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Chapter 7

Fabry-Perot Cavities for Fun and
Profit

7.1 REO/ATF Mirrors at the Current State of the
Art

If the cavity is the heart of a cavity QED experiment, the highly reflective mirrors are
the heart of the cavity. We obtain these mirrors from the group of Ramin Lalezari
at Research Electro-Optics (REO) in Boulder, CO — or within the last year from the
same individual in his new effort at Advanced Thin Films (ATF), also near Boulder.
The substrates, currently BK7 glass or fused silica, are superpolished on front (HR)
and back surfaces. A standard antireflection coating is applied to the back surface.
The mirror surface is coated with a multilayer stack of dielectric materials so that
coating layers have alternating high and low index of refraction; the layer thickness
is A\./4 for a coating centered at ..

These coating techniques are capable of producing mirror transmission T at or
below 107% (1 ppm). However, current technology has yet to push mirror loss A below
one to a few ppm. Thus cavity finesses in the range of F' ~ 10° to 10° constitute
the current state of the art for high-reflectivity, low-loss mirrors and coatings. These
mirrors are useful not only in cavity QED but in numerous other scientific applications
that exploit the high sensitivity they offer [105]. Mirror absorption/scatter losses set

a limit on F' and are furthermore a hindrance to signal extraction when nonlinear
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interactions are present. They are a critical limiting factor in the loss rate for present
cavity QED systems; for the very short cavities used in these experiments, loss rates
associated with A are usually similar in size to the atomic spontaneous emission
rates. To build robust quantum computing/communications devices from cavity QED
components, it will be necessary to improve the ratio of mirror transmission (useful
information) to mirror losses (loss of coherence).

In addition to the ratio of transmission to loss, another significant consideration
is the role of mirror dispersion in determining cavity properties. At the current very
short cavity lengths (about 20 half-wavelengths of the optical field), it is important to
consider that the standing-wave light field inside a cavity penetrates into the mirror
coatings, giving a larger mode volume than would be otherwise expected from the
physical distance between the mirror surfaces. When the micro-cavities are pushed
to shorter lengths in the quest for greater interaction strengths, the leakage field into
the mirror coatings will have a non-negligible effect on the cavity mode structure.

A detailed coating model of the current experimentally-employed mirrors is de-
scribed in [18], and a manual on the cleaning and evaluation of these mirrors can
be found in [19]. Mount design considerations were presented in Chapter 6. In this
chapter I focus on optical, geometric, and cavity QED properties of the cavities them-

selves.

7.2 Birefringence Issues

One unavoidable consequence of using high-finesse optical cavities seems to be a
nagging issue of cavity birefringence. In a nutshell, the problem is that with cavity
finesse in the range of 10° < F' < 10° or higher, any birefringent phase shift § per
round trip is ultimately enhanced by the very large finesse.

A very quick computation calculates the splitting between cavity resonance fre-
quencies (v, 1) for TE My, modes of orthogonal linear polarizations. Assume a ac-
quires a phase shift § relative to b on each round trip in the cavity. Then the resonance

conditions for a given longitudinal mode imply i—:2l +4= i—:2l and so 22 (v, — v,) =
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Ay = 6/2. Thus Av = £ and substituting & = FSR = (FWHM)(F), we have

the result
Av )

FWHM ﬂF (7.1)
for the birefringent splitting relative to the cavity width. Thus even phase shifts
§ ~ 1077 are quite noticeable; 6 ~ 1075, for instance, will completely scramble
circular polarization injected into an otherwise beautiful high-finesse cavity.

Notice an equivalent formulation of this result is that, if the cavity is resonant
with one polarization, the other polarization is detuned Av off its resonance. Thus
any orthogonally polarized light that is transmitted gets a phase shift of tan (2 *
detuning/FW HM) [106], i.e., 0 = tan ' (255-) = tan '(6£). For small overall
phase shifts 6, this becomes 6 =~ 5%, meaning the single-pass phase shift §/2 is
simply magnified by the standard cavity enhancement factor 2F /.

If the previous two paragraphs were a long way of saying that even a small phase
shift ¢ is evil, where does the evil arise? From a variety of circumstantial evidence
over the years, the most likely culprit is stress-induced birefringence in the dieletric
coating stack of the mirrors. This conjecture is discussed in Chapter 6 and in Christina
Hood’s thesis [19], but a short summary is that cavities tend to be more birefringent
when the mirrors are glued or clamped down more firmly and/or at positions closer
to the coated surface. Often they become birefringent when they are glued and then
baked, a process that could induce stress on the coatings as glue hardens and pulls
the mirrors. Additionally, I have some experience with 7.75 mm substrates which are
clamped with a set screw close to the coated surface; cavities made from two of these
tend to be least birefringent when the mirrors are well centered on each other and
thus the mode stays away from the point of greatest stress.

Another, but weaker, candidate for our suspicions is some sort of polarization-
dependent absorption, scattering, or reflectivity resulting from defects or irregularities
of wavelength scale or smaller. These effects would lead to different cavity decay
widths for orthogonal linear polarizations, but would only cause a peak splitting Av

if they altered the spatial mode profile and thus induced different Guoy phase shifts
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for the modes (see, e.g., [106]). This possibility should be easy to distinguish from
the stress hypothesis by comparing the peak splitting to the difference in peak width
for the two cavity eigenpolarizations. The evidence indicates stress is to blame in all
but one instance of cavity birefringence measured over six and a half years. Thus I
will concentrate on the situation where G and b are birefringent axes with equal cavity
linewidths.

There are many possible measures of birefringence, and any one will suffice for
the purpose of comparing different cavities to one another. Care is essential, though,
when relating different measurement methods, since the easiest few measurements
fit together in simple yet not-so-simple ways. Much of the difficulty lies in the
typical measurement process of scanning over the cavity resonance(s) and doing a
polarization-sensitive measurement of transmitted peak height. This process is well-
suited to a tabletop building/testing situation where the cavity length is not well
stabilized. However, because the lineshape too is polarization sensitive, this measure-
ment is not as clean and direct as one could hope. Here I have looked at the three or
four measurements most common in our group over last few years, relating each of
them to one another and to the underlying birefringent phase shift § per round trip.

The general technique for most measurements is depicted in Figure 7.1. The cavity
length is scanned over the entire resonance profile; light is injected into the cavity after
some set of polarization optics, transmitted through the cavity, and analyzed on some
(different) set of output polarization optics plus a photodetector. For interpretation
and the discussion that follows, we assume the time to scan over any resonance feature
is itself much greater than the cavity buildup/ringdown time, so that the transmitted
lineshape unambiguously reflects steady-state cavity transmission as a function of

length.

e Perhaps the simplest way to measure a birefringence is to directly measure a
peak splitting as a fraction of underlying peak width. This is simple if the peaks
are well-resolved, Av 2 FWHM. A cavity linewidth is measured for on-axis

linear input polarization, and a peak splitting is read directly off the same scan
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Figure 7.1: Setup for measurements of cavity birefringence
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for circular input polarization (or off-axis linear input). If Ay > FW HM, the
peak splitting is just Av. If the splitting is smaller, some care must be taken in

backing out Av from the summed intensity transmission of the two modes.

For somewhat smaller birefringence (line not resolved into two peaks), one can
measure the width separately on a birefringent axis and halfway between axes;
peak splitting can always in theory be inferred from this. In practice, for split-
tings smaller than Av ~ FW H M, direct peak splitting measurements may be
hard to perform with any reasonable accuracy even though the birefringence is

still large enough to be of interest.

For small birefringence, a fairly simple measurement for diagnostic purposes is
to scan the cavity, inject linearly polarized light, and detect it on a rotatable
linear polarizer at the output (e.g., with a half waveplate and polarizing beam-
splitter cube in front of the photodetector). On-axis or for no birefringence, the
output light remains linear and one can rotate the output selector to transmit
all of it or cancel it entirely (Figure 7.2(a)). Off-axis, though, the transmitted
field of one polarization is phase shifted relative to the other; the overall output
polarization is not linear but varies across the (split) cavity line. At overall
line center, halfway between v, and 14, the polarizations have relative phase
shift 2tan~"(Av/FW HM). We inject light off-axis along (& +b)/v/2. For small
enough birefringence, rotating an output linear polarizer gives maximum trans-
mitted peak height at (@ + b)/v/2, and minimum peak height at the orthogonal
setting. (See Figure 7.2(b).) For larger birefringences, there will be maxima
slightly away from the original axis due to peak splitting effects. Thus as long
as the transmitted peak height achieves maximum and minimum values at or-
thogonal output analyzer settings (6, = (/4,37 /4), we can record the max

and min heights and apply

max — min

1— (Av/FWHM)?
Contrastyy, = —————— = cos(2tan ' (Av/FWHM)) = (Av/FWHM)

max + min 1+ (Av/FWHM)?
(7.2)
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As soon as the strict 7/2 max/min condition is violated (Figure 7.2(c,d,e)), the
formula above no longer applies. Av can still be extracted, but it is best to

go to a different measurement method anyway. Thus this measurement works

nicely for Av < 0.42(FW HM) or Contrasty, 2 0.70.

~Y

e A similar measurement involves injecting circular polarization and measuring
transmitted peak heights through an output linear polarizer. In this case there
should be no dependence on analyzer setting in the perfect case, and contrast
grows with birefringence. As long as contrast goes from max to min in 7/2
rotation of the output polarizer (Figure 7.3(a,b,c)), max and min occur at line

center and we have

max — min 2Av/FWHM
Contrastere = —= """ _ sin(2tan~ (Av/FW HM)) = .
onras ——— N ) = T A FWHID)?
(7.3)

Just as with the previous measurement, this no longer holds when the 7/2
condition is violated (Figure 7.3(d,e)) and it is best to seek another measure-
ment. However, it turns out this measurement holds a bit further, out to

Av < 0.64(FWHM) or Contraste,. < 0.44.

e Other measurements are thus required for intermediate birefringence where the
peaks are not yet clearly resolved but the two methods above already give
dubious results. A nice method is to inject circular or off-axis linear polarization
and measure the output transmission profile through a selector for the original
polarization. When the birefringence is still too small to resolve the overall
peaks, this polarization-sensitive measurement will show two resolved peaks

from which the underlying splitting can be inferred (Figure 7.4).

e Yet another intermediate-splitting method, employed by Jason McKeever and
Dan Stamper-Kurn, is to inject circular polarization, rotate a linear analyzer,
and watch the transmission peak move around line center. They recorded a
“maximum” peak height and the smaller peak height when the line was cen-

tered. A measurement of the splitting can be backed out of these quantities
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Off-axis linear input polarization ( em:m4) analyzed on linear polarizer
eout:ﬂi4 o GOUIZWB o Gnm:TVZ o eOUtZSTm o eout::grM

(a) no hirefringance (Av=0)

>

(b) Av=0.3(FWHM)

(¢) Av=0.5(FWHM)

(output/input) power
o
(Sa)

(d) A=0.8(FWHM)

(e) v=1.2(FWHM)

(scan detuning)/FWHM

Figure 7.2: Calculated transmission of off-axis linear input light (6;, = m/4, or
%(d—k b)) through cavity and output linear polarizer for five different values of cavity
birefringence
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Circular input polarization (o) analyzed on linear polarizer
B 4 6,738 6 =m2 6,8 34

(@no birefringince Av=0)

(output/input) power

(scan detuning)/FWHM

Figure 7.3: Calculated transmission of circular input light (o, or %(&—Hi))) through
cavity and output linear polarizer for five different values of cavity birefringence.



130

Off-axis linear or circular input, Av=0.65(FWHM)
0.8 T T T T T

total cavity transmission
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0.2

0.1

(scan frequency)/FWHM

Figure 7.4: Preservation of input linear or circular polarization through birefringent
cavity.

in the intermediate regime. However, the contrast on this measurement can
be improved significantly by doing the same thing but with off-axis linear in-
put light. Aside from the trouble needed to identify the axes, the linear input

measurement is definitely superior. (Refer to Figures 7.2 and 7.3.)

e Often the “real” question from the operative point of view is: if we drive the
cavity with a given polarization containing both a and l;, how much does the
actual intracavity polarization differ from our drive? This question is crucial for
quantitatively predicting scattering rates and all atom-field interactions in the
cavity. Unfortunately the question is not a simple one. It depends on the cavity
detuning from resonance with each probe polarization. If the probe in question
is the strongly-coupled cavity QED light, the polarization is also altered by the
presence of an atom, since the atom itself shifts system resonances. Thus such a
measurement can be performed for the empty cavity, but in reality any carefully
set input polarization will shift as an atom enters the cavity and couples strongly

to the light.



131
7.3 What Cavities Are Good for What?

I have attempted to collect in one place the information that must be considered when
designing a new physics cavity (i.e., selecting mirror reflectivity, radius of curvature,
cavity length, etc.). Much of this material is common knowledge, comes from simple
geometry, or is written up elsewhere. Nevertheless, my hope is that by including the
old with the new I can provide a single primary reference on this subject.

Several quite different physics considerations drive cavity design. In the experi-
ments we have done for the past several years, atoms are dropped into the cavity from
a MOT, so geometry determines the flux of atoms through the cavity mode and also
their phase space distribution (particularly fall velocity and velocity along the cavity
axis). Most likely, light besides the near-resonant probe is desired inside the cavity
volume, so it is important to consider what longitudinal and transverse modes the
cavity will support — as well as ease of coupling light in, detecting what comes out, or
even focusing it through from the side. Finally, we come to the explicitly cavity-QED
considerations; values of gy and k are certainly crucial, but for each experimental de-
sign the relevant figure of merit may be slightly different. I discuss important ratios
and sensitivities for a couple of purposes to give a flavor.

I will devote separate subsections to “atom” factors, “light” factors, and “cavity
QED” factors. First, however, I catalog basic relations of cavity geometry and mode

structure that determine the quantities to be discussed throughout the later sections.

7.3.1 Basic Cavity Geometry and Mode Structure

We consider a Fabry-Perot cavity of length [ made from spherical mirrors shown in
Figure 7.5. Each mirror has radius of curvature R, diameter d, and transmission and
losses (T,A). If the two mirrors are different the subscripts (1,2) are appended to
each of these quantities. We treat lengths | < R.

The physical length of the cavity is l,n,s = nA/2. This is the separation between
the two mirror surfaces at mode center. Measurements of cavity mode spacing and

related quantities yield a somewhat different /s because of nonzero intensities in
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(multilayer M4 stack)
v

¢ >
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Figure 7.5: High reflectivity, low-loss mirrors for cavity QED; side view of cylinder-
plus-cone substrate shape.

the first few layers of mirror coating. For mirrors in the T95 run, for example,
legg = (n +1.63)A/2. More on this subject can be found in the next section and in
[18].

Since the mirrors are spherical, there is an indentation from mirror edge to center,
and thus the gap between mirror edges is less than [,,,,;. The indentation of each

mirror is d?/8R, giving
gap = Lypys — (di /8RRy + d5/8Ry). (7.4)

The Gaussian waist of the cavity mode at wavelength A is given by

wo = (P22 (R by (M) 1 (52

;)QRzphys)l/‘*. (7.5)
for a symmetric cavity. Note that the cavity mode volume therefore scales as wiles; o
R\/21M? lesr. Generally Lyp,s & los; = [, so we may write this scaling as R'/2[3/2.

phys

7.3.2 Atoms in the Cavity

Atoms are collected in a MOT as close as possible to the cavity, sub-Doppler cooled,
and dropped onto the mirror gap. For fixed MOT properties and sub-Doppler tem-

perature, cavity geometry will determine the flux of atoms through the cavity mode
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volume and their position/velocity distribution. How does the flux of atoms through
the mode depend on cavity geometry? We imagine the MOT dropping unobstructed

to the top edge of the mirror surfaces, and begin our considerations then:

e 1) Initial = (axial position) must be within the gap, so atom flux ® scales as

gap.

e 2) For each initial z, geometry allows

Lophys/2 —

—lphys/2 —

d/2
in order for an atom to arrive at the cavity mode before hitting a mirror. The
vertical velocity v, is a fall velocity gained in the drop from MOT to cavity. For
short cavities this restriction on v, is much tighter than the thermal distribution
from sub-Doppler cooling to a few pK. Thus the geometrical constraint chops
out a flat piece of the thermal distribution, and ® scales as 5,5 (or equivalently

mode order n) due to this effect.

e 3) The transverse extent of the target mode depends on the cavity waist. The
vertical waist affects transit durations but is of little importance for atomic flux.

This gives us a factor of wy in P.

These scalings can tell us how a proposed cavity compares with those already in
action. Since the experiment of [51, 52] was the first in our group to incorporate a
double-MOT design, we take it as a standard of achievable MOT-to-cavity transfer
(with no cooling or catching in the cavity). From several sample data files, I counted a
average number of 40 detectable transits per drop in that setup (referred to hereafter
as “Lab 11” for the room in which it is located). The Lab 11 cavity has n = 103,
wy = 23.8 pum, and gap = 42.6 pm. In sum, therefore, we have
) ) (o)

S~ 40— ) (=) (——
(23.8 pum” 1037 °42.6 um
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For example, I have calculated the ratio ®4411/® for several cavity designs we con-
sidered for the active-feedback experiment. Values in Table 7.1 are for mirrors of
diameter d = 1 mm and symmetric cavities (two identical mirrors). The current
active-feedback cavity has length [ n,s = 20(A\/2) and uses R = 10 ¢cm mirrors; more

atoms in the initial cloud are therefore necessary to ensure ~ 1 transit per drop.

R=10 c¢m mirrors R=5 c¢m mirrors

‘ n (# A/2) H wo (M) ‘ gap (um) ‘ Prapn /P H wo (pem) ‘ gap (pm) ‘ Drap1i /P ‘
10 11.2 1.76 530 9.4 none n/a
11 11.5 2.19 377 9.6 none n/a
12 11.7 2.61 285 9.8 0.11 8073
13 11.9 3.04 222 10 0.54 1488
14 12.2 3.46 177 10.2 0.96 762
15 12.4 3.89 144 10.4 1.39 482
16 12.6 4.32 120 10.6 1.82 338
17 12.8 4.74 101 10.7 2.24 256
18 13.0 5.17 86 10.9 2.67 199
19 13.1 5.59 75 11.0 3.09 162
20 13.3 6.02 65 11.2 3.52 132
21 13.5 6.45 o7 11.3 3.95 111
22 13.6 6.87 ol 11.4 4.37 95
23 13.8 7.3 45 11.6 4.8 82
24 13.9 7.72 41 11.7 5.22 71
25 14.1 8.15 36 11.8 5.65 63

Table 7.1: Geometrical properties of cavities as length and mirror curvature are varied.

We keep in mind also that these gaps and fluxes are calculated based on perfect
alignment of the cavity mirrors. In reality most cavities may be constructed with
a slight relative tilt of the two mirrors, causing the gap to be even smaller at some

places around the mirror circumference.

7.3.3 Light in the Cavity

Many aspects of light in a cavity were calculated in detail by Christina Hood and can

be read about in her thesis [19]. As mentioned above, when the cavity supports a mode
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at a given wavelength, some amount of light actually “lives” in the first few coating
layers and this causes the cavity free spectral range to differ from naive expectations.
The exact FSR is relevant when designing a cavity to support longitudinal modes at
more than one specific wavelength. See the discussion of the active-feedback cavity
length in Section 6.3.2 for some treatment of this issue.

For the active-feedback experiment we were constructing a cavity of length ~
10 pm, and so chose [.5r = 9.2 pm to get a magic-wavelength FORT two FSR’s away.
The two-FSR spacing is an attractive scenario because the FORT and probe standing
waves overlap perfectly at cavity center, with overlap decreasing as we move away
from the center and the standing waves get out of phase. The FORT and probe
are completely out of phase halfway from the center and come back into phase at
the mirrors (to achieve simultaneous resonance). Alternatively one could imagine
the shortest possible cavity to support both cavity QED and the magic-wavelength
FORT, with one FSR separating the two wavelengths. In this case the FORT and
probe are non-overlapped at cavity center and come into register only at the ends of
the cavity. For any future consideration of a cavity along these lines, I note here that
the best length is l.;; = 4.5 um, which allows a FORT at 936.6 nm one FSR away
from 852.359 nm. For different mirror coatings these numbers will change, requiring
a new coating model for accurate prediction.

For some purposes the transverse mode spacing of the cavity may also be relevant.
Using light in a transverse mode is one way to break cylindrical symmetry of the atom-
cavity coupling for purposes of tracking and/or cooling. Alternatively, measurement
of transverse mode spacing is one proposed way of determining length for a very
short cavity. Geometry (ignoring cavity birefringence but including the contribution

of mirror dispersion effects) gives transverse mode spacing

xcos Y (1 —1l.5¢/R ~— 7.8
o s/ B) % i (7.8)

Ay, =
" (27Tleff

for a symmetric cavity. Measurements I have done on test cavities indicate that

this expression reflects reality very closely; cavity length measurement based on this
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technique is discussed in the final section of this chapter.

One small but crucial matter is the coupling of light into and out of these cavity
modes. A beam with ~ 10 ym waist inside the cavity expands appreciably on its way
through the mirror substrate. A minimal requirement for useful physics is that the
beam must cleanly enter/exit the back surface of the substrate! In the “standard”
cone mirror design, the back surface is 3 mm tall and 4 mm away from the cavity

itself. Beam waist as a function of distance from focus is

w(r) =wgy[1+ (7:—;\3)2 (7.9)
and w, is set by cavity length and mirror curvature as given above. Extra clear-
ance should be given in case the cavity mode axis is not precisely aligned along the
geometric axes of the substrate.

So far this has been a description of modes supported by the cavity, but I now
digress to mention the possibility of focusing beams through the cavity from the side.
This option can be useful for cooling beams (as in [51, 52]) or for the “classical” pulse
in various logic proposals. However, it can become a difficult and even impossible feat
as cavity length decreases towards the optical wavelength. Imagine a beam entering
through the gap between 1mm diameter cavity mirrors, focused at the cavity axis,
and exiting again at the other side. Referring to Equation 7.9, we see that for light of
A = 852nm, the entering/exiting spot waist w(r = 0.5mm) has a minimum value of
16.5 pm achieved with focused waist w(0) = 12.0 um. If we require that a “cleanly”
passed beam must have w(0.5 mm) < gap, this gives a minimum cavity length of
about 33 pum if a side beam is to be used. At shorter cavity lengths light can be
focused in and/or allowed to diffract through the cavity volume, but clean beams in
and out are not a possibility. Smaller mirror diameter would relax this limit, but
going below the current 1-mm diameter would require new efforts in mirror cleaning
to obtain pristine central regions for the cavity mode with the rough and dirty edge

region brought closer in.
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7.3.4 Usefulness for Cavity QED

We can begin to assess a cavity’s usefulness for cavity QED experiments by looking at
relevant rates and at dimensionless parameters that tell us what atom-cavity physics
looks like in a given cavity. The rate of coherent atom-cavity coupling is set by the
parameter go, defined as half the single-photon Rabi frequency. The value of gq is
simply determined by the electric field strength associated with a single photon in
the cavity mode, so g is inversely proportional to the square root of cavity mode

volume. Expressing everything in mks units, we have (see, e.g., [27]):

9o 30}\2’YH 1/2
— =(=——— 2 7.10

2m (27r2w§leff) / ( )
where vy = 27, as given in Chapter 3. This coherent exchange of excitation between
atom and cavity must generally be compared with the cavity decay rate x and the
atomic decay rate ;. If an atom is moving within the cavity, these rates must also
be compared with the rate for local coupling to change due to atomic motion; this
is represented by 1/7 where 7 is a timescale for an atom to fall through the cavity
mode or for a trapped atom to oscillate in the direction of interest.

Note that gy depends on cavity geometry as
go o wy U} 2 o RTVAL AT s RV (7.11)

where the last relation uses l.;f ~ lynys ~ . The cavity decay, on the other hand,
scales as

K . 1 C/2leff 1

— = " x| ;. 7.12
27 2 Finesse X lers ( )

The timescale for atomic motion in general also depends on cavity geometry, but the
specific dependence varies with the type of motion being considered.

A simplistic measure of cavity QED properties might be the number of coher-
ent cycles per decay time, which would be estimated by the quantity go/3 where
B = mazx[k,~y,1/7]. This quantity being much larger than unity is roughly speaking

the criterion for strong coupling, the regime in which the atom-cavity physics has
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signatures of quantum rather than semiclassical fields at work. However, within the
realm of strong coupling there is room for a great deal of variation in what exact
phenomena are present and which ones can be observed with good signal-to-noise.

Slightly more specific are the parameters known as the critical atom and photon
numbers (Ng, mg). These parameters are discussed at length in Chapter 2. They
represent the number of atoms necessary to significantly alter the cavity response
and the number of photons necessary to significantly alter the atomic state. They

scale as

No = (267) /g8 o< RY21Y2 mg = 42 /2g2 o< RY213/2, (7.13)

Both critical parameters should be much less than unity for strong coupling.
Another parameter, the rate of optical information dI/dt, tries to address the
question of detecting intracavity physics through measurements of cavity light output
(cavity transmission). Roughly, the rate of optical information represents the rate
at which transmitted light (or “missing” transmitted light) can give us information
about the atom-cavity state. This quantity is also discussed in Chapter 2. The optical

information rate scales as
dI/dt ~ g2k o«c R™V271/2, (7.14)

with optical information per atom or per motional cycle carrying an additional factor
of the timescale 7.

Whatever the physics or detection strategy, detection efficiency and signal-to-
noise ratio will be determined by the ratio of mirror losses (absorption and scatter)
to mirror transmission. Most parameters get more impressive as k gets smaller, so
since k ~ (losses + transmission) it is tempting to decrease transmission with ever-
more-reflective mirror coatings. However, a given mirror fabrication process will have
some minimum achievable loss per mirror (about 1ppm for current REO standards).
Decreasing transmission to or below this mark will only result in slight x decreases,
and will greatly erode detection efficiencies as most of the escaping light will be

scattered or absorbed rather than transmitted.
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Another important consideration along these lines is the use of a two-sided (sym-
metric) or one-sided (one very good mirror, one more transmissive) cavity. A one-
sided cavity offers the prospect of a truly unique, coherent output mode for the cav-
ity. We envision a cavity with single-mirror transmissions (Tq, T3) and losses (A1, Ay).
Cavities of the current generation have (T; = Ty) > (A; = A,), allowing cavity decay
to send light out both cavity mirrors equally. A better situation for quantum com-
munication and nonclassical light generation would instead be T; > (Ty, Ay, Ay). To
achieve this situation while remaining in the strong coupling regime, mirrors with
very low transmission and losses are necessary, since one typically desires even T,
about 10 ppm or smaller. Alternatively, output from both sides of a two-sided cavity

could be collected and, with some technical difficulty, coherently combined.

7.4 Signal-to-Noise for Atom Orbits

Clearly different figures of merit will apply to each experimental scheme, making
different cavity designs suitable for different purposes. As one example, I present
some calculations on the signal-to-noise ratio for observing trapped-atom orbits (as
in the atom-cavity microscope) in different cavity geometries. As we will see, both
intracavity dynamics and detection sensitivity are important factors, and the overall
result is not necessarily an intuitively clear function of cavity parameters.

The goal of this set of calculations is to use one experimental paradigm as an
example of position sensing considerations in different cavities. The cavities consid-
ered are actual cavities used in the group or, in the last two cases, slight variations
on existing cavity designs. Cavity geometry and mirror properties set gg, x, and wy.
To choose detunings, in each cavity we envision experimental conditions analogous to
those in the single-photon triggered-trapping experiments we have already performed.
Thus we measure |{(a)|? for a probe beam detuned near the lower dressed state of a
system where the cavity resonance is red of the atom resonance. The quantities we

hold constant (using their values from the atom-cavity microscope) are (1) the cav-

ity detuning from the atom as compared with the cavity width and (2) the probe
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detuning from the lower dressed state resonance as compared with the cavity width,

le.,
Aco/k = —47/14.2 = —3.3 (7.15)
A2 _ Y
wp—w|,>_Apa_(A2ca_ gg_|_ 4ca)__125_($_ 1102_|_(i7))_077
ko K - 14.2 =0.77.
(7.16)

Then for each cavity I adjust the drive strength to maximize either: (1) the rate of
“extra” photons to indicate the atom is present (k(|[(a)|7,; — [{@)|2p,)) OF (2) the

detection bandwidth at which S/N=1 subject to shot noise,

(@) Fun = K@) [Enpry)?

Bg/n=1 = K , (7.17)
/ (@)
or (3) the S/N over a radial oscillation period
|<a>|?ull — @) 2t
(S/N)Tosc = V /{/TOSC Ly . (718)
|<a>|?‘ull

The results are shown in Table 7.2. In the table T also show the quantity g2/ for
comparison; according to hand-waving arguments, the rate of extra photons should
scale roughly with ¢2/k, as should the bandwidth for S/N=1. We can see only a
rough correspondence, perhaps owing to the ad hoc nature of the detuning choices.
Certainly as x becomes roughly equal to the atomic decay v, /2mr = 2.6 MHz, our
detuning choices related only to x become somewhat inappropriate. More interesting
is the ACM-like cavity in which & stayed the same but gy was increased by about 20%;
sensing ability here clearly does not scale with g2/k. Evidently for the comparisons
I have made here, not only g2/ but gq itself (i.e., in relation to the constant v, ) is
significant.

[In the calculations above I have assumed unit detection efficiency, since we are
concerned here with signal-to-noise considerations driven by cavity properties and
not by detection strategy. Furthermore, I have considered only the decay out one

cavity mirror (by using rate x rather than 2x). Thus the relevant detection efficiency
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| cavity description | cavity (go/2m, k/27), wy | (Dpa/27, Aca/27) |
ACM (110,14.2) MHz, 14.06 pm | (-125,-47) Mz
active-feedback (130,17) MHz, 13.3 pm (-148,-56) MHz
Lab 11 (FORT) (32.4) Mz, 23.8 pm (-37.-14) Mz
ACM but l,;; = 5.8 pm (179,26.7) MHz, 11.7 um | (-208,-88) MHz
ACM but R = 5 ¢m mirrors | (131,14.2) MHz, 11.8 um | (-146,-47) MHz
go/k | 504 [Fun — Ka) Bpry) [ Bsywv=r [ S/Ns,..
5.3-10%/s || 2.7-10%/s 15.36 MHz | 83
6.2-10%/s || 3.3-10%/s 18.7 MHz | 86
1.6-109/s || 0.60 - 10%/s 3.10 MHz | 70
7.5-10%/s || 5.7-108/s 32.3 MHz | 97
7.4-10%s || 2.7-10%/s 14.5 MHz | 71

Table 7.2: Sensitivity for atomic motion in different cavities (detunings chosen for
ACM-like trapping).

is the quantity n' of the discussion in Section 3.7. To include the effect of detection

efficiency, Bg/y= must be multiplied by ' and (S/N),,,. must be multiplied by /7’.]

One reason for the lack of g2 /x scaling in Table 7.2 is an inappropriate choice of
quantities held constant. The condition of constant A., in Equation 7.15, in partic-
ular, helps in maintaining a deep trapping potential but has no particular relevance
to sensing. For sensing, it is more reasonable to place the probe a fixed number of

linewidths away from the empty cavity, so

We — W

——P2 =78/142=5.5 (7.19)
K

becomes the first condition to apply. To determine w,, we can then require that the

system’s lower dressed state coincide with the probe frequency, giving

Wa + We ., A7

Aca

Wy — wp = (

Using these criteria we obtain detunings and sensitivities as shown in Table 7.3 for
the same example cavities.

We now see a sensitivity for atom detection that tracks g2/ much more closely,
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| cavity description | cavity (go/2m, k/27), wy | (Dpa/27, Aca/27) |
ACM (110,14.2) MHz, 14.06 pm | (-151,-71) Mz
active-feedback (130,17) MHz, 13.3 pm (-181,-87.6) MHz
Lab 11 (FORT) (32,4) Mz, 23.8 pm (-45.5,23) MHz
ACM but l,;; = 5.8 pm (179,26.7) MHz, 11.7 pm | (-218,-71) MHz
ACM but R = 5 ¢m mirrors | (131,14.2) MHz, 11.8 ym | (-221,-143) MHz
go/k | 504 [Fun — Ka) Bpy) | Bsyy—1 | S/N-,.,
5.3-10%/s || 2.65 - 10%/s 14.5 MHz | 82
6.2-10°/s | 3.28 - 10°/s 17.9 MIiz | 85
1.6-10%/s || 0.63-10°/s 3.0 Mz | 73
7.5-10%/s || 4.67 - 108/s 23.7 MHz | 85
74-10°/s || 3.34-10°/s 19.4 MHz | 83

Table 7.3: Sensitivity for atomic motion in different cavities (detunings compatible
with trapping but chosen for sensing).

though certainly the simple scaling is not reflected perfectly (Figure 7.6). Signal-to-
noise over a motional timescale, however, hardly varies at all for the cavities consid-
ered here; as the sensitivity for atomic motion improves, the motional timescale for
atom-cavity orbits becomes shorter as well.

In general these extra photon rates and S/N ratios are optimized for much higher
driving than the fractional photon in the cavity that we use in experiments. Instead,
the largest sensitivities occur with one to a few photons in the cavity. A simple
estimate shows we should expect this. As in the on-resonance case described in
Chapter 2, we argue that the best effect should be seen when the field approximately
saturates the atomic response. However, the field is now detuned from the atomic
resonance by A,, > v,. Thus to saturate the atom the cavity must hold not m, =
v1 /295 photons but mg(A2, /1) = A2, /2¢5 ~ 1 photons.

Why do we not go to ten times more driving in the experiment? The answer
lies in the fact that Tables 7.2 and 7.3 contain no information about momentum
diffusion rates for the atom. We have seen already in Chapter 4 that the semiclassical
momentum diffusion is much larger than the fully-quantum calculation for the atom-
cavity microscope. As we go to stronger drive strength the dynamics become more

semiclassical with respect to the cavity field, and correspondingly the momentum
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Figure 7.6: Sensitivity for an atom in the cavity as a function of optical information
rate (detunings of Table 7.3).

diffusion over oscillation timescales — and over sensing timescales — becomes larger.
Thus one has a better bandwidth for sensing atomic position, but the motion itself
heats up much faster and there is no quasi-conservative motion to observe.

In an experiment where trapping is provided by some means other than the cavity
field, motional timescales are decoupled from the choice of probe settings, in which

case the relevant sensitivities are those which do not explicitly include 7.

7.4.1 Connection to Position Sensitivity in the ACM

Before leaving the subject of signal-to-noise for detecting trapped atoms, I briefly

connect the results of the preceding section with the discussion of position sensitivity
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in Chapter 4. In Section 4.3 a hand-waving argument predicted a position sensitivity
of 1.0 nm/v/Hz, notably at odds with the observed sensitivity of 20 nm/vHz. We
are now in a position to revisit this estimate and resolve the discrepancy.
The predicted sensitivity arose from an estimate which essentially quoted a rate
g3/r for information on an atom’s presence in (or absence from) the cavity mode.

wo

This gave sensitivity S, = % \/T\/E However, we now have an actual result,
95/ kK

from solution of the master equation, for signal-to-noise via our detection method.
Thus we may instead observe that, for the atom-cavity microscope, we cannot do
better than S/N = 1 for resolving an atom’s presence in bandwidth B = 15.36
MHz. Furthermore, the quantity dg/dp estimated as go/wy in Section 4.3 can be

more carefully evaulated, yielding its actual maximum value of g)—%\/g .

Thus we now expect S, > 217\/11”;? ”61/[/2& = 5.9nm/vHz. If we allow for a
factor of /2 degradation in sensitivity due to technical noise, this estimate becomes
8.4nm/v/ Hz, approaching our measured sensitivity quite reasonably. The remaining
discrepancy corresponds to the fact that our probe strength is below the optimal level

for sensing, as discussed above.

7.5 Measuring Lengths of Very Short Cavities

In constructing very short cavities, down to the smallest possible Fabry-Perot of length
A/2, new methods of cavity length measurement will be necessary. We currently
measure cavity lengths by tuning a Ti:Sapph laser through a full free spectral range
of the cavity, thus finding Ay and Ay for which l.;r = n(A1/2) = (n + 1)(A2/2). Note
n will not be an integer due to mirror dispersion as discussed above. For our current
physics cavity of length l.;; = 9.2 um, the free spectral range is already 40 nm, and
one can see that for very short cavities the free spectral range no longer fits inside the
~150 nm high-transmission region of the mirror coating curve. Alternative length
measurements must be employed.

One possibility is to use the transverse mode spacing Ay, as a measure of length
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for a short cavity. From Equation 7.8 above, we obtain

CQ

lojp= —— 21
U 212 R(Avy)? (7.21)

A transverse mode spacing may be measured by scanning the cavity length while
tuning the laser between closely spaced wavelengths \; and \g, so the transverse mode
spacing on modes at \; can be calibrated against the spacing between the fundamental
modes for A\; and \,. A test cavity with mirror curvature R = 10¢m was measured via
the usual technique to have l.;; = 11.16 ym, implying l,4,s = 25)/2 = 10.48 pim since
the measurement wavelength was 838nm. For the same cavity a length measurement
using the transverse mode technique gave l.;; = 11.06 pum, agreeing to better than
a percent as long as Ay, measures [.;r. More careful treatment of transverse mode
spacing as affected by mirror coating dispersion is necessary if this measurement is
to be adopted for very short cavity lengths.

A second candidate measurement technique does not rest on detailed mirror coat-
ing calculations but does require the ability to scan the cavity length over a free
spectral range with excellent linearity. The simple idea is to calibrate the cavity
length scan by observing the scan over a complete free spectral range of some single
wavelength, i.e., over Al = A\;/2. Then by comparison it is possible to obtain the
cavity length difference required between the same longitudinal modes for A; and a
nearby Ao. Here l.pp1 = n(A1/2), leppo = n(X2/2), and we measure losrq — lefro to
allow determination of n and thus the overall cavity length. The scan linearity for
our current cavity mounts and piezos does not permit a precise measurement via this

technique, but it is in principle a promising alternative for the future.



