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Chapter 5

Active Feedback on Atomic
Position: Towards a Quantum
Servo

The atom-cavity microscope, as described in the preceding two chapters, demonstrates
the ability to trap a single atom in an optical cavity and monitor its position in
real time. Current experimental efforts in our group and elsewhere (see [87]) focus
on the use of this real-time position information to feed back to actively control
atomic positions within the cavity mode. Progress in this direction aims to use cavity
QED to investigate fundamental questions of quantum measurement and optimal
state estimation and control (see, e.g., [88, 89, 90]). The ability to trap an atom
with a single photon field is a dramatic illustration of single-quantum physics in
optical cavities; however, it is the sensing power and signal-to-noise for real-time
observation of the system that makes the optical cavity unique. This chapter discusses
feedback strategies and simulations of their performance for experimentally relevant
parameters.

The cavity enhancement of sensing was illustrated in dramatic fashion by the two-
dimensional trajectory reconstructions of the previous chapter. However, the initial
goal of our feedback algorithms will be to control p(t); for this purpose it is sensible
to ignore 0(t) for the time being and apply all available signal-to-noise to the task of
estimating p(t) and p(t) in real time. The goal of such a program is then to use this

information to drive p(t) to a constant value, or in other words to circularize an orbit
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in the (p,#) plane while not necessarily driving it to the cavity axis (p = 0). The
latter task, which requires an explicit method of breaking cylindrical symmetry for

position sensing and for the effective potential, can be considered as a later extension.

5.1 The Atom and Cavity as a Control System:
Basic Feedback Strategy

As a guide in the identification of plausible feedback strategies and their limitations,
it is useful to restate the problem somewhat in the language of control systems. To
this end, we begin by setting aside the issue of axial motion and treating the atom
as a particle in a cylindrically symmetric, approximately Gaussian two-dimensional

potential whose depth is controlled by the input light intensity:
U —Upe ”/. (5.1)

Note that the potential waist w is not simply equated with the previously introduced
cavity field waist wy or with the mode intensity waist wg/v/2, but rather is set by
the self-consistent interaction of atom and light field in the strong coupling regime.
Where the cavity mode profile is exactly Gaussian, U is only approximately Gaussian
and has an exact form that is nonanalytical as determined by steady-state solutions to
the master equation for an atom at each value of p. The potential depth U, depends
on the intensity of the optical field used to drive the cavity mode. The potential waist
w is in fact a (slowly varying) function of the drive strength as well.

The trapped atom is also subject to dynamical noise in the form of friction and mo-
mentum diffusion arising from decays and re-excitations of the system on timescales
faster than the motion. In the regime of Ref. [25], the contribution of friction is small
compared to the momentum diffusion terms in the equation of motion.

Because the two-dimensional potential is cylindrically symmetric, the atom’s an-

gular momentum L is constant, or rather, varies only due to dynamical noise. We
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can thus write a one-dimensional effective potential in the p dimension,
Vipp = —Uge™"/"" + L2 /2mp? (5.2)

and thus an equation of motion (for an atom of mass m)

_ 2,0U0 e_p2/w2 4 L?

p = — 5.3
p=— ey (5.3)
which we notationally simplify to the form
L ~ _52 f/
p=—pEe " + 5 (5.4)

where p is dimensionless (p = p/w), E = 2Uy/mw? is the input we control by varying
the driving field strength, and L = L?/m2w* is constant except for the influence of
dynamical noise.

The measurement of light transmitted through the cavity, T'(¢), is equivalent to a
(noisy) measurement of p(t). The noise of this measurement is largely fundamental
quantum noise (shot noise) of detection. The mapping between T and p, derived
again from steady-state solutions of the master equation for the coupled atom-cavity
system, is not linear and furthermore depends on the value of the driving strength
E. The initial objective is to circularize the two-dimensional orbit — in other words,
to make p constant or to hold p = 0 by varying the control input E.

The simplified system can be described by a block diagram as shown in Figure
5.1. The system exhibits myriad nonlinearities; for example, (T — p) is nonlinear and
depends on F, the dynamical noise depends on F, and the equation of motion for p
is itself nonlinear. Nonetheless, while this statement of the problem does not suggest
provably optimal feedback strategies, it does motivate some conceptually simple algo-
rithms based on switching between discrete values of driving strength E. Switching
strategies of this sort are often invoked for the sake of robustness, a major consid-
eration in this scenario; robustness to dynamical and measurement noise is certainly

important, but perhaps even more relevant is robustness to small uncertainties in sys-
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Figure 5.1: Block diagram for the atomic position feedback loop, illustrating sources
of noise and system nonlinearities.

tem parameters (e.g., driving strengths or detunings). Switching or “bang-bang” type
algorithms have the additional virtue of admitting easy implementation in simulations

and in experimental design.

5.1.1 General Feedback Strategy

The feedback algorithms we investigate in this chapter all share the same basic strat-
egy of switching the driving field intensity between two discrete levels. This corre-
sponds to switching between two potential depths (and, incidentally, two different
sets of friction and momentum diffusion coefficients as well). The simple objective
is to time this switching relative to the atomic motion so that an atom sees a steep
potential when climbing out of the trap (p > 0) and a shallow potential when falling
back towards the trap center (p < 0), as illustrated in Figure 5.2. The feedback algo-
rithm, then, is based on switching the potential at turning points of p, i.e., each time
p crosses zero. Implemented effectively, this approach promises significant dynamical
cooling of the radial motion (p — constant or p — 0) in just a few oscillations.

The initial detection and trapping of an atom are accomplished as in Chapter 4

and [25, 26]; a weak probe at driving level ezlo is used to detect the atom’s arrival in
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Figure 5.2: General feedback strategy for atomic radial coordinate

the cavity with minimal effect on the motion, and an increase in transmission of this
beam triggers a switch to driving level hi to populate strong-field-seeking states and
trap the atom. Feedback is then implemented by switching the trapping potential
between the hi level and an intermediate lo setting, with switching times based on
real-time information about the motion of the single atom.

The simplest algorithm would be to switch back and forth between hi and lo
potentials at the turning points of p(t), which are the zero-crossings of p(t). That
is, trap initially in hi, switch to lo when p crosses zero from above (i.e., when p
begins to decrease), switch back to hi when p crosses zero from below (p reaching its
minimum and increasing), and so on until the atom escapes. However, this strategy
calls for a theoretically infinite sequence of switching events, while it is desirable to
instead achieve a steady state in some large-time limit. The presence of dynamical
noise implies that the exact steady state of p — 0 is in any case unreachable, so we
replace it with a goal of confining p to some range [—lim, +lim]. Thus the feedback
strategy is modified to include slight hysteresis: hi—lo when p — —lim from above,
lo—hi when p — +lim from below. With this modification, switching stops once p
is confined within the acceptable range. Furthermore, we prefer a steady state with
hi potential because of the deeper confinement. To bias the system towards this final

state, we use asymmetric hysteresis limits: lo—hi when p — +lim from below, hi—lo
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when p — —(lim + 6) from above.

5.2 Simulations of Feedback Algorithms in Oper-
ation

For our simulations, we have chosen cavity parameters as well as driving strengths and
detunings based on Ref. [25], with A,, = —47 MHz, A,, = —125 MHz, 1.y, = 0.05
photons in the empty cavity, n,; = 0.3 photons in the empty cavity, and n;,, = 0.15
empty-cavity photons. These driving strengths are chosen to be high enough so that
an atom of typical kinetic energy can be trapped by both lo and hi drives, yet low
enough to ensure the increase in momentum diffusion between lo and hi does not
outstrip the increase in potential depth.

Our simulations of the atom-cavity dynamics are based on the treatment outlined
in Section 4.4.1 and described in detail in Ref. [26, 83]; the treatment is fully quantized
for the atomic internal state and the cavity light field, but considers the atomic
center-of-mass motion quasi-classically. This approximation is suitable for the current
experimental situation, with more manifestly quantized motion to be accessed by
better cooling and/or detection of the atom’s axial motion. The dynamical noise
of the system, in the form of friction and momentum diffusion, is included in the
simulation; the resulting “heterodyne transmission” trace is a perfect record of |{a)|?,
on which measurement bandwidths and shot noise must be imposed separately. Shot
noise is modelled as Gaussian white noise with an amplitude that depends on the size
of the (noiseless) transmission signal.

In the presence of sensor noise, we require estimators for the quantities p and
p. Because one parameter (L) in the equation of motion is unknown and in fact
slowly varying, we have chosen not to implement estimators based on a Kalman-filter
approach [91]. More sophisticated treatments include Kalman-type approaches to
simultaneously estimate p, p, and L [92], but these have not been explored in full de-

tail. Possible approaches include various methods such as the extended Kalman filter
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or unscented Kalman filter; for an introduction and overview, see [93]. Meanwhile,
we choose to estimate p(t) and p(t) directly from the measurement record, with no
explicit reference to the equation of motion for the system.

The noisy transmission signal 7" is sampled at 1 MHz as mentioned above. Dig-
itization of the signal at finite resolution can introduce noise, so the resolution of
this step should be kept small relative to pre-existing noise amplitudes. To estimate
p, we first perform an RC low-pass filter on 7" at 100 kHz. This step is an infinite
impulse response (IIR) filter which consequently introduces only a small delay in the
estimator. This filtered transmission signal is then put through a lookup table with
linear interpolation to obtain peg(t).

The resulting p.s(t) tracks the actual p closely but still with significant noise.
Obtaining a time derivative without excessive noise thus requires some care. A variety
of methods are mentioned in Ref. [94], in which the authors are concerned with
estimating the sign of a time derivative in order to feed back to a system — essentially
the same problem we encounter. We employ a simple finite impulse response (FIR)
filter that takes the slope of a linear least squares fit to p.s:(t) over a window of fixed
size. A detailed implementation of this filter is found in Ref. [95]. The resulting
Pest(t) is a good estimator for p at the middle of the window, so the delay induced
is approximately half the window size. We find that a window size of 30 to 40 us
gives a signal p.s(t) which is quiet enough for use in our control. Thus reliable
estimation in the presence of noise introduces a delay of approximately 15 to 20 us in
the feedback loop. This time delay can be compared to a typical atomic orbital period
of 7. ~ 100 us, corresponding to a period of ~ 50 us for p. Feeding back effectively
in the presence of such large delays requires a certain amount of adjustment to the

naive cooling algorithm of Section 5.1.1, as discussed in detail below.

5.2.1 Actual Dynamics But No Measurement Noise

Before treating the case of actual experimental noise, we explore the performance

of our feedback strategy in simulations with noiseless measurement and thus per-
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Figure 5.3: Simulated feedback example with perfect sensing of p(t).

fect, zero-delay sensing of (p, p). Figure 5.3 shows an example trajectory using this
asymmetric-hysteresis switching strategy. The values of cavity transmission 7" and
atomic position variables are sampled every 1 s, but the dynamical timestep is 3,000
times finer than this “information” timestep. Note that axial motion (the x direc-
tion our strategy neglects) is included in the simulation, and when its amplitude is
large it gives rise to the very fast variations seen in T'(¢). However, since the period
of x motion is similar to the information timestep used, note that these signals are
undersampled in the record.

A 10 ps box filter is applied to p in order to remove some oscillations caused by x
motion and also partially to anticipate some effects of noisy detection and delay. In
setting the conditions for potential-switching, we employ the asymmetric hysteresis
described above, so the potential depth is switched at p = 40.05, —0.08 um/pus.
Switching events, since they correspond to turning the light level up and down, can be

seen as sharp edges in the transmitted light 7. As the example illustrates, the control
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strategy successfully circularizes atomic trajectories within a few orbital cycles. This
can be seen from p(t) as well as from the trajectory shown in the (p,#) plane. The
hysteresis limits are chosen so that variations in p due only to dynamical noise tend
not to trigger any switching of the drive. This is illustrated by the continued high
control level throughout the time ¢ = 450 — 600 us, while p is wandering diffusively
rather than oscillating with regularity.

The overall trap lifetime is dominated, as in this example, by heating in the x
direction. (In the example shown, note the fast, large-amplitude variation in trans-
mission just before the atom escapes; this is a signature of rapid axial heating.)
Thus our feedback strategy has little impact (at the level of 10%) on average trap-
ping lifetimes. Circularizing the orbit helps decrease axial heating since the potential
depth no longer wanders as p varies; however, the feedback is accomplished by sharp
switching events which occur at arbitrary times relative to the oscillations in the z
direction. The overall impact on lifetimes is therefore small in the simulations we
have performed. Since the feedback algorithm is aimed at reducing motion in the p
direction, its success is best measured by its performance at that task specifically.
Lifetime effects can become apparent only if the axial motion is suppressed by some
other means; that case is treated briefly in the final set of simulations presented in

this chapter.

5.2.2 Adding Measurement Noise Adds Delays

The addition of measurement noise and consequent estimation of p introduce signifi-
cant loop delays, as described above. Since p.s can be almost half a cycle behind the
actual p, we expect naive switching to be well out of phase with the atomic motion
and thus relatively ineffective as a cooling mechanism. Figure 5.4 shows an example
in which the feedback strategy is identical to that of Figure 5.3, but applied to pes
rather than to p itself. The resulting time delay seriously compromises performance,
as shown. In the figure, note that the switching events, recognizable as sharp edges

in transmission, do not line up with turning points of p. As a result, p is not damped
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Figure 5.4: Measurement noise leads to filtering and unacceptable loop delay.

and the trajectory remains elliptical.

5.2.3 Account for Delays by Waiting a Cycle

Since it seems clear we cannot simply close the loop with the delays necessitated by
measurement noise, we choose to address the problem by adding even more delay —
that is, by detecting a switching condition (pes crossing a hysteresis limit) and then
waiting to switch the potential at a time which should catch the next oscillation of p.
A first attempt in this direction would be to assume a fixed period for oscillations of
p. In this case the additional wait before switching is given by this fixed period minus
the estimator delay for p.s;. Since each switching time is now set by the detected
signal from the previous cycle, the first switching opportunity (first minimum of 7T
and maximum of p) will be missed in this strategy. Rather than miss this cooling
cycle, we impose a single switching event a fixed time after the initial trap turn-on.

Thus the potential switches exlo—hi on the initial trigger, hi—lo a fixed time later,
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Figure 5.5: Delay is dealt with by tracking p turning points and using this information
from each cycle to switch the potential at the predicted next turning point.

and lo<>hi thereafter based on the last zero-crossing time of pe;.

However, the actual dynamical period varies by easily a factor of two over the
course of an atom’s trapping lifetime due to changing amplitude of oscillation in the
anharmonic potential. Thus the fixed-period assumption is a poor one. A better
strategy is to record the length of each period in p.s; and assume each cycle will be
the same length as the previous recorded one. Thus the “waiting time” estimate will
adjust itself as the dynamical period changes, though it will in general be one cycle
behind. This strategy is employed for the trajectory shown in Figure 5.5. The initial
switch occurs 45 us after trap turn-on, the least-squares window is 40 us, and the
“wait time” between peg limit-crossings and the resultant potential switches is given
by the previous period minus 20 ps. This switching strategy, with deliberate delay
based on an active measurement of the p oscillation time, appears to be a viable
means of performing control in the presence of sensor noise and its associated loop

delay.
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5.2.4 Comparisons with Open Loop Strategies

To evaluate the effects of feedback more quantitatively, we introduce a figure of merit
for the damping of radial oscillations in an atomic trajectory. Since the goal of
the control strategy is to confine p near zero, the performance can be measured by
comparing the variance of p over intervals of equal duration near the beginning of
the trajectory and after feedback has been operating for some time. We choose a
time window of duration 200 ps as long enough to encompass well over one cycle of
the radial motion. The comparison is taken between two such windows separated
from one another by 200 us; this delay is selected as long enough for several cycles
of feedback action, yet short enough so that the statistic exists for a large fraction of

trapped atom events. Thus our figure of merit for feedback performance is given by

0%5 us—215 ps (Pest(t))

M = .
0215 pns—615 us (pest (t))

(5.5)

where times are measured from the initial trapping (exlo—hi) switch. Large values of
the quantity M correspond to well-damped radial motion, p(t) — constant, though
orbits may still be circular at any radius p > 0. (Damping in the sense of actual
energy removal is discussed further in Section 5.2.5.) Small (~ 50 — 100 ps) changes
in delay time or window size have been investigated and do not appreciably change
the nature of the results for M.

Figure 5.6 shows histograms of M for several data sets in which different switching
protocols, detailed in Table 5.1, have been employed. Each data set is generated by
simulating a fixed number of individual atom drops from the known distribution of
initial conditions. Only some fraction of trajectories result in a triggering/trapping
event, and of these only a fraction of atoms have dwell times long enough to compute
a value for M. Thus, for example, set C2 was generated from 5,000 trajectories,
yielding 1,335 trigger events and 147 trajectories for which M could be obtained (i.e.,
with dwell times at least 615 us).

While Table 5.1 gives the specifics of each data set represented in Figure 5.6, the

essential comparison is between closed loop — i.e., active feedback — algorithms and
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‘ Data set switching protocol # atom drops # triggers

C1 Closed loop 2000 534
Switch once 45 us after initial trigger
Thereafter switch
(previous cycle length) - 20 us after
(dp/dt)es; crosses limits

C2 Same as above (C1) 5000 1335

o1 Open loop 2000 561
Switch every 45 us after initial trigger

02 Same as above (O1) 5000 1319

03 Open loop 2000 552
Switch every 35 us after initial trigger

04 Same as above (O3) 5000 1322

Table 5.1: Exact conditions used for data of the full-simulation histograms.

open loop counterparts which simply switch potentials in a predetermined sequence
independent of real-time position information for the individual atom. The closed
loop algorithm is that of Figure 5.5, in which measurement noise and loop delays
are dealt with by waiting nearly one cycle to apply the knowledge of motion gained
during the previous oscillation. The open loop algorithms, in contrast, simply switch
the potential between hi and lo at fixed intervals following the initial trapping event;
the fixed interval is chosen to coincide with a reasonable average value for an atomic
oscillation period.

Closed loop, active feedback clearly damps radial oscillations more effectively than
its open loop counterpart. The M distributions in Figure 5.6(a,c) have larger mean
than those in Figure 5.6(b,d,e), with the closed-loop histograms showing many trajec-
tories pushed out to higher values of M by the active feedback. These results indicate
that real-time measurements of p(t) can indeed be applied to facilitate cooling of a
single atom’s motion in that dimension.

Further refinements should improve the performance of the algorithm. For in-
stance, the cycle-length predictor could be changed to allow asymmetries between
p > 0 and p < 0 half-cycles. Additionally, the filters themselves could be adjusted
or replaced with better estimators which incorporate information about angular mo-

mentum L.
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5.2.5 Performance with Axial Motion Suppressed

In a final set of simulations, we investigate the performance of our radial cooling
algorithm in a setting where the axial atomic motion is independently suppressed.
With no (or little) axial motion, axial heating no longer limits trapping times and
the effects of radial feedback can be seen more clearly. To achieve this in simulations,
we impose an ad hoc elimination of the axial dimension; however, this case could
be relevant to several future experimental scenarios. For example, trapping and
sensing mechanicsms, both currently accomplished with the same probe beam, could
be separated to allow a trapping field with a low scattering rate and much-reduced
axial diffusion. Alternatively, the separation of axial and radial timescales could be
exploited, either to apply axial cooling [96] between cycles of radial feedback or to
simply avoid extra axial heating by ramping the potentials up and down at a rate that
appears adiabatic to the axial motion while still impulsive in the radial dimension.

Prospects for implementation aside, simulations with no axial motion demonstrate
some aspects of the radial feedback protocol that are otherwise less transparent. We
explore this regime with a set of simulations that differ in three ways from those
presented above. First, the axial dimension is eliminated entirely and the atom is
artificially constrained to remain at rest at an antinode of the standing-wave cavity
field. Second, since axial heating is no longer an issue, we employ somewhat deeper
trapping potentials than in the simulations above. The weak probe level is still
Nexto = 0.05 photons in the empty cavity, but now we turn on the trap initially at a
level ne.pi = 0.6 photons in the empty cavity, and we feed back by switching between
this and the weaker level n,; = 0.3 photons. The effective potentials thus generated
are ~ 50% deeper than in the previous simulations using n;; and n;,. Finally, without
axial motion we employ a coarser computational timestep of (1/30) us.

Figure 5.7(a) shows the feedback figure of merit for the cases of closed-loop feed-
back, constant trapping at np; or nezn;, and open-loop switching. Taking advantage

of longer overall atom dwell times, we can now consider time windows separated by
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a greater delay, so the quantity displayed here is

0%5 pus—215 us (pest (t))

M = -
0%015 us—1215 ps (Pest (t))

(5.6)

rather than the original M of Figure 5.6. The result is qualitatively similar to that
of the full simulation, with the closed loop strategy performing significantly better
than its open loop counterpart. In this case, the mean value of M’ for closed-loop
feedback is ~ 2.5 times greater than for open-loop switching or for no switching.
The data of Figures 5.6 and 5.7(a) indicate that our feedback algorithm acts
to drive p to zero, i.e., to circularize atomic orbits at a constant value of p. Such
demonstrations, however, leave open the question of whether this algorithm actually
removes total energy from the radial motion. With axial motion eliminated, we can
now explore this issue by asking how the feedback algorithm affects trapping lifetimes.
Figure 5.7(b) shows atom dwell times for the same three cases of closed-loop feedback,
constant drive levels of nz,; or ny;, and open-loop switching. The increase in lifetime
for closed-loop feedback is immediately apparent. Indeed, the closed-loop results agree
well with an exponential lifetime of 8.9 ms, as contrasted with 2.6 ms for trapping at
Nezni alone,; 1.9 ms for trapping at ny;, and 1.1 ms for open-loop switching between the
drive levels. This effect shows that active feedback as applied to the radial dimension
does act to remove radial energy, in addition to simply pinning p to a constant value.
Note that all these lifetimes are enhanced relative to the full three-dimensional case, in
which both experiments and simulations have mean trapping times of only ~ 400 us.
Lack of lifetime enhancement from radial feedback in the full simulation is some
indication of the very weak mixing between axial and radial motion, so that cooling

in one of these dimensions does little to control temperatures in the other.

5.3 Outlook for Experimental Implementation

The feedback simulations discussed in this chapter have been conducted with very

close reference to the conditions realized in the experiment of Ref. [25], in particular
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for cavity properties, trapping statistics, and signal-to-noise in the balanced hetero-
dyne detection. The current experimental effort, aimed at realizing the feedback
strategies described here, employs very similar conditions while incorporating some
improvements as in Ref. [51, 52]. Notable changes from Ref. [25] include a slightly
shorter cavity, improved vacuum pressure in the cavity region (3x107!° torr) enabled
by a differentially pumped double chamber, and cavity length stabilization via an
error signal generated by an independent laser one free spectral range away from
the cavity QED light. Implementation of the feedback strategy described above is
clearly outside the regime of analog electronics, so an additional modification is the
use of digital processing and FPGA technology [97]. With these tools, experimental
data similar to the simulation results presented above seem well within reach; the
experimental effort is discussed in more detail in the next chapter.

It seems reasonable to ask how much experimental data should be necessary to
exhibit a distinction between active feedback and open loop schemes. From the
simulations of Figure 5.6(c,d,e) (Table 5.1), we see that with data sets of about 500
trapped atoms the differences between open- and closed-loop schemes already begin
to become apparent, and these differences are well demarcated with two or three
times that much data. With fairly conservative estimates of one trigger per MOT
drop and one MOT drop every 5 seconds, this means significant effects could well be
seen with just one to two hours of experimental data at each setting. Much more data
collection is experimentally realistic, allowing exploration of a wealth of additional

questions.

5.4 Current Limits and Future Directions

The feedback algorithm developed above for the atomic radial position p is subject
to basic limits arising from dynamical and measurement noise in our system. These
limits can be expressed as lower bounds on the (one-dimensional) temperature for p.
Because the strategy is based on discrete switching, with feedback delayed and timed

based on the previous switching-cycle length, the control is always based on informa-
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tion gathered over the previous motional cycle. Thus dynamical noise over an atomic
motional timescale will set a lower limit on radial temperature 7,. Referring to Figures
4.11 and 4.13, we find that momentum diffusion (due to spontaneous emission) gives
a typical energy increase per radial oscillation time of AE, ~ 0.02(Uy) ~ kp(50 pK).
Furthermore, measurement noise places a limit on the detectable amplitude of p
variations. This amplitude depends strongly on the absolute value of p due to the
nonlinearity of the 7" — p mapping. However, using the measured sensitivity (see
Section 4.3) from the atom-cavity microscope, we estimate that over a motional cycle
we can resolve p oscillations of amplitude (20 nm/v/Hz)\/1/277, 2 0.77 pm. On the
side of the cavity mode, where the effective potential is steepest, this corresponds to
T, ~ 150 pK. While this limit corresponds closely to the simulations of the previ-
ous section, where axial motion is suppressed, the full simulation never reaches this
limit because axial heating cuts off atomic lifetimes too quickly. Thus improvements
to address axial heating are of great interest for seeing the full effect even of radial
cooling.

Beyond the experimental and algorithmic variations already discussed, a number
of broader questions are raised by the use of active feedback to dynamically cool a
component of motion for a single atom. One question deals with the ultimate limits
of such a cooling mechanism. Within the current experimental setting, limits to
radial cooling arise from atomic lifetimes (dominated by axial motion), but are also
constrained by the dynamical noise and by the shot noise of detection. Some lifetime
and dynamical noise issues could be addressed by separating trapping and sensing,
for example by using a far off resonance trap in conjunction with a sub-photon level
cavity QED probe [52]. The remaining issues would then center on signal-to-noise for
the atomic position measurement, as well as on limits imposed by backaction of the
measurement itself as it approaches the standard quantum limit [82, 98].

Extension of active feedback beyond the p dimension raises related questions. The
question here is one of using various techniques — for example, a symmetry-breaking
potential or frequency-domain filtering of the signal — to estimate and control a three-

dimensional vector using the time record of a single quantity, the transmitted light
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field. Undoubtedly, different driving parameters, detection methods, and data pro-
cessing will be appropriate depending on the relative importance placed on informa-
tion about each dimension of the motion. These questions address in various ways
some basic issues of optimal state estimation and control for single quantum systems,
and this experimental system promises to be a rich one for exploring such issues in

further detail.



