn/4. According to Eq. (3.9) unity gain implies A, =0. The only
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Fig. 3.6 Voltage and current woveforms of series rtesonant converter
when operating in discontinuous conduction mode and in the
range 1/2 <F;/Fy<1. Note that during T, -nTy/2, the voltage
at the input side of the bridge, Vg, is less. than the output
voltage.
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CCM «——» dcm

.8t Fg/Fo=QsT/4

4L 2/m € Qg < 4/m

.5 6 7 8 .9 1.0
Fg/Fq

Fig. 3.7 A typical conversion ratio characteristics curve of the series

resonanl converter for 2/n<@;<4/m when operating in the
range 1/2 <F;/Fo<1. For such wvalues of @, the operating
mode changes  from  continuous  to discontinuous  at
Fs/Fo=6sm/4.
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way this can happen below resonance is for the current in the interval
T,<t<Ts to be zero as shown in Fig. 3.6. This means that for such values
of @ the converter enters dem at Fy/Fy=@,n/4. As F./Fy is increased
beyond &s7/4, the converter remains in dem with M fixed at unity.> This is
illustrated in Fig 3.7. The combined characteristics in contiriﬁous and
discontinuous conduction modes are shown in Fig. 3.8. These
characteristics show that this converter is not well suited for applications
that require very large load changes. This has been a known fact since the
introduction of this converter, because of its apparent current fed nature.
It is shown now that this is true only under certain conditions. A plot of
the normalized output current, which is given by lowelg/ V. vs. Fg/ Fy for
different values of &, is shown in Fig. 3.9, These characteristics are
obtained by multiplying ¥ by &. Now, it can be seen from Fig. 3.9 that
only for & greater than three or four and away from resonance does the
convertér behave like a current fed converter. For a given g, the modes of

operation in the range 1/2<F,/ Fpg<1 can be summarized as follows

4 . 1 Fs
> = — e
Q= - cmin o= pes<l (3.25a)
. 1 Fs G
e <
Q ) . ccm in o = Fo 4
i< F
T 1 dem in QZ” = Fs =1
0 (3.25b-c)
2 o Lo Fs
Q= domin o= pmsd (3.25d)

Condition (3.25d) follows immediately from (3.24) whence it can be seen
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Fig. 3.8 Combined conversion ratio characteristics of the series resonant
converter in conlinuous and discontinuous conduction modes and
in the range 1/2 <F,/Fy<1. : :
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LQg=4/m
Qg=3.5/m
Qs=3/ﬂ
QS=2.5/W

.6

1

.0

Fig. 3.9 Normalized average output current characteristics of the series

resonant converfer in continuous and discontinuous conduction
modes and in the range 1/2 <F,/Fy<1,
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that for & =2/ the upper and lower bounds of ccm coincide. Alternately,
the boundary between dem and ccm as a function of @ for a given F,/Fy

in the range 1/8<F,/Fy<1, can be given as follows

F,
g < fr_Fs dem
0
/RB=F/Fp=l
4 Fs
& > m Fo cecm

(3.26a-b)

It is quite clear that dem should be avoided if a controllable output is
desired. This completes the discussion on the determination of # in both
modes o.f operation. In what follows a physical reason for the occurrence
of dem is given.

According to Fig. 3.6 and Egs. (3.5) and (3.6), the voltages and the

currents in dem are given by
Ip(t) ==woCoVr(0) sinwot  Ve(t)=Vr(0)coswet O<t<T, (3.27)
Ip(t)=0 Vr{t)=-V5(0) T,<t<T, (3.28)

The output voltage, which in this case is equal to the input voltage, is given

by
_ _ 1 % _ _ R Fs
o =% = Byfy lr(b)dt = - 2 TVa(0) (3.29)

In the time interval 7,<t=<T7, the net voltage at the input side of the

bridge, Vjp, is given by
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&m Fo o
2 F (3.30)

Ve = Ve(Ts) -V = Vo[

The range of Fy/ Fg in which dem occurs is given by (3.25¢) from which it

can be easily shown that

2 F, (3.31)

which according to Eq. (3.30), implies that the voltage at the input side of
the bridge is less than the output voltage. This means that in the interval
T,<it=<Ts the bridge becomes reverse biased and the diodes D1 and D2 do
not conduct. The occurrence of this discontinuous conduction was never
explained in [6] or [7] where it was assumed that the diodes D1 and D2
always remain in conduction. It should be clear now that if these diodes
are removed the converter will always be forced to operate in dcm with M
fixed at unity as in the case of the converter described in [5].

For proper component selection, the peak stress levels must be
determined. According to Fig. 3.3 the peak of the resonant current occurs
in the interval 0<t <7, during which the resonant current is given by Eq.
(3.5a). When Vg(0) and Ip(0), given by Egs. (3.15) and (3.16) respectively,
are substituted in Eq. (3.5a), the following is obtained

1-M+ MK

i t T
coswy Ty sinawo( a)

IR(t) = ﬁ’ocnvb (332)

Substitution of coswe?, from Eq. (3.20) in Eq. (3.32) gives (after taking the

positive value |1-M(K+1)|=M(K+1)-1)
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Fig. 3.10 Normalized peak resonant capacitor voltage characteristics of

the series resonanl converfer in continuous and discontinuous
conduction modes and in the range 1/2 sl /Fg<1.



16

14

12

70

Qs=8

— /’Qs=4/'n.
L. — QS=3.5/1T
Qg=3/m
\~QS=2 S/m

Fig. 3.11 Normalized peak resonant inductor current characteristics of

the series resonant converter in continuous ond discontinuous
conduction modes and in the range 1/2 <F,/Fy<1.
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Tosat. = @aCo¥; [M (K +1)~1] (3.33)
Voo = MKVg (3.34)

where the peak capacitor voltage, given earlier in Eq. (3.13), is repeated
here in Eq. (3.34).
For completeness, the peak stress levels in dem are given now.

From Egs. (3.27) and (3.29) these are easily given by
Ipeulc = C«)oCQK-Vg (335)
Voewr = KV (3.36)

It can be seen that the peak stress levels in dem can be obtained from
their corresponding expressions in ccm by letting M=1 in Egs. (3.33) and
(3.34). This, of course, is expected because at the boundary between dem
and ccm both expressions should match. Plots of Voear @nd Iygge in
continuous and discontinuous conduction mode are shown in Figs. 3.10 and
3.11 respectively.

When SCRs are used, it is important to know the diode conduction
time, Tp, shown in Fig. 3.3, in order to allow sufficient time for the SCR to
turn off. This angle according to Eq. (3.1B) is given by

_1‘ 1+ M- MK

wolp = y—wTy = cos TYHI-K) (3.57)

This is plotted in Fig 3.12. The characteristics for @ <4/ terminate at
Fs/Fo=@Q.,m/4 because, as explained earlier, for such values of & the

converter operates in dem in the range @n/4<F,/ Fg<1,
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wOTD/ T

Fig. 3.12 Diode conduction angle characteristics of the series resonant
converter in the range 1/8 <F,/Fg<1. Note that Jor Q. =<4/m
the curves terminale al Fy/Fy=@n/4 os the converter enters
discontinuous conduction mode,
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33.2 F./Fp=1

The voltage and current waveforms in the range F,/Fy=1 are
shown in Fig. 3.13. In this range the diode D1 conducts first because
Iz(0) is always negative. As the resonant current passes through zero at
t =7, the transistor enters conduction and is switched off at £ =T, while
still in conduction. Therefore, this range of operation is not very suitable
for SCR applications since natural turn-off does not occur. It is clear that
discontinuous conduction cannot occur in this range because 7,<7Ty/R.

The analysis is similar to the analysis given earlier for the range
1/2<F;/Fg=<1. In this section only the final results are given. The details
of the analysis are given in Appendix B.2. The implicit equation from which

M is obtained is given by

1+ M+ MPK
G (M. Q) = M(K+1)51 O

V(1 —M*) (MK +2) MK

T HE YD 1 sy
_1-M-MPK _ .
1-M(1-K) (3.38)

The conversion ratio characteristics are shown in Fig. 3.14 along with the
characteristics in the range 1/2<F,/Fpg<l. It was shown earlier for
;<4/m that the converter operates in dem in the range @n/4<Fy/ Fg<1.
For such values of @, the converter once again enters ccm when excited

above resonance.
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Fig. 3.13 Voltage and current waveforms of the series resonant conuverler
when operating in the range Fj/Fg=1.
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Fig. 3.14 Conversion ratio characteristics of the series resonani converter
in the range Fg/Fo=1/2.



76

The output-network switching time, or the diode conduction time,

is given by

1+ M+ MK
M(K+1)+1

coswg?y =
The voltages and currents for 0<£{ <7, are given by
Ip(t) = woCoV, {1 +M(K+ 1)] sinwp(t ~Tg)
Va(t) = ~ Vg |14 MUK+ 1)] cosw(t = Ta)+ V5 (3 +1)
and for Tp<t<T; are given by
In(t) = @oCo¥ |1~ M + MK |sinw(t ~T,)
Va(t) = ~Vy [L~H + MK |cosn(t ~Ta) + (1~ H)

The initial values /z{0) and Vg(0) are given by

Vr(0) = —M*KV,

Ip(0) = —woCoV, V(1 ~M?)MK(MK +2)
The peak stress levels are given by
Vpeak = MKV_;,

&)gCng{l -M+ MK

Ipealc =

C 1-M+MPK <0

(3.39)

(3.40a)

(3.40b)

(3.41a)

(3.41b)

(3.42)

(3.43)

(3.44)

woCoVu V{1 —MA)MK(MK +2) ; 1-M+MPK =0 (3.45a-b)

The peak value value of the resonant current is either given by the

maximum value of Iz(t) or by Ir(7s) depending on whether this maximum
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Fig. 3.16 Ezxplanation of the change in the peak resonant current when
the series resonant converter 1is operating in the range
Fs/Fo=1. a) when y—woT,>n/2, Iy 15 given by the
maximum value of Ip(t) in the interval T, <t <Ts,. &) When
v—woTy<n/8, the mazimum wvalue of Ip(t) cannot occur and

]peak = ]R( Ts)'

.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5

Fig. 3.16 Normalized peak resonant inductor current characteristics of
the series resonant converfer in the range F,/ Fo=1/2.
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Fig. 3.17 Normalized peak resonant capacitor wvoltage characteristics of
the series resonant converter in the range Fy/Fo=1/R2.
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can occur or not in the interval 7,<t<7; as shown in Fig. 3.15. The
boundary between these two cases, according to Fig. 3.15, is determined by
y—wpTg =7/2. From Appendix B.2 we have

1 —M —M*K

cos(y—~wpTy) = 1T-H(I-K) (3.48)

If y—weTy=n/2, then the numerator in Eq. (3.48) is negative (since the
denominator is always positive) and the peak is given by Egq. (3.45a),
otherwise it is given by Eq (3.45b). The peak current and voltage

characteristics are plotted in Figs. 3.16 and 3.17 respectively.

3.4 General Analysis

In this section the operation of the series resonant converter is
given in the entire range 0<Fs/Fy<= The general discontinuous and
continuous conduction modes are identified, and the conversion ratio for
each mode of operation is determined. The various modes of conduction
are discussed first before the details of the analysis are given.

In Fig. 3.1e the switches S1 and S2 operate alternately at fifty
percent duty ratio and for a duration 7;. In the following analysis, first, it
is assumned that at no time S1 and S2 open simultaneously. Later, this
restriction is removed in Sec. 3.4.7. Assume then that a turn-on pulse of
duration 7y is applied to @1 and simultaneously a similar turn-off pulse is
applied to @2 as shown in Fig. 3.1. Depending upon the duration of T, and
load conditions, @1 and D1 may conduct alternately for the entire duration
of the turn-on pulse, T;, as may be the case for cem, or only during a

portion of T, as may be the case for dem. For example, in Sec. 3.3.1 it
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was shown that when the converter operates in ccm in the range
1/R<Fy/ Fpg=<1, @1 and D1 each conduct once in sequence during 7%, but
in dem only &1 conducts for a duration T;/2 while during the remaining
time, 75 —To/2, D1 does not conduct. In the range F,/Fy<1/2 since T,
may be many times larger than Ty/R8 @1 and D1 may conduct several
times during 7;. This will be investigated presently.

There are two general types of dem. These are shown in Fig. 3.1Ba
and 3.18b whence it can be seen that the resonant current, /p(¢), ceases to
flow after completing n complele half-cycles each of duration Ty/R.
During the ‘remaining time, T,—nTg/2, neither D1 nor @1 conduct even
though @1 is still on. The reason for this discontinuity in the resonant
current is that, under certain load conditions, the output bridge becomes
reversed biased during the time interval Ty—nTy/R2. In the previous section
this was explained for the particular type of dem that occurs in the range
1/R<Fy/ Fy=1.

The two different types of dem are shown in Figs. 3.18a and 3.18b.
Each type corresponds to whether the number of conduction cycles, n, is
even or odd, and is appropriately called odd or even type m dem. The
reason for this distinction becomes clear when the conversion ratio for
each type of dem is determined in the next section. Clearly, when n is
Specified explicitly, the words even or odd become redundant, ie., type 3
dem instead of odd fype 3 dem.

From Fig. 3.1Ba or b it can be easily seen that if the converter is

operating in type n dem (odd or even), then
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nTo F‘s 1
L= == or 0=g-=i- (3.47)

The range of the control parameter given in (3.47) is only a sufficient
condition for the occurrence of type n dem. For a given &;, a necessary

and sufficient condition for the occurrence of type n dem is given by

0 < Co{@.n) < 'F—'s“ﬁ Ci(&s.n) <
Fy

.’3|*—'

(3.48)

where C,(&;,n) and Cp(&.n) are determined in Sec. 3.4.3.

In continuous conduction mode the resonant current never ceases
to flow. According to Fig. 3.19a and b there are two different types of cem
depending on whether Ip(0) is positive or negative at the beginning of the
switching cycle when S'1 is closed. In Fig. 3.19a since /5(0)>0, @1 conducts
first for a duration 7, after which D1 and @1 conduct alternately for n
complete half-cycles, each of duration Ty/2, and after which D1 conducts
for a duration Tp=Ty—nTe/2~T; until S1 is opened and SR2 is closed.
Cyclic stability requires that if @1 conducts first then D1 conducts last,
which implies that the number of half-cycles n, denoted by 4,(f) through
i(t) in Fig. 3.19, must either be even or zero. This type of cem is
therefore appropriately called +iype n cem, where the positive sign refers
to the fact that /p(0) is positive, and n refers to the conducted number of
complete half-cycles. It can be seen from Fig. 3.19a that n=0 corresponds
to the case of cem in the range 1/2<F,/Fo<1 discussed in Sec. 3.3.1.

According to Fig. 3.20a if the converter is operating in +type n ccm, then
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Tc nTg 1 Fs 1
——< —_— e < < —=
g =Lim =Ty or o= 5= (3.49)

The range of the control parameter given in (3.49) is only a sufficient
condition for the occurrence of +type n ccm. For a given & a necessary

and sufficient condition for the occurrence of this type of cem is given by

1 Fy 1
ntz = 7, = Pl@n) = 7 (3.50)

where F,(&s.n) is determined in Sec. 3.4.6.

The other type of cem, which is called ~fype n ccm, is shown in
Fig. 3.19b. In this case it can be seen that /p(0) is negative so that D1
conducts first for a duration 7,, after which &1 and D! conduct
alternately for n complete half-cycles and after which @1 conducts for a
duration Tp=T;—nTp/R—T, until 51 is opened and S® is closed. At t =T,
when &1 is switched off and &2 is switched on, D2 conducts first and the
current is diverted from @1 to D2. As before, n can only be even or zero.
It can be easily seen that n=0 corresponds to the case of cem in the range
Fs/ Fo=1 discussed previously. According to Fig. 3.20b, it can be seen that

if the converter is operating in this type of cem then

!

S

0

IlTo < To 1
2 2 n+1

()S Ts_

<L
n

!

(3.51)

As before, the range of the control parameter in (3.51) is only a sufficient
condition for the occurrence for this type of cem. A necessary and

sufficient condition for the occurrence of —type n cem is given by
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1 F

=<

n+1 Fo

1

where Bz(gs.n) is determined in Sec. 3.4.6.

The results of the previous discussion are summarized in the

following table.

Mode Conduction Sequence Frequency Interval
even type n dem Q1D1..Q1D1 0 <Ca(Qs,n)s[€“—sCl(Q,,n)s-:1— n even
A e et 0

n complete half-cycles

T F.
odd type n dem QL1 D! .. Q1D1QL o<cz(Q,,,n)s———Fs scl(Q,.n)S;ll— n odd
0
+type n ccm Q1 D1 QL ... D1 QL D1 L5 gyt
PO A n+2  Fp, v n+1

n complete half-cycles n=0,2,4,...even

e
—type n cem D1 Q1 D!..Q1D1Q! 1o FLSBE(Q,,n)s

3.4.1 Even Type n dcm

The voltage and current waveforms for even type n dem are shown

in Fig. 3.18a. The current iy(t) is easily determined
'I:m(t) = Q)oCo lVg +(_1)mV0*'V;;m Sint‘dot (353)

In Eq. (3.53) V. is the value of Vz(t) at the beginning of each complete

half-cycle, and the time reference is taken at the begifming of each cycle,




88

im(t). The area, Ap, under the current in(t) is given by
T2
Ap = j; l[im(t)|dt = BCy {V; +(_1)mV0—ch] (—1)m+1

The average output current can be expressed in terms of A,
Ip= —= 1—fT’IJR(t)|dt = 1—2/1
K s Yo L2 ™™

which gives

n
ZAm = ZCQVQK
m=1

The input and output powers are given by

T, Y,
A [ Ip(t)Vydt = Y A (1)
TS 0 TS m=1
1 Ts VO n
7o VRO Vedt = 73 An

Substitution of Bq. (3.56) in (3.58) and the requirement P, = P, gives

iAm(_l)mH
M = m=]
B VoK

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

According to Fig. 3.18a the peak-to-peak capacitor voltage, 2Vpew. is given

by
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—ZVPWJCCQ = _A2+A3_A4+ R _An_A1+(A1 —A1>

$ Ap(—1)™1 24,
m=1

(3.60)
and Vz(0), or V,, is given by
Vot = Voo — Al = — EA( 1)+l = —MKV,
I S SO 20 m 0 (3.61)

In Eq. (3.61) the last equality is obtained by using Eq. (3.59). In Eq. (3.54)

Vem is unknown except for m=1, however, by successive application of

= —qymIZm7

a recursive expression for A is obtained in Appendix B.3 given by

Am = RCoVy {l —(Rm—-1)M + M?K (3.63)
When Eq. (3.63) is substituted in (3.59), the summation for even n gives
(Appendix B.3)

=
M=% Qm Fy (3.64)

which is a linear function of the load F and the control parameter.
Equation (3.64) also gives for the normalized average output current

wolg
Ve

=l
Iy —Zﬂ_

(3.65)

|

which is independent of the load F. Therefore, when the series resonant

converter is operating in an even type dem, it acts as a frue current—fed
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converter.

The peak stress levels, determined in Appendix B.3, are given by

_ _n , n®
Vpoat VQ[Z KK (3.66)
] CV[ n, o
e = 90CoTy |1~ e (3.:67)

342 0dd type n dem

The only difference here is that n is odd in Eq. (3.59). In

Appendix B.3 it is shown that for n odd M is given by

_ 1
M= (3.68)

which implies that when the converter is operating in an odd type dcm the
conversion ratio is insensifive to Fs/ Fy and K. The special case for n=1
was discussed earlier. Clearly this mode of operation should be avoided
since the output in this mode is uncontrollable.

The peak stress levels are given by

4 K
Voear = Vg |R——+ =~
J CoV, [1 + K
= _ 4+ —
peak 0“0 gl ng (3‘70)
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3.4.3 Boundary between two Discontinuous Conduction Modes

Assume that the converter is operating in even type m dcm. The

conversion ratio according to Eq. (3.64) is given by

y=lm s

s Fo (3.71)
and is plotted in Fig. 3.21 for three different cases. These are straight lines
through the origin with slope 2m/n&;. The conversion ratios for odd type
(m—1) and odd type (m+1) dem, given by Eq. (3.68), are also plotted in Fig.
3.21. Since a sufficient condition for type m dem to occur is that
Fs/Fo<1/m, Eq. (3.71) is valid in a region to the left of Fy/Fp=1/m on
the M vs. Fg/ Fg plot. In case I, as the switching frequency is increased, M
increases linearly until the converter enters odd type (m-1) dem at
(Fs/ Fo).. 1f Fs/ Fy is increased further , say up to (Fg/Fp)g, M will stay at
a fixed value of 1/(m~-1) because of operation in odd type (m—-1) dem. (To
complete the discussion for all Fy/Fo=(Fs/ Fyp)., we need to know results
from operation in cem given in the next section, but for the present
discussion we need only consider the results obtained for dem). If Fg/Fy
on the other hand is decreased, M will decrease linearly until the converter
enters odd type (m+1) dem at (Fs/ Fo)p. If Fs/Fy is decreased further, say
down to (Fs/Fg)e, M will remain at a fixed value of 1/(m+1). Therefore,
Case 1 represents an even type m dem that is bounded between odd type
(m~1) and type (m+1) dem. Case I on the other hand, which corresponds
to a larger value of &; than case I, represents an even type m dcm that is
bounded between odd type (m+1) decm and +type (m-R) cecm. To

understand this, we simply determine which of the two general types of
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Fig. 3.21 DBoundaries of even ftype n discontinuous conduction mode.
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odd type (m-1)
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'y /-—/%‘-\type (m-1) ccm

+type m ccm
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even | ,'
type (m+1)i !
dem : :
! !

(E) (15_ 1 1 Fg/Fq
Fob F°c m+l m

Fig, 3.22 Boundaries of odd type n discontinuous conduction mode.
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cem has a lower bound given by the reciprocal of an even integer. An
inspection of (3.50) and (3.52), in both of which n can only be even or
zero, reveals that only the lower bound of +type n ccm, given by 1/(n+2),
can correspond to 1/m. This implies that n=m-£ and the continuous
conduction mode in question is +type (m—2). The third case represents an
even type m dem that is bounded between —type m ccm and +type (m-—2)
ccm. In this case as Fy/Fp is decreased, the converter enters —type m
cem in the range 1/(m+1)<F,/Fo<1/m when M=1/(n+1). The reason
how this happens is given in Sec. 3.4.6 where the boundaries between dcm
and ccm are determined.

The lower bound Cp(&;,n) in (3.4B) can now be easily determined.

From Fig. 321 it can be seen that at the lower bound M =1/(m+1) which

according to Eg. (3.71) gives

&
Ce(Qym) = 2szm—+1) (3.72)

Also, according to Fig. 3.21 a necessary condition for this type of dem to

occur is that Cz(&,,n)<1/m which gives

& = = (3.73)

This last condition covers all three cases in Fig. 3.21. The upper bound in
case I can be easily determined by setting M =1/(m-1) which according to

Eq. (8.71) gives
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Qs
(Fs/ Fg)e = Zm(m—1) (3.74)

The condition on & for case I to occur is obtained by requiring

(Fs/ Fp)e<1/m which from (3.74) gives

2(m—1
& = = (3.75)

According to Egs. (3.73), (3.74), and (3.75) the upper bound C,(&,n) in

(3.48B) is given by

Qsﬂ' . 2(m—1
em(m—-1) G==0
Cy(@m) =
1. Bm-1) _p _2(m+l)
m ' 17 T (3.76a-b)

A complete description of the conditions on &, for this mode to
occur and the range of Fy/Fy in which it can occur can be summarized by

the following

&n _F __ Qrm ; stzgm—l)
Rm(m+1) = Fp = Pm(m-—1) m
type m dem
Gm _Ffs _ 1 2m-1 <g<Bm+1)
2Zm(m+1) ~ Fo m ' ™ R |

(3.77a-b)

\

Alternately for a given Fg/Fp<1/m the range of @, in which even

type m dem can occur is easily determined from Eqs. (3.72) and (3.74)
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zmgm—leL<Q cemm+) s 0 F 1
T Fo & BT il T m

Fo ' Fo (3.78)

In odd type m dem the conversion ratio according to Eg. (3.68) is
constant. This is shown in Fig. 3.22 by a straight line parallel to the Fg/Fy
axis and extending to Fy/ Fy=1/m. There are three cases to be considered
as shown in Fig. 3.22. In the first case the value of € is such that as
F,/ Fo is increased the converter enters even type (m-1) dem at (Fs/ Fg)e.
and when decreased the converter enters even type (m+1) dem at (Fg/ Fo)s.
For the second and third cases, as Fy/ Fy is increased the converter enters
—type (m—1) cem at Fg/Fg=1/m, and when decreased, the converter
enters even type (m+1) dem in the second case and +type (m—1) cem in
the third case. The boundary between odd type m dem and +type (m-—1)
cern in the third case is discussed in Sec. 3.4.8 where it is shown that at
this boundary K is equal to m(m+1) just like at the boundary between even
type (m+1) dem and odd type m dem in the first two cases. Proceeding
exactly as before, we can determine the conditions on @& for the
occurrence of odd type m dem. The results obtained are identical to the
results obtained for even type m dem given by Egs. (3.77) and (3.78).
Therefore, these equations give a complete analytic description of odd and
even types of discontinuous conduction meode.

The boundaries between even and odd type discontinuous
conduction modes can be put together as shown in Fig. 3.23. The
conversion ratio characteristics for even type type m dcm, which are linear
functions of F,/Fy are confined to the shaded areas, and the

characteristics for odd type m dcm, which are insensitive to Fy/ Fp, are
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Fig. 3.23 Boundaries of odd and even lype n discontinuous conduction
modes in the entire ronge 0<F,/Fy <« The characteristics
Jor even type discontinuous conduction modes are confined to
the shaded areas, whereas the characteristics for odd type
disconlinuous conduclion mode are confined fo straight lines
parallel to the Fg/Fy axis. The choracieristics for conlbinuous
conduction mode are confined lo the unshaded areas.
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confined to lines parallel to the Fy/F, axis. The areas, to which the
conversion ratio characteristics of the various continuous conduction
modes are confined, can be easily identified by using (3.50) and (3.52). In
Fig. 323 examples are given for n=0,2 and 4 which correspond to
1/R<F/Fy<l and Fy/ Fy=1, 1/4<Fy/Fy=<1/3 and 1/3<F,/Fy<1/2, and
1/6<F/Fo<l/5 and 1/b5<F,/Fg<1/4 respectively. Note that the
subdivision of F;/Fj, axis according to (3.50) and (3.52) is only with respect
to the continuous conduction modes. For example, the proper way to refer

to the range 1/4<F;/Fy<1/3 with respect to cem is

; n=2e

and mot 1/(n+1)<F,/Fo<1/n in which n=3. Therefore, investigation of
the possibility of occurrence of ccm in an arbitrary range requires proper
splitting of the arbitrary range. For example, a range such as
A= F/Fo<.75 is split into 4<F/Fpy<1/2 and 1/2<Fy/Fy<.75. The first
range belongs to 1/(n+1)<F¢/Fe<1/n for n=2, and consequently only
—type 2 ccm can occur in this range, whereas the second range belongs to
1/(n+2)<F,/Fo<1/(n+1) for n=0, and only +type 0 cem can occur in the
second range.

This completes the discussion on the boundaries between two
general discontinuous conduction modes. The boundaries between
discontinuous and continuous conduction in the ranges
1/(n+R)<F,/Fo<1/(n+1) and 1/(n+1)<F,/ Fo<1/n are determined in Sec.

3.4.6.
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3.4.4 +ilype n ccm

In this section the most important steps for the determination of
M are given. The details of the analysis are given in Appendix B.4. The
voltage and current waveforms are shown in Fig. 3.19a. As before, the
expression of the output voltage in terms of the areas under the resonant

current is given by

R -
= IoR = E(Ag + g+ D 4
Vo 0 T, {Aoy + Aoz mz=:l m) (3.79)

When the input and output powers are set equal, an expression for M in

terms of these areas is obtained which is given by

Agy —Agz + 2 Ap(—1)™
M - m=1l

Agi+Ape+ ) A
01 02 ng] m (3,80)
The current ipn(t) is given by

'I:m(t> = &)gCo I/g + Vo("l)m+1 —I/;m]SjIlﬁ}ot (381)

In Eq. (3.81) V. is the initial capacitor voltage at the beginning of each
complete half-cycle, ip,(t), and the time origin is taken at the beginning of

each cycle. The recursive relation for A, is determined to be
Am = ZCO Vcl—(zm—l)Vg—'Vg (382)

and the summation in Eq. {(3.80) is obtained for even n
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n
Y An(-1)™ = —2nCe Vg

m=1

(3.83)

The currents ig,(t) and igz(f), which are shown in detail in Fig. 3.20a, are

given by
101(t) = woCoV, %sin(wot —woTy) (3.84)
ioa(t) = weCoV, % sin{wof —wo 7y +7) (3.85)
The corresponding areas Ap; and Age are given by
Ag, = Cng[l-M+M2K] {1-—secona] (3.86)
Agz = CoY {MEK—M—ll {se0(7—ona)—1] (3.87)

Substitution of Egs. (3.83), (3.86) and (3.87) in (3.80) and the requirement
ip1(0) =1ge(0) give two simultaneous trigonometric equations in w7, which
when solved together give

1-M+ MK
1-Mn+1¥®-MK

Go+(M.Qyn) = (n+1) cosy

_VHK[M¥n+1)? —1][n+2—MK]
1-Mn+1)?~-MK

siny

MRK —M —1
1+ M(n+1)2~HMK

(n+1) =0 (3.88)
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Equation (3.8B) is the implicit equation, which when solved
numerically, gives the value of M for a given §, and F,/ Fy.

The peak stress levels are given by

f ME—1
= +
‘peak Vy 1+nM+ ntl (389)
woC V;
Dot = n+01 L M(n+1)?+ MK —1] (3.90)

3.45 -type n ccm
‘A similar analysis, given in Appendix B.5, for this mode of

operation gives

1+ M+ MPK
1+M(n+1)%+ MK

Go-(M.@.yn) = (n+1) cosy

VIMK-n][1 - M3 (n+1)*][n+2+HMK]
1+ M(n+1)?+ MK

+ siny

1-M-M*K
—_ + =
T—Hn+1f+hg ot =0 (3.91)

which is another implicit equation which must be solved numerically. It can

be seen that
Gs+(M. 8 yn) = G(~M.—Q,—y.n) (3.92)

The peak stress levels for n#0 are given by
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Ve — ]I 1 _BM + 1 n—2,4,6 ----- (3,93)
UOCO g 2 K =
[peak - 1 [1 + M(n. -1+ )] n 2'4'6 """ (3.94’)

For n=0 the peak stress levels are given in Sec. 3.3.2. The reason the
results for n=0 are different from the results for n#0 can be seen from
Fig. 3.19b. For —type n cem Vo occurs at the end of 4,(f) which for n=0
does not exist and consequently Ve is given by Eq. (3.44) of Sec. 3.3.2.
The same reason applies for lpe. and consequently for n=0 /[ is given
by Eq. (3.45a-b).

Before the conversion ratio characteristics are plotted for the two
general types of ccm, the boundaries between continuous and discontinuous

conductions mode will be determined.

3.4.6 Boundaries between Discontinuous and Continuous

Conduction Mode

For ~type n ccm to occur in the interval 1/(n+1)<F,/Fy<1/n, an

examination of the radical in Eq. (3.91) reveals that

1

Therefore, the maximum value for —type n cem is 1/(n+1). This explains
the boundary line between —type n ccm and even type n dem in the
interval 1/(n+1)<F,/Fy<1/n which in Fig. 3.23 is shown by dashed lines
for n=2 and 6. As explained earlier, in the range F,/Fy=1, which

corresponds to n=0, dem cannot occur. This is consistent with the
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nomenclature, since such a dem would have to be called type 0 dem which
implies that the resonant current is zero all the time which corresponds to

no load conditions. According to (3.95) it can be seen that
K = n(n+1) (3.96)

which implies

Fy w 0 2n(n+1) (3.97)

The first inequality in (3.97) gives the condition on §, for —type n ccm to

occur which can be rewritten as

f5 2n(n+1) dem

=
1 o4 o1 .
0

(3.98a-b)

For example, Fy,/Fg=.4 falls in the interval 1/3<F,/Fy<1/2, which
corresponds to n=2. Therefore, according to (3.98) for @, =>(.4)1R/m, the
converter operates in -type 2 ccm at Fy/ Fy=.4, otherwise it operates in
dem.

A comparison of (3.97) and the necessary and sufficient condition

for the occurrence of —type n ccm given by (3.52) shows that

& . Bn_ o B+
8

2n(n+1) ' 0 Tr

Bg(Qs.n) =
1 . Rn+1)
n & == (3.99a-b)
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An examination of the radical in Eq. (3.88) reveals that, for +type
n ccm to occur in the interval 1/(n+R)<F,/Fy<1/(n+1), the following

must be true

1
ntl (3.100)

MK =n+2 and M=

Therefore, as in the case of —type n ccm, the maximum value of M for
+type n ccm is 1/(n+1). This explains the boundary line between +type n
cem and odd type (n+1) dem in the range 1/(n+R)<F,/Fy<1/(n+l) as

shown in Fig. 3.23. According to (3.100) it can be seen that
K= {n+1)n+2) (3.101)

which implies that

Fy 2§n+12§n+2} Fy G
&=z m T T 2mel)n+R) (3.102)

The first inequality in (3.102) gives the condition on @ for +type n ccm to

occur in the range 1/{n+2) < F;/ Fy<1/(n+1), which can be rewritten as

( )( ) F

1 < Fy < 1 e
— -——_ T — F
n+2 Fy n+1 9 > 2(n+1)(n+2) Fs +type n cem
m 0 (3.103a-b)

For example, F,/Fq=.3 falls in the interval 1/4<F,/Fy<1/3, which
corresponds to n=2 in the range 1/(n+R)<F,/Fy=<1/(n+1). Therefore,
according to (3.103) for @, =(.3)24/m the converter opérates in +type 2

cem  at Fy/ Fg=.3, otherwise it operates in dem.
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A comparison of (3.103a-b) and the necessary and sufficient

condition for the occurrence of +type n ccm given in (3.50) shows that

& . Rn+1) 2(n +2)
R(n+1)(n+2) T <= m
Bl(Qs-n) =
1 ) o> 2(n+2)
n+1 PoosET (3.104a-b)

For a given F;/Fp; the boundary between discontinuous and
conduction modes can be determined as a function of & either from (3.98)
or (3.103) depending on which range F,/F, falls in. To complete this
discussion, the boundary between dem and cem for a given & as a
function of Fy/ Fy is determined next.

Consider now two adjacent cases of cem corresponding to n and
n—-2. According to B;(@.n-2) in (3.104b) if @ >2n/m the converter
operates in +type (n—2) ccm in the entire range 1/n<Fy/Fo<1/(n-1).
Also, according to Bp(&.n-2) in (3.99b) the converter operates in —type
(n~2) com in the range 1/(n—1)<F,/Fo<1/(n—2). In fact, for @&=>2n/n
ccm oceurs for all Fy/Fg=1/n, because the conditions for ccm according
to By(€ n-m) in Eq. (3.104b) and Bp(@.n—m) in Eq. (3.99b) — for m even
— is met by &=Rn/n. Consider now two adjacent cases of ccm
corresponding to n and n+2. If & =<2(n+1)/n then according to B,(&.n) in
(3.104b), the converter operates in dem in the range
1/(n+R)<Fy/ Fo<1/(n+1). Also, according to By(&.n+2) in Eq. (3.99a) the
converter operates in dem in the range 1/(n+3)<F,/Fy<1/(n+2) since
& =2(n+1)/m satisfies the condition {=<2(n+2)/n In fact, the converter

will be in dem for all Fy/Fp<1/(n+1), since the condition for decm
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according to B,(@, .n+m) in (3.104a) and B,(@, .n+m) in Eq. (3.99a) — for m
even — is satisfied by @ =2(n+1)/n The preceding discussion can be

summarized by the following

Fys 1
Fo —n+1 dem
1 Fs G
L=< —————— —fype n ccm
2n <Q<2(n+1) n+1l 0 2n(n+1)
mos ki <Fs <Ll even ftype n dem
2n{n+1) = Fg n up
F
-Fiz L cem
[fo D (3.105a-d)
A similar discussion gives
Fy 1
>
Fo T n+1l cem
Qs Fy 1
Yt viwrwl- e < odd type (n+1) dem
2(n+1) h 2(n+2) ‘ 2(n+1)(n+2) Fy n+l
T I L <£s——5——iosﬂ-—— +lype n ccm
n+2 ~ Fg ~ 2(n+1)(n+R) vp
Fs 1
= dem
fo n+2 (3.108a-d)

Therefore, for a given @; the boundaries between dem and ccm are
determined as a function of Fg/ Fy either from (3.105) or (3.108) depending
on which range & falls in. For example if € =4 then of the following two

ranges

O

n+s > _2__>_ n+1 (n even) | (3.107)
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Fig. 3.24 Conversion ratio characteristics of +type n continuous

canduction made in the range 1/(n+2)<F,/Fy<1/{(n+1) and
~type n continuous conduction mode in the range
1/ (n+1)<F,/Fy<1/n. The boundary between +fype n ccm
and odd fype (n+1) dem is at the line M=1/(n+l), and the
boundary between —type m ccm and even type n dem is at
the dotted line M=1/(n+1). The shaded regions [ and I
correspond to values of @ in (3.105) and (3.106) respectively.
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n+1> =n (n even) (3.108)

only (3.108) is satisfied for n=6, and the boundaries as a function of Fy/Fj
are given by (3.101). On the other hand if @; =2, then only (3.107)
is satisfied for n=2, and the boundaries as a function of Fy/Fy are given
by (3.106).

The general boundaries between dem and cem for a given even n
are shown in Fig. 3.24. The characteristics corresponding to the two ranges
of & given by (3.105) and (3.106) are shown in the shaded regions I and I
respectively.

The general conversion ratic characteristics are plotted in Fig. 3.25
for n=0, 2, and 4. It can be seen that these characteristics admit multiple
resonant peaks at Fg/Fp=1,1/3,1/5..1/(n+1) with corresponding values of

M=1,1/3,1/5... at the peaks.

3.4.7 Operation in the Special Case When Q1 and Q2 Are

Switched Off Simultaneously

Until now the switches S1 and S2 were allowed to conduct for the
entire duration of 75. If conduction is inhibited by switching off 1 and @2
before the end of 7;, then the converter can operate only in a finite
number of continuous and discontinuous conduction modes. To illustrate
this, consider the operation of this circuit when SCRs are used which are
fired only once during 7s. In this case, when the circuit is excited in the
range Fy/Fo<1/2, the switches S§1 and S2 conduct only once during the
forward and reverse directions. Consequently, the only allowed modes of

operation in the range Fg/ Fo<1/R2 are type 1 dem and type 2 dem. In the
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Fig. 3.26 a) Conversion ratio characteristics of the series resonant

converter when SCKs are used or when @! and 2 are allowed
to conduct only once during T,. b) The same characteristics
when @1 and &2 are allowed to conduct at most twice during
Ts. In the first case only one resonant peak ot Fy,/Fg=1
occures whereas in the second case only fwo resonant peaks, at
Fs/Fo=1 and Fy/Fy=1/3, occur. In general if Q! and Q2
are allowed to conduct only j number of times, only j resonant
peaks occur.



110

range Fy/ Fg=1/2 the operation remains unaffected since, as before, in this
range S1 and S2 conduct only once as restricted by the switching time Tg.
The conversion ratio characteristics for this case are shown in Fig. 3.26a
where it can be seen that in the range F;/Fy<1/2 only those
characteristics corresponding to type 1 and type 2 dem are present. In the
range Fg/ Fog=1/2 the characteristics remain unchanged. Also, since no
other mode occurs in the range F;/Fp=<1/2, the lower bound of type 2
dem is now zero instead of C(Gs,R)=8&,7/12 as required by (3.48) and
(3.7R).

In general, @1 and @2 can be made to conduct at most 7 number
of times. In Fig 3.26b the characteristics for j=2 are shown. In this case
the maximum allowed discontinuity is type 4 dem and consequently
Co(@s,4)=0. The M for type 2 dcm is now confined, as in the general case,
between M =1 and M =1/3 because of the occurrence of type 3 dem and
—type 8 cem. Also, in addition to the first resonant peak at F;/Fp=1, the
second resonant peak at F,/Fy=1/3 occurs because of the occurrence of
ttype B ccm. In general, if @1 and &2 are allowed to conduct at most j
number of times then only j resonant peaks occur at
Fo/Fg =1, 1/3, 1/5,..1/(RF —1) and Cy(&,,27) =0.

This completes the dc analysis of the series resonant converter in

the general continuous and discontinuous conduction meodes.
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3.5 Nonidealities

As in the case of the parallel resonant converter, the only two
nonidealities considered in this section are the voltage drop in the output
rectifier bridge and the parasitic resistances in the tank and the output
filter circuits.

The voltage drop in the output rectifiers is considered first. The
two methods of output rectification are shown in Fig. 3.27a and b where
the isolation transformer is assumed to be ideal and of unity turns ratio.
The nonideal circuit is shown in Fig. 3.28a where the output network is
shown reflected to the primary side. All the diodes in this circuit are
assumed to be ideal. The voltage drop in the output rectifiers is separated
and is represented by a voltage source Vpp in series with an ideal diode.
For the center-tapped circuit Vgp=V, and for the full-bridge circuit
Vep=2Vp. As in the case of the parallel resonant converter, an ideal
circuit, shown in Fig. 3.28b, is determined which delivers the same power
FPg' at the input side of the bridge as the nonideal circuit. The conversion
ratio, M'=V'/V;, and the load parameter, §;'=wylo/ R', of the ideal circuit

are related to M, =Vy/V, and & =wolo/ R of the nonideal circuit by

M = My + 7 7 (3.109)
[ Vap R
‘= l-——1 or R'= +—————
Qs Qsl M'Vg ]_—VBD/M’VQ (3110)

The derivation of Egs. (3.109) and (3.110) is the same as the derivation

given in Sec. 2.4 for the parallel resonant converter and will not be
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:% - Zén b
| |

Fig. 3.27 Two methods of implementing the isolalion lransformer in the
series resonant converter. a) Center-tapped and b) full-bridge.

Pin To(t) 0 Ci’_
POU?
Cf At c!iodes Cf
— ”___*' are ideal ) ” !
- A —
- R + - '+
R
Vo Vv

Fig. 328 a) Nonideal circuit with woltage drop Vgp in the output
rectifiers and b) ideal circuit that delivers the same power Py’
as the nonideal circuil in a).
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repeated here. According to Eq. (3.109) M' can be measured directly by
measuring the voltage V3 at the input side of the bridge which is a square
wave of amplitude Vp+ Vpp. For the parallel converter M', given by Eq.
(2.41), cannot be measured directly. M' is determined from Egs. (3.64),

(3.88), and (3.91) in which K is modified to K" by

[ Vep

K= K- &y
M g

2 (3.111)

_ fl_ Vep
= [ T,
Since for odd type n dem the conversion ratio is insensitive to the load and

control parameters, Eq. (3.68) remains unchanged, and we have

':1_ =-1——'——
M= or Ma=g Ve (3.112)

e

n , '80 o
K", K (3.113)

Therefore, the actual conversion ratio for even type n dem remains
unchanged. In Appendix B.6 a numerical method for determining #' and M
for continuous conduction mode is discussed. The modification in the
boundaries between dem and cem are discussed by way of an example in

the section on experimental results.

The efficiency due to the losses in the output rectifiers is the

same as for all other converters and is given by
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=1
M2 = T8 Ven/ Vo (3.114)

According to Eqgs. (3.109) and (3.114) the 1, can be written as

=, VeD
Nr HY, (3.115)

The actual conversion ratio can now be written as
Ma = nRM‘ (3116)

Equation (3.115) is plotted in Fig. 3.29 for two different cases of Vpp/ ¥,
and &, in the range £ /Fy=1/2. The efficiency near the resonant peak is
higher since M is larger near the peak. In a closed loop regulator, for a
given output voltage requirement, the efficiency 75 is fixed and is given by
Eg. (3.114). The curves shown in Fig. 3.29 do not suggest the converter
should be operated near the resonant peak; all they show is the behavior of
np for an open loop converter. The values of Vgpp/ ¥V, chosen for the series
resonant converter are less than those of the parallel converter (Fig. 2.17)
because in the useful range of the operation the conversion ratio of the
parallel converter is greater than unity while that of the series resonant
converter is always less than unity. Therefore, for a given Vy/ V¥, the series
resonant converter requires a step-up transformer to match the conversion
ratio of the parallel converter. Consequently, the reflected value of Vgp/ V,
will be reduced by the step-up turns ratio. Since M is smaller for larger
values of &, the values of Vpp/ V; chosen for & =10 are smaller than those
chosen for &, =3. It should be noted that when thelparallel resonant

converter is excited well beyond resonance, or if &, is selected very small,
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o /VBD/Vg='02

W

i Vpp/Vg = - 04

- QS=3

.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5
FS/FO

I Q=10

) .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5

Fg/Fo

Fig. 3.29 a-b) Efficiency of the series resonant converter due fo losses in

the output rectifiers for two different values of Vpp/ V, ond &;.
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20k Qg =100
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750
40 1
30 | Q, =200
20 L Qf= 100
10
5 .6 7 8 .9 1.0 1.1 1.2 1.3 1.4 1.5
Fg/F
Fig. 3.30 Efficiency of the series resonant converter due fo losses in the

parasitic resistances.
and Qf =100.

a) @ =400 and @, =100 and b) & =200
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M will be less than unity as in the case of the series resonant converter,
but since this type of operation is not useful, the choices of Vpp/V, made
were relevant.

The efficiency due to the losses in the parasitic resistances in the
tank circuit and the output filter capacitor is given by

1

A Y A

2
Ig? I® F (3.117)

T =

1+

where 7. is the total parasitic resistance in the tank circuit, e, is esr of
the output filter capacitor (¢, and /. and /; are the rms tank current and
output capacitor current respectively. As explained earlier in Sec. 2.4, in
the presence of the parasitic resistances, the ratios 7.//p and [;/Ip are
assumed to remain unchanged from the ideal conditions. In Appendix B.7

these rms values are determined and 7, is given by

1
e = —
1_&4. 1:" IL.*..L_
Qr MQSIQT &r (3.118)

where ). is given in Appendix B.7 and @y and €. are the normalized loss

parameters defined as

wol. L
Q= nd g=-22

Equation (3.118) is plotted in Fig. 8.30 for two different cases of @, , &,

and &;.
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3.6 Experimental Results

The experimental circuit used is shown in Fig. 3.31. The isolation
transformer is eliminated in order to aveid additional losses. The circuit

parameters used for the verification of the conversion ratio characteristics

are
V, =195V Ly=.197mH Co=.051uF Fo=50.21kHz

The conversion ratioc for the various modes of operation is verified in the
range Ffg/Fy=1/4 as shown in Fig. 3.32a and b. The agreement between
the predicted and measured results is generally good except near the
resonant peaks at F,/Fy=1/3 and Fy/Fy=1 for high &, where the effect of
the parasitics is dominant. The only nonideality considered in obtaining
the predicted characteristics is the voltage drop in the output rectifiers,
which was taken to be .7V, ie., Vgp=1.4. Certainly, an analysis with all the
parasitics considered (including core losses) will result in better agreement
near the resonant peaks, however, such an analysis would be complicated
and unnecessary because it is undesirable to operate this converter near
the resonant peak.

Figure 3.33 shows predicted and measured voltage and current

waveforms with the following circuit conditions
V, =195V Fy/Fo=.75 @ =194

The following table summarizes the results relevant to Fig. 3.33
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! D4AHIO
42uF
1.35mH
-
Vln ? S S
42uF .051yF
| D45H10

! All diodes
32uF 2 UES1303

Ve VCO Buffer Fgq
—#»— Intersil > -
8038 DS0026

Fig. 3.31 Ezperimental circuil for the series resonunt converter.
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by =-

1/4 1/3 Fg/Fq - 1/2

Pig. 3.32 a) Measured and predicted conversion ratio characteristics in
the range 1/R<F;/Fy<15 and b) in the range
1/4<F,/Fy<1/2
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5V/div.

.2A/div.

20v/div.

L2A/div.

/1o (0)

A

/
\74:
- | Susec
Fig. 3.33 Ezxperimentally measured waveforms, left, and predicted

waveforms, right, of the series resonant converter. a) The
resonant current, Ip(t), and the voltage, Vg, at the input side
of the bridge. b) The resonant capacitor wvoltage and the
resonant current, The circuit paramelers are given in the

text.
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Predicted Measured
Lyoak JTRA JIA
Voeak 50.33V 49V
vz 13.78V 13V
Ta B.7usec B.9usec

Figure 3.34 shows how the operation changes from one mode to
another for a fixed value of Fy/Fy as @ is varied. The boundaries between
the various modes of operation are verified now by way of this example.

The circuit parameters for the results in Fig. 3.34 are
Vo=15V Fo/Fy=.42 @ = .49,1.94, and 5.18

First, Fy/ Fg = .42 falls in the range

b

IA
IA
5=
o
I
0\

=
+
I
=
(=]

and consequently, the only allowed modes of operation are —type 2 ccm,
type 2 dem, and type 1 dem. The occurrence of these modes is verified in
Figs. 3.34 a-c. Now we will verify the conditions on & for each of these
modes to occur.

According to Egs. (3.98a-b), —type 2 ccm occurs if

e | (3.120)



Fig. 3.34
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.1A/div.
a) » .
} Susec/div.
J1A/div.
b) .
Susec/div.
JdA/div.
c) : .
: Susec/div.

Frperimental wverification of the change of operalion of the
series resonant converter from a) type 1 dcm to b) type 2
dem to ¢) —type 2 cem as & changes from .49 fo 194 fto
5.18 respectively ot Fg/Fy=.42.
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If the voltage drop in the output rectifiers is to be considered, then &,

must be modified according to Eq. (3.110)

. Vap
Qs = Qs[l—W

(3.121)

The value of M' that must be used here is that of the boundary between

—type R ccm and type 2 dem which is simply ¥'=1/3 and we have

[ _X.7
"= 1l = 7R
] B v TN A (3.122)
and the condition for —type R ccm to occur is modified to
&'>18 or @=L18 =202

Since € =5.18 satisfies this condition, the converter operates in —type R
ccm for this value of & as shown in Fig.3.34c.

Since & =1.94 does not satisfy the condition in (3.123), for this @
the converter operates discontinuous conduction mode. But which type of
dem? From the value of Fy/Fg=.42 the only two types of dem possible
are type 2 dem and type 1 dem. To find out which occurs for a given &
we refer to the boundaries between two discontinucus conduction modes

discussed earlier in Sec. 3.4.3. According to (3.78) type 2 dem occurs if

=

£ e 5
v 1TF0 Fo

1
<3

=

" (3.124)

The upper bound of @ in (3.124) defines the boundary between —type 2

cem and type 2 dem which is in agreement with the condition in (3.120).
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The lower bound in (3.124) gives the boundary between type 1 dcm and

type 2 dem. Substitution of Fy/Fy = .42 in (3.124) gives
535 =< @, < 18 (8.125)

If the voltage drop in the output rectifiers is taken into account, then
(3.125) must be modified. The upper bound, which is the boundary
between —type 2 ccm and type 2 dem was modified earlier in (3.123). At
the lower bound &, is modified according to Eq. (3.121), in which this time
M'=1 because at the boundary between type 2 dem and type 1 dem M'=1.

We then have

1.4

"= 1= = 91
@ QS[ My | - % (3.126)
and consequently, the condition in (3.125) is modified to
535 1.6
_.—Q-TS &, < W or b9 <= g <2 (3'127)

& = 1.94 satisfies the condition in (3.127) for type 2 dem to occur which is
verified in Fig. 3.34b. Finally, since g =.49<.59 type 1 dem occurs for

this value of @ as shown in Fig. 3.34a.

3.7 Conclusion

In this chapter a thorough dc analysis of the series resonant
converter is given in terms of the normalized load parameter, &, and the
control parameter, Fg/Fy. The various modes of continuous and
discontinuous conduction are identified and the converéion ratio in each

mode of operation is determined. The boundaries between the various
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modes of operation are determined by simple equations.

There are two general types of continuous conduction mode,
namely, +ftype n ccm and —type n ccm for which the conversion ratio is
determined numerically. There are, also, two general types of
discontinuous conduction mode defined as even type n dem and odd type
n dem. For the even type n dem the conversion ratio is given by a simple
equation which is a linear function of F,/Fy; and K. Therefore, it is
immediately seen that when operating in an even type n dem the converter
behaves as a frue current—fed converter because the average output
current is independent of the load A. The conversion ratio for the odd
type n dem is simply # =1/n which is insensilive to variations in the load
and the control parameter.

The most useful range of continuous conduction mode is
1/2%=F,/Fg<1 because in this range the switches turn off naturally and
the maximum value of M is unity, It is shown that in this range the
converter behaves as a current fed converter only away from resonance
and for values of £, larger than three or four. It is also shown that, in
this range type 1 dem can occur for which M becomes uncontrollable.
Therefore, in order to avoid this type of discontinuous conduction mode, a
simple boundary equation is given from which ¢; can be chosen properly.

According to the conversion ratio characteristics, this converter is
not very well suited for applications that require very large load variations.
Other steady-state quantities such as peak stress levels and diode

conduction time are determined as well.
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CHAPTER 4

SMALL-SIGNAL ANALYSIS OF RESONANT CONVERTERS

4.1 Introduction

This chapter discusses the small-signal response of resonant
converters to perturbations in the switching frequency and the input
voltage at a given operating point. For the series and parallel resonant
converters, the operating point is determined from the dc analysis given in
Chapters 2 and 3. In Sec. 4.2 the small-signal analysis of these converters
is given only for operation in continuous conduction mode and in the range
Fs/Fe=1/2 For the series resonant converter, it was shown if
discontinuous conduction mode (type 1 dem) occurs in the range
1/R<F;/ Fy=1, the output becomes uncontrollabe and hence a small-signal
analysis would be useless. It was also shown that this type of discontinuity
can be avoided in the entire range 1/2<F,/Fo<1 if §>4/7 (Eq. (3.252)).
For the parallel resonant converter the occurrence of dem was not
analyzed although this mode can occur if &, is large enough because
Ly /Lo is finite. For the parallel converter dem is ignored because it
corresponds to very light load conditions. The various modes of operation
that occur in the range Fy;/Fp<1/2 are ignored as well because the most
important range of operation of these converters is 1/R8<F;/Fp=1,
however, the analysis given is also valid for Fy/Fo>1. The control-to-

output transfer function is given in Sec. 4.2.1, the audio susceptibility is
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given in Sec. 422, and the input impedance is given in Sec. 4.2.3. The
experimental results given in Sec. 4.3 are in good agreement with the
predictions of the analysis.

A block diagram of resonant converters for small-signal

perturbations is shown below in Fig. 4.1.

og + A
Resonant Converter Vo+ <v>

v, * -

9 "[ -

A
Tfs= Fs+fg

Fig. 4.1 Block dingram of a resonant converter with perturbations in the
switching frequency and in the input woltage.

4.2 Analysis in Continuous Conduction Mode and in the Range

Fy/Fo=1/2

In this section a systematic method of small-signal analysis of
resonant converters in frequency control is outlined in detail. This method
employs state-space analysis without the linear ripple approximation, since
it is clear that such an approximation is not valid for resonant converters.
In this analysis steady-state terms of the form eA7 are retained while
perturbation terms of the form eA?, which arise from perturbations in the
switching times, are linearized under small-signal assumption. This is

summarized by the following equation
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g =2A(T+?)=eATeA?NeAT[[+A?] DT NALT (4.1)

where A, are the eigenvalues of A and T is the steady-state switching time.
The justification of the linearization of the perturbation term in the last
step, explained in Appendix C.1, requires that f be much smaller than T
and the time constants of the circuit A;!. Since for resonant converters T
cannot be assumed to be much smaller than the circuit time constants A;?,
as in the case of PWM converters (buck, boost, Cuk,.), the linear
approximation of e4” is not performed here [8].

Because of the symmetric operation of the circuit over an entire
switching interval, as in the case of the dc analysis, the small-signal

analysis is carried out over half the switching interval, 7,.

4.2.1 Control-to-output Transfer Function

In this section, the small-signal response of the series and parallel
resonant converters to perturbations in the switching frequency is
determined. If the switching frequency is perturbed by a small amount
Fs(t), by injecting a control signal, v.(t), in the voltage-controlled

oscillator (VCO), then the switching time %,(¢) will be modulated by

-~ 1 -~ 1 -~

Eg(l) = ——5fs(t) = ——K, v (¢t

S( ) Z.F'sa fs( ) stz m C( ) (42)
The switching interval, however, can only be considered on a discrete basis.
This does not present a problem, and the connection between the
continuous injected signal and the discrete perturbation in the switching
interval will be explained presently. Consider the arbitrary switching

interval shown in Fig. 4.2a
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l<— Tetfe* (nTg) —o|
i i

a) -- - modulated
nTg ts(nTg)

——

b) ——-- ! -- unmodulated
nTs (n+' )Ts
) |<— Ts+ t.M0) —>’| n=0
¢ - ts(O)- modulated

Fig. 4.2 a) An arbitrary modulated switching interval. b) An arbitrary
unmodulated switching interval, c¢) A modulated interval for
n =0.
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nl, <t < £, (nT}) (4.3)

In the absence of any modulation, as shown in Fig. 4.2b, this interval is

given by
nl, =t <(n+1)T, (4.4)

In the presence of modulation, the perturbation in the duration of this

interval is denoted by %(nT.) and (4.3) is written as
nT, <t < (n+1)T+1,"(nT}) (4.5)
The timé ts(nT;) can be summarized by the following equation
(n+1)T; unmodulated
ts(nTs) =

(n+1)7, +7,"(nT,) modulated (4.8a-b)

The discrete perturbation ?s*(nTs) in the switching time is now related to

the continuous control signal by

Zs*(nTs) = ?s(t)d(t_nTs) (4.7a)
_ Tt
== gpz St-nT) (4.7b)

In addition to the switching interval, the output-network switching
time, 7,, is modulated as well In the parallel resonant converter f, is
determined by the zero-crossing of the resonant capacitor voltage while in
the series resonant converter f, is determined by the ze.ro crossing of the

rescnant current. Since in the presence of modulation these states are
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modulated, it follows that the zero-crossing times determined by these
states are modulated as well. The perturbation in the zero-crossing time is
denoted by ?a*(nTs) and is considered to be a sampled point of a

continuous function £,(¢)
1.1 (nTs) = To(t)6(t—nT,) (4.8)
The switching time £,(n7;), inside the interval in (4.3), is given by
t,(nTs) = nT, + T, +1,.%(nT}) (4.9)

Whereas £4(t) is a continuous function that can be related
directly to the measurable quantity v,(¢), fo(¢) is just a continuous
function with no such physical significance. In step v, the unknown
modulation ?a(t) is determined in terms of the perturbations in the state
vector from a certain constraint.

For conciseness and without loss of generality we let n =0 in (4.8)
through (4.9). The resonant current waveform for the series rescnant
converter and the perturbations in the switching times £, and f, in the
interval 0=t =£,(0) are shown in Fig. 4.3. A similar figure for the parallel
resonant converter applies with the resonant current replaced by the
resonant capacitor voltage since in this case it is the capacitor voltage that
determines the output-network switching time f,. To simplify the notation
further, whenever possible, t; and £, will be used instead of £,(0) and £,(0).

In what follows the steps of the small-signal analysis are outlined

in detail.
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ip(t)
a)
IH(O)—’I
|
|
A S (0) i\ !
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e T +t5%(0) ____,E
| |
| tg(0) =t
b) j £X(0) | tx(ty)
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c) JE20) ()
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e) foct) } 6ie-1.)
0 T,

s

Fig. 4.3 a) The resonant current ig(t) in the modulated interval

O<t<t,(0). &) The perturbations %,°(0) in the switching
interval and the perturbation t.7(0) in the zero-crossing time.
c) The continuous functions t (t) and t,(t) which when sampled
at t=nT; give the perturbations in the switching interval
nly<t<t,(nT;) and the =zero-crossing time &,(nT;) in that
interval respectively.
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i) State Eguations

The two switched networks of the series and parallel resonant
converters over half the switching interval are shown in Fig. 4.4. For the
series resonant converter the sequence of switched networks shown is for
the range of operation 1/R2<F;/Fe=<1, and is reversed in the range
Fs/ Fo=1, but for the parallel resonant converter the sequence remains the
same for all Fi/Fg=1/2 According to Fig. 4.4a the state equations in the

interval 0=t <{f, are
Z(t) = Az (t) + b1V, (4.10)
v(t) = clz(t) (4.11)

where for the series resonant converter the matrix A4; and the vectors z(t),

b, and c¢{ are given by

z7(t) = [ip(t) va(t) ve,(t)]

1 1 1 1
(R”TCJ’ +T0) LQ Lg Lg 1+7"Cf/11?
_ 1
Ay = Co 0 0
Cr l+rg /R Cr Rtre (4.12)
b{' =[1/Ly O 0] (4.13)
cf =[Rllrg, 0 1/ (1+7g/R)] (4.14)

For the parallel resonant converter these are given by
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Fig. 4.4 The two swilched mnetworks for the series and the porallel
resonant converters a) during 0<t<l, and b) during f;<t<f{;.
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zT = [ig(t) wg(t) i, (£) ve,(t)]

(rry+7c,) 1 e, 0
Lg Ly o
L L
Ec— 0 Co 0
A= re
- .1 _ RS SN 4
L,f ‘Lf (T‘LI +TCO+TC!||R) Lf Lf R+ch
R 1 1
0 0 R+ch FJ- _(R+'rc’)C,
b7 =[1/Ly 0 0 0] (4.18)
ef =[0 0 Rilrg, 1/(1+7¢,/R)] (4.17)

The solution of Eq. (4.10), with the assumption that V¥, is constant, is given

from linear systemn theory by
z(t) = e"'2(0) + By(£)b,V, (4.18)
where the matrix B,(t) is given by
By(t) = fote”i“ iy = 4, e 1] (2.19)

According to Fig. 4.4b, the corresponding expressions for the series

resonant converter in the interval {;<{ <{; are
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I

- I S S S
(R“'rcf +?"0) L Lo Lo 1 +T6‘f/R
- 1
Ap = T 0 0
._1*._..1— 0 _-1_1_.
Cf l+7'cf/R Cf R+ch J (420)
bz = by ; cf =[-Rl|lrg, 0 1/(1+rg,/R)] (4.21)
For the parallel resonant converter these are given by
r_ (rig+7c,) 1 L
Ly 7y Ly 0
1 i
Co 0 © 0
Ag = r
Co 1 1 1 R
I, I —(TL,"""CD"‘TC,”E)Z}— _Z;—*_chf
R__1 1
0 0 R+7'c! Cf (R +TC])CJ
bg=b, ; cf =¢f (4.23)
The solution in this interval is given by
z(t) = 7)) + Byt —t,)0V, (4.24)
where the matrix Bg(t) is given by
t oAt - Z1. Ag(t—t
Ba(t —t,) = f: R P P L (4.25)
a

The evolution of the state vector z(f) over the interval 0<t <{, is
obtained by matching the solutions given by Eqs. (4.18) and (4.24) at t =¢,.

This gives
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z(t,) = Az(0) + BbV, : (4.26)
where the matrices 4 and B are given by
A = efella~ta) pAita (4.27)

B =" R p ) + Bt -t,) (4.28)

ii) State —Space Averaging

When the system is not perturbed or modulated, the output
voltage consists of a dc component and a ripple with a fundamental at
twice the switching frequency. Let the steady-state output voltage be

denoted by V(¢) and defined as follows
V(t) = Steady—state or unmodulated outpul woltage

This is a periodic waveform of period 7; and is shown in Fig. 4.5a in a thin
line. The spectrum of V(t), which consists of a dc component and other
harmonics at 2nF;, is shown in Fig. 4.8a. The dc component, which is the
average output voltage, is determined from the dc analysis discussed in

Chapters 2 and 3, and is simply given by
Vo = MV, (4.29)

This can also be written in terms of V(¢) as

1 (71"'1)7'3
= e df
Yo Ty fnr, Vi) (4.30)

Vp is a constant throughout all the intervals and is shown in Fig. 4.5a with
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0
-« g —_—
!
b=t (0) =T +t£(0)
|
<V>*(0) VX
0 | (Te)
[ |
1 |
c) ! !
! 1
0 13 % =%
Its (0) ot (Tg)
! V> (E)]
d) l
0 n T
! i
! [
e) ' '
0 : :
——
! to(t) |
f) 16(0) 16(t—Ts)
0 ,
0 Ts
a) The steady-state or unmodulated outpul wvoltage, V(t), and its

gverage wvalue, Vy, are shown in thin lines, The modulated
output voltage, v(t), and its average, <v>(nTy), in each interval
in the presence of modulation are shown in thick lines. b)
Perturbations in the owverage oufput wvoltage, <'¢7>'('nT) in each
interval are shoun as sampled po'mts of a continuous function
d) <u>(t) which is the component in the output woltage that
has the same frequency as the modulating signal.
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a)

b) <v>(1) A (wp)sin (wmt=6 (wm))
fm
IA(wm) f—)

' Iy | .

o f, 2F, aF,

Fig. 4.6 a) The spectrum of the unmodulated or steady-state oufput
voltage, V(t), and b) the spectrum of the modulated outpul
voltage, v (t).

Vo+:3>(t)
HP3570A
Vg_"' g::?l::tr:r Wave Analyzer |
L Ch. A g o Ch.B
| S
A
Fy+igt0)
[
(1) = Ky (0
vCO A HP33308
% Synthesizer —
FM input f—= ———0

Pig. 4.7 FExzperimental method of determining the control-to-oulput
transfer funclion.
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a thin straight line.
Let the switching frequency be modulated now by a small amount

Fo(t)=¢esinw, t
Fs(t) = Fy + Fo(1) (4.31)

The output voltage, which is a modulated signal now, is denoted by w(t)

and defined as follows
v(t) = Modulated outpuf wvoltage

This is shown in Fig. 4.5a with a thick line, and is no longer a periodic
waveform. The spectrum of v(t) is shown in Fig. 4.6b and it consists of, in
addition to the dc component and the harmonics of twice the switching
frequency, a sideband accompanying the zero frequency component and
sidebands around each harmonic. Strictly speaking, v(f) is a demodulated
signal since the harmonics of the carrier and their sidebands are well
suppressed because of the small ripple requirement on the output. The
only component in this spectrum that is of interest to us is the sideband
accompanying the =zero frequency component because it is the only
component which has the same frequency, w,,, as the modulating signal.

This sideband is denoted by <;>(t) and is defined as follows

<1j>(t) = Sideband  accompanying the zero
Jrequency component of the oufput wvoltage which

has the same frequency as the modulating signal,
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The experimental method used to verify the small-signal transfer
functions [9] is shown in Fig. 4.7. At the output, the analyzer searches for
that signal which has the same frequency as the injected signal. In other

words the transfer function that can be verified experimentally is

<u>(s) - <u>(s) fs(s)
vo(s)  Fsls) wels) (4.32a)

K <'zj>§s}

" Fe(s) (4.32b)

H

Our goal, then, is to determine <w>(f). To do this, first, the average

output Voltage in each interval is determined in the presence of modulation

t(nTy)

("U.)(’TLTS) = mﬁn 'U(t)dt (433)

In steady state, this reduces to Eq. (4.30). In the presence of modulation,

in each interval, <v>(nT7y) differs from V; by an amount <;>*(nTs)
<v>(nTy) = Vo + <17>*(nTs) (4.34)

In Fig. 4.5a, <v>(nT;) is shown in each interval (n=-1,0,1) by a thick

straight line, and the perturbation <v>*(nTs) in each interval is shown in

Fig. 4.5b as a sampled data point of the continuous function <17>(t)
<u>*(nTy) = <v>(t)6(t —nT,) (4.35)

It is, therefore, proposed that <w>(f), the component of interest to us, be

determined from a knowledge of the perturbation in the average output

voltage, <;>*(nTs), in each interval. Since the sampled points <'¢7>*(nTs)
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are spaced at intervals corresponding to twice the switching frequency,
<1:>(t) can be determined for modulating frequencies reaching near the
switching frequency.

Our first task, then, is to determine <v>(n7;) in Eq. (4.33). Again,

without loss of generality, we let n =0, so that Eq. (4.33) becomes

1 ¢ tg
<w>(0) = 7 fo°c{x(t)dt + [ cdz (t)dt (4.36)
8 a .

This integration is carried out by substituting z(f) from Egs. (4.18) and

(4.24) in the proper appropriate integrands. The result is
ts<v>(0) = cz(0) + d7bY, (4.37)
where the vectors ¢” and d7 are given by

c{B\(ta) + clBa(ts—ty)e?t'a (4.38)

n

cT

dT C{Bl(ta)Al_l + CETBZ(ts_ta> [Bl(ta) + A2~1]

—C?Al—lta - CgAZ_l(tS_ta) (439)

Equation (4.37) is the statement of state-space averaging,
according to which the average output voltage in each interval is expressed

as a linear combination of the states at the beginning of that interval.
i) Perturbations in <v>(0), z(0), and z(Ts)

In the presence of modulation, the switching times £,(0) and £,(0)

(or t; and ;) are perturbed according to Egs. (4.5) and (4.9)
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te =T +1,7(0)= T, +14 (4.40a)
ta=T, +1,7(0) =T, +1, (4.40b)

When these are substituted in Eq. (4.37), in which the average output

voltage in each interval is perturbed by <17>*('nTs), the following is obtained
[Vo+ <u>*(0) ][ T, +2:(0) 1= [cT+87 ][X(0) +2 *(0) ] + [27+d7 bV, (4.41)

The linearization of this equation will be discussed shortly. It is clear from
Eq. (4.41) that the dynamics of <17>*(nTs) depends on the dynamics of

z *(nT,), which is pursued next.

The state vector at £ =0 is perturbed as follows
z(0) = X(0) + z(0) (4.42)

At t =7y, since ip(7s)=—ip(0) and wp(Ty)=-vg(0), these states will be

perturbed as follows
i(T5) = Ip(Ts) —1p™(T) (4.432)
vp(Ty) = Va(Ts) — vp"(Ty) (4.43b)

The output capacitor and inductor states, on the other hand, are perturbed

as usual

i (T3) = I, (1) + 73,7 (T0) © (4.430)
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g () = Vg (T) + vg, (Ts) (4.43d)
Equations (4.43) can be summarized by
z(Ty) = X(T) + Mz (Ty) (4.44)

where the matrix M, for the series resonant converter is given by

-1 0 O
M =0 -1
0 0 1 (4.45a)

0 0

0 -1 0 0

M=o o0 1 o
0 0 0 1 (4.45b)

It should be noted that, instead of writing z(7,) and z (7,) in Eq.
(4.44), one should actually write z(£;) and z *(¢,), but expanding around T

we get

z(ty) = z(Ty+1,) = =(T) + :?i’is+--~

s

(4.46)

Since the second term represents a product of two perturbations, it is

ignored and thus

z(ts) ®z(Ty)  and z (&) ~ z(T}) (4.47)



< Vy(T,)

‘\ A*
ValT) =Vg(T) v (1)

Fig. 4.8 The modulated components of the state wvector z(t) of the series
rasonant converter. The steady-state components are shown in
dotted lines inside the envelope of modulation. a) The resonant
current, b) the resonant capacitor woltage, and c) the output

capacifor voltage.
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Fig. 4.9 The envelope of the resonant current of the series resonant
converter due fo modulations in the switching frequency. The

triggering level is sef such that all the zero-crossings at t=tf,

are coincident.
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The modulated components of the state vector z(¢) for the series
resonant converter are shown in Fig. 4.8. The shaded areas represent the
envelope of modulation in which the steady-state or unmodulated
waveforms are shown in dashed lines. An oscillogram of the envelope of
modulation of the resonant current of the series converter, with the trigger
adjusted such that all the zero-crossings are coincident, is shown in Fig.
4.9.

Now, when the perturbations in ¢, £;,, z(0) and =z(f) are
substituted in the equation of the evolution of the state vector given by Eq.

(4.28), the following is obtained

Moz (1) + X(Ty) = [A+A)[X(0)+27(0)] + [B+B bV, (4.48)

w) Linearization

Equations (4.41) and (4.48) are now linearized under small-signal
assumption using Eg. (4.1). As an example of this linearization, consider

the matrix [4 +4] in Eq. (4.48)

40 = eAz(T’_T“)eA?‘Gs ~ta) yArta 41 Ts (4.49)
brepnernnd
linearize

The perturbation terms are linearized according to Eq. (4.1) as follows
eee Tl oAt o 17 4 Ay, T N7 + Aita]

N T+ At —Ta) + A1, _ (4.51)

where the second line is obtained by neglecting products of two

perturbation terms. When Eq. (4.51) is substituted in the Eq. (4.49), the
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following is obtained
A = A Aty + (A4, —A,4)E, (4.52)

where the matrix 4 is given by

pAelT~Ta) AT,

A= (4.53)

Following the same procedure on the remaining terms in Eq. (4.48),
cancelling dc terms, and substituting ?s*(0)=—fs*(0)/2F32 as given by Eq.

(4.7b), we get the following linear discrete equation
~% -~ ~ % ~ %
z (Ts) = M- Ax (0) + dgtq (0) + df s (0) (4.54)

The vectors d; and d; are given in Appendix C.2. Equation (4.54) is

equivalent to the following linear difference equation
Z(t+T) = M AT(t) + doto(t) + def 5(t) (4.55)

where the continuous perturbation vector is defined as follows

z(t) = The continuous perturbation wvector which
has the same frequency as the wmodulating
Jrequency, wn, end which when sompled ot
t =nT,, gives the perturbation z (nT,) on the
state  wvector xz(nTy). When  sampled at
t=(n+1)Ts, M z(t) gives the perturbation

M,z ((n+1)T,) on the state vector X((n +1)T,).

It should be clear that
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z(t) # X(t) + z(t) (4.56)

because a modulated signal, in this case z(t), cannot be simply represented
by the sum of the unmodulated signal and a signal that has the same
frequency as the modulating signal.

Following the same linearization procedure, we obtain from Eq.

(4.41)
<OS(t) = cTZ(t) + kylo(t) + kof o(t) (4.57)

where the vector ¢” is given by Eq. (4.38), and the constants k, and k; are
given in Appendix C.2. From this equation it is clear that the dynamics of
<1j>(t) depends linearly on the dynamics of the components of z(t).
Equations (4.55) and (4.57) have an unknown modulation term, f4(t), in

themn which needs to be resolved. This is explained in the following step.
v) Determination of to(t) in Terms of z(t)

Since the time {, is determined by the zero-crossing of either the
resonant inductor current (for the series resonant converter) or the
resonant capacitor voltage (parallel resonant converter), the perturbations

on these states at £ =1, is zero as well Let £ ={, in Eq. (4.18)
z(ty) = e®'*z(0) + By(t,)b, (4.58)

When this equation is perturbed and linearized as explained earlier, the

following is obtained
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z*(T.) = e™’ez¥(0) + e*1T2 [4,X(0) + bV, 1.(0) (4.59)

. -~ % . :
The constraint i (£;) =0 gives for the series resonant converter

~ % Q1) ~ * Qg ~ = 213 ~ =
¢ = -2 18,
For the parallel resonant converter, the constraint v R*(ta) =0 gives
I Gzl flzz ~ Qpg~ =% Qg ~ x
f. ' (0)=- - -2

The constants a;; are the elements of the matrix et’a and the constants k;

are the elements of the vector eAlT“[AlX(O) +b%]

[a;] = ™' and (k] = e®1=[4,X(0) +bV,]  (4.62a-b)

Equations (4.60) and (4.61) can be put in continuous form and summarized

as follows
ta(t) = V2 (t) (4.63)
where, for the series resonant converter, the vector V! is given by
Vi=[-an/k) ~ap/k, ~a/k,] (4.64a)
and for the parallel resonant converter V7 is given by
Vi =[-ap/ky —uge/kp —aps/ ks —api/ k2] (4.84b) |

When Eq. (4.63) is substituted in Eq. (4.55), the final desired difference

equation is obtained for z(t)
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z(t+ T,) = Mz(t) + dof s () (4.85)

where the matrix M, is given in Appendix C.2. The equation for <17>(t)

follows after substitution of Eq. (4.63) in Eq. (4.57)
<uS(t) = RTZ(t) + &, Fo(t) (4.66)

where the constant k, and the vector AT are given in Appendix C.2.
vi) The Control —to—Output Transfer Function

The control-to-output transfer function is now easily determined

by taking the Laplace transform of Egs. (4.85) and (4.68)

<w>(s) _ AT z(s) + &

Fss) Fols)  ® (4.672)
A!SZ sTy _
;8(5') = Lo - 17, (4.67b)

Substitution of Eq. (4.67b) in (4.67a) gives

M hT [e - M, ]—lds + kg
Fa(s) (4.68)

This is the control-to-output transfer function. As mentioned earlier, f (1)
is generated via a control signal ﬁc(t) that is fed into the FM input of the
VCO. This control-to-output transfer function is given

<w>(s) _ <o>(s) Fs(s)
v(s) Fs(s) Dols) (4.69)

The particular VCO used for the experimental verification of the control-to-

output transfer function was the Intersil 8038 waveform generator for
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which Fo(s)/ v,(s) is frequency independent so that

<w>(s) _ . <u>(s)
el ) (4.70)

where K, is a constant. Consequently, no other dynamics was observed in
the experimental results other than that given by Eq. (4.68).
4.2.2 Audio Susceptibility

In this section the response to small-signal variations in the input

voltage is determined. Let the perturbation in ¥; be denoted by ay(t)
vg(t) = V, + ug(t) (4.71)

If Jg(t) varies slowly during T;, then it can be assumed to be constant
during this interval and the results in Fgs. (4.18) and (4.24) are still valid.
Therefore, unlike the control-to-output transfer function, the line-to-output
transfer function determined is valid only for low frequrmcies.v The
equations for the evolution of the state vector and the average output
voltage in each interval is now perturbed for 179. First, consider Eq. (4.37)
in which in addition to z(0) and V. the vectors ¢’ and d7 are perturbed

because they are functions of f;
To<v>*(0) = ¢TZ7(0) + 27X(0) + dTbV, + d7bs,"(0) (4.72)
let c7=c'Tf, and d7=a'7%,
T,<u>*(0) = cTz%(0) + [c'TX(0) + d'ToV,1E,*(0) + dT6u,*(0) (4.73)

The equation for <;>(t) follows from the continuous form of this eguation
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T,<w>(t) = cTZ(t) + [oTX(0) + d'ToV, i, (t) + dTbi,(t)  (4.74)

Similarly, for the perturbation vector E(t) the following difference equation

is obtained
Moz (t+7T3) = Ax(t) + [A'X(0)+B'0Y,JE,(t) + Bov,(t) (4.75)

The unknown modulation ?a can now be determined as before from the
requirement that the perturbation on the state that determines £, be zero

at t =7,. Equation {4.5B) is repeated here as Eq. (4.76)
z(ty) = ez (0) + B,(4,)b, (4.76)
Perturbation of V; in this equation gives
z(T,) = eMez"(0) + e’ T2 [4,X(0) + 8,18, *(0) + Bi(T)b0,*(0)  (4.77)

The constraint ?R*(t‘,) =0 gives for the series resonant converter

T o*my = s *oy Bag s ok B33~ ok Py~
ta (0)=— "=t (0)= 7=V (0) %, Ve (O -% v (0 (4.78)
For the parallel resonant converter, the constraint v R*(ta) =0 gives
~ [+ 23] (Zgg ~ a -~ ~
ta7(0)=—~"Hir *(0) - 2 (0)- -?S—’LLJ. (0)- “—’Ucf "(0) = 20y (0)
g "’2 (4.79)

In Egs. (4.78) and (4.79) ay and k; are given by Egs. (4.62a-b) and the

constants p, and pp are the elements of the vector B,(f,)b
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[pi] = By(T,)b (4.80)

Equations (4.77) and (4.78) can be put in continuous form and summarized

as follows
T.(t) = VIz(t) + kyug(t) (4.81)

where V.7 is given by Eqs. (4.64a-b) as before and k, is given by

Pk (4.82)

where ¢=1 corresponds to the series resonant converter and i=2
corresponds to the parallel converter. Substitution of Eq. (4.81) in Egs.

(4.74) and (4.75) gives
<u>(t) = hTZ(t) + kg y(t) (4.83)
Z(t+Ty) = Mz (t) + dgug(t) (4.84)

where k; and dy are given in Appendix C.2 and where hT and M, are the
same as in Egs. (4.65) and (4.68) and are also given in Appendix C.2.

The audio susceptibility is now determined by taking the Laplace
transform of Egs. (4.83) and (4.84)

SvAs) o s - ), 4k,

vg(s) (4.85)
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423 Input Impedance

The input impedance of a converter is determined by the small-
signal response of the average input current to perturbations in the input
voltage. Because of the various methods of excitation of these converters
as shown in Figs, 2.1 and 3.1, the input impedance seen by the source, Vi,
in each of these converters is different. The ideal equivalent circuits of
these converters, shown in Fig. 4.10, relate all these different input

impedances to a single input impedance given by

_ _9gls)

wS T () (4.86)

where <iy> is the average branch current in Fig. 4.10. It can be easily seen
that the input impedance, Zz'(s), seen by the source, V,, for the

converters in Figs. 2.1a and 3.1b is related to Zy(s) of Eq. (4.86) by
Zi'(s) = 2 5| Zinls)
w sC, '™ (4.87)

For the converters in Figs. 2.1b and 3.1d, which implement four switches,

the input impedance Zy'(s) is given by

Zin’(s) - 2 (4.88)
Finally, for the converters in Figs. 3.1a and ¢, Z;'(s) is given by

Zip'(s) = B Zin(s) _ (4.89)
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Vg 52
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+ ——\l/l + m\ T'R ‘\32
Vy o R »
9
T 7

(b)

Fig. 4.10 The input impedance, Z,(s), of the ideal equivalent circuif of
a) the series resonant converter and b) of the parallel resonant
converter,
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The branch current 4, is the same as the resonant current iz(t)
during the interval 0 <f <7, and is zero during the interval 7T, <t =27,
The steady-state and modulated waveforms of %, are shown in Fig. 4.11.
Since the first component of the state vector z7(¢) is the resonant current,
the average branch current <i,>(0) in each interval is given by the first

component of the average state vector <z>{0)

<z>(0) = les fotaa’r(t)dt + fthx(t)dt (4.90)

In Eq. (4.90), the averaging interval is taken as 27, while the integral is
taken from 0 to 7T; because the branch current is zero during Ty <t <27T,.

Equation (4.90) gives
<z>(0) = 4, z(0) + By bV (4.91)

where the matrices 4; and B, are given by

Ao = 7 Bilta) + Be(Ts ~ta)e " ] (4.62)
By = 2_}113 [A17' B (te) + Be(Ts —~13) By (ts)

+A2—IBE(TS _ta) '—( Ts _ta)Az—l —taAl_l] (4'93)

The steady-state or unmodulated current, J,(t), is shown in Fig.
4.11a in a thin line and the modulated current, i,(¢), is shown in a thick
line. The steady-state average current, <J/,>, shown in a thin straight line

throughout all the intervals, can be expressed in terms of I,(tf) and the
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I, (t)
a) 1,(t) <1p5(0) R
| K 1> (0) I > (2T)

b)

c)

d)

e)

f)

Fig. 4.11

W\ | \\f Aeapary)
i N N

1
l 1
|
0 I - % |
1 <1,>" (0) P <1p> (2T)
: }
| IA*
o :A Vg (27,)
) }
| !
| | -~
: : <1b>(t)\
0 u/
|
o R
4 |
T 1
| I
1 1
Tb(o) T O(t-27,)
0
0 2T,

The branch current 14, of Fig. 4.10. a) The unmodulated
branch current, I,(t), and its steady-state cverage value, <I,>,
are shown in thin lines, The modulated branch current, i,(t),
and ils average, <i,>(nTy), in each interval are shown in thick
lines. b) The perturbations in the average branch current,
s , . . -~

<ipy> (nTs), in each interval in the presence of vy are shown
as sampled data points of a continuous function d) <iy>(t)
from which the input impedance, given by Eq (4.88), is
determined.
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conversion ratio M as

MRV,
2R (4.94)

L rh -
<> = 'éfj; Iy (t)dt =

where the last equality is simply obtained from the following dc

consideration

MRV,

Miy _
= <h> o SEmE <> (4.95)

2

VQ]Q = 2<[b>lfg nd

From the last equality, it can be seen that the dc input impedance is given

by

- _ 2R
lim Zin(s) = <5 (4.96)

The modulated branch current ,(t), in the presence of modulation of the
input voltage, is shown in a thick line and the average branch current in
each interval is shown in a thick straight line in that interval. In each

interval the modulated average branch current deviates from the steady-

state average by <§b>*(0)
<ip>*(0) = <ip>(0) = <lp> (4.97)

To determine the small-signal perturbations in the average branch current,

Eq. (4.91) is perturbed for V,. This perturbation gives
<z>(t) = AgZ(t) + [Ag'X(0) + Byb T4 (t) + Babvg(t) (4.98)

The perturbation in the evolution of the state vector and the unknown

modulation f,(t) are given by Eqgs. (4.81) and (4.84) as before. Substituting
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Eq. (4.81) in Eq. (4.98) and rewriting Eq. (4.B4) as Eq. (4.100) we get
<Z>(t) = 4,7 (t) + by, (t) (4.99)
z(t+T,) = Mz(t) + dyug(t) (4.100)

where the matrix A, and the vector b, are given in Appendix C.2.
Equations (4.99) and (4.100) are solved by taking their Laplace transform

222(8) o g1 - 1,17, + b,

Vg(s) (4.101)

The first component in Eq. (4.101) is the input admittance.

4.3 Experimental Results

In this section the experimental and predicted results of the
small-signal response are given with special emphasis on the control-to-
output transfer function. The circuit parameters of the series resonant

converter are
Fo=502kHz Lp=.197mH Cp=.051uF Cy=32uF
For the parallel resonant converter, the circuit parameters are
Fo=38.7TkHz Lo=36uH Co=.47uF L;=135mH C;=32uF

The control-to-output transfer function for the series resonant
converter is shown in Figs. 4.12a-d where it can be seen that predicted and
experimental results are in good agreement. In Figs: 4.12a and b the
operating point is below resonance and in Figs. 4.12¢c and d the operating

point is above resonance. Comparing the transfer functions below and
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above resonance we can see that there is a 1B0° phase shift in the phase
response owing to the reversal of the slope of the conversion ratio
characteristics as the point F;/Fp=1 is traversed. An interesting point in
these transfer functions is the following: in Fig. 4,12d, for the operating
point & =3 (or R=20.7Q) and F,/Fy=1.3, the low-frequency behavior is
essentially that of a single pole ( fp=R40Hz ) at ECy, which is in
agreement with our intuition since the output low-pass network is current
fed by the resonant branch. This intuition fails completely for the
operating conditions in Figs. 4.12b and ¢, but the results of the exact
analysis are in good agreement with the measurements. If the modulation
of the zero-crossing time {,, determined in step v, is neglected, then this
change in the dominant behavior will not be predicted properly. Therefore,
the dominant behavior of the transfer functions depends on the
modulation of the zero-—crossing time {,.

An example of a transfer function, shown in Fig. 4.12a, is given for

the operating point @, =4 and F,/ Fy=.8

<vu>(s) 1+a,2 +asz® +ag2®

ve(s) 1+b,z +bpz?+bg2?

where the coefficients in the numerator and the denominator are given by
0, =-R3.B13 ap,=-189 az=-2.086
b,=-28B11 b,=3382 bg=-1.593

and the constant K depends on the input voltage, the gain of the VCO, and

values of the circuit components.
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Fig. 4.13 o-d) Erperimental and predicted results of the control-to-output
lransfer functions of the parallel resonant converter.
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Fig. 4.16 FErperimental and predicted results of the input impedance of
the series resonant converter,
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The control-to-output transfer function for the parallel converter
is given in Figs. 4.13a-d.

The audio susceptibility, or the line-to-output transfer function, is
shown in Figs. 4.15 and 4.16 and the input impedance is shown in Fig. 4.17.
Because of low frequency limitation in the analysis of the response to
perturbations in input voltage, there is some discrepancy at high

frequencies between predicted and measured results.

4.4 Conclusion

In Chapters 2 and 3 an accurate dc analysis of the series and the
parallel resonant converters is given whereby the steady-state vector is
determined in terms of @ and F;/F, at a given operating point. In this
chapter, a systematic method of small-signal analysis is given whereby the
response of resonant converters to perturbations in switching frequency
and input voltage is determined. Experimental and predicted results for
the parallel and series resonant converters are in good agreement.

In this analysis the discrefe and awverage small-signal responses
are determined. The average response is important because in the
experimental verification of the small-signal response the network analyzer
searches for that component in the output voltage or the input current
which has the same frequency as the modulating signal. This component
which the analyzer searches for is determined from a knowledge of the
perturbations in the average output voltage or the average input current in
each interval. The average state in each switching interval is determined
as a linear combination of the initial states at the beginning of that

switching interval. Consequently, the average response is determined in
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terms of the discrete response of the initial states.

The control-to-output transfer function is valid for modulating
frequencies approaching near the switching frequency because the discrete
analysis is carried out over half the switching interval which corresponds to
a sampling rate of twice the switching frequency. The line-to-output
transfer function and the input impedance are valid only for low-frequency
variations in the input voltage because the solutions of the differential
equations, during each output-network switching time, are obtained
assuming slow variations in the input voltage.

The results are determined numerically because of the occurrence

of functions of matrices that are difficult to determine in expression form.
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CHAPTER 5

HIGH-Q APPROXIMATION

5.1 Introduction

The results of the analysis in the previous chapters were obtained
numerically. To gain further insight, an approximate small-signal analysis
is given in this chapter assuming high Q and operation away from the
resonant peak. It was shown in Chapter 2 that it is desirable to operate
the parallel resonant converter with a high §, (greater than 3) and below
resonance because in this range it behaves like a voltage source (Fig. 2.5).
Although this high Q approximation is relevant for the series resonant
converter as well, it is slightly restrictive because it is not always necessary
to design this converter for >3 provided of course &, is not small enough
for discontinuous conduction mode to occur in the range 1/2<F,/Fgp<1
(&=4/7 as given by Eq. (3.25a)). Therefore, improved approximate results,
valid over a wider range of @ are given for the series resonant converter.
The results of the approximate and exact analysis are in good agreement

over the range of interest.
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5.2 Approximate Analysis

In this section, an intuitive rather a formal approximation of the
exact analysis is given. An inspection of the Bode plots of the control-to-
output transfer functions given in the previous chapter shows that for the
series resonant converter the dominant behavior is given by a single-pole

and the high-frequency behavior is given by a quadratic

<v>(s) A

fs(s) B s s ., 8§ ]
[“wfs [”wsoé?s "o (5.1)

2

For the parallel resonant converter a similar observation leads to

<u>{s) - A
fs(s) [1 + S + Sa
Weply  wrp®

2
14—+ 2
050 s Wso

(5.2)

The low-frequency gain, 4, in both of these transfer functions is
proportional to the slope of the conversion ratio characteristics, 4q, which

is determined numerically and plotted in Fig. 5.1a and b. A is given by

Yg_
= 4o Fo (5.3)

where Ap is obtained from Fig. 5.1 and is equal to the slope of ¥

dM

Ao = IF /T (5.4)

Next, the dominant behavior of these transfer functions is
determined. For the series resonant converter, it can be seen from Fig. 3.9

that the average output current is almost independent of the load for high
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Fig. 6.1a Slope of the conversion ralio characteristics of lhe series
resonani converter in continuous conduction mode.
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Fig. 5,16 Slape of the conversion rafio characteristics of the parallel
resonant conwverter in continuous conduction mode.
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¢s and away from the resonant peak. A circuit that represents this
approximation is shown in Fig. 5.2b where the average rectified current
|Ir| is represented by a stiff current source. It is clear from this circuit
and Fig. 3.9 that small variations in F, will cause the output voltage to
vary with a single-pole frequency dependence. Therefore, wrs In BEg. (5.1) is
given by
.
RC; (5.5)
For the parallel resonant converter, the dominant behavior is
determined by referring to the conversion ratio characteristics given in Fig.
2.5 whence it can be seen that for high @ and away from the resonant
peak - specially below resonance — the output voltage is almost
independent of the load. This is shown in Fig. 5.3b where the rectified
capacitor voltage |Vg| is represented by a stiff voltage source. From this
circuit and the conversion ratio characteristics‘ it is clear that the
dominant behavior of the transfer function in Eq. (5.2) is given by the

output low-pass filter and hence

1 R

Wpp = == and =
/2 ’\/Lf Cf n Qf G)prf (5.6a-b)

The high-frequency quadratic behavior of these transfer functions
is determined next. In Figs. 5.2a and 5.3a, the resonant converter is viewed
as a circuit driven by a square voltage voltage, Vi, with Fourier components
at Fg, RFs,...nF; as shown in Fig. 5.4a. When the frequency, or the
amplitude, of V; is small-signal modulated, its spectrum will contain

sidebands around each Fourier component. The most important sidebands
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Fig. 5.2 a) The series resonant converter viewed as a circuit driven by o
square woltage source, V;, and b) an approrimate circuit valid
Jor high @ and away from the resomant peok,

-+

+
oI\ Oivel == vZr

b)

Fig. 5.8 a) The parallel resonont converter viewed as o circuit driven by
a square voltage source, V;, and b) an approrimate circuit valid
Jor high @ and away from the resonont peak. '
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a)

3F,

b)

Fig. 5.4 The spectrum of the woltage source, V;, in Fig. 6.3 a) when
unmodulated and b) when small-signal amplitude or freguency
modulated.
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are Fs+fy, and Fy—f,. When either circuit is excited below resonance,
the response of the resonant branch to the modulation is strongest when

the frequency of the sideband at Fj + f,, is equal to the resonant frequency
F.::"'fm:FO or fm.=F0_'Fs (5'7)

and when excited above resonance, the response is strongest when the

sideband at F5 —f,, is equal to the resonant frequency
Fo—fm=Fy or fp=F,—Fg (5.8)

Since the voltage and current sources, shown in Figs. 5.2b and 5.3b, are
determined by the resonant branch, their response to the modulating
signal is strongest when the frequency of the sideband is equal to the
resonant frequency. This explains the high-frequency quadratic behavior in
these transfer functions. The modulating frequency for which Egs. (5.7)
and (5.8) are satisfied is denoted by wso and is the frequency in the

quadratic factor in Eqs (5.1) and (5.2). This is summarized as follows

Wo — Wy Fs<Fy
Wsg =
Ws —Wp Fs>Fy (59)

The & in this quadratic factor is the same as the original resonant &

_ wolp _ R
Qs B R and Qp B QQLO (510)
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Equations (5.1) and (5.2) are now compared to the results of the
exact analysis in Figs. 5.5 and 5.6. These results are in good agreement for
high @ and operation away from the resonant peak. The values of the
circuit components, used in determining these transfer functions, for the

series resonant converter are
Lg=.197mH Co=.051uF  Cp =3RuF
For the parallel resonant converter, the values of these components are
Lo=36uH  Co=.47uF  Lp=135mH  Cp=32uF

These are the same values used in the experimental circuits in the previous
chapter.

Equations (5.1) and (5.2) break down as the operating point gets
closer to the resonant peak as shown in Fig. 5.7a and b. These figures are
the same as Figs. 4.12b and 4.13b where the results of the exact analysis
and measurements are given. The degree of closeness to the peak is
dependent on the @; the higher the & the closer the operating point can
get to the peak before the approximate results begin to deteriorate. For
the parallel converter this does not present a serious problem since as
explained earlier it is desirable to operate this converter for &, >3 and
below resonance. For the series resonant converter, this high &
assumption must be relaxed since there is no apparent advantage in
designing this converter for high & provided of course, that the § is not
selected low enough for discontinuous conduction mo.de to occur (Eq.
(3.25a)). For example, according to the conversion ratio characteristics in

Fig. 3.8, & =15 and F;/Fy=.B is a reasonable point to operate at, and it
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Fig. 6.5 Comporison of approzrimots and exact control-to-output transfer
Junctions of the series resonant converter for high @ and
operation away from the resonant peak.
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would be nice if the results of the approximation could be improved for
this converter.

According to Fig. 5.7b the discrepancy between the exact and the
approximate analysis is in the position of the dominant pole. As the
operating point moves towards the peak, the dominant pole begins to move
forward and is no longer given by Eq. (5.5). For §, =15 and F,/Fy=.8 the
dominant pole is already at twice the pole given by Eq. (5.5). This new pole

that must be determined is given by

1

o S = o (5:1)

The modification factor « is shown in Fig. 5.8 and is determined by a low-
frequency numerical approximation of the exact transfer functions. The

form of the transfer function given by Eq. (4.68B) is

- i ane"ST’
< >S) _ n=0 T = 1
-~ - 4 S
fs(s) i an"STs RFg
n=0 (5.12)
8
If we let e'eST‘NH—s’J}3 in % bnemTs then the real root of
n=0
b(1+s75)" =0
niz[] n( S) (513)

corresponds to the dominant pole wy' in Eq. (5.11) from which « is
determined and plotted in Fig. 5.8. It should be pointed out that the
quadratic factor in Eq. (5.13) does not correspond to the quadratic factor

in Egs. (5.1) and (5.2) determined earlier. Also, a heuristic modification of



185

4.0

Fig. 5.8 The dominant pole modification factor, «, of the series resonant
converter,
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——— improved approximation
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Fig, 6.9 I[mproved approrimate control-lo-output lransfer function for the
series resonant converter, given by Eq (5.15), after modification
of the dominani pole and the @ by «.
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@; is given by

R
&' = (5.14)
where « is the same pole modification factor shown in Fig. 5.8. The
modified transfer function for the series resonant converter can now be

written as

>(s) A

<

£ - 2

Tsls 11+ 2Ly S
Klrs Wso Qs Wso

(5.15)

This improved result is shown in Fig. 5.9 where it can be seen that the
magnitude now is excellent agreement but there is still some discrepancy in
the phase.

The approximate line-to-output transfer function is obtained by an
entirely similar argument. These approximate transfer functions are the
same as the control-to-output transfer functions except for the low
frequency gain, which in this case is given by the conversion ratio M. For
the parallel resonant converter the approximate line-to-ouput transfer
function is given by

<w>(s) _ M
2

vg(s) 148 .S

W@y wpp®

S Sz

+
Wso Qs Wg 02

1+

(5.16)

For the series resonant converter the approximate line-to-output transfer

function is given by
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Fig. 5.10a-b Approrimate and eract line-to-output transfer functions of
the series resonant conwverter.
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<v>(s) M

vg(s) 145y S £, s°
Kers wso G wso (5.17)

The approximate and exact line-to-output transfer functions are
compared in Figs. 5.10 and 511 using the same circuit values as before.
Note that for the series resonant converter, the pole position in Fig. 5.10b

has been modified by the factor £=1.73.

5.3 Conclusion

vIn this short chapter approximate transfer functions of the series
and parallel resonant converters are given for high @ and operating points
away from the resonant peak. It is shown that the dominant behavior of
these transfer functions is determined by the output low-pass filter while
the high-frequency behavior is given by a second order response in the
denominator whose frequency is at the difference between the switching
and the resonant frequency and whose § is the same as the original
resonant &. These approximations break down for lower § and operating
points near the resonant peak. For the parallel resonant converter this
breakdown of the approximate results can be ignored since this converter
operates satisfactorily for &,= 3 and below resonance (F,/ Fg<.8). For the
series resonant converter the results are improved for lower § since it may
still be desirable to operate this converter for &, in the range 1.5 to 2.5.
The results of the approximate and the exact azialyses are in good

agreement.
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CHAPTER 6

CONCLUSIONS

Resonant converters belong to a class of dc-to-de switching
converters in which the circuit time constants are comparable to the
switching time. For this reason their analysis is tedious and has often
been neglected or given in limited and nonilluminating form. In this thesis,
the load parameter, @, and the ratio of switching frequency to the
resonant frequency, Fg/Fy are considered as the only two parameters
required to characterize the operation of these converters.

The dc and small-signal ac analyses are given. In the dc analysis,
the conversion ratio characteristics, peak stresses, and diode conduction
time are determined in terms of @ and F,/Fy for the series and parallel
resonant converters. In the small-signal analysis, the control-te-output
transfer function, audio susceptibility, and input impedance are determined
at a given operating point (@, Fy/ Fg) determined from the dc analysis,

Most of the results are obtained numerically. For the dc analysis,
the only numerical routine required is a root finder, which today can be
found in hand-held calculators. The results obtained are plotted in
numerous useful graphs to help the engineer design as ‘well as evaluate the
performance of these converters for any specific application. In the small-
signal analysis, the coefficients in the numerator and the denominator of
the transfer functions are determined numerically using a root finder and

a matrix multiplication routine.
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To gain further insight simple and approximate transfer functions

are obtained under high @ assumption.
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APPENDIX A

A1 Determination of The RMS Values of the Resonant Inductor

and Capacitor Currents of the Parallel Resonant Converter

The square of the rms value of the resonant current is given by

[ 7 7,
1 ¢ :
I? = flf" E(t)dt + [, IR(t)dt (A1)

The resonant current in the interval 0< < T, is given by Eq. {2.3a) which

can be rewritten as

L [ V(0
___]“’;’/gn 2(t) = —%—+ sec(wgﬁ)ll— RVE,) sinw(t —B) (A.2)

where 8 is given by Eq. (2.29). In the interval T,< t< T;, Ip(t) is given by

Eg. (2.29)
woLio __M . 3
T[g(t) = —Qp + sec(woa)sinwg(t — Ty + ) (A3)

where « is given by Eq. (2.14). Integration in Eq. (A1) gives

IF= —%L g |
T wozL 02 (A4¢)

where B, is given by
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2
— 42 2
B,A+2(B)7

7’4—{ (coswg(T, —B) —coswef) — B{cos(y—wpTy +woe) —coswga)J

_ﬁ{cz(smzfoo( To — B) +sin2wpf) + B(sin(y —wg Ty + wo) — sinleoa) ]

(A.5)
where

- M
4= Q& (A.6)
B = secuwpa (A7)

Vz(0)

C= 1-

secwpf v, (AB)

The current through the resonant capacitor, 7 (t), is equal to the
difference between the resonant inductor current and the reflected load

current. In the interval 0< t< T7,, I (t) is given by

[ Va0
L(t) = sec(woﬂ)ll— RIE ) sinwg(t —B) (49)
and in the interval Tp=< t< 7y, I (t) is given by
L(t) = sec(wpa)sinwg(t — T, + ) (A.10)

The rms square value is then given by
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I? R/ B
T wfLef C (A11)
where B, is given by
wo Ty

B, = §£+ (C?®—-B?) ————
c 2 27

-2;17—{Cz(sin2wo( Te —8) +sin2wof) + B*(sin2(y —we Ty + tpat) -—sinzmorx)]

(A12)
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APPENDIX B

B.1 Determination of G(#,4,7)=0 in the Range 1/2<F,/F,<1

Expansion of Eq. (3.18) gives

1+ M ~MRK

cosycoswply + sinysinwe?, = 1+ M- MK (Bl)

The resonant current, Ip(t), in the interval 0<¢=<7T, is given by Eq. (3.5a)
which, after substitution of Vz(0) and Ip(0) given by Egs. (3.15) and (3.16)
respectively, is rewritten here as

1-M+M*K

Ir(t) = ©oCoVy coswg Ty

sinwg(t —Ty) (B.2)

Similarly, the current in the interval T,< t= T, given by Eq. (3.6a), is

rewritten after substitution of V3(7,), given by Eq. (3.13), as
IR(t) = &)0COV;] [1 +M —MK] Sinwo(t - Ta) (BB)

The positive areas A4; and A; shown in Fig. 3.3, are determined by

integration of Egs. (B.2) and (B.3).

Ta
Ay = _/;, Ip(t)dt = CoVy (1 M + MPK)(1 —secwy Ty ) (B.4)
T, .
Ap = —fTa Ip(t)dt = CoV, (1+ M —MK)(cos(y —weT,) —1) (B.5)

Substitution of cos(y ~weT,) from Eq. (3.18) in Eq. (B.5) gives



Ag = CoV MK(1—H) (B.6)
From Egs. (3.11) and (3.13) we have

Ay + Ap = CVRMK (B.7)
Substitution of Egs. {B.4), (B.6), and (B.7) gives

1-M+M*K

coseola = T WK (B.8)

The expression for sinwg7, follows from Eq. (B.8)

. _ NU-PHE 2K
sinwoTy = MK +H —1 (B.9)

Substitution of Egs. (B.B) and (B.9) in Eq. (B.1) gives the implicit equation
G,(M,8;7)=0 in Eq. 3.19 from which the conversion ratio is determined for
a given @, and F,/Fy.

In deriving Eq. (B.9) from Eq. (B.B), we made sure that the sign of
the denominator was positive because sinw;7,=>=0. For operation in the
range 1/2st/Foél, it is important to note that the range of wy7, is

given by

mlﬁ
A
&
@3
IA
3

(B.10)
which implies
coswely, £ 0 and sinwgT, = 0 (B.11)

In [6] and [7] it is assumed that the range of wy7, is given by 0<wyT, <,

which does not restrict the range of wy7, properly. It should be clear from



199

Fig. B.1, that if w7, <n/R2 then A,—A4; <0 which implies negative
conversion ratio. Hence the proper range of wy7,, when the converter is

operating in the range 1/2<F; /Fg=1, is given by Eq. (B.10).

Fig. B.1 The resonant current of the series resonant converter in the
range 1/R<F;/Fo<1. o7, is dalways larger than n/2 and
less than m, otherwise if wyT,< n/2 then A,—A; <0 and the
conversion ratio will be negalive which is impossible.

B.2 Determination of G(#.,8,,7)=0 in the Range F,/Fy>1

It can be seen that in this range of operation, ¥, Voear. and Vp(0)
are still given by Egs. (3.9), (3.11), (3.13), and (3.15) as in the case of

operation in the range 1/R<F,/Fo<1.

M=, (B.12)

Voeus = Ve(Ta) = o= = MKV, (B.13)
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Ve(0) = —M*KY, (B.14)
The resonant current in the interval 0 <t <7, is given by
Ip(t) = woCo[ Vg + Vo —Vg(0) Isinwgt + Ip(0)coswot (B.15)
and in the interval T, <t <7, Ip(t) is given by
Ip(t) = woCo[ Vg — Vo + Va(Ty) Isinwg(t ~T,) (B.186)
Substitution of Vz(0) and Vg(T,) gives for /z(t) in the interval 0 =t < T,
Ip(t) = wpCoVy [1+M + MRK ]sinwpt + Ip(0)coswyt (B.17)
and for the interval 7, <t < 7T,
In(t) = woCo¥, [1 —H + MK ] sinw(t — T,) (B.18)
The requirement I5{(7,)=0 in Eq. (B.17) gives
Ig(0) = —woCoV, [1+M + MRK Jtanw,T, (B.19)
which when substituted in Eq. (B.17) gives

1+ M+ MK

cosog T, sinwg(t ~ Ty)

Ir(t) = welo¥y (B.20)

Similarly the equations for Vg(t), given by Egs. (3.40b) and (3.41b), are

obtained. The requirements Vz(0)=-Vp(7;) and /(0)=—Iz(T,) gives

. 1+ M +MPK
sin{y —weTy) = m—tanmgﬂ, : (B.21)
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1-M -M*K
cos(y—eola) = Tk (B.22)
Expansion of Eq. (B.22) gives
1-M -MPK

cosycoswp?, + sinysinwg?, = T—H+ UK (B.23)

Next, the angle w7, is determined. The positive areas A, and Az, shown in

Fig. 3.18, are determined by integration of /p(t).

T
Ag = _j; "Ie(t)dt = CoVy [1+M + M*K [[secwoTy —1] (B.24)
TS
A, = fﬂ. Ip(t)dt = CoVy[1—M + MK ][1 ~cos(y—weTy)] (B.25)

Substitution of Eq. (B.R2) in Eq. (B.25) gives
Ay = CoV,MK[1+H] (B.26)
Substitution of Eqgs. (B.13), (B.24), and (B.26) in Eq. (B.12) gives

1+M+MPK

coswola =TT +1 (B.27)

The expression for sinwy7, follows immediately from Eq. (B.27)

_ YU -MF)(MK+2)MK
T+ M(K+1) (B.28)

sinewg Ty

Substitution of Egs. (B27) and (B.28) in Eq. (B.23) gives the implicit
Equation (3.38), G;(M.@,¥)=0, from which the conversion ratio M is

determined for a given §, and Fy/F,.
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When the converter is operating in the range F,/Fo>1, it is

important to note that the range of wy7, is given by
il
0= wlo =5 (B.29)

which implies that
sinwgTy, = 0 and coswyTy = 0 (B.30)

The range given in Eq. {(B.29) ensures that A4,—A4, >0 so that the
conversion ratio M is always positive. It is clear from Fig. B.2 that if
woly=7n/R2, then A; —A,=<0 which implies negative conversion ratio which of

course is impossible,

Fig. B.2 The resonant current of the series resonant converter in the
range Fg/Fo=1. In this case wyT, is always less than n/2 ,
otherwise if woTy>n/2 then A;—A; <0 and the conversion ratio
will be negative which is impossible,
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B.3 Derivation of the Equations in Discontinuous Conduction Mode
Equations (3.54), (3.61), and (3.62) are repeated here

Am = RC[ Vg + (=1)"Vo = Vo J(-1)m 2 (B.31)

Am—l
- ~ym o o

Ver = —MKVy = MKV, (B.33)

A recurrence expression for Ay is obtained now by writing the first

few terms of Ap,. For m=1, 4, is given by
Ay = 2Co[Vy = Vo~V ] (B.34)
Substitution of Eq. (B.33) in Eq. (B.34) gives
Ay = RCV[1-HM +MPK ] (B.35)

From Eq. (B.32) V,p is determined next

Vie = Vo + = 2y [1- + LK (5.36)
From Eq. (B.31) Ag is given by
Az = —RCo[ Vg + Vo~ Vee] (B.37)
Substitution of Eq. (B.368) in Eq. (B.37) gives
Az = RCoV,[1 —3M + MPK ] ' (B.38)

When Vg3, determined by substitution of Egs. (B.36) and (B.38) in Eq. (B.32),
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is substituted in Eq. (B.31) the expression for Ay is obtained
As = RCoV,[1-5M + M*K ] (B.39)

From Egs. (B.35), (B.38), and (B.39) the recurrence relation for A, given by

Eq. (3.63), becomes clear
Am = 2CV,[1—(2m—1)H + MK ] (B.40)

The summation in Eq. (3.59) is written as

Sp = Am(_l)m+1

1 (B.41)

b

The sequence of partial sums S, for even n are computed as

Sg = Al —Ag = 200%(2M) (B42a)
Sy = Se+As~Ag = 2CoV,(4H) (B.42b)
Sa = Sn-gt+An_1—4, = 2CoV,(nM) (B.42c)

Substitution of Eq. (B.42c) in Eq. (3.59) gives the conversion ratio of even

type n dem

(B.43)

x|

To determine the conversion ratio for odd type n dem, the summation in
Eq. (3.59) is computed for odd n. The sequence of partial sums, S, for

odd n is given by
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S, = A, = 2CV,[1~H + M?K] (B.44a)
Sy = A)—Ag+Ag = 2CoV,[1-3H + MK ] (B.44b)
Sp = Sp-g—An-1+An = 2CeV,[1 ~nM + MK ] (B.44c)

Substitution of Eq. (B.44c) in Eq. (3.59) gives the conversion ratio for odd

type n dem

_ 1
M= (B.45)

The peak stresses are now easily determined. Since Vpeq =V, substitution
of Eq. (B.43) in Eq. (B.36) gives Eq. (3.66) and substitution of Eq. (B.45) in
Eq. (B.36) gives Eq. (3.69). The peak resonant current is given by the

amplitude of i,(f) in Eq. (3.53)

17
"] = woCo V1 =M + MPK ]

wocg%[l—M'— I/g (BA;B)

in which if M is substituted for odd and even type n dem the
corresponding expressions for Ip.g are obtained.
B.4 Derivation of the Equations for +type n ccm

The area under each complete half-cycle of the resonant current,

im(t), is given by
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Tyr2
Am = [0 lim(t) |t = 2Co[Vy + Vo(-1)™* 1=V, J(-D™  (B.4%)

The recursive relation for A, given by Eq. (3.82), is determined next.

From Eq. (B.47) we have for m=1 and 2

Ay = —2Co[Vy+ Vo=V ] (B.48)
Ag = RCo[Vy —Vo—Vz] (B.49)
V1 is related to V;p by
Vez = V, A
o8 = Yel T oo (B.50)

Substitution of Egs. (B.48) and (B.50) in Eq. (B.49) gives

Ag = RCo[ V1 =8V -V, ] (B.51)
Following the same procedure we get for m=3

Az = 2Co[ Vo1 —5Vo— Vg ] (B.52)

From Egs. (B.48), (B.51) and (B.52), the recursive relation of A, given by

Eq. (3.82), becomes apparent
Am = 2Co[Voy (B~ 1) Vo~V ] (B.53)

The summation in the numerator of Eg. (3.80) is determined next. This

surnmation is denoted by S,
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S = A0 (B.59)

The recursive expression for S,, given in Eq. (3.83), follows from the

expressions of the first few terms of Eq. (B.54) given by

Sp =—A1+45 = —2Co(2V0) (B.55a)
Sy = Sg—Ag +A4, = —2C0(4V0) (B55b)
Sn = Sp-p—An_1 +4y = —2Co(nVy) (B.55¢)

The currents ip,(f) and ige(t), shown in Figs. 3.19a and 3.20a are

given by
fi’Ol(t) = IR(D) COSQot + (Vg'—VQ—VR(O))&)QCQSiIl&)ot (B56&)
toa(t) = woCol—Vy ~ Vo —Va(~Tp) Isinwo(t + Tp) (B.56b)

The initial capacitor voltage, Vz(0), is determined as follows

[
ValT2) = Tr(O)+ o+ & Am<—1>m—Aoz]
el

m=1 (B.57)
Since Vz(0) =~Vg(Ts), we get from Eq. (B.57)
~2VR(0) = | 3 Am(=1)™+ Ao; —Aga
il CO m=1 m ot (B58)

Substitution of Eq. (3.79) in Eq. (3.80) gives
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n
Am(—1)2 + Aoy —Age = SMCo VoK = MK
mz=:1 m(—1) 01— Aoz oVoK = RGoVg (B.59)

Substitution of Eq. (B.59) in (B.58) gives
Ve(0) = —MRKY, (B.60)
Substitution of Eq. (B.60) in (B.56a) and the requirement ig;(7,) =0 gives
Ir(0) = —waCoVy[1~M + MPK tanwy T, (B.681)

Substitution of Egs. (B.61) and (B.80) in Eq. (B.56a) gives

. 1-M+M*K
t) = _r T -
igi(t) cogCng coswg T, sin{wot —woTg) (B.62)
which is Eq. (3.84). The area, A, is given by
Tﬂ-
Ao = )7 = GoVp[1—M + MK ][1 —secew T, ] (B.63)
The area, Agg, is given by integrating Eq. (B.56b)
0 -
Aoz = f_Tb'Loa(t)df = Col Vg + Vot Va(~Ty) J[coswe T, — 1] (B.64)
Vr(—Ty) is related to Vz(0) by
— A02 _ 2 A02
VR( Tb) - VR(O) CO = -M m_ CO (B65)
Substitution of Eq. (B.65) in Eq. (B.64) gives for Ay
Age = CoVu[MPK —M —1][secwoTy —1] (B.686)

nTo
e

Since T, = Tg —~ — 7, we have
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coswely = cos(y—nm—wely) = cos(y—we7,) n=0246... (B67)
The area, Agg, is now rewritten as
Agg = CoVg[MPK — M —1][sec(y—woTy) —1] (B.68)
Substitution of Eq. (B.68) in (B.65) gives

Va(=Ty) = =MV, =V, =V, [MPK =M — 1 Jsec(y—usyT,) (B.69)

Substitution of Eq. (B.69) in Eq. (B.56b) gives Eq. (3.85) for igs(t)

MK —HM -1

Poelt) = 0ol osty—anTa)

sin(wot —wo Ty +7) (B.70)

Substitution of Eq. (3.83), or Eq. (B.55c), and Eq. (3.79) in Eq. (3.80) gives

"'2!100 Vg +A01 —Aog

M= 2VoCoK (B.71)

Substitution of Ag, and 4gz from Egs. (B.63) and (B.68) in Eq. (B.71) gives
BRM(n+1) = [14+ M —M*K Jsec(y—woT,) —[1 —M + MPK ]secwq T, (B.72)

Also the requirement iq,(0) =1ig2(0) gives

1-M+MPK

tan(y —wyT,) =
an{y=oTa) = {0k

tanwg T, (B.73)

Equations (B.72) and (B.73) are solved simultaneously as follows. In Egs.

(B.72) and (B.73) let
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C=1+M-MPK and D =1-M+M?K (B.74)
Equations (B.72) and (B.73) can be written as

D 2 +
sec(y —wgTy) = FsecwnTa + —‘}[ﬁ%—ll (B.75)

tan(y —weTy) = %tanmoTa (B.76)
Squaring both sides of Eq. (B.76) and using the identity tn?=sc?—1 we get
2 D?
sec?(y ~wTy) = o (sec®weT, —1) +1 (B.77)
Squaring both sides of Eq. (B.75)

2 2
sec?(y —woTy) = g—z seclwy T, +4M? gn_g)_ +4MD chzl——secwg Ta

(B.78)
Equating Eqgs. (B.78) and (B.77) we get
cosinly = 1—31_(5:1})%251911( (1) (B.79)
sinwy 7, follows from Eq. (B.79)
sinwyT, = VIMK+n][M¥n+ 1) -1][n+2-MK)
MEK+HM(n+1)% -1 (B.80)

In obtaining Eq. (B.BO) from Eq. (B.79) we made sure the sign of the
denominator was positive by realizing that M =1/ (n+‘1) because sinwyT,

must be positive. Substitution of Eq. (B.79) in Eq. (B.72) gives
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1+ M —-MPK

— fd +
cos{y—wola) = 7 M+ —gr ot (B.81)
which upon expansion gives
L 1+ M —M*K
cosycoswgly + sinysinwgT, = Tr A (nt - TIK (n+1) (B.682)

Substitution of Egs. (B.79) and (B.80) in Eq. (B.B2) gives the implicit
equation Gs.(M,g:,y,n)=0 in Eq. (3.88).
The peak stresses are easily determined now. According to Fig.

3.19a Vpeqr is given by

Co (B.B3)

Substitution of Egs. (B.60), (B.63) and (B.79) in Eq. (B.B3) gives Eq. (3.89).
The peak resonant current, Jpeax, @ccording to Fig. 3.19a, is given by the
amplitude of ig;(#) which from Eq. (B.62) is given by

1-M+M*K

z = wol
peak 070 coswg T,

(B.B4)
Substitution of Eq. (B.79) in Eq. (B.B4) gives Eq. {3.90).

B.5 Derivation of The Equations For —type n ccm

Since the analysis of —type n ccm is very similar to the analysis of
+type n ccm, given in the previous section, only the key equations are
given in this section. Referring to Fig. 3.19b we proceed as before by

equating input and output powers and obtain
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n
— 2 Am(-1)® + 45, —Agg

m=1

AmtAp +A4
mf::l m+ Apy + Age (B.85)

M=

The output voltage is given by the product of the average rectified resonant

current and the load

Vo = <|Ix(t)|>R = %—( i:lAm+Aol+Aoz) (B.88)

The recursive relation for areas, Ap under each complete half-

cycle is determined exactly as before and is given by
Ap = RCo[Vy —(Rm—1) Vo~ V4] (B.87)

where V;;, shown in Fig. 3.19b, is the resonant capacitor voltage at the
beginning of the first complete half-cycle. The summation in the
numerator of Eq. (B.B5) is determined using Eq. (B.87) which for even n

gives

b1}

An(—=1)" = =2nCyV, =02/4,86,..
& An(=1) Rt " (B.8B)
Substitution of Eqgs. (B.88) and (B.88) in Eq. (B.B5) gives
M = 2HCQV0+A01 —Aog
2Co VoK (B.89)

To complete the analysis, the currents ig,(t) and ige(f) must be

determined. These are easily given by
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. 1-M-MPK
ioi(t) = woCng————COS(y_on) sinwot (B.90)
e .
. 1+ M+ MPK .
Zoz(t) = &)ngV:q COS&)oT Slﬂ(?"wot) (B 91)
° .

where the time origin for these equations has been shifted to the beginning

of ig,(¢) as shown in Fig. 3.20b. The areas Ag; and Ag, are given by
Agy = CoVg[1-M —MPK J[sec(y—woTy) —1] (B.92)
Age = CoVo[1+M + MPK J[secw T, —1] (B.93)
Substitution of Ag; and Age in Eq. (B.B9) gives

BRM(n+1) = (1+M+M*K )secwyT, —(1 — M —MPK )sec(y —woT,) (B.94)

T
The requirement iq;(7,) =402(7,) and use of T, =T, — nzo - T, give
1+ M+ MK _
T - 2neeTe = tanly ~aole) (B.95)

Equations (B.94) and (B.95) are solved simultaneously to eliminate wgT7,.

We then have

1+ M+ MPK
T, = 1
co%0la 1+M{n+1)?+ MK (n+1) (B.96)
sinon 7. = YIMK-n][1-#*(n+ D?][n+2+HK]
0 la 1+M(n+1)P+ MK (B.97)
- 1-M-MPK -
cosly ~anTe) = 1~M(n+ 1%+ MK (n+1) (B.98)

Substitution of Egs. (B.98) and (B.97) in the expansion of Eq. (B.98) gives
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the implicit equation G;_(M.&;y.n)=0 in Eq. (3.91).

B.6 Numerical Methods of Solving G .(M,Q,,yn)=0

Equations (3.88) and (3.91) are solved numerically for a given &,
7 and n. These equations have only one root that lies in the range
0<M=<1/(n+1). There are several numerical routines available for solving
such implicit equations, even some that can be found on hand-held
calculators. The particular numerical routine used in this work was the
"BISECT" method available on Hewlett-Packard System 45 [10]. These
equations can also be solved using a polynomial root-finder routine
(subroutine "SILJACK" [10]) if they are put in polynomial form. The

polynomial that correspond to these implicit equations is given by

6

; aM)z PI, Qs~7 Il) =0 (ng)

where oa=1 corresponds to G(M,8,7n)=0 and a=-1 -corresponds

x(M,8;,yn)=0. The coefficients P, are given by
Py =2m*(1 —cosy) —sin®y
P, =4K[sin®y + m*{cosy—1) ]
Py =2(m*-3&%)sin®y —2(K® —m* - 1)mPcosy + 2m*(K® + m* —4m® + 1)
Pg=4K(K*? —-m*)sin®y ~8Km®cosy + BKm®*(Bm® — 1)

P,=- (K® —m*)?sin®y + (6K* —m*)2m®cosy + 2m*(BK® +m* —4K°m?®)
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Pg=—4Km?[2K* + m* + (2K* —m*)cosy ]
Pg=2K*m*[ K%+ m* + (K* ~m*)cosy] (B.100a-b)

where

m=n+1 (B.101)

Of all six roots only that which satisfies the original equation, Eq. (3.88) or Eq.
(3.91), is accepted.

In the presence of diode voltage drops, &, is modified according to Eq.
(3.110). If Egs. (3.88) and (3.91) are modified with this change in &, they can
still be solved numerically using the subroutine "BISECT" to obtain the value of
M'. The polynomial method in this case must also be modified. One method is
to find a new polynomial which corresponds to either Eq. (3.88) or Eq. (3.91) in
which & has been modified, or an iterative method can be employed without
changing the polynomial in Eq. (B.99) as shown in the diagram. Normally, five
to six iterations are sufficient. Of course, if in the range of interest
Vap/ MVy <<1, this correction for &, is not necessary.

1

(aM' Y} P, =0

i=0
G, (M Q7n) = O

'

No Has the value
of M converged

iYes

M’ :

Fig. B3 An iterative method for the determination of M’ of the series
resonant converter when toking info account the voltage drop
in the output rectifiers. This refinement can be ignored if
VBD/ VQ X1, ‘

Vap
MY,

Qs/ = Qs[l_
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B.'7 Determination of the RMS Values of the Resonant Current and

the Output Filter Capacitor Current of the Series Resonant

Converter in the Range F,/Fo¢>1/2

In the range 1/2<F,/Fy=<1 the resonant current in the interval

0=<t =T, is given by Eq. (B.) in which substitution of Eq. (B.B) gives

Ip(t) = weCoVy(1 —M — MK )sinwg(t — T,)

(B.102)

In the interval T, <t<T;, Ip(t) is given by Eq. (B.3). The rms square value

of Ip(t) is given by
Tu TS
IF = 71,— fo I(t)dt + [ IE(t)dt
s a

Integration in Eq. (B.103) gives

where

- 2 T
+§1_+_M [1 —_ .L__l_sing(7_ona)J

2 Iy 2y

A similar computation gives for D, in the range F,/Fo>1

(B.103)

(B.104)

(B.105)
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2 7s

- 2 7
=M UK ll—i—%—sinZ(y—ona)

(B.1086)

Note that eq, (B.106) can be obtained form Eq. (B.105) by changing M to
M.

The current through the output filter capacitor is given by
I = |Iz(t)| - I (B.107)
The rms square value of /, is then given by

IF = <(|Ip(t)| =1o)?> = I? - I (B.108)

c

where I? is given by Eq. (B.104). Substitution of Egs. (B.108) and (B.104) in

Eq. (3.117) gives Eq. (3.118).
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APPENDIX C

C.1 Small-Signal Approximation of et

If A is diagonalizable (4 has distinct eigenvalues or is Hermitian)

then f(A) is given by

ria) =TT T = 570z

(C.1)

where z; and A; are the eigenvectors and the eigenvalues of A, and the

matrix T is given by
T =[x [zg| - |z,]
Th=[ryfre| - Ima]”
Let £ (A\)=e* and g(\)=1+Af and assume that A\, <1 so that
) =M 1aad = g0
From Eq. (C.1) we have

Fla) = Zf (N)ziTiT ~ 29 ()\i)xiTiT = g(4)

which gives
FlA) mg(4) or eftwr+4at

(c.2)

(C.3)

(C.4)

(C.5)

(C.6)
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A similar argument applies for an arbitrary square matrix 4 for
which f(4) = Tf (J)T! where J is the Jordan form 4. In this case, in
addition to f(A;), the derivatives of f()\;) are considered while still (C.4) is

satisfied.

C.2 Matrices, Vectors, and Constants Occurring in Chapter 4

Some of the vectors and matrices in Chapter 4 are redefined here

for conciseness. These are
0, = eA17a vy = gAelTs = Ta) (€.7)
B, = B\(T,) By = Bp(T5 - To) (C.8)
The vectors in Eqs. (4.54) and (4.55) are given by
dy = My [(Ad; —A2A)X(0) + g(p) —A2B, ~1)bV, ] (C.9)

d; = =M, [AAX(0) + @a(AeB, + 1)V, (1/RFF) (C.10)

where A =g,¢, as given by Eq. (4.27).

The constants k, and ks in Eq. (4.57) are given by

1
kg = T[C?% + Cg(Bz%Al—A)]X(O)

s

1
+-§,-;[C{Bl+0g'(BzA1—¢2)Bl]b% (C.11)

ks = —cf [AX(0) + (pe(B1+4p™") ~ A2 7)bY, 27, +RT: Vo (C.12)
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The matrix M, in Eq. (4.65) is given by

where V[ is the vector given by Egs. (4.64).

The vector A7 in Eq. (4.68) is given by

where the vector ¢ is given by Eq. (4.38).

M, = M A + d, V]

RT =cT + k, VT

The constant k, in Eq. (4.B3) is given by

= T
ky = kpk, + d7b

where k, is given by Eq. (4.82) and d7 is given by Eq. (4.39).

The vector d, in Eq. (4.84) is given by

dy = kyd, + Bb

where B =¢,B,+ B, as given by Eq. (4.28).

The matrix A; and the vector b, in Eq. (4.99) are given by

where the matrices A4, and B,

A = Ay + 9. VST

by =kpge + B b

respectively and the vector g, is given by

Ja

_ 1

2T,

[/ +BzA1—¢2]9:1X(0) +

1
RTs

are given by Egs. (4.92) and

[{+BeAy —¢2]B bV

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18B)

(4.93)

(C.19)
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