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Chapter 2

Cavity QED and the Road to
Strong Coupling

2.1 “I Am Quantum. Hear Me Roar.”

Crucial to the realization of manifestly quantum effects in cavity QED is strong cou-
pling, a condition in which the coherent coupling between atom and cavity field domi-
nates dissipative rates in the system. For a two-level atom optimally coupled to a cav-
ity mode (see Figure 1.1), the dipole-field coupling is given by the Jaynes-Cummings

interaction Hamiltonian [28]

A

H;p = hgo(ta + Gab), (2.1)

where (61,6) are dipole raising and lowering operators, (a,a') are field annihilation
and creation operators for the cavity mode, and g, is one half of the single-photon
Rabi frequency. This rate describes the exchange of excitation between the atomic
dipole /i, initially in the ground state, and the electric field El,cav built up by a single

photon of frequency w residing in the mode volume V,,, of the optical cavity:

hw
2€0Vm ‘

hg(] — ﬁ . El,cav = U (22)

Thus gq is a rate of coherent evolution which must be compared with the dissipative

rates for the system. These, in turn, are the atomic spontaneous emission rate 7,
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and the cavity field decay rate k. While the regime of (k,7,) >> go is described by
classical treatments, we will see that a quantum theory is necessary to account for
physics at go >> (k,7.), in the strong-coupling regime [29, 30, 31].

In a classical description of spectroscopy in an optical cavity, an atomic sample
acts as a dispersive medium for the coherent light field circulating in the cavity mode
volume. Classical behavior gives way to quantum as single quanta, whether of the
atomic sample or of the light field itself, begin to induce nonlinear response in the
system. To see how this may be accomplished, we begin with the familiar case of a
“bulk” sample and consider how a strong interaction can be preserved as the number
of particles is scaled down towards unity. This intuitive discussion is complemented
by a more quantitative development in the following sections.

Consider first the interaction of light with a “bulk” atomic sample placed inside
the cavity mode. The atoms in the sample scatter the optical field, producing a
wavelength-dependent refractive index in the cavity mode volume. The atomic sample
affects the resonance properties of the optical cavity if the atom-field interaction
strength and the number of atoms are sufficient to noticeably alter the free-space
dispersion relation for the light. Thus, if a single atom placed within the mode
volume is to act as a nonlinear medium, it must have a large effective cross section for
scattering intracavity light. First, then, the atom should have a near-resonant dipole
interaction with the optical field mode supported by the cavity. Second, scattering
should be enhanced by ensuring that optical wavefronts have every opportunity to
interact with the atom in the process of being transmitted through the cavity. This
second requirement is accomplished by constructing cavities with high finesse and
tightly confined modes, so that light traverses the distance between the mirrors many
times before exiting the cavity and furthermore has a high chance of interacting with
the atomic cross section on each pass. Tight mode confinement has the additional
benefit that the light is thoroughly diffractively mixed and thus the interaction is
truly with a single cavity mode that is well defined throughout the interaction process.
Quantitatively, the importance of a single atom for the response of the intracavity

field is described by the single-atom cooperativity parameter C; = g2/2v, k, or by its
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inverse, the critical atom number, Ny = 27, x/g¢ [31]. The single-atom cooperativity
can be re-expressed in terms of familiar properties of the cavity (mode waist w, and
finesse F') and the atomic transition (wavelength A). One finds it scales simply as
Cy ~ %1’1\)—%, reflecting the requirements outlined above. Note that C; does not scale
explicitly with the length of a Fabry-Perot cavity.

On the other side of the coin, consider the circumstances necessary to make the
quantized nature of the light field relevant to observations of the cavity system. In
the classical regime the cavity mode volume is occupied by a large-amplitude coherent
field. To fully probe the atomic response function, the electric field associated with
the light must be strong enough to saturate the atomic dipole. How, then, is a single
photon to accomplish this saturation? Simply put, the photon must be confined to a
small volume so its electric field strength within that volume becomes large. Indeed,
making use of the single-photon Rabi frequency gq, we can define a saturation photon
number my = 7% /2g2 [31]. As promised, this quantity is inversely proportional to the
cavity mode volume through the factor 1/¢2; it is, however, completely independent
of the cavity finesse.

The physical significance of these critical parameters will be revisited in later
sections. For now, we simply observe that if single quanta are to leave their stamp on
observations in an optical cavity, the critical atom number and/or saturation photon
number must satisfy (Ng, mo) < 1. Note that these requirements imply go > v, but
not necessarily gy > x as well. Thus manifestly quantum effects in cavity QED span
a range of parameter regimes of which true strong coupling is only the most extreme.
The transition from weak to strong coupling carries us from a classical description
of light fields and scatterers to a regime in which the atom and cavity field must be

considered as a single entity bound by a shared quantum of excitation.



13
2.2 Quantitative Description of the Atom-Cavity

System

As is often the case, the conceptually and computationally simplest starting point for
describing the atom-cavity system is the purely quantum limit, where the atom and
cavity evolve via their coherent coupling in the absence of dissipation. This system

simply obeys the Schrodinger equation with the Jaynes-Cummings Hamiltonian [28],
Hje = hwala + hiwé'e + hge(act + als). (2.3)

Here we consider a two-level atom and w is the common resonance frequency of both
atom and cavity. Diagonalizing this Hamiltonian gives rise to the well-known Jaynes-
Cummings ladder of eigenstates for the coupled atom-cavity system, as illustrated
in Figure 2.1. The coupled eigenstates are characterized by the equal sharing of
excitation between the atomic dipole and cavity field, so that the n-excitation bare

states |g,n) and |e,n — 1) of energy nhw are replaced by

1

|£n) 7

(lg.n) £ le,n —1)) (2.4)
with corresponding energy eigenvalues
Ey, = nhw 4 \/nhg. (2.5)

To quantitatively predict actual atom-cavity dynamics, a treatment that moves be-
yond this idealized picture to include dissipation and driving terms will be necessary.
Two qualitative features, however, are worth noting immediately from the Jaynes-
Cummings ladder itself.

First, in the most fully quantum regime, the atom and cavity field are best de-
scribed in a symmetric treatment where they combine to create a single entity sharing
excitation equally. Most notably, for n > 1 excitation, there exist strong-field-seeking

states |—,) that can be thought of as atom-cavity states bound together by the shar-
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Figure 2.1: Jaynes-Cummings ladder of atom-cavity eigenstates

ing of a quantum of excitation. If we permit a detuning A., between the cavity and
atom resonance frequencies, the sharing of excitation in these “bound states” becomes
asymmetric but the qualitative properties of the ladder remain unchanged.

Second, while a ladder of strong-field- and weak-field-seeking states recalls the
dressed states of atomic interaction with a coherent light field (e.g., in free space) [32],
the Jaynes-Cummings ladder reflects atomic coupling to a small number of quantized
excitations in the cavity mode rather than to a strong classical field in free space.
The dressed state splitting at each level of the ladder is proportional to \/n. In the
limit of large n, many photons in the field, the ratio of splittings in successive levels
is % — 1; in this way we recover the free-space, classical-field ladder in which
dressed states at each rung are split by a constant £Af).

In the cavity, on the other hand, where just a few excitations create a large
response, the anharmonic nature of the level splittings with increasing n is a feature
arising explicitly from the quantized nature of the cavity field. Thus, to observe

effects of field quantization on the spectrum of atom-cavity response, we can expect
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that experiments must probe the saturation behavior of the system and not simply
rely on spectroscopy in the weak-driving limit of n < 1 system excitations. One caveat
to this observation, however, is that nonclassical aspects of the system dynamics can
in fact be observed for weak driving; for example, photon statistics of the cavity

output field in time are of interest even for experiments in the weak-excitation limit.

2.2.1 Master Equation in the Presence of Dissipation

In the presence of dissipation and driving, and allowing for detuning between the
probe field and the atom and cavity resonant frequencies, the Jaynes-Cummings
Hamiltonian becomes part of a master equation (see, e.g., [32, 33, 34]) for the joint
atom-cavity density operator p. We consider a driving (and probing) field e of fre-
quency wp, a cavity resonant at w., = w, + A,,, and an atomic resonance frequency
we = Wy + Agp. In the electric dipole and rotating-wave approximations, and in the

interaction picture with respect to the probe frequency, the evolution is described by
S 5057 — 515 55 5oat _ ata P
p=—3[Ho. pl +71(26p5" = 6'6p — p6'6) + w(2apd’ — a'ap — pi'a), (2.6)

Hy = hAgata + iA,616 + hg(P)ast + a'6] + he(a + a). (2.7)

Here ¢(7) is the coupling strength which takes into account the atomic position
within the cavity mode. For a Fabry-Perot cavity supporting a standing wave mode
with Gaussian transverse profile, ¢(7) = go¥)(F) = gocos(2mz/N)exp[—(y* + 2%)/wi].
The cylindrical symmetry of () suggests the use of cylindrical coordinates (p, 6, ),
in which case we write g(7) = gocos(2mz/\)exp[—p? /wi]. In the fully quantum treat-
ment, the atomic position 7 is itself an operator; in experiments to date a quasi-
classical treatment suffices, so the atom may be considered a wavepacket with 7 a
classical center-of-mass position variable.

This master equation provides a valid description of the atom-cavity system in
any range of parameters (go,%,7v.). It can in general be solved only numerically,

but certain limits, either of inherent rates or of driving strengths, permit analytical
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treatments of limited application. In the sections below, we discuss behavior exhibited
by theory and experiment in several different parameter regimes from semiclassical

to very strongly coupled.

2.3 Semiclassical Approximation: Optical Bista-
bility

Certain parameter regimes are well described by an approximation in which we derive
from Equations 2.6-2.7 the equations of motion for the expectation values of atom
and cavity properties, i.e., (a) and (4); then within these equations of motion all
joint atom-cavity operator moments are assumed to factor, e.g., (af6) = (a')(5).
This corresponds to a semiclassical treatment in which the field is described by its
coherent amplitude (a) = a. Such a replacement is valid in the limit of large critical
parameters (Np,mg) >> 1, in which case a collection of atoms acts as a classical
nonlinear intracavity medium. Within this approximation, Equations 2.6-2.7 yield an
analytic expression for the driving field € = x,/moY as a function of the intracavity
field (@) <+ \/moX. This relation is the well known optical bistability state equation

[35]:
2C 206

b pwrny el

V=X[1++—
U+ e il

(2.8)

Here we have employed the standard notation for the bistability equation, related
to our previous discussions by detunings 6 = A,,/v, and ¢ = A, /k, and N-atom
cooperativity parameter C' = NC}.

The system saturation behavior described by this relation is shown in the dotted
curve of Figure 2.2. The figure plots T, the ratio of full-cavity to empty-cavity
transmission, as a function of input driving strength expressed in units of the steady-
state photon number ngy in the empty cavity. The calculation shown is actually for a
system in the strong-coupling regime, namely the cavity of Ref. [20], with w, = w,
and w, detuned 20 MHz below resonance. Here the bistability prediction is at variance

with the quantum prediction and with actual system behavior, as discussed later in
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Figure 2.2: Semiclassical and quantum saturation predictions for parameters
(9o, K, v1)/2m = (120,40,2.6) MHz and (w, = w. = w, + 27(20 MHz)). T, the ratio
of full-cavity to empty-cavity transmission, is plotted as a function of input driving
strength 725 (in units of empty-cavity photon number). Experimental data is shown
as circles with error bars.

this chapter. In the optical bistability state equation the correspondence between
the semiclassical amplitude X and the actual operator expectation value {a) is only
approximate; in general the intracavity state is not an exact coherent state, but
the bistability equation gives an input-output relation between the driving power
~ Y? and a transmitted photocurrent ~ X2 which is valid insofar as the underlying
approximation is justified.

Optical bistability effects in general have a long history in measurements within
the context of laser physics. Specific cavity QED experiments measuring optical
bistability in two-level systems date from the early 1980’s [36, 37| and are realizable
in relatively low-finesse cavities interacting with a sample of atoms crossing the cavity
mode in a thermal atomic beam. However, the bistability state equation is also valid
when (Np,mg) < 1 in the special case of very weak driving, n << 1 excitations in
the system. In this case, only the first (n = 1) excited states of the system must be

considered, and the resulting relationship of joint operator moments makes factoring
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formally valid. The correspondence is reflected in the coincidence of the quantum and
semiclassical curves of Figure 2.2 at very low driving strength. This fact comes as
no surprise in the light of our earlier discussion of the Jaynes-Cummings ladder; the
structure of the spectrum reflects the quantized field only for higher drive strengths
that sample the anharmonicity of the system eigenvalues. Optical bistability also
describes the steady-state behavior of an atom-cavity system where inherent strong
coupling is washed out by the simultaneous interaction of many atoms with the cavity
mode.

Even in the regime of the optical bistability equation, nonclassical dynamics of
the atom-cavity system are accessible. Experiments measuring the photon statistics
of the cavity output field have demonstrated nonclassical correlation functions of
the output light, with similar work pushing from this limit to the inherently strong-
coupling regime [38, 39, 40, 41].

2.4 Interacting Single Quanta: The 1-D Atom

By increasing cavity finesse and decreasing mode volume, we move to a regime of small
critical parameters (Ng,mg) < 1. Here single atoms and photons induce nonlinear
effects in the system response. However, this condition is still consistent with overall
dissipative dynamics if the cavity decay rate is fast relative to the coherent coupling
go- This regime, known as the “bad cavity” limit, is realized for k > g3/k > v,. In
this limit, single quanta within the cavity mode interact strongly with one another,
but coherence and information leak rapidly from the system into the output channel
defined by cavity decay. Thus the atom-cavity coupling is essentially perturbative,
and the atom and cavity each retain their distinct identities but with decay rates
modified by the interaction. For instance, an atomic excitation, rather than decaying
via spontaneous emission at rate «,, is much more likely to be exchanged into the
cavity field and subsequently decay via the cavity; this preferential decay via the
cavity mode at rate g2/k gives an effectively “1-D atom.”

Experiments in this parameter regime include the quantum phase gate [42] and the
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use of squeezed light in cavity QED [43]. Both of these effects involve the production
of nonclassical effects on the light field due to nonlinearities mediated by a “1-D
atom” phenomenon. Thus single photons can interact with one another by means
of their common coupling to an intracavity atom. These effects are seen with single
strongly-coupled atoms; since these experiments delivered atoms to the cavity via
thermal beams of atoms transiting a cavity mode, a background of weakly coupled
or “spectator” atoms acted to dilute the inherent single-atom effect. Nevertheless,
the essential character of the effects was accessible with strongly-coupled atoms flying
across the cavity mode quickly against a background of spectators in the wings of the

cavity mode.

2.5 Strong Coupling: Vacuum Rabi Splitting, Trap-
ping, and Sensing

By further increasing cavity finesse, we arrive at the regime of strong coupling for the
atom-cavity system. In this regime, where gy >> (k,7y,), single quanta are significant
and, furthermore, their coherent interaction dominates other rates in the system. It
is in this limit that observations most closely reflect the ideal structure of the Jaynes-
Cummings ladder. Exchange of excitation at rate gq is no longer perturbative, and
the system crosses over to a set of joint atom-cavity eigenstates with widths set by
decay rates x and ;. The coupled atom-cavity transmission spectrum reflects this
eigenvalue structure via the vacuum Rabi splitting [44], in which the empty-cavity
Lorentzian line profile is transformed into a double-peaked transmission function as
shown in Figure 2.3 and first directly observed in [45]. The positions and widths of
the vacuum Rabi sidebands depend on the strength of the driving field € as well as
the parameters (¢(7), k,7v.), and are found via steady-state numerical solution of the
master equation.

To fully realize the quantum mechanical phenomena inherent in Equations 2.6-2.7

for strong coupling, yet another rate must be made small relative to the coherent cou-
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Figure 2.3: Vacuum Rabi splitting for (go, %, v,) = 27(120, 40, 2.6) MHz and 0.5 pho-
tons in the empty cavity on resonance. Intracavity |(a)|?, from steady-state solution
of the master equation, is plotted as a function of probe detuning (w, — w,)/27.

pling. This is the rate for decoherence as information exits the system via movement
of the individual atoms contributing to the effective atom number N. If excitation
is distributed among an ensemble of atoms, each poorly coupled or coupled for a
short time as it flies across the cavity mode, the true structure of the single-atom
Jaynes-Cummings ladder cannot be observed. Thus experiments designed to probe
the strong coupling regime must be carried out with cold atoms, in a situation where
atom number N ~ 1 is realized through an actual single atom strongly coupled for a
time 7 satisfying 1/7 << go. Experiments of this type to date have involved a cloud
of atoms trapped in a magneto-optical trap (MOT), cooled via standard sub-Doppler
techniques, and then dropped or launched so that single atoms arrive in the cavity
mode volume with small velocities and interact one at a time with the cavity field.
Such an experiment is shown schematically in Figure 2.4; single atoms fall through the
cavity mode and are detected via real-time changes in the transmission of a continu-
ously monitored cavity probe beam [46, 20, 47, 48, 49]. More recently, single atoms
have also been caught within the cavity by means of the quantized field [25, 50] or
trapped there using a separate far-off-resonance trap (FORT) [51, 52]. Other efforts
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Figure 2.4: Schematic experiment with cold atoms in cavity QED.

in progress include the use of cavities with magnetic traps for atoms [53], trapped and
cooled ions [54, 55], and FORTSs chaining atoms through the cavity in the transverse
direction [56, 57).

Cavity QED with cold atoms in the strong coupling regime has enabled observa-
tion of the vacuum Rabi splitting for single atoms in an optical cavity, and of the
quantum saturation of the atom-cavity response. In Ref. [20], for example, measure-
ments of cavity transmission vs. input driving field strength clearly deviate from the
prediction of the optical bistability equation and are instead consistent with numerical
solutions of the quantum master equation itself (Figure 2.2, solid line and experimen-
tal data points). This work was carried out with laser-cooled Cesium atoms dropped
through an optical cavity of length [ = 10.1 pum and finesse F' = 180, 000, leading to
(g0, K, v1) = 2m(120, 40, 2.6) MHz and critical parameters (N, mg) = (0.014,2-10~%).
This and subsequent experiments [25, 50, 51] thus operate in a regime of critical atom

number and saturation photon number orders of magnitude below unity. In this case
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driving fields which populate the cavity mode with coherent amplitudes at or even
below one photon are sufficient to induce nonlinear response in the system. Likewise,
effective atom numbers well below one interact strongly with the cavity field and alter
the cavity transmission spectrum. Therefore the presence of a single atom, even when
poorly coupled or just entering the cavity mode volume, can be detected with high

signal-to-noise via the transmission of a probe beam through the cavity.

2.5.1 Real-Time Detection and Trapping with Single Pho-

tons

A striking demonstration of strong coupling in optical cavity QED comes in recent
experiments which actually bind an atom in the cavity by creating the “bound-state”
|—) of the Jaynes-Cummings ladder [25, 50]. Figure 2.5(a) shows the ladder of atom-
cavity energy eigenvalues with emphasis on the continuous evolution from bare to joint
eigenstates as a function of atom-cavity coupling, and therefore of atomic position
within the cavity mode. As an atom falls through the Gaussian transverse profile of
the cavity mode, the eigenvalues evolve as illustrated in the figure. Concentrating on
the ground and first excited states of the manifold, we will see that this eigenvalue
structure enables both sensing and trapping of an atom by means of the cavity field.

If the cavity is probed at its bare resonance frequency w, ~ w., we see from
Figure 2.5 that this probe will be moved out of resonance as the atom-cavity coupling
increases, causing a drop in transmitted light as an atom moves into the cavity. If, on
the other hand, the probe is tuned below the cavity resonance w, < w. and instead
near the lower dressed state, it will move into resonance as an atom becomes more
strongly coupled. In this case the cavity transmission is originally low and increases as
an atom moves toward regions of strong coupling. To see these effects quantitatively,
we find steady-state solutions of the master equation to obtain the vacuum Rabi
spectrum in Figure 2.5(b). This spectrum has been calculated for the experimental
parameters of Ref. [25]. As seen already in the data of Ref. [20], resonant probe

transmission can be reduced by factors of 10? — 10?, providing enormous signal-to-
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to 1.56 photons in the empty cavity on resonance.
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noise for detection of an intracavity atom. For a probe on the lower vacuum Rabi
sideband, the transmission increase is less drastic, but probing at this frequency is
nevertheless often preferable because of its effect on the atomic motion.

Thus far we have discussed strong coupling between the cavity field and atomic
dipole, or internal state. We can define a further condition of strong coupling for
the external atomic degrees of freedom, which occurs when the coherent coupling
dominates the atomic kinetic energy as well. Under these circumstances the position-
dependent energy eigenvalues cause an important mechanical effect on an atom in-
teracting with the cavity mode. For instance, an attractive effective potential is felt
by an atom when a probe field tuned to the lower vacuum Rabi sideband is used to
populate the strong-field-seeking state |—). When this potential is large relative to
the atomic kinetic energy, experimental observations range from atom-cavity scatter-
ing effects to largely conservative binding of an atom by a single-photon cavity field
[20, 50, 25, 26]. The ability to both trap an atom and sense its motion in real time

leads naturally to schemes to actively cool an atom in the cavity.

2.6 Broader Application of Real-Time Sensing Ca-
pabilities

Optical cavity QED in the strong coupling regime provides, as we have seen, a nearly
closed environment for interactions between single quanta. Furthermore, it retains the
chief merit of optical cavity spectroscopy in the classical regime: enhanced signal-to-
noise for observation of intracavity dynamics through the well-defined output channel
of cavity decay. While in the language of open quantum systems the cavity decay
at rate x introduces decoherence into the system, the decay is a single output mode
which can be directed toward some use which actually keeps information within the
broader system of interest. In the context of optimal state estimation and control,
this may mean measuring the transmitted field and using that information to control

the system via active feedback. In the case of quantum logic and communication, it
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may mean measuring the output field or sending it efficiently to a distant cavity to
be coherently interacted with a second atom there.

One measure of the capability for observation is the so-called optical information
rate for monitoring intracavity dynamics through measurement of transmitted light.
For a simple estimate of optical information, we consider the case of a resonant probe,
Wp = W, = Wy, Whose transmission drops as an atom enters the cavity mode. The
presence of an atom is thus signaled by a rate dI/dt of “missing” photons at the cavity
output. This rate is given by dI/dt = r(|(a)|Z,,, — [{@)|Fu) = Kl{a)|2,p, Provided
that |(a)|7,y is very small. This is the case for strong coupling conditions but driving
strength still small enough to prevent complete saturation of the atomic response.
Thus dI/dt is maximized for [(a)|7,, = mo and [(a)|2,,,., = C7{a) |}, =~ g5/x*. This
rough argument yields an optical information rate dI/dt = g2/k; the same quantity
appears in a formal treatment of the resonant-probing case as well as in calculations
of probing on the lower vacuum Rabi sideband and in analytic expressions for various

schemes to monitor both atomic position and atom-cavity internal states in a strong-

driving limit [58].

2.6.1 More Intuitive Arguments for Optical Information and

Critical Parameters

What can we say about the physical significance of g2/k? A key question seems to
be: How much does the atom prefer coupling into the cavity over coupling into the

ordinary vacuum modes available? The quantity gy can be simply understood via

ge  atomicradiative volume
v cavity mode volume

How does this relate to our previous definition (from Section 2.1) of figy = [j-ﬁlmv
where El,cav is the electric field of a single photon in the cavity mode? The atomic
decay rate ~y, is itself given by /i - ELmd where ELmd is the electric field of a single

photon in the atomic radiative volume; this relationship can be viewed as defining the
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atomic radiative volume. Alternatively the atomic radiative volume can be roughly set
as ~ A\2-(c/v1), i.e., a cross-sectional area ~ \? extending over a distance ¢/, . If we
remember v, oc g?/A? from the Fermi golden rule, and employ Ej ;44 o \/m,
a few lines of algebra will show the internal consistency of these relations. Either
way, we then recall that the electric field of a single photon confined to a given mode
volume is inversely proportional to the square root of that mode volume, yielding the
relationship stated above in Equation 2.9.

Since it takes half a photon per radiative volume to saturate the atom, it takes
72 /2g2 photons per cavity volume for saturation, neatly providing the saturation
photon number my.

Now consider some (saturating) excitation shared between atom and field. The
atomic spontaneous emission can dump excitation at rate v, , while the cavity sheds
whatever it has at rate 2x. But the cavity only needs to hold mg of excitation to
saturate the atom, so the cavity is dumping excitation at overall rate mg(2x) =
%(2/{). Thus the rate of overall system decay through the atom compares to that

through the cavity as

[sys,atom ;
ys,at — ;yl = go = 201 = 2/N0 (210)
Fsys,cam'ty ;?25; R7Y1
0

The critical atom number then shows up as roughly the number of atoms necessary
to partner equally with the cavity in disposal of shared excitation.

Finally, suppose we are driving the cavity (on resonance) with enough power to
keep the system saturated at roughly one excitation in the atom and m, excitations
in the cavity mode. The system is acting like one part empty cavity to 2C parts
excitation-eating, atom-related beast. If we take the atom away, two things will
happen. First, a factor of 2C| more driving light will actually get into the system
to produce excitation, since before only the empty-cavity-like part was resonant with
the drive and now the whole system is. Second, all the excitation that does get in will
decay through the cavity since no other channel remains. That means another factor

of 2C;. Actually these are factors of (1 +2C})/1, but if we assume the cooperativity
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is large we need not worry about the difference. So the additional cavity output

2
signal that tells us the atom is gone is given by the original output rate, mox = ;?H,
0

multiplied by (2C,)? = Rf%. This gives us (again to within the ever-present factor
of two) the magical quantity ¢2/x, and we have stuck to our original resolution not
to lift a pencil.

While by no means airtight, these lines of argument at least give some sense of the

optical information as meaning something basic about the atom-cavity interaction.

2.6.2 What is the Information Good For?

The quantity dI/dt = ¢2/k corresponds to information about some aspect of the
atom-cavity state accessible at a rate of over 10° per second for the current generation
of strong-coupling Fabry-Perot cavities with alkali atoms. This must be compared
with a rate for monitoring the same atom via light scattering in free space, where
fluorescence rates do not exceed ~ 107 per second and it is nearly impossible to
imagine efficient collection of the light emitted over 47 solid angle. This orders-of-
magnitude increase in detection capability represents one of the main strengths of
cavity QED in quantum state control.

This sensing ability can be brought to bear in diverse ways. In a current experi-
ment [51, 52], an atom entering the cavity mode is detected via cavity QED and then
trapped by a separate light field in a different longitudinal mode of the cavity. This
far-off-resonant trap (FORT) takes advantage of the cavity buildup power to obtain
intensities large enough to trap the atom even in the face of mechanical effects caused
by the cavity QED probe field. The sensing ability provided by that probe field allows
trapping of one and only one atom in the FORT, opening the door for schemes in
quantum information science that rely on deterministic interaction of a single atom
with the field.

Many such schemes fall under the general heading of quantum state synthesis,
using the single-atom medium to prepare single photons and other nonclassical states

of the light field. Existing methods of single-photon generation encounter difficulty in
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providing true determinism of the output field, either in timing or in spatial output
channel. The output channel difficulty is naturally solved in cavity QED, and efficient
single-atom trapping is bringing true on-demand state generation within the realm of
possibility. Proposals encompass not only single-photon generation but also numerous
other state preparations, such as the photon turnstile and the single-atom laser (see,
e.g., [59]), as well as schemes for entanglement generation made possible by the high
detection efficiencies [60].

Another direction which relies on real-time sensing in cavity QED is quantum
state estimation and quantum feedback. Real-time active feedback methods infer the
system state and steer it toward some target value; as cavity-assisted state measure-
ment approaches its fundamental quantum limit, a servo will be limited by mea-
surement backaction effects. Performance of such a control loop will depend on
minimal-disturbance measurements for the variable of interest, and the dynamics
should exhibit the evolution-and-collapse patterns characteristic of quantum trajec-
tory theory [61, 62]. Experiments on real-time feedback to atomic position explore
this issue from one direction, but the concept applies equally to other aspects of the
overall atom-cavity state. For instance, ongoing experiments [63] also apply real-time
sensing and feedback towards the goal of designing novel states of the cavity output

field itself.



