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Because we know it, we are not an accident:
chance, redeemed returns to order.

Tied to the earth and to time,

a light and weightless ether,

thought supports the worlds and their weight.

— Response and Reconciliation, Octavio Paz
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Abstract

Cavity quantum electrodynamics (QED) in the strong-coupling regime provides the
opportunity to monitor and control the dynamics of a simple quantum system. A
single Cesium atom interacts strongly with single-photon fields in the mode of a high-
finesse optical cavity. When the resulting coherent coupling rate dominates dissipa-
tion in the system, strong coupling is realized and the system displays distinctively
quantum behavior. The coupling between atomic internal states and the quantized
cavity field allows for diverse protocols in quantum state preparation, quantum com-
munication, and quantum logic. However, the atom’s external or motional state must
also be taken into account. My research develops cavity QED in the limit where the
coherent atom-field coupling dominates the atomic kinetic energy and thus signifi-
cantly affects the atomic center-of-mass motion. In this regime, the interaction of the
atom with the cavity field provides both a means of controlling atomic motion and
a signal for detecting that motion in real time with high signal-to-noise. The sens-
ing capability of the “atom-cavity microscope” is exploited to trap single atoms with
single-photon fields and to monitor their orbits in real time as they are bound in the
cavity. Such real-time position sensing is the basis for a detailed strategy and ongoing
experiment to actively stabilize select aspects of an atom’s motion within the cavity.
As the cavity-enabled position measurement approaches the standard quantum limit,
this work begins to realize a quantum servo for atomic position and to address ques-
tions of optimal state estimation and state preparation. In combination with other
progress in cavity QED, it furthers the goal of controlled atom-field interactions for

quantum information science.
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Chapter 1

Introduction and Motivation

1.1 Introduction

Detecting and directing the evolution of simple quantum systems is a growing field
of study which addresses fundamental aspects of quantum theory as well as emerging
technological goals in quantum information science. A handful of physical systems
possess the characteristics that allow experiments in this field: coherent interaction
between simple quantum systems, comparably weak dissipative couplings to the en-
vironment, and accessible input and output channels for control and detection of the
dynamics. One such system is cavity quantum electrodynamics, in which a single
atom interacts strongly with the quantized field of a high-finesse optical cavity.

The coherent exchange of excitation between atomic dipole and cavity field defines
the quantum system under consideration. This system couples to the environment
via atomic spontaneous emission and also through the decay of the cavity field. A
large part of this cavity decay is associated with transmission of light through the
cavity mirrors, which leads to a well-defined output channel where information can
in fact be “rescued” through appropriate detection or use of the cavity output light.
Likewise, the opportunity to couple light into the cavity mode with arbitrary power
and frequency provides a convenient input channel for real-time manipulation of the
atom-cavity state. When the coherent coupling dominates the decay rates, we have
a system in the strong coupling regime which has distinctly nonclassical behavior

despite its interactions with the environment.



1.2 Motivations

Cavity QED in the strong coupling regime offers the possibility for efficient measure-
ment and control of single quanta, and for rapid and controlled coherent interactions
between these single quanta. In the language of quantum information theory, cavity
QED is one of several viable platforms for quantum logic and quantum communica-
tion. Ongoing technical progress brings the field closer to achieving atomic position
control that is fine enough and stable enough to perform a series of atom-field logic
gates at high fidelity; position control is required for this purpose because it means
a precise knowledge of the coherent coupling rate g(7). This ability in turn will al-
low for on-demand atom-cavity interactions to prepare and coherently couple novel
quantum states of the atom and field.

For purposes of quantum information science, atomic physics in optical cavities
has the advantage of offering clock rates that are fast in absolute terms, with coherent
coupling rates for current experiments in the range go/27 ~ 100 — 200 MHz. Its chief
strength, however, may lie in the marriage of atomic internal states, easily accessible
for preparation and robust enough for storage, with states of the light field which
can be easily and rapidly transported across large distances. In other words, optical
cavity QED provides an attractive setting for the implementation of diverse protocols
in quantum communication, quantum teleportation and entanglement distribution,
and thus eventually extended quantum networking.

Precise position measurement and control are important to allow high-fidelity
quantum gates but also in their own right for what these attempts can teach us about
how to measure and steer a quantum system with the handles we are given. Quantum
state estimation and control, as well as the implementation of “designer” evolution
schemes using active feedback, form an exciting area of quantum information science

today.
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1.3 Introduction to the Cavity QED System

Optical elements in general present boundary conditions that alter the free-space
quantization structure of the electromagnetic field. This modified electromagnetic
mode structure in turn affects the interactions of an atomic dipole with light, in-
cluding decay into the now-altered vacuum. Diverse observations have demonstrated
changes in atomic radiative processes caused by the presence of a boundary; for ex-
ample, boundary-induced atomic level shifts form the basis of the Casimir effect and
numerous other phenomena [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. For
a review of these effects and their development into the field of cavity QED, see for
example Ref. [17].

The boundary conditions imposed by an optical cavity in particular create a set
of electromagnetic field modes confined between the cavity mirrors. These resonant
cavity modes are well defined in frequency and in spatial structure. The modes of an
optical cavity typically subtend a small fraction of 47 in solid angle, and thus do not
significantly suppress free-space atomic spontaneous emission. However, the presence
of the cavity introduces a new rate, the rate of coherent exchange of excitation between
atom and cavity field. Through this coherent coupling the atom and cavity decay
linewidths do in fact alter one another, at first perturbatively and then strongly
as the coherent coupling becomes large relative to both decays. Finally, when the
physical size of a cavity is reduced until the cavity mode volume is near the atomic
“radiative” volume, a whole new set of quantum dynamics associated with the full
quantum susceptibility can be explored within the setting of cavity QED.

Figure 1.1 depicts the components and rates essential for understanding optical
cavity QED. A Fabry-Perot resonator is created by aligning two highly reflective
spherical mirrors at separation [ measured along the cavity axis. Modes of the cavity
possess a standing-wave structure along the axis, so the cavity supports a set of
longitudinal modes separated in frequency by a free spectral range (FSR) of ¢/2]
where ¢ is the speed of light. (Mirror coatings cause the FSR to deviate very slightly
from this simple formula, as discussed in [18] and briefly in Chapters 6 and 7.) At



Figure 1.1: Basic rates in the cavity QED system

each longitudinal mode the cavity supports a complete set of transverse modes of
different transverse spatial profiles. The T'"E My, mode has a cylindrically symmetric
Gaussian profile, characterized by a beam waist wq for the cavity field.

If the two mirrors are assumed to be identical, the cavity is characterized by the
per-mirror power transmission T and loss A. The total empty cavity round-trip loss

is Leay = 2(T 4+ A). The cavity finesse (F') is given by

F="" = . (1.1)

The finesse can also be expressed as the ratio of free spectral range to cavity linewidth.
It is closely related to another commonly used quantity, the resonator quality factor
(2, which is the ratio of the resonant optical frequency to the cavity decay linewidth.
The use of finesse is attractive as it depends only on the mirror properties and not
strongly on the cavity dimension. When the cavity length changes, both the FSR and
linewidth of the cavity vary as the inverse of the cavity length, and hence the finesse
remains a constant. () and F' are related by the ratio of the optical frequency to the
FSR.

When a single atom is present in the cavity mode volume, the atomic dipole
interacts with the electric field built up in the cavity mode to provide a coherent

coupling between atom and cavity field. That coherent interaction is characterized



5

by the rate go, which is one half the Rabi frequency for a ground state atom to couple
to a single photon in the cavity field. Other important rates in the system are those
which characterize decay. These include the atomic spontaneous emission, v, , and the
cavity decay rate k. To correspond with the use of gy for the coherent interaction rate,

cavity QED literature typically quotes both atomic and cavity decay in field decay

1 FSR
2 Finesse’

rates, i.e., half the full “power” decay rates. Thus /27 = and v, = 1/27
where 7y is the atomic radiative lifetime. A final important quantity is the rate for
a single atom to traverse the cavity field and thus to move from zero to optimal
coupling. If the relevant motional timescale is given by a transit or orbit time 7, then
1/7 can be considered a third decay rate characterizing the atom-cavity interaction.
Strong coupling for both internal and external degrees of freedom is ensured when
go > (v1,k,1/7). The cavity QED experiments I have been involved in all take
place in this limit, where the atom and cavity jointly form a quantum system open

to the environment through decay rates small compared to their coherent exchange

of excitation.

1.4 History of Us

My involvement in cavity QED research as a student has encompassed three exper-
imental setups for cold-atom cavity QED with very short cavities. When I joined
the lab in fall of 1996, Christina Hood and Mike Chapman were just building up the
second cold atoms experiment in the group, and the first to use very short (I ~ 10um)
cavities. I was privileged to be involved in the completion of that setup and in the
experiment which followed. That experiment is presented in Christina Hood’s the-
sis [19] and in Ref. [20], but I mention here two principal results from that work:
first, the demonstration of quantum rather than semiclassical saturation behavior for
the atom-cavity system, and second, the mapping out of the vacuum Rabi splitting
— measured atom by atom — which clearly demonstrated mechanical effects of the
cavity QED probe on single atoms transiting the mode.

At the conclusion of the vacuum Rabi splitting experiment, inspired partially by
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the degradation of our physics cavity finesse, Christina and I embarked on a rebuilding
of the experiment with an improved cavity. This cavity, which became the heart of
the “atom-cavity microscope” experiment, had a finesse of 480,000 as opposed to
the 180,000 of the old cavity. At the same time we redesigned the cavity mount to
achieve better mechanical stability of the cavity, and thus better length stabilization
and quieter transmission measurements during an experiment. With this cavity we
implemented a triggered-trapping strategy first proposed some years previously by
Scott Parkins and others — namely, the use of strong coupling to trap a single atom
with a single-photon-strength field in the cavity [21, 22, 23, 24]. Atomic lifetimes in the
cavity were enhanced by a factor of about 4.5 over the free-fall transit time (~ 75 us
to cross the mode waist), with some rare events lasting longer than 2 milliseconds.
During these transits we were able to resolve transmission oscillations associated with
atomic motion toward and away from the cavity axis. These transmission signals
provided a real-time measurement of atomic position in the cavity. The explicit
position information is one-dimensional, but in fact I was able to use it to reconstruct
two-dimensional trajectories by exploiting some knowledge of the effective potentials
involved. This experiment and the trajectory reconstruction constituted the “atom-

" as presented in [25].

cavity microscope,’

At the end of this experiment Christina and I spent a fair amount of time under-
standing the potentials and heating rates in our system, and how they translated to
the qualitative character of trapped atom trajectories and our ability to observe them
[26]. In this effort we were aided greatly by Andrew Doherty, and also by Kevin Birn-
baum who was a brand-new graduate student at the time. Our immediate thoughts
on the experimental front were twofold. One, extend our measurement bandwidth
and try to see some signatures of axial motion (along the standing-wave direction of
the cavity field, i.e., along the cavity axis). Two, use our real-time position tracking
to turn on some feedback and actively cool the motion of each trapped atom during
its stay in the cavity. Neither naive attempt worked out very nicely, either in my first

attempts with Christina or in those I continued with Kevin after her departure. There

were good reasons for this, but before we had a chance to become more educated, the
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cavity and vacuum system began to exhibit diverse sicknesses.

Once again, then, the experiment was rebuilt, this time more drastically than in
the previous cycle. Improvements to the vacuum system, the laser/cavity stabilization
scheme, and the data processing system accompanied the replacement of the physics
cavity itself. Various technical demons plagued this redesigning effort, such that the
experiment is just coming on line at the time of this writing, in April 2003.

Meanwhile, I have investigated the proposed active feedback in experimental con-
ditions and from a more control-theoretic point of view. This work has led to a more
carefully reasoned radial feedback algorithm, which has been developed for experi-
mentally realistic conditions and extensively simulated for those same conditions. It
has led at the same time to a better understanding of the figure of merit associated
with our proposed feedback technique, the limits that apply to it, and directions for
future work that should extend our active cooling capability and lead atomic position

control to the land of the quantum at long last.

1.5 Overview and Outline

In the preceding sections I have begun with some broad comments on cavity QED as
a scientific tool and on the motivations for atomic position control in this setting, as
well as a summary of my involvement in research furthering this goal. In this final
section of Chapter 1, I will outline the structure and contents of the remainder of this
thesis.

In Chapter 2, I develop a basic picture of cavity QED both intuitively and quan-
titatively. My goal in this discussion is to elucidate the important critical parameters
for “quantum” behavior in cavity QED and to show how they appear in the formalism,
in historical progression to strong coupling, and in intuitive arguments.

Chapter 3 presents an overview of experimental techniques and ongoing technical
issues involved in our single-atom, single-photon experiments. While some experi-
mental details are thoroughly dealt with elsewhere [27, 19], the basic techniques are

laid out here in enough detail to define the experimental procedure and address some



common points of confusion.

I next move on to results from the atom-cavity microscope experiment in Chapter
4. Again, experimental results and some analysis were provided in [19], but I present a
more complete discussion of the reconstruction algorithm for two-dimensional trajec-
tories. The treatment here addresses validation of the algorithm, physical conditions
and dynamical regimes that make it possible, and signal-to-noise and sensitivity limits
governing the position measurement. Attention is given to benchmarks denoting the
degree to which these measurements were truly in a classical regime for the atomic
center-of-mass motion.

From the real-time position tracking of Chapter 4 I move on to algorithms for
active feedback in Chapter 5. Here I discuss the challenges of active cooling from a
control systems point of view, and present simulations building up a viable technique
for circularizing atomic motion at a constant distance from the cavity axis. Simula-
tions not only explore highly realistic experimental conditions, but also extend into
more hypothetical dynamics in order to clarify the feedback performance and limits
more fully.

Chapter 6 describes the feedback experiment currently in progress to implement
the strategies derived in Chapter 5. In this chapter the current setup is treated
in considerably more detail than the general discussion of Chapter 3. Main new
features of this experiment include a new physics cavity, new differentially pumped
chamber with a double MOT setup, use of a separate “locking laser” to stabilize the
cavity length, and introduction of digital (FPGA) techniques for data acquisition and
feedback control.

Chapter 7 is devoted to design and characterization of Fabry-Perot cavities for
strong-coupling cavity QED applications. This material is intended both as a techni-
cal resource for future design and as a more concrete complement to critical parameter
and signal-to-noise considerations developed in Chapters 2 and 4.

Finally, Chapter 8 presents some ideas and calculations for extensions of the active
position control work in several directions. I dwell briefly on two or three main

avenues for extension: the breaking of cylindrical symmetry to remove atomic angular
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momentum, the detection and cooling of axial as well as radial motion, and the
separation of trapping and sensing to facilitate long lifetimes and effective feedback.

The thesis concludes with these discussions of future prospects.
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Chapter 2

Cavity QED and the Road to
Strong Coupling

2.1 “I Am Quantum. Hear Me Roar.”

Crucial to the realization of manifestly quantum effects in cavity QED is strong cou-
pling, a condition in which the coherent coupling between atom and cavity field domi-
nates dissipative rates in the system. For a two-level atom optimally coupled to a cav-
ity mode (see Figure 1.1), the dipole-field coupling is given by the Jaynes-Cummings

interaction Hamiltonian [28]

A

H;p = hgo(ta + sab), (2.1)

where (67,5) are dipole raising and lowering operators, (a,a') are field annihilation
and creation operators for the cavity mode, and g, is one half of the single-photon
Rabi frequency. This rate describes the exchange of excitation between the atomic
dipole /i, initially in the ground state, and the electric field El,cav built up by a single

photon of frequency w residing in the mode volume V,,, of the optical cavity:

hw
2€0Vm ‘

th — ,D: ' El,cav = U (22)

Thus g is a rate of coherent evolution which must be compared with the dissipative

rates for the system. These, in turn, are the atomic spontaneous emission rate v,
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and the cavity field decay rate k. While the regime of (k,7,) >> go is described by
classical treatments, we will see that a quantum theory is necessary to account for
physics at go >> (k,7.), in the strong-coupling regime [29, 30, 31].

In a classical description of spectroscopy in an optical cavity, an atomic sample
acts as a dispersive medium for the coherent light field circulating in the cavity mode
volume. Classical behavior gives way to quantum as single quanta, whether of the
atomic sample or of the light field itself, begin to induce nonlinear response in the
system. To see how this may be accomplished, we begin with the familiar case of a
“bulk” sample and consider how a strong interaction can be preserved as the number
of particles is scaled down towards unity. This intuitive discussion is complemented
by a more quantitative development in the following sections.

Consider first the interaction of light with a “bulk” atomic sample placed inside
the cavity mode. The atoms in the sample scatter the optical field, producing a
wavelength-dependent refractive index in the cavity mode volume. The atomic sample
affects the resonance properties of the optical cavity if the atom-field interaction
strength and the number of atoms are sufficient to noticeably alter the free-space
dispersion relation for the light. Thus, if a single atom placed within the mode
volume is to act as a nonlinear medium, it must have a large effective cross section for
scattering intracavity light. First, then, the atom should have a near-resonant dipole
interaction with the optical field mode supported by the cavity. Second, scattering
should be enhanced by ensuring that optical wavefronts have every opportunity to
interact with the atom in the process of being transmitted through the cavity. This
second requirement is accomplished by constructing cavities with high finesse and
tightly confined modes, so that light traverses the distance between the mirrors many
times before exiting the cavity and furthermore has a high chance of interacting with
the atomic cross section on each pass. Tight mode confinement has the additional
benefit that the light is thoroughly diffractively mixed and thus the interaction is
truly with a single cavity mode that is well defined throughout the interaction process.
Quantitatively, the importance of a single atom for the response of the intracavity

field is described by the single-atom cooperativity parameter C; = g2/2v, k, or by its
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inverse, the critical atom number, Ny = 27, x/g¢ [31]. The single-atom cooperativity
can be re-expressed in terms of familiar properties of the cavity (mode waist w, and
finesse F') and the atomic transition (wavelength A). One finds it scales simply as
Cy ~ %1’1\)—%, reflecting the requirements outlined above. Note that C; does not scale
explicitly with the length of a Fabry-Perot cavity.

On the other side of the coin, consider the circumstances necessary to make the
quantized nature of the light field relevant to observations of the cavity system. In
the classical regime the cavity mode volume is occupied by a large-amplitude coherent
field. To fully probe the atomic response function, the electric field associated with
the light must be strong enough to saturate the atomic dipole. How, then, is a single
photon to accomplish this saturation? Simply put, the photon must be confined to a
small volume so its electric field strength within that volume becomes large. Indeed,
making use of the single-photon Rabi frequency gq, we can define a saturation photon
number my = 7% /2¢g2 [31]. As promised, this quantity is inversely proportional to the
cavity mode volume through the factor 1/¢2; it is, however, completely independent
of the cavity finesse.

The physical significance of these critical parameters will be revisited in later
sections. For now, we simply observe that if single quanta are to leave their stamp on
observations in an optical cavity, the critical atom number and/or saturation photon
number must satisfy (Ng, mg) < 1. Note that these requirements imply go > v, but
not necessarily gy > x as well. Thus manifestly quantum effects in cavity QED span
a range of parameter regimes of which true strong coupling is only the most extreme.
The transition from weak to strong coupling carries us from a classical description
of light fields and scatterers to a regime in which the atom and cavity field must be

considered as a single entity bound by a shared quantum of excitation.
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2.2 Quantitative Description of the Atom-Cavity

System

As is often the case, the conceptually and computationally simplest starting point for
describing the atom-cavity system is the purely quantum limit, where the atom and
cavity evolve via their coherent coupling in the absence of dissipation. This system

simply obeys the Schrodinger equation with the Jaynes-Cummings Hamiltonian [28],
Hje = hwala + hiwé'e + hge(act + als). (2.3)

Here we consider a two-level atom and w is the common resonance frequency of both
atom and cavity. Diagonalizing this Hamiltonian gives rise to the well-known Jaynes-
Cummings ladder of eigenstates for the coupled atom-cavity system, as illustrated
in Figure 2.1. The coupled eigenstates are characterized by the equal sharing of
excitation between the atomic dipole and cavity field, so that the n-excitation bare

states |g,n) and |e,n — 1) of energy nhw are replaced by

1

|£n) 7

(lg.n) £le,n—1)) (2.4)
with corresponding energy eigenvalues
Ey, = nhw 4 \/nhg. (2.5)

To quantitatively predict actual atom-cavity dynamics, a treatment that moves be-
yond this idealized picture to include dissipation and driving terms will be necessary.
Two qualitative features, however, are worth noting immediately from the Jaynes-
Cummings ladder itself.

First, in the most fully quantum regime, the atom and cavity field are best de-
scribed in a symmetric treatment where they combine to create a single entity sharing
excitation equally. Most notably, for n > 1 excitation, there exist strong-field-seeking

states |—,) that can be thought of as atom-cavity states bound together by the shar-
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Figure 2.1: Jaynes-Cummings ladder of atom-cavity eigenstates

ing of a quantum of excitation. If we permit a detuning A., between the cavity and
atom resonance frequencies, the sharing of excitation in these “bound states” becomes
asymmetric but the qualitative properties of the ladder remain unchanged.

Second, while a ladder of strong-field- and weak-field-seeking states recalls the
dressed states of atomic interaction with a coherent light field (e.g., in free space) [32],
the Jaynes-Cummings ladder reflects atomic coupling to a small number of quantized
excitations in the cavity mode rather than to a strong classical field in free space.
The dressed state splitting at each level of the ladder is proportional to \/n. In the
limit of large n, many photons in the field, the ratio of splittings in successive levels
is % — 1; in this way we recover the free-space, classical-field ladder in which
dressed states at each rung are split by a constant £Af).

In the cavity, on the other hand, where just a few excitations create a large
response, the anharmonic nature of the level splittings with increasing n is a feature
arising explicitly from the quantized nature of the cavity field. Thus, to observe

effects of field quantization on the spectrum of atom-cavity response, we can expect
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that experiments must probe the saturation behavior of the system and not simply
rely on spectroscopy in the weak-driving limit of n < 1 system excitations. One caveat
to this observation, however, is that nonclassical aspects of the system dynamics can
in fact be observed for weak driving; for example, photon statistics of the cavity

output field in time are of interest even for experiments in the weak-excitation limit.

2.2.1 Master Equation in the Presence of Dissipation

In the presence of dissipation and driving, and allowing for detuning between the
probe field and the atom and cavity resonant frequencies, the Jaynes-Cummings
Hamiltonian becomes part of a master equation (see, e.g., [32, 33, 34]) for the joint
atom-cavity density operator p. We consider a driving (and probing) field e of fre-
quency wp, a cavity resonant at w., = w, + A,,, and an atomic resonance frequency
we = Wy + Agp. In the electric dipole and rotating-wave approximations, and in the

interaction picture with respect to the probe frequency, the evolution is described by
S 5057 — 515 55 5oat _ ata P
p=—3[Ho. pl +71(26p5" = 6'6p — p6'6) + w(2apd’ — a'ap — pi'a), (2.6)

Hy = hAgata + hA,616 + hg(P)ast + a'6] + he(a + al). (2.7)

Here ¢(7) is the coupling strength which takes into account the atomic position
within the cavity mode. For a Fabry-Perot cavity supporting a standing wave mode
with Gaussian transverse profile, ¢(7) = go¥)(F) = gocos(2mz/N)exp[—(y* + 2%)/wi].
The cylindrical symmetry of () suggests the use of cylindrical coordinates (p, 0, x),
in which case we write g(7) = gocos(2mz/\)exp|—p? /w?]. In the fully quantum treat-
ment, the atomic position 7 is itself an operator; in experiments to date a quasi-
classical treatment suffices, so the atom may be considered a wavepacket with 7 a
classical center-of-mass position variable.

This master equation provides a valid description of the atom-cavity system in
any range of parameters (go,%,7v,). It can in general be solved only numerically,

but certain limits, either of inherent rates or of driving strengths, permit analytical
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treatments of limited application. In the sections below, we discuss behavior exhibited
by theory and experiment in several different parameter regimes from semiclassical

to very strongly coupled.

2.3 Semiclassical Approximation: Optical Bista-
bility

Certain parameter regimes are well described by an approximation in which we derive
from Equations 2.6-2.7 the equations of motion for the expectation values of atom
and cavity properties, i.e., (a) and (4); then within these equations of motion all
joint atom-cavity operator moments are assumed to factor, e.g., (af6) = (a')(5).
This corresponds to a semiclassical treatment in which the field is described by its
coherent amplitude (a) = a.. Such a replacement is valid in the limit of large critical
parameters (Ng,mg) >> 1, in which case a collection of atoms acts as a classical
nonlinear intracavity medium. Within this approximation, Equations 2.6-2.7 yield an
analytic expression for the driving field € = x,/moY as a function of the intracavity
field (@) <+ \/moX. This relation is the well known optical bistability state equation

[35]:
2C 206

b wrny el

V=X[1++—
U+ e il

(2.8)

Here we have employed the standard notation for the bistability equation, related
to our previous discussions by detunings 6 = A,,/v, and ¢ = A,,/k, and N-atom
cooperativity parameter C' = NC}.

The system saturation behavior described by this relation is shown in the dotted
curve of Figure 2.2. The figure plots T, the ratio of full-cavity to empty-cavity
transmission, as a function of input driving strength expressed in units of the steady-
state photon number ng in the empty cavity. The calculation shown is actually for a
system in the strong-coupling regime, namely the cavity of Ref. [20], with w, = w,
and w, detuned 20 MHz below resonance. Here the bistability prediction is at variance

with the quantum prediction and with actual system behavior, as discussed later in



17

T
10° | -
o}
)
10k 4
Semiclassical
— Quantum
L L Il L
10™ 10° 10"

Figure 2.2: Semiclassical and quantum saturation predictions for parameters
(9o, K, v1)/2m = (120,40,2.6) MHz and (w, = w. = w, + 27(20 MHz)). T, the ratio
of full-cavity to empty-cavity transmission, is plotted as a function of input driving
strength 7y (in units of empty-cavity photon number). Experimental data is shown
as circles with error bars.

this chapter. In the optical bistability state equation the correspondence between
the semiclassical amplitude X and the actual operator expectation value {a) is only
approximate; in general the intracavity state is not an exact coherent state, but
the bistability equation gives an input-output relation between the driving power
~ Y? and a transmitted photocurrent ~ X2 which is valid insofar as the underlying
approximation is justified.

Optical bistability effects in general have a long history in measurements within
the context of laser physics. Specific cavity QED experiments measuring optical
bistability in two-level systems date from the early 1980’s [36, 37| and are realizable
in relatively low-finesse cavities interacting with a sample of atoms crossing the cavity
mode in a thermal atomic beam. However, the bistability state equation is also valid
when (Np,mg) < 1 in the special case of very weak driving, n << 1 excitations in
the system. In this case, only the first (n = 1) excited states of the system must be

considered, and the resulting relationship of joint operator moments makes factoring
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formally valid. The correspondence is reflected in the coincidence of the quantum and
semiclassical curves of Figure 2.2 at very low driving strength. This fact comes as
no surprise in the light of our earlier discussion of the Jaynes-Cummings ladder; the
structure of the spectrum reflects the quantized field only for higher drive strengths
that sample the anharmonicity of the system eigenvalues. Optical bistability also
describes the steady-state behavior of an atom-cavity system where inherent strong
coupling is washed out by the simultaneous interaction of many atoms with the cavity
mode.

Even in the regime of the optical bistability equation, nonclassical dynamics of
the atom-cavity system are accessible. Experiments measuring the photon statistics
of the cavity output field have demonstrated nonclassical correlation functions of
the output light, with similar work pushing from this limit to the inherently strong-
coupling regime [38, 39, 40, 41].

2.4 Interacting Single Quanta: The 1-D Atom

By increasing cavity finesse and decreasing mode volume, we move to a regime of small
critical parameters (Ng,mg) < 1. Here single atoms and photons induce nonlinear
effects in the system response. However, this condition is still consistent with overall
dissipative dynamics if the cavity decay rate is fast relative to the coherent coupling
go- This regime, known as the “bad cavity” limit, is realized for k > g2/k > v,. In
this limit, single quanta within the cavity mode interact strongly with one another,
but coherence and information leak rapidly from the system into the output channel
defined by cavity decay. Thus the atom-cavity coupling is essentially perturbative,
and the atom and cavity each retain their distinct identities but with decay rates
modified by the interaction. For instance, an atomic excitation, rather than decaying
via spontaneous emission at rate 7, is much more likely to be exchanged into the
cavity field and subsequently decay via the cavity; this preferential decay via the
cavity mode at rate g2/k gives an effectively “1-D atom.”

Experiments in this parameter regime include the quantum phase gate [42] and the
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use of squeezed light in cavity QED [43]. Both of these effects involve the production
of nonclassical effects on the light field due to nonlinearities mediated by a “1-D
atom” phenomenon. Thus single photons can interact with one another by means
of their common coupling to an intracavity atom. These effects are seen with single
strongly-coupled atoms; since these experiments delivered atoms to the cavity via
thermal beams of atoms transiting a cavity mode, a background of weakly coupled
or “spectator” atoms acted to dilute the inherent single-atom effect. Nevertheless,
the essential character of the effects was accessible with strongly-coupled atoms flying
across the cavity mode quickly against a background of spectators in the wings of the

cavity mode.

2.5 Strong Coupling: Vacuum Rabi Splitting, Trap-
ping, and Sensing

By further increasing cavity finesse, we arrive at the regime of strong coupling for the
atom-cavity system. In this regime, where gy >> (k, 7y, ), single quanta are significant
and, furthermore, their coherent interaction dominates other rates in the system. It
is in this limit that observations most closely reflect the ideal structure of the Jaynes-
Cummings ladder. Exchange of excitation at rate gq is no longer perturbative, and
the system crosses over to a set of joint atom-cavity eigenstates with widths set by
decay rates x and ;. The coupled atom-cavity transmission spectrum reflects this
eigenvalue structure via the vacuum Rabi splitting [44], in which the empty-cavity
Lorentzian line profile is transformed into a double-peaked transmission function as
shown in Figure 2.3 and first directly observed in [45]. The positions and widths of
the vacuum Rabi sidebands depend on the strength of the driving field € as well as
the parameters (¢(7), k,v.), and are found via steady-state numerical solution of the
master equation.

To fully realize the quantum mechanical phenomena inherent in Equations 2.6-2.7

for strong coupling, yet another rate must be made small relative to the coherent cou-
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Figure 2.3: Vacuum Rabi splitting for (go, %, v,) = 27(120, 40, 2.6) MHz and 0.5 pho-
tons in the empty cavity on resonance. Intracavity |(a)|?, from steady-state solution
of the master equation, is plotted as a function of probe detuning (w, — w,)/27.

pling. This is the rate for decoherence as information exits the system via movement
of the individual atoms contributing to the effective atom number N. If excitation
is distributed among an ensemble of atoms, each poorly coupled or coupled for a
short time as it flies across the cavity mode, the true structure of the single-atom
Jaynes-Cummings ladder cannot be observed. Thus experiments designed to probe
the strong coupling regime must be carried out with cold atoms, in a situation where
atom number N ~ 1 is realized through an actual single atom strongly coupled for a
time 7 satisfying 1/7 << go. Experiments of this type to date have involved a cloud
of atoms trapped in a magneto-optical trap (MOT), cooled via standard sub-Doppler
techniques, and then dropped or launched so that single atoms arrive in the cavity
mode volume with small velocities and interact one at a time with the cavity field.
Such an experiment is shown schematically in Figure 2.4; single atoms fall through the
cavity mode and are detected via real-time changes in the transmission of a continu-
ously monitored cavity probe beam [46, 20, 47, 48, 49]. More recently, single atoms
have also been caught within the cavity by means of the quantized field [25, 50] or
trapped there using a separate far-off-resonance trap (FORT) [51, 52]. Other efforts
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Figure 2.4: Schematic experiment with cold atoms in cavity QED.

in progress include the use of cavities with magnetic traps for atoms [53], trapped and
cooled ions [54, 55], and FORTSs chaining atoms through the cavity in the transverse
direction [56, 57].

Cavity QED with cold atoms in the strong coupling regime has enabled observa-
tion of the vacuum Rabi splitting for single atoms in an optical cavity, and of the
quantum saturation of the atom-cavity response. In Ref. [20], for example, measure-
ments of cavity transmission vs. input driving field strength clearly deviate from the
prediction of the optical bistability equation and are instead consistent with numerical
solutions of the quantum master equation itself (Figure 2.2, solid line and experimen-
tal data points). This work was carried out with laser-cooled Cesium atoms dropped
through an optical cavity of length [ = 10.1 pm and finesse F' = 180, 000, leading to
(g0, K, v1) = 2m(120, 40, 2.6) MHz and critical parameters (N, mg) = (0.014,2-10~%).
This and subsequent experiments [25, 50, 51] thus operate in a regime of critical atom

number and saturation photon number orders of magnitude below unity. In this case
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driving fields which populate the cavity mode with coherent amplitudes at or even
below one photon are sufficient to induce nonlinear response in the system. Likewise,
effective atom numbers well below one interact strongly with the cavity field and alter
the cavity transmission spectrum. Therefore the presence of a single atom, even when
poorly coupled or just entering the cavity mode volume, can be detected with high

signal-to-noise via the transmission of a probe beam through the cavity.

2.5.1 Real-Time Detection and Trapping with Single Pho-

tons

A striking demonstration of strong coupling in optical cavity QED comes in recent
experiments which actually bind an atom in the cavity by creating the “bound-state”
|—) of the Jaynes-Cummings ladder [25, 50]. Figure 2.5(a) shows the ladder of atom-
cavity energy eigenvalues with emphasis on the continuous evolution from bare to joint
eigenstates as a function of atom-cavity coupling, and therefore of atomic position
within the cavity mode. As an atom falls through the Gaussian transverse profile of
the cavity mode, the eigenvalues evolve as illustrated in the figure. Concentrating on
the ground and first excited states of the manifold, we will see that this eigenvalue
structure enables both sensing and trapping of an atom by means of the cavity field.

If the cavity is probed at its bare resonance frequency w, ~ w., we see from
Figure 2.5 that this probe will be moved out of resonance as the atom-cavity coupling
increases, causing a drop in transmitted light as an atom moves into the cavity. If, on
the other hand, the probe is tuned below the cavity resonance w, < w. and instead
near the lower dressed state, it will move into resonance as an atom becomes more
strongly coupled. In this case the cavity transmission is originally low and increases as
an atom moves toward regions of strong coupling. To see these effects quantitatively,
we find steady-state solutions of the master equation to obtain the vacuum Rabi
spectrum in Figure 2.5(b). This spectrum has been calculated for the experimental
parameters of Ref. [25]. As seen already in the data of Ref. [20], resonant probe

transmission can be reduced by factors of 10? — 10%, providing enormous signal-to-
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24
noise for detection of an intracavity atom. For a probe on the lower vacuum Rabi
sideband, the transmission increase is less drastic, but probing at this frequency is
nevertheless often preferable because of its effect on the atomic motion.

Thus far we have discussed strong coupling between the cavity field and atomic
dipole, or internal state. We can define a further condition of strong coupling for
the external atomic degrees of freedom, which occurs when the coherent coupling
dominates the atomic kinetic energy as well. Under these circumstances the position-
dependent energy eigenvalues cause an important mechanical effect on an atom in-
teracting with the cavity mode. For instance, an attractive effective potential is felt
by an atom when a probe field tuned to the lower vacuum Rabi sideband is used to
populate the strong-field-seeking state |—). When this potential is large relative to
the atomic kinetic energy, experimental observations range from atom-cavity scatter-
ing effects to largely conservative binding of an atom by a single-photon cavity field
[20, 50, 25, 26]. The ability to both trap an atom and sense its motion in real time

leads naturally to schemes to actively cool an atom in the cavity.

2.6 Broader Application of Real-Time Sensing Ca-
pabilities

Optical cavity QED in the strong coupling regime provides, as we have seen, a nearly
closed environment for interactions between single quanta. Furthermore, it retains the
chief merit of optical cavity spectroscopy in the classical regime: enhanced signal-to-
noise for observation of intracavity dynamics through the well-defined output channel
of cavity decay. While in the language of open quantum systems the cavity decay
at rate x introduces decoherence into the system, the decay is a single output mode
which can be directed toward some use which actually keeps information within the
broader system of interest. In the context of optimal state estimation and control,
this may mean measuring the transmitted field and using that information to control

the system via active feedback. In the case of quantum logic and communication, it
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may mean measuring the output field or sending it efficiently to a distant cavity to
be coherently interacted with a second atom there.

One measure of the capability for observation is the so-called optical information
rate for monitoring intracavity dynamics through measurement of transmitted light.
For a simple estimate of optical information, we consider the case of a resonant probe,
Wp = W, = Wy, Whose transmission drops as an atom enters the cavity mode. The
presence of an atom is thus signaled by a rate dI/dt of “missing” photons at the cavity
output. This rate is given by dI/dt = r(|[{a)|Z,,, — [{@)|F) = Kl{a)|2,p, Provided
that |(a)|7,y is very small. This is the case for strong coupling conditions but driving
strength still small enough to prevent complete saturation of the atomic response.
Thus dI/dt is maximized for [(a)|7,,; = mo and [(a)|2,,., = C7[{a)|},,; =~ g5/x*. This
rough argument yields an optical information rate dI/dt = g2/k; the same quantity
appears in a formal treatment of the resonant-probing case as well as in calculations
of probing on the lower vacuum Rabi sideband and in analytic expressions for various

schemes to monitor both atomic position and atom-cavity internal states in a strong-

driving limit [58].

2.6.1 More Intuitive Arguments for Optical Information and

Critical Parameters

What can we say about the physical significance of g2/k? A key question seems to
be: How much does the atom prefer coupling into the cavity over coupling into the

ordinary vacuum modes available? The quantity gy can be simply understood via

ge  atomicradiative volume

2 : 2.9
¥ > cavity mode volume (2.9)

How does this relate to our previous definition (from Section 2.1) of figy = [j-ﬁlmv
where Elmv is the electric field of a single photon in the cavity mode? The atomic
decay rate ~y, is itself given by /i - El,md where ELmd is the electric field of a single

photon in the atomic radiative volume; this relationship can be viewed as defining the
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atomic radiative volume. Alternatively the atomic radiative volume can be roughly set
as ~ A\2-(c/71), i.e., a cross-sectional area ~ \? extending over a distance ¢/, . If we
remember v, oc g?/A? from the Fermi golden rule, and employ Ej ;44 o \/m,
a few lines of algebra will show the internal consistency of these relations. Either
way, we then recall that the electric field of a single photon confined to a given mode
volume is inversely proportional to the square root of that mode volume, yielding the
relationship stated above in Equation 2.9.

Since it takes half a photon per radiative volume to saturate the atom, it takes
72 /2g2 photons per cavity volume for saturation, neatly providing the saturation
photon number my.

Now consider some (saturating) excitation shared between atom and field. The
atomic spontaneous emission can dump excitation at rate v, while the cavity sheds
whatever it has at rate 2x. But the cavity only needs to hold mg of excitation to
saturate the atom, so the cavity is dumping excitation at overall rate mg(2x) =
%(2/{). Thus the rate of overall system decay through the atom compares to that

through the cavity as

[sys,atom ;
ys,at — ;yl = go = 201 = 2/N0 (210)
Fsys,cam'ty ;?25; R7Y1
0

The critical atom number then shows up as roughly the number of atoms necessary
to partner equally with the cavity in disposal of shared excitation.

Finally, suppose we are driving the cavity (on resonance) with enough power to
keep the system saturated at roughly one excitation in the atom and m, excitations
in the cavity mode. The system is acting like one part empty cavity to 2C parts
excitation-eating, atom-related beast. If we take the atom away, two things will
happen. First, a factor of 2C; more driving light will actually get into the system
to produce excitation, since before only the empty-cavity-like part was resonant with
the drive and now the whole system is. Second, all the excitation that does get in will
decay through the cavity since no other channel remains. That means another factor

of 2C;. Actually these are factors of (1 +2C})/1, but if we assume the cooperativity
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is large we need not worry about the difference. So the additional cavity output

2
signal that tells us the atom is gone is given by the original output rate, mox = ;?H,
0

multiplied by (2C,)? = Rf%. This gives us (again to within the ever-present factor
of two) the magical quantity ¢2/x, and we have stuck to our original resolution not
to lift a pencil.

While by no means airtight, these lines of argument at least give some sense of the

optical information as meaning something basic about the atom-cavity interaction.

2.6.2 What is the Information Good For?

The quantity dI/dt = g2/ corresponds to information about some aspect of the
atom-cavity state accessible at a rate of over 10° per second for the current generation
of strong-coupling Fabry-Perot cavities with alkali atoms. This must be compared
with a rate for monitoring the same atom via light scattering in free space, where
fluorescence rates do not exceed ~ 107 per second and it is nearly impossible to
imagine efficient collection of the light emitted over 47 solid angle. This orders-of-
magnitude increase in detection capability represents one of the main strengths of
cavity QED in quantum state control.

This sensing ability can be brought to bear in diverse ways. In a current experi-
ment [51, 52], an atom entering the cavity mode is detected via cavity QED and then
trapped by a separate light field in a different longitudinal mode of the cavity. This
far-off-resonant trap (FORT) takes advantage of the cavity buildup power to obtain
intensities large enough to trap the atom even in the face of mechanical effects caused
by the cavity QED probe field. The sensing ability provided by that probe field allows
trapping of one and only one atom in the FORT, opening the door for schemes in
quantum information science that rely on deterministic interaction of a single atom
with the field.

Many such schemes fall under the general heading of quantum state synthesis,
using the single-atom medium to prepare single photons and other nonclassical states

of the light field. Existing methods of single-photon generation encounter difficulty in
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providing true determinism of the output field, either in timing or in spatial output
channel. The output channel difficulty is naturally solved in cavity QED, and efficient
single-atom trapping is bringing true on-demand state generation within the realm of
possibility. Proposals encompass not only single-photon generation but also numerous
other state preparations, such as the photon turnstile and the single-atom laser (see,
e.g., [59]), as well as schemes for entanglement generation made possible by the high
detection efficiencies [60].

Another direction which relies on real-time sensing in cavity QED is quantum
state estimation and quantum feedback. Real-time active feedback methods infer the
system state and steer it toward some target value; as cavity-assisted state measure-
ment approaches its fundamental quantum limit, a servo will be limited by mea-
surement backaction effects. Performance of such a control loop will depend on
minimal-disturbance measurements for the variable of interest, and the dynamics
should exhibit the evolution-and-collapse patterns characteristic of quantum trajec-
tory theory [61, 62]. Experiments on real-time feedback to atomic position explore
this issue from one direction, but the concept applies equally to other aspects of the
overall atom-cavity state. For instance, ongoing experiments [63] also apply real-time
sensing and feedback towards the goal of designing novel states of the cavity output

field itself.
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Chapter 3

Experimental Tools and Technical
Challenges

My involvement in cavity QED research as a student has encompassed three exper-
imental setups for cold-atom cavity QED with very short cavities. All three stages
share a basic experimental scheme and many technical tools and challenges. In this
chapter my intent is to present a general summary of the experiments. The details of
the atom-cavity microscope experiment are presented thoroughly in Christina Hood’s
thesis [19], while an even more in-depth discussion of several experimental issues can
be found in Quentin Turchette’s thesis [27]. Chapter 6 presents in detail the new or
altered aspects of the active feedback experiment. Chapter 7 returns to some tech-
nical issues, particularly those related to the all-important high-finesse cavities, and
expands on some aspects which may be useful for future efforts though not directly

essential for understanding current work.

3.1 Principal Components of the Experiment

A schematic depicting the heart of the cold-atom cavity QED experiment is shown
in Figure 3.1. Cesium atoms are trapped in a magneto-optical trap (MOT) [64, 65],
cooled to a few microkelvin using standard sub-Doppler cooling techniques [66, 67, 68],
and released to fall through the cavity mode volume. The cavity mode is continuously
driven by a probe laser coupled into the cavity at one end; the light transmitted out

the other end is detected with an optical balanced heterodyne setup, providing real-
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Figure 3.1: Core of experimental setup: cavity, probe, detection, and MOT

time information on the atom-cavity interaction. The detected transmission signal is
acquired and digitized for storage, and the signal is also used to condition changes in
the probe field for trapping or feedback. Throughout the experiment, stabilization of
the lasers and in particular of the physics cavity itself are crucial to the generation of

meaningful data in the lab.

3.2 Magneto-Optical Trap and Sub-Doppler Po-
larization Gradient Cooling

The magneto-optical trap [64, 65, 69, 70] has become a standard workhorse of modern
optical physics with neutral atoms. Its success hinges on the elegant combination of
spatial trapping with a simultaneous cooling mechanism. Counterpropagating light
beams of opposite circular polarization are tuned slightly below resonance with an
atomic ground to excited state transition. This red-detuning technique by itself pro-
vides Doppler cooling [71, 72], so named because the Doppler effect causes an atom to
absorb light and thus momentum preferentially from the beam it is moving towards,
while spontaneous emission occurs in a random spatial direction. The result is an

average light force, proportional to velocity and oppositely directed, which cools the



31
sample. In three dimensions, energy is removed as moving atoms absorb photons
from the red-detuned beams (w < w,) and re-emit with a frequency spread of v, cen-
tered around w,. The limiting temperature of this cooling mechanism is the Doppler
temperature kg1 p = Ay, which for Cesium gives Tp = 120 uK.

The spatial restoring force relies on the introduction of a quadrupole magnetic
field, produced by an anti-Helmholtz coil configuration in combination with Helmholtz
bias coils to zero the magnetic field. The magnetic field along an axis is B, x z,
producing a Zeeman shift in the atomic transition mrp — m) = mp + 1 which
is linear in atomic distance from the trap center. When the frequency of a given
transition is decreased, it becomes closer to resonant with the trapping light, and
the atom absorbs preferentially from one of the circularly polarized beams. If the
circular polarizations and magnetic field gradient are chosen correctly, a displaced
atom absorbs more strongly from the beam which will push it back to the center,
providing the restoring force for the MOT.

The relevant levels for Cesium are shown in Figure 3.2. Physics takes place on the
6512, F' = 4 — 6P3/5, F = 5 transition of atomic Cesium, with a closed or “cycling”
transition on mp = 4 — m/, = 5. The excited state lifetime is 30 ns, corresponding
to decay rate v = 27 (5.2 MHz) or v, = 27(2.6 MHz) [73, 74].

A final ingredient is the addition of a repumping laser on the FF = 3 — F' =
4 transition to recycle population which otherwise slowly accumulates in the non-
trapping F' = 3 ground state due to off-resonant transitions. The repumping laser
remains on at a constant strength throughout the MOT loading and the sub-Doppler
cooling described below.

After a MOT is loaded (a process of some hundreds of milliseconds to a few
seconds), the magnetic field gradient is turned off and the light intensity is turned
down to accomplish a short pulse of sub-Doppler cooling on the atoms [66]. Standard
sub-Doppler cooling via polarization gradient effects brings Cesium fairly easily to
final temperatures of a few to a few tens of microKelvin, depending largely on the
degree of heroics associated with magnetic field zeroing [67, 68].

Diagnostics on the final temperature are performed via time-of-flight imaging of
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Figure 3.2: Cesium level structure for cooling, trapping, and cavity QED. The
6S1/2, F' =4 — 6P, F’ = 5 transition is at 852.359 nm.

the expanding cloud after trapping and sub-Doppler cooling, using a brief pulse of the
trapping light beams. Magnetic field trim coils are adjusted to ensure that the cloud
falls straight down and with as little expansion as possible. A slight difficulty arises
because our MOT is constructed as close as possible to the cavity, giving us little
time to observe expansion before the cloud hits the mirror substrates. In practice
we perform final field zeroing by raising the MOT position a few millimeters with a
vertical bias coil; we then have about 30 ms of accessible fall time before the atoms
leave the beam profile and hit the cavity substrates. Cooling is optimized with the
trap raised in this way and we assume fields will be nearly zeroed for the lower trap

position in the actual experiment.

3.3 Probe Beam and Local Oscillator Generation
and Stabilization

The cavity QED probe beam in these experiments has a very modest requirement

for optical power. Since we typically work at intracavity photon numbers of one or
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smaller, the mode-matched optical power delivered to the cavity is on the order of
(hw)k ~ 10 pW or less. This means in practice that the probe beam is maintained
at some sensible working strength on the order of a milliWatt and then severely
attenuated with a stack of neutral-density filters just before being sent to the cavity.
The probe laser also serves as the source for a strong local oscillator (LO) beam used
in the heterodyne detection of the cavity-transmitted light, as described later in this
chapter. We typically use an LO strength of 5 mW.

The probe beam in the atom-cavity microscope and previous experiments was
generated by a Ti:Sapph laser pumped with 5 Watts of green light (532 nm) from a
Spectra Physics Millennia V solid-state diode-pumped unit. With no water cooling
of the Ti:Sapph crystal, single-mode output power at 852 nm was typically 300-350
mW. This light was split to: (1) a Cs FM saturated absorption spectroscopy [75]
path to generate an error signal for locking the laser to Cesium, (2) a local oscillator
path intensity stabilized using a ThorLabs liquid-crystal-based intensity stabilizer,
and (3) the probe beam path including frequency shifting, intensity stabilization,
rapidly switchable intensity adjustment, and mode-matching. The final probe beam
in this setup consisted of a carrier ~ 800 MHz blue-detuned from (w,,w.) which
received sidebands at ~ 800 MHz through a traveling-wave modulator so that the
lower sideband acted as the near-resonant probe. The carrier and upper sideband
were ignored as too far detuned to interact significantly with the atoms. In practice,
care was required to ensure negligible effect from the carrier, since it was far-detuned
but typically a factor of a hundred stronger than the probe itself. While a given probe
strength could be achieved by many combinations of overall optical power and RF
modulation index, the optical power had to be set low enough and RF power high
enough to keep the carrier from noticeably altering the atom-cavity system.

In the active-feedback experiment, the probe beam originates from a grating-
stabilized diode laser at 852 nm. The shifting, switching, and stabilization of this

beam are described in detail in Chapter 6.
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3.4 The Physics Cavity

The heart of the cold-atoms cavity QED experiment is the physics cavity itself. The
atom-cavity microscope and active-feedback experiments use cavities of length [ ~
10 pm and finesse F' ~ 480,000. The mirrors have radius of curvature R = 10 cm,
leading to cavity field waists wy &~ 14 um for the T E My, mode. Mirror properties
and cavity mounting are described in detail in [19] and in Chapters 6 and 7; here I
outline the basic construction and some important technical details related to length
stability and birefringence.

The cavity is mounted on a solid OFHC copper block, which sits on a vibration-
isolation stack within the vacuum chamber. Each (cylindrical) mirror substrate sits
in a v-block to which it is attached by glue; the v-blocks in turn are glued atop
shear mode PZTs which are glued to the copper mount piece. Cavity length is
tuned and stabilized via voltage applied to the shearing PZTs. The strategy of these
experiments is to use the cavity’s transmission of a fixed-frequency probe beam to
infer a measurement of atom-cavity interactions; thus stabilization of the cavity length
(resonance frequency) is essential. In fact, cavity length excursions are the principal
source of technical noise in the measurements. In particular, mechanical resonances
of the mounting stack must if possible be engineered out of the frequency range where
meaningful atomic motional signals are expected. This issue, which I addressed via
overall mount /PZT selection and rigidity of attachment, is dealt with more thoroughly
in [19] and in Chapter 6.

A second nagging concern in cavity design is birefringence, treated more fully in
Chapters 6 and 7. Experience suggests that glue applied to the mirror substrates
causes stress-induced birefringence in the mirror coatings, so that the cavity alters all
input polarizations save the two linear cavity eigenpolarizations. This is inconvenient
for experiments in which we wish to work with circularly polarized light to maintain
the cycling transition mp = 4 — m/, = 5. In practice we attempt to minimize cavity
birefringence by applying the minimum amount of glue necessary, at the farthest

possible distance from the mirror surfaces. We then use circularly polarized probe
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light, but a small fraction of the opposite circular polarization in fact builds up in the
cavity. This situation allows a slow drain of population from the interacting (F' = 4)
ground state, motivating the use of a repumping beam on F' = 3 — F' = 4. This
beam comes from the same laser as the MOT repumping light, but is overlapped with
the cavity QED probe for injection into the cavity.

Finally, this discussion of cavity construction and geometry is a good place to
include a note on delivery of single atoms to the cavity mode. Given a MOT with
10* or more atoms cooled and dropped directly onto the cavity, how do we obtain a
situation where atoms traverse the cavity mode one at a time? Figure 3.3 provides a
sense of how this occurs. The figure shows a to-scale rendering of the cavity mirror
surfaces and T'F My, mode profile in the center of the mirrors. The cavity geometry
itself clearly cuts off a large fraction of the atom flux to the interaction region, by
imposing a very strict limit on atomic velocity along the cavity axis. Indeed, for
an atom to enter the gap at the top of the mirror substrates and reach the cavity
mode without hitting a mirror, the axial velocity must be less than about 4 mm/s
corresponding to an axial temperature of ~ 0.1 u/K . Thus single atoms are easy to

come by in the experiment.

3.5 Vacuum Chamber

The experiments are conducted under UHV conditions in a chamber where steady-
state pressure is maintained by ion pumping with Varian Starcell pumps. Pressure
within the chamber is measured using Bayard-Alpert ionization gauges. The atoms
are supplied from a Cesium reservoir initially loaded with a one-gram ampule of
atomic Cesium. The entire chamber (in the atom-cavity microscope) or just the
upper chamber (in the active-feedback experiment) is operated as a Cesium vapor
cell replenished periodically by opening a valve to the reservoir and/or heating it
gently. The pressure in the chamber under these conditions is a few times 1078
torr. Pressure in the actual cavity region is difficult to accurately measure, but it

could plausibly be significantly higher than the overall chamber pressure due to (1)
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low conductance given the geometry shown in Figure 3.3 and (2) concentration of
marginal UHV materials close to the cavity because they are involved in the cavity
mount itself. The most realistic prospect for an intracavity pressure measurement
is trapped atom lifetime itself. This prospect is not sensible for our single-photon
trapping experiments, since lifetimes are < 1 ms and even a background pressure of
1078 torr allows a collisional lifetime of about 0.5 s. However, experiments using a
far-off-resonant trap in a similar setting now reach lifetimes of 2> 2 s and demand
more careful consideration of background limits [76]. Better understanding of other
loss mechanisms in these experiments could yield some useful limits on the intracavity
vacuum pressure in the near future.

As mentioned, background collisions do not limit trapped-atom lifetimes in our
current single-photon trapping experiments. From this point of view, better vacuum
only becomes an issue as we consider the future implementation of feedback, cooling,
or auxiliary trapping schemes that will drastically enhance atom-cavity dwell times.
However, one other advantage also accrues from an improved vacuum at the cavity
position. This is the possible increase in cavity longevity by slow-down of the process
whereby Cesium vapor atoms coat the mirror surfaces. Previous experiments have
seen degradation of cavity finesse after approximately 1.5 to 2 years in an experiment;
while the coating process is not known to be responsible, two pieces of circumstantial
evidence suggest it is worth guarding against. First, after vacuum was broken on these
past experiments and the mirrors were examined, “stars” of oxidized Cesium were
prominent on the mirror surfaces (Figure 3.4). Second, the cavity of [51, 52], which
is sheltered from direct contact with the Cs vapor cell region in that apparatus, has
already seen an unusually long period of nearly four years of experimental usefulness.
The combination of all these considerations motivated the transition to a differentially

pumped chamber for the active-feedback experiment, as discussed in Chapter 6.
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Figure 3.4: Oxidized Cesium on the surface of a mirror removed from a well-used
physics cavity. A clean mirror surface is shown for comparison. Each mirror surface
has a diameter of 1 mm.

3.6 Locking of Laser Frequency and Cavity Length

The probe beam frequency w, and cavity resonance w, must be stabilized to Cesium
for fixed detuning from w,, but need not be locked to much better than 1 MHz
given the physics cavity linewidths of more than 10 MHz; this large cavity linewidth,
despite the high finesse, is a result of very short cavity length. The probe frequency
is referenced to Cesium via FM saturated absorption spectroscopy [77, 78, 75].

To obtain a rough length-stability requirement for the cavity, we note that while
the full atom-cavity coupling gy shifts the system resonance by ~ 10k, we want to
detect the effects of small fractional changes in g(7) which shift the system resonance
by small fractions of k. If for a cavity of width x/27 ~ 14 MHz we require w./2m
to be stabilized to about 1 MHz, this translates to a length stability on the order of
10 fm = 10~ m. While this stability requirement on the order of atomic nuclear
dimensions may initially seem nonsensical, this is of course the position averaged
over the spatial cavity mode profile and over the fastest dynamical and measurement
timescales of the system.

The realization of laser and cavity locks in the atom-cavity microscope experiment

is treated in [19]; the Ti:Sapph frequency is locked to Cesium and the physics cavity
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length is locked to the probe transmission itself, with lock blanking during an atomic
transit. The rather different methods of the active-feedback experiment are presented

in Chapter 6.

3.7 Heterodyne Detection and Calibration

Experiments with intracavity photon numbers of roughly 0.05 to 1 imply a cavity
transmission signal on the order of 1 to 10 picoWatts at 852 nm. Signal powers in this
range suggest the use either of photon counting or of optical homodyne/heterodyne
methods for detection with reasonable signal-to-noise. While photon counting pro-
vides a measurement of (a'a) for the output field, the balanced heterodyne detection
we employ produces a photocurrent proportional to {a). It can be used to measure
both amplitude and phase of the field [47], but in our experiments we measure only
|(a)|? as discussed in the next section. For a coherent field (a'a) = |{a)|?, but for our
experimental parameters there is a small (~ 20%) difference between these quantities
when an atom is strongly coupled to the cavity mode [19]. This distinction is much
more pronounced when detecting either |(a)|? or (a'a) with a probe close to the cav-
ity resonance frequency, rather than near the lower vacuum Rabi sideband as in our
triggered-trapping experiments.

Figure 3.5 illustrates the principle of balanced heterodyne detection for a weak
signal beam. The most basic idea is to encode the signal field as an RF beatnote on
a much stronger local oscillator field. The signal and LO are phase-coherent, coming
from the same laser, but are deliberately shifted away from one another by an RF
frequency shift, in our case in the range ~ 10 — 100 MHz. The signal field F,; and
LO field Ero are spatially overlapped and mixed on a 50/50 beamsplitter, yielding
fields E1o + Es and E;o — E, at the two beamsplitter output ports. These fields

are incident on balanced photodetectors whose photocurrents are then subtracted,

yielding a difference photocurrent proportional to the product of the two fields:

1 = le — Zé X (ELO + E5)2 — (ELO — E5)2 X ELOEs- (31)
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Figure 3.5: Heterodyne operation and factors contributing to detection efficiency.
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If we further break down the LO and signal beams into their amplitude and noise,

ELO = ALO + NLO and ES = As + Ns, we have

1 X AL()AS —+ ALONs —+ NLOAs —+ NLONs- (32)

The terms above are written in decreasing order of importance in the desired config-
uration of a balanced heterodyne detector; the relegation of Ny to the obscurity of
the last two terms allows us to write i_ o« Apo(As + Ns) ~ (Constant)E;. This is
the vaunted LO-noise immunity of the balanced heterodyne detection method.

This noise immunity operates on (at least) two distinct levels. First, the balanced
configuration and subtraction of 2; and 75 eliminates photocurrent terms containing
only the large LO field, so that the difference photocurrent of Equation 3.1 is strictly
proportional to the signal field Es. As long as Apo/Npo > 1, we can write i ~
(Constant)E;. Second, however, it is possible to ask for more. We may hope for
a situation in which the noise characteristics of the photocurrent truly reflect, to
leading order, only the signal noise N; and not the LO noise Nyo. In this case,
referring to Equation 3.2, we require more specifically that Npo/Apo < Ng/As. The
inequality will certainly hold for shot-noise dominated weak signal and strong LO but
may be more questionable if technical noise dominates. In practice the separation
in size between the four terms of Equation 3.2 is not necessarily huge and the noise
immunity must be carefully evaluated in operation.

In an experimental system one contends in general with imperfect balancing, both
of optical powers (beamsplitter not exactly 50/50) and of detector efficiencies and
gains. In optimizing the overall performance we proceed by (1) balancing the LO
and signal powers on both detectors as nearly as possible and (2) attenuating the
signal from one detector if necessary to achieve balancing of the resulting photocur-
rents at the subtractor. “Unnecessary” attenuation certainly carries the possibility of
contributing excess electronic noise if that is a primary concern. Another alternative
would be to deliberately unbalance the optical powers to match the detector imbal-

ance, i.e., adjust the beamsplitter transmission directly to cancel the E%, term in
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the difference photocurrent. This would result in a nonzero E? term, but insofar as
E, << Ejo this term is unimportant anyway. The one-step overall balancing method
is actually a bit more difficult to carry out with certainty that one has balanced the
right thing. In terms of noise immunity, though, the relative merits of step-by-step
vs. overall balancing must be weighed given the details of each case. A treatment of
diverse concerns in non-ideal homodyne detection can be found in [79].

Our heterodyne detection and its calibration are presented in detail in [19], and
have not changed significantly from the atom-cavity microscope to the active-feedback
setup. However, I revisit here the issue of overall efficiency for detection of an intracav-
ity photon. In that experiment we measured a heterodyne efficiency (due to detector
quantum efficiency and spatial mode overlap) of 48%. The cavity mirrors each had
transmission of 4.5 ppm and absorption/scatter losses of 2 ppm, while we measured
just the field transmitted through one mirror. Finally, propagation losses from cavity
output to heterodyne were estimated at 25%; this rather large figure comes mostly
from a beamsplitter which sent 20% of the light to a photomultiplier tube for locking
the cavity while optimizing the heterodyne alignment. Taking into account all these
contributions, we find an overall efficiency of n = (0.48) - 2«&%2) -(0.75) = 0.125, or
12.5%. This is the efficiency for detecting the total cavity decay, which is a signal of
size (2)[{a)]*.

However, if we neglect the two-sided nature of the cavity and quote the total
signal as (k)[{a)|?, the corresponding efficiency will be ¥ = 2n = 0.25 or 25%. This
is the origin of the 25% efficiency quoted in [25, 19] and used in simulations of the
experiment. Since the detection efficiency is relevant in determining signal-to-noise
for sensing of intracavity dynamics, either set of definitions can be chosen in a given
calculation. However, the mutual consistency of the definitions must be carefully
checked in each situation.

I conclude the whirlwind tour of heterodyne detection with two related points.
First, the strength of the local oscillator beam is determined by several considerations.
Clearly the LO should be very much stronger than the signal, but there is little danger

of violating this criterion in our experiment. LO power must also be high enough to
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ensure that overall signal-to-noise is limited by signal shot noise (o A;oNs) rather
than electronic noise unrelated to the light. An important upper limit in practice is
the saturation of the photodetectors, not only in terms of DC power but in the (more
relevant) RF band of the actual heterodyne beatnote. The LO-signal beatnote must
not saturate the detectors either for the actual experimental signal (10 pW) or for the
much larger (10 nW) signals needed to calibrate the heterodyne-to-photon-number
relationship. Another cautionary note about large local oscillator power is that a tiny
fraction of the LO leaking back along the signal path to the physics cavity can wreak
havoc on the atom-cavity system itself. To deal with this issue for the LO power we
use, the focusing lenses and detectors in both arms of the heterodyne are tilted to

avoid back-reflection of the LO.

3.8 Data Acquisition

The heterodyne difference photocurrent is amplified and fed into a commercial Hewlett-
Packard (Agilent) spectrum analyzer for detection of the component at the LO /signal
RF beat frequency [80]. An initial detection bandwidth is set via the resolution and
video bandwidths of the spectrum analyzer, both typically set to 100 kHz. The video
output of the spectrum analyzer then measures the difference photocurrent power at
the heterodyne beat frequency, making it proportional in the end to |{a)|? since the
photocurrent amplitude is proportional to |(a)|. This signal constitutes the experi-
mental data which is digitized, processed, saved, and used for triggering/feedback via
any of several different schemes. The data acquisition and triggering protocols for

the atom-cavity microscope are presented in [19], while those for the active-feedback

experiment are given in Chapter 6.
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Chapter 4

Strong Coupling for Trapping and
Sensing: The Atom-Cavity
Microscope

In the work of Ref. [25, 26], much of which is also presented in [19], the sensing
and trapping aspects of strong coupling are exploited to realize atom-photon binding
within an optical cavity. A deep (~ 2.5 mK) potential associated with the single-
quantum interaction arises from the use of a short cavity with very small mode volume
(I =10.9pum, wy = 14.1pm). This cavity, with finesse F' = 480,000 and (g, k,y) /27 =
(110, 14.2,2.6) MHz, gives critical photon and atom numbers my = 2.7 - 107%, Ny =
6.1 - 1073. The coherent interaction energy exceeds other relevant energies in the
problem, in particular the atomic kinetic energy Fj ~ kg - 0.46 mK acquired in the
3-mm fall from the MOT to the cavity mode. Thus an atom can be caught within the
cavity if the system can be driven from its ground state to the trapping state when

the atom is at a maximum of the cavity field [21, 22, 23, 24].

4.1 Summary of Experimental Results

The implementation of this triggering strategy is summarized in Figure 4.1. Atoms
are dropped through the cavity mode while cavity transmission is monitored with
a weak probe beam. We define detunings of cavity and probe beam relative to the

atomic resonance frequency, i.e., A, = w.—w, and Ay, = w,—w,. The cavity is tuned
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Figure 4.1: Schematic triggered-trapping protocol for the atom-cavity microscope.

slightly below the atomic resonance and the probe is placed near the lower vacuum
Rabi sideband of the system, A,, < A, < 0, with a strength of 0.05 intracavity
photons. Such a weak probe allows high signal-to-noise for observation of an atom
entering the cavity mode, but does not significantly populate the excited states of
the atom-cavity system. Once the probe transmission rises above a predetermined
threshold, indicating that an atom is in a region of strong coupling to the cavity
mode, the probe power is increased to a level of about 0.3 intracavity photons to
create a confining potential around the atom.

Figure 4.2(a) shows the resulting cavity transmission for an atom trapped in this
way, with parameters A.,/2m = —47 MHz, A,,/27 = —125 MHz, and 0.3 photons
in the empty cavity. Note that while the “high” probe level is set at 0.3 intracavity
photons, the level rises to [{a)|* ~ 1 (where a is the cavity field annihilation operator)

during parts of the measurement record due to the atom’s motion within the cavity
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Figure 4.2: Cavity transmission record for a trapped atom moving within the cavity
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Das
photons in the empty cavity, and is turned up by a factor of six when triggering

occurs. For contrast, an atom freely falling through a constant-strength probe field
(0.3 empty-cavity photons) gives the transmission trace shown in gray.

field. Oscillations in transmission arise from atomic motion toward and away from
the cavity axis, with the level falling back to 0.3 photons when the atom eventually
heats out of the trap and escapes from the cavity. Using this protocol mean atom
dwell times in the cavity of 340 us are observed, with some rare events lasting up
to several milliseconds, as compared with the ~ 75 us free-fall time for an atom to
traverse the cavity mode. Lifetimes for a range of different experimental parameters
are presented in [19].

Lifetimes are limited by heating associated with the many decays and re-excitations
the atom-cavity system experiences during atomic motional timescales. For the pa-
rameters of Figure 4.2, the effective potential corresponds to a harmonic oscillation
period of 7, = 107 us (v, = 9.38 kHz) in the radial direction and 7, = 1.46 us
(ve = 0.688 MHz) in the axial direction, while decay and re-excitation are occur-
ring at roughly x. It is important to note that, while atoms are trapped via their
dipole interaction with a red-detuned light field in a manner reminiscent of the more
familiar free-space situation, the dynamics associated with the atom-cavity system
are quantitatively and qualitatively different from that case [26]. In particular, a

free-space potential of equal intensity would exhibit much greater diffusive heating
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and thus would largely fail to trap the atoms seen in this experiment (see Section
4.4.2); furthermore, the single-atom sensing which enables the trapping strategy is
only available through the use of the cavity QED system.

The most interesting feature of the measurement record for a trapped atom is
undoubtedly the oscillation in transmission. The period and amplitude of these os-
cillations agrees quantitatively with atomic orbital motion in the Gaussian mode
transverse to the cavity axis [25, 26]. Referring to Figure 4.2, we see that transmis-
sion oscillations exhibit considerable variation in period and amplitude. The exam-
ples (A;, Py) and (Ay, P,) suggest that large-amplitude transmission oscillations have
longer periods than small-amplitude oscillations. We expect this relationship given
the anharmonic (roughly Gaussian) radial potential and initial atomic kinetic ener-
gies large enough to substantially sample the anharmonicity. Period P vs. amplitude
A are plotted in Figure 4.3 for experimental and simulated transmission oscillations
under the conditions of Figure 4.2. The solid curve in both plots is the prediction for
one-dimensional oscillation in the known effective potential, as sketched on the right.
Quantitative agreement is seen here and in numerous data sets at different trapping
parameters, as set forth in [19)].

Trapped atoms in this system are tightly confined close to a single antinode of
the field, with typical axial amplitude < 50 nm in simulations. Experimentally, de-
tectable signatures from axial motion are not observed [25, 26, 19]; with our detection
bandwidth of 100 kHz, the role of axial motion at ~1 MHz would be to reduce the
amplitude of the transmission signals we do observe, through an averaging effect.
By analyzing the data for variation away from the radial predictions, we obtain an
operational bound of < 70 nm for the amplitude of axial motion, in good agreement
with simulations. This corresponds to a typical variation in g7") due to axial motion
of less than 7%.

Thus transmission provides a direct, real-time record of an atom’s radial dis-
tance from the cavity axis; this record can also be used along with the known ef-
fective potential to reconstruct two-dimensional trajectories. An experimental trace

of transmission vs. time for a single trapped atom is shown in Figure 4.4(a), with
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Figure 4.3: Period P vs. amplitude A of transmission oscillations for trapped atoms
in experiment and simulation (parameters of Figure 4.2). Data agrees quantitatively

with simulations and with the prediction from the known effective potential (solid
line).
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Figure 4.4: (a) Cavity transmission record for a trapped atom moving within the
cavity mode (parameters of Figure 4.2). (b) Atomic trajectory in the radial (y,z) or
(p, 0) plane as reconstructed from the transmission data of (a).

the corresponding reconstructed trajectory in Figure 4.4(b). The ball indicates an
estimate in error of the reconstructed position, as discussed in the next section. Such
reconstructions are tested by applying the method to simulated atomic trajectories.
We note that while the two-dimensional reconstructions rest on the ability to neglect
axial motion, it is in fact a “burst” of axial heating that typically ends an atom’s
dwell time in the cavity. This axial heating occurs rapidly, so that for the final half-
cycle of atomic motion in the cavity our transmission signal is typically considerably
affected by the average over axial motion, and the two-dimensional reconstruction is

not reliable at its endpoints.

4.2 Reconstruction Algorithms and Validation

With axial motion neglected due to its small amplitude and the separation of timescales
between it and radial motion, the cavity transmission T'(¢) corresponds directly to a
record of radial position p(¢). Because of the cavity mode’s cylindrical symmetry, no
information is directly provided about the angular position () of the atom in the

transverse plane. However, since we know the radial effective potential via steady-
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state solution to the quantum master equation, we can use the time record of p(t)
in this cylindrically symmetric potential to derive an estimate of the atom’s angular
momentum L and thus of H(t) In this way we are able to use the time record of the
scalar quantity 7'(¢) to obtain a two-dimensional atom trajectory.

Because the motion is not completely conservative, but includes momentum diffu-
sion and friction terms, angular momentum is not conserved and varies slowly during
an atom’s dwell time in the cavity. Thus we perform a running estimate of L(¢) rather
than applying a single value L throughout a given trajectory. This variation of L(¢)
and our ability to estimate it accurately provide important limits on the validity of
such two-dimensional reconstructions, as discussed below.

The reconstruction algorithm is validated by applying it to transmission traces
from simulated trapped-atom trajectories, with detection noise added. In simulations
the reconstructed two-dimensional trajectory can be compared with the “actual”
atomic position record to yield an estimate of error for the reconstruction method.
The simulations themselves are presented in more detail in [26] and in Section 4.4.1
below. To ensure close correspondence with the detection noise in the experiment,
actual “noise” data traces, taken at the appropriate transmitted powers, were added
to the (otherwise noiseless) simulated transmission records.

The trajectory reconstruction algorithm is as follows (see Figure 4.5) :

e Transmission data is acquired at 100 kHz detection bandwidth and digitized at
1 megasample per second. The transmission record is then smoothed with a 20

kHz 5-pole Butterworth filter [81].

e We neglect axial motion as discussed above, assuming an atom to be confined

to small-amplitude motion near a single antinode of the standing wave.

e From steady-state solution of the master equation, we know the cavity transmis-
sion as a function of atomic radius p. This relation is inverted through a lookup

table (with linear interpolation) to turn our smoothed transmission trace into

p(2)-
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Figure 4.5: Principle of 2-D trajectory reconstructions



52
e Also from steady-state solution of the master equation, we know the potential
Uesr(p). We divide p(t) into segments between a successive maximum and
minimum radius, p¢,,, and p! ... Now for each segment we calculate an angular

momentum via

L. = pz pz ) 2Tn(Uveff(p?magr:) — Ueff(p;nm,)) ) (41)
T (p?ma:v)2 - (p:TLZTL)Q

e Now we have a discrete set of stepwise angular momenta. We interpolate linearly

between them for a “running” estimate L(t).

e At each time now we have an angular velocity
0(t) = L) (4.2)

e We start the trajectory at some angle 6, and use p(t), 0(t) to obtain a 2-d

trajectory.

Three basic ambiguities will be clear from this algorithm, as illustrated in Figure
4.6: 1) the sign of the angular momentum is unknown, so the trajectory has arbitrary
handedness. 2) the initial angle 6, is arbitrary, so the resulting trajectory can be
rotated freely as a unit. Trajectories are presented with the atom entering from
above in a physically plausible manner, since the atom is initially falling under the
influence of gravity. 3) The trajectory is constructed in two dimensions, with the
axial motion confined within a single antinode, but no information is available about
which antinode the atom occupies during the trajectory.

Reconstructions of simulated trajectories are compared with the “actual” atomic
position record by first adjusting the overall sign of the reconstructed angular mo-
mentum and the initial angle 6y for the best possible match. An estimate of error is
calculated by comparing reconstructed and actual positions over a set of simulated
trajectories, excluding in each trajectory the first and last half-cycles of radial motion.

These initial and final cycles are not expected to reconstruct accurately due to lack of
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confinement (for angular momentum estimation) and contamination from axial mo-
tion (as mentioned above). Several example reconstructions of simulated trajectories
are shown in Figure 4.7.

Cases that cannot be reconstructed will also be clear from this algorithm and our
preceding discussion. First, extremely linear trajectories cannot be reliably recon-
structed because their angular momentum is so small that momentum diffusion can
change them by up to (and above!) 100% during a fraction of a radial oscillation
cycle. Reconstruction of such trajectories (that pass extremely close to the origin
and significantly far away again) should not be attempted. These cases (about one
quarter of trajectories in simulated and experimental data sets) are recognized with
an estimated 97% success rate via cavity transmission traces where the transmission
consistently reaches the maximum “allowed” value. Indeed the algorithm fails or
gives nonsensical trajectories if these cases are attempted, as shown in Figure 4.8.

Second, trajectories that closely approach the origin (within a micron or so) cannot
be reliably reconstructed from this algorithm and the data we use. The issue here is
that at our probe detuning (near the lower Rabi sideband), g(p) and thus also T'(p)
are nearly flat near p = 0. In principle this problem can be overcome with improved
detection schemes; I return to this question briefly at the end of Section 4.3. We note
that while this limitation may seem similar to the first one, and indeed both apply to
many of the same experimental data traces, they are rather fundamentally different.
One is a limit arising from dynamical noise (compared to motional timescales), while
the second is an issue of detection sensitivity.

Finally, the algorithm as stated above cannot deal with the case of a perfectly
circular orbit which yields an angular momentum estimate of zero over zero. One
might think that nearly circular orbits would be hopelessly mangled by this algorithm,
especially as noise obscures what small radial variations there are. In fact, nearly-
circular orbits work quite well, since the algorithm finds small wiggles (either real or
noise-related) and uses them to calculate an angular momentum which is nearly that
of the circular orbit at that radius. The resulting trajectory reconstruction is in fact

very good, as illustrated by the examples in Figure 4.9.
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Figure 4.7: Example trajectory reconstructions from simulated transits (parameters
The two-dimensional trajectory is shown on a square 30 ym on a
side. Dotted lines indicate the “actual” simulated trajectory while solid lines show
the reconstruction. In transmission traces, the filtered transmission is shown as a

of Figure 4.2).

dark trace overlaid on the original noisy transmission signal.
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Figure 4.9: Example reconstructions of nearly circular trajectories (parameters of
Figure 4.2). The two-dimensional trajectory is shown on a square 30 um on a side.
Dotted lines indicate the “actual” simulated trajectory while solid lines show the
reconstruction. In transmission traces, the filtered transmission is shown as a dark
trace overlaid on the original noisy transmission signal.
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A possible stumbling-block for our trajectory reconstruction method is the case of
the trapped atom which has small-amplitude axial motion, heats out of the antinode
in a rapid “burst” as described above, but then falls back into an antinode due to the
action of friction and/or momentum diffusion. Such an event (an atom “skipping”
between antinodes) would have cavity transmission contaminated by a brief episode
of large-amplitude axial motion in the middle of the trajectory, causing our algorithm
to estimate p(t) wrongly during the “skipping.” In a survey of a simulated data set
of 410 trapped-atom trajectories of more than one radial oscillation cycle, fifteen
exhibited “skipping,” giving an ~ 4% rate for this particular issue. I mention this
rate here because it is rather different from (considerably smaller than) the likelihood

for axial “skipping” in some other parameter regimes, as discussed more fully in [26].

4.2.1 Note on Conservative Motion in Gaussian Potentials

As a point of reference when viewing these atomic trajectories, it is interesting to
note some characteristics of perfectly conservative two-dimensional motion in the
same effective potential. The potential, while not strictly analytic in form, is very
closely fit by a Gaussian in p. Conservative motion in this cylindrically symmetric
potential produces trajectories which are in general not closed. Closed trajectories
do arise — trivially, for zero angular momentum or circular orbits, or for small-energy

motion that samples only the harmonic portion of the potential.

4.3 Position Sensitivity Estimates

The trajectory reconstructions described above, with their validation and error esti-
mates from comparison with simulations, correspond to an atomic position measure-
ment with 2 pum resolution achieved in a timescale of 10 ps. This corresponds to a
position sensitivity of ~ 20 nm/vHz [25, 19).

We may compare this with a quick estimate of sensitivity limits for our cavity and
detection scheme (Figure 4.10). We begin by writing down a rough dependence of

measured cavity transmission on the atomic radial position: d(detected photons per
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Figure 4.10: Sketch of vacuum Rabi splitting as the basis for position sensitivity
estimates.

time) /dp = 72k@2 % — oplo — = 212 (n is the overall detection efficiency and 2x

dg dp K wo
is the overall cavity decay). Here we have approximated z—’g‘ ~ % by reasoning that
the intracavity photon number drops from ~ 1 to ~ 0 over the resonance feature
width of ~ k. Our result then implies that, as an atom moves over distance Ap, the
corresponding signal (change in detected transmission) is 272 Ap.

To turn this into a sensitivity, we must ask how finely we can resolve a change in
the number of detected photons per unit time. That is a question of how big the noise
is relative to the signal. Overall there is roughly one photon in the cavity, giving a
photon-detection rate of 17(2x). Thus the shot noise is proportional to that value, i.e.,
shot noise for a given detection bandwidth B is v/2nxB. The signal-to-noise ratio in a
given bandwidth B is ~ 212 (Ap) /v/2nkB. Now if we define the sensitivity S, as the
G \/0—/\/_ Substituting

the relevant experimental values, this analysis yields a position sensitivity limit of

Ap detectable with unit signal-to-noise, we have S,

~ 1.0nm/ V/Hz. The discrepancy between this quantity and the measured sensitivity
can be somewhat attributed to technical noise — since technical noise is comparable
to the shot noise it should degrade the signal-to-noise and thus the sensitivity by a
factor of v/2 or so. That still leaves a very large gap, partially to do with the crude
estimates of the physics going on. The fact of the matter is that there is excellent
sensitivity on the side of the cavity mode (p ~ wg/2) and rather poor sensitivity
on-axis (p < wg) and at the edges(p > wy), while we average over everything.
Furthermore, our detection method falls short of realizing a full g2/ information

rate for sensing an atom in the cavity, as discussed more fully in Chapter 7.
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To predict a sensitivity for the as-yet unobserved axial motion, we may replace
wo with A/4, the axial distance from field node to antinode, in the estimates above.
This yields a limit of 0.015 nm/ V/Hz in principle, or an extrapolated sensitivity of
0.3 nm/ V/Hz based on what we achieve in the transverse direction. However, the
increased sensitivity in the axial direction is offset somewhat in usefulness by the
correspondingly faster timescale for axial motion, meaning that to resolve the motion
on relevant dynamical timescales a higher measurement bandwidth must be employed.

From the point of view of quantum measurement and feedback schemes, it is of
considerable interest to compare our position sensitivity with the limits imposed by
the Heisenberg uncertainty principle — or, for quasi-continuous weak measurements
such as ours, the standard quantum limit. Following the analysis of [82] for broadband
position observation on a free particle, we estimate the time ¢, for backaction effects
to become discernible in the measurement record. Taking our radial sensitivity of
2 pm over 10us, the walk-off time is £, = 1.5 ms. This means we could just begin
to see the effect in the longest transits, while the mean dwell time puts us about a
factor of five from the standard quantum limit.

One caveat in this analysis is the application of the free-particle theory to this
case in which the atom is in fact trapped; certainly another important consideration
in discussing the quantum nature of the atomic motion will be the vibrational quan-
tization of atomic motion in the trap. In the current experiments, quantization is
irrelevant in the radial dimension, where the vibrational frequency is 9.4 kHz com-
pared to typical energies of 9.8 MHz. However, in the tightly-bound axial direction
the vibrational levels are spaced by 0.7 MHz, which begins to be comparable to the
typical axial energy of about 3 MHz during most of a trapped atom’s lifetime.

Improved signal-to-noise is undoubtedly desirable for developing “atom-cavity mi-
croscopy” and exploring quantum measurement limits. One opportunity for improved
sensing would be to incorporate full detection of the cavity output field, i.e., ampli-
tude and phase of (a) rather than the |{a)|*> measurement we now peform. Such full
detection has been implemented in a cavity QED setting in [47], where atom-transit

“phasors” were observed. In that work the ability to access phase-shift information
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for the cavity field opened up the possibility for high signal-to-noise observations
in a farther-detuned regime. Besides that possibility, full detection in our scenario
would enhance signal-to-noise for observations of atoms passing very close to optimal

coupling, with ¢(7) ~ go.

4.4 Why Do Reconstructions Work in This Pa-
rameter Regime?

In this section we examine more closely the trapping potential and momentum dif-
fusion of the triggered-trapping experiment. This analysis, largely presented in [26],
was originally motivated by a desire to understand two aspects of our experiment.
First, to what extent was it important that the trapping was a “binding” between a
single atom and a single photon rather than an optical dipole force trap for a single
atom with a classical light field? Second, how could we characterize the dynamics
that made the motion of our trapped atoms quasi-conservative (and thus allowed
trajectory reconstructions), especially considering the very different trapped-atom
dynamics in a conceptually similar experiment (Pinkse et al., [50])7 I present this
material here largely because it helps to characterize the dynamical regime that allows
trajectory reconstructions, thus filling out the discussion of Section 4.2. Furthermore,
the qualitative nature of the dynamics as reflected in the potentials and heating rates
provides a relatively simple way of predicting conservative vs. diffusive trap dynamics
in other parameter regimes; this is a useful tool in evaluating dynamics for different
optical cavities, as discussed here and in Chapter 7.

To begin with we elucidate the quantum vs. classical nature of the trapping po-
tential and momentum diffusion. In particular we find that, for the parameters of the
atom-cavity microscope [25], the trapping potential and momentum diffusion have a
quite different character from what would be expected of an equally deep standing-
wave trap in free space. The usual (semiclassical) fluctuations of the dipole force along

the standing wave are suppressed by an order of magnitude, which represents quali-



62

tatively new physics for optical forces at the single-photon level within the context of
cavity QED. In the parameter regime of Pinkse et al. [50], still in the strong-coupling
limit but with larger critical parameters (myg, Ny), the situation is rather different.
The cavity and atom in this experiment had (go, s, 7v.)/2m = (16,1.4,3) MHz. For
these parameters, even when the atom-cavity system is strongly coupled and driven
such that it has a mean intracavity photon number of roughly one, the trapping po-
tential and momentum diffusion are only slightly different from those in a free-space
standing wave. We show that in the parameter regime of [50] the heating rates are
such that the atom could be expected to gain energy equal to a significant fraction of
the total trapping potential during a single motional oscillation period for both axial
and radial motion. By this measure the heating rates in the atom-cavity microscope
are very much slower, indicating more nearly conservative motion, and this could be
expected to have a profound effect on the qualitative nature of the dynamics in the
two experiments.

Ref. [26] also presents simulated transits for both experiments, and discusses the
qualitative features of atomic dynamics in both cases. For the parameter regime of the
atom-cavity microscope, conservative radial motion dominates diffusion and standing-
wave motion, with atomic trajectories localized at peaks of a single standing-wave
antinode. Atoms trapped with the mean trapping time execute several radial orbits.
The eventual escape is typically due to heating along the cavity axis. By contrast, for
the experiment of [50], a trajectory of typical duration does not experience a complete
radial orbit and in fact resembles a scattering event, with a large contribution from
radial diffusion as well. For these events the observed localization time is comparable
to the time for free flight through the cavity. Axially the simulations show that in
longer-duration transits the atom frequently skips between wells of the standing-wave

potential due to repeated heating and recooling.
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4.4.1 Quasi-classical Model for Atomic Motion in the Cavity

The atom-cavity system is modeled by a quasi-classical treatment presented in [26, 83];
the term quasi-classical is used to distinguish this approximation from the usual
semiclassical treatment which neglects the full quantum nature of the cavity field.
Here, the atomic internal states and cavity field are treated with their full quantum
character retained. The atomic motion is treated in a quasi-classical approximation
which requires the spread of its wavepacket in both position and momentum space to
be small compared to relevant scales in the problem. Specifically, an atom must be
localized to much better than an optical wavelength of the atom or cavity resonance
frequencies. This is equivalent to the requirement that the momentum spread be large
compared to an individual momentum kick associated with spontaneous emission or
exchange of excitation with the cavity field. At the same time, however, an upper
bound on momentum spread (or equivalently lower bound on position spread) must be
satisfied. This bound arises by considering the Doppler shifts of relevant fields as seen
by the atom; Doppler shifts due to the momentum spread must be small relative to
atom and cavity linewidths. The consistency of these conditions and their application
to the atom-cavity system rely on a separation of timescales between atomic motion
and atom-cavity internal dynamics; this separation is easily satisfied for motion in the
radial direction, and still applicable though approaching its limit for motion in the
axial dimension. Under these conditions we may calculate all quantities of interest in
the system by referring to steady-state solutions of the master equation (Equations
2.6-2.7) for each atomic position 7.

The treatment outlined above and fully set forth in [26, 83] can give us a great
deal of information about the nature of the dynamics that may be expected in the
parameter regimes relevant to the atom-cavity microscope and to [50]. In particular
we are interested in whether quantization of the cavity field leads to any significant
change in the dynamics, in the sense of asking whether the atomic motion is very
different in the cavity from what it would be in a free-space standing wave of the same

intensity and geometry as the cavity mode. Secondly, we can investigate the nature
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of the resulting atomic motion in the cavity field, which can be either predominantly
conservative or significantly diffusive and dissipative, depending on the particular
parameters of interest.

To get a feel for the type of atom dynamics expected, effective potentials and
heating rates were calculated for both the axial and the radial directions of motion.
Friction coefficients may also be calculated, but we omit them in this discussion
because their contribution to the motion is much smaller than that of momentum

diffusion in the atom-cavity microscope. The force operator is given by
F(7) = =iV g(7)(a'6 + ast) = —hgo Vo (7) (al6 + as?). (4.3)

The effective potential for the atom in the cavity field may be calculated from the

force by

-

mmm:—A%ﬁmyWﬂ (4.4)

The heating rates represent the average increase in the motional energy due to the
momentum diffusion at a given position 7 and may be calculated from the diffusion

tensor according to
dFE

“2(7) = TH[D ()] /m. (45)
where m is the atomic mass. The total momentum diffusion tensor D has two distinct
contributions D and E. The first contribution arises intuitively from decays and re-
excitations which switch the system stochastically between the trapping potential of

the strong-field seeking state and the flat potential of the overall ground state. This

contribution to momentum diffusion is given by
00 1 . . . . . .
DU:A dr[S(E(T)E5(0) + Ei(0)F5 (7)) — (F3)(E})]. (4.6)

(Recall that the time dependence of F' arises because we are in the interaction pic-
ture with respect to the probe frequency w,.) The other contribution to momentum

diffusion comes simply from momentum kicks associated with atomic spontaneous
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emission, and is given by
Ey; = eijh*(2m /)y, (676). (4.7)

Here ¢ describes the usual dipole distribution of atomic spontaneous emission and is

diagonal, with €,, = % and g,y = €,, = %.
Since g(7) = g(p, x), we neglect the 6 coordinate for the time being and write the

potentials and diffusions as functions of position (p, z).

4.4.2 Potentials and Heating Rates for Atomic Motion

Gathering up the results — and notation — of the preceding discussion, we see for
example that the axial potential at the center of the Gaussian mode is U, (0,2) =
- f;(ﬁ(o, z'))dz" and the associated axial heating rate is dE(0, z) /dt = Dxx(0, z)/m.
These quantities along with their radial equivalents Uess(p,0) and dE(p,0)/dt are
plotted in the solid traces of Figure 4.11 for the parameters of the atom-cavity mi-
croscope. The force and momentum diffusion coefficient for the cavity system were
calculated according to the formulae described above by numerical techniques based
on [34, 83]. The field state is expanded in terms of number states and truncated at an
appropriate level and a matrix continued fraction algorithm is used to calculate D.
The axial potentials and heating rates have A\/2 = 426 nm periodicity inherited from
the standing-wave field strength. Observe that the axial heating rates have minima
at both field antinodes and field nodes.

The first thing to note is that the axial and radial heating rates are very different
from one another. In the radial direction, heating is dominated by diffusion due
to spontaneous-emission recoils. Axially, however, the reactive or dipole fluctuation
component of the diffusion dominates. This is because the reactive component is
proportional to the gradient of the field squared, which is much larger for the axial
direction where variations are greater (by a factor of 2mwg/A). This contribution also
has the property that it does not saturate with the atomic response.

It is already clear that it should be possible to trap individual atoms, since the
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Figure 4.11: Effective potentials and heating rates for the ACM parameters, with
(g0, K,v1)/2m = (110,14.2,2.6) MHz. Detunings are (A,,, A.)/27 = (—125, —47)
MHz and the drive strength corresponds to 0.3 photons in the empty cavity. The
quantum prediction is shown by solid lines, with the semiclassical prediction given in
dashed lines.

potential depth of roughly 2.5 mK is greater than the initial energy of the atoms in the
experiment (around 0.46 mK) and the heating rate in the radial potential is relatively
slow. Over 50 pus (a timescale over which the atomic motion is strongly affected by
the potential) the total heating will typically still be small compared to the depth
of the potential. However, the importance of the quantum character of the relevant
fields or phenomena is not ensured by the statement that trapping occurs with mean
field strength of about one photon, since this is trivially the case in an equivalent
free-space volume for a field of the same intensity as that inside the cavity. Just as
in the cavity, a free-space field at w, < w, creates an attractive potential which leads
to the well-known red-detuned dipole trap for neutral atoms (see, e.g., [32]); whether
the intracavity trap differs in any recognizable way from its simple free-space cousin
is not immediately clear.

In order to see whether a full quantum description of the atom-cavity is necessary

in order explain observed effects, Figure 4.11 also shows the values calculated for an
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atom in an equivalent free-space standing wave, calculated by standard techniques
[84]. This free-space standing wave has the same geometry as the cavity mode and
the same peak field strength go|(a)|?(0,0). The detuning between the free-space field
and the atom is chosen to be A,,. Perhaps surprisingly, the only large difference
between the two models is in the axial heating rate, where a strong suppression of the
axial heating is seen in the quantum calculation. This suppression is an effect of the
quantized nature of the intracavity field. The self-consistent coupling of the cavity
field and atomic position (in a semiclassical sense) cannot explain this suppression;
in fact, by itself this coupling would lead to an increase in diffusion over the free-
space case, since the atomic motion within the cavity induces steeper gradients in the
field. The suppression of diffusion is then evidence that it is necessary to use a fully
quantum description, and speak of single photons rather than classical fields for these
experimental parameters. As discussed in [25], this suppression of the axial heating
was essential for the trapping of atoms in the cavity. Thus for these experimental pa-
rameters, the eigenvalue structure of Figure 2.5 leads to profound differences between
the standard theory of laser cooling and trapping and the extension of this theory to
the regime of strong coupling in cavity QED.

By way of comparison, the same quantities are plotted for the parameters relevant
to Pinkse et al. [50] in Figure 4.12. The smaller value of gq in this experiment leads
to a smaller effective potential, since the spatial gradients of the dressed state energy
levels (which lead to the potential) are proportional to go. More importantly, the
diffusion values calculated from the full quantum model discussed above are now
little different from those of the equivalent free-space standing wave. This lack of
a clear difference in potentials or diffusion indicates that the quantized nature of
the field is not required to explain the radial trapping observed in [50]. Note that
the resulting axial heating rates are essentially the same as those of Figure 4.11
in absolute magnitude; however, in the atom-cavity microscope the potential has
been made deeper without the expected corresponding increase in diffusion. For the
parameters of [50] one additional interesting feature appears — enhanced cooling of

the atomic motion relative to the parameters of the atom-cavity microscope. This
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Figure 4.12: Effective potentials and heating rates in a less conservative parame-
ter regime. Here (go, k,7.)/2m = (16,1.4,3) MHz. Detunings are (A, Ag,)/2m =
(—40,—35) MHz, and the drive streng