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Chapter 4

Strong Coupling for Trapping and
Sensing: The Atom-Cavity
Microscope

In the work of Ref. [25, 26], much of which is also presented in [19], the sensing
and trapping aspects of strong coupling are exploited to realize atom-photon binding
within an optical cavity. A deep (~ 2.5 mK) potential associated with the single-
quantum interaction arises from the use of a short cavity with very small mode volume
(Il =10.9pum, wy = 14.1pm). This cavity, with finesse F' = 480,000 and (g, k,y) /27 =
(110, 14.2,2.6) MHz, gives critical photon and atom numbers my = 2.7 - 107%, Ny =
6.1 - 1073, The coherent interaction energy exceeds other relevant energies in the
problem, in particular the atomic kinetic energy Ey = kp - 0.46 mK acquired in the
3-mm fall from the MOT to the cavity mode. Thus an atom can be caught within the
cavity if the system can be driven from its ground state to the trapping state when

the atom is at a maximum of the cavity field [21, 22, 23, 24].

4.1 Summary of Experimental Results

The implementation of this triggering strategy is summarized in Figure 4.1. Atoms
are dropped through the cavity mode while cavity transmission is monitored with
a weak probe beam. We define detunings of cavity and probe beam relative to the

atomic resonance frequency, i.e., A, = w.—w, and Ay, = w,—w,. The cavity is tuned
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Figure 4.1: Schematic triggered-trapping protocol for the atom-cavity microscope.

slightly below the atomic resonance and the probe is placed near the lower vacuum
Rabi sideband of the system, A,, < A, < 0, with a strength of 0.05 intracavity
photons. Such a weak probe allows high signal-to-noise for observation of an atom
entering the cavity mode, but does not significantly populate the excited states of
the atom-cavity system. Once the probe transmission rises above a predetermined
threshold, indicating that an atom is in a region of strong coupling to the cavity
mode, the probe power is increased to a level of about 0.3 intracavity photons to
create a confining potential around the atom.

Figure 4.2(a) shows the resulting cavity transmission for an atom trapped in this
way, with parameters A, /2m = —47 MHz, A,,/27 = —125 MHz, and 0.3 photons
in the empty cavity. Note that while the “high” probe level is set at 0.3 intracavity
photons, the level rises to [{a)|* ~ 1 (where a is the cavity field annihilation operator)

during parts of the measurement record due to the atom’s motion within the cavity
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Figure 4.2: Cavity transmission record for a trapped atom moving within the cavity
mode. (Apg, Ag)/2m = (=125, —-47) MHz. The probe beam is initially set to 0.05
photons in the empty cavity, and is turned up by a factor of six when triggering
occurs. For contrast, an atom freely falling through a constant-strength probe field
(0.3 empty-cavity photons) gives the transmission trace shown in gray.

field. Oscillations in transmission arise from atomic motion toward and away from
the cavity axis, with the level falling back to 0.3 photons when the atom eventually
heats out of the trap and escapes from the cavity. Using this protocol mean atom
dwell times in the cavity of 340 us are observed, with some rare events lasting up
to several milliseconds, as compared with the ~ 75 us free-fall time for an atom to
traverse the cavity mode. Lifetimes for a range of different experimental parameters
are presented in [19].

Lifetimes are limited by heating associated with the many decays and re-excitations
the atom-cavity system experiences during atomic motional timescales. For the pa-
rameters of Figure 4.2, the effective potential corresponds to a harmonic oscillation
period of 7, = 107 ps (1, = 9.38 kHz) in the radial direction and 7, = 1.46 us
(ve = 0.688 MHz) in the axial direction, while decay and re-excitation are occur-
ring at roughly . It is important to note that, while atoms are trapped via their
dipole interaction with a red-detuned light field in a manner reminiscent of the more
familiar free-space situation, the dynamics associated with the atom-cavity system
are quantitatively and qualitatively different from that case [26]. In particular, a

free-space potential of equal intensity would exhibit much greater diffusive heating
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and thus would largely fail to trap the atoms seen in this experiment (see Section
4.4.2); furthermore, the single-atom sensing which enables the trapping strategy is
only available through the use of the cavity QED system.

The most interesting feature of the measurement record for a trapped atom is
undoubtedly the oscillation in transmission. The period and amplitude of these os-
cillations agrees quantitatively with atomic orbital motion in the Gaussian mode
transverse to the cavity axis [25, 26]. Referring to Figure 4.2, we see that transmis-
sion oscillations exhibit considerable variation in period and amplitude. The exam-
ples (A, Py) and (Ay, P,) suggest that large-amplitude transmission oscillations have
longer periods than small-amplitude oscillations. We expect this relationship given
the anharmonic (roughly Gaussian) radial potential and initial atomic kinetic ener-
gies large enough to substantially sample the anharmonicity. Period P vs. amplitude
A are plotted in Figure 4.3 for experimental and simulated transmission oscillations
under the conditions of Figure 4.2. The solid curve in both plots is the prediction for
one-dimensional oscillation in the known effective potential, as sketched on the right.
Quantitative agreement is seen here and in numerous data sets at different trapping
parameters, as set forth in [19].

Trapped atoms in this system are tightly confined close to a single antinode of
the field, with typical axial amplitude < 50 nm in simulations. Experimentally, de-
tectable signatures from axial motion are not observed [25, 26, 19]; with our detection
bandwidth of 100 kHz, the role of axial motion at ~1 MHz would be to reduce the
amplitude of the transmission signals we do observe, through an averaging effect.
By analyzing the data for variation away from the radial predictions, we obtain an
operational bound of < 70 nm for the amplitude of axial motion, in good agreement
with simulations. This corresponds to a typical variation in g(7") due to axial motion
of less than 7%.

Thus transmission provides a direct, real-time record of an atom’s radial dis-
tance from the cavity axis; this record can also be used along with the known ef-
fective potential to reconstruct two-dimensional trajectories. An experimental trace

of transmission vs. time for a single trapped atom is shown in Figure 4.4(a), with
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Figure 4.3: Period P vs. amplitude A of transmission oscillations for trapped atoms
in experiment and simulation (parameters of Figure 4.2). Data agrees quantitatively

with simulations and with the prediction from the known effective potential (solid
line).
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Figure 4.4: (a) Cavity transmission record for a trapped atom moving within the
cavity mode (parameters of Figure 4.2). (b) Atomic trajectory in the radial (y,z) or
(p, 0) plane as reconstructed from the transmission data of (a).

the corresponding reconstructed trajectory in Figure 4.4(b). The ball indicates an
estimate in error of the reconstructed position, as discussed in the next section. Such
reconstructions are tested by applying the method to simulated atomic trajectories.
We note that while the two-dimensional reconstructions rest on the ability to neglect
axial motion, it is in fact a “burst” of axial heating that typically ends an atom’s
dwell time in the cavity. This axial heating occurs rapidly, so that for the final half-
cycle of atomic motion in the cavity our transmission signal is typically considerably
affected by the average over axial motion, and the two-dimensional reconstruction is

not reliable at its endpoints.

4.2 Reconstruction Algorithms and Validation

With axial motion neglected due to its small amplitude and the separation of timescales
between it and radial motion, the cavity transmission 7'(¢) corresponds directly to a
record of radial position p(t). Because of the cavity mode’s cylindrical symmetry, no
information is directly provided about the angular position 6(¢) of the atom in the

transverse plane. However, since we know the radial effective potential via steady-
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state solution to the quantum master equation, we can use the time record of p(¢)
in this cylindrically symmetric potential to derive an estimate of the atom’s angular
momentum L and thus of H(t) In this way we are able to use the time record of the
scalar quantity T'(¢) to obtain a two-dimensional atom trajectory.

Because the motion is not completely conservative, but includes momentum diffu-
sion and friction terms, angular momentum is not conserved and varies slowly during
an atom’s dwell time in the cavity. Thus we perform a running estimate of L(¢) rather
than applying a single value L throughout a given trajectory. This variation of L(¢)
and our ability to estimate it accurately provide important limits on the validity of
such two-dimensional reconstructions, as discussed below.

The reconstruction algorithm is validated by applying it to transmission traces
from simulated trapped-atom trajectories, with detection noise added. In simulations
the reconstructed two-dimensional trajectory can be compared with the “actual”
atomic position record to yield an estimate of error for the reconstruction method.
The simulations themselves are presented in more detail in [26] and in Section 4.4.1
below. To ensure close correspondence with the detection noise in the experiment,
actual “noise” data traces, taken at the appropriate transmitted powers, were added
to the (otherwise noiseless) simulated transmission records.

The trajectory reconstruction algorithm is as follows (see Figure 4.5) :

e Transmission data is acquired at 100 kHz detection bandwidth and digitized at
1 megasample per second. The transmission record is then smoothed with a 20

kHz 5-pole Butterworth filter [81].

e We neglect axial motion as discussed above, assuming an atom to be confined

to small-amplitude motion near a single antinode of the standing wave.

e From steady-state solution of the master equation, we know the cavity transmis-
sion as a function of atomic radius p. This relation is inverted through a lookup

table (with linear interpolation) to turn our smoothed transmission trace into

p(t)-
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Figure 4.5: Principle of 2-D trajectory reconstructions



52
e Also from steady-state solution of the master equation, we know the potential
Uerr(p). We divide p(t) into segments between a successive maximum and
minimum radius, p¢,,, and p!. . Now for each segment we calculate an angular

momentum via

L. = pz pz ) 2Tn(Uveff(p?magr:) — Ueff(p;nm,)) ) (41)
T (p?ma:v)2 - (p:TLZTL)Q

e Now we have a discrete set of stepwise angular momenta. We interpolate linearly

between them for a “running” estimate L(t).

e At each time now we have an angular velocity
0(t) = L) (4.2)

e We start the trajectory at some angle 6, and use p(t), 0(t) to obtain a 2-d

trajectory.

Three basic ambiguities will be clear from this algorithm, as illustrated in Figure
4.6: 1) the sign of the angular momentum is unknown, so the trajectory has arbitrary
handedness. 2) the initial angle 6, is arbitrary, so the resulting trajectory can be
rotated freely as a unit. Trajectories are presented with the atom entering from
above in a physically plausible manner, since the atom is initially falling under the
influence of gravity. 3) The trajectory is constructed in two dimensions, with the
axial motion confined within a single antinode, but no information is available about
which antinode the atom occupies during the trajectory.

Reconstructions of simulated trajectories are compared with the “actual” atomic
position record by first adjusting the overall sign of the reconstructed angular mo-
mentum and the initial angle 6, for the best possible match. An estimate of error is
calculated by comparing reconstructed and actual positions over a set of simulated
trajectories, excluding in each trajectory the first and last half-cycles of radial motion.

These initial and final cycles are not expected to reconstruct accurately due to lack of
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confinement (for angular momentum estimation) and contamination from axial mo-
tion (as mentioned above). Several example reconstructions of simulated trajectories
are shown in Figure 4.7.

Cases that cannot be reconstructed will also be clear from this algorithm and our
preceding discussion. First, extremely linear trajectories cannot be reliably recon-
structed because their angular momentum is so small that momentum diffusion can
change them by up to (and above!) 100% during a fraction of a radial oscillation
cycle. Reconstruction of such trajectories (that pass extremely close to the origin
and significantly far away again) should not be attempted. These cases (about one
quarter of trajectories in simulated and experimental data sets) are recognized with
an estimated 97% success rate via cavity transmission traces where the transmission
consistently reaches the maximum “allowed” value. Indeed the algorithm fails or
gives nonsensical trajectories if these cases are attempted, as shown in Figure 4.8.

Second, trajectories that closely approach the origin (within a micron or so) cannot
be reliably reconstructed from this algorithm and the data we use. The issue here is
that at our probe detuning (near the lower Rabi sideband), g(p) and thus also T'(p)
are nearly flat near p = 0. In principle this problem can be overcome with improved
detection schemes; I return to this question briefly at the end of Section 4.3. We note
that while this limitation may seem similar to the first one, and indeed both apply to
many of the same experimental data traces, they are rather fundamentally different.
One is a limit arising from dynamical noise (compared to motional timescales), while
the second is an issue of detection sensitivity.

Finally, the algorithm as stated above cannot deal with the case of a perfectly
circular orbit which yields an angular momentum estimate of zero over zero. One
might think that nearly circular orbits would be hopelessly mangled by this algorithm,
especially as noise obscures what small radial variations there are. In fact, nearly-
circular orbits work quite well, since the algorithm finds small wiggles (either real or
noise-related) and uses them to calculate an angular momentum which is nearly that
of the circular orbit at that radius. The resulting trajectory reconstruction is in fact

very good, as illustrated by the examples in Figure 4.9.
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Figure 4.7: Example trajectory reconstructions from simulated transits (parameters
The two-dimensional trajectory is shown on a square 30 ym on a
side. Dotted lines indicate the “actual” simulated trajectory while solid lines show
the reconstruction. In transmission traces, the filtered transmission is shown as a

of Figure 4.2).

dark trace overlaid on the original noisy transmission signal.
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the reconstruction. In transmission traces, the filtered transmission is shown as a
dark trace overlaid on the original noisy transmission signal.
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Figure 4.9: Example reconstructions of nearly circular trajectories (parameters of
Figure 4.2). The two-dimensional trajectory is shown on a square 30 um on a side.
Dotted lines indicate the “actual” simulated trajectory while solid lines show the
reconstruction. In transmission traces, the filtered transmission is shown as a dark
trace overlaid on the original noisy transmission signal.
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A possible stumbling-block for our trajectory reconstruction method is the case of
the trapped atom which has small-amplitude axial motion, heats out of the antinode
in a rapid “burst” as described above, but then falls back into an antinode due to the
action of friction and/or momentum diffusion. Such an event (an atom “skipping”
between antinodes) would have cavity transmission contaminated by a brief episode
of large-amplitude axial motion in the middle of the trajectory, causing our algorithm
to estimate p(t) wrongly during the “skipping.” In a survey of a simulated data set
of 410 trapped-atom trajectories of more than one radial oscillation cycle, fifteen
exhibited “skipping,” giving an =~ 4% rate for this particular issue. I mention this
rate here because it is rather different from (considerably smaller than) the likelihood

for axial “skipping” in some other parameter regimes, as discussed more fully in [26].

4.2.1 Note on Conservative Motion in Gaussian Potentials

As a point of reference when viewing these atomic trajectories, it is interesting to
note some characteristics of perfectly conservative two-dimensional motion in the
same effective potential. The potential, while not strictly analytic in form, is very
closely fit by a Gaussian in p. Conservative motion in this cylindrically symmetric
potential produces trajectories which are in general not closed. Closed trajectories
do arise — trivially, for zero angular momentum or circular orbits, or for small-energy

motion that samples only the harmonic portion of the potential.

4.3 Position Sensitivity Estimates

The trajectory reconstructions described above, with their validation and error esti-
mates from comparison with simulations, correspond to an atomic position measure-
ment with 2 pum resolution achieved in a timescale of 10 ps. This corresponds to a
position sensitivity of ~ 20 nm/v/Hz [25, 19].

We may compare this with a quick estimate of sensitivity limits for our cavity and
detection scheme (Figure 4.10). We begin by writing down a rough dependence of

measured cavity transmission on the atomic radial position: d(detected photons per
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time) /dp = 72k@2 % — oplo — = 212 (n is the overall detection efficiency and 2x

dg dp K wo
is the overall cavity decay). Here we have approximated z—’g‘ ~ % by reasoning that
the intracavity photon number drops from ~ 1 to ~ 0 over the resonance feature
width of ~ k. Our result then implies that, as an atom moves over distance Ap, the
corresponding signal (change in detected transmission) is 272 Ap.

To turn this into a sensitivity, we must ask how finely we can resolve a change in
the number of detected photons per unit time. That is a question of how big the noise
is relative to the signal. Overall there is roughly one photon in the cavity, giving a
photon-detection rate of 77(2x). Thus the shot noise is proportional to that value, i.e.,
shot noise for a given detection bandwidth B is \/2nxB. The signal-to-noise ratio in a
given bandwidth B is ~ 212 (Ap) /v/2nkB. Now if we define the sensitivity S, as the
G \/0—/\/_ Substituting

the relevant experimental values, this analysis yields a position sensitivity limit of

Ap detectable with unit signal-to-noise, we have S,

~ 1.0nm/ V/Hz. The discrepancy between this quantity and the measured sensitivity
can be somewhat attributed to technical noise — since technical noise is comparable
to the shot noise it should degrade the signal-to-noise and thus the sensitivity by a
factor of v/2 or so. That still leaves a very large gap, partially to do with the crude
estimates of the physics going on. The fact of the matter is that there is excellent
sensitivity on the side of the cavity mode (p ~ wg/2) and rather poor sensitivity
on-axis (p < wg) and at the edges(p > wy), while we average over everything.
Furthermore, our detection method falls short of realizing a full g2/ information

rate for sensing an atom in the cavity, as discussed more fully in Chapter 7.



60

To predict a sensitivity for the as-yet unobserved axial motion, we may replace
wo with A/4, the axial distance from field node to antinode, in the estimates above.
This yields a limit of 0.015 nm/ V/Hz in principle, or an extrapolated sensitivity of
0.3 nm/ V/Hz based on what we achieve in the transverse direction. However, the
increased sensitivity in the axial direction is offset somewhat in usefulness by the
correspondingly faster timescale for axial motion, meaning that to resolve the motion
on relevant dynamical timescales a higher measurement bandwidth must be employed.

From the point of view of quantum measurement and feedback schemes, it is of
considerable interest to compare our position sensitivity with the limits imposed by
the Heisenberg uncertainty principle — or, for quasi-continuous weak measurements
such as ours, the standard quantum limit. Following the analysis of [82] for broadband
position observation on a free particle, we estimate the time ¢, for backaction effects
to become discernible in the measurement record. Taking our radial sensitivity of
2 pm over 10us, the walk-off time is £, &= 1.5 ms. This means we could just begin
to see the effect in the longest transits, while the mean dwell time puts us about a
factor of five from the standard quantum limit.

One caveat in this analysis is the application of the free-particle theory to this
case in which the atom is in fact trapped; certainly another important consideration
in discussing the quantum nature of the atomic motion will be the vibrational quan-
tization of atomic motion in the trap. In the current experiments, quantization is
irrelevant in the radial dimension, where the vibrational frequency is 9.4 kHz com-
pared to typical energies of 9.8 MHz. However, in the tightly-bound axial direction
the vibrational levels are spaced by 0.7 MHz, which begins to be comparable to the
typical axial energy of about 3 MHz during most of a trapped atom’s lifetime.

Improved signal-to-noise is undoubtedly desirable for developing “atom-cavity mi-
croscopy” and exploring quantum measurement limits. One opportunity for improved
sensing would be to incorporate full detection of the cavity output field, i.e., ampli-
tude and phase of (a) rather than the |{a)|?> measurement we now peform. Such full
detection has been implemented in a cavity QED setting in [47], where atom-transit

“phasors” were observed. In that work the ability to access phase-shift information
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for the cavity field opened up the possibility for high signal-to-noise observations
in a farther-detuned regime. Besides that possibility, full detection in our scenario
would enhance signal-to-noise for observations of atoms passing very close to optimal

coupling, with ¢(7) ~ go.

4.4 Why Do Reconstructions Work in This Pa-
rameter Regime?

In this section we examine more closely the trapping potential and momentum dif-
fusion of the triggered-trapping experiment. This analysis, largely presented in [26],
was originally motivated by a desire to understand two aspects of our experiment.
First, to what extent was it important that the trapping was a “binding” between a
single atom and a single photon rather than an optical dipole force trap for a single
atom with a classical light field? Second, how could we characterize the dynamics
that made the motion of our trapped atoms quasi-conservative (and thus allowed
trajectory reconstructions), especially considering the very different trapped-atom
dynamics in a conceptually similar experiment (Pinkse et al., [50])7 I present this
material here largely because it helps to characterize the dynamical regime that allows
trajectory reconstructions, thus filling out the discussion of Section 4.2. Furthermore,
the qualitative nature of the dynamics as reflected in the potentials and heating rates
provides a relatively simple way of predicting conservative vs. diffusive trap dynamics
in other parameter regimes; this is a useful tool in evaluating dynamics for different
optical cavities, as discussed here and in Chapter 7.

To begin with we elucidate the quantum vs. classical nature of the trapping po-
tential and momentum diffusion. In particular we find that, for the parameters of the
atom-cavity microscope [25], the trapping potential and momentum diffusion have a
quite different character from what would be expected of an equally deep standing-
wave trap in free space. The usual (semiclassical) fluctuations of the dipole force along

the standing wave are suppressed by an order of magnitude, which represents quali-
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tatively new physics for optical forces at the single-photon level within the context of
cavity QED. In the parameter regime of Pinkse et al. [50], still in the strong-coupling
limit but with larger critical parameters (myg, Ny), the situation is rather different.
The cavity and atom in this experiment had (go, %, 7v.)/2m = (16,1.4,3) MHz. For
these parameters, even when the atom-cavity system is strongly coupled and driven
such that it has a mean intracavity photon number of roughly one, the trapping po-
tential and momentum diffusion are only slightly different from those in a free-space
standing wave. We show that in the parameter regime of [50] the heating rates are
such that the atom could be expected to gain energy equal to a significant fraction of
the total trapping potential during a single motional oscillation period for both axial
and radial motion. By this measure the heating rates in the atom-cavity microscope
are very much slower, indicating more nearly conservative motion, and this could be
expected to have a profound effect on the qualitative nature of the dynamics in the
two experiments.

Ref. [26] also presents simulated transits for both experiments, and discusses the
qualitative features of atomic dynamics in both cases. For the parameter regime of the
atom-cavity microscope, conservative radial motion dominates diffusion and standing-
wave motion, with atomic trajectories localized at peaks of a single standing-wave
antinode. Atoms trapped with the mean trapping time execute several radial orbits.
The eventual escape is typically due to heating along the cavity axis. By contrast, for
the experiment of [50], a trajectory of typical duration does not experience a complete
radial orbit and in fact resembles a scattering event, with a large contribution from
radial diffusion as well. For these events the observed localization time is comparable
to the time for free flight through the cavity. Axially the simulations show that in
longer-duration transits the atom frequently skips between wells of the standing-wave

potential due to repeated heating and recooling.
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4.4.1 Quasi-classical Model for Atomic Motion in the Cavity

The atom-cavity system is modeled by a quasi-classical treatment presented in [26, 83];
the term quasi-classical is used to distinguish this approximation from the usual
semiclassical treatment which neglects the full quantum nature of the cavity field.
Here, the atomic internal states and cavity field are treated with their full quantum
character retained. The atomic motion is treated in a quasi-classical approximation
which requires the spread of its wavepacket in both position and momentum space to
be small compared to relevant scales in the problem. Specifically, an atom must be
localized to much better than an optical wavelength of the atom or cavity resonance
frequencies. This is equivalent to the requirement that the momentum spread be large
compared to an individual momentum kick associated with spontaneous emission or
exchange of excitation with the cavity field. At the same time, however, an upper
bound on momentum spread (or equivalently lower bound on position spread) must be
satisfied. This bound arises by considering the Doppler shifts of relevant fields as seen
by the atom; Doppler shifts due to the momentum spread must be small relative to
atom and cavity linewidths. The consistency of these conditions and their application
to the atom-cavity system rely on a separation of timescales between atomic motion
and atom-cavity internal dynamics; this separation is easily satisfied for motion in the
radial direction, and still applicable though approaching its limit for motion in the
axial dimension. Under these conditions we may calculate all quantities of interest in
the system by referring to steady-state solutions of the master equation (Equations
2.6-2.7) for each atomic position 7.

The treatment outlined above and fully set forth in [26, 83] can give us a great
deal of information about the nature of the dynamics that may be expected in the
parameter regimes relevant to the atom-cavity microscope and to [50]. In particular
we are interested in whether quantization of the cavity field leads to any significant
change in the dynamics, in the sense of asking whether the atomic motion is very
different in the cavity from what it would be in a free-space standing wave of the same

intensity and geometry as the cavity mode. Secondly, we can investigate the nature
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of the resulting atomic motion in the cavity field, which can be either predominantly
conservative or significantly diffusive and dissipative, depending on the particular
parameters of interest.

To get a feel for the type of atom dynamics expected, effective potentials and
heating rates were calculated for both the axial and the radial directions of motion.
Friction coefficients may also be calculated, but we omit them in this discussion
because their contribution to the motion is much smaller than that of momentum

diffusion in the atom-cavity microscope. The force operator is given by
F(7) = =iV g(7)(a'6 + ast) = —hgo Vo (7) (al6 + as?). (4.3)

The effective potential for the atom in the cavity field may be calculated from the

force by

-

mmm:—A%ﬁmyWﬂ (4.4)

The heating rates represent the average increase in the motional energy due to the
momentum diffusion at a given position 7 and may be calculated from the diffusion

tensor according to
dFE

“2(7) = TH[D ()] /m. (45)
where m is the atomic mass. The total momentum diffusion tensor D has two distinct
contributions D and E. The first contribution arises intuitively from decays and re-
excitations which switch the system stochastically between the trapping potential of

the strong-field seeking state and the flat potential of the overall ground state. This

contribution to momentum diffusion is given by
00 1 . . . . . .
DU:A dr[S(E(T)E5(0) + Fi(0) F5 (7)) — (F3)(E})]. (4.6)

(Recall that the time dependence of F' arises because we are in the interaction pic-
ture with respect to the probe frequency w,.) The other contribution to momentum

diffusion comes simply from momentum kicks associated with atomic spontaneous
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emission, and is given by
Ey; = eijh*(2m/\)* v, (676). (4.7)

Here ¢ describes the usual dipole distribution of atomic spontaneous emission and is

diagonal, with €,, = % and g,y = €,, = %.
Since g(7) = g(p, x), we neglect the § coordinate for the time being and write the

potentials and diffusions as functions of position (p, z).

4.4.2 Potentials and Heating Rates for Atomic Motion

Gathering up the results — and notation — of the preceding discussion, we see for
example that the axial potential at the center of the Gaussian mode is U, (0, ) =
- fo””u?(o, x'))dx" and the associated axial heating rate is dE(0, z) /dt = Dxx(0, z)/m.
These quantities along with their radial equivalents Ugss(p,0) and dE(p,0)/dt are
plotted in the solid traces of Figure 4.11 for the parameters of the atom-cavity mi-
croscope. The force and momentum diffusion coefficient for the cavity system were
calculated according to the formulae described above by numerical techniques based
on [34, 83]. The field state is expanded in terms of number states and truncated at an
appropriate level and a matrix continued fraction algorithm is used to calculate D.
The axial potentials and heating rates have A/2 = 426 nm periodicity inherited from
the standing-wave field strength. Observe that the axial heating rates have minima
at both field antinodes and field nodes.

The first thing to note is that the axial and radial heating rates are very different
from one another. In the radial direction, heating is dominated by diffusion due
to spontaneous-emission recoils. Axially, however, the reactive or dipole fluctuation
component of the diffusion dominates. This is because the reactive component is
proportional to the gradient of the field squared, which is much larger for the axial
direction where variations are greater (by a factor of 2mwgy/A). This contribution also
has the property that it does not saturate with the atomic response.

It is already clear that it should be possible to trap individual atoms, since the
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Figure 4.11: Effective potentials and heating rates for the ACM parameters, with
(9o, K,v1)/2m = (110,14.2,2.6) MHz. Detunings are (A,,, A.)/27 = (—125, —47)
MHz and the drive strength corresponds to 0.3 photons in the empty cavity. The
quantum prediction is shown by solid lines, with the semiclassical prediction given in
dashed lines.

potential depth of roughly 2.5 mK is greater than the initial energy of the atoms in the
experiment (around 0.46 mK) and the heating rate in the radial potential is relatively
slow. Over 50 pus (a timescale over which the atomic motion is strongly affected by
the potential) the total heating will typically still be small compared to the depth
of the potential. However, the importance of the quantum character of the relevant
fields or phenomena is not ensured by the statement that trapping occurs with mean
field strength of about one photon, since this is trivially the case in an equivalent
free-space volume for a field of the same intensity as that inside the cavity. Just as
in the cavity, a free-space field at w, < w, creates an attractive potential which leads
to the well-known red-detuned dipole trap for neutral atoms (see, e.g., [32]); whether
the intracavity trap differs in any recognizable way from its simple free-space cousin
is not immediately clear.

In order to see whether a full quantum description of the atom-cavity is necessary

in order explain observed effects, Figure 4.11 also shows the values calculated for an
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atom in an equivalent free-space standing wave, calculated by standard techniques
[84]. This free-space standing wave has the same geometry as the cavity mode and
the same peak field strength go|(a)|?(0,0). The detuning between the free-space field
and the atom is chosen to be A,,. Perhaps surprisingly, the only large difference
between the two models is in the axial heating rate, where a strong suppression of the
axial heating is seen in the quantum calculation. This suppression is an effect of the
quantized nature of the intracavity field. The self-consistent coupling of the cavity
field and atomic position (in a semiclassical sense) cannot explain this suppression;
in fact, by itself this coupling would lead to an increase in diffusion over the free-
space case, since the atomic motion within the cavity induces steeper gradients in the
field. The suppression of diffusion is then evidence that it is necessary to use a fully
quantum description, and speak of single photons rather than classical fields for these
experimental parameters. As discussed in [25], this suppression of the axial heating
was essential for the trapping of atoms in the cavity. Thus for these experimental pa-
rameters, the eigenvalue structure of Figure 2.5 leads to profound differences between
the standard theory of laser cooling and trapping and the extension of this theory to
the regime of strong coupling in cavity QED.

By way of comparison, the same quantities are plotted for the parameters relevant
to Pinkse et al. [50] in Figure 4.12. The smaller value of gy in this experiment leads
to a smaller effective potential, since the spatial gradients of the dressed state energy
levels (which lead to the potential) are proportional to go. More importantly, the
diffusion values calculated from the full quantum model discussed above are now
little different from those of the equivalent free-space standing wave. This lack of
a clear difference in potentials or diffusion indicates that the quantized nature of
the field is not required to explain the radial trapping observed in [50]. Note that
the resulting axial heating rates are essentially the same as those of Figure 4.11
in absolute magnitude; however, in the atom-cavity microscope the potential has
been made deeper without the expected corresponding increase in diffusion. For the
parameters of [50] one additional interesting feature appears — enhanced cooling of

the atomic motion relative to the parameters of the atom-cavity microscope. This
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Figure 4.12: Effective potentials and heating rates in a less conservative parame-
ter regime. Here (go, k,7.)/2m = (16,1.4,3) MHz. Detunings are (A, Ag,)/2m =
(—40,—35) MHz, and the drive strength corresponds to 0.9 photons in the empty
cavity. Solid lines are the quantum prediction while dashed lines are the result of the
semiclassical calculation. Note that axial quantities here have a periodicity of 390
nm, since this experiment used Rubidium atoms with a resonant transition at 780
nm.

arises through cavity-mediated cooling [85, 86], and has an important effect on the
axial dynamics of atoms in the experiment of [50].

We now wish to use these potentials and heating rates to gain an intuitive under-
standing of the character of atomic motion that we would expect to observe in each
case. In particular, we are interested in exploring the degree to which the atomic
motion in the potential can be close to conservative motion, or likewise the degree to
which it could be dominated by diffusion.

The timescales of relevance to the conservative motion may be characterized by
the period associated with small-amplitude oscillations in the bottom of the axial
(1. = 1/v,) and radial (7, = 1/v,) potential wells. If the energy changes only by a
small fraction of the total well depth U, over this timescale, motion will be nearly
conservative. Figure 4.13 plots the potentials and heating rates for the two cases in

this new set of scaled units; heating rates are expressed as an energy increase per
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oscillation period, as a fraction of Uy (note as the atom heats and explores the an-
harmonicity of the potential, the period of oscillation only lengthens). Interestingly,
we see a clear qualitative difference in the nature of the atomic motional dynamics.
For the parameters of the atom-cavity microscope (solid lines), in the radial plane
spontaneous emission gives only small perturbations to the energy over the timescale
of single orbits, and motion is nearly conservative. We note that this low level of
diffusion enabled the reconstructions of single atom trajectories presented earlier in
this chapter, for which the small changes in angular momentum could be accurately
tracked. A quite different regime is found for the parameters of [50] (dash-dotted
lines), where the radial atomic motion is strongly affected by heating from sponta-
neous emission kicks. Here an average atom gains an energy of nearly half the well
depth in what would be a radial orbit time, adding a large diffusive component to the
motion. This same scaling shows that the axial heating rate is also much more rapid
on the scale of the potential in [50], which suggests that the atom will more quickly
escape its confinement near an antinode and begin to skip along the standing wave.
The qualitative understanding of the atomic motion gained here is borne out by the
results of [25] and [50], and is explored in more detail in the simulations of [26].

From comparison of Figure 4.13 with simulated dynamics in [26], we arrive at a
means for predicting the conservative or diffusive nature of single-photon trapping
for atoms in varying parameter regimes. For example, I have calculated effective po-
tentials and diffusion rates for a hypothetical triggered-trapping experiment in the
cavity currently used in the other cavity QED lab in our group. This cavity has
(g0, k)/2m = (32,4) MHz and a mode waist of wy = 23.8 yum. The corresponding
critical atom and photon numbers are (N, mgo) = (2.0 - 1072,3.3 - 1072). For com-
parison, the atom-cavity microscope parameters were (go, x)/2m = (110, 14.2) MHz,
giving (Ng,mg) = (6.1-1073,2.8 - 10~*), with a mode waist of wy = 14.1 um.

I approximated the atom-cavity microscope conditions by keeping the cavity-atom
detuning A, constant relative to gy and placing the probe a fixed fraction of x inside
(to the blue of) the lower dressed state resonance. Thus for the longer cavity (and

smaller g, k) I set (Ape, Aa)/2m = (—37,—14) MHz. To consider a single-photon
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Figure 4.13: Heating per motional cycle measures conservative character of motion.
Solid lines show the parameters of the atom-cavity microscope, while dash-dotted
lines correspond to the situation of [50].

trapping experiment, I set a driving level of 0.3 photons in the empty cavity at
this detuning. For this case I found an effective potential depth of Uy = 0.57 mK,
with radial momentum diffusion giving a heating rate dE/dt = 0.21Uy/7,. Axial
motion was also characterized by higher momentum diffusion per motional cycle than
we experienced in the atom-cavity microscope. Thus a single-atom, single-photon
trapping experiment in this cavity would, not surprisingly, yield dynamics similar
to those of [50] rather than to those of the atom-cavity microscope. Decreasing
critical atom and photon numbers induces a transition from atom-cavity scattering
experiments to largely conservative atom-cavity binding; in this sense the atom-cavity

microscope could as well be termed the atom-cavity molecule.



