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THESIS ABSTRACT

Electronic energy transfer and optical dephasing of ordered and
disordered molecular crystals is studied theoretically and
experimentally., Dats on impurity band transport are presented which
are consistent with the Anderson  transition. The effect of
dimensionality on trap—trap energy transfer thresholds is

experimentally measured and modeled.

Experiments focus on 1,4-dibromonaphthalene whose lowest triplet
exciton is quasi—one—dimensional. Steady state and transient line
narrowing laser spectroscopy provide the first umequivocal measurement
of the inelastic scattering rate amongst the band states. The inelastic
scattering rate (intraband exchange rate) is slow and of the order of 10
usec at 20 K. Further, the elastic scattering rate is ~10 psec at 20 K
and is describable as Raman scattering by ~ a 42 cm-_1 phonon, It is
significant that there is a six order of magnitude separation of time
scales for the elastic and inelastic scattering, demonstrating that pure
dephasing dominates the intraband exchange. From the broadening and the
lack of a relative shift of the two sublattice k~0 absorptiomns, it is
concluded that the interband exchange rate is negligible compared to the
pure dephasing. It is found that disordering H, DBN with up to 16% D
DBN, the inelastic scattering rate is unaltered, being 10 psec at 20 K!
Pumping the k~0 state of the upper sublattice, relaxation is exclusively
to the k~0 state of the lower sublattice, implicating single phonon

resonant relaxation.

For heavily trap-disordered DBN (up to 24% H,/D,) it is found that



xiv

(1) excitation migration is step-wise incoherent, (2) energy transfer to
deep traps is best fit with a t_1/2 energy transfer rate, (3) there are
no mobility edges in the trap inhomogeneous profile and (4) an upper

limit for the trap homogeneous linewidth at 1.3 K is 9 Ghz.

Using lifetimes and temperature—dependent lineshapes,

+
optical dephasing of F and Fi center triplet states in Ca0 is is
consistent with Raman scattering by effective oscillators of 89

and 151 cm—l. respectively,

Vibrational dephasing of the CO stretch for benzophenone matrix-
isolated in 4,4'-dibromodiphenyl ether at 2.1 K was investigated with a
novel application of emission spectroscopy. It was found that the total
dephasing rate of the CO stretch was linear in the CO gquantum number,

consistent with recent theoretical predictions for carbonyl moieties.



CHAPTER 1.
CONCENTRATION DEPENDENT TRANSPORT THRESHOLDS
IN ISOTOPICALLY DISORDERED PHENAZINE AND 1,4-DIBROMONAPHTHALENE:

THE ANDERSON TRANSITION AND DIMENSIONALITY*

.
D. D. Smith, D. P. Millar and A. H. Zewail, J. Chem. Phys. 72 (1980)

1187.



ABSTRACT

Presented are measurements on the localization of triplet

Frenkel excitons in isotopically doped phenazine and 1,4
dibromonaphthalene (2-D and 1-D effective transfer topology,

respectively). Dependence of the steady state impurity aggregate

(monomer, dimer, etc.) emission intensity on dopant concentration,
temperature and dimensionality is experimentally measured and
theoretically modeled. Effects of phonons and excited state

lifetimes are explicitly included in a numerical simulation of the
data by average lattice rate egquations. The rate equations
explain the major features of the data quite well. For use in the
rate equations, Monte Carlo calculations have been performed to
determine impurity cluster spatial and probability distributions in
1-D and 2-D anisotropic lattices., A discussion of the relevance of
the results towards the Anderson Transition and percolation theory

ensues.,

I. _INTRODUCTION

In the past few decades, interest in molecular solids has
largely been confined to identifying the energetic structure of
Frenkel exciton (singlet and triplet state) bands [1]. More
recently, dynamics of exciton transport in pure crystals (i.e., there
is no impurity introduced but intrinsic impurities and defects are
present) were studied to elucidate the effect of strong and weak
exciton—phonon couplings on the mode of transport——coherent or

incoherent [2]. Disorder of the crystals alters the emergetic structure



as well as the dynamics. The former has been treated by several
groups for isotopically mixed crystals in the heavy—~doping limit and the

latter has just begun to be of interest to theorists and

experimentalists,
In recent work, Kopelman et al. [3], Colson et al, [4a], and
Smith et al. [5] have shown experimentally that disordered

naphthalene, benzene and phenazine exhibit a "*eritical'’’ dopant
concentration for energy transfer amongst the impurities.
Kopelman et al.’'s system consisted of naphthalene-H,, (host),
naphthalene-H, (trap), and beta—methylnaphthalene which acted as a
low-energy trap (called a‘ supertrap, s, in their publication).
Exciting with a filtered xenon lamp at about 1.8 K, they observed an
abrupt change in the phosphorescence intensity ratio Is/(Is + Ia)’ as a
function  of the trap concentration, Ia being the naphthalene-H,
energy acceptor. These studies have led Kopelman and his co-workers to
conclude that percolation theory can be used to explain the
results, They have made use of dynamic, static, and site percolation
concepts and have used percolation to obtain exciton coherence

lengths.

Colson and his group [4a] have studied benzene isotopic mixed
crystals both in the singlet and triplet states. Their low—energy
trap was a chemically distinct specie, pyrazine. Energy transfer
thresholds were found at 2.8% for the triplet state and about 40% for
the singlet state. The thresholds were discussed in terms of
percolation, pointing out that the excitation lifetime is a key

factor in determining the difference in trap concentration for



singlet and triplet percolation thresholds. The shorter singlet
lifetime limits the energy transfer range despite the 1longer range
coupling compared to the short range exchange coupling in the triplet

state.

Smith et al. [5], using isotopically doped phenazine have taken
a different approach. The two componment system of phenazine-H,
in phenazine-D, at any concentration has H, monomers and dimers isolated

by D host. For concentrations less than 5%, the number of trimers is

3
negligible and the dimer alone serves as a trap for monomer excitation.
The ratio of dimer to monomer phosphorescence intensity as a
function of H, concentration showed a threshold at ~5% only at Ilow
temperatures (1.13 - 1.4 K). This was interpreted as a transport
threshold in the context of Klafter—Jortner model [6] which applies the
well-known theory of P. W. Anderson [7] to energy transfer in organic
crystals. VWe did not test the applicability of classical percolation
theory in our original paper (henceforth referred to as I) because of
our belief, as that of Klafter and Jortner, that quantum
mechanical tunneling prevails in these systems. As pointed out by

Mott, [8] percolation may not be profitably applied to electron

transport in microscopically homogeneous crystals.

In this chapter quantitative steady—-state studies on
phenazine and 1,4-dibromonaphthalene (DBN) are presented. In the
following chapter time-resolved experiments omn ordered and disordered
DBN are presented and discussed. The effects of concentration,
temperature, and dimensionality are theoretically modeled and

experimentally tested. Ve perform a numerical simulation of the



experimental data nusing average rate equations and from the
expressions derived herein present physical interpretations of the
data. We discuss the relevance of the results to Anderson and
percolation models. This paper addresses itself to the very
specific problem of emergy localization in these organic crystals and
it should be recognized that statements in the text may only apply

to such crystals.

I1I. EXPERIMENTAL

A simplified schematic of the optical and magnetic resonance
spectrometer used in these experiments is shown in Fig. 1. The
spectrometer was used for optically detected magnetic resonance
(ODMR) , phosphorescence microwave double resomnance (PMDR),

microwave—optical hole burning, optical emission, and optical

absorption  experiments. In what follows we divide the
experimental procedure and . apparatus into four
categories——samples, cryogenics, optical detection and data

processing, and microwave electronics,

A. Samples

Raw perprotophenazine, (9,10-diazaanthracene, C,,H,N,) was
obtained from the Aldrich Chemical Company and purified by
extensive zone refining under oxygen—free conditions,
Perdeuterophenazine (CI,D‘NZ) was obtained from Merck, Sharp and Dohme
of Canada, Ltd. and subsequently zone refined. Mass
spectroscopic analysis showed the deuterophenazine to be better than

98% isotopically pure, Mixed single crystals of proto in



Figure 1. Block diagram of the low temperature optical and

magnetic resonance spectrometer used in the experiments,
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deuterophenazine were grown in small and large temperature
gradient Bridgman furnaces (1/2 K/15 cm and 5 K/cm, respectively) under
oxygen free conditions. After growth the mixed <crystals were
analyzed on a mass spectrometer, yielding the mole fractions of
deuterated, partially deuterated, and protonated phenmazine present
in each sample. For reproducibility, several mass spectra of
each c¢rystal were run and the statistically averaged results are
presented in Table I. Care was taken to wuse a 1low ionizing voltage

(~10 eV) and low source pressure (~2x10_7

Torr) yielding a typical ion
current of 6x10—8 Amp to minimize isotopic exchange and fragmentation
effects (in particular, those dissociations yielding  oparent

ions minus one hydrogen or deuterium). Even with these low

ionization voltages we have found some differences in the analysis.

Raw perproto 1,4—~dibromonaphthalene (DBN), C,oH¢Br,, was
obtained from Eastman Chemical Company, raw perdeuterated 1,4~
dibromonaphthalene, C, D Br,, from Merck, Sharp, and Dohme of Canada,
Ltd. Proto and deutero DBN were purified by extensive zone melting.
Isotopically mixed crystals were grown, again by standard Bridgman
techniques. The isotopic composition of the mixed crystals, as
determined by the mass spectrometric anelysis of Merck, Sharp, and
Dohme, is shown in Table II. Throughout the paper, we will refer to the

crystals by the percentage of the perproto specie present.

The samples were cooled slowly from room temperature to 77 K in a
helium atmosphere over ~ 6 h. No fracturing of crystals was visible at
that point. The crystals were then cooled to 4.2 K by the transfer of

liquid helium into the c¢ryostat, still mno fracturing observable.



TABLE I. Mole percentage isotopic composition of mixed phenazine

crystals
CRYSTAL C12H8N2 DG D7 C1ZDSN2
1* 0.6 + 0.1 2.0 £ 0.2 17.3 £+ 0.2 80.0 + 0.2
2 2.0+ 0.1 4.0 £ 0.3 17.1 £ 0.7 76.9 = 1.0
3 3.0 ¢+ 0.2 3.5 ¢+ 0.2 16.7 + 0.4 76.8 ¢+ 0.4
4 4.44:0.02 3.4 + 0.2 17.2 + 0.1 76.0 + 2.0
5 5.65+0.06 1.8 + 0.1 16.7 = 0.2 76.0 + 0.2

*
Only one mass spectrum was available, so statistically averaged results

are not possible. Errors estimated (very generously) from peak heights.
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TABLE II. Mole percentage 1sotopic composition of mixed DEN crystals

CRYSTAL  C,gliBr, D, DM, 1608,
1 <0.3 0.6 £ 0.2 10.2 82.9

2 2.9 0.3+ 0.3 10.5 86. 3

3 4.8 0.3 ¢ 0.3 9.7 85.2

4 5.2 0.2 ¢ 0.2 8.7 82.9
1.9 0.2 + 0.3 8.6 79.3

6  14.5 1.1 2 0.5 1.5 72.9

7 21.8 <1 7.7 70.5

8 24.1 <1 1.1 68.5
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Care was taken so as not to allow the crystals to warm up between
subsequent 1liquid helium transfers, as rapid thermal cycling over
large temperature ranges may affect the strain broadening of the
crystals, which in turn might affect the transport dynamics under
study. In addition, while making temperature dependent measurements,
care was taken to allow the crystals a minimum of 7 minutes to come
to thermal equilibration with the helium bath (while irradiating with
the light source). We have observed, while doing temperature-
dependent measurements on phenazine-H, in superfluid helium, that
equilibration times much less than 5§ minutes give irreproducible
emission intensities for temperature changes of ~0.8 K. Equilibration
times should in principle be longer for the low temperature
measurements as the Kapitza contact resistance [9] goes roughly as T_3
(and increases with the number of asperities on the sample surface). We
did not make detailed measurements of equilibration times, yet we wish
to bring ;ttention to this potential source of error. Further, for
temperatures close to  but below the lambda point, we have
observed local boiling of the superfluid on the surface of the light
baffles, which implies sample heating may also occur (keep in mind that
for T greater than 1 K, He II will not support temperature

gradients).

Our measurements were tested for equilibration by finishing the
temperature run (say, ending at high temperature) then redoing
the initial measurement (low temperature) using a temperature
sensor near the crystal, When equilibration was complete,

excellent agreement was found. For the magnetic resonance
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experiments and most optical experiments the samples were mounted in
as strain—-free a manner as was possible by placing the crystals
within a helix and supporting the crystals from beneath with tape. (The
weight of the crystal on itself and the hydrostatic pressure of the
helium bath which changes during the experiment may contribute to
the crystal strain.,) For the experiment in which the trap depth and
temperature dependent emission intensity were measured, the samples
were gently taped into a sample compartment (which was attached to
light baffles) using black photographic tape. In these experiments all
crystals were mounted on the same holder which has large open windows

to insure helium circulation around the crystals.

B. Crvogenics

The sample holder was immersed in a 10 liter Janis immersion dewar.
The temperature of the helium bath was regulated to + 5 mK between
4.2 and 1.12 K. For temperatures above 1.6 K, regulation was
achieved with a Lakeshore Cryotronics model 329 vacuum regulator.
For all but one exferiment, helium reservoir temperatures were
measured with a calibrated carbon glass resistor to + 5 mK,
The immersion thermometer was placed as close as was practical to
the samples ({30 mm). For one experiment (the temperature
dependence of the emission intensity for the 2% H,/D, phenazine) the
crystal temperature was measured by vapor pressure thermometry,
which reproduced the earlier results for the dimer to monomer ratio

measured by the carbon glass resistor to within 4%.

€. _Optical detection and data processing
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Light from the samples was dispersed with a 0.5 m Ebert mount
scanning spectrometer with a 2400 groove/mm grating and detected with
an EMI 9659QB photomultiplier tube enclosed in a cooled housing.
For the optical absorption and emission experiments the slits were
held constant at 20 pu x 10 mm yielding a spectral resolution of
approximately 0.32 X at 6470 K. To reduce the scattered 1light
within the spectrometer, sharp—-cut filters passing only long wavelengths
were placed directly in front of the entrance slit. All emission
and absorption spectra are unpolarized and uncorrected for
instrument response., Appropriate solution filters were used to absorbd
unwanted visible and IR radiation from the 1 kW tungsten lamp or an

Oriel 200 W Hg arc lamp.

Phenazine optical spectra were obtained by chopping the
luminescence. The chopped luminescence was phase sensitively
detected at 100 or 975 Hz and the signal fed to a Varian C-1024 time
averaging computer, The spectrum was averaged, if necessary,
and plotted on a X-Y or strip chart recorder, The phenazine
spectrum was calibrated by placing an Fe—Ne hollow cathode 1lamp
(20 mA current) directly in front of the spectrometer
entrance slit, Without interrupting the scan, the calibration lamp was
then removed from optical path and the absorption or emission
line was recorded. The scan still uninterrupted, the calibration
lamp was reinserted in the optical path and the second calibration line

was recorded.

Absorption and emission experiments used to determine the trap

depth were dome on the same crystal at the same temperature without
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moving the sample in order to insure against artifacts.

DBN emission spectra were obtained with a Nuclear Data series
2200 photon counting system. A hard copy of the digitized spectrum was
recorded on HP 7590C point plotter. Using a nonlinear regression
computer program, the emission spectra were fit as the sum of
Gaussian line shapes. The phenazine emission spectra were digitized by
hand and the 1ine shapes were fit in a manner similar to that above.

Details of the line shape analysis and results are in Sec. III,

D. Microwave electronics

Samples for the iow temperature magnetic resonance
experiments were held with a German silver helix wound to
dimensions slightly smaller than the lowest order transverse mode.
The helix was connected only to the silver plated center conductor of a
chrome-plated semirigid coaxial cable, the last two windings being
shorted. For the microwave—optical hole burning experiment,
concentric helices separated by a 1 mm thick wall quartz cylinder were
used. We did mnot control the inductive coupling of the helices. In
fact, it is not clear that one could control the mutual coupling if one
wanted to. The best approach would be to use horn antennas external to
the dewar for the two different frequencies. However, one then
needs to use a glass dewar since diffraction and pseudo-cavity effects
at the metal dewar windows and sample chambers are expected to be
severe, especially at the frequencies used (500 Mhz - 5 Ghz).
The microwaves were square-wave amplitude-modulated to a depth of ) 40

dB with Narda 411DJ201 PIN diodes. The square wave for the
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modulation was derived from the sine wave reference of the lock-
in amplifier via a homemade comparator circuit wused as a Schmitt
trigger. The frequency swept, 1leveled (+ 1 dB) microwaves were
supplied by an HP 8620C oscillator which was amplified by a
Hughes model 1277H (specially selected) 60 Watt traveling wave tube
amplifier, appropriately filtered and isolated. Isolators were
used on both sides of the PIN diode to protect the sweeper's YIG
oscillator and prevent unwanted reflections. The modulated
output of the diodes was passed through an octave bandpass filter.
Microwave power incident on the helix was measured by use of a HP
430B power meter connected to a directional coupler situated

directly on top of the experimental dewar.

III. RESULTS

A, Phenazine and DBN c¢rystalline structure and intermolecular
interactions

Phenazine crystals grown from the melt are of the monoclinic a form
[10] with space group P2, /a, two molecules per unit cell. At room
temperature, the unit cell has the dimensions lal = 13.22 + 0.01, Ivl =
5.061 + 0.005, lcl = 7.088 + 0.007 A, B = 109°13' + 15'. The most
salient feature of the crystal structure is chains of plane parallel
packed phenazine molecules at 45° with respect to the short axis, b.
Neighboring chains in the ab plane have their long molecular axes
perpendicular to one another (shown clearly in Fig, 2). As we shall
discuss later, intermolecular interactions are highly anisotropic

for the 3an" band, with b axis coupling dominating at 6.5 cm_l,
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Figure 2. Projection of the contents of the phenazine unit cell onto a

plane perpendicular to the ¢ axis [10].
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[11] ab plane interchange equivalent—pair interaction emergy of 0.5
cm—l, [12] and coupling along the ¢ axis being immeasurably small
by conventional optical techniques. (The 6 cm—1 value was obtained
after correcting for guest—host interactions.) Thus, one obtains

essentially a two—-dimensional topology in the ab plane that

resembles that of naphthalene.

DBN crystallizes [13] in a P2 /a (Cgh ) space  group, 8
molecules per unit cell. Crystallographic axes a = 27.45 + 0.08, b =

16.12 + 0.04, ¢c = 4.09 + 0.01 K, B = 91°51' + 10’,

The spectra of DBN neat [14] and isotopically mixed [15] exhibit
the characteristics of a linear chain with nearest-neighbor interaction

of -6.2 cm“1 [15].

B. _Vibronic emission spectrum of isotopically mixed phenazine

The unpolarized vibronic emission spectrum of the

isotopically mixed single crystal 2% proto in deutero phenazine is

shown in Fig. 3. The relative intensities, wavelengths,
reciprocal wavelengths (corrected to vacuum) and energy
splittings in cm"1 are recorded in Table III. The sample was

optically excited by a8 200 W mercury arc lamp filtered to a
0
passband from 3050 to 4700 A, Spectral resolution of

approximately 20,000 was used.

We record the (0,0) origin of the proto monomer to be at 15,453

+ 3 cm 1, whereas the neat phenazine crystal absorption has Davydov

components at 15,448 and 15,452 cm-1 [12]. With trap states as shallow
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Figure 3. Vibronic emission spectrum of 2% H, in D, phenazine at 1.6 K.
From 6820 to 7200 K. The sensitivity has been increased by a factor
of 10. The insSet shows the side-band spectra at higher semnsitivity
to reveal the structure. Correction for phototube response would
enhance the low energy lines relative to the vibrational origin,
The scan is only of moderate sensitivity, making it difficult to
see the 4.4 cm-l splitting that occurs on a large number of the

vibrational lines (however, see Table III and Fig. 4).
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TABLE IIl. Analysis for the phosphorescence (3Bzu» 1A]g) of 2% proto

in deutero phenazine at 1.6°K

e (SO0 L i ste) PO e
64€g.58 15455.1 Vs MOO monomer origin
6470.24 15451.1 Vs DQ0 dimer origin
6477.61 15433.5 S MOO-ZI.G NA,NR
6480.27 15427.2 s M00-27.9 NA,NR (16)
6491.09 15401.5 W M00-53.6 NA,NR
6554.51 15252.5 W M00-202.6 0,NA
6556.50 15247.8 m 000-203.3 0,NA
6573.98 15207.3 w M00-247.8 0,MNA
££38.56 15059.3 W MOO-395.8 NR,NA
6645.72 15043.1 S MOO-412.0 417 (R)
6647.55 15039.0 m Dog-412-1 417 (R)
6681.67 14962.2 m M00-492.9 474 (IR)
6683.5 14958.1 W 000-493.0 474 (IR)
6734.77 14844.2 S M00-6)0.9 612 (R)
6736.43 14840.6 W 000-610.5 612 (R)
6805.01 14691.0 W Moo-764.1 751 (IR)
6807.34 14686.0 W 000-765.1 751 (IR)
6871.09 14549.7 w M00-905.4 802 (IR)
6927.85 14430.5 w M00-1024.6 1011 (R)
6991.44 14299.3 W MOO-1155.8 1156 R(IR)
6993.60 14294.8 w 000-1)56.3 1156 R(IR)
7050.86 14178.8 W MOO-]276.3 1279 (R)
7114.28 14052.4 W Moo 1hc2.7 1404 (R)
7116.27 14048.4 W 000-1402.7 1404 (R)
7120.77 14039.6 W M00-1415.5 NR,NA
7122.93 14035.3 v 000-1475.8 NR,NA
7143.74 13994.4 w MOO-1460.7 1475 (R)
7190.51 13903.4 w M00-1551.7 1554 (R)
7192.84 13898.7 W M00-1552.4 1554 (R)
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TABLE II1 (continued)

*The numbers quoted in this table are no more accurate than t 3 em !

and
therefore the decimals do not reflect high accuracy (see also Tahle IV).

1 >10 very strong, 7-10 strong, 4-7 medium, 1-4 weak, < 1 very weak.

Tt See references 17 and 18. KA = not assigned, NR = not reported,

0 = observed.



23

as in the isotopically mixed phenazine crystal, significant
host-band  mixing will be present and, as a consequence, the
energies of trap and host states are influenced and the dimer and
monomer may borrow different amounts of oscillator strength from

the host band.

When the signal-to—noise ratio permitted, an average
splitting of 4.2 ocm ! (standard deviation 0.3 cm—l) was observed in
most emission lines. The structure at 21, 27, and 54 cm‘-1 to lower

energy from  the (0,0) origin has not been positively assigned

[16]1.

The vibronic line intensities decrease as ome goes to lower
energy, Yyielding a Franck-Condon envelope in rough agreement with other
work [17]. The observed average monomer—dimer splitting of 4.2 cm-1 for

1 + 0.5 cm.-1 from the

all lines agrees well with the splitting of 4.4 cm
work of Zewail [11,19] and the high resolution eceomputer fit data
described later in this work. In the emission spectrum to the
vibrational levels 6f the ground electronic state, ome would expect
to see the 4.2 cm_1 splitting omn all lines only if the ground
state vibrational splittings were small and the 1line broadenings were
negligible. If the vibrational splittings were considerable
compared to the excited state splittings, the 4.2 cm—1 splitting
might be altered and for the case of dimer emission, new selection
rules for optical emission would 1likely be involved. One can

conclude then, for most vibronic lines of the phenazine emission

that ground state splitting is relatively small,
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The ratio of the dimer to monomer emission intensity (D/M), within
experimental error, appears to be the same for all relevant
vibronic lines [20]. For example, for the (0,412) transition, the
D/M intensity ratio is 0.45 + 0.03 compared to 0.50 + 0.02 for the (0,0)
orgin, with splittings of 4.0 and 4.1 cm—1 (within our
resolution), respectively. The (0,412) tramsition and (0,0)
transition at 1.6 K are shown in Fig, 4, At this temperature and
from the impurity emission spectrum of the 2% crystal, we also
obtain an optical Debye-Waller factor [21] of 0.2 to 0.25, as
measured by wuse of a polar planimeter averaged for several different

spectra. An insert, showing the detailed structure of the phonon

sideband is depicted in Fig. 3.

Spectroscopic trap depths were measured for the 0.5% and 6.6%

H in D

s phenazine crystals at 1.36 K. Measurement of absorption

]
spectra for the two crystals yielded the Davydov splitting of the
host band. Measurement of the emission spectrum of the 0.5% and 6.6%
crystals yielded the. trap depths of the monomer and dimer,
respectively. The measurements indicate; (1) a trap depth in the 0.5%
crystal of 23 + 2 om ' from the middle of the host deutero k = 0
bands to the ’'’'isolated’’' proto impurity; (2) a possible weak dependence
of the trap depth on dopant concentration, since there is a 1.6 cm.-1
red shift between the dimer in the 6.6% crystal from where ome might
expect it from the 0.5% measurements. However, this shift is due in
part to the emission of trimer aggregates building a shoulder upon the
true dimer emission, and is within our experimental error; and (3) a

Davydov splitting of 4 c:m—1 for the deutero host which contains
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Figure 4. Monomer and dimer emission lines for the 412 cm_1

molecular vibrational mode and the vibrational origin of the 2%
phenazine crystal at 1.6 K. Relative intensities of the
vibrational lines may be seen in Fig. 3. The gently sloping
-1

baseline that increases to lower energy 1is present in 412 cm

vibronic line and the (0,0) origin,
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impurity band states in good agreement with earlier work [12]. These
results, together with other measurements, are compiled in Table IV.
The calibrated absorption and emission spectra for the 6.6% crystal
are shown in Fig. 5 with an insert to show the Davydov doublet more

clearly,

For DBN, the optical spectroscopic properties have been well
characterized [14,15] and when applicable our measurements agree well

with previous work dealing with monomer—dimer—trimer splittings.

C, _Effect of guest concentration on emission spectra

The observation of abrupt changes in intercluster energy
transfer rates for phenazine and DBN was accomplished by
comparing the populations of different impurity clusters
(monomers and dimers) as a function of dopant concentration and sample
temperature, In this section we present the experimentally
measured trap emission intensities (energy resolved) as a function

of impurity concentration.

Figure 6 shows the dimer to monomer emission intensity ratio as a
function of concentration for phenazine, presenting new data in addition
to those shown in earlier work by us [5]. The dimer and monomer
emission intensities in Fig. 6 are the integrated peak areas as fit by
a computer generated line shape function (see Fig. 7). Due to
splittings that are small in comparison to the broadening, it is
reasonable to fit the emission line shape omnly to monomer, dimer, and to
some extent, trimer. Emission from translationally inequivalent

dimers, translationally equivalent monomers separated by ome host
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TABLE IV. Emission (E) and absorption (A) spectra of pure and doped
phenazine crystals

cgv:m T(k) A(em )T ASSIGNMENT  INVESTIGATORS
8
6.6 1.36 15477.8 Davydov (,y  This work
154741 doublet
15447.6 dimer & (E) This work
trimer :
0.5 1.36 15477.9 Davydov (A) This work
15474.3 doublet
15453.2 monomer trap This work
(E)
pure D 4.2 15467 Davydov (A) Clarke and
15471 doublet Hochstrasser*
pure H 4,2 15448 Davydov (A) Clarke and
15452 doublet Hochstrasser*

——

*
See reference (12).

TThe values we report are in vacuo and are regarded to be accurate to

+ 3 cm'].

The values of Clarke and Hochstrasser are possibly in air
(private communication) and for the deutero Davydov states differ from
our measurements by 4.5R . Note that the trap depth of the 6.6% (Fig.
5) can be corrected for the dimer and trimer emission to yield a monomer

1

trap depth of 22 cm ', which is in excellent agreement with the 0.5%

result (23 cm']).
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Figure 5. Superimposed absorption and emission spectra of a 6.6%
phenazine at 1.36 K calibrated by standard neon lines at 15364.9 and
15512.3 cm—l. The Davydov doublet is shown at higher resolution
in the inset in the figure. The emission in the spectrum is
dominated by the dimer and trimer, since at 1.36 K the deeper traps
acquire the majority of the population. The 28 cxn‘-1 measured from the
middle of the Davydov doublet to the peak of the trap emission is not
the true trap depth of any cluster. Computer fit of the emission
yields 22 c:xx{-1 as the energy difference between the middle of the two
k= 0 states and the monomer, which is within experimental error of
the 0.5% results. Note that the Davydov doublet in  the 6.6%

crystal is still clearly resolved (indicating the band states are

not totally disrupted). The 6.6% crystal was 5 mm thick.
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Figure 6. The computer fit (integrated peak area) dimer/monomer
phosphorescence intensity ratio as a function of proto trap
concentration for 1,92 and 1.34 K. The data for 2.99 K are from peak
heights, as the signal/noise was insufficient to permit reliable
computer analysis., For the computer fits, the error bars are
those determined by the mnonlinear regression' and represent 80%
confidence 1limits of a § degree of freedom double—~tailed student
"'grt statistic (see e.g. [61]). The new data agree within error with
the data published previously [5]. The crystal concentrations are
those of a statistically averaged mass spectral analysis (see Table I).
The data for 1.92 and 2.99 K yield very nearly straight lines and were
fit by linear least squares to yield D/M = 0.02 + 0.36C (o = 0.06)

and D/M = 0.09 + 0.12C (o = 0.07), respectively.
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molecule (double monomer), and other more complex impurity
clusters can be compensated for a posteriori, but their precise
position and linewidths cannot be extracted with certainty

from the measurements herein alone.

The trap emission envelope was fit as the sum of a straight
baseline and Gaussian 1line shapes for the monomer, dimer, and trimer
(if present). In principle, each cluster emission envelope
should have a phonon sideband of its own., Thus, the monomer sideband
will contribute more to the baseline offset of the dimer than the
monomer emission. We make the approximation that the sum of the
sidebands results in a linear sloping baseline for all trap
emission. No noticeable change in slope over the temperature range
from 1.3 to 3 K was observed. However, there was a slight

increase in baseline slope with increasing dopant concentration.

Using the computer fits, the monomer—dimer splitting was
experimentally determined in the 2% H, in D, phenazine crystal at 1.33
K to be 4.4 cm;l. The 2% crystal was chosen for the
determination of the resonance splitting so that in the computer fit
of the data, trimer emission would be negligible and wuse of two
Gaussians whose FWHM, amplitude, and center were parameters would
produce a fit which is most mnearly correct. Further, the low
temperature spectrum was chosen since the S/N ratio increases as the
sample temperature decreases (see Sec. D on the effects of
temperature). The 4.4 cm_1 splitting was then used as a fixed parameter

in the remainder of the computer genmerated fits. The linewidths from

the 2% crystal analysis were not useful in fitting other
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crystal spectra, likely due to the difference in strain broadening from
sample to sample (see Table V) or due to intrinsic correlation
effects that are a function of concentration. However, no
obvious trend for the linewidths as a function of concentration was
found. For the 5.65% crystal the dimer—trimer splitting was a fixed
parameter (from knowledge of the monomer-dimer splitting) and trimer
amplitude and FWHM were variable. Examples of computer fits are shown

in Figs. 7 and 8 for phenazine and DBN, respectively.

In I, we used peak heights for calculating D/M. Here, we used
the integrated areas with and withoﬁt the trimer and find the D/M
ratio is still within our error, The small but noticeable
broadening and shift of the dimer line to lower emergy for the 5.65%
crystal as the temperature is reduced is due to trimer population
increasing as the temperature is lowered, which is shown clearly in the
computer fits of Fig. 7. If omne attempts to fit the 1.33 K
data for the 5.65% crystal with just two Gaussians (monomer and
dimer) one finds . splittings inconsistent with the 4.4 cm-_1

value for the 2% crystal and an unphysically large FWHM for the dimer

peak.

Similarly, the computer fit of DBN emission spectra provided us
with the dimer—to-monomer ratio as a function of temperature and
concentration. The monomer and dimer are well resolved for the DBN
case but the carbon 12 monomer is closely flanked by the carbon 13
monomer and the (presumably) double monomer [15] (DHDHD...) such
that they form shoulders. Using carbon 13—carbon 12 monomer splitting

(1.9 cm-l) from previous high resolution work [15] as a fixed
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TABLE V. Computer fit inhomogeneous linewidths of cluster emission
in mixed phenazine crystals

Protoisotopic T F"HM;onomer FNHMG?mer FWHM i me r
Conc.,mole% (X) (cm'])* (cm'])* (em-1)t

0.6 1.92 2.6 + .1 3.6 + .8

2.0 3.4 ¢+ .1 3.8+ .2

3.0 3.3 3.7

4.44 3.1+ .2 3.1+ 1

5.65 3.6 .3 3.4 £+ .1 4.0 ¢+ .8

0.6 1.34 2.8 + .1 3.5+ .8

2.0 4.0 + .1 4.0 + .2

3.0 3.7 £ .3 3.8+ .2

4.44 2.7 £ .3 3.1 £ .1

5.65 3.4 £ .6 3.7 £ .1 3.2 ¢+ .2

*average FWHMmonomer = 3.26 cm']; o = 0.46 (14% standard error)

**average FwHMdimer 3.57 cm']; o = 0.31 (9% standard error).

*All error bars are from 80% confidence interval of student "t" statis-

tics (63).
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Figure 7. Examples of computer optimized line shape fits (smooth 1lines)
of the data (dots) for the vibrational origin of 2% and 5.65%
phenazine. Only the relative emergies of the fitted peaks are shown as
absolute values are listed in Table III, The histogram bars
superimposed on the emission spectra are the relative statistical
probabilities for each cluster (see section on cluster statistics).
The fit for the sloping base line is not shown to avoid confusion in the

figure. However, one can see the slope is greater for the 5.65% crystal

than the 2% crystal,.
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Figure 8. Computer fit (smooth line) of data (dots) for 11.9% DBN

at 4.19 K. Legend: 13C = carbon 13 monomer, M = monomer, DM = double

monomer, D = dimer, Tr trimer, Tet = tetramer. Histogram
bars indicate relative cluster probability from the exact results of
Sec. IV A. The monomer—dimer splitting was wvariable in  the
computer fit from which the dimer—trimer and trimer—tetramer
splittings were fixed. The double dimer was not included in the fit
due to the vanishing statistical probability of occurrence. All peaks’
FWHM and height were variable in the fits. In ali cases, the

13C/13C monomer emission intensity ratio was that expected by isotopic

abundance, i.e., 11% (within the error bars).
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parameter and letting the dimer—monomer splitting and monomer—double
monomer splitting be adjustable parameters produced good fits.
Furthermore, knowing the monomer—dimer splitting accurately, we
predicted, for a 1limear chain, the po#ition of the trimer and
tetramer; thus trimer and tetramer positions became fixed parameters.
In all cases, peak amplitudes and FWHM were adjustable parameters
(see Fig. 8). For comparison of the results of DBN, the quasi—one-—
dimensional system, with that of phenazine, the quasi-two—dimensional
system, we depict the concentration dependence of dimer—to—monomer
ratio for DBN in Fig. 9. Again, for DBN as in phenazine, omne notices
the disappearance of the abrupt change in D/M as the temperature
increases. However, this ’‘’abrupt’’ change in D/M occurs at

critical concentration much different in DBN compared to

phenazine, a point that we shall discuss in the coming sections.

The error bars for the DBN data are determined by a

nonlinear regression routine and are large for high
concentrations due to the overlap of dimer, trimer, tetramer
emission. Vhere only omne data point is shown for lightly doped

crystals, data for all three temperatures coincide well within the
error bars, Thus, only one data point is shown to avoid confusion.
Comparison of the spectra for DBN at higher concentration at

two temperatures can be found in the insert of Fig. 9.

D. _Temperature effects

We have measured the temperature dependence of: (1) the

dimer/monomer intensity ratio as a function of dopant
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Figure 9. The computer fit areas for the dimer/monomer emission
intensity ratio for DBN as a function of temperature and
concentration,. Observe the ''"sluggishness’’ of the threshold
behavior in this quasi-1-D system as compared with phenazine (Fig.
6). This is due in part to the fact that the superexchange

coupling scales exponentially as C'-1 /2

for 1-D and ¢! for 2-D (see
Sec. VI A). The uncertainty in D/M for the 21.8 and 24.1% crystals
results from the congestion éf cluster emission 1lines and reflect
approximately 70% confidence 1limits. However, from the inset for the
24.1% case, it is clear that D/M changes considerably. In low
temperature fits, peak positions from the high temperature fit
were  used to locate the dimer, trimer and tetramer. For 1low
concentrations, when only ome point is shown, the D/M ratios for all
three temperatures coincide well within the error bar. In the
.insert, the 24.1%, 4.2 K spectrum shows the '’quasi-Boltzmann’'’ behavior
(see Fig. 11) of the D/M ratio: 2(0.24)exp(5.5/4.2 x 0.69). For
the trimer and tetramer the errors on the intensities from the computer
fit are quite large due to the absence of (apparent) splitting. At
lower temperature we do not expect this quasithermal behavior to hold.

The result of the 14.5% sample of Ref. 15 fits smoothly with our

curves.
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concentration in phenazine, as shown in Fig. 10 (a portion of the
data in Fig. 10 is also present in Fig. 6); (2)
dimer/monomer intensity ratio for DBN at various dopant
concentrations (Fig., 11); and finally (3) the emission intemsity of
monomer and dimer trap states for ophenazine (Figs. 12 to 15).
Again in all these experiments, the temperature was carefully
regulated and measured near the crystal, When S/N permitted,
emission intensities and error bars were obtained from computer—analyzed
experimental data. In Fig. 10, the 0.5% crystal has two sets of
data points. Curve F was taken using the regrown crystal of curve
E. The major difference between the samples is presumably the crystal
strain; curve F is likely to be the 1less strained of the two, due
to the method of preparation and number of thermal cyclings it had

undergone.

We mention that for the 0.5% phenazine crystal, temperature
dependence of the emission intensity was measured in two
independent experiments to demonstrate the reproducibility and to
ascertain the largest possible error in the measurement of
signals with relatively much less intensity (in this case, the
dimer). Further, omne set of measurements was taken by going up in
temperature and the other by going down in temperature. As -expected,
the experiment demonstrated no temperature dependent hysteresis
effects. We note that in this work we did not attempt to make
measurements above or near the lambda point of helium in the immersion
dewar. This is because, from previous experience, we could not

reproduce data at these temperatures, perhaps due to emission scattered
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Figure 10. Plot of log(D/M) vs. T ' for (A) 5.65%, (B) 4.4%, (C)
3%, (D) 2%, (E), and (F) 0.5% H, in D, phenazine. The D/M ratios are
from peak heights. The new data in this plot for the 2% crystal
clearly show the "'knee’'’ at T~1 = 0.5 K—l. In the previous work,
signal-to—noise did not permit unequivocal identification of the
knee. An asymptotic high temperature activation energy of ~ 4 cm-1
is observed for high concentration crystals. When more than one set

of symbols appears for a given curve, data were recorded in two entirely

different experiments.
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Figure 11. 1log(D/M) vs.'I'_1 for the following DBN crystals: (A) 21.8%
H, in D,, (B) 14.5%, (C) 11.9%, (D) 8.2%, (E) 4.8%, and (F) 2.9%. The
dimer was not observed in the 0.1% crystal. The ratios are from
computer fits of the experimental data except for the 14.5% crystal

which is from peak heights. Curve B was taken from Ref. 15,
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Figure 12. Normalized emission intensities (peak heights) of the
phenazine dimer (or dimer + trimer in the 6.6% crystal) as a
function of temperature. The data (and the error bars for each
crystal) are multiplied by a constant to make their intensities
commensurate at 1.3 K. The data for the 0.5% crystal show a net
increase in dimer population with temperature where the 6.6%
crystal has the opposite behavior. These trends indicate
indirect and direct communication channels, respectively (see text).
The 2% crystal would then represent the ambivalent direct and indirect
channels. When more' than one symbol is shown for a given curve, each

symbol represents a different experiment.
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Figure 13. Phenazine monomer emission intensity as a function of
concentration and temperature normalized in the same manner as the
data in Fig. 12. In all cases, the intensity decreases (or slightly
changes) as temperature increases and is most pronmounced in the '‘pure’’
D, crystal. The pure D, crystal shows the 1loss of population with
roughly an 18 cm—1 activation energy (see Fig. 14). The remaining
crystals all show a similar general trend for loss with no well defined

activation emergy.
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Figore 14. Arrhenius—type plot for pure D, phenazine showing an 18 + 1

cm activation energy (using the 5 data points at highest temperature).

Thus we have clear illustration of detrapping most 1likely to host

states. The activation energy differs slightly from the trap depth,
most probably due to the presence of states below the host band

[581).

(see
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Figure is. Activation energy plots of specific cluster

(phenazine) emission

intensity for the following: (A) dimer, 5.65%,

(B) momnomer, 5.65%, (C) monomer, 2%, (D) dimer, 2%, (E) monomer,

0.5%, and (F) dimer, 0.5%.
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by boiling belium or thermal effects that take place in  these

(molecular) solids.

For comparison to the normalized emission intensity wvs. T plots,
we have prepared log of emission intensity vs T“1 plots for a '‘'pure’’
D,, 0.5%%, 2%, and 6.6% crystals. The pure D, crystal which
contained a vanishingly small amount of proto monomer was chosen in
order to have a lattice with monomers as dilute as was possible.
The 6.6% crystal was chosen as a sample beyond the critical transition,
The 6.6% and éure D, crystal were not mass spectrally analyzed, but
this was mnot mnecessary for the purposes of the emission intensity
experiment. The large error bars for the 0.5% and 6.6% crystals are due

to the dimer or monomer peak being very small.

E. _ODMR, PMDR, and hole burning

The ODMR of the monomer and dimer shows a central peak flanked by
satellites due to hyperfine splittings. The transitions in zero
field for the monomer (D + E = 2562.3 MHz and 2E = 640.8 MHz) are
different from those of the dimer [11]. The results are
consistent with early work on phenazine in a diphenyl host, [22] and

also with recent work [23].

Knowing the frequencies for the monomer and the dimer in the
isotopic mixed crystals, we detected the emission of the dimer (or
monomer) alone by scanning the total emission in wavelength while the
modulated microwave pump was fixed at the frequency of the dimer (or
monomer) . This high-resolution PMDR method was useful in determining

the optical inhomogeneous broadening of the dimer [5].
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An example of inhomogeneous broadening in the ODMR spectrum is
shown in Fig. 16. To obtain these spectra we have used 60 mW
(continuous) microwave power as the swept frequency, chopped at 110 Hgz,
and the stationary field of 125 mW was applied to the outer helix
(unchopped) at the frequency indicated in Fig. 16. Better S/N was

obtained at lower guest concentrations.
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Figure 16, Hole burning in the ODMR spectrum for 2% H, in D,
phenazine. Spectrum A was taken using 60 mW (cw) microwave power,
1.6 K. Spectrum B: all conditions identical to A, except that a
stationary microwave field is applied (125 mW at 2.5635 GHz; arrow
marks stationary frequency in diagram). The microwaves were
square wave modulated at 110 Hz to a depth of 40 dB. Spectral diffusion
may be occurring which - would alter the depth and width of the

microwave absorption hole, Better S/N are obtained when wide—slit

detection is used.
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1V. THEORFTICAIL CONSIDERATIONS

A. Cluster statistics

Given a linear array of N sites randomly occupied by G guests

and H hosts, the number 4,, of guest clusters containing n contiguous

guests, where n =0, 1, 2.,. is

(IV.1) q, = N(1 - c)act

= N(1 - 6/N)3(G/N)™.

Similarly, one can predict in a chain N long, the total number of j con-

tiguouns n—mers to be
-6 - - - - g)J
(Iv.2) djn = (N- G qn)(l qn/N G)(qn/N G)Y .

For j =2, n =1 one has the so-called '’double monomer’’ whose confi-
guration is shown in Fig; 17. These results were derived by the use of

Lagrange multipliers and a derivation is in Appendix I.

A linear chain of 10,000 sites was used to model the infinite

1-D lattice. An appropriate number of computer-generated

random numbers between 1 and 10,000 were used to populate the lattice
with the desired number of impurities. (The computer program must /be
able to choose another random number in  the event that a
particular random number is generated more than once, Otherwise,
in the process of generating, say, 1,000 random numbers, less than

1,000 sites may be populated by impurities and this incomplete population
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Figure 17. Guest clusters in 1-D. Each box represents a site in a
one dimensional chain which must be occupied by either a guest (G) or a
host (H). (a) The single host specie or mnull cluster for n = 0 (see
text for explanation of symbol) which fills sites between guest
clusters. (b) the guest monomer, n=1. (c) The guest dimer, n=2.

(d) the '‘'double monomer’’.
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will vary in an unpredictable manner from run to =run.) An algorithm to
count the isolated and multiple contiguous impurity clusters was written
and the Monte Carlo results are shown in Fig. 18 for DBN type 1lattices
(one dimensionsal). The program for the 1-D cluster counting is listed in

Appendix II.

To obtain information about cluster distributions [24-28] in 2-D, we
have performed 2-D Monte Carlo calculations on a rectangular 65 x
300 lattice. Opposite sides of the 65 x 300 sheet were connected to form
a torus in order to: (a) preserve periodic boundary conditions, and
(b) eliminate edge effects in counting finite-sized samples. Clusters
were counted and dissimilar cluster separations were computed. The
prime goal of the 2-D simulation was to mimic the anisotropic phenazine
lattice and produce the distribution of impurity clusters as a function
of impurity concentration, The zresults are depicted in Fig., 19, One
should note that Hoshen and Kopelman [28b] have written an assembly
langunage algorithm that cleverly counts the number of n-mers in a random
2-D or 3-D array. HoweQer. their algorithm is for isotropic 2 and 3-D

lattices and it is difficult to compare their results with our Monte Carlo.

Over the concentration range from 1% to 25%, the nuomber of monomers
precisely fits the functional form of NC(1 - C)¢, where N is the total
number of sites. For the dimer, the Monte Carlo results fit (3.1 +
0.1)NC2(1 - C)®, Theoretically, [27] one expects the monomer coefficient
[in front of the NC(1 - C)¢] to be 1 since there is only one distinct way
to build a momnomer on a given site, Similarly, for a dimer the expected
coefficient is 3 by symmetry for (2-D) phenazine type systems. This is

in good agreement with the Monte Carlo results. Further, for all
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Figure 18. Theoretical (smooth curves) and computer Monte Carlo values
(crosses) for the number of various types of clusters in a 10,000 site
linear chain, (A) monomer, (B) dimer, (C) trimer, (D) double
monomer. The squares are computer results for the number of directly
adjacent monomer and dimer clusters (i.e., GHGGH or GGHGH, not 1like
GHHHGGH) . To our knowledge, there is no analytic solution for the
number of neighboring monomer and dimer clusters and the results would
be difficult to obtain by use of Lagrange multipliers (as in Appendix
I). For all other clusters we have only shown experimental results
for 25%, 50%, and 75%. We have exhaustively compared theory and
experiment from 1% to 20% and find agreement to better than 1%.

Error bars are the size of the crosses or smaller,
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-Figure 19, Two-Dimensional Monte Carlo computer simulation for
cluster numbers on a 19,500 site lattice. (A) monomer, (B) all dimers
(includes TI and TE dimers), (C) total number of trimers (many of
which are spatially distinguishable), (D) tetramers. Error bars are
the standard deviation of the mean resulting from setting the b axis
parallel to different edges of the computer simulation. Numbers in
parentheses are the statistical dimer/monomer ratios from theory.
The solid line for curve A is a plot of C(1-C)¢; the line for curve B is
a plot of 3C2(1-C)s. Although no theoretical expression is
available for the large¥ clusters, workers in the field often use a low

density expansion for the perimeter polynomials [62].
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concentrations investigated, we counted twice as many
translationally inequivalent dimers as translationally equivalent dimers.
This is reasoneble and can be understood by recalling that there are
four available TI sites and two TE sites around each lattice point on which
one may build a dimer. Note that the Monte Carlo calculations (a) give the
TI/TE ratio, (b) assures us that there is no spatial correlation between
clusters up to the 5% concentration range that we are dealing with, and

(c) provide the cluster separationms.

Our Monte Carlo experimental results differ from those of another
recent work [28] dome on naphthalene, in that we found substantially
fewer dimers (our dimer to monomer ratio was smaller by a factor
of 1.5 to 2). Note that for a given concentration, their total number
of cluster molecules does not add up to the number of occupied sites
(even when considering the larger cluster counts which are mnot
displayed). In this work, for each 2-D simnlation, the number of clusters
was counted and then from the number of clusters of each type, the total
impurity count was determined and checked with the expected number of
impurities (to be sure that all impurities were accounted for). For a
5% concentration 10,075 site simulation, we have measured the average
impurity-impurity separation to be slightly greater than 2.1 1lattice
constants (using an average lattice constant) with s standard deviation of
1 1lattice coastant. In other words, the number of intervening host
molecules is 1.1, The standard deviation is due in part to the dimers
and trimers present which have impurity separations of 1 lattice constant
and should mnot be donstrned to strictly represent the average

fluctuation in distance between clusters. We also find for the 5%
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simulation that the average monomer—nearest dimer separsgtion is

slightly greater than 2.6 lattice constants with & standard deviation of

1,
B. _The origin of the emnergy transfer threshold: Percolation vs, the

Anderson transition (AT)

The explanation of the energy transfer **threshold’’ in
disordered molecular c¢rystals is shared by two groups of thought.
On one hand Kopelman et al. [3] believe in the use of percolation theory
" to explain the phenomenon. They introduced different kinds of percolation
methods (called static, dynamic and sometimes guasistatic
percolations). Colson et al., [4a] in clear papers, have discussed the
validity of such concept to the solids studied in their laboratory and

applied the approach to the benzene data.

Klafter and Jortner, [6] on the other band, have applied Anderson
theory of localization [7,8,29-32] and concluded using the Mott argument
[8] that percolation [33,34] theory will not be applicable to the case of
molecular crystals. We, in our first note, [5] applied Klafter-

Jortner (KJ) theory and found good agreement for the phenazine system.

In the Anderson transition approach the threshold

concentration is given by [Eq. (5) of Ref. 61:

(1Iv.3) C = 0.25[1n(2zap/w)/1n(A/B) + 1]3 ,

where a ~ 2.7 and 2 (coordination number) ~ 4, w is the inhomo-

geneous linewidth of the impurity ‘’band’’, A = the trap depth and B the
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nearest mneighbor resonance interaction. For phenazine and DBN these
parameters are known. One should note that choosing a coordination mnumber
for an anistropic lattice is an ill-defined procedure. We have taken the
approach of using a weighted average. The weighting factors are deter-
mined by the coupling matrix element in a given direction relative to
the strongest couplings, giving essentially 4 for the phenazine sys—

tem.

An important point about the AT is that it is a theory for the
zero—Kelvin 1limit. As the above equation depicts, there is no temperature
dependence for C. Also, the impurity—impurity coupling may be
nonuniform, This fact was realized by KJ and they introduced off-diagonal
disorder to account in part for this problem. We, in our note, [5]
bypassed the phonon problem by introducing a kinetic model for trapping
and detrapping among the monomers and dimers at high temperatures. (A
connecton between this model and the model discussed here will be made
in the coming section.) But, we did not know how to connect the very low

temperature (AT) limit with the high temperature kinetic model.

It seems that by use of the percolation approach or the AT approach
one is able to predict a threshold for the transfer of energy. The
question we are therefore faced with is: which of the two approaches
is sdequate for molecular «crystals? Conceivably, both schools of
thought are the right track, since, after all, elements of
Anderson's original work involved percolation theory. In the limit of
infinte trap depth for ean infinite-life particle (excitation),
classical percolation theory is exact. In practice neither the trap depth

nor lifetime is infinite.
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Mott [8] has argued against the muse of percolation theory in
microscopically homogeneous systems. If the ensemble does not show
'**local'’ inhomogeneities or near—macroscopic clustering, then
macroscopically the transfer of electrons by guantuom mechanical tunreling
effects prevail, As a result, Mott and others have argued that the
inhomogeneous broadening of the solid relative to the bandwidth will be
ap important factor in determining the formation of extended or localized

states (in other words, the Anderson Model).

The other advocates say that even though inhomogeneous
broadening may be important, there are two problems in applying the AT to
organic crystals: the finite lifetime of the trap state and the small
bandwidth expected in molecular crystals in triplet states. KJ have shown
that the former point can explain the change in the threshold for
the transfer, depending on whether ktt >>1 or <1, where kt is the trapping
rate constant and <t is the lifetime. In other words, there is =no
conflict betwe;n the finite lifetime and the concept of using AT. As for

the second point, KJ hn§e calculated a2 bandwidth on the order of

10-2 cm-l. Kopelman et al. [35) arguned that this number should be 2 x
10-8 cm-l. As we shall see later, our calculation agrees with that of

KJ. A check on these calculations is made by compesring the analyticsal
result with computer calculations dome for diagonal disorder and off-
diagonal disorder [36,6]. The —results agree to within an order of
magnitude with the confignrationally averaged results of KI and of ours,
but differ by five orders of magnitude from the 2 x 10"'8 cm_l naphthalene

result. Finally, it is clear that these organic mixed crystals are

inhomogeneously broadened. We are not arguing that the presence of
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inhomogeneous broadening alone means that we should use AT and not
percolation, but we are saying that its presence together with the
reasonably large impurity bandwidth supports, but does not prove,
the application of AT to the phenazine system, as we shall discuss

later.

Y. _DISCUSSION OF THE PHENAZINE AND DBN RESULTS

A, Calculation of the impurity bandwidth

To calculate B from the observed M-D splitting we [11]
diagonalized a large cluster matrix [37-39] to correct for the quasi-

resonance interactions between guest and host molecules.

In order to calculate the average spatial separation between

impurities and thus the average impurity—impurity interaction energy

(’’bandwidth’'’), we shall wuse the first moment of a probability

distribution function developed by Hertz [40,41]1. The application of
this distribution to our situwation is mnot exact, since it smooths the
anisotropic topology and produces an isotropic impurity superlattice.
Clearly, it is possible to calculate the effects of higher moments
of the distribution of the impurity bandwidth, but we find the average

adequate in view of other approximations made.

We model the near impurity—impurity neighbor distribution as being
isotropic, continuous, and unimodal, assuming substitutional
impurities to be spatially uncorrelated. By extension of Hertz's
results [40], the distribution function representing the number of

impurities between r and r + dr in omne dimension is
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(V.1) P(r) = e P%p dr,

where r is the distance and B is the average impurity number density
per unit 1length which is equal to the fractional number of impurities
divided by the lattice constant, d. Thus, the average separation,

{r>, becomes

(v.2) (r) = J rpe PTdr = y(2)/p = (;)_1,
0
where y(2) is the gamma (factorial) function of 2. Clearly the mean

number of host sites between impurities (n), is equal to [(<r>/d) - 1].
Similarly, for 2-D we have <r>=0.5(p)-1/2. where p is now the impurity

number density per unit area, One should notice that the average
distance is inversely proportional to root of the impurity density; at
higher densities, {r> is shorter, Furthermore, the distribution for
the 2-D case is not symmetrical about its mean. The standard deviation
about the mean can be calculated in terms of the first and second

moments: o = 0.26(p)_1/2

We now make bandwidth calculations specific to the phenazine system.
In order to use the statistical forumulas ome mneeds an average lattice

constant for phenazine, and we shall use the geometrical average, d, of

8 and b (such that the cell area is conserved) which is (lallbl)llz =
8.2 A. We compute <z> for C = 0.05, d = 8.2: <r> = 0.5(p) 2% =
0.5(c/zany” V2 - 183 4. Immediately, <n> = 1.23, which is likely an
underestimate of <n)> due to mneglect of clustering effects in the

continuum distribution, This 4is in good agreement with our Monte Carlo
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result of <m)> slightly greater than 1.1. The distribution of cluster

separations for the 2-D Monte Carlo is depicted in Fig. 20,

Now that we can calculate average distances, the interaction energy
between impurities, and hence the bandwidth (B), can be calculated. At
zero Kelvin there is no thermal promotion into the host band and the
transfer may proceed by superexchange '’ tunneling’' through the host
barriers which are located at + A from the impurity monomer. (More
accurately, a mixing of guest and host states is responsible for the
guest—guest coupling.) This tunneling mechanism formulated first by Nieman
and Robinson [42] has recently been used for treating exciton
percolation [3,4], exciton coherence [43), and trap~to-trap energy
transfer [4,42,44]. The idea behind this coupling scheme is simple, but
accurate calculation is singularly difficult for amisotropic 2-D and 3-D
systems where the two traps have different energies, or a distribution of

energies.

For a linear chain of 1n  interveming host (H) sites
separating two monomer traps (Ml) and (M2), J = (B/2z) takes a simple

form [42,4]:

n-1 -1
(v.3) Jn = (FMIB,)(FHB,) (FM2B°)A H
FB,<<A ,
where FM and FB are, respectively, the Franck-Condon factors for the

monomer and the host. B, is the nearest meighbor (pure electromic interac—

tion) matrix element and is assumed to be the same for M-H, H-H, and H-M
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Figure 20. A bin-sort plot of nearest particle separations in the
anisotropic 2-D phenazine lattice. All particles whose nearest
neighbor is between one and two lattice constants away are summed
to give the first point, all particles whose nearest neighbor is between
two and three lattice constants away are summed to give the
second point, and so on. Despite clustering effects, the distribution

is not too differemt from that of predicted by the continuum model.
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coupling. For completeness, one notes there is evidence [4b] that the
electronic coupling is not isotope—independent in naphthalene.
However, from the experimental date herein and from previous work, it
is clear that to first order the Davydov splitting is isotope invariant
in DBN. Colson et al, [4a] have presented formulas for cases where the
two traps are much different in energy. In this case B, of the host to
the lowest energy trap is generally different from B, of B-H, since the
lowest energy (or super) trap is chemically different from the host
molecules, Because of the large energy gsp between the trap and the super—
trap, additional Franck-Condon factors were added to account for the
mismatch in energy. However, later on in their calculation they bhave
assumed that terms in front of (FB,/A)n simply give & constant of omne

[see expression (III.8) in their paper].

We treat the energy transfer between the two impurities (in our case
the monomer and dimer) which are separated by only 4 cm—l as a '’‘resonant’’
process among the monomers, accompanied by absorption (or emission) of
phonons of the lattice.l (As we shall see 1later, the results are satis-—
fectory and explain many of the experimental features of the temperature—

dependent studies.) The average value of J is therefore:

(V.4) Ty ~ pRHIATRy o gLyl
= ﬁe-a<n> ; a = 1n(A/B) .
This everaging is certainly not exact but its accuracy for different

ranges of n can be tested as we did elsewhere [65].
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The value of B in the above expression is difficult to ascertair
for anisotropic lattices. However, we shall perform two calculations to
show the dependence of J on §. In the first calculation we simply wuse
the 6 cmhl value for B, In this case J = 1.2 cm—l. The second
calculation is for an efffective B that is explicitly determined by B, and
B, [45]. Tbhus we have for this case, J = 0.1 cm”1 since ﬁeff = (6x
0.5)1/2 The important point here is that the calculation is only accurate
to an order of magnitude, but provides a value for J (note B = 2zJ) and
hence B that is orders of magnitude larger than the value calculated by

-8 ~1)

Kopelman et al. [35] (2 x 10 cm for naphthalene and

ficomparable’’ with the value of KJ. For DBN see Ref. 65.

B. _Population transfer

1. The kinetics model

The use of a kinetic model that decribes population transfer at finite
temperatures was first suggested by us in Ref., 5, Here, we wish to make
the model properly ¥reat the phonon-induced breskdown of the
threshold (here, by breakdown, we mean phonon assisted energy transfer to
the host and back to other impurities or between impurities). The question
we need to answer is, can we justifiably make approximations in the
coupled nonlinear rate equations for the lattice (which we can write down
but not solve) to produce a set of soluble rate equations which describe

the important physics?

The applicability of kinetics is an o0ld question and has been of
concern to many investigators [46-48]. The real problem is due to the

dispersion of the impurities in non—-equivalent ways. Hence, the
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interaction matrix elements are a function of r (intercluster separation).
Statistically the system is mnot stationmary (i.e., depends upon the
choice of origin) and usually severe configurational averaging is
required. If all the impurities have essentially the same
separation, then the population scheme is adequate, otherwise, one
must calculate probabilities of finding excitation on a subset of impurity
sites and then average over all lattice configurations, Even in
one—~dimensional systems, the distribution function as & function of r is
complex. Only recently has this problem been dealt with by Orbach and co-
workers [47] to provide macroscopic dynamic rates in terms of
microscopic guantities, For ocur steady state experiments we shall assume
that the averaging simply gives rates that are products of population and

rate constants.

2. _System description

To obtain theoretical expressions relating the observed ratio of
dimer to monomer phosphorescence emission to the temperature and the
concentration we consider a model system consisting of a host band
and two sets of impurity states, and consider transitions between all these
levels. We consider that the triplet host band is populated by, e.g.,
intersystem crossing from the singlet manifold, while the impurity
states are populated by a mnonradiative phonon emission process from the
host Dband. In addition, we also allow the possibility of the reverse
phonon absorption process which serves to depopulate the monomer and dimer
cluster states. These two nonradiative processes establish
communication between the host and guest states, and indirectly betwen

the guest states, In crystals with impurity concentrations above a
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certain transition threshold, the guest states are '‘’extended’'’ and

becomes mnecessary to consider a direct communication between monomer
and dimer <clusters. This communication is also treated as a
nonradiative transition involving phonon emission (for monomer—to—-dimer

transitions) and absorption (dimer-to-monomer).

The population of the monomer and dimer levels are found by solving
a set of rate equations for the populations of the various levels.
The observed emission ratio is simply related to the population ratio
through the radiative rate constant. The rate constants for the phonon
assisted transitions are calculated in a ‘'’Golden Rule’’ like form from
knowledge of the intersite coupling and the exciton—phonon <coupling
Bamiltonian and the phonon occupation  numbers which contain the
temperature dependence., As described before, the concentration dependence
is contained in the spatial probabilities for finding host

molecules, monomer or dimer clusters in a random lattice.

The energy 1level scheme we consider for the various processes
under study is shown in Fig., 21, 1In this figure Tgr T Ty and Yp ere
the total decay rates to the ground state and contain the radiative and
nonradiative contributions. All the other rates are represented by Yij
which describe a process of excitation transfer from j into i
(note the order of the subscripts, writtem in spirit of a matrix
element where typically, the initial state is on the right and final
states on the left) i and j label the host and impurity states. The
singlet band is pumped by light, represented by a function PL(t). the

number of trangitions into the singlet state, S, per unit time. We

assume that the triplet states are not pumped directly by the exciting
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Figure 21. Level scheme wused for kinetic equations (see text for
explanation of symbols). This 1level scheme mneglects trapping of
singlet excitons, which is appropropriate if the intersystem
crossing rate 1is greater than the singlet exciton trapping rate (see

the work of L. J. Noe, E. O. Degenkolb and P. M. Rentzepis
[631.)
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light, and that the effect of spin splittings, which are much smaller than
the inhomogeneous linewidth, is not important. Also, we ignore the

effect of singlet traps.
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3. _Master expressions

Using the notation developed above, we arrive at the average rate

equations describing population of the levels in Fig. 21:

(v.5) hM(t)

YMHnB(t) + YMDnD(t) - ?MnM(t)

i, (t)

YDHnB(t) + YDMnM(t) - YDnD(t)

Bp(t) = vygemg(t) + vgymy(t) + ygpno(t) = Fpmp(t)

ﬁs(t) = PL(t) - (YS + YISC)nS(t) ’
where
(v.6) ;.= .+2 i.3i =
iP5 T (i,j = M, D, H)

was used to simplify the notation by indicating the sum of all decay
channels for the ith level. All transition rates y contain the

information on the final density of states, temperature, and

energy mismatch. We find the steady state solution to be

(YMYD - YMDYDM)/G

(Vv.7) n,
u = OpgTyp * Mym™p)/®

oy = (rymYpy * YpEYy) /@

where
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V-8)  e=rslvgyp ~ Toump) ~ Yo * Hppr)

~ Yapyrpg * MyyYpy) 3/ YygcPL-

The host singlet pumping and decay terms cancel upon taking the ratio

of o, and oy, giving

(V.9 mp/ay = (rgypy + 1pgTy) / (rpgvyp +1ym¥p) -
Equation (V.9) is the principal result by which we model the
concentration and temperature dependence of the experiment. In the low

concentration limit, where Typ» tend to zero, one finds that

TpM

equations (V.9) reduces to the following:

(v.10) nD/nM = YDH(YM + YHM)/YMH(YD + YHD) g

which, at T ~ 0 K, further simplifies to the ratios of the feeding

rate to the decay rate, a familiar result:

(v.11) nD/nM = (VDH/YD)/(YMH/YM) .

At high concentrations and low temperatures (inefficient detrap-

ping) (V.9) becomes

(V.12) -
/2y = Iyygrpy + vpglry + vpu) IngYp »

which demonstrates that any increase in trap feeding rates will increase
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nD/nM as all population ultimately ends up in the lowest lying state.
Also, &an increase in the dimer decay rate will reduce the dimer

population relative to the monomer.

There are limitations to the kinetic description of the phenazine
system——we enumerate a few: (1) The host band states are treated as omne
level, thus the nature of energy transport via host states is not known;
(2) Use of discrete 1levels rather than inhomogeneously broadened
levels which hopefully reflect effective energies for phonon
assisted emnergy transfer; (3) Coherence effects are lost in a kinmetic
scheme, but they may not be important due to disorder; (4) Second and
higher order electronic (e.g., multi-impurity energy exchange) and
vibrational processes are omitted. Though the importance of the
multiphonon processes has been demonstrated in other systems [49], we
presume that the cross section for these processes in band-trap
interactions is relatively small; and (5) The dimer (-) state has been
omitted which has an undetermined role as an intermediate or final state in

energy migration,

4. _Role of exciton—phonon coupling: _The rate constants

The parameters appearing in Eq. (V.5) are rate constants for two
types of processes——transitions between impurity states and host states,
Pnd transitions between different impurity states. Ve adopt the
point of view that these transitions are mediated by the electron—phonon

interaction [50].

In the dilute crystal limit (say, ome impurity per million host

molecules) one may use the standard exciton—phonon formalism [51] of the
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pure crystal (i.e., crystals with well defined exciton k states) to
describe the coupling terms explicitly., This has been recently done
by Craig snd his collaborators [52]. 1In the heavy doping limit this simple
picture which wutilizes the translational symmetry of the almost
perfect 1lattice breaks down., Since there areno dats that will allow us to
compute the coupling terms [53,54] accurately, we shall not elaborate
the point. Rather, we shall express the rates in terms of these
coupling parameters 1like d8V/8R, where V is the interaction potential

and R the displacement for an electron-phonon interaction [54].

Using the above results, we can  write the 1's at any
temperature in terms of the concentration of the final species, assuming
that the transition started from an averaged state. For example, for YDM'
the rate involves transitions from equally averaged monomer states to

all possible dimers. To conserve the energy a phonon must be emitted

during this process. Thus for a single phonon process we may write

(V.132)  vp, =_2_n____|nDMizp(qq +1)C,
(h/27)

(V.13b) 7y =__g_1_t_____|(2m|3p(nq)CM
(h/27)

(V.13¢) Tym =_21___|QMH|3p(nq + 1)Cy
(b/2nm)

(V.13d)  vq, =__2n___laﬂMl=p<nq) )

(h/2n)

where £ is the coupling matrix element [55] between, say, the monomer
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and the bhost which results in transfer and emission of & phonon, q, with
occupation number n. Note that YoM and Typ include J of equation
(v.3). The phonon g has the appropriste energy to match H-M, H-D, or M-D

energy separations, Finally,

b/2m)w /kT
(V.14) "q +1 = (e( / q _ 1)-1 +1 .
Again, we should emphasize that we have assumed constant
microscopic coupling constants between impurities and made the

configurational average discussed before.

C. _Numerical simulation of the experiment

In order to test the correctmess of the model (described above)
in predicting the steady state experiments, we have performed
numerical simulations of D/M vs C and 1/T. An algorithm for  the
master rate equation (V.9) was written and plots to simulate the
experimental data as a fupction of wvarious parameters were generated.
There are six parameters in the kinetic equation, all of which, in
principle, can be determined spectroscopically. The parameters are (a)
relaxation rates for the monomer, dimer, and host, and (b) coupling
constants for transfer between all pairs of the three 1levels: monomer,

dimer and host.

An attempt was made to fit the experimental curves, D/M  vs
concentration and temperature, by nonlinear regression for a fixed set
of relaxation parameters and educated guesses for the coupling

constants, but =no convergence was obtained, indicating at least for the



starting guesses supplied, Do unique solution existed (the kinetic
expression is too complex to have ascertained this beforehand).
Instead, we followed the behavior of the equations for

reasonable parameters with self-comnsistency.

The best simulation of the experimental data using
expression (v.9) is shown in Figs. 22 and 23. For phonon—
induced tramsitions, the Hamiltonian for electronic distortion,
aV/8R, is implicitly part of y. Thus, in addition to J, the phonon
occupation number and the concentration, the rate constants have an

additional constant, K, that depends on the density of final states,

Planck’s constant, d8V/9R, etc. This '’coupling’’ constant K was the

parameter (cm?/sec) in our fit for & given communication channel.

As mentioned before, J depends on <n> and for phenazinme this is given

1/2)

<(n> = (0.5/C -1 .

In general, "D and Tpy 8Te related by the ratio of phonon
absorption and emission rates (at the emergy of mismatch between M and
D) and the total concentration of M and D. Monomer—to—
monomer transfer is faster than M-to-D transfer partly due to the
relative concentrations. For low C, approximately C of the monomers will
be replaced by dimers. Monomer to dimer transfer will predominantly
occur from monomers directly adjacent to dimers. For monomers not close
to a dimer, M-to-M transfer will predominate, but this will not affect

the steady state M-to-D transfer, as all monomers in the configuration
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Figure 22. Theoretical simulation of D/M vs C for phenazine. Rate

equation (V.9) was used with the following parameter set: Tg = 103, Ty

= 102, Tp = 2x102, KHM = 1011, KHD = 2x1012, KMD = 3x108, The monomer

1

trap depth was 18 cm (rather than 23 cm_l, using the results of

Fig. 14), dimer trap depth was 22.4 cm

and B/A = 4.4/18). The actual
rate constants are the product of the fitting parameter, a

concentration and a phonon term, e Ty and Yp are in sec-l.
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Figure 23, Theoretical simulation of D/M vs T'_1 for phenazine using

the same parameter set as that of Fig. 22.
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averaged lattice have the same time—average probability of being excited.

The claim that yp = Iy is substantiated by a Monte Carlo result of Type =

2.1, % =1, Iyp = 2.6, Syp = 1 (all in units of lattice conmstants) for a

5% doped array [56]. Thus, as the monomer bandwidth increases, so does
the monomer—dimer coupling. Recall in the concentration range we are
interested in, CD is much less than CM (CD/CM ranges between 5110"2 and

1x1073) .

Figure 23 shows the theoretical log(D/M) vs 1/T for the same crystals
as Fig. 10 (the two figures should be compared closely). Curve
E(F) for the 0.5% crystal, zrepresents the limit where monomer-dimer

communication through the host band prevails. Indirect communication
(illustrated by the results of Fig. 14 on D,) is frozem out at low
temperatures as is evidenced by the plateau for 1/T greater thanm 0.6 K-l
where the D/M ratio is determined by the statistical probabilities
of finding the clusters and their feeding and decay rates [Eq.
(V.10)]. Experimentally, the plateau is not completely established at 1/T
= 0.8 K-l. but it seéms reasonable that the asymptotic behavior of
theory and experiment will coalesce. Also, for the 0.5% crystal, the
high temperature ’'’'bump’’' (A of Fig. 23) is predicted (~0.5 K-l) but has yet
to be experimentally verified due to the weak signal at high

temperatures (bear in mind S/N greater than or equal to 100 is necessary to

accurately measure the intensity of weak dimer satellite peak).

The importance of the 0.5% data at 1low temperatures is that they
demonstrate the localized nature of the excitation and the departure from
Boltzmann statistics. The usual partition function approach is =no

longer useful at these concentrations and temperatures. Furthermore, at



these low concentrations and temperatures the rate equations must
include trap-'’'band’'’ interactions [57], especially in phenazine-type

systems where A is relatively small,

The 2% crystal demonstrates a low temperature plateau but no bump as
predicted theoretically., The platean for the 2% case cannot be taken
to imply '’locality’’ of states, however. The physical significance of
the lack of a bump in the bhigh concentrated crystals lies primarily
in the fact that the monomer and dimer communicate directly. These
conclusions were arrived at by detailed inspection of the numerical
results used to produce Fig. 23, For the 0.5% crystal at higher
temperatures, the monomer indirectly feeds the dimer and to a much
smaller extent the dimer feeds the monomer indirectly. The dimer to host
detrapping resulting in the ’’megative activation emergy’’ seem in the 0.5%.
The plateau is due to freezing out of both channels of communication. The
value of D/M at these low concentrations and at T ¢ 1 K will be determined

by Eq. (V.10).

The extreme nonlinearity of the phonon occupation number at ultralow
temperatures is the key to understanding the changes. The monomer
detrapping rate changes by 10 orders of magnitude from 1 to 4 K and
the dimer changes by 12 orders of magnitude from 1 to 4 K. In the 2%
crystal, the dimer is not truly isolated from the monomer (therefore no
bump) and the kinetic equations dictate the largest D/M ratio
should occur when there is no appreciasble dimer to monomer back
transfer (i.e,, the low temperature platean) which is jointly =a
function of the electronic matrix element, phonon occupation number,

and final density of states.
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For the 3% and 6.6% crystals, the increase in  the tunneling matrix
element is primarily responsible for the disappearance of the plateaun at
these temperatures. However, if omne <calculates D/M for T less than
1 X, one finds that even the 6.6% has an asymptotic temperature—independent

value.

Theory predicts that at high temperatures, T > 2 K, the D/M ratio
should be Boltzmann-like with an activation energy of 4.4 c:m"1 for all
crystals, This can be seen [from Eq. (V.9)] to occur as & result
of direct (high—concentration) or indirect (low-concentration)
communication between M and D. As en example, in the stromg direct

communication limit, equation (v.9) simply yields

kT
n,/my = ¢’

where AMD is the monomer—dimer splitting. Note that the above findings
are consistent with the results of Fig. 22 (D/M vs C at different tem-
peratures) which reproduce the experimental observations, Further,
the measured activation emergy indicates that for first order detrapping
processes, the dimer (-) state is not likely to be an important intermedi-

ate state.

VWe have thus advanced explanations for the D/M ratio as a function
of concentration and temperature. A numerical simunlation of the abso—
lute cluster intensities as a function of concentration and tem—
perature was &also conducted in order to test the model., It is difficult,
however, for the choice of the many parameters to place much cer—

tainty on such computation, Nevertheless, we shall make some heuristic
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observations on the data.

One can see that for the monomer intensity as a function  of
temperature (Fig. 13) a trend of decreasing emission with
increasing T dominates all samples and is most pronounced for the D,

phenazine crystal. For this '’'pure’’ D crystal, one has a steep decline in

intensity that shows an 18 cm'-1 activation energy (Fig. 14). The 18
1

co activation energy is less than the trap depth measured to the lowest
available kX = 0 state (21 em 1), This may be understood by noting that
quasiresonance interactions create states below the band by several wave
numbers [58]. Thus detrapping can occur to lower energy host states. The
observed 18 cm--1 activation energy also implies that the population lost
by detrapping to the host is lost forever to the monomer subsystem, This
is intuitive insofar as the average monomer—monomer separation
should be so large that transport between momomers via bhost states is
not successful, The 0.5% phenazine crystal is unlike the ’'’‘pure’’ D, case
in showing much 1less dependence on temperature, implying that
to some  extent, indirect monomer—-to—monomer transfer [56] occurs and
population is not irreversibly lost to the host, Looking at the
remainder of the data in Fig. 13, one sees that the monomer system
loss rate appears to decrease with increasing guest concentration (up
to 2%). However, for 8 detailed description of the population of the
monomer which lies between the band and the dimer, one must know all the
direct and indirect communication parameters given in € of Eq. (V.8). VWe

feel that a simulation is not useful at this point and only the ratio of

M to D can be satisfactorily explained. 1

For the dimer emission as a function of temperature, the situation
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is different (the dimer is the deepest trap under conmsideration). For
the 0.5% phenazine crystal, dimer population increases with increasing
temperature over the range 1.0 to 1.2 K (rather than decreasing as the
monomer does). This behavior is correctly represented by the rate
equations and can be undestood as indirect M to D transfer with little back
transfer. The trend may only be exhibited over a narrow temperature range
where the dimer detrapping rate is still small in comparison to the
monomer detrapping rate and thus presents and ’’irreversible’’ sink for
monomer  population. The 2% eand 6.6% cases would then represent
situations where the dimer to monomer back transfer increases as
temperature increases. The dimer and trimer in the 6.6% crystal appear
to decrease in a linear fashion with increasing T. This is not explicable
by a naive model where the ratio of the dimer feeding rate to dimer decay
rate is written as (n + 1)/n. Such a model would predict exponential
temperature dependence which is far beyond our error bars, even for a
4.4 cm—l activation energy. In actuality, this behavior reflects
the complexity involved. in wusing absolute intensities which require
knowledge of 6. In other words, to describe this linearity quantitatively
we must solve the full kinetic equation. As mentioned before, taking

the ratio of D/M overcomes this problem.

For DBN, the log(D/M) wvs. 1/T plots show the expected trends
derived from the ophenazine analyses, although we feel one mnst have more
data over a wider temperature range before making quantitative
interpretations (this is currently under investigation), It does
appear, however, that the D/M ratio is roughly temperature independent

for low concentrations and begins to show positive activation energies
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for higher concentrations, in accord with direct communication between

monomer and dimer,

The "'sluggishness''’ of the D/M threshold in DBN with

concentration (Fig. 9) is due largely to the smaller exponent for the

1/2)

superexchange coupling which goes as (C_1 - 1) for 1-D and [(0.5/C
- 1] for 2-D. As a means of illustrating this point, we have performed a
simulation of D/M ratios for the phenazine system parameters,

altering only the form .of the macroscopic rate constants of Eq. - (V.9)

to represent a 1-D and 3-D system.

We compute D/M vs. C for the different dimensionalities and compare
them in Fig. 24, In altering the rate constants for the 1-D and 3-D
cases, one must change the exponent in the superexchange matrix
element and the concentration of the final state. We use <(n) =(C-1 - 1) in

1-D and <n)> = (0.554 C >

- 1) in 3-D. The final specie concentration
in 1-D follows the prescription in Sec. IV and in 3-D we use a simple
cubic lattice [coordination number 6, monomer « C(1 -~ C)¢ and dimer =
C2(1 - C)3e], The energy transfer threshold moves to  decreasing
concentration with increasing dimensionality largely due to the increased
probability of finding a nearby impurity at short distance.
However, the change in concentration of the final state as a function
of dimensionality (at least with the form of rate equations we use) works
against the effect of change in the superexchange exponent, That is,
an increase in lattice dimensionality (or connectivity) increases
the superexchange coupling but reduces final state concentrations due to

terms of the form C2(1 - C)h (n is the cluster size and h is the number

of host molecules on the cluster perimeter, which increases with
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Figure 24. Calculation of D/M vs C nusing the rate equation  and
parameters used to generate Fig. 22, but with rate constants
modified to represent energy transfer for 1-D and 3-D
topologies. Note that the energy transfer threshold moves to
decreasing concentration with increasing dimensionality. For the 3-D

calculation <a)> = 0.554/(C)* - 1, Cm « C(1 - C)6 and C,, <« C2(1 -

D
C)2° (for a simple cubic lattice structure). Beyond the energy transfer

‘ ym/ kT
threshold, D/M * (CD/CM)e D and the crossing of the curves

2~D and 3-D results from the terms of the form (CD/CM) = C(1 - C)4 in
3-D and in 2-D (CD/CM)¢C(1 - C)?*, which are important at higher

concentrations.
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dimensionality). The results of Fig. 24 are comsistent with the results

of ruby, phenazine and DBN,

Two important conclusions can now be drawn. First, the fact that we
can fit the results at very low temperatures (no thermal assistance) with
an effective tunneling matrix element between M and D indicates that the
threshold concentration is most probably the result of this qnantnm effect.
Second, from the parameters used in the simulation, at 5% and 1 K, Ypu®
is 103, much larger than 1 (v is the lifetime). Hence, the threshold is
not lifetime limited. At higher temperatures this situation is
different simply because of the back transfer discussed before (YMD at 2 K,
1

5% is about 8 x 105 sec

VI. _SUMMARY AND CONCLUSIONS

¥e have presented data on isotopically doped phenazine
(effective 2-D) and DBN (effective 1-D) concentration  and
temperature dependent optical emission. By use of an average-

lattice rate equation and a2 numerical simulation of the data we have
presented explanations for much of the data. To properly execute the
simulation we have performed Monte Carlo calculations omn cluster
statistics in ome and two dimensions and have calculated the eigenstates

of relevant clusters.

From the studies made on phenazine and DBN the following
conclusions were drawn: (1) Impurity state opopulations are sensitive
to all communication channel rates and the host states must be included
to understand the energy transfer dynamics between impurities,

especially at low concentrations; (2) The role of the phonon bath
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in '’'masking'’ the threshold at higher temperatures can now be understood;
(3) One can understand many of the important processes at hand with a
kinetic scheme; and (4) By explicit computation and comparison with
experiment (DBN vs phenazine), the important role of dimensionality
on threshold behavior is also explainable with the same kinetic model.
In phenazine, M-D coupling has exponential turn on with
concentration which can be modeled by e continuum particle
separation distribution to a first approximation. This continuuom averaging
scheme, although a severe approximation to the discrete anisotropic
lattice, appears to explain the steady—-state experiments, In

transient experiments this may not be the case [65].

The Boltzmann and non-Boltzmann regimes were delineated and
individual trap intensity dependence on temperature and
concentration in the 1-D and 2-D systems was experimentally shown and
discussed, There are four distinct and limiting cases. In the low-
concentration (below the abrupt transition), low temperature case, the
dimer and monomer population are proportional to their statistical
probabilities of occurrence. In the high-concentration, low-
temperature limit, the monomer—to-dimer transfer is '’opened’’ by
monomer—to—monomer extension followed by trapping into a dimer of which
there are fewer present (dimers are outnumbered by a factor of 20-
1,000). Thus, in this case the population is nonstatistical in the pumber
of c¢lusters, but is statistical when the concentration is weighted
by Boltzmann factors that are indicative of efficient and direct
communication among clusters (using phonon absorption and emission), In

the high-concentration, high-temperature 1limit, the back transfer
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from D to M (which are in equilibrium due to direct communication)
hinders the overall flow of population into the dimer, hence
decreasing the ratio of D/M. In the low-concentration, high-temperature
limit, indirect transfer again makes the dimer and monomer communicate.
Because the monomer—dimer energy splitting is the same as the difference

in trap depths of the monomer and dimer, phonon absorption and

emission ensures the same '""activation''’ energy for the high-
concentration, high temperature and low-concentration, high-
temperature regimes. Thus, as -shown in Fig., 22 and as demonstrated

experimentally, D/M vs C exhibits a straight line at high temperatures,

From the work reported here on DBN and phenazine we
determined the temperatures at which phonon-assisted processes are
negligible, and thus only the intrinsic effects of energy

localization or delocalization are observed. Throughout the paper,
only single phonon processes are considered at the temperatures of

interest [59)], and radiative transfer is not included [66].

Finally, we believe that at very 1low temperatures the monomer
"*band’’ is extended and wide (~0.1-0.01 cm-l) near the transition. As
noted in I, our measurement of w, the inhomogeneous site energy

fluctuation (Gaussian distribution) and using Eq. (IV.3) predicts a

transition from '‘’localized’’ to '‘'delocalized’’ states at ~ 5%

concentration, when using the Klafter-Jortner model of the Anderson
transition in the phenazine system, This result is consistent with the
findings in Fig. 22, which does not include w explicitly. Im other words,
we explain essentially all the dynamics wusing the averaged rate

equations approach and invoking the superexchange interaction which
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includes the proper concentration exponent.

conclusions of this paper. So,

is at very low temperature since our result at 1.17 K

the KJ model.

especially at higher temperatures.

This is one of the important

the only connection we can make with AT
with

is consistent

Experiments are now in progress to elucidate the role of w,

Note added in proof: Very recently A, Blumen and R. Silbey (private
communication of preprint) have considered a simple kinetic scheme.
Three things are different. (1) They consider the case of direct
population of the monomer and no direct population of the dimer. In
our 1977 note (see Ref. 5) and this work we considered the situation

where the rates at which the

finite,

steady state by pumping the

(2) They describe the electronic energy transfer using the

of Inokuti and Hirayama (J. Chen.

states are included in their model.
it is wunlikely that the model

0.5% phenazine data properly. At

model fits the data well, As

of phenazine play a very important

especially at

that

since the trap depth is only

populate the monomer selectively.
5

here, neither our work in Ref.

dealt with

This is because the experiments on phenazine

bhost

low concentrations

the communication channels described in Fig.

monomer and dimer are populated are both

were performed at

states and not the monomer alone.

hopping model

Phys. 43, 1978 (1965)). (3) No host

Due to the omission of the host states

of Blumen and Silbey could treat the

bigher concentrations, bowever, their

shown in this paper the host states

role in the energy transfer process,

(2%, 0.5%, pure D,). We believe

21 must be invoked

23 cm_1 and it is almost impossible to

In contrast to the work reported

nor the work of Blumen and Silbey have

the effects of detrapping to host states,
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ABSTRACT
Presented are measurements of excitation transport in
quasi—one dimensional 1,4-dibromonaphthalene (DBN) using time-

resolved laser spectroscopy. Energy migration as a function of
temperature and dopant concentration in isotopically disordered
DBN is describable in terms of step—wise incoherent transfer wusing a
1-D sampling function. The data indicate the effect of a
superexchange interaction between the impurity c¢lusters and no
mobility edges in the inhomogeneously broadened trap profile. It
is proposed that there will be no mobility edges in cases where

superexchange dominates the transfer Hamiltonian,
I. INTRODUCTION

A great deal of theoretical and experimental effort has been put
forth to understand trap—trap emergy transfer in doped molecular
[1a] and ionic crystals [1b], but only in the past few years have any
data on time and §pectra11y resolved energy transfer become
available. It has become a loose generalization to refer to these
studies as dealing with impurity band transport (although k is no longer
a good quantum number) since the band picture is a convenient
vehicle for description. Concepts such as the Anderson transition,
mobility edges, spectral vs. spatial transfer, coherent tunneling,
ete., are all unique to the impurity band, and the author
hastens to add, still quite topical. The experiments described
herein are direct time resolved measurements of electronic emergy

transfer between traps in 1lightly and heavily doped DBN. Since the
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experiments deal with low 1ying electromnic triplet states, the
excitation is long 1lived and the transfer Hamiltonian is
moderately ''weak’’, resulting in slow tunneling times. (The energy
transfer is not, in the strictest Quantum  Mechanical sense,
tunneling since superexchange coupling between the traps is mediated by
mixing of the host and guest wavefunctions and is not tunmeling through
a potential barrier.) To the author’s knowledge, the 1-D studies we
report are unique in that all relevant spectroscopic parameters are
well known and one can perform gb initio calculations of the energy

transfer rates, finding good agreement with the data.
I1. EXPERIMENTAL PROCEDURE

Details on the time-dependent measurements are presented in Chapter

IXI. A picture of the apparatus is shown in Fig. 1.

1I. EXPERTMENTAIL RESULTS

DBN was chosen because the interaction between molecules is short
range and the disorder can be '’controlled’’ by doping DBN-H, with DBN-
D¢, thus forming barriers in the crystal. In the 1limit of heavy
disorder, we find that the transport of DBN-H, triplet excitation and
effective dimensionality can be described by (a) a sampling function

with  time—dependent (t-l/z)

energy—transfer rate, and (b) a 1-D
configuration—-weighted average superexchange matrix element and (c)

there is no evidence of a mobility edge if superexchange is the dominant

transfer Hamiltonian.

The crystals were grown by Bridgman techniques using zone
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Figure 1. A functiomal block diagram of the experimental set—up used for
low-temperature time-resolved laser spectroscopy. In some cases, where
high accuracy was required, an optical delay line for the laser was set

up to compensate for the electronic delay.
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refined starting material. Samples were investigated with
concentrations, C, of 0.1, 4.8, 8.2, 11.9, and 24.1% H; in DBN-D,.
Though the electronic properties of crystalline DBN were discussed in
the previous chapter, we shall briefly review the important facts.
The molecules align themselves in linear chains [2] with in~chain
coupling (B = —6.2 cmnl) several orders of magnitude larger than
cross—chain coupling (|p’l=<0.01 cm_l) {2,31. Isolated protonated
molecules (monomers) have a trap depth, A, of 65 cm”1 from the
fully deuterated molecules. In-chain H, dimers have a triplet state
5.5 cm_l below the monomer, We assume random substitution of D
by H, and statistically predict the probabilities of each of the =a—
mers. These statistics have been derived and correlate well with recent

steady—-state experiments [4] that indicated monomer—to—dimer

transfer occurs in samples with C > 11.9%.

A typical set of spectra is shown in PFig, 2. As time
increases, the dimer emission increases relative to the monomer. Fig.
3 plots the time—dependenf dimer—to-monomer phosphorescence intensity
ratio for several samples at temperatures of 1.3, 1.8, and 4.2 K.
At all three temperatures, the 11.9% and 24.1% samples exhibit
time—dependent ratios, while in the 1lightly doped samples time
dependence can be detected only at the highest temperature. In the
lightly doped samples, the monomer and dimer lifetimes were found to be
of the order of ~4 msec and independent of temperature from 1.3 to 4.2
K (more accurate measurements are available from ODMR studies and show
that the dimer lifetime is very close to being half of the monomer

lifetime).
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Figure 2. Moderate resolution time resoived spectrum for 11.9% H,/D,

DBN at 1.3 K.
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Figure 3. Computer fit (solid 1lines) of the experimental (squares,
triangles and circles) D/M for pumping the center of the monomer [(a),

(b) and (¢)] and the dimer (d).
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1V. THEORETICAL, INTERPRETATION

The model used to interpret the data is as follows. The number

d

of direct pumping of these states by the laser are Pm and Pd' the

intrinsic decay rates of the monomers and dimers are given

of excited monomers and dimers are denoted by n and n, and the rates

by T and Tq° The energy-transfer rate from d~to-m is o and the m

dm

to—d rate is ©a° The linearized rate equations for the populations of

the excited states are therefore given by

(1) ﬁm(t) “(7m + mmd)ﬁm(t) + @ nd(t) + P

dm

(2) ﬁd(t) —(1d + wdm)nd(t) + nm(t) + P

md a’

In order to solve these equations, ome must know, a priori, the time
dependences of the energy transfer rates. Neglecting correlated
motion, excitatiom migration among the monomers, with the
eventuality of being trapped at a dimer, may be describable as a random
walk. In such case, the emergy-transfer rate can be expressed in

terms of the rate at which sites are sampled in the random walk [6]: © 4

= CdS(t) where C_, is the fraction of dimers and S(t) is the so—

a
called sampling function. In the limit of many steps and uniform step

/2,

time, S(t) has the asymptotic form [7] SI_D~(2/m:)1 ... where Tt is

the mean  hopping time, The 1leading term in the transfer rate

becomes o /2 = wtallz, with o = Cd(2/ttn)1/2.

_ 1
d = Cd(2/ttn)

Thus with the iate o . from S(t) and postulating a t_1/2 rate for

md
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" one can solve the system of differential equations (1) and (2)

dm)
to determine nd(t)/nm(t). In obtaining an exact solution, we
assume delta function excitation (valid for time scales herein) and

set the dominant monomer and dimer decay rates equal to one another,

as observed experimentally. However, in order to perform an unbiased
t—1/2

test, we have fit the data to models with (a) © a4 and Oim & , (b)

- -1/2 _ _
© 4 and Oim = constants, ({c¢) ©aqc t > W = constant and (d) © 4=
a constant + a term proportional to t_ll2 and o, = 0, (The solutions

dm
to the differential equations are presented in Appendix V.) The solution

with both rates time dependent produces good fits with the smallest

errors  for the monomer and dimer pumping experiments (24.1%). For C ¢

11.9%, models with or without back—transfer (wdm = 0) give similar
forward transfer rates (mmd). Further, allowing © 4 to be equal
to a constant + a t—llz term, the fits clearly favor the time~

dependent rate. It is worthwhile to note that fitting our data with ©
t~1/2

d

« and o = constant does mnot change the value of the

dm
extrapolated rate constants beyond fitting errors, but the fits have
larger errors due to the larger number of parameters. One will
know the exact time—dependence when the narrow-band excitation

(transient experiments with very high S/N) is complete, and more

accurate tests of the model become available,

The solution for nd(t)/nm(t) with both rates proportiomal to t—ll2

predicts the observed intensity ratio to be

(3) D/M = (7;w/1;w'k) [ 1+R—(1-Ru'/w)exp[-2(vtw’ t1/2

/2

[1+R—1+(m/m'R-1)exp[—2(w+m')t1 1
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where o' is the d-to-m transfer rate parameter and R =
nd(O)/nm(O) is the initial condition for direct pumping of
monomers and dimers. A nonlinear regression determined the best fit
of eq. (3) to the data, treating nd(O)/nm(O). o and w' as adjustable.
The fits are shown in figure 2 and the parameters are listed in Table

I.

We wish to calculate theoretical values for the rate
parameter . For the mto—-d transfer we treat all n-mers with n > 2 as
identical traps for the monomer excitation. For Cd one then has the

statistical prediction C, = (C2 + C3 + ,,,.)(1-C3)2 [4]. 1In measuring

d
the 'dimer’ emission intensity from the data, we therefore include

the contribution of the larger aggregates' emission,

Since the monomers are weakly coupled (as we shall
demonstrate), the golden rule dictates the excitation hopping time

to be
-1
T = [(Zn)’/h]h’l’pf

where Pe is the final density of states and J is the matrix element
of the interaction causing the hop. If the homogeneous width, Wy om is
such that uhom)l, the motion is incoherent and one must use the
golden rule, not the inverse coupling time. For this type of system
it has been proposed [8] that superexchange between two isolated
impurities separated by n  hosts is the transfer mechanism,

Thus, J = &ﬂ(B/A)n, where & represents the effect of the  number of

paths (equal to ome in 1-D), the Franck-Condon factors between



128

0= W (€) "BS 03 313 ¢ 0TXZ'T=X o, SITUIT S0USPTIUCO §G8 BTe SIALIS PIIRTNOTER AL o
g-0TXL [, OTX8"9 | LTI 9°0 s0° —— vz 1| so+or” TV 5)8Y
¢-0T (OTXPE L T 9°€ ot ——  ]9°+9°Z | €o0"+pC” TV | (%8
z°0 cOm8'e | T°S €701 28 £°+s6° |e-+8°c | €ot+bve 'y
‘c+6°L |s+zr | witese” 81
9°1+z°Z |-z+€'9 | co"+ep” £°1 6°TT
T2l | 0TX9's | 86°C 009 |tz A S 74 T €9 1°+6" Al
1°Z+8°L [E€T+°¥S bov6" 8°1
TT+1°S |8+ v | se+pT°T | €°1 181 74
x)umm e - 20S TFO w1.wa v_luwm dx ElErm N % .wc\m:
{<U>)m (<u>)p <u> E*AE:hLav AcEn» wa.a QV63 8@: L UOTIeIIUOUCD

?.VAQ *Cd OL YIVJd 40 LI4 dAINdWOO WA SUALIWVEVA dA4SNVHL ASHANT Ned

e ——————————

s 1C R RERTNE



129

impurities and host states and possible necessity of phonon emission or
absorption (the principal shortcoming of the sampling function for
applications such as the DBN case is that it does mnot include the
effects of off-resonance coupling or dispersion in the intercluster
separations). Put another way, the last step upon which the excitation
is trapped may require a different rate constant than the
monomer—monomer steps. Furthermore in a more exact treatment,
the possibility of regenerating the random walk by detrapping from
the dimer should be included. That is a random walk with trapping
and biased regemeration, since once in the mneighborhood of the

dimer, trapping will occur more rapidly,

The density of final states is approximated from Lorentzian

: . -1
lineshapes, i.e, (Znhcwhom) . Although ) om has not yet been
measured for DBN traps, a sensible estimate is 0.5 cm—1 measured for

pure crystals Ra,%:,9]. One thus finds

1/2, . -1/2

(4) <ep > = [28C,,B(B/A (/0,7 *1t

One now needs the ensemble—averaged J, for which we  have
performed a 105 site linear chain Monte Carlo calculation [10]. An
appropriate 1-D random array is generated and the distribution of mm
and md separations is measured. (Jmm> and <de> are calculated
as the configuration weighted average of all observed J's. The <Jmm>

are summarized in Table I,

For 4.8% DBN, <J)> calculated with a weighted average differs by

10710 from <J> calculated by B(B/A)<n>, using <n> from the same
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Monte Carlo run. Using the Monte Carlo (Jmm> and the known spectral
paramters, one can predict the forward-transfer rate from eq. (4).
The results are in Table I. With £=1.2 X 10-2, the predictions agree

quite well with the observations. Note that predictions using o(<{n))

are poor, supporting our analysis of superexchange.

The agreement between theory and experiment becomes slightly worse
for concentrations. This is as one might expect if for dilute
samples, the transport had increasing amounts of 3-D character (e.g.
<Imm> for a 4.8 chain is 0.053 cmfl. comparable to the interchain
. This can be seen qualitatively from continuum models which show
the 1-D coupling to be a steeper function of C than the 3-D
coupling. However, before relative contributions of 3-D and 1-D
transport  topologies [11] (as a function of concentration and
superexchange anisotropy) can be quantified, the homogeneous line widths
and D/M for times shorter and longer than those investigated here must

be probed.

Thus, in short form, the data were modeled the following way.
One first calculates the ensemble—averaged impurity to impurity hop
time, giving a microscopic rate,. Then one calculates the
macroscopic m—to—-d rate constant by using the sampling function whose

sole input is the ensemble averaged coupling matrix element.

Since the relevant spectroscopic constants for DBN are known from
experiment, we have calculated, in an ab initio manner, the
configurationally averaged coupling with no adjustable parameters. If

the backtransfer is zero, as in the dilute samples, there is but
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one adjustable parameter, &, in the fits. Indeed, & yielded by the
fits is very reasomable (~0.01) for the known DBN molecular properties,
albeit not known exactly. Where there is backtransfer, there are two
adjustable parameters im the fits. However, whether or not there was
backtransfer, the fitted forward transfer rate concentration
dependence followed theoretical prediction to within Monte Carlo
and experimental error. The fact that (a) the theoretical and
experimental transfer rates scaled similarly, (b) the fitting errors
were small and (c) the same final parameter set was obtained for
widely varying initial guesses supports the self-comnsistency of the

procedure and to some extent, the uniqueness of the fits.

It is very important to mention the methods used to
calculate the ensemble average superexchange coupling between
monomers. In the first method used, all mm coupling emergies were
counted and the first moment of the resulting distribution was
calculated. By all, it is meant that if a monomer is bounded by
monomers on the leftA and the right which are unequal distances
away, both the weak and the stromg couplings are recorded. For
the second method mnsed to calculate the configurationally
weighted coupling, only the weakest of the two couplings would be
recorded. In the third method, the stronger of the couplings
would be recorded. The outcome was somewhat surprising in that the
three methods gave very similar results. The similarity is
understandable when one considers that for these experiments, one is
dealing with heavy disorder (12 to 24%) and the anticipated

fluctuations in inter—impurity distances (even from a continuaum model)
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is small. This is an important point since in systems where the
transport threshold occurs at much lower concentrations, the dispersion
in coupling emergies is large and the analysis promulgated by Orbach and
coworkers would be most appropriate, Their analysis assumes that in
the steps among the traps to reach the supertrap, the slowest step
will be crucial in determining the observed macroscopic rate.
However, for heavily disordered DBN, it is clear that our analysis is

able to explain the data.

V. Trap depth dependence of the enmergy transfer rate: Mobility edges?

For the 11.9% sample at 1.3K, we have investigated m—to—d
transfer as a function of the position of the laser pump within the
inhomogeneously broadened monomer 1line (see Fig. <) . The
experimental ) has a A-2 trap depth dependence. If there were few
hops or hops occurred at uniform A, then a simplified treatment of
the Monte Carlo <J > = 0.138 om ! would predict a 4™1*® dependence,
which iswithin expected error. Two things are significant about the A
dependence. First, the experiments are consistent with a
superexchange Hamiltonian for impurity—impurity coupling with a
clear A-dependence at fixed =n. Second, the transfer rate is a
decreasing function of A and no mobility edges were observed.
It may be that a different concentration would show mobility edges
or homogeneous broadening serves to obscure it. But on the basis of
the available data, it is reasomable to propose that there will be
no mobility edges if the superexchange dominates the transfer
Hamiltonian, This can be simply and intuitively supported. The

reason for localized states in the wings of the inhomogeneously
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Figure 4. The trap depth dependence of the energy transfer rate
coefficient, © (from two points in time with w’ = 0) for 11.9% H/D
DBN at 1.3 K. A high resolution spectrum is shown to indicate
the laser position within the inhomogeneous monomer line. The peak at
20,210.5 cm_1 is probably due to a double monomer (see ref. [41).

The A'-2 dependence of @ appears linear due to the small range of A.
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broadened impurity lines is off-resonance coupling., Statistically,
the most probable energy for a trap to have is in the middle
of the inhomogeneous profile. If a trap site is situated in the wings
of the profile, it will probably have to couple to =a mneighboring trap
which dis in the middle of the profile. Therefore, the resonance
denominator will damp out the coupling. (A1l other things being
constant, the problem would be less severe in 2 or 3-D since the number
of available trap sites to choose from would be 1larger and the
probability of a resonant match higher,) ¥hen superexchange 1is
occurring, though, the perturbation expansion for the coupling is in

terms of trap depth from the host states, and not in terms of the

inhomogeneous profile width as in the derivations of Anderson (14),

Mott (15), and Cohen, Fritzche and Ovshinskii (¥) that is the fundamental
difference. Therefore, the shallower the trap depth at a given site the

faster the energy transfer is.

One may mnote that as A increases, the superexchange
contribution to the totai energy should damp out in comparison to the
direct exchange or residual multipolar coupling. It would be extremely
interesting to carry on these sorts of experiments in higher

dimensionality systems and systems with different transfer Hamiltonians.
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CHAPTER III.
LINE NARROWING LASER SPECTROSCOPY OF ORDERED AND DISORDERED
QUASI-ONE-DIMENSIONAL 1,4-DIBROMONAPHTHALENE:

DEPHASING OF TRIPLET EXCITONS AND BAND TO BAND TRANSITIONS‘

*
Portions of this chapter are published in D. D, Smith and A, H.
Zewail, J. Chem. Phys. 71 (1979) 3533; D. D. Smith, J. P. Lemaistre

and A. H. Zewail, to be published
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1. INTRODUCTION

In the last several years, advances have been made in the theory
of optical dephasing of vibronic transitions. Stimulated by recent
experimental work on the coherent optical trﬁnsients of impurity
molecules in solids, the theorists have attempted to relate the
optical dephasing time (T,) to the dynamics in the condensed phase.
Specifically, some reiationships between T, of the optical transition
and the structure of the phonon bath or the anharmonicity of the
potential energy surfaces in the impurity ground and excited states
have been established. Under the approximation that we have two
impurity levels interactimg with a bath, the total Iimewidth of the
transition is a sum of two contributions. The first is due to
the adiabatic fluctuations in the energies of the initial (i) and
final (f) states of the molecule by the phonons. Hence, with
this adiabaticity, there is no change in the population of the levels
and the associated relaxation tiﬁe is called pure dephasing (T}).
The second kind of dephasing is an energy relaxation or lifetime
broadening where the population of state i or f can be irreversibly
lost to the ©bath by decay rates TI%, TI;. Pure dephasing has
been studied for vibrational tranmsitions in liquids by several authors

[1,2] and for vibronic transitions in solids by Jones et al. [3]

and Diestler and Zzewail, [3].

Recently, Harris and his coworkers [5] advanced a model for the
dephasing of an optical transition if by mnearby i’f’ transitions
through the well-known exchange model of Anderson [6]. The

exchange idea is widely used in NMR and Schmidt et al. [7] have used it
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successfully to describe the EPR and coherence of isotopic impurity
dimers in naphthalene. The extension of the exchange idea to
multiple—level optical transitions was realized by Zewail [8] when

discussing spin vs. optical coherence.

Basically, in any exchange model, the bath induces
population exchange among the levels through anharmonic
coupling. Physically, it is postulated that the energy
difference between the transitions if and i’f’' is due to unequal ground
and excited state phonon energies. Due to the energy difference
one expects an Arrhenius—type dependence for the linewidth and
lineshift and that their ratio 1is constant, This conclusion was
roughly supported by available data which have large experimental

uncertainties.

Jones and Zewail have formally comnsidered the exchange model and
concluded that (a) the same temperature dependence of the width and
shift can still be obtained for two-level (not many- level) systems
without the mnecessity of having other (i’f’') tramsitions and (b)
exchange that is a T, process (not T]) usually has a lower cross
section than T, type processes. Small [9] has reached the same
conclusions by comparing the results of the exchange model with those of
Sturge and McCumber [9]. Because the equations of Jones et al.
become those of Sturge and McCumber when the lower order terms of
the molecule-phonon potential interactiom is used, the agreement
between Jones et al, and Small’s result is exact, for this particular
limit, except the cross section for the coupling was not

displayed in Small’s treatment.
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Fischer and Lauberean [10] in discussing vibrational
dephasing have concluded that, in general, exchange will not
contribute significantly to the 1linewidth in the condensed phase.
The Chicago group [11] has recently examined this problem and concluded
that aveilable experimental results on dureme are not sufficient to
penetrate into the origin of the exchange. The real gquestions now
are as follows; Does exchange really contribute to the linewidth
of optical transitions? If it does, what is the contribution of T;-type

broadening?

In this paper, we critically examine these two questions and in
the subsequent paper we present new experimental results that support
our earlier contention that T; processes are dominating the
dephasing, especially at high temperatures, and at least in the system

we present here.

II, Theory

A, Single optical transition: The two—level system.

In solids, the homogeneous linewidth (1/T,) for an optical
transition (made of the two 1levels i and f) may be displayed as

follows:

1 1

_1 _ -— _1 "~
21 e[t ]vm
where 1/Tli and l/T1f are the decay rates of initial (i) and final
(f) states respectively, and 1/T; is the rate of pure dephasing.

Denoting by T the transiton operator T =V + VG T which couples
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the state i and f to the thermal bath, the contributions of
inelastic (1/T,) and elastic (1/T}) phonon—induced processes to

homogeneous linewidth are

(2.28) 1/T .= 2x } W I<i'p'ITlip>128(E,, ,-E; )

1i (h/2%) p,p’'
i#if
and
(2.20b) /T, = } W_I<ip’ ITlip>—<£p' ITI£p>|28(E -E_,)
(h/21) p,p’ PP

where p and p’ are the composite phonon states. All the tem—

perature dependence of 1/T1f. 1/T1f

which depends on the demsity of phonon states and on their thermal

and 1/T; is contained in } Wp

occupation number. The I operator contains all the degrees of freedom
of both the intramolecular states (if, i’f’) and the phonon states
(p,p'). Because the cross—sections of pure dephasing may be large
relative to that of T,~type dephasing, it may be principally
responsible for the homogeneous broadenings and frequency shifts of the
optical transition as a function of temperature. For illustration let
us retain omnly the first order term, V, in the expansion of the T
operator, Thus, equations 2.2a and 2.2b now take the following simple

forms:

(2.32) 1/Ti= _n_ 2 Lj |<p‘|AVif|p>|’6(E -E_,)
(2/2m) p,p’ PP
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where

(2.3b) AV,

g = M, - W = Kilvliy - <glvie

is simply the disparity in  the scattering rates between the
initial and final states. The scattering matrix elements that we denote
by <V)> depend stronmgly on the electronic distribution of the involved
states. As we shall see 1later, this adiasbatic modulation of the
difference AVif may be very large, especially for optical tramsitions,
Similar to the 1linewidth, an expression for the 1lineshift of the

transition can be written in terms of Avif'

The expressions for the 1linewidth and lineshift are quite
general and do mnot require a specific phonon mode (i.e. acoustic or
optical). For acoustic phonons obeying a three-dimensional Debye
model, the temperature dependence of the width is the usual T7-type
process, On the other hand, the dephasing by an optical phonon (or
quasi-local mode) with a frequency A leads to the following

temperature dependence:

(2.6a) Tig = Yoexp(A/kT)/(1-exp(A/XT) )2
and
(2.6b) 8, = 8,exp(A/KT)/(1-exp(A/XT))2
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where y, is simply the product of |(AVif>|3 and a constant. It is now
clear that Yiflsif is constant, and this constant is close to one.
Furthermore, in the low temperature limit, we recover the Arrhenius-
type plot for both the shift and width for T; (elastic) dephasing of

two levels interacting with a bath.

B, Multiple transitions: The exchange problem.

When spectral lines overlap, the isolated two 1level theory given
in section A becomes less appropriate simply becaunse the spectral
overlap could lead into significant exchange coupling. Ve shall
first consider two two—level transitions and then generalize the

results in section III to  many two—level tramsitions.

It can be shown that for two overlapping resonances (if and i’'f’)
the eigenvalues of the following matrix determine the width and shift

caused by elastic and exchange couplings:

S—

2.1) L= T AT Y LT RUY

]

)

“Wiegeir CirgrdPirg ™ W50 g0

—d

Where the diagomal & and vy describes  the shift and width,
respectively, while the off-diagonal y describe the matrix ele-
ment connecting the two overlapping resonances. The different y'’s can

be related as follows:
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-A/KT

(2.8) e

Yiegr,if - Yif,i'f’

where A is the energy difference and y is simply the golden rule rate

for transitions between if and i'f’:

H -— ’ -
2 wp!<v>| 8(Efp Ef,p,)+ z 2 wpl<v >l=s(Eip Ei,p,

p,p’ i p,p’

)

Tig,ire” &
1

It is now a simple matter to diagonalize the matrix and
calculate the lineshape parameters. Several points are worth
mentioning here., First, the pure dephasing of each transition is
contained in Tif and Tirgrs This pure dephasing is temperature
dependent and in fact has exactly the same functional dependence as
that of equation 2.8 in the low-temperature 1limit, Second, clearly,
the exchange is =2 Tl—typé process that contributes to the homogeneous
width of if and i'f’, but is not contained in the y's when exchange is
absent ., Third, the effect of the exchange is to bring an
'*interference term’’ that depends on the relative magnitude of pure
dephasing of the two resonances. In the limit where the relative
pure dephasing is very large, the exchange contribution to the overall

dephasing is mnegligible. Finally, there is 1o reason that the

o

pure dephasing is constant t all temperatures while 8§, and &, ax

changing with temperature according to egq. 2.8. This 1is an

important point recognized by wus in reference 3 and more recently by
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Abbot and Oxtoby in reference 1l.

In the low temperature limit and assuming that the two

resonances have comparable T, values, we obtain

total

(2.9) W)l = T, + (WT,)

2" exc.

where

= - - 2
(2.10) (1/T,) oo = Yig,3rg (03¢ * B3 705000 ~ 850gr)

- - 2 2
(w6 + 85 05,00 850 e)® * ¥1ugisg

Now if we use the notation of previous work, where o refers to sif Y
and 1-1 = Si'f' if and the square of the frequency difference
?

as 82, then we get

(2.11) (1/T),) = b2 = wr?d?

excC.
52  1+8212

which is identical to all the expressions previously derived for the

low-temperature limit. Similarly, the shift is

(2.12) 8 = dot
exc.

145272
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The connection of the above results with those of Anderson is

now clear, In the absence of intrinsic broadening, the limeshape

is simply
(2.13) I(w) = -Re(¥u'L T.p)
where
(2.14) W = (w o en oo 'i'f'"i'f')
p o= Eif
Bijrgr

is eq. 2.7 without Tig and Yiogoe I(w), when computed, gives pre-

cisely the results (due to exchange only) in equatioms 2.11 and 2.12,

III. A test model: The linear chain

A, Preliminaries

The objective here is to test the relative importance of T, and
T:xc. in contributing to the overall dephasing. Imagine that we
have a linear chain made of N molecules, as e.g. the case of

1,4~-dibromonaphthalene triplet excitons. The resonance interaction (B
= -6.2 cmnl) between the molecules lifts the degeneracy of the k

states. The eigenfunctions and energies of a finite chain are
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1/2 S sin(kn®) In>

n=1

lx>= (2/n+1)

Ek = En + 2Bcos(kO)

»~

Where € = n/N+1 and k runs from 1 to N. The ket [n) denotes the one-

site function on molecule n.

Emission from the band to the ground state gives essentially a
one—line transition while those to a vibrational band give a band-
to-band transitionm. The band-to—band (BTB) tramsition contains
overlapping resomances while the {0,0) displays essentially the
region around k = 0. Therefore, if we know the rate of exchange among
the k states and we know the pure dephasing time as a function of

temperature, we can isolate the contribution of exchange dephasing.

As we shall see, the ''k-to-k'’ scattering time can  be
measure by pumping the X = 0 level and recording the BIB spectra as a
function of time. This transient experiment is repeated at different
temperatures to obtain  the exchange rates as a function of
temperature. This measurement provides 6. Now we measure the

(0,0) width as a function of temperature to obtain 7.

Theoretically, we can handle the effect of exchange on the BTB
transitions by increasing the size of the matrix im eq. 2.7 to include

all transitions. In other words, eq. 2.14 becomes
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Wy = ('1"1""'k“k’°"'n"n): p o=

e S

and
L=+
where

kk

) o~

D.., = (W‘]5 + 85 - W)akk,

= - — -1 - '
Thgr = Teer 18y ) + [ (Tyy) ¥
Therefore, as a result of overlapping resonances in the BTB tran-

sitions, the effect of temperature should indicate the relative

roles of '1‘1‘]5 and 725,.
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IV. EXPERIMENTAL PROCEDURE

A. Materials and methods for steady state experiments

Isotopically mixed crystals of approximately 5 and 16 mole
percent perdeutero in perproto DBN were grown by standard
Bridgman techniques. All starting materials were extensively zone
refined. The pure H; DBN sample, taken from the zome refining tube,
was exceptionally clear with no visible fractures, so was used in the
experiments with mno further treatment, The cylindrically shaped
boules were 4 to 6 mm in diameter. Samples cleaved from the boule were
gently held with black photographic tape against a flat sample
holder, Temperatures between 1.4 K (flooding and pumping the sample
chamber) and 100 K were achieved in a Janis model DT-10 super
varitemp dewar. Temperatures were measured with a calibrated silicon
diode situated in a copper block which supported the sample
holder. The samples were no more than 45 mm from the sensing element
to reduce any temperature gradient effects. A second sensor was
attached to the helium nozzle with indium solder. For temperatures
greater than 4.2 K, the temperature at the nozzle was regulated by a
heater in a feedback 1loop with a Lakeshore Cryotronics DITC-500
temperature controller. Temperatures could also be regulated using the
sample sensor to control the current supplied to the nozzle

heater, but much greater stability was achieved using the nozzle sensor.

As a check to determine if the helium flow rate was adequate to
dissipate the sample heat, the flow rate was increased beyond that

recommended by the manufacturer to double the heater current, yet
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keep the sample at a constant temperature. Within the S/N ratio,
the band to band lineshape was unaltered. It is worth mentioning that
the helium gas flow nozzle was & sintered brass filter and for large
flow rates of helium gas it was very difficult to regulate the
temperature. Presumably, turbulent flow through the nozzle and small
amounts of snow swept into the helium leak valve limit the maximum
flow rate. The maximum stable flow rate is mnot a severe
limitation for laser experiments, since fhe few tens of milliwatts
typical average laser power the sample must dissipate is well within
the cooling capacity even at 6 K. However, for steady state
absorption and emission experiments with broad band sources, one must
be very cautious to avoid sample heating effects. A filtered arc
lamp can easily put 3 watts of focussed UV on the sample. Since the
heat capacity (thus the cooling capacity) of helium gas goes as
(3/2)XT, one expects sample heating to be less of a problem at high
temperatures, At lower temperatures (5 to 25 K) it was found that the
most reliable results were obtained using high flow rates and a double
set of IR and visible absorbing filters on the arc lamp, producing 1less

than 1 watt of UV (measwured with a Scientech thermopile).

Broadband excitation of the sample was produnced by a 200 watt
Oriel Hg-Xe arc lamp filtered by a NiSO, solution filter, two Corning
7-54 filters and a high energy UV cut-off filter. For the transient
line narrowing experiments, the emission was collected at right
angles , passed through a high energy sharp cut filter and focussed on
the slits of a Spex 1402 double spectrometer with dual 2400

groove/mm ‘holographic gratings. Light was detected with a Hammatsu



152

R955 PMI and fed into photon counting electronics or a PAR 162
boxcar with 164 and 163 modules. For the absorption  experiments,
an Oriel 100 watt Tungsten 1lamp passed through IR and UV absorption
filters and a Bausch and Lomb 1/4 meter monochromator was used. The
light was dispersed with a Spex 3/4 meter spectrometer with an
1800 groove/mm holographic grating and detected with a Varian VP-192
PMT. The transmitted light was chopped with a PAR 192 chopper and
detected in quadrature mode (reducing phase fluctuation noise)

with an Ortec 9505 1lock-in amplifier,

B. Procedure for laser line narrowing transients

In all the time resolved experiments, great care was taken to

insure that the observed time dependences were not distorted by slow
system respomnse time or detector nonlinearity. Scans using neutral
density filters on the spectrometer slits, different load

resistors, different excitation wavelength, etc. were  done to
insure reliability. - A detailed discussion of potential sources of

experimental artifact and their diagnosis follows.

In our transient experiments, (see Fig. 1) a Molectron UV 24
nitrogen laser was used to pump a DL14P dye laser and amplifier,
producing 5-8 mnsec pulses of ~9 Ghz spectral bandwidth. Energy
per dye laser pulse was typically 0.5 mJ with peak power of
approximately S50 kW, average powers of 5 mW. The signal was processed
with a Princeton Applied Research model 162 boxcar integrator with
a model 164 plug—in and model 183 sampling head plug—in with 350 psec

risetime, To reduce unwanted scattered light , the emission was
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analyzed with a Spex model 1402 double spectrometer with dual 2400
groove/mm holographic gratings. To reduce the resonance Raman
scattering, the vibronic transition at 18,850 cm.-1 was used. The
experiment (phosphorescence site selection) reported here for the

first time for molecular excitons resembles those done om inorganic

systems (fluorescence line narrowing [5]).

It should be immediately pointed out that signal averaging in
these experiments is a problem unto itself. Unlike the picosecond
sync-pumped dye laser systems where omne performs experiments at
repetition rates in the Mhz region, the maximum rate these experiments
can be performed at is 10 to 20 hz, due to triplet state lifetimes
being of the order of tens of milliseconds. Thus, to obtain
a reasonable S/N spectrum in a reasonable amount of time, one mneeds to
collect as many emitted photons per pump pulse as is possible.
However, one also wants to avoid nonlinear effects such as excitonic
fusion and fission and false time-dependences, so one requires (a)
low excitation densityland (b) a1l the physics to finish before the
next pump pulse arrives. Thus, good S/N without artifact

requires attention to several experimental parameters.

There are several very important sources of experimental
artifact that must be dealt with in the transient experiments: (1)
the reduction of scattered light, (2) the prevention of
photomultiplier saturation, system response time limitations
including (3) electronics, (4) transit time spread and (5) space charge
limitation, These five (among other) potential pitfalls must be

unequivocally and quantitatively dealt with if the experimentalist
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is to trust the data. We shall discuss each one.

1. Reduction of scattered light

For the problem of scattered light produced | by unwanted
reflections, it is imperative to  have the highest possible
optical quality crystal, avoiding mechanical imperfections that
scatter the light. Moreover, the use of holographic gratings
greatly reduces the scattered light problem within the
spectromeier and increases throughput since (a) the grating
produced by the photoresist process does not have glass shavings and
chips ieft behind as does the conventionally-ruled grating, reducing
ghosts and scatter and (b) as the grating is produced by interference
fringes, it is close to being sine grating and most of the 1light is
diffracted in to first order. A perfect sine grating can only diffract
in first order, thas it does not distribute the intensity of
the dispersed light among many orders. One should bear in mind,

however, that for most uses other than transient experiments, the

holographic grating has drawbacks versus the conventionally ruled

grating. The present, commercially available holo grating
clearly has an undesirable wavelength—dependent polarization
response and diffraction efficiency. An additional limitation of

the holo is that if one wants to nuse the second order diffracted
light for higher resolution (which is very frequently the case) ome
requires an anomalously intense signal since the throughput in second
order is very low. For a Spex 1800 groove/mm holographic grating,
second order efficiency is at least a factor of 50 1less than that of

first order. (The author has recently 1learned that the American
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Holographic Corporation has produced a grating which has a second

order efficiency comparable to that of conventionally ruled gratings.)

2. Photomultiplier saturation

To prevent ophotomultiplier saturation, several caveats should
be observed (see reference [12]). First, using as high a PMI bias as is
possible will keep the transit time spread (vide infra) and space
charge saturation effects minimized. (Note that the dynodes roughly
obey the Child—-Langmuir law which states the saturation current between
two parallel plate electrodes goes as V3/2 where V is the applied
voltage.) Secondly, one must realize that with transient signals whose
rise and fall times approach the rise and fall times of the PMT,
the aversged maximum current must be 100 to 1,000 times less than the
maximum average continuous current the manufacturer quotes.
For instance, if the manufacturer rates the tube at ~100 pA (e.g. the
Varian VP-192), the time—averaged (not peak) current should be 0.1 to 1
pA. Terminating the PMI into a  high—input impedance digital
multimeter in DC volts mode will typically integrate the current well
enough to determine the safe 1limits (100 megQ input impedance at
20 hz laser repetition rate). We have indeed found that if the current
is > 1/50 of the maximum rating, lifetimes were too long, time-
dependences were too slow with weak lines amplified and strong
lines suppressed, Further, differences were found between different
photomultipliers -- the Hamamatsu R955 and EMI 96590B in particular.
The Varian VP-192 did not saturate easily, possibly due to its opaque
rather than semitransparent photocathode. Being opaque, the

photocathode is thicker, having less resistivity and smaller voltage



156

drops across its face (more uniform and higher fields, to
resist space charge effects and transit time spread). To reduce PMT
saturation, ome can reduce the gain (bias) of the tube and use
electronic amplifiers on the anode output, Losing only PMT

response time which may be tolerable in certain measurements.

The newest technique for reducing PMI saturation as well being
the most promising and costly is the switching PMT (e.g. the EMI 9810
series and ITT star—tracking tubes). Some switching tubes have a
deflection grid directly between the photocathode and first dynode
acting as a current gate in a triode tube. Though these tubes can
prevent dynode saturation, they cannot prevent photocathode damage
or fatigue. The grid-controlled tubes were originally developed for
laser rangefinders where one wants to discriminate against mnear—
field backscatter shortly after the laser pulse. The ITT star-trackers
use magnetic and electric deflection coils behind the photocathode.
Though the deflection coils were intended to scan the photocathode
(looking for stars imaged on the photocathode), they can be used
to deflect all the photoelectrons away from the first dynode, acting as
a switch. The principal limitation of the switching method at present
is the switching speed. The circuits which are reliable and do mnot
cause a ’'’ringing’’ in the gain of the tube have a switching time of ~

psec (vide infra).

3. System response time limitations: electronic

In regard to the third experimental artifact (having system

reponse times short emough to avoid integrating previous history into
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the signal) there are several quantitive tests one can perform. A
poor <respomse time can be the most serious pitfall of the DBN
experiments, where the short time, high intensity spike of light shaped
identical to the pump pulse that arises from Raman and reflected
light swamps the photomultiplier or the signal processing
electronics, If one had a detection system with infinitely fast
response time, the delta functionm like scattering pulse would not
interfere with the luminescence. However, with finite response
times, the scattered light is temporally integrated and overlaps with
the luminescence. The light scattered within the instrument can be
multiply-diffracted as is typically the case with the Czerny-Turner
type of mount [13] or can simply be spurious reflections. The
idea is to discriminate against this scattered 1light which usually
dominates the luminescence by insuring that the system RC (recovery
from the spike) does not contribute any signal at the time that the
boxcar gate is open. If one represents the boxcar input as a simple
lumped RC circuit with a real impedance (not worrying about any
phase shifts from capacitive impedance) and solves the differential
equation for the transient recovery from a delta function current
pulse at t=0 [12], one finds a voltage response functiom, V(t) roughly
resembling exponential rise and decay. If the system response is rapid,
then the tail of the delta function current pulse does not contribute
at the delayed time that the boxcar gate opens. Therefore the signal
voltage should be 1linear in the 1load =resistance. Otherwise, the
signal will scale expomentially with the load since it is
dominated by the integrated short time current spike. For the DBN

experiments, (tunneling and band-to—band experiments), we would scan the
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emission spectrum at a given delay time then repeat the scan for
several different values of load resistance. It was found that for
RC's > 1/5 of the observation time, the signal intensity clearly
was nonlinear in the load resistance. For RC's 1/8, 1/10 and 1/15 of
the observation time, the signal varied linearly with the load. All the
DBN experiments were performed with system response times < 1/10
of the observation time. For the case where the driving current is

I(t) = Texp(-t/t), the decay will be distorted and appear as [12];

V(t) = IRt [(exp-(t/t )) - exp—(t/RC)]

z-RC

where I is the maximum current from the PMT, t is the decay constant of

the sample, R is the lumped resistance and C is the lumped capacitance.

4. Transit time spread

The system response time can be limited by the detector as well
as the detection electronics (cf. previous section). If response is
limited by PMT space charge effects (in contrast to an RC problem)
or transit time spread, ome should be able to detect it by putting
neutral density filters on the detector and/or altering the PMT
bias (all else the same). Space charge (see next section) and transit
time effects can cause erroneous time—dependences and unreliable

signal intensities.

Transit time spread is a result of the fact that the

photoelectrons do not all 1leave the photocathode with the same
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kinetic energy and trajectory as they travel to the first dynode where
they will produce many secondary electrons (the
amplification), Carried one step further, as secondary electrons leave
the first dynode, not all of them have. the same energy and
trajectories, resulting in different arrival times at the second
dynode. This goes on until the electrons reach the anode and are
collected, but due to the distribution of arrival times the signal
would be broader than a true delta function 1light pulse. This
broadening is often called tranmsit time spread. If the
photomultiplier bias is low, the spread in arrival times can be large.
Exactly how large depends on the dynode geometry and bias scheme. To
keep the rise time as short as possible and transit time dispersion
low, one should keep the bias voltage high and use a high curreat,
nonlinear dynode chain. Further, since the total transit time in the
PMI is a function of bias voltage, do not change the bias after
establishing the apparent t=0! I have seen changes of ~50 nsec in the
''apparent’’ position in time of the 1laser pulse when changing only the
PMT bias, One should wuse a photomultiplier with electrostatically
focused dynodes in these types of experiments to help minimize

most of the above mentioned effects.

5. Space charge limitations

As for space charge 1limitation, tests with neutral density
filters are usually adequate. Space charge limitation refers to the
effect of having too large a number of secondary electrons (or for
that matter, photoelectrons from the cathode) such that the repulsive

potential within the '’'electron cloud’’' competes with the potential
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between dynodes. In such a situation, not all electrons are able
to reach the next dynode, exacerbated by a transit time dispersion that
can be severe. The neutral density filters reduce the number of
electrons (photoelectrons) in the ’'’cloud’’ and therefore, intemsities are
truer (electrons don't get lost between dynodes) and the response time
is faster since the effective dynode field felt by each electron is

higher,

One should realize that '‘’‘saturation’’ of the photomultiplier is
distinct from space—charge limitation proper. Instead, saturation
is an effect where the photocathode fatigues due to prolonged or intense
illumination, This sort of problem is generally rare compared to
space—charge limitation and is difficult to diagnose and quantify (see

ref. [12]).

Tests with neutral density filters up to 0.6 O0.,D. units were
carried out and no discernible change in signal time-
dependence or 1lineshape was found. A larger range of mneutral
density filters could not be easily tested since good signal/noise
was required to do a quantitative test. That is, if ome is looking for
distortions in the time-resolved spectrum as we were. I usually ran
with the PMT bias voltage at or slightly beyond the 1limit of the
manufacturer’s specifications, which was 3 KV for the Varian VP-
192, Further, in all the transient experiments, the manufacturer’s

recommended nonlinear dynmode bias chain was used.

C. Raman scattering vs. emission

As well as understanding the character of the detectors and the
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detection electronics, it is essential to observe the emission to
a final state with a small Raman cross section. That is, in order to
record the emission without interference from resonance Raman
scattering, one should pick a molecular transition with as large
as possible relative emission/scattering cross sections, This 1is
easily accomplished by setting the boxcar gate coincident in time
with the laser pulse and scanning the spectrometer over the total
spectrum (producing, essentially, the Raman spectrum). Then one
compares the scattered 1l1light spectrum with a CW emission spectrum
and uses the transitions absent in the Raman spectrum. Simply, one
is finding the resonance Raman inactive modes. This was the
procedure used to select the 5305 K transition in DBN for the tunneling
and band to  band experiments. Ome should note that due to the high
powers involved (megawatts/cm2?) that Raman scattering can be a serious
problem. From the data, it was clear that looking at the (0,0) emission
(resonant with the pump laser) would not work due to 1light scatter,
even using the highest quality crystals and a double spectrometer (with
an effective PMT switching scheme, this should be feasible). This is in
contrast to experiments on rare earth. doped glasses where it is
routine to look near resonance with the transition being pumped
(due to the smaller electron—phonon coupling, 1less efficient
radiationless decay channels and lower polarizability of the ion  than
molecules in molecular crystals). Further, with emission to
ground state modes with resonance Raman activity, the
scattering/emission cross section ratio was too large to get rid of
the short—time laser scatter with any value of load resistor on the

boxcar that gave a signal.
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D, Accuracy in time delay measurements

In order to achieve accuracy in the recorded time delay
spectrum, an optical delay line 20 meters long was used to
compensate for the electronic delays (~60 nsecs) of a photodiode
triggering the boxcar. Then, the boxcar was scanned in time over the
laser to find an apparent '’t=0'' in terms of the boxcar knobs. In other
cases, a pulse generator which produced a trigger and delayed trigger
was used to compensate for the various instrumental delays but this
method proved to be less desirable, since (a) the trigger
generator provided a path for thyratron noise to the boxcar and (b} the
method relied on the time and amplitude stability of the pulse
generator (since the boxcar was leading edge triggered) as well as 1low
jitter on the nitrogen laser thyratron. The photodiode clearly
had none of these problems. It canm only trigger the electronics when
the 1light pulse is on its way to the sample and does not provide a
direct path for high frequency electromagnetic interference from the
laser to the boxca¥. The photodiode was powered by a small 15 volt
battery and the entire assembly was encased in a small metal box
with a 2 mm hole for the laser, Tv::;:s chosen to diffraction limit
any broadcasted interference finding its way to the diode. Triaxial
cable was initially used between the photodiode and the boxcar but

it was empirically determined that normal coax did as well.

E, Sources of noise in data acquisition

The three largest sources of noise in  the transient DBN

experiments were found to be (1) laser beam wander, (2) laser
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amplitude stability (~5%) and (3) fluctuations in the laser
repetition rate. Beam wander causes different portions of the sample
to be irradiated, which in turn causes different portions of the
optics to be illuminated and all the concomitant problems.
Unfortunately, the 1long arm of the delay line aggravates the
problem, Presumably the wander is due to index of refraction changes
due to local heating of the dye by the pump laser. Running the 1laser
at rep rates below 10 hz seemed to minimize but not eliminate
the problem of beam pointing stability. When using the second
harmonic of the dye laser, the pointing instability of the beam made it

unusable with a 20 meter delay 1line,.

When using the boxcar to look for signals that are 2% of full scale
deflection or less, a small fluctuation in the rep rate (<< 1 hz) gives
baseline drift of the order of several temnths of a percent. This is
problematic, since in most of the tunneling and band-to—band
experiments we never saw the meter on the boxcar movel!l! A more
frequency stable triggering system may help the apparent drift, At
this writing, it is not known if the drift is exclusively rep rate
dependent and <can be rectified (a digital storage option on the

boxcar was used to prevent '’'droop’’).

As for pulse to pulse amplitude stability, I know of =no simple
cure, Using two boxcar plug—ins where one samples the laser pulse,
the other emission intemsity and taking the ratio did  not reduce

the noise, possibly due to errors in the analog division.
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V. EXPERIMENTAL RESULTS

The relevant spectroscopic parameters for DBN were discussed in
chapter I. However, it is useful to summarize what is known to date
about the 1lowest triplet exciton, and the data are presented in

Table I.

To aid the reader, a brief summary of the experiments and the
conclusions drawn from them follows. The experiments include (1) The
measurement of the temperature dependent homogeneous line width and
shift for the k ~ 0 region of the upper and 1lower sublattices from
absorption experiments, (2) the steady state temperature dependent
band to band transition (BIBT) 1lineshape, in pure and disordered
crystals; (3) the transient BTBT 1lineshapes as a function of

temperature for pure and disordered DBN.

The data led to four oprincipal conclusions: (1) The
intraband exchange time (among the k states) is of the order of 10
psec and is weakly temp?ratnre dependent from 20 to 55 K. (2)
interband scattering is mnot responsible for the observed broadening
of the k-states. (3) To a good approximation one can describe
the dephasing of all band states by elastic scattering of ~ 42 cm-1
phonons. (4) The relaxation amongst the k  states and  the

dephasing mechanism are not strongly affected by heavy (16%)

substitutional disorder.

Ve have measured the absorption linewidth and shift of the (0,0)
transition to the 1lowest triplet state in DBN as a function of

temperature. The (0,0) transition yields a low temperature lineshape
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TABLE I.
SUMMARY OF SOME IMPORTANT DBN MATERIAL PARAMETERS

PHYSICAL

1,4-dibromonaphthalene C10H6Br2, MW = 286.0
Density = 2.037 g/cc

Melting point: 83 Centrigrade 5
Crystal structure (at 275 C): monoclinic P2,/a (C]

),
=27.45 + 0.08, b=16.62 + 0.04, c=4.09 + 0.01 A (L]

SPECTROSCOPIC

Lowest triplet exciton origins at_i.Z K [b]:
lower sublattice: 20,192 cm_y
upper sublattice: 20,245 cm

Nearest neighbor interactions_gt 4.2 K:
along c—axis: -6.2 em , [cl

along a,b axes: <0.01 cm = [d] (sign unknown)

Intrinsic triplet state 1lifetimes as a function of cluster size:

1.8 K [el 1.4 K [f]
monomer dimer exciton
x-state: 79 + 5 msec 41 + 5 msec unknown
y—-state: 5.2 .3 msec 2 + .2 msec 476 psec

z—-state: 3.5 + .3 msec 4.5 + .3 msec 95 usec

Naturally occurring triplet trap states so far identified: (given in
terms of trap depth from k = 0 of the lowest sublattice)

I. 28 cm:i
II. 38 cm_
I11. 67 cm -1
IV. 146 cm

[a] J. Trotter, Can. J. Chem. 39 (1961) 1574.
[b] R. M. Hochstrasser and J. D. Whiteman, J. Chem. Phys.56 (1972) 5945,
[¢c] R. M. Hochstrasser and A. H. Zewail, Chem. Phys. 4 (1974) 142,

[d] R. M. Hochstrasser, L. W. Johnson and C. M. Klimcak, J. Chem. Phys.
73 (1980) 156.

[e] A. H., Zewail, W. G, Brieland and C. B, Harris, unpublished results
quoted in D. M. Burland and A. H. Zewail, Adv. Chem. Phys. 40 369.
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[f] A. M. Nishimora, A. H. Zewail and C. B. Harris, J. Chen. Phys. 63
(1975) 1919.
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that has been reported to be asymmetric with a long tail to higher
energy [13] and is nearly ’'‘half’’ a Lorentzian [12] due to the k=0
state being on the bottom of the band and a Van Hove singularity in the
density of states at the exciton band edge. The asymmetric
Lorentzian is ostensibly homogeneous [14] though, to the author’s
knowledge, there is no direct experimental proof of its
homogeneity (indirect transitions producing asymmetric lineshapes such
as those observed in CdS exciton absorption, would not exclusively

reveal the electronic dephasing).

In our experiments, the low temperature linewidth of the k~0
absorption  was found to be sensitive to the method of crystal
preparation and thermal cycling; widths would vary between 0.5
and 1.5 cm—l. Generally, our crystals were not as strain free as
previous studies [12,13], thus the steep, 1low energy side of the
absorption profile was broadened. To correct for the inhomogeneity, we
fit the low ’energy side of the low temperature (1.4 K) line to
Gaussian and Voigt fnncéions [15]. The Voigt line shape is a Lorentzian
convoluted with a Gaussian and was fit to the data in a convolute
and compare procedure using a mnonlinear regression (see Appendix IV).
The convolution integral was calculated using the expansions of
Armstrong [16a], which were checked against published tables [16b,c] and
found to be within the accuracy quoted. Voigt fits yielded the
Gaussian component of the low energy side, which within fitting error
was the same as fitting a opurely Gaussian function. The Gaunssian
component was then used as a fixed parameter in a Voigt fit to the high

energy side of the line. We obtained a half Lorentzian of width 0.3
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cm_l, in agreement with earlier work [12,13] (all opositions and

widths reported here are from the wavelengths in air, not in vacuumm).

In performing the experiments, care was taken to use
crystals of DBN thin enough that the peak absorption was 10% or less
to obtain accurate lineshapes from our single beam apparatus.
Ve found reasonable agreement with the reported 1low temperature
absorption coefficients [171. For the low temperature
experiments, platelets 100 to 300 microns thick were cleaved with extra
thin razor blades from a boule of DBN., In the high temperature
experiments (T > 50 K), it was necessary to use 0.5 to 3 mm thick
crystals to obtain sufficient absorption. In all cases, the temperature
dependent line widths of the thin and thick crystals were
overlapped at 3 or 4 intermediate temperatures and found to Dbe
identical within fitting error (a few tenths of a wavenumber,

typically).

The k~0 absorption becomes a symmetric Lorentziam for T > 20 K.

For T > 60 K, there is incipient asymmetry to lower emergy,

probably due to absorption from the ground state + a phonon. The
fitted homogeneous width as a function of temperature is shown in
Fig. 1. For comparison’s sake, the total apparent width for a
typical crystal is also shown, Fitting the homogeneous width to
a two phonon Raman type scattering process, we find a phonon of

1

42 + 10 cm—l,vhich is close to a phomon state reported at 39 cm [5b]

(the 10 cm—l error represents a 92% confidence limit of a

double tailed student t statistic; 75% confidence limits gives an error

1

of + 4 cm ). The data clearly did not fit T3 or T7 and since
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Figure 1. Temperature dependence of the homogeneous FWHM for the DBN
triplet (0,0) from Voigt fits. The crosses are the data from the lower
sublattice triplet (0,0) absorption experiments in pure H, DBN; squares
represent the upper sublattice. Typical total FWHM are shown as filled
circles, The solid lime is the fit of the data to 42 cm—l’two phonon

elastic scattering.
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the lifetimes are of the order of at 100's of psec (vide infra),
one concludes the dephasing is not due to a single phonon process, If
one were to use the total apparent width, the temperature
dependence is less steep and a lower energy phonon (ca. 30 cm_l)
is obtained. We  have also measured the temperature dependent
emission lineshape of the (0,0). In all samples investigated, the
emission was broader (typically 1 to 2 cxn“1 FWHM at 4.2 K) and more
symmetric than the absorption. Presumably, thermalization among
the k~0 group has taken place (recall that even at 1.4 K, kT is greater
than the absorption linewidth). Further, self reversal of the (0,0)

[17] also makes study of the emission prome to error, so it was decided

to use the absorption data for amalysis.

In Fig. 2, the red shift of the (0,0) as a function of T is shown
for each sublattice. Without correcting for the thermal expansion of
the crystal, we find the red shift is well described by a single
phonon  process of 66 + 8 cm—1 and fits T? and T4 less well. Even
though reasonable estim;tes of the volume thermal expansion and
isothermal compressibility are available [18], the author knows of
no measurements of the pressure dependent shift of the triplet
electronic state, so correcting for the thermal expansion in the shift
of the (0,0) is not yet possible. DBN might be expected to be
similar to other soft organics (i.e. a low Debye Temperature) like
crystalline alkanes [18], where the lattice expansion contributes a red
shift to the total shift. In such a case, the actual single phonon
describing the red shift would be lower energy than 66 cm—l,

conceivably around 42 cm_l. From Fig. 2, at all temperatures, the
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Figure 2. Shifts of the DBN triplet (0,0) absorption peaks for the
upper and lower sublattices in pure H, DBN. Both shifts are to the red
and the plot is only meant to show the shift magnitude. Lower
sublattice shifts are denoted by crosses, the upper sublattice shifts by

squares, The solid line is the fit to a single phonon occupation number

for a 66 cm_l mode.
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shift of the upper sublattice is seen to be within 2 cm—1 of the shift
of the lower sublattice, in contrast with earlier work [12]. The
discrepancy in the shift data is not understood. Possibly, the
shift is affected by the strain in our crystals, - The
splitting between the two sublattices is 54 + 2 cm—l. Due to the

large apparent broadening of the two k ~ 0 absorptions and lack of

relative shift towards one another, omne concludes that interband

exchange is slow compared to the primary dephasing mechanism.

Though we have performed the absorption experiments for T > 70 K,
it ' is of questionable usefulness, since phonon sidebands to the red
and the blue make reliable baseline analysis difficult. To
illustrate this, Fig. 3 shows a broad scan of the absorption spectrum
of the two sublattices at high temperatures. The result is that beyond
70.5 K, the size of the error bars for the width make the data

vanishingly useful.

We have also measured the absorption and photoexcitation
spectra of 16% D,/H, DBN (see Fig. 4). Though the k~0 absorption in
these samples is asymmetric at low temperatures, it is about an order of
magnitude broader (~ 3 cm.l) than the pure H, sample, which is
likely due to the disordered linear chains. Since the shorter chains
have their ''k''=0 states at higher emergy than the infinite chains,
their absorption produces inhomogeneity in the spectrum. Due to the
inhomogeneity, it is not useful to plot the doped sample linewidth vs.

T‘

In order to investigate any effects of intraband exchange, we
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Figure 3. Scans of the (0,0) absorption spectra of the two
sublattices in H DBN at high temperatures. The sloping linear
baseline is due to the instrument response and is not a true spectral
feature. The build up of the sidebands to the red and the blue of

the k~0 absorption is very pronounced at 70.5 K.
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Figure 4. The laser photoexcitation spectrum of the lower
sublattice (0,0) ¢transition in 16% D,/H, DBN at 1.4 K. The spectrum
was recorded by observing the (0,1350) BIBT with low resolution so as

to gather emission from all the k states. The laser bandwidth was 0.3

cm 1 and emission in a window 500 to 550 nsec after the laser pulse was

collected. The FWHM is ~ 3 cm—l.
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have measured the temperature—~dependent steady state and transient BTBT
spectra. Moreover, these measurements have been performed in pure
and doped crystals. One should note that most of the molecular
vibrations in DBN exhibit a BIBT, which implies that the vibrations
are not completely 1local and must, to an extent, form vibrational
exciton bands. Omne can qualitatively see the growth of the BTBT on
many of the molecular modes by looking at the broadening of the
transitions in Fig. 5. For the purposes of this work, we shall
concentrate on the BIBT corresponding to the molecular (0,1350)
transition (at ~ 5305 K). since this transition has 1little resonance
Raman activity and is ideal for the time resolved studies discussed
below. The (0,1350) tramsition is well suited for the
temperature dependent studies since self absorption would not be a

problem as it is in the (0,0) transitionm.

Measurement of the BTBT spectrum offers information
different from and complementary to the (0,0) transition. The (0,0)
line is transition from a dispersionless, local state to a band state,
and as such, only the k~0 region is optically accessible. However,
in the BTBT, initial and final states are band states and outside of
symmetry restrictions, one mneeds only to conserve momentum in the
transition, i.e. labeling the upper states by wavevector k, lower
states by g and the photon by j, k+g+j =0, The difference between

the (0,0) and the BTBT is schematized in Fig. 6.

From the steady state BTBT data, one arrives at three
conclusions, (1) The BTBT lineshape broadens and shifts to the

red as temperature increases, implying that intraband exchange is not
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Figure 5. Broad, moderate resolution scan of the lowest triplet

emission spectrum of 16% D,/H DBN at low and high
temperatures. The apparent broadening of many of the transitioms is due

to the growth of the BIBT's which are built on the molecular

vibrational modes.
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Figure 6. A schematic representation of the BTBT and (0,0)

transition in terms of energy, wavevector k (electronic exciton) and
wavevector g (vibrational exciton). Note that for the BTBT, emission
from all k states to the ground vibrational exciton is allowed and the

different k states are energetically resolvable. For the

(0,0) transition, only the k~0 state is observable.
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important. Inasmuch as there is intraband exchange, there should
be collapse of the BIBT lineshape. The shift and broadening of the BTBT

is shown in Fig. 7 for a crystal of pure H, DBN, (2) Heavy

[
disorder (up to 16% barriers) has no detectable effect on the BTBT
lineshape (and implicitly 1little effect on the dephasing mechanism).
A few of the temperature dependent line shapes are shown for the
16% D,/H, sample in Fig. 8. (3) The vibrational exciton
originating from the 1350 cm.1 molecular mode has a nearest
neighbor interaction that is negative in sign and of the order of 1 to

2 ocom 1. Since the nearest mneighbor interaction of the triplet

excitons is -6.2 cmni, a 24.8 cm-1 bandwidth is predicted,

whereas the apparent k=0, k=n/¢ splitting of the BIBT is ~17 cmnl.
GivenV that the selection rule k+g+j=0 holds, one is forced to
conclude that g=0 lies at the bottom of the vibrational exciton band
(one should note that the 1 to 2 t:.m—1 bandwidth is reasomable in
view of typical molecular crystal vibratiomal factor group splittings
from IR dichroism and mixed crystal studies [19]). Moreover, the
(0,1350) BIBT lineshape is not polarization dependent and is strongly
polarized horizontally with respect to the vertical growth axis

(see Fig. 9), consistent with an out of molecular plane electronic

moment and totally symmetric vibrational mode assignment [13].

We have directly measured the population exchange rate among the
different k-states by looking at the transient BTBT lineshape
[20] as a function of temperature. From the transient experiments, one
arrives at three conclusions. (1) The population exchange

rate among the k states is of the order of 10 . psec and is weakly
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Figure 7. The steady state (0,1350) BIBT emission spectrum for pure
H, DBN as a function of temperature. The data clearly show the growth
of the emission from the k=n/c states with temperature (producing
the characteristic ’’double hump’’ density of states for 1-D systems). At
higher temperatures, the BTBT shifts to the red and broadens

rapidly into a structureless asymmetric band.
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Figure 8, The steady state (0,1350) BTBT emission of 16% D,/H,

DBN at 4.2, 17 and 62.2 K.
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Figure 9. The polarized steady state (0,1350) BTBT  emission of H,

DBN at intermediate temperature, 34.5 K. The vertically polarized

emission was 5-10 times weaker than  the horizontally polarized

emission and is therefore noisier.
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temperature dependent. (2) The inelastic scattering time amongst
the k states is essentially unaffected by up to 16% substitutional
disorder. (3) Relaxation between the two sublattices is
rapid and does not scramble the k states (i.e. the relaxation

obeys a Ak=0 ’‘’selection’’ rule).

The idea behind the transient BTBT experiments is that one
prepares only the k~0 state by ground state absorption of a laser
pulse. Then one monitors the evolution of all k states by observing
the BIBT (see Fig. 10). The transient BTBT spectrum of pure
H, DBN at 20 K is shown in Fig. 11, About ~20 psec is required for the
band states to reach thermal equilibrium with one another (cf. the
steady state spectra in Fig. 7). The data unequivocally illustrate that
the intraband inelastic scattering rate (intraband exchange) is slow and
of the order of 10 psec. Figure 11 demonstrates the beauty of the
transient BTBT experiments in directly revealing the dynamical
evolution of all k states, rather than inferring it through the
(0,0) transition (as ;11 previous experiments have done). Figures 12
and 13 show the transient BTBT spectra at the same temperature (20
K), but for 5% and 16% D,/H; DBN. VWithin the signal to noise ratio, the
inelastic scattering time in the pure H,, 5% and 16% D,/H, samples is
the same. Figure 14 is a plot of the time dependent emission intensity
ration of the k=n/c and k=0 states for 5% D,/H, DBN at 20 K. The error
bars are large, but using a simple two level model with time—independent
transfer rates one obtains a scattering rate constant of the order of 10
psec. However, until we obtain higher S/N data for the BTBT transients

(on the 5% doped and other samples), we cannot seriously test different
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Figure 10, The scheme of the transient BTBT experiments. A laser
pulse prepares exclusively k~0 eigenstates via the (0,0) transition.
Then, elastic and inelastic scattering occur, The inelastic
scattering transfers population to k # O states, which is monitored

by the BIBT emission lineshape.
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Figure 11. Transient BIBT spectra of H, DBN at 20 K. One can clearly
see that 500 nsec after the laser pulse, primarily the k=0 region is
populated. At 10 psec, much of the population has been scattered to

k # 0 states and the band has reached thermal equilibrium by 100 psec.
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Figure 12. Transient BIBT spectra of 5% D,/H, DBN at 20 K.

Comparing the data of this figure with those of Fig. 11, one can easily

see there is little or no change in the inelastic scattering rate

wpon doping.
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Figure 13. Transient BIBT spectra of 16% D,/H, DBN at 20 K. This
figure should be compared with the transient data on the pure and 5%
crystals to demomnstrate that the imelastic scattering has not  been
dramatically affected by disordering the crystal with up to 16% of 65
cm_1 barriers! It is worth mentiomning that the 16% doped samples
always yielded better signal to noise ratios for the tramsients than

the pure or 5% samples, probably due to the barriers preventing the

excitation from reaching traps and defects in the crystal.
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Figure 14. Time—dependent emission intensity ratio of the k=n/c and k=0

BTBT's in 5% D,/HJh6 DBN at 20 K.
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scattering models.

To measure fhe effects of interband scattering, we have
performed transient BTBT experiments where the laser is in resonance
with the k~0 state of the upper sublattice and ground state as shown
in the energy 1level diagram of Fig. 15. It was found that all the
population had relaxed from the upper sublattice k~0 to the 1lower
sublattice in less than 500 nsec and that all the population was
deposited in the =0 region of the lower sublattice (see Fig.
16). This indicates that the relaxation rate from the upper
sublattice is much faster than the inelastic scattering rate in the
upper sublattice and that scattering between the two lattices may
be a single phonon process, as has been suggested before [12].
Relaxation between the sublattices is not likely to be a
multiphonon process, since multiphonon relaxation would tend to populate
many of the k states in the lower sublattice due to the
increased number of allowed relaxation paths,. The short time
linewidth of the BTBf from pumping the upper sublattice in Fig. 16

is slit-limited,

In addition to measuring the time resolved spectra of the BIBT,
we have measured the decay of the BIBT as a function of time.
However, the decays are very complex since there are three triplet
sublevels and other processes making the apparent lifetimes
bhighly non-exponential. Pumping the origin and observing the
decay of the total BTBT (wide slits) at 4.2 K in pure H; DBN, the
decay appeared to be roughly the sum of two exponmential with decay

constants of 99 and 463 psec, which is in good agreement with
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Figure 15. An abbreviated energy level diagram of the ground and lowest
triplet states of crystalline DBN. El is the 1lower sublattice
exciton, B2 is the upper sublattice exciton and v indicates a
vibrational mode. The wavy lines indicate the different
resonances pumped in the transient BTBT experiments and the broad, dark

arrow denotes the BTBT used to monitor the inter— and intraband

scattering dynamics.
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Figure 16. Transient (0,1350) BTBT spectra of 5% D,/H, DBN when pumping
the upper and lower sublattice. Within signal to noise ratios, the
relaxation between the sublattices is complete in less than 500 nsec and
does mnot scramble the k states. After relaxation to the lower
sublattice, inelastic scattering in the lower sublattice proceeds
as if its own k~0 state had been pumped. The short—time linewidth
that occurs from pumping the upper sublattice is slit-limited. The
wider slits were necessary to get comparable S/N as when pumping the

lower sublattice.
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the work of Nishimura et al. [21]. However, as the temperature was
raised, the slits narrowed or the lattice was doped, the decays become
more complex than a sum of two exponentials, making reliable
interpretation difficult or impossible. A multiple resonance method,
such as PMDR or ODMR on the BTIBT is the only reasonable way the author
is aware of to untangle the complex decay patterns. Microwave-optical
resonance studies have ©been done [22], but only on the (0,0)
transition. For the purposes of this work, however, what is important
about the decays is that on the time scale of the intraband inelastic
scattering, the intrinsic radiationless decay rates are not

drastically affected and this is shown in Fig. 17.

yi. THEORETICAL SIMULATION OF STEADY STATE BTBT

Using the multilevel exchange theory developed earlier, we have
simulated the experimental steady state BIBT spectra. To this end,
we have taken a model linear chain, 10 molecules 1long, and used the
known nearest neighbor interaction and Boltzmann factors to calculate
the spectrum. Chains longer than 10 were tried, but no visible
change in the simnlated BTBT spectrum was obtained. Using different
values of the off-diagonal coupling matrix elements at two
temperatures, we generated the theoretical BIBT spectra shown in Fig.
18. One should note that even for off-diagonal coupling of 0.1 cm_l,
the BTBT narrows  rather than broadens with temperature, The
observed BTBT broadens and it is clear that exchange can only
narrow the BTBT. However, if one assumes that each of the k-states is

broadened by the same elastic scattering mechanism, the simulated

BTBT broadens with temperature (cf. Fig. 19) and in fact fits the
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Figure 17. BIBT decays of the k~0 region of the H,, 5 and 16% D, H,
DBn at 4.2 K. The nonlinearity of the decays in a semilog plot helps
demonstrate the complexity of the decay law, The data show
that on a time scale of 1 msec the radiationless decay of the

pure and doped samples are not drastically different from one

another,.
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Figure 18. Theoretical calculation of the BTBT spectra in DBN using
the multilevel relaxation matrix. The spectra are calculated for
different values of the coupling matrix element, Yoo The zZeros on
the horizontal axis for the spectra at 20 and 60 K correspond to the

energy of the unperturbed k=0 state.
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Figure 19. Calculation of the (0,1350) BTBT lineshape as a function
of temperature (with elastic phonon scattering as the dephasing mech-
anism). A linear chain 10 molecules long and Raman dephasing by a
42 cm°l phonon are the only assumptions. Note the horizontal scale

change for the high temperature spectra.
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data remarkably well, using the same phonon energy used to fit the
(0,0) temeperature dependent homogeneous linewidth (i.e. no parameters
in the simulation). The theoretical fits to the data at two

temperatures are shown in Fig. 20.
V1I. CONCLUSIONS

From the steady state absorption experiments, the
temperature dependent shift and width of the (0,0) are well
described by Raman scattering and single phonon processes
involving a 42 cm~1 phonon. Further, from the broadening and absence of
a relative shift of the two sublattices towards omne another, one
concludes that interband exchange is negligible. Assuming the same 42
cm—l phonon dephases all k states, onme can simulate the CW BIBT, which
broadens rather than narrows with increasing temperature. The

significance of the steady state results is that pure dephasing and not

interband or intraband exchange is dominating.

From the transient BTBT experiments, one has the first direct
and unequivocal measurement of inelastic (intraband exchange)
scattering rates amongst the k states. le is found to be of the order

of 10 psec at 20 K, In contrast, the elastic scattering time,

gk’ is ~ 10 psec at 20 K and one has a clear geparation of time scales.

Pumping the upper sublattice in the transient BTBT
experiment, one finds that the relaxation between the sublattices is a
single phonon, does mnot scramble the k states and is extremely

rapid (lineshapes imply 50 psec relaxation times [12] and an wupper

limit from our transient measurements is 500 nsec). Moreover,
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Figure 20, Comparison of the theoretical (no parameter) and

experimental BTBT lineshapes in DBN.
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performing the transient BTBT experiments with wp to 16% D, DBN (65
cm“-1 barriers), no change in the inelastic scattering time was
observable. It may be that reflection from the potential barriers
surrounding the chains of Hy; DBN does not alter the k, though from the

experiments herein, ome cannot reach such a conclusion.
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CHAPTER IV.
OPTICAL DEPHASING OF F AND F§+ CENTER

TRIPLET STATES IN CaO"

*
D. D. Smith, M. Glasbeek and A. H. Zewail, to be published.
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ABSTRACT

We have measured the temperature dependent emission lineshapes of
€Ca0 F and F§+ centers. Using lifetime data and homogeneous linewidths
from Voigt profiles, it is concluded that the F center zero phomon line
shift and width are best described as one and two phonon (elastic)
scattering by effective oscillators of 70 + 10 ¢:m_1 and 89 + 6.5 cm—l,
respectively. The same processes are consistent with the F§+ center

width and shift, but for modes of 151 + 8 and 139 + 7 cm—l respectively.
I, INTRODUCTION

Recently, the problem of vibronic dephasing of an optically active
probe in an optically inactive medium has received considerable
attention. In the case where the probe is a molecule
(possessing localized modes and/or librational motions in the host) the
formal theory requires treatment of the intra— and intermolecular
interactions that contribute to dephasing [1,2,3]. On the other
hand, if the probe. lacks internal, localized motions, then
the optical dephasing is solely determined by direct coupling of the
probe levels to the bath; intramolecular (anharmonic) oscillators

with or without exchange interactions with a reservoir are not involved.

We wish to consider dephasing of the latter type for two simple
Schottky defects in an ionic solid, namely F and F§+ centers in
Ca0 (cf. Fig. 1). We have measured the homogeneous line broadening
of the zero—phonon transitions in the phosphorescence spectra of
both centers as a function of temperature. The results represent

phase relaxation  due to coupling of defect electronic states and
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Figure 1. A portion of the 100 plane in a CaO0 crystal showing an F-
- +

center. The filled circles represent 02 ; open circles represent Ca2

ions. The F—center is an oxygen vacancy occupied by two electrons. The

electrons are confined by the potential field of near neighbor ions in

2+

what is essentially an ''octahedrally dented'’ spherical well. An F2

center is two nearest mneighbor 02' vacancies occupied by only two

electrons and has a net charge of 2+,
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low-frequency quasilocal modes. The optical dephasing is due to
modulation of the optical transition frequency by elastic scattering of
quasi—local phonons and/or anharmonic damping among the quasilocal

modes.

Forvthe chemist, Ca0 color center point defects may  be a
paradigm system to investigate vibrational relaxation and
ergodicity due to the inferred slow interconversion rates between the
Jahn-Teller distortions [4a]l, a moderate number of relevant modes and
a uniquely simple electronic structure. Unlike most alkalai halides,
Ca0 has a zero phonmon 1line which persists over a range of low
temperatures. Having a zero phonon line, one can directly study the
defect center dynamics as opposed to an indirect moment analysis
of a sideband, Although moment analysis of a phonon sideband offers a
great deal of informatiom [5], to the author'’s knowledge, such analyses

do not include the effects of optical dephasing,
II. _EXPERIMENTAL PROCEDURE

Cubic samples of Ca0 approximately 2 and 3 mm on a side were cut
with 100 faces, The samples were mounted with a thin film of vacuum
grease on a temperature sensing probe inside a Janis DT-10 supervaritemp
dewar. Since the dewar cools by helium gas flow, several different
flow rates (all else being the same) were tried to insure that the
flow (cooling) rates were adequate. Temperatures were measured and
regulated to * 0.5 K using a calibrated silicon diode and DT-500
temperature controller from Lakeshore Cryotronics. The samples were

optically pumped by a Molectron DL 14P nitrogen pumped dye laser
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with a 0.2 cm_l bandwidth and a typical pulse energy of 0.5 mJ when
exciting the F-center at 574.3 nm. The CaO was of good optical quality
and in order to collect more of the emission, a dove prism was used to
rotate the image of the laser Dbeam through the crystal
(horizontal) such that it would be parallel to the entrance slits of
the spectrometer (vertical). The light was dispersed with a Spex 3/4
meter spectrometer using an 1800, groove/mm holographic grating and
detected with a Varian VP-100PMT with a GaAs photocathode. A
Princeton Applied Research 162 boxcar was wused to measure lifetimes
and time—resolved spectra. The spectra were digitized using a Houston
Instrument HiPad digitizer interfaced to a PDP 11/03 and fit by

nonlinear regression on an IBM 370/3032.
III, _RESULTS

The zero—phonon line (ZPL) emission in Ca0 at 683 nm has been
shown [4b] to be due to the *B, to 1A tramsitiom in the F§+ centers
(also known as M-centers). In the present experiments, the narrow
emission of the M center could be isolated from the relatively strong,
broad beckground emission of the F-center sideband after selective
narrow-band excitation at 576 am (just below the F—center).
Pumping at 576 nm, we have observed three lines in the short time
emission spectrum at 605, 658 and 696 nm. These lines are weak or
sbsent at delay times greater than 1 msec and to our knowledge have not
previously been reported in the literature. Presently, the nature of
these lines is unknown. At increased temperatures, the M-center ZPL

broadens rapidly and at about 90 K distinct resolution from

the phonon—assisted emission is difficult, For all practical
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purposes, the ZPL is absent at 120 K. Representative ZPL and phonon
sideband 1lineshapes at 3 temperatures are shown in Fig. 2. The low

temperature M center ZPL is shown in Fig. 3.

Line shape fitting shows that above 30 K, the M-center ZPL
becomes Lorentzian. At lower temperatures, however, the emission line
is best fit as a Voigt profile [6], which is a Lorentzian convoluted
with a Gaussian, The Voigt fits yield the ratio of the homogeneous
and inhomogeneous broadening (HB and IB), where the best fit at 4.2 K
gave a Gaussian width of 1.5 + .3 cm-l. (The fits were dome with
several different sets of initial guesses to insure reliability.) The
remainder of the M center data was fit to Voigt functions with
a fixed IB of 1.5 cm—l. Fitting was done by convolute—and-compare
using the algorithm of B. H, Armstrong [7] to calculate the Voigt
function. The accuracy of the Armstrong algorithm was checked by
comparison with published tables [8] and found to be well within the
accuracy quoted. The convolution, as expected, yields an HB that
differs from apparent linewidths only when the broadening is small,
Our procedure assumes that the HB and IB mechanisms are uncorrelated
and that the inhomogeneity is temperature independent. For Ca0, there
is presently no experimental evidence that the broadenings are or are
not correlated (though there are systems where the homogeneous and
inhomogeneous broadening are correlated [9], the relatively small

inhomogeneity in the Ca0 ZPL would introduce 1little error im our

analysis if the two broadening mechanisms are inseparable).

The homogeneous widths and shifts of the best Voigt fits to the

experimental lineshapes as a function of temperature are plotted in
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Figure 2., Temperature dependence of the emission lineshape of the M-

center ZPL and phonon sideband.
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Figure 3. M center lineshape, 4.2 K.
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Fig. 4. For comparison, the total apparent linewidth vs. T is also
shown, The homogeneous width vs. T is best discribed by Raman
scattering of a 139 + 7 cm * phonon. The width clearly does mot fit T2
or T?7., It is wuseful to note that fitting the total apparent linewidth
to n(n+1) yields a 163 cm © phonon. The implied asymptotic T = 0 K
width of 1.4 c:m—1 may be limited by S/N or insensitivities of Voigt
fitting to non—ideal lineshapes. With known spin dephasing times, it
is difficult to explain the total HB (spin + orbital) of 1.4 cm—l (in
case that as T approaches 0 K, hyperfine and fine contributions dominate
the dephasing). Experiments such as optical hole burning or photon
echoes need to be done to accurately measure the low temperature
orbital dephasing rate. The red shift is best fit by a one phonon
process of 151 + 8 cm—l, though fitting statistics indicate T3 is also a
fit within error. Therefore, within the accuracy of the data, an
effective 145 cm‘.1 quasilocal mode is respomsible for the shift and
width of the M center ZPL. We say effective since the observed

145 <:m--1 may represent a composite behavior of several local modes.

Much as in the case of the M-center, a significant line
broadening effect was observed for the F—center ZPL emission at 574.3
nm. The 574.3 nm line, excited by pumping at 571.1 =nm [10], is a
transition from 3T1u to 1Alg orbital symmetry [11]. At temperatures
lower than 20 k, the ZPL is asymmetrically shaped with a typical
FWVHM of 4.6 c:n--1 (see Fig. 5). The asymmetry is ostemnsibly due to
splitting of the triplet states by intrinsic strain fields in the
-1

crystal [12]. Over several days of experimentation, the 4.6 cm

FWHM increased ~1.5 cm_l, probably due to strain induced by thermal
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Figure 4. The shift and width of the M-center as a function of
temperature. The circles are the homogeneous widths and shifts from the
Voigt profiles and the crosses are the total apparent linewidth. The
shift of the line center is actually to the red and the plot only shows

the magnitude of the shift. The solid lines are theoretical fits.
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Figure 5. F center lineshape, 4.2 K.
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cycling, As the temperature increases, the lime becomes more symmetric
and is a good Lorentzian for T > 40 K. Overlap with the phonon sideband
is mnegligible for temperatures { 50 K and severe for temperatures > 65
K, imposing an upper limit of 65 K for the F-center ZPL study (as
opposed to 85 K for the M-center, which has a weaker electron phoﬁon
coupling). To determine the low temperature inhomogeneous width,
we fit a Voigt functiom to the high enmergy side of the line, which was
the steepest edge. Using the steep edge gave an upper limit on the
IB of 1.3 + .5 cm—l. It yields an upper limit since the spectrometer
function may exaggerate the actual Gaussian component and the wings of
the lineshapes are distorted by the other triplet substates,
resulting in too small a Lorentz component for the low temperature
spectra. Thus, the fits may yield slightly too low an energy for
the phonon. The temperature dependence of the homogeneous width of the
F-center ZPL is presented in Fig. 6 as well as the apparent FWHM
and thermally induced shifts of the line center, The Voigt fits
imply a  homogemeous width of ~1.8 cmcl at 8.9 K and lower
temperatures. This would imply a 5.6 psec electronic dephasing time
at 0 K! It may be that the accuracy of the implied T = 0 K dephasing is
in error in the same manner the M-center rate is (vide supra).
The HB fits T® and a two phonon process of 89 + 6.5 cm—.1 equally well —
T? clearly does not work. If the total apparent width is used, a
phonon energy of 152 cm--1 is obtained. The small 4.5 cm_1 red shift is

best described by a single 70 + 10 cm 1 phonon and less well by

T3. From the data one therefore concludes that approximately an 82 cm_1

phonon is involved in the dephasing and shift of the F-center.
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Figure 6. The shift and width of the F-center as a function of
temperature. The circles are the homogeneous widths and shifts; crosses
are the total apparent width. The shift of line center is actually to

the red and the graph only illustrates the magnitude of the shift. The

solid lines are theoretical fits.
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IV. DISCUSSION

In discussing the origin of the observed line broadening
effects, it is useful to note that the Lorentzian component for both
centers, at temperatures between 4.2 K and 80 K, is
representative of homogeneously broadened lines with
characteristic dephasing times ranging from 7 psec (1.4 cm_l) to 0.4
psec (26 cm_l). Since the lifetimes of the emitting triplet levels in
both centers remain of the order of milliseconds, even at 80 K

[13,14], one concludes that ’'pure’ dephasing and not population decay

is responsible for the observed line broadening.

The general expression for the pure dephasing rate can be written

as [3]:

(1a) (1/T,') ==x } v } I<plATIp*'>|38(E

; -E_,)
" (w/2m) p P p p P

(1b) AT = <ilTliy - <glTie

Here, T is the transition operator [1] for the coupling of the
defect electrons to the lattic vibrational modes, initial (i) and final
(f) states are the electronic levels of the optical tranmsition, p and p'
are the perturbing reservoir states and Wp is the occupation probability
of state p. From eqn. (1a), it is apparent that in solids, pure
dephasing involves isoenergetic phonon states p and p’, whereas the

population of the electromnic levels remains unchanged. T satisfies
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Dyson’s equation:

(2) T =V + VG°T.

Where G° is the zero—order resolvent operator and Vv is the
potential for the electron—lattice interaction. Now, V can be expanded
as a power series in the motiomal displacements Ua(lk) of the
atoms from their equilibrium positions which exist in the absence of

th th

crystal defects, k denotes the k  atom in the 1 unit cell and

a is the cartesian component of its displacement. One can write [15al:

’ ’
(3) v Ev Dy am + @/2n 2 v | GURT k)
lka,1'k’B
1ka
1'k'B
sz 2 {3 U (1K)U, (1'k")U, (1" 'k’ ") +
ke lka,1'k’B,1"'k" 't a B & Tt
1'x’'B
1"k’l§
The first term characterizes the electronic state of the
defect. The terms linear in the Ua(lk) operators arise because

the equilibrium positions of the nuclei (around the defect) vary
in the electronic transition, the second sum is the harmonic potential
and the remainder is anharmonic terms, Now one may invoke the lowest
Born approximation, i.e., T=V. In this (first order) approximation,
several dephasing mechanisms may be considered. By far the most

important of these is due to the harmonic terms of eqn. (3),
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which when used for the evaluation of the matrix elements of eqmns. (1la)
and  (1b) are responsible for elastic scattering of phonons by
the defect levels (the terms 1linear in the Ua(lk) operators also
contribute to the elastic scattering process, but only in second
order, which is not considered here), Retaining only the harmonic terms
of  eqn. (3), one can derive [3] that the optical dephasing rate is

given by

(2) _ (0) 2 _
(4) L S g uleDux | n“(nx+1)6(wu wx).
{(h/2n)2

In eqn. (4), p and A are indices for the normal lattice modes in
the harmonic approximation, nu is the thermally averaged occupation

number of mode p, while the scattering matrix elements are given by

0 _ . L .
(5) D, = 1Za AV a1 p 2 = ElV 0 1arg €00, Crrnrpia
1'%’B

where the Ua(lk) are transformed in the creation (b;) and destruc—

tion (bp) operators of the normal modes by

(6) U (1k) = } (C.. b +cC. bH
a B lka;p p lka;p
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Note from eqn. (5) that in harmonic systems (or in any system
where the potential goes as Ua(lk)2n where p=1,2,3,...), the
dephasing arises from a disparity in the elastic force constant
between the ground and excited electromic states. Two 1limiting
cases may now be considéred. First, elastic scattering takes place
for all phonons in the acoustic branches, In the Debye
approximation, and assuming T((TD, one then finds [3]: Ty © T7, where
TD and T denote the Debye temperature and temperature respectively.
In ionic solids, such a temperature dependence for the 1line width has
been found for a number of cases long ago [16]. On the other hand, one
may consider coupling to a quasilocal mode. In this (second) case, the

0

« n(n+l) <«

coupled modes exhibit a sharply peaked density of states for mp ~
and the temperature dependence becomes [17] T
cothz(hm/4ﬂkT). The 1latter temperature dependence is not uncommon in

line broadening studies of impurity molecules in molecular crystals

f18].

As can be seen from Figs. 4 and 5, the widths of the zero phonon

transitions can be fitted to a function of the form vy = + n(n+1).

Yo
This result demonstrates that Raman type acoustic phonon scattering
does not dominate the dephasing process. We remark that T in our
experiments was indeed always less than the Debye temperature (TD (Ca0)
= 605 K at 0 K [19]). ©From the close fit between the simulated
curve and the experimental points in Figs. 4 and 5§, one infers
that the observed IB is produced by elastic scattering of low-

frequency quasilocal phonons with effective mode frequencies of 89 and

139 cm~1 for the F and M centers respectively.
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To our knowledge, low frequency quasilocal phonon modes in defect
containing alkaline earth oxides have not been reported before.
However, it is interesting to note that recent experiments
performed in the microwave region give independent support of their
existence. In these experiments [14], the spin—lattice relaxation
within the 331 state of the M-center in Ca0 was studied as a function
of temperature. It was found that the mechanism is an activated (Orbach
type) process in which a thermally induced excitation takes place to a
low-1lying intermediate state, some 40 cm-l above the 3B1 state, It is

likely that the intermediate level may be associated with a quasilocal

mode state.

In the dephasing mechanisms considered so far, dephasing is
generated by the harmonic terms of V. However, from the substitution of
V given by eqn. (3) into eqn. (1b), it is seen that within the Born
approximation, optical dephasing occurs by virtue of phonon dephasing
during the optical tramsition (i.e., they are mutually disruptive).
Anharmonic interactions which 1lead to phonon decay or phomnon exchange
should be considered as well. Here we restrict ourselves to the effects
of cubic and quartic terms of V. Cubic anharmonic interactions give
rise to a T1 type phonon decay into two other phonons., The linewidth of

the optical transition results from this process is given by [15]
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D D = _1sn 2 Iav, 1P a4 8 )
a T AL’ A A A A
(h/2n)32
+(nl,—nx)[6(w~mx+wx,)—6(m+mk—mx,)]}
where
(3 .. L (3)
AV aar = “'me"‘) <flvuM,lf>
with V AL’ is the anharmonic coupling coefficient of the cubic

terms in V when V is written as an expansion of the normal
coordinates. Clearly, the temperature and time dependence eqn. (7)
implies is incompatible with the data. One concludes, therefore, that
two phonon decay is. irrelevant to our observations. On
the other hand, the quartic anharmonic interactions produce higher
order elastic scattering or a three phonon decay which contains

contributions of the type [18]

(8) 7(4) =_n } v 12
a a5, ¢, qs,—-qs,q,8,,-4,S,
(h/2m)2
Xn (n + 1)8(w ) )

9,8, ~4;8, 9:;5; 74938,
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In eqn. (8), a lattice phonon of wave vector g, branch index

s, is scattered by a quasilocal phonon 94 s which is coupled to

1
another quasi-local mode 9y s2. On comparison of eqn. (8) with
eqn. (4), one finds phonon scattering by quasilocal modes also may
contribute to the observed temperature dependence of the zero-

phonon linewidths, though to a much lower extent than the

previously discussed elastic scattering process.
Y. _CONCLUSIONS

In summary, from the temperature dependent homogeneous
linewidths, the F and M centers are elastically dephased by
quasilocal modes of 89 and 139 cm~1 respectively, For the F-
center the emission line at 571.1 nm is approximately 89 c:m.1 from the
ZPL and since it is strongly coupled to the ZPL, it may be the F-

center Jahn-Teller state with omne quantum of excitation.
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CHAPTER V,
CO-STRETCH VIBRATIONAL OVERTONES OF BENZOPHENONE
MATRIX ISOLATED IN DDE: RELAXATION AND DEPHASING

OF AN ANHARMONIC OSCILLATOR IN THE CONDENSED PHASE‘

*
D. D. Smith and A. H. Zewail, J. Chem. Phys. 71 (1979) 540.
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ABSTRACT

By observing the optical emission spectrum of benzophenone matrix
isolated in DDE at 2 K, it has been determined that the ground
state CO stretch vibrational overtone linewidth is 1linear in the
Co quantum number. This implies vibrational relaxation rates linear
in the CO quantum number, consistent with proposed theoretical models.
The data are interestimng in  that (1) they reveal carbonyl
vibrational relaxation mechanisms rather than CH stretches as most
commonly studied, (2) benzophenone may represent a '’two-mode’’
molecule in that the CO stretch and phenyl torsions may be the most

strongly coupled modes.
I. INTRODUCTION

The concept of local modes in polyatomic molecules has
recently been under examinationm, both theoretically [1-5] and
experimentally [4-7]. Bond locality  has direct relevance to
various interesting phenomena such as multiphoton dissociation of
molecules and 1laser induced chemistry. The characterization of 1local
vs. normal modes in moderate sized molecules has been addressed
theoretically by Gelbart and his group [1,2]. Experimentally,
the question  of local wvs. normal modes in liquids [5], gases
[6] and cooled solids [7] has been dealt with by observing the
absorption spectra of the different overtones. A plot of AEv—l, the
energy divided by the vibrational quantum number, v gives a straight
line consistent (but not proof of) the idea of a simple Morse

oscillator, These experimental results have been confined mostly to
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CH stretches in molecules.

Here, we use emission rather than absorption spectroscopy, as used
in all previous work, and we explore a different type of molecule that
may be useful for detailed theoretical inspection. The idea is quite
simple -— wusing a high sensitivity spectrophotometer (e.g. one that
utilizes photon counting) ome scans the optical emission spectrum (say,
the singlet—triplet transition) that has ground vibrational overtones as
final states. Knowing the energy of the (0,0) transition, one can
deduce the energy of the mode as a function of v along with the
anharmonicity and transition linewidths. Because we are using the
emission and mnot the absorptidn (which requires long path length or
dense media), several advantages can be realized. First, mixed
crystals at low temperatures (or molecules in molecular beam nozzle
sources) can be studied with very small concentrations (10~4 to 10_6
mol/mol), thus avoiding possible intermolecular perturbations (or in the
case of a beam, collisional effects). Second, polarization
techniques can  be used to assign bands. Third, measurement of
linewidths can be done easily, since the v transitions will be in
the visible, as opposed to absorption experiments where IR detection is
required in the low energy region. The method, however, relies

on a finite and useful value for the Franck—-Condon factor between the

upper vibronic state and the ground one.

The system studied here is benzophenone isolated in 4,4'-
dibromodiphenyl ether (DDE) from 1.4 to 60 K (the high temperature
studies will be reported elsewhere, here we only deal with T ¢ 4.2 K).

These mixed crystals exhibit a '’clean’’' spectrum consisting of

3
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carbonyl (CO) progression with (presumably) torsional modes of the
two phenyls. Since electronic excitation is highly 1localized on the
CO moiety, vibrational progressioms corresponding to complex vibrational
modes of the phenyl groups do not congest the spectrum. The v=1 and 2

transitions have been characterized before [8].

11, EXPERIMENTAL

The crystals were grown from the melt by standard Bridgman
techniques. The benzophenone was dissolved in the DDE up to its limit
of solubility. Samples were held in a helix and supported from
underneath by a piece of tape. Low temperatures were obtained in
a Janis 10 liter immersion dewar or in a Janis super varitemp flow
dewar (10 liter capacity). The temperature was regulated with a
Lakeshore Cryotronics DTC-500 controller in a feedback 1loop with a
silicon diode soldered with indium to the helium gas flow mnozzle.
Temperatures were measured with a calibrated Silicon diode
situated in a copper ‘block 1 cm above the sample. Broadband UV
excitation was supplied by & heavily filtered 150 watt Hg-Xe arc
lamp. The flow rate of the helium gas was varied to determine that
the cooling rates were adequate. Emission was collected with f1
Tessar configuration collection optics and focussed on the slits
of a Spex 1402 double spectrometer with dual 2400 groove/mm
holographic gratings. The 1light was detected with a Hammatsu
R955 PMT and Spex photon counting electronics. Emission from the sample
was copious so that narrow slits and high resolution was

possible for all scanms.
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Figure 1 displays the overtome spectra of the benzophenone CO
stretch at 2 K. (The detection semsitivity was enhanced
approximately 104 to observe v=5; but note that the
concentration of the benzophenone was only about 10-4 moler.)
From the spectra we have learned several things; (a) when AEv.-1 vs. v
is plotted for the CO overtones, we obtain a mnearly straight line
(see Fig. 2); (b) as onme goes to higher overtomes of CO, the apparent
linewidth  increases. In fact, at v=5, all 1lines (CO and
torsional) overlap, yielding a much broader resonance (CO width

1

greater than 20 cm ); (c) the torsionmal progression exhibits a

similar trend in linewidth with increasing quantum number.

From the plot of AEv—.1 ve find a fundamental frequency of 1670
+ 5 mn--1 and an anharmonicity constant of =-12.5 + 1.5 cm-l [9].
These data raise an interesting point, Probably due to the
electronic excitation being highly 1localized on the CO [8], the
progression in the ground states appears to have the mnature of a
''local'’' mode. Whichl further, has appreciable anharmonicity. This
suggests that the extent to which these modes couple to other modes
should be evident from the 1line broadening as v increases., For
v=5, an experimental estimate of the linewidth will be on the order of
50 cm-l [10]. It is perhaps accidental that this line has a width
approximately half that of naphthalene (100 cm_l) v=5 transition of the
CH stretch and that the ratio of the CH stretch frequency to the CO
enone, the torsional mode may prove to be the accepting mode for

energy relaxation. This would be an example of vibrational

relaxation due to the forces imposed by the mneighboring CC
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Figure 1. The overtone spectra of benzophenone in DDE at 2 K. The
numbers in boxes denote the CO vibrational quantum number. Note the
broadening and shift of the CO and torsional bands. The v=1 line is an

uneven doublet [12] and the relative intensities are resolution

limited.
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bonds on the CO. As suggested by Shobatake et al. [11] this kind of
interaction yields a relaxation rate linear in v (see Fig. 2).
However, one must first demonstrate the inhomogeneity of the overtone
resonances and measure the contribution of pure dephasing to the
linewidth before deducing the energy relaxation rate accurately from the

lineshape [12].

I1Y, CONCLUSIONS

In conclusion, by using simple optical techniques, one can obtain
the widths, the anharmonicity, and the energies of the overtones.
Comparison between absorption and emission data will Dbe extremely
important tests for current theoretical work. Finally,
benzophenone offers an opportunity to unravel some of the '’local'’
mode relaxation processes. Extension of these ideas to
CH modes and to molecules in beams will be reported later.
Similar to emission, Raman scattering into overtomes should also

prove feasible.
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Fignre 2. A plot of AEvm1 vs. v for benzophenone (CO stretch) in
DDE at 2 K. The straight line is a linear least squares fit (see
also footnote 9). The point for v=1 seems to be at lower energy than
predicted by the best straight line fit. However, our uncertainty
at the moment is large. The insert is a plot of the appareant width,
Aw, vSs. the energy of excitation. The 6477 cm'-1 point is +uncertain
due to spectral overlap, and the width of the v=1 includes the

shoulder.
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PREPARATION OF k NOT EQUAL TO 0 ELECTRONIC EXCITONS:

MEASUREMENT OF T1 AND T2 AS A FUNCTION OF k
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ABSTRACT

The author proposes methods to excite and measure the dynamics of k #
0 electronic exciton states. Further that the experiments use the
lowest triplet state of a molecular crystal of 1,4-dibromonaphthalene
(DBN) , which has a well-defined quasi-1-D transport topology.
The impetus for preparing the k # 0 state is to measure the
exciton population relaxation rate (characterized by the constant
Tl—l) and phase relaxation rate (Tz—l) as a function of the
quasimomentum k. After preparing the k not equal to 0
eigenstates, one would measure the total (spin + total) T1 and T2
using the time~dependent 1lineshape of the band to band transitions
[1]. Or, in the proposed many-wave mixing experiments one
measures T2 by the spegtrum of the probe beam. To the aunthor's
knowledge, mno such condensed matter experiments have been performed
and the results would provide the first k dependent data on
coherence, spectral and spatial transport in a simple system with a

1-D transport topology and well characterized spectroscopic

parameters,
I, INTRODUCTION

If the proposed experiments are successful, the gain in

understanding ''dense’’ n-level relaxation and coherence (ill-

defined as n—level coherence is) may be greater than the gain in
understanding the 1-D exciton dynamics. N~level coherent phenomena
involving order parameter descriptions (e.g. liquid crystals,

superfluidity), radiationless relaxation, photodissociation, etc.
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have many n body - =n level formal equivalences. What is missing,
however, is data on the evolutionofall n—levels of which the optically

accessible k=0 state is only 1 of n states.

The methods proposed herein to prepare the k # 0 eigenstates can be
broadly classified into two categories; (1) those involving single
particle excitation (exciton only), and (2) those involving  multiple
particle excitations (exciton + ophonon). Each spectroscopic
method  has advantages and disadvantages. Rather than describing
the best method alone, the author feels it is heuristically useful to
discuss each of the techniques, Ultimately, it may be necessary to
corroborate the results of several of the proposed methods to

unequivocally establish the Physics.
II. DIRECT, ONE-PARTICLE EXCITATION

Briefly, there are three ways to directly excite k not equal
to 0 states; (1) a photon using prism coupling, (2) particle
excitation (such ;s electron impact-beam foil spectroscopy),
(3) surface grating coupling of photons. The principal limitation
of the prism coupling method (also known as Attenunated Total
Reflection——ATR) as first performed by Otto [2] is that it allows
excitation of a very limited range of k values near k=0. The strength
of ATR is its simplicity and freedom from artifacts when compared
to the two particle excitation methods. Surface grating coupling has
similar limitations in the range of k values it can optically couple to.
The shéftcoming of charged particle excitation is the 1lack of

resolution and crystal damage, whereas its advantage is a larger range
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of k that is accessible. A brief description of each one particle

excitation technique ensues.

Space does not allow a detailed discussion of the prism
coupling method (ref. [2] is quite lucid), but ATR allows one to cover
only about 2% of the range of k states between the center (k=0) and edge
(k~107 cm—1) of the Brillouin zome! Thus only % very nearly
equal to ’'’‘zero’’ is accessible. [One does mean k near zero since with or
without the prism coupling k is greater than 20,000 cm_l.
Theoretically, there are states with wavevectors smaller and larger than

the photon that the photon cannot excite while simultaneously

conserving energy and momentum,]

Therefore in the case of DBN, ATR is vanishingly useful since
the inhomogeneous broadening for triplet excitons is typically 2%
of the exciton bandwidth. That only 2% of the zome is accessible can
be seen by examining Fig. 1. One can see the line (w/k)=c only
intersects the triplet exciton dispersion curve at 20,192 cm—l, which on
a linear scale from 0 to 107 cm_l appears to be very near zero. When
using the ATR method one uses a high index of refraction prism to
increase the apparent wavevector (decrease the wavelength) with which
one can at best increase the wavevector about a factor of two for a
given emnergy photon. The factor of 2 1limit holds since it is
difficult to make a glass prism with nd>2 (e.g. Schott IRG-2 glass,
which is exceptional, has n=1.95 in the relevant visible region). For
n=2, the apparent wavelength is shortened to ~2,500 K which is far away

1

-— - (1]
from (k) 1=(n/g) ~1.25 All In the ATR method the apparent k can be

shortened somewhat more than a factor of two since the light comes in at
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Figure 1. Superimposed dispersion curves of photons and triplet
excitons in the first Brillouin zome of DBN. (N.B. the scales for
the vertical and horizontal axes are broken.) In the diagram, ¢ is the
speed of light and n is the index of refractionm. The lowest triplet

exciton in DBN starts at 20,192 cm~1 and is 24 cm'-1 wide.
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an angle with respect to the surface normal and it is the projection
of the wave on the crystal-spacer—prism interface that is used.
Bowever, due to total external reflection from the prism, ome cannot

make the angle arbitrarily large.

The principal usefulness of the ATR method 1lies in studies of
surface excitation (see, e.g. [3]) where one makes use of the
evanescent waves whose penetration depth is controlled by
selecting different angles and prism indices of refraction. For the
study of surface plasmons [4], ATR is genmerally adequate since the
dispersion curve becomes asymptotically flat for small k and a wider
range of k is unecessary. Unfortunately, for solids with tight binding
type band structures, it is rarely the case that the dispersion

reaches a plateau so close to the zone center.

The surface grating coupling method [4] uses an inscribed
grating to alter the apparent wavevector of the exciting photon, but as
in the case ATR, it is difficult to get more than a factor of 2 or 3
increase in the wavevector. The factor of 2-3 obtains since the
absorption intensity from using the higher orders of the Ronchi grating
(having square shaped grooves) are small. In principle, different
grating geometries could be used to get higher order absorption,

but to the author’s knowledge, this has not been investigated.

Electron and « particle beam excitation of organic crystals
has been attempted [5], but unlike the beamfoil electron energy
loss experiments [6] used to study metal plasma resonances, there is

severe crystal damage and the resonances are too narrow for a
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detailed study with present technology (submillivolt resolution is
mandatory). The bottom 1lime is that none of the ome particle

excitation methods is desirable.
IITI, TWO PARTICLE EXCITATION METHODS

This class of techniques is distinguished by the fact that to
create the k # 0 state, an exciton is created concomitantly
annihilating or creating a2 phonon, thus two particles are
involved. There are three such techniques that the author is aware
of that may be practicable; (1) '’'thermally assisted absorption’’

(2) stimulated Raman scattering, (3) phonon—laser double resonance.

In the first method, one would use a laser which is in
resonance with a band to band absorption where the initial state is a
ground electronic state vibrational exciton of wavevector g. The
final state is am electronic exciton of wavevector k. The disadvantage
of thermally assisted absorption is that one must work at
temperatures high Aenongh to populate the ground vibrational exciton,
which (a) reduces the quantum yield for emission and (b) makes
difficult temperature dependent studies that would determine if there
are k dependent excitonphonon scattering mechanisms. Once the k #0
state has been prepared by the BTBT absorption one would observe
the time dependent band to band emission [1] directly obtaining T

1

and T2. Then, changing the pump wavelength, one would prepare

different X states, measuring T1 and T2 as a function of the

quasimomentum, k.

Band to band absorption has been done on naphthalene [71. It
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is sensible, then for reasonable temperatures (~40 K) and low energy
ground vibrational excitons, that the experiment may be tractable
in DBN. of course, the signal will depend exponentially on
the temperature and emergy of the vibrational exciton (i.e. a
Boltzmann factor for population of the ground state mode). In the
author’s opinion, the thermally assisted absorption experiment is

the most likely to work with the least effort and should be tried first.

A wave mixing resonance Raman experiment may also be a viable
way to measure T2 as a function of k. With the sample at low
temperature, one laser is tumned to excite the k # 0 state via ground
state absorption, the other laser is tuned to excite the same final's
# 0 state, but with the ’'’initial’’ state being a ground vibrationmal
exciton (see Fig. 2). The signal of  interest would be on
scanning the lower energy laser (or higher energy, but scanning just one
laser at a time), As the lower enmergy laser became resomant with BTBT
using the same k state as the high energy laser there should be gain,

with the concomitant annihilation of a lattice phonon (required for

energy conservation and phase-matching). Experiments similar to
the proposed scattering experiment have been dome in organic crystals
[8], the principal difference being that the proposed

experiment exclusively involves band states.

In the phonon—laser double resomance method, the idea is to inject
monochromatic phonons into the sample, say continually, and pulse the
laser, producing a simultaneous phonon—-photon absorption. Such
phonon—photon double resonance has been performed in organic

crystals [9] but for electron spin resonmance transitions where a low
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Figure 2. Wave mixing Raman experiment proposed for DBN
excitons, The wavevector 5 is for the electronic exciton and
wavevector g is for the vibrational exciton. Laser 1 is in

''resonance’’ with a k #0 0 state and laser 2 is resonant with the BTBT

to the same kX # O state. Emission of a phomon g causes gain in probe

beam (laser 2).
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energy phonon was used, That is to say, low energy in comparison to
those needed to populate the X # O states of DBN (tenths of

wavenumbers vs. 24 cm_.1

). There are two ways to inject the phonons;
(1) mechanically coupling a transducer such as & Josephson
junction, producing intermediate emergy phonons in the hundreds of Ghz
[10] or irradiating the crystal with millimeter waves where the
induced polarization excites the phonons via electron—phonon coupling.
Both methods have been used, but the technology for such experiments
is wvery primitive. A potential problem with the injection of phonons
is that the organic crystals are typically monoclinic. Being
monoclinic, it is difficult to inject e phomon along a pure wmode axis,
meaning decay of the phonon and crystal heating may be problematic

[11], especially at phonon excitation demsities that may be needed

for the simultaneous absorption of phonons and photons.
IV, CONCLUSIONS

In summary, the two particle excitations are best suited to the
measurement of Tl and T2 as a function of the quasimomentum, k.
of the two  particle excitation methods, thermally assisted
absorption is extremely promising (on the .basis of previous

experiments) and the many wave mixing experiments, though

complex, should yield the most information with the fewest limitations.

;8
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PROPOSAL 11.
INVESTIGATION OF VIBRATIONAL OVERTONE DEPHASING

AND RELAXATION IN GASEOUS AND CONDENSED PHASES.
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ABSTRACT

Using laser Optical-Optical Double Resonance (OODR) and
picosecond CARS experiments, it is proposed to measure Tl‘l
and Tz_'1 relaxation rates for carbonyl vibrations (principally the CO
stretch) as a function of relevant molecular quantum  numbers.
Further, it is proposed to measure the relaxation rates in the

gaseous and condensed phases, providing valuable information

on intramolecular and molecule—-bath energy transfer.

1. INTRODUCTION

Intense theoretical and experimental effort is being directed
towards the study of vibrational relaxation and dephasing.
However, to the author’s  knowledge, there are no unequivocal
measurements of overtone Ti (population relaxation) and T2 (phase
relaxation) parameters. The physical impetus to study overtones is to
understand the quantum mechanical features of mode-mode coupling,
''ergodicity’'’ and the .spatial extent of a mode (all may be
function of the quantum numbers and molecule~specific). The
chemical impetus is to understand the effect of vibrational dynamics on

unimolecular reactions (e.g. mmltiphoton dissociation) and reactive

collisions (e.g. entrance and exit channel relaxation effects).
1T, EXPERIMENTAL

Preliminary work on co stretch overtone lineshapes in
matrix—isolated benzophenome [1] from 1.4 to 100 K has been carried

out. The data are consistent with CO relaxation rates linear in
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the Cco quantum  number and Raman (lattice—induced) dephasing.
Benzophenone is a model ’'’two-mode’’ molecule in that the ring torsioms
are believed to be the dominant accepting mode for the CO stretch.
Rather than use traditional overtone emission, absorption or
scattering lineshapes, it is proposed to use the highly selective
and sensitive technique of laser multiple optical resonance (see
Fig. 1), For an intermediate level with good oscillator strength,
slow decay and narrow homogeneous linewidth [1], the origin of the CO

*
3nn electromic state would be used.

Specific experiments would e (a) cw high resolution
optical-optical double resonance (OODR) and (b) transient
coherent (wave vector matched, measures T2) and incoherent (mo phase

match, measures Tl) stimulated Raman scattering [2]. The CW

experiments would wuse two collinear single—mode dye 1lasers; the

higher energy, ®; being fixed in energy while w, is scanned.

2

linewidth  of the overtone. Moving o

Monitoring the forward gain for @, would measure the homogeneous
. 1 in the absorption profile
would allow investigation of the total dephasing of different sub-
doppler or '’strain field'' components, The transient stimulted
Raman scattering experiments, though technologically complex, should be
feasible if ome can prepare the coherent, vibrationally excited state.
One might do this using the higher order Stokes components of a Raman
generator [3] (see Fig. 2) containing a carbonyl compound which
would be near resonant with a CO overtone when used inv conjunction

with the parent pump frequency (for instance, a doubled, mode—locked

Nd:glass laser). Such a pumping scheme may 1limit one to the first
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Figure 1. Energy level scheme depicting the proposed OODR experiment.
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Figure 2. A simplified block diagram of the transient Raman scattering
experiment proposed to measure vibrational overtone coherence and

relaxation.
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few overtones, due to anharmonicity. Alternatively, omne might use
tunable, synchronously pumped dye lasers to take advantage of
electronic resonance enhanced scattering to populate the overtomes.
Such experiments, to the author’s knowledge, have not been performed
and would also yield information on electronic state coherence. It
should be pointed out that populating (much less coherently preparing)
the overtone state by direct absorption from the ground state is
impractical due to vanishingly small absorption cross—sections,
However, the optical pumping scheme with an intermediate, allowed

electronic level represents a viable way of preparing the level.
ITI. CONCLUSION

In summary, the OODR homogeneous linewidth, together with
transient T1 and T2 measurements, would give a detailed view of
carbonyl vibrational dynamics. From an experimental standpoint, the
protypic molecule may not be benzophenone or the other extreme HZCO,
but a system with an intermediate density of states for accepting
modes, thereby putting the experiment on a time scale to avoid

effects such as stimulted Brillouin scattering and transit times across

the probing beams,
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PROPOSAL 11T,
SEARCH FOR SUBNATURAL LINEWIDTHS USING

TRANSIENT LINE NARROWING SPECTROSCOPY.
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ABSTRACT

The author proposes development of a laser techmique with spectral

resolution less than the natural transition linewidth., The method is

generically known in the quantum optics literature as Transient
Absorption Line Narrowing (TALN). TALN allows measurement of the
difference of the natural linewidths (thus phase and population decay)
of the two levels involved in the transition rather than the
traditional sum of the widths (decays). Thus, one can obtain wultra
high resolution if the widths of the two 1levels are nearly
commensurate. No such experiments have been performed on atoms or
molecules and it is proposed that the protypical experiments are
performed on a Na atom beam, say from a Zacharias type mnozzle, mnot a
supersonic nozzle to avoid long range dephasing effects (see proposal

Iv) -

I. INTRODUCTION

In order to more fully understand reactive scattering, energy
transfer or unimolecular dynamics (photodissociation, radiationless
relaxation, etc.) the chemist is perpetually searching for aew
tools. Some of the most powerful probes have evolved from the use of
lasers: 1laser induced fluorescence, picosecond spectroscopy, CARS
and SO on, TALN, with possibilities for exceptional spectral
resolution and versatility in a number of experimental applications, can
yield a wealth of dynamical information about intra and
intermolecular relaxation. However, due to the complexity of TALN

experiments, the author expects that TALN'’s use in the short term
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would be limited, and that long term implications are the greatest.

Theoretically, it is well known (e.g. [1] problem 2-7, pg. 28)
that in the transient regime, the spectrum for induced transitions
in a two level system has a width of (yc—vb)/Z vs. (yc+yb)/2, where b
and ¢ s8sre the two 1levels in the transition and the <vys are the
linewidths. However, there is no experimental proof that ome can indeed
see such a narrowed line. The author hastens to point out that TALN
is different than selecting oscillators that have survived beyond their
mean life (e.g. [2] and references therein) or delayed level
crossing experiments [3]. TALN relies upon the coherent evolution of

states driven and mutually coupled by a monochromatic radiation field.
I1. METHODOLOGY

The most practicable form of TALN uses a three level scheme (see
Fig. 1). With a picosecond pulse (frequency w,) one excites Iv>.
The purpose of the picosegond pulse is to prepare [b> with a well
defined phase (this requires the total dephasing time of |b)> be
longer than the pulse). Population inversion (i.e. & n/2 pulse) is
not necessary. Then, continuvously, one coherently drives the b—c
transition (frequency w,) with a tunable monochromatic field (e.g. a
ring laser). It is to be emphasized that coherent pumping of the
b-c transition with the steady state monochromatic field is crucial to
TALN. However, rather than recording the absorption spectrum of
the laser driving the b-c transition, one measures the population in l¢)
by emission or absorption from lcd> to a fourth 1level. The

population in |c¢) can be measured with another picosecond pulse or the
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Figure 1. Level scheme for the proposed TALN experiments. The decay
rates for state |b> and l¢) are 7y and Yo+ The frequencies of the la)

to Ib> and |b> to lc> transitions are w, and w,.
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time integrated emission from lc) to a fourth level. The shortcoming
is that one must wait longer than mean decay time of [b> or lc) to
measure the population. But one does not need to wait ’''n’’' lifetimes
nor will waiting infinitely long infinitely narrow the TALN spectrum as
in the case of selecting long 1lived oscillators. The best one can do
is to obtain the difference in the widths., Importantly, ome can use low
spectral resolution to record the decay or absorption from |c),
making TALN uniquely powerful. Another notable advantage of TALN is
that there are no oscillations in the wings of the narrowed line as is

the case for selecting long lived species or in delayed level crossing.
III. DISCUSSION

The physical interpretation of the TALN effect is mnot yet fully
understood [4]. ﬁowever, at present, the theoretical mechanism for
the TALN wounld appear to be due to interferences between the
prepared b-c substates (a substate can loosely be described as an
oscillator and a single mode of the field forming an infinitely mnarrow
mixed state [7,81). The fact that TALN should occur  is
confirmed by three different mathematical approaches; (1) solution
of two coupled linear equations of motion (two pages of simple
algebra) [1], (2) solution of a three level density matrix [5] (ome day
of tedious algebra) and (3) the full quantum field theoretical treatment

[61.

Despite the incomplete theoretical understanding of TALN, the
promise of the method is great enough to warrant

investigation. It is proposed that TALN first be tried on a Na atom
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beam (to reduce collisional redistribution effects). For Na, there
is a large number of convenient states for the a-b, b-¢ transitions
which would use two visible lasers and do not have largely different
decay rates [9]. For molecules, TALN may be expected to be most useful
for very small species where the intramolecular relaxation between
levels corresponding to Ib> and l¢> is slow. Thus only diatomic and
triatomic molecules (or an atom used as aprobe in collisions with
molecules) may profitably be used. Put another way, in molecules
where there is 1little or mno single vibromic level fluorescence, the
decay rates of two upper states may differ widely so that the sum
and difference of the widths are essentially the same, in which case,

standard high resolution spectroscopy would do as well.

IV. CONCLUSIONS

It has been proposed to look for subnatural transition
linewidths  using transient absorption linme narroﬁing, which has not
yet been experimentally demonstrated. The advantages of TALN over
standard high resolution  spectroscopy include: (1) resolution
less than the natural transition line width and (2) no need for high
resolution detection methods such as long path length spectrometers or
interferometers. The disadvantages are: (1) the dephasing rates of
the two levels must be nearly commensurate or else TALN is no
better than standard high resolution laser spectroscopy and (2) one

1

must wait longer than y,_ — or ¥ -1 to collect signal, which may be
b c

prohibitive in certain experimental situations.

The ultra high resolution this method affords may be wuseful in
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analyzing the states of projectiles before and after collisions
in a molecular beam configuration similar to that of Wittig and
coworkers [10], which spatially and spectrally filters the collected
light around the scattering region, obtaining energy transfer
information on the product species. Alternatively, optical-
molecular beam methods similar to those of Kinsey and colleagues [11]
may be well suited to TALN., Coupling the atomic and molecular beam
methods with TALN, omne could in principle obtain unprecedented
accuracy in the translational energy distribution and other energy

deposition paths.
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PROPOSAL 1V,
MEASUREMENT OF LOW ENERGY ELASTIC AND INELASTIC COLLISION
CROSS SECTIONS FOR ELECTRONIC EXCITED SPECIES

USING SUPERSONIC JETS
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ABSTRACT

Using the hydrodynamic flow region of an underexpanded
supersonic jet, one can adjust collision energies between the seed
and carrier gas from about 100 to 1 c:m-1 (for He gas, say) . It is

proposed to measure the electronically elastic and inelastic

collision cross sections of a seed molecule (atom) as a function of
collision energy using high resolution photoexcitation
spectra. Further, using simple atomic or molecular Rydberg

states, to determine the functiomal dependence of the cross section
on the principal and eangular electronic quantum numbers. Using
different carrier gases (e.g. He, Ne and Ar) one may be able to develop
simple propensity rules for the elastic and inelastic cross
sections as a function of relative seed and carrier polarizabilities

and/or similar  material properties.
I, INTRODUCTION

Much of the early interest in supersonic jet studies was due to the
promise of '’‘collisiomnless’’, internally cold molecules. However, it
is becoming clear (at least for unskimmed, single chamber jets) that
inelastic collision cross sections for very low energy collisions
are orders of magnitude larger than room temperature cross sections (for
underexpanded jets with small cones of silence, this can be
serious). Studies by Rice and coworkers [1] have shown 1low energy
collisions greatly enhance vibrational relaxation, possibly by
orbiting resonances rather than Landau-Teller ('"fily-by'")

interactions. Microwave experiments have shown a speed
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dependent cross section for rotational relaxation [2]. Jouvet and Soep
[31] have shown that cross sections for rotational relaxation and
collision induced intersystem crossing are as large as 400 Xz for low
energy helium—glyoxal collisions. Other workers in the field [4] have
mentioned the care with which one mast address such a
''collisionless’'’ environment and to an extreme way of thinking, one
might even suggest that the usefulness of the bare jet lies in complex
formation and spectral cooling alone. Even for certain types of
common optical experiments on static gas in a bulb, averaging the
collision cross section over a large range of emergies may be in serious

error.

It is proposed to measure the electronic elastic and
inelastic collision cross sections for the Na atom and small
molecule (methylbenzene) Rydberg states at low energies. Rydberg states
were chosen for the preliminary studies since the wavefunctions
are exceptionally diffuse and should be most susceptible to
dephasing from 1low energy collisions. To the author's knowledge,
no systematic measurements of the electromnic cross sections have been
carried out and such information should prove valuable. As an
example, the electronic line broadening mechanisms would affect
engineering of resonance multiphoton ionization experiments used in
isotopic enrichment [5]. Another interesting application is towards
the study of relaxation pathways for molecular Rydberg states,
which may have little real vibrational identity and poor oscillator

strength,.

I11. EXPERIMENTAL
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The jet and optical configuration is simple (too simple to
warrant a figure): omne has the jet, laser and collection optics all
perpendicular to ome another. Pumping with a narrow bandwidth
source (such as a single mode ring laser) and collecting
emission to lower emergy of the laser, one obtains a high resolution
photoexcitation profile. In the event of poor guantum yield for total
emission from the state, one might consider multiphoton
ionization or intracavity absorption detection schemes, The
experiment is performed as a function of distance from the mnozzle
(selecting the collision frequency and energy) and stagnation pressure
and temperature (determining the range of collision energies and
frequencies). The collision energy and frequency are well enough
understood and calcdlable from the position dependent jet

translational temperature and demsity [6].

Interpreting the photoexcitation spectra must be done with
caution, however, since collecting emission from all points down stream
will reveal only the< cumulative collisional effects. One can
circumvent the problem by masking off the remaining portion of the jet
or alternatively, doing absorption studies. However, absorption
studies are not practical since for typical jet demsities (2 X
1019 cm-s) and circular jet absorption path lengths (100 to
200 microns) absorption is less than 1%, even for large cross

8

sections (10—1 cmzlmolecule).

In obtaining the high resolution photoexcitation spectrum, one
measures the line broadening effects as a function of collision

energy and collision partmer, extracting the sum of the elastic and
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inelastic Cross sections, To separate the pure dephasing and
population decay contributions, one needs to determine the total
radiative and radiationless decay rates, which can be reasonably

well measured with knowledge of the ¢true radiative lifetime and

quantum yield measurements, as has been done by Behlen and Rice [7] for

naphthalene,

It is proposed that the preliminary experiments be performed on
methylbenzene, for which the multiphoton ionization
spectroscopy of the 3p Rydberg state has been investigated [8].
Extension to other principal electronic quantum numbers should be
straightforward. Done with a variety of carrier gases, the
experiments will help determine to what extent that external heavy
atom effects [9] (spin orbit coupling and mutual
polarizabilities), coulombic interactions, etc. are involved in the
low energy cross section. Similar experiments are proposed for the
Rydberg states of Na, which can be conveniently prepared using two
visible lasers as in tﬁe work of Fabre et al. [10]. Moreover,
Fabre's work has measured the polarizabilities of the n=23 to 41
Rydberg states, which would be useful in calculation of the cross
sections, Hartmann and coworkers [11] are actively involved im rare gas
perturber effects in Na as well and the experiments proposed herein

should prove highly complementary.
I1I. CONCLUSIONS

Measurement of T, and T, is propsed for low energy collisioms

for electronically excited atomic (Na) and molecular (methylbenzene)
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Rydberg states. The goal is to obtain simple propensity rules
for oscillator-perturber elastic/inelastic collision cross sections.
Moreover, quantum number and energy dependences for the cross
section are sought. Ultimately, such information may be useful in
resonant multiphoton ionization studies and optical spectroscopy in

beams,
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PROPOSAL V.,
SCATTERING OF STATE SELECTED AND ORIENTED MOLECULAR PROJECTILES
FROM CLEAN SINGLE CRYSTAL SURFACES: DIRECT MEASUREMENT

OF ANISOTROPY FOR SCATTERING AND CHEMICAL REACTIONS
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STRACT

It is proposed to scatter state selected and oriented
formaldehyde from well characterized 1low index single crystal
surfaces. By time, angle and mass resolved inelastic scattering, one
will be able to gather information on the orientation effects on  the
elastic and inelastic scattering (reactive + mnonreactive).
of greatest interest are those inelastic scattering events
which result in energy transfer to the surface and/or chemical

decomposition,
I, INTRODUCTION

In the past few years there has been a flurry of papers on
surface scattering of mneutral particles produced by supersonic beams,
The work has dealt mostly with scattering as a probe of surface
phonons, surface structure, physisorption potentials and so on. Using
helium atoms, for example, it is possible to couple to more energetic
phonons than by electron scattering and the surface penetration
(i.e. multiple scattering) is less of a problem. Recent studies
have found evidence that the helium scatters principally from
one phonon [1]. Carried one step further, the studies of Janda et
al. [2] have measured the detailed angle and time of flight
distributions for scattering Ar from W, where the polarizability of Ar
contributes to a stronger interaction and essentially all scattering
is imelastic. A logical next step would be to deal with even

stronger couplings, such as chemical bonds.

II. EXPERIMENTAL



299

It is now economically and techmologically feasible to orient
and state select molecules for use in molecule-surface scattering.
Focussing and orienting symmetric [3] and asymmetric tops [4] has been
done long ago. In particular, the asymmetric top formaldehyde has
been focussed and oriented in a six pole inhomogeneous field followed
by adiabatic passage into a homogemeous field [4]. (One might
note that with opresent supersonic jet technology, orienting
rotationally cool lighter polar diatomics in inhomogeneous
quadrupolar fields [5] followed by homogeneous fields should be quite
feasible, though to the author’s knowledge, 1no experiments have
utilized this.) In the spirit of previous measurements [2], it is
proposed to measure the angle, time and mass resolved scattering of
formaldehyde from surfaces as a function of surface temperature and
surface structure (stepped, nicked, terraced, etc.). With such
detailed data, ome should in principle be able to elucidate
reaction mechanisms and the shape of the potential surface respomsible

for the scattering.
IIT, DISCUSSION

Formaldehyde is a particularly interesting case, since it
undergoes thermally activated decomposition on Pd [6] and W [7] and is
believed to be an intermediate in the methanation of CO on Ni [8].
Catalytic methanation of Cco has been  studied theoretically
[9] and a geometrically specific formation of the formyl radical is
believed to be the important intermediate. Moreover, studies of
thermal decomposition of CO and CO/H, chemisorbed on Pt/Au

segregated alloys [10] has attracted interest for rate
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controlled surface chemistry. Apart from purely scientific
motivation, clearly there is good chemical/economic impetus

to study the reactive scattering of formaldehyde from surfaces.

For the series of small oxygen containing organics, CH,OH,
CH,0CH,, H,CO and (CH,),0 (an alcohol, ether, aldehyde and ketone)
absorbed om group VIII transition metal catalysts, the principal
attachment method seems to be the oxygen lone pair [6] rather than -
type orbitals as in the case of unsaturated hydrocarbons [11]. It
would appear, then, that surface-molecule collisions of formaldehyde
with the oxygen towards the surface would result in the most emergy
transfer or chemistry. The proposed scattering experiments would
yield information on the possibility of reorientation during the

reaction.

However, there is potentially a problem, Interaction of the
impinging dipole with its image dipole in the metal exerts a torque
(T=pX E) that méy destroy orientation or state selection
achieved with the hexapole and homogenmeous fields. Of course, those
projectiles which come in at the magic angle (57 degrees) or in the
lowest energy configuration will tend to stay so. It is difficult to
estimate the image dipole interaction energy since there is
dispute that the «classical field theory will work at short distances.
The data of Harris and coworkers [12] indicates that at 1least for
electronic energy transfer, classical treatment works, where other

studies indicate that near field effects may be important [13].

As an order of magnitude estimate of the dipole—image dipole
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interaction, a situation with two dipoles, 2 debye each
(formaldehyde is 2.39 D [4]), 30 K apart, the potential is about 5 cm.l
and the largest rotational quantum of formaldehyde is ~ 8 cm.l [14].
It may be that different orientations of the impinging dipole will
result in differing amounts of rotational excitation, thus selecting
different entrance and exit channels for scattering! However, since the
molecule moves 10 K in 1 psec (using a supersomic stream velocity of 1
km/sec) and other short range interactions are starting to come in to
effect for the close approach, the dipolar interactions may not alter
the orientation or become less important. Ideally, if ome could use a

molecule with a vanishingly small electric moment that could be

oriented magnetically, the problem may be alleviated.
IV. CONCLUSIONS

Using oriented and state selected formaldehyde scattered from
well characterized single crystal surfaces, it is proposed to measure
the angle, time and mass resolved distributions of the scattered
particles as a function of surface temperature and structure.
The experiments will help determine (1) the decomposition
mechanism of H,CO and companion reactions, (2) the stereospecificity
for chemistry and emergy transfer to and from the surface and (3)

the shape of the molecule-surface scattering potential.
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APPENDIX I
ANALYTIC EXPRESSIONS AND MONTE CARLO PROGRAM FOR
SIMULATION OF IMPURITY CLUSTER PROBABILITIES IN

RANDOM 1-D CHAINS
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APPENDIX I,

In this appendix we use Lagrange multipliers to determine the
probabilities of isolated impurity n—mers and '‘contiguous’’ impurity

n-mers in a randomly substituted one-dimensional chain.

Given a linear array of N sites to be randomly occupied by G guests
and H hosts, we calculate the number of guest clusters of length n
isolated on both sides by a host (the remaining lattice configuration

being unspecified).

Define q 85 the onumber of guest clusters coamtaining n con-
tiguous guests, where n=0,1,2,... By definition, we choose n=0 to
represent the single host specie, when =n=1, omne has a monomer and
so on, To formulate the problem, define a guest cluster as n guests
terminated only om the right by a host. Using a basis of
clusters constructed in this manner, placing n—mers side by side will
give a8 least one spacer between clusters, producing isolated =n-

mers.,

Using the notation developed above it is obvious that

(A1.1) 2 nq = G
=0

and

(A1.2) } q, = H=N-G.
n=0

(Recall in doing sums (Al.1) and (Al1.2) the sum starts with the =zero
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cluster). To find the cluster distribution, one wants to maximize the

*’entropy’’ of the quantity

(A1.3) } ! = (N~ G)!
[24,]

[T (gt ] T[o(qnn

n=0

Which is the number of permutations of all n-mers divided by the
number of ways all clusters of a particular size can be permuted among
themselves (which would not yield a distinguishable configuration).

Equation (A1.3) can be maximized subject to the comstraints

Thus, the Lagrangian would be

L = ln[ N-G) ! ] -x(} ng_ - 6) -n!(zoqn- (N-G))

“ n=0

T (q !
n=0
Using Stirling’'s approximation for the log of a factorial

(A1.4) =0 = -ln(qn) - nA - q

Qo
2

- e-(nl + )

s°
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We wish to find expressions for the exponentials of the Lagrange multi-

pliers in (Al1.4) in terms of N, G and H. From (Al.4) and (A1.2);

(A1.5) 2 q, = e N } e-nl
=0 n=0
(Al1.6) e N 7 (¥-6)
} —nA
e
n=0

With manipulation of (A1.5) (too lengthy to be demonstrated here), one

can show e“l = G/N. Therefore

2 [ e PP =1a- @,

n=0
Using the last two results and substituting eqn. (Al1.6) into (Al1.4), one
obtains

(A1.7) @ =N(1- /8 26/ ™.

Or, in terms of guest concentration, the number of clusters of n impuri-

ties in a chain N long is
2.0
(A1.8) q = N(1-C)"C".

Equation (A1.8) is the principal result we sought.

Now we want to find the probability of n-contiguous i-mers, din’

in 1-D
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o
(A1.9) N-G~gq, = 2 d.
i in
n
«
(A1.10) } nd, = q,
a=1 in i
maximize
(A1.11) (N-6G - qi)!
n==0(din)!

subject to the constraints (A1.9) and (A1.10);

i

o0 @0
(A1.12) L=(N-G~q.)1n(N~-G-q.)- } d, In(d, ) -~ d, n + A(N-G-q.~ Ed. )
i i in in in i in
n=0 n=0
-]
n(qi - 2 ndin)
n=0

Optimize the Lagrangian with respect to a particular din

(A1.13) 3L =-1a(d, ) ~A -1y =0
ad in
in
(A1.14) d, = ¢ 27N
in
o (-]
(A1.15) } d. = ¢ * } e MM

in
n=0 n=
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Using (A1.9) and noting that the geometric sum in (A1.15) is equal

1/(1-¢ "y,

(A1.16) Rt (N-6-q,) (1-¢ ™)

Use (A1.16) in (Al1.15);

(A1.17) d, = (N-G-q,) (e B0 = o~(n¥1),
in 1
(A1.18) End.n = (N-G-q.)( } ne "M )( 1-¢ M)
n=0 1 i n=0
(A1.19) } nd, = (N—G—qi)(l-e-n) e

n=0 (1-e M2

Use (A1.19) and (A1.10) solving for e ;

q; = (NG-q,)e /(1-¢ ™)
= -n -n
qa; (N—G-qi)e + qge
(A1.20) q . e N
NG

Substitute (A1.20) and (A1.16) into (A1.15);

(A1.21) d, = (N-G -(q./NG))(( q./N-G)"
in 1 1

to
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Or, in terms of the concentration (using the expressions above derived

for ;. the cluster probabilities;

) } e vapd _cla-c)3N
(A1.22) ¢, = [ Na-(e/M) - -0scin [ 1 - FHEEN ]

X [ clii-c)an ]n
(1-(G/N))N

(A1.23) 4 = M (1-0) - ci(1-C)2] [2 - Ci(l-C)][Ci(l-C)]n

Which is number of n contignous ith mers in a 1-D lattice of N sites.
e.g. for i=2, n=3 one has the following configuration; G = guest and H

= host.
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isting of program used to count impurit usters in andoml

substituted 1-D chain,

LY.}

o

e NoNo N NoNeNe el

[
1N

w

rEeNeNrNeNrNele N ol

15

s NeErErNeNeNe]

INTEGER A(10000),B,C,D,E,F,G,H,1,J,K,L,4,N,0,P,Q,R,S,T,U,V
INTEGER M1,M2,M3,D1,D2,D3,T1,T2,T3,MONDIM

INTEGER OTHER, MM, MULTID

INTEGER MON,DIM,TRI, TET, PENT, HEX, SEPT, NON, DEC, UNDEC
DIMENSION LINEAR(10000)

INTEGER LM(10000)

WRITE (5,5)

FORMAT( ' INPUT NUMBER OF IMPURITIES (OUT OF 10000) ')
READ(5,10)N

FORMAT (15)

THE DO LOOP DEFINED BY STATEMENT 11 FILLS THE ARRAY

LM WITH -1'S SO THAT IN LOOPS 450 AND 550, WHICH

COUNT THE NUMBER OF CONTIGUOUS MONOMERS AND DIMERS
RESPECTIVELY, ONE CANNOT ACCIDENTALLY FIND A

NUMBER GREATER THAN OR EQUAL TO ZERO, WHICH WOULD

BE MISTAKEN FOR A CLUSTER, FURTHER IT ALLOV¥S THE
COMPUTER TO DECIDE WHEN IT CAN STOP SEARCHING

THE ARRAY LM FOR CLUSTERS

DO 11 I=1,10000

A(I)=I

LM(I)=-1

LINEAR(I)=0

CONTINUE

WRITE (5,13) A(N)

FORMAT (I6)

THE DO LOOP DEFINED BY STATEMENT NUMBER 20 POPULATES THE
ARRAY LINEAR AT RANDOM WITH 1’S WHICH ARE TO REPRESENT
IMPURITIES. EVERY ELEMENT IN THE ARRAY LINEAR WAS PREVIOUSLY
SET TO ZERO. ONLY N IMPURITIES ARE PLACED IN THE ARRAY,
THE DO LOOP DEFINED BY STATEMENT 15 IS TO INSURE THAT THE
SAME RANDOM NUMBER IS NOT CHOSEN TWICE AND THE RANDOM
NUMBER GENERATOR CANNOT TRY TO PLACE TWO OR MORE IMPURITIES
ON ONE SITE.

DO 20 I=1,N

H=RAY(DUM) *(10000-1+1)

LINEAR(A(H))=1

INT=10000-1I

DO 15 J=H, INT

A(T)=A(J+1)

CONTINUE

CONTINUE

B=0

¥=1

THE DO LOOP DEFINED BY STATEMENT NUMBER 100 COMPUTES

A LINEAR ARRAY CONTAINING THE CLUSTER SIZES, 1IN
SEQUENCE. FOR EXAMPLE, IF THE MONTE CARLO CALCULATION
GAVE THE SEQUENCE ...01011010001..., (WHERE 1 IS AN IMPURITY
AND 0 IS A HOST) WHICH IS MONO-DIMER-MONO-HOST-HOST-MONO,
THE ARRAY LM WOULD CONTAIN ....121001... KEEP IN

NIND THAT WHEN ONE SPECIFIES A MONOMER YOU SPECIFY ONE
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C IMPURTIY AND ONE (ONLY) HOST, SO A MONOMER IS ...01... AND A
c DIMER IS ...011... ETC>

DO 100 I=1,10000

IF (LINEAR(I) .EQ. 0) GO TO 30

B=B+1

IF (I .EQ. 10000) GO TO 30

GO TO 100
30 LM(M)=B

B=0

M=M+1
100 CONTINUE

B=0

M1=0

M2=0

M3=0

MM=0
C DEFINITION OF VARIABLES: M1 IS THE NUMBER OF MONOMERS
C WHICH DO NOT HAVE A NEIGHBORING IMPURITY CLUSTER WHICH
C IS A MONOMER (ANY OTHER CLUSTER IS ACCEPTABLE). M2 IS THE
C NUMBER OF DOUBLE MONOMERS (TWO CONTIGUOUS MONOMERS) .
C M3 IS THE NUMBER OF TRIPLE MONOMERS (THREE CONTIGUOUS
c MONOMERS) . MM IS ALL MULTIPLE MONOMERS WITH GREATER
C THAN THREE CONTIGUOUS MONOMERS., THE SAME NOMENCLATURE
C IS USED BELOW FOR DIMERS, WHERE MULTID IS THE NUMBER
C OF MULTIPLE DIMERS HAVING GREATER THAN THREE DIMERS
C IN A ROV,

DO 450 I=1,10000

IF(LM(I) .NE.1) GO TO 400

B=B+1

IF(I.EQ.10000) GO TO 400

GO TO 450
400 IF(B.EQ.1) Hl‘H1+1

IF(B.EQ.2) M2=M2+1

IF(B.EQ.3) M3=M3+1

IF(G.GE.4) MM=MM+1

IF(LM(I).EQ.-1) GO TO 475

B=0
450 CONTINUE
475 D1=0

D2=0

D3=0

MULTID=0

C=0

DO §50 I=1,10000

IF(LM(I).NE.2) GO TO 500

C=C+1

IF(I.EQ.10000) GO TO 500

GO TO 500
500 IF(C.EQ.1) D1=D1+1

IF(C.EQ.2) D2=D2+1
IF(C.EQ.3) D3=D3+1
IF(C.GE.4) MULTID=MULTID+1
IF(LM(I).EQ.-1) GO TO 575
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701

702
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C=0

CONTINUE

MON=0

DIM=0

TRI=0

TET=0

PENT=0

HEX=0

SEPT=0

0CT=0

NON=0

DEC=0

UNDEC=0

OTHER=0

DO 698 I=1,10000

IF(LM(I) .EQ.1) MON=MON+1

IF(LM(I) .EQ.2) DIM=DIM+1

IF(LM(I).EQ.3) TRI=TIR+1

IF(LM(I) .EQ.4) TET=TEI+1

IF(LM(I) .EQ.5) PENT=PENT+1

IF(LM(I) .EQ.6) =HEX+1

IF(LM(I) .EQ.7) SEPT=SEPT+1

IF(LM(I) .EQ.8) OCT=0CT+1

IF(LM(I).EQ.9) NON=NON+1

IF(LM(I).EQ.10) DEC=DEC+1

IF(LM(I).EQ.11) UNDEC=UNDEC+1

IF(LM(I) .GE.12) OTHER=0THER+1

IF(LM(I) .EQ.-1) GO TO 699

CONTINUE

THE DO LOOP DEFINED BY STATEMENT NUMBER 704 SEARCHES
THE ARRAY LM FOR A MONOMER NEXT TO A DIMER, I.E.

A CONFIGURATION OF EITHER .,.01011... OR .,.01101...
(AGAIN THE 0 IS A HOST AND A 1 IS AN IMPURITY SITE)
NOTE CAREFULLY THAT THIS ALGORITHM CANNOT DISTINGUISH THE
CONFIGURATION ..0101101., AND ,.01011..01011.. THAT
IS TO SAY THAT IF YOU HAVE A MONOMER-DIMER-MONOMER SEQUENCE
THIS ALGORITHM CALLS THAT SEQUENCE TWO MONO-DIMER PAIRS.
MONDIM=0

DO 704 1I=1,10000

IF (LM(I).EQ.-1) GO TO 750

IF (LM(I).NE.1) GO TO 701

GO TO 702

IF (LM(I).NE.2) GO TO 704

GO TO 703

IF (LM(I+1).NE.2) GO TO 704

MONDIM=MONDIM+1

GO TO 704

IF (LM(I+1).NE.1) GO TO 704

MONDIM=MONDIM+1

CONTINUE

ANS=FLOAT (N) /FLOAT(10000)

WRITE (5,775) ANS

FORMAT ('FRACTION OF LATTICE DOPED IS’,F8.4)
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WRITE (5,8000 M1i,M2,M3,MM,D1,D2,D3,MULTID

FORMAT (* M1=',15,',M2=',15,' ,M3=',15,"' ,MM=",15,
',D1=',15,*,D2=',15,*,D3=",15, ' ,MULTID=',1I5)
WRITE (5,815) MONDM,MON,DIM,TRI, TET, PENT, HEX
FORMAT (’'MONDIM=‘,I5,',MON=’,I5,’,DIM=',15,',TRI=',
1s,’,TET=',I5,',PENT=',15, ' ,HEX=",15)

WRITE (5,820) SEPT,OCT,NON,DEC, UNDEC, OTHER
FORMAT ('SEPT=',I5,',0CT=',15,',NON=',15,’,DEC=",
Is5,',UNDEC=',15,',0THER=",15)

sTop

END
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APPENDIX TI,
MONTE CARLO FOR SIMULATING QUANTUM MECHANICAL
MOTION OF OPTICAL EXCITATION ON A RANDOMLY DOPED 1-D CHAIN

WITH A SUPEREXCHANGE HAMILITONIAN.
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PENDIX II

This program generates excitation on a trap in a randomly doped 1-D
chain, Then the program calculates the superexchange coupling matrix
element and hop time using the simulated nearest impurity mneighbor dis-
tances (picking the largest). Hops occur until the excitation is
trapped at an n-mer (n22). A large number of excitations are created
and the distribution of number of steps before trapping and lifetime
before trapping is computed. The competition between radiationless

decay and trapping is also computed.

Glossary of Varisbles,

TAU--exciton lifetime (milliseconds are convenient).
NIRAPS--mole fraction of lattice sites occupied by supertraps.
CONC--mole fraction of lattice sites occupied by doant.
HOPTME--near-neighbor hoptime.

ATTEN--near neighbor hoptime divided by monomer trap depth (for calcu-
lating superexchange Hamiltonian).

NUMXIT--number of excitons created to go on the ’’random’’ walk,
TERLIF--number of excitons terminated by radiative decay.
TERIMP-—number of excitons terminated by trapping on supertraps.

INTRAP--number of excitons created on supertraps (mo random walk,
then!).

ISTEP—-number of steps a given exciton has taken.

RANREL--random real number uniformly distributed between 0 and
1.

NX--random integers distributed between 0 and 231.
RANDIS-~random numbers distributed with the Hertz distribution.

RANHOP—random hopping time calculated with Hertz distribution
and superexhcange Hamiltonian,
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LIFTME--total lifetime of an  excitonm, later put into array
TOTLIF,

MPURIT--if MPURIT=0, then no impurity supertrap is at that site,
if MPURIT=1, then there is an impurity at that site.

SUMLIF-—the sum of the total number of steps taken by each of the
excitons (used to calculate the average exciton
lifetime).

SUMSTP--the sum of the number of steps taken by each exciton
(used to calculate the average number of steps taken).

RANIMP--random real numbers uniformly distributed between 0 and
1. '

YLIF—~array for bin-sort MC lifetimes.
YSTP~-array for bin-sort for MC number of steps.

YSUPER--~array for bin—-sort of superexhange times from
manufactured Hertz distribution.

YHERTZ--array for bin-sort of manufactured Hertz distribution.

In the following is a short mathematical description of the
procedure used to genmerate the 1-D Hertzian distribution of random
numbers from a uniform distribution of random  numbers. This
'"mapping’’ proceduré if you will, is of great practical importance
since essentially all computer algorithms to generate random numbers

produce a uniform distribution.

The 1-D distribution is exponential and this is a
particularly simple case. One starts with a random number
generator generating random numbers, U, uvniformly between O and 1,
Since the Hertzian distribution is normalized, ome can set the two.
integrals equal to one another and solve for one random variable in
terms of another. For more detail, the reader is referred to D. E.

Enuth ’‘’Seminumerical Algoithms for Digital Computers’’.
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- ’
U= I pe PX 4y

—

+ 1

Solve for x in terms of U;

Thus, one draws a uniformly distributed random number U, puts it in
the equation above and obtains an exponentially distributed random
number. One should be careful to pick a random  number generator
that villh not exhaust itself before the program stops drawing random
numbers, In this program, the IBM cataloged procedure power
residue method described in manual C20-8011 was used. The procedure,
NRAND, is specific to the system 370 and will produce 229 terms

before repeating. To insure uniqueness in choice of the random numbers,
the day and date and time on the IBM 370 was used as the starting number
in the sequence of random numbers that NRAND would generate (since the

user must supply one number to start the random sequence).

Physically, the only shortcoming with this Monte Carlo that the
author is aware of is that it would neglect the potentiality of corre-
lated motion., That is, the excitation is spatially trapped by
hopping between two impurities that are more strongly coupled to one

another than to any other impurities.
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This Monte Carlo was written to calculate the distribution of
arrival times at ‘supertraps’ for a randomly doped chain
where a superexchange potential is the coupling Hamiltonian.

DIMENSION HERTZ(5000) ,SUPERX(5000) ,YHERTZ(10) ,XHERTZ(10)
DIMENSION YSUPER(10),XSUPER(10),XHOP(10),YHOP(10),YSTP(10)
DIMENSION XSTP(10),YLIF(10),XLIF(10),TOTLIF(1000),ISTEPS(1000)
DIMENSION DOC(3)

REALL LIFTME,LIFMAX, LIFMIN, LIFINT

REAL NTRAPS

INTEGER TERIMP

DATA DOC/0.,0.,1./

READ(5,100) TAU,NTRAPS, CONC, HOPTME, ATTEN, NUMXIT
FORMAT(3(F10.3) ,E10.3,F10.3,13)

TERLIF=0

TERIMP=0

INTRAP=0

NX=54321

DO 500 J=1,NUMXIT,1

LIFTME=0

ISTEP=0

DO 450 I=1,10000,1

IF(I.EQ,10000) GO TO 510

NX=NRAND (NX)

RANREL=NX/0,2147484E10

RANDIS=~ALOG (1-RANREL) /CONC
IF(RANDIS.LT.1.0R.RANDIS.GT.10) GO TO 410
RANHOP=HOPTME*ATTEN*#* (RANDIS-1)
LIFTME=LIFTME+RANHOP

ISTEP=1STEP+1

NX=NRAND (NX)

RANINP=NX/0.2147484E10

MPURIT=0 :

IF(RANIMP.LE.NTRAPS) MPURIT=1
IF(MPURIT.EQ.1) GO TO 475

IF (EXP(~RANHOP/TAU) .LT.0.37) GO TO 473
CONTINUE

TERLIF=TERLIF+1

GO TO 480

JF(ISTEP.EQ.1) GO TO 485

IF(ISTEP.GT.1) GO TO 477

TOTLIF(J)=LIFTME

ISTEPS(J)=ISTEP

TERIMP=TERIMP+1

GO TO 500

TOTLIF(J)=LIFTME

ISTEPS(J)=ISTEP-1

GO TO 500

INTRAP=INTRAP+1

ISTEPS(J)=0

TOTLIF(J)=0

CONTINUE

GO TO 525
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510  WRITE(6,520)
520 FORMAT (1HO, 26(‘*essss’))
WRITE(6,521)
521  FORMAT(1HO 'ERROR--MORE THAN 10,000 STEPS TAKEN')
WRITE (6,520)
525  SUMSTP=0
SUMLIF=0
DO 600 I=1,NUMXIT,1
SUMLIF=TOTLIF(I)+SUMLIF
SUMSTP=ISTEPS(I)+SUMSTP
600 CONTINUE
AVELIF=SUMLIF/(NUMXIT-INTRAP)
AVESTP=SUMSTP/ (NUMXIT-INTRAP)
DO 650 J=1,10,1
YLIF(J)=0
YSTP(J)=0
YHERTZ(J)=0
YSUPER(J)=0
650 CONTINUE
CALL MAXMIN(TOTLIF,1000,LIFMAX,LIFMIN)
LIFINT=(LIFMAX-LIFMIN)/10.
DO 675 K=1,10,1
XLIF(K)=(K-.5) *LIFINT+LIFMIN
675  CONTINUE
DO 800 I=1,NUMXIT,1
DO 700 J=1,10,1
A=(J-1) *LIFINT+LIFMIN
=J*LIFINT+LIFMIN
IF(TOTLIF(I) .GE.A.AND.TOTLIF(I).LT.B) GO TO 750
GO TO 700
750 YLIF(J)=YLIF(J)+1
GO TO 800
700  CONTINUE
800 CONTINUE
CALL MAXMIN(ISTEPS,-NUMXIT, ISTPMX, ISTPMN)
STPMAX=ISTPMX
STPMIN=ISTPMN
STPINT=( STPMAX-STPMIN) /10.
IF(STPMAX.LT.10) STPMAX=10
820 DO 825 J=1,10,1
XSTP(J)=(J-.5) *STPINT+STPMIN
825  CONTINUE
DO 1000 I=1,NUMXIT,1
DO 900 J=1,10,1
A=(J-1) *STPINT+STPMIN
B=J*STPINT+STPMIN
IF(ISTEPS(I).GE.A.AND.ISTEPS(I).LT.B) GO TO 850
GO TO 900
850  YSTP(J)=YSTP(J)+1
GO TO 1000
900  CONTINUE
1000 CONTINUE
DO 1100 I=1,5000
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1050 NX=NRAND(NX)
RANREL=NX/,2147484E10
HERTZ(I)=-ALOG (1~-RANREL) /CONC
IF(HERTZ(I).LT.1.0R.HERTZ(I).GT.10) GO TO 1050
SUPERX (I)=HOPTME*ATTEN** (HERTZ(I)-1)
1100 CONTINUE
CALL MAXMIN(HERTZ,5000,HRTZMX, BRTZMN)
HRTZIN=( HRTZMX-HRTZMN) /10.
DO 1200 J=1,10,1
XHERTZ(J)=(J-.5) *HRTZIN+HRTZMN
1200 CONTINUE
DO 1400 I=1,5000,1
DO 1300 J=1,10,1
A=(J-1) *HRTZIN+HRTZMN
B= J®HRTZIN+HRTZMN
IF(HERTZ(I) .GE.A.AND.HERTZ(I) .LT.B) GO TO 1350
GO TO 1300
1350 YHERTZ(J)=YHERTZ(J)+1
GO TO 1400
1300 CONTINUE
1400 CONTINUE
CALL MAXMIN(SUPERX,5000,XSUPMX, XSUPMN)
SUPRIN=(XSUPMX-XSUPMN) /10.
DO 1425 I=1,10,1
XSUPER(I)=(I-.5) *SUPRIN+XSUPMN
1425 CONTINUE
DO 1600 I=1,5000,1
DO 1500 J=1,10,1
A=(J-1) *SUPRIN+XSUPMN
B=J *SUPRIN+XSUPMN
IF (SUPERX(I) .GE.A.AND. SUPERX(I) .LT.B) GO TO 1450
GO TO 1500
1450 YSUPER(J)=YSUPER(J)+1
GO TO 1600
1500 CONTINUE
1600 CONTINUE
CALL MAXMIN(YLIF,10,YLIFMX,YLIFMN)
CALL LABEL(0.,0.,LIFMIN,LIFMAX,15.,4, 'LIFETIME’,8,0)
CALL LABEL(0.,0.,YLIFMN,YLIFMX,10.,4, 'NUMBER OF EXCITONS',18,1)
CALL PLOTXY(10,XLIF,YLIF,LIFMIN, LIFMAX, YLIFMN, YLIFMX,1,0,3,1,D0C)
CALL MAXMIN(YSTP,10,YSTPMX, YSTPMN)
CALL LABEL(0.,0.,STPMIN, STPMAX,15.,4, 'NUMBER OF STEPS’,15,0)
CALL LABEL(0.,0.,YSTPMN, YSTPMX,10.,4, 'NUMBER OF EXCITONS’,18,1)
CALL PLOTXY(10,XSTP,YSTP, STPMIN, STPMAX, YSTPMN, YSTPMX,1,0,3,1,DOC)
CALL MAXMIN(YHERTZ,10,YHTZMX, YHTZMN)
CALL LABEL(O0.,0.,HRTZMN, BRTZMX,15.,4, 'DISTANCE, LATTICE CONSTANTS',
C26,0)
CALL LABEL(O0.,0.,YHTZMN, YHTZMX,10.,4, 'NUMBER OF NEIGHBORS’,19,1)
CALL PLOTXY(10,XHERTZ, YHERTZ, HRTZMN, HRTZMX, YHTZMN, YATZMX,1,0,3,1,D
cocC)
CALL MAXMIN(YSUPER,10,YSUPMX, YSUPMN)
CALL LABEL(0.,0.,XSUPMN,XSUPMX,15.,4, ' SUPEREXCHANGE TIME’,18,0)
CALL LABEL(O.,0.,YSUPMN, YSUPMX,10.,4, 'NUMBER OF HOPS’,14,1)
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CALL PLOTXY(10.XSUPER,YSUPER,XSUPMN,XSUPMX.YSUPMN,YSUPMX,I.0.3.1,D
coC)
WRITE(6,520)
WRITE(6,1700) NUMXIT
1700 FORMAT(1HO,'NUMBER OF EXCITONS GENERATED=',I3)
WRITE(6,1701) TAU
1701 FORMAT(1HO,'EXCITON LIFETIME=',F10.3)
WRITE(6,1702) HOPTME
1702 FORMAT(1HO, 'NEAR NEIGHBOR HOP TIME=',1PE10.3)
WRITE(6,1703) CONC
1703 FORMAT(1HO, ' IMPURITY CONCENTRATION=',F8.3)
WRITE(6,1704) ATTEN
1704 FORMAT(1HO, 'BETA/DELTA=',F7.3)
WRITE(6,1705) NIRAPS
1705 FORMAT(1HO,'NUMBER OF DEEP TRAPS=’,F10.3)
WRITE(6,1706) TERIMP
1706 FORMAT(1HO, 'NUMBER OF WALKS TERMINATED BY TRAPPIN =!, I3)
WRITE(6,1707)TERLIF :
1707 FORMAT(1HO, 'NUMBER OF WALKS TERMINATED BY RADIATIVE DECAY=', I3)
WRITE(6,1708) INTRAP
1708 FORMAT(1BHO, 'NUMBER OF EXCITONS CREATED ON A TRAP=', I3)
WRITE (6,1709) AVELIF
1709 FORMAT(1HO, 'AVERAGE EXCITON LIFETIME=', 1PE10.3)
WRITE (6,1710) AVESTP
1710 FORMAT(1HO,'AVERAGE NUMBER OF STEPS=',F10.3)
WRITE(6,1711)
1711 FORMAT(1HO, 'BIN-SORT')
WRITE(6,1712)
1712 FORMAT(1HO, 'LIFETIME NUMBER OF EXCITONS’)
WRITE(6,1713) ((XLIF(I),YLIF(I)),I=1,10)
1713 FORMAT(1HO,1PE10.3,5X,1PE10.3)
SUMEXC=0
DO 1750 J=1,10
SUMEXC=YLIF(J) +SUMEXC
1750 CONTINUE
WRITE(6,1800) SUMEXC
1800 FORMAT(1HO,'TOTAL NUMBER OF EXCITON LIFETIMES=',1PE10.3)
WRITE(6,1850) LIFMIN
1850 FORMAT(1HO, 'SHORTEST EXCITON LIFETIME=’,1PE10.3)
WRITE(6,1875) LIFMAX
1875 FORMAT(1HO,'LONGEST EXCITON LIFETIME=',1PE10.3)
WRITE(6,1711)
WRITE(6,1900)
1900 FORMAT(1HO, 'TOTAL STEPS NUMBER OF EXCITONS')
WRITE(6,1950) ((XSTP(I),YSTP(I)),I=1,10)
1950 FORMAT(1HO,1PE10.3,6X,1PE10.3)
SUMEXC=0
DO 2000 J=1,10
SUMEXC=YSTP(J) +SUMEXC
2000 CONTINUE
WRITE(6,2050) SUMEXC
2050 FORMAT(1HO, 'TOTAL NUMBER OF EXCITONS THAT STEPS WERE COUNTED FOR='
C,1PE10.3)
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WRITE(6,2060) STPMIN

FORMAT (1HO, ' SMALLEST NUMBER OF STEPS TAKEN=',1PE10.3)
WRITE(6,2070) STPMAX

FORMAT(1HO, ' LARGEST NUMBER OF STEPS TAKEN=',1PE10.3)
WRITE(6,1711)

WRITE(6,2100)

FORMAT (1HO, ' HERTZ DISTRIBUTION NUMBER OF NEIGHBORS')
WRITE(6,2150) ((XHERTZ(J),YHERTZ(J)),J=1,10)
FORMAT(1HO,1PE10.3,12X,1PE10.3)

WRITE(6,1711)

WRITE(6,2200)

FORMAT (1HO, ' SUPEREXCHANGE TIME NUMBER. OF PAIRS’)
WRITE(6,2250) ((XSUPER(J),YSUPER(J)),J=1,10)

FORMAT (1RO ,1PE10.3,15X,1PE10.3)

WRITE(6,520)

STOP

END

//DATA DD .

5.

.058 .24 1.0E-7 095 10
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APPENDIX III.

MONTE CARLO PROGRAM TO CALCULATE SUPEREXCHANGE COUPLING

AND INTER-IMPURITY CLUSTER SEPARATION

DISTRIBUTIONS IN RANDOMLY DISORDERED 1-D CHAINS
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APPENDIX IIT,

I, The do loop defined by statement 300

This do loop conmstructs a contracted array (to be defined) called

B(I).

II. The philosophy behind the contraced array

One first constructs an array containing zeroes and randomly
replaces a certain  number of the zeroes by omes (let 1=impurity,
O=host). 1's isolated by O0’'s on both sides are impurity
clusters, O0's isolated on both sides are host clusters. Clearly, this
array contains only two types of clusters, and they must occur
alternately (this is crucial). One cannot find two guest or host
clusters side by side since this would be one larger cluster; _ One
can dramatically reduce the size of the array containing only
O's and 1's by constructing a new array from it containing only host

and guest closter sizes.

Consider the sequence 001000110001. One can define a
contracted array (having no less information than the original array)
to be 213231, This contraction is increasingly compact for small
numbers of  impurities (or hosts) where the host (or guest) clusters
are enormous. Further, one knows that if the first number in the
contracted sequence represents an impurity cluster size, ther the 3rd’

h . . . .
Sth. 7t PR numbers in the sequence are also impurity cluster sizes

and the an, 4th.... are host cluster sizes.

The FORTRAN algorithm
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The IBM random number generator NRAND produces uniformly
distributed random  numbers Dbetween O and 1. As many random
numbers are drawn as there are impurity sites in the chain, As the
nth random number is drawn, it is compared to COMC (the concentration,
also between 0 and 1), If the random number is less than CONC, ther
MPURIT (the FORTRAN variable in the program) is set=1 (i.e. an
impurity is placed at the site). A counter, H, is set up to keep track
of the number of consecutive O0's and 1’'s, thus recording the host or
guest cluster size. The flag, K, is set to 1 for guest clusters and
set to O for host clusters. The first cluster in B(I) is thus
artificially set to a host cluster. This is to ensure that alil
even numbered sites in the contracted array are impurity clusters. This
artificial start is incomsequential since do loop 500 starts searching
the contracted array at the second impurity cluster to avoid end

effects. The counter J keeps track of the total number of bhost

and guest clusters counted.

The do loop defined by statement 500

This do loop searches the contracted sequence for m-m, m—to-
nearest-d, and d-to nearest-m separations, The array element
DIST(J,1) contains the total number of monomers separated by J
hosts. DIST(J,2) contains the total number of monomers that are
adjacent to a dimer with J intervening  hosts. DIST(J,3) is the
number of dimers next to a monomer with J intervening hosts.

Special cases arise and they will discussed below.

Philosophy of the search algorithm
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The computer looks only at the impurity clusters (even
numbered elements in the contracted array) since we are presently only
interested in the impurity cluster separations. For the purposes of
this program, all impurity clusters with greater than or equﬁl to 2
impurities are treated identically (at 1low temperatures, they are
all traps). If the computer finds a monomer, it looks at the nearest
impurity clusters to the 1left and to the right and finds one of
three situations: (1) mmm, (2) mmd, or (3) d-md where d implies an
n-mer with n 2 2 and - implies some number of intervening hosts. If one
subtracts the cluster size of the left and right impurity clusters and
obtains zero one has case 1 or case 3, otherwise, it is situatior 2
(it could be that a monomer is bounded by a trimer and dimer whick we
call case 3). So if the subtraction yields zero, one mneeds only to
test one of the neighboring impurity clusters (either one) to see if
it is a monomer, If it is a monomer, ome has case 1, otherwise case
3. If the subtraction yields a negati?e or positive mnonzero
number, one immediately knows which of the mneighboring impurity
clusters is smaller and then tests it to see if it is a monomer. If

it is a monomer, one has case 2, otherwise one has case c.

The neighbors of the dimer are characterized in the same
manner, To summarize, there are a total of six possible
situations: (1) mm-m, (2) mmd, (3) d-md, (4) m~d-m, (5) d-d-m and
(6) d-d-d. The six cases are treated in the following manner,
Case 1, mmm: for the monomer in the middle, the separation is
picked to be the smallest number of intervening hosts to the left

or to the right and was placed in DIST(J,1). Case 2, mmd: the m-m
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separation is the number of hosts to the left and the m-d
separation is the number of hosts to the right. Case 3, d-md: the
m—d separation is set to the smallest number of intervening hosts to
the left or to the right and is placed in the array element DIST(J,2).
Case 4, m—d-m: the d-m separation is recorded as the smaller number
of intervening hosts and put into DIST(J,3). Case 5, d~d-m: the d-m
separation is set to the mnumber of intervening hosts to the right
and no other distances are recorded. Case 6, d-d-d: nothing is

recorded in any array element.
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//FORT DD *

[

c
[
[+

100

200

250
300

310
325

330
340

345

This is the program that generated unpublished results
on the inter-cluster distance statistics for dissimilar clusters.
That is, to simulate the average distance between the monomers
between the dimers and between monomers and dimers.
DIMENSION DOC(3),SUMSUP(3),XSUPRX(50)

INTEGER*4 B(100001) ,DIST(1000,3),CLUSTIR,RHMAX

REAL AIST(1000,3),X(500)

REAL MMAVE,MDAVE, DMAVE

REAL MMMX, MDMX

INTEGER DMMAX, DMMIN

DATA DOC/0.,0.,1./

READ(5,100) CONC

FORMAT(F10.6)

RMAX=4./CONC

CALL ICLOCK(X)

IF(MOD(K,2) .EQ.0) GO TO 200

NX=K

J=1

K=0

H=0

DO 300 I=1,100001

NX=NRAND (NX)

TEST=NX/.2147484E10

MPURIT=0

IF (TEST.LE.CONC) MPURIT=1

IF(MPURIT.EQ.K) GO TO 250

B(J)=H

J=J+1

K=0

IF(MOD(J,2) .EQ.0) K=1

H=1

GO TO 300

H=H+1

CONTINUE

CLUSTR=J/2

1=0

M=0

N=0

DO 500 I=4,7,2

IF(B(I).GE.2) GO TO 400

L=L+1

IF(B(I+2)-B(I-2)) 325,350,340

IF(B(I+2).EQ.1) GO TO 330
DIST(MINO(B(I-1),B(I+1)),2) =DIST(MINO(B(I-1),B(I+1)),2) +1
GO TO 500

DIST(B(I+1),1)=DIST(B(I+1),1)+1
DIST(B(I-1),2)=DIST(B(I-1),2)+1

GO TO 500

IF(B(I-2).EQ.1) GO TO 345
DIST(MINO(B(I-1),B(I+1)),2)=DIST(MINO(B(I-1),B(I+1)),2)+1
GO TO 500

DIST(B(I-1),1)=DIST(B(I-1),1)+1
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DIST(B(I+2),2)=DIST(B(I+2),2)+1
GO TO 500

350 IF(B(I-2).EQ.1) GO TO 375
DIST(MINO(B(I-1),B(I+1)),2)=DIST(MINO(B(I-1),B(I+1)),2)+1

60 TO 500

375 DIST(MINO(B(I+1),B(I-1)),1)=DIST(MINO(B(I-1),B(I+1)),1)+1
GO TO 500

400 M=M+1

IF(B(I+2)-B(I-2)) 410,430,420
410 IF(B(I+2).EQ.1) GO TO 415
GO TO 500
415 DIST(B(I+1),3)=DIST(B(I+1),3)+1
N=N+1
GO TO 500
420 IF(B(I-2).EQ.1) GO TO 425
GO TO 500
425 DIST(B(I-1),3)=DIST(B(I-1),3)+1
N=N+1
GO TO 500
430 IF(B(I+2).EQ.1) GO TO 435
60 TC 500
435  DIST(KINO(E(I+1),B(I-1)),3)=DIST(MINO(B(I+1),B(I-1)),3)+1
N=N+2
500  CONTINUE
WRITE(6,600)
600 FORMAT(1HO0,130(’'*'))
WRITE(6,610) CONC,L,M,CLUSIR
610 FORMAT(1HO, 'CONCENTRATION=',F10.6, '#MONOMERS=',I5, '#DEEP TRAPS=',1
C5, 'TOTAL #CLUSTERS=',15)
FRACT=FLOAT (N) /FLOAT(L)
WRITE(6,612) L,FRACT :
612  FORMAT(1HO, '#MONOMERS=',I5, 'FRACTION MONOMERS BY A DIMER=',1PE10.3
c) '
MMSUM=0
MMNUM=0
MDSUK=0
MDNUK=
DMSUM=0
DMNUM=0
DO 625 J=1,RMAX
MMSUM=DIST(J,1) *J+MMSUM
MMNUM=DIST(J, 1) +MMNUM
MDSUM=DIST(J,2) *J+MDSUM
MDNUM=DIST(J,2) +MDNUN
DMSUM=DIST(J,3) *J+DMSUM
DMNUM=DIST(J,3)+DMNUM
625  CONTINUE
MMAVE=FLOAT (MMSUM) /FLOAT (MMNUY)
MDAVE=FLOAT (MDSU¥) /FLOAT (MDNU})
DMAVE=DMSUM/DMNUM
WRITE(6,626) MMAVE
626  FORMAT(1HO,'AVE M-M SEP IN CHAINS OF MS(MORE THAN 1M)='’,F10.3)
WRITE(6,627) MDAVE
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FORMAT (1HO, 'AVE M~-D SEP FOR MS ADJACENT TO A D(IF 2DS, PICK SMALLE
CST M-D’,F10.3)

WRITE(6,628) DMAVE

FORMAT(1HO, 'AVE D-M SEP FOR DS ADJACENT TO AN M(IF 2 MS, PICK SMAL
CLEST D-M',F10.3)

DO 629 I=1,50

XSUPRX(I)=6.5%.095%*1

CONTINUE

WRITE(6,620)

FORMAT(1HO, '#INTERVENING' ,T20, ' SUPEREXCHANGE' ,T42, '‘M-M SEP,M CHAIN
CS ONLY’,T74,'M-D SEP’,T106,'D TO NEAREST M SEP')
WRITE(6,631)

FORMAT(1HO, 'HOSTS',T20,' cm-1')

WRITE(6,630) ((J,XSUPRX(J) ,DIST(J,1),DIST(J,2),DIST(J,3)),J=1,50)
FORMAT(1HO,I2,T20,1PE10.3,T42,15,T74,15,T106,1I5)

DO 640 I=1,500

X(I)=FLOAT(I)

CONTINUE

CALL MAXMIN(DIST(1,1),-RMAX, MMMAX, MMMIN)

CALL MAXMIN(DIST(1,2),-RMAX, MDMAX, MDMIN)

CALL MAXMIN(DIST(i,3),-RMAX,DMMAX,DMMIN)

RMX=FLOAT (RMAX)

MMMX=FLOAT (MMMAX)

MDMX=FLOAT (MDMAX)

DMMX=FLOAT (DMMAX)

DO 700 I=1,3

"DO 650 J=1,RMAX

AIST(J,I)=FLOAT(DIST(J,I))

CONTINUE

CONTINUE

Do 725 I=1,3

SUMSUP(I)=0

CONTINUE

DO 800 J=1,3

DO 750 I=1,50

SUMSUP(J)= 6.5%.095%*I*DIST(I,J)+SUMSUP(J)

CONTINUE

CONTINUE

AVEMMS=SUMSUP (1) /FLOAT (MMNUM)
AVEMDS=SUMSUP(2) /FLOAT (MDNUM)

AVEDMS=SUMSUP (3) /DMNUM

WRITE(6,850) AVEMMS, AVEMDS, AVEDMS

FORMAT(1HO, 'AVE SUPERXCHNG, cm—-1,FOR MM:’,F10.3,'MD:’,F10.3,'DM:',F
C10.3)

WRITE(6,600)

CALL LABEL(0.,0.,1.,RMX,15.,4, 'LATTICE CONSTANTS',17,0)
CALL LABEL(0.,0.,0,,MMMX,10.,4,'MM SEPARATIONS’,14,1)
CALL PLOTXY(RMAX,X,AIST(1,1),1.,RMX,0.,MMMX,1,0,11,1,D0C)
CALL LABEL(0.,0.,1.,RMX,15.,4, 'LATTICE CONSTANTS’,17,0)

CALL LABEL(0.,0.,0.,MDMX,10.,4,'MD SEPARATIONS’,14,1)
CALL PLOTXY(RMAX,X,AIST(1,2),1.,RMX,0.,MDMX,1,0,11,1,D0C)
CALL LABEL(0.,0.,1.,RMX,15.,4, 'LATTICE CONSTANTS’,17,0)
CALL LABEL(0.,0.,0.,DMMX,10.,4,'DM SEPARATIONS’,14,1)
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CALL PLOTXY(RMAX,X,AIST(1,3),1.,RMX,0.,DMMX,1,0,11,1,D0C)
STOP
END

//DATA DD *
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APPENDIX IV,
COMPUTER PROGRAM TO FIT SPECTRAL AND OTHER DATA

TO MATHEMATICAI. MODELS
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APPENDIX IV,
NONLIN, a Program to Fit Spectral and Other Data.

The purpose of this document is to describe the
structure and use of NONLIN, so that it can be modified, if
need be, and so that its strengths and limitations are
clear. NONLIN is a program to fit spectral lineshapes (or
any other data) to Gaussians, Lorentziams, Voigt functions
(or any other mathematical entity that can be expressed in
terms of calculable functions). The program in its first
form was written by Roy Mead and Duane D, Smith in the
summer of 1977. Since then, the program has been
continually optimized for ease of wuse, versatility,
readability and to a 1lesser extent, speed. The current
version operates on an IBM 370/3032 and plots on a Versatec
1200A plotter., I/0 and plotting have been engineered to be
as flexible and user transparent as possible, all control is
from the input data, so in most cases, code changes should
be unnecessary.

The program is built around a subroutine named LSQENP
which is a generalized nonlinear regression capable of
fitting any model that can be described in terms of
calculable functionms. Fitting with the Voigt function has
been tested by fitting published tables with NONLIN (see
e.8., B. D. Fried and S. D. Conte, ''The Plasma
Dispersion Function'’’, 1961, Physical Research Laboratories:
G. D. Finn and D. Mugglestone Mon. Not. Roy Astr.
Soc. wvol. 129, p. 221, 1965: D. G. Hummer, Mem. R.
Astr. Soc. wvol. 70, p. 1, 1965). In using these tables,
of Voigt functionms gyi should be careful to keep track of
factors of =n, (=) . Fitting of Gaussians and
Lorentzians has been tested by fitting calculated data as
well.

On the usage of LSQENP: One should note that in wusing
analytic (rather than numerically estimated) partials in the
fit, the convergence is more rapid and accurate. In using
numerical derivatives, the program must pick an interval
size for the differential element, which may not be ideally
suited to the function being fit, or the current values of
the function's parameters.

Note that in subroutine PEAKVA when the Voigt function is
calculated (B, H, Armstrong’s algorithm, referenced below)
it was necessary to (a) take the absolute value of x and (b)
to take the absolute value of the ratio of the homogeneous
and inhomogeneous widths, For the case of x, if a negative
value is encountered, FUNCTION K, which chooses between
subroutine K1, K2, and K3 can (but not in all cases) make
the wrong choice. Armstrong wrote the algorithm only to
calculate for positive x which is reasonable for the
symmetric convolution integral, However when one translates
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the origin to fit data in any sort of practical situation,
one will encounter mnegative x values. Therefore, the
absolute value, For the case of the ratio, if one is
dealing with small values of the ratio, the nonlinear
regresssion can shoot slightly past zero. If it does, the
resulting function that is computed looks something like an
Airy function, with oscillations in the wings. Therefore,
to prevent the regression from fitting with unphysical
ratios and additionally to speed convergence the absolute
value of the ratio was computed.

When ome is fitting data to functions where some of the
parameters differ widely, convergence may be difficult to
obtain. One such practical situation is in fitting T**7 to
the homogeneous width vs. temperature. The preexponential
factor in fitting such data in practical situations can be
smaller than F-12, whereas the function has a severe
exponential dependence on the parameter used in the exponent
(i.e. the 7). It may be that using analytic derivatives
will remedy this. This has not been investigated since in
the data fit so far, it was readily apparent that T**7 would
not be able to fit the data.

Core: 170 kilobytes

Typical execution times of compiled NONLIN using optimized
Fortran H on the 370/3032: '

10 iterations, Voigt fit to 256 points: 16.5 seconds.
10 iterations, Gaussian fit to 256 points: 6.0 seconds,
10 iterations, Lorentzian fit to 256 points: 5.4 seconds.

Algorithms:

Nonlinear regression; Marquardt, D. W., '"An Algorithm
for Least—Squares Estimation of Nonlinear Parameters’’.
Jour. Soc, Ind., and App. Math., vol. 11, no.2, June

1963 pp. 431-441,

Power series expansions of Voigt function: Armstrong, B.
H., Jour., Quant, Spect. and Rad. Trans., vol. 7, 1967

p. 61.

All I/0 by Duane D. Smith.

Plotting software: Versatec and Caltech,.

—— i— Va————— —— ottt AR i

1. FITTST FORMAT(20A4)
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Type of fit, If the first four characters are ’'line’ (uc or
lc), the program will assume a lineshape fit and only
Gaussian, Lorentzian and Voigt functions will be available
to the user., If anything other than line appears here the
user must supply a subprogram FUNCTION MODEL(X,B) to be fit
to the data, MNaximum of 80 characters. FITITST will be
printed in the output to allow the user to more easily
identify the output.

2, TITLE FORMAT (20A4)

Title of fit, to be printed at the top of the plot. Should
be <62 characters if the plot is horizontally oriented and
{41 characters is the plot is vertically oriented (see step

12 below).
3. NEWDAT, NEWPAR, IPRINT, IFP,IPLOT, IDVT,IQUIT FORMAT(6I1,13)

Conditions of the fit—-—7 parameters for the I/0 and nonlinear
regression,

NEWDAT=0 Use previous data set,
=1 Read new data set.

NEWPAR=0 Use previous parameter set,
=1 Read new parameter set,

IPRINT=0 Short printout.
=1 Include table of observed and calculated
values in output.
=2 Print the results of every iteration.

IFP =0 No line printer plot.
=1 Do line printer plot.

IPLOT =0 No Versatec plot.
=] Do Versatec plot.

IDVT =0 Analytic partials used. User must supply
partials in SUBROUTINE PCODE.

=1 Numerically estimated partials used.
Currently, must use numerical partials when
fitting any function other than Gaussian or
Lorentzian, If one uses analytic partials
and no algorithm exists, the initial guesses
willnot be improved upon, presumably since
the analytic partials are left near zero.

L
2

IQUIT Maximum number of iteratioms, N, for fit. If
the internal convergence criteria of the
regression routine LSQENP are satisified, it

will quit soonmer (the criteria are very stringent
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and described in the exhibit on LSQENP).
4. NPEAKS FORMAT(I1)

Number of peaks to be fit. Once the number of peaks is
input, the data for each peak will take three lines (steps §
through 7 below). Thus, one repeats steps 5 -~ 7 n times.

5. B(I) FORMAT(3E16.9)

Parameter values for peak position, height and width (in
that order). The large E16.9 format was chosen for
convenience and versatility. Recall that omne c¢an enter
regular floating point numbers with the decimal point in an
arbitrary position within the 16 character field. The
exponential format is useful where very large or small
numbers occur,

6. IVARY FORMAT(31I1)

Switches to fix or float the position, height and width
(again, in that order). If 1IVARY=1, the parameter is
floating, if anything else is there, the parameter is
fixed. Using IVARY=0 is a handy way to fix the parameter,

7. FUNCT(I,J),INHOMO FORMAT (3A4,4X,F10.5)

An alphabetical description of the type of function to be
fit to that peak. If the first four letters are ‘gaus’ (uc
or 1¢), a Gaussian function will be fit to that peak,
Similarly, if the first four 1lettters are 'lore’, a
Lorentzian will be fit, if they are ’'voig’, a Voigt function
will be fit and if they are ‘conv’, a Romberg quadrature
integration to calculate the Voigt function will be invoked
(this is primarily used to check B, H. Armstrong's power
series expansion of the Voigt functiom). The first 12
characters on this line are printed on the output to
indicate to the user what function was used in the fit, If
a8 Voigt function is being fit, the user must supply a value
of the inhomogeneous (gaussian) FWHM, known as INHOMO, to be
used as a fixed parameter in the fit., If one wants to fix
the Lorentzian contribution and fit the Gaussian content,
ther one mneeds to modify function PEAKVA where function
K(ZZ,RATIO) is called.

8. FITOFF, B(M-1) FORMAT(A8,8X,E16.9)

If the first six characters on this line are ‘'offset’ then
the offset of the baseline beneath the peak is fixed to the
value read in field positions 17-33 with E16.9 format,
Parameter B(M-1) is the offset parameter. If anything other
than ‘offset’ is found, the baseline offset is optimized in
the fit with the user supplied B(M-1) as the initial guess.
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Usually ome finds it convenient to spell out 'offset’ and
'fit offset’ to increase readability.

9. FITSLO, B(M) FORMAT(A8,8X,E16.9)

If the first five characters are 'slope’, then the slope of
the baseline under the peak is fixed to the value read in
field positions 17-33 with E16.9 format. Parameter B(M) is
the slope parameter. If anything other than ’slope’ is
found, the baseline slope is optimized in the fit using the
supplied B(M) value as an initial guess. Usually one finds
it convenient to write ’slope’ and ’'fit slope’.

10. HORSIZ,HORIZ FORMAT(I2,16A4)

HORSIZ is the number of characters in the title of the
horizontal axis, FORMAT(I2). HORIZ is the array that
contains the axis label and should occur directly after
HORSIZ (no intervening spaces).

11. VERSIZ,VERT FORMAT(I2,16A4)

Same as step 10 above, but for the vertical axis.

12. ORIENT FORMAT(3A4)

An alphabetical switch which determines the orientation of
the plot. If the first four characters are ’'vert’,
then the plot will be generated with the horizontal axis on
the short edge of 8 1/2 X 11 paper with thesis margins. If
anything else is found, the horizontal axis will be along
the 11’' edge, again with thesis margins. [Thesis
margins are 1’’ on the top and bottom, 1/2'' on the

right and 1 and 1/2'' on the left.] Writing out
'horizontal plot’ or ’‘vertical plot’ on this line makes the
input very readable.

13. N FORMAT (I4)

The number of data points. Will accept up to 9,999 «x,y
pairs, but LSQENP is currently dimensioned for a maximum of
500 data points. Was set up with 1024 point MCA output in
mind,

14, X,Y FORMAT(2E16.9)

The data in ordered x,y pairs. This generously large
format was chosen such that it could accept just about any
input and is mnot limited by an IBM single precision
calculation (unlikely as it is that your data will have
that many significant figures). The E16.9 format was
chosen since the standard modulo tab on a terminal is 8
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spaces, making counting spaces unnecessary. Recall that a
regular floating point number can be successfully read as
long as it is within the 16 character field. If one does
use the exponential format, it must be right justified.

15. TITLE FORMAT(20A4)

If the program finds anything on the next record, it assumes
it is the title of the next data set to be fit and expects
to find more data records. If this card is blank, then the
program assumes there is no wmore data to fit, prints
ssssslast run completed*ssss and stops.

SAMPLE DATA INPUT FOR LINESHAPE FITTING.

A S ————— S ————————

lineshape fit
Ca0 M center emission, 50.9K,

101111 5

1

14623 .2 7.0 5.0
111

Voigt fecn 5
offset .0
slope .0
17wavenumbers, cm—1
20intensity(arb units)
vertical plot

75, Voigt fit

.

[y

256
14620.0 1.234
14620.2 1.2345

other data points

3

(a blank card)

FORMAT OF DATA INPUT FOR NON-LINESHAPE DATA FITTING

1. FITTST FORMAT(20A4)

Type of fit. The first four characters must not be ‘line’,
or else the program assumes you want a Gaussian, Lorentzian
or Voigt function. User must supply the special function in
FUNCTION MODEL(X,Y,B). One usually supplies a message here
that helps to identify the fit and fitting procdure.

2. TITLE FORMAT(20A4)
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The title of the fit, to be written at the top of the plot.
Title must be <62 characters if plot is horizontal, (41
characters if plot is vertical (see step

10 below).

3. NEWDAT, NEWPAR, IPRINT, IFP, IPLOT, IDVT,IQUIT FORMAT(6I1,13)
Conditions for the fit and nonlinear regression.

NEWDAT=0 Use previous data set.
=1 Read new data set.

NEWPAR=0 Use previous parameter set.
=] Read new parameter set.

IPRINT=0 Short printout.
=1 Include table of observed and calculated
values in output,
=2 Print the results of every iteration.

IFP =0 No line primter plot.
=1 Do line printer plot.

IPLOT =0 No Versatec plot.
=1 Do Versatec plot.

IDVT =0 Analytic partials used. User must supply

partials in SUBROUTINE PCODE.
=1 Numerically estimated partials used.

Currently, must numerical partials when
any function other than Gaussian or
Lorentzian, if analytic partials are
used and no algorithm exists to calculate
them, the initial guesses will not be
improved upon, presumably since all the
partials are left near zero.

IQUIT

I
z

Maximum number of iteratioms, N, for fit. If

the internal convergence criteria of the
regression routine LSQENP are satisified, it
will quit sooner (the criteria are very stringent
and described in the exhibit on LSQENP),

4, M FORMAT(I2)

Number of parameters in the fit (includes fixed and floating
parameters). If the number of psrameters is n, ther one
will repeat steps 5 through 7 n times, one time through for
each parameter,

5. PARDES FORMAT(20A4)

A human language alphabetic description of the first
parameter in the fit, Will be used in the output to label
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the fitted wvalue of the parameter, Max imum of 80
characters.

6. B FORMAT(E16.9)
The user supplied numerical value of the parameter in the fit.
7. FIXED FORMAT(2A4)

If the first four characters in the record are ‘fixe', thern
the parameter value supplied by the user is fized (i.e. mnot
optimized in fitting the data), If anything else is
encountered, the parameter is floating. Since FIXED is used
to label the parameter in the output, it is usually useful
to write out ’'fixed’ or ’'floating’.

8. HORSIZ,HORIZ FORMAT(I2,16A4)

HORSIZ is the number of characters in the 1label for the
horizontal axis. HORIZ is the array that contains the axis
label and should occur directly after HORSIZ (no intervening
spaces) .

9. VERSIZ, VERT FORMAT(I2,16A4)

Same as in step 8, but for the vertical axis.
10.0RIENT FORMAT(3A4)

An alphabetical switch which determines the orientation of
the of the plot. If the first four characters are ’‘vert',
then the plot will be generated with the horizontal axis on
the short edge of 8 1/2 X 11 paper with thesis margins., If
anything else is found, the horizontal axis will be along
the 11'' inch edge, again with thesis margins. [Thesis
margins are 1 1/2'’ on the left and 1’’ on top and bottom and
1/2'* on the right]l. Writing out ‘horizontal plot’ or
'vertical plot’ makes the input file very readable.

11. N FORMAT(14)

The number of data points, Currently, LSQENP is only
dimensioned for 500 data points.

12. X,Y FORMAT(2E16.9)

The data in ordered x,y pairs.

13.TITLE FORMAT(20A4)

If the program finds anything on this record, it assumes it

is the title of the next data set to be fit and expects to
find more data. If this card is blank, then the program
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assumes there are no more data to fit, prints out **®**s[AST
RUN COMPLETED*#*%#%%*% and stops.

e — | S———————  W— ot ————  W—  S————"  VRCP— ———

Fit of n(n+l) to temp~dependent homogeneous FWHM of CaO M center
Ca0 M center emission, Raman T-dep fit
110111 5§
2
preexponential factor
2.5
floating
phonon energy
30.0
fixed
l4temperature, K
26homogeneous linewidth, cm-1
vertical plot
15
1.3 1.2
4.2 1.4

(the rest of the data points).

.

(blank card if no more data to fit).

BERXXA LSS SRS SIS REL R ER S LSRR SR SRS LR R EBEBEBX KB LB S FE XS EESELEEREES

FIT OF N(N+1) TO TEMP-DEPENDENT HOMOGENEOUS FWHM OF CAO M CENTER.
CAO M CENTER EMISSION, RAMAN T-DEP FIT
PARAMETER NUMBER 1
PREEXPONENTIAL FACTOR
PARAMETER IS FLOATING
INITIAL PARAMETER VALUE IS= 2.5
FINAL PARAMETER VALUE IS= 2.345
PARAMETER NUMBER 2
PHONON ENERGY
PARAMETER IF FIXED
INITIAL PARAMETER VALUE IS= 30.0
FINAL  PARAMETER VALUE IS= 30.0

(33 I3 R 123322 S 233 F 1332331333332 2332 223213332333 332311223222 2822 2222224
#s#494 AST RUN COMPLETED®#%#+
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PROGRAM LISTING FOR NONLIN, NONLINEAR LEAST SQUARES FOR
FITTING LINESHAPES AND ARBITRARY DATA TO ARBITRARY FUNCTIONS,

// EXEC FORTXCL, PARM.FORT='OPT=2',PARM,LKED='LIST,NCAL,LET’
//FORT.SYSIN DD *

c

20

25

26

27

28
29

MAIN PROGRAM

REAL#*8 FITSLO,FITOFF, SLOPE, OFFSET, CONST(34) ,C(34)

REAL*4 LINE,ORIENT(3), INHOMO, LORNTZ

INTEGER HORSIZ, VERSIZ

DIMENSION X(500,1),Y(500),B(50),BA(50),IB(50),IVARY(50)
DIMENSION CNEW(100),Q(10),U0(10),FIXED(2,50),PARDES(20,50)
COMMON/AXSLBL/ HORIZ(16) ,VERT(16) ,HORSIZ,VERSIZ,ORIENT
COMMON/ NUMPK/NPEAKS , M2

COMMON/NAME/FUNCT(3,12) , INHOMO

COMMON/ HUMMER/ C

COMMON/XLIM/XMIN, XMAX

COMMON/YLIM/IFP,YMIN, YMAX

COMMON/VOIGT1/W(10),T(10),Y2

COMMON/USRMSG/TITLE(20) ,FITTST(20)

COMMON/FCN/IFCN(10)

DATA LORNTZ, GAUSS, VOIGT,FIXTST/'LORE’, 'GAUS’, 'VOIG','FIXE'/
DATA CONST/.1999999999972224,-.184000000029958,.1558399999965025,
1-,1216640000043988,.0877081599940391,-.0585141248086907,
1.0362157301623914,~.0208497654398036,.0111960116346270,
1-,56231896167109D-2,.26487634172265D-2,-.11732670757704D-2,
1.4899519978088D-3,-.1933630801528D-3,.722877446788D-4,
1-.256555124979D-4, .88620736841D~5,~-.27876379719D-5,
1.8566873627D-6,-.2518433784D~-6,.709360221D-7,-.191732257D~-7,
1.49801256D-8,-.12447734D-8,.2997777D-9,-.696450D~-10,.156262D-10,
1-.,33897D-11,.7116D-12,-.1447D-12,.285D~13,~,55D~14,.10D-14,
1-.2D-15/

DATA LINE, SLOPE, OFFSET,BLANK/'LINE’, 'SLOPE', 'OFFSET’, ' '/
DATA Q/4.62243670E-1,2.86675505E-1,1.09017206E-1,2.48105209E-2,
13.24377334E-3,2 .28338636E~4,7.80255648E-6,1.08606937E~-7,
14.39934099E-10,2.2293936 SE-13/

DATA U/.245340708,.737473729,1.23407622,1,7385377,2.25497400,
12.78880606 ,3.34785457,3.94476404,4.60368245,5.38748089/

DO 20 I=1,34

C(I)=CONST(I)

CONTINUE

DO 25 I=1,10

W(I)=Q(I)

T(I)=0(I)

CONTINUE

WRITE(6,26)

FORMAT(' Program to fit simple functions and convolutions to line
1shapes as well as fit arbitrary fcns to arbitrary data.')
WRITE(6,27)

FORMAT(' First written June, 1977. Last modified June 1980.')
READ(5,29) (FITTST(I),I=1,20)

FORMAT (20A4)

IF(FITTST(1) .NE.BLANK) GO TO 38

WRITE(6,35)



35

38
40

80

90

100

125
150

200

250

300

400
350

450

500

501
502

343

FORMAT(1H~, ' $**** AST RUN COMPLETED®s%*#»*')

STOP

READ(5,40) (TITLE(I),I=1,20)

FORMAT(20A4)

READ(5,80) NEWDAT , NEWPAR, IPRINT, IFP, IPLOT, IDVT, IQUIT
FORMAT(611,13)

WRITE(6,90) IQUIT

FORMAT(1H1, 'MAXIMUM NUMBER OF ITERATIONS=',I3)
IPRNT=IPRINT-1

IF(FITTST(1) .NE.LINE) GO TO 510

Check for new parameters. Jump to parameter copy routine if old values USED
IF(NEWPAR.NE.1)GOTO 650

IP=0

READ(5,150) NPEAKS

FORMAT(I1)

Each peak has three parameters. There are also two baseline parameters.
N2=3 *NPEAKS

M=M2 +2

DO 350 I=1,NPEAKS

IDX=3%(I-1)

READ(5,200) {(B{IDX+J),J=1,3)

FORMAT(3E16.9)

READ(5,250) (IVARY(IDX+J) ,J=1,3)

FORMAT(311)

READ(5,300) (FUNCT(J,I),J=1,3),INHOMO
FORMAT(3A4,4X,F10.5)

IFCN(I)=4

IF(FUNCT(1,I) .BQ.LORNTZ) IFCN(I)=1

IF(FUNCT(1,I) .BEQ.GAUSS) IFCN(I)=2

IF(FUNCT(1,I) .EQ.VOIGT) IFCN(I)=3

IVARY is a switch, IVARY=1 if parameter is varied. Otherwise, tell
LSQENP the parameter is held constant.

DO 400 J=1,3 .

IF(IVARY(IDX+J) .EQ.1)GOTO 400

IP=1IP+1

IB(IP)=IDX+J

CONTINUE

CONTINUE

Punching ‘offset’ in the offset card fixes this parameter.
READ(5,450) FITOFF,B(M-1)

FORMAT (A8,8X E16.9)

IF(FITOFF.NE.OFFSET) GO TO 500

IP=IP+1

IB(IP)=M-1

Punching ’slope ' in the slope card fixes this parameter,
READ(5,450) FITSLO,B(M)

IF(FITSLO.NE.SLOPE) GO TO 501

IP=1P+1

IB(IP)=M

READ(5,502) HORSIZ, (HORIZ(I),I=1,16)
FORMAT(12,16A4)

READ(5,502) VERSIZ, (VERT(I),I=1,16)
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510

515

520

525

530

535

540
545
548

550
600

650

700
725

730

735
750

o 0 00
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FORMAT (3A4)

G0 TO 550

IP=0

READ(5,515) M

FORMAT(I1)

DO 535 I=1,M

IFCN(I)=4

READ(5,520) (PARDES(J,I),J=1,20)

FORMAT (20A4)

READ(5,525) B(I)

FORMAT(E16.9)

READ(5,530) (FIXED(J,I),J=1,2)

FORMAT (2A4)

IF(FIXED(1,I) .NE.FIXTST) GO TO 535

IP=IP+1

IB(IP)=I

CONTINUE

Set the variable IDX=1, so when FUNCTION PEAKVA is called, it will
know how to make the logical test to find the correct function.
IDX=1

READ(5,540) HORSIZ, (BORIZ(J),J=1,16)

FORMAT(12,16A4)

READ(5,545) VERSIZ, (VERT(J),J=1,16)

FORMAT(I2,16A4)

READ(5,548) (ORIENT(I),I=1,3)

FORMAT(3A4)

Save the parameters, since LSQENP changes them.

DO 600 I=1,M

BA(I)=B(I)

Get the old parameters, since they were changed by LSQENP,

DO 700 I=1,M

B(I)=BA(X)

IF(NEWDAT.EQ.0) GO TO 750

CALL READ(X,Y,N)

Find the maximum and minimum values of the data for integ. B plotting.
XMAX=X(1,1)

XMIN=X(1,1)

DO 730 I=2,N

IF(X(I,1) .LT.XMIN) XMIN=X(I,1)

IF(X(I,1) .GT.XMAX) XMAX=X(I,1)

CONTINUE

YMAX=Y(1)

YMIN=Y(1)

DO 735 I=2,N

IF(Y(I) .LT.YMIN) YMIN=Y(I)

IF(Y(I).GT.YMAX) YMAX=Y(I)

CONTINUE

CALL LSQENP(N,M,1,Y,X,B,1IP,IB,IDVT,0,IQUIT, IPRNT)

Thus, the array CNEW contains the initial value of parameter ome
in CNEW(1), final value of parameter one in CNEW(2), initial value
of parameter two in CNEW(3), final value of parameter two in C(4)
ad infinitum, ad naseumd,

The final value of a parameter is supplied by LSQENP if
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c the parameter is floating, otherwise, the initial guess or
c value set in SUBROUTINE PEAKVA is used.

DO 800 I=1,M

CNEW(2#*1-1)=BA(I)

CNEW(2+I)=B(I)

800 CONTINUE :
IF(FITTST(1) .NE.LINE) CALL FCNOUT(CNEW,M,FIXED, PARDES)
IF(FITTST(1) .EQ.LINE) CALL OUTPUT(CNEW,NPEAKS)
IF(IPLOT.EQ.1)CALL PLOTPK(X,Y,N,B,M2)
GO TO 28
END
//LKED. SYSLMOD DD DSN=DDS.NONLIN(MAIN),
// DISP=0LD, VOL=SER=CITSLS
// EXEC FORTXCL,PARM.FORT='OPT=2',PARM.LKED="'LIST,NCAL,LET’
//FORT.SYSIN DD *
c

c function ymodel
c
FUNCTION YMODEL(X,B)

c This function subroutine is used only when fitting functions other than
c Gaussian, Lorentzian or Voigt. The user can place any calculable fen
c here.

DIMENSION B(50)
REAL*4 POWER,K
COMMON/ USRMSG/TITLE(20) ,FITTST(20)
DATA EXPONT, SINGLE,IWO, VOIGT, POWER/ ' EXPO', ' SING', 'IWO ', 'VOIG',
» 'POWE'/
IF(TITLE(1) .BEQ.SINGLE) GO TO 500
IF(TITLE(1) .EQ.TIW0) GO TO 400
IF(TITLE(1) .EQ. EXPONT) GO TO 300
IF(TITLE(1) .EQ.POVER) GO TO 200
IF(TITLE(1) .EQ.VOIGT) GO TO 600
100 GO TO 700 :
200 YMODEL = B(1) + B(2)*X**B(3)

RETURN

300 YMODEL = B(1) + B(2)*EXP(-B(3)/(.6951*X))
RETURN

400 BOSON = 1./(EXP(B(3)/(.6951*X)) - 1.)
YMODEL = B(1) + B(2)*BOSON*(BOSON+1.)
RETURN

500 YMODEL = B(1) + B(2)/(EXP(B(3)/(.6951*X)) - 1.)
RETURN

600 Zz = ABS((X-B(1))/B(3))
RATIO = ABS(B(2)/B(3))
YMODEL = B(5) + B(4)*K(ZZ,RATIO)
RETURN

700  WRITE(6,800)

800 FORMAT(' YOU MISSED, NO FCN WAS CHOSEN IN SUBROUTINE YMODEL.')
RETURN
END

//LKED, SYSLMOD DD DSN=DDS.,NONLIN(YMODEL),

/! DISP=0LD, VOL=SER=CITSLS5

// EXEC FORTXCL,PARM.FORT='OPT=2',6 PARM.LKED="'LIST,NCAL,LET’
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//FORT.SYSIN DD *
c

c function peakva
c
FUNCTION PEAKVA(X,B, IDX)
DIMENSION B(50),BN(50) .
COMMON/ IDENT/ID
COMMON/NAME/FUNCT(3,12) , INHOMO
COMMON/XLIM/XMIN, XMAX
COMMON/FIT/BN
COMMON/POSIT/XN
COMMON/FCN/IFCN(10)
EXTERNAL CONVOL
REAL*4 LORE, GAUS, VOIGT,K, INHOMO
DO 100 I=1,50
BN(I1)=B(I)
100 CONTINUE
ID=1IDX
XN=X
J=(IDX-1)/3 + 1
IGO=IFCN(J)
GO TO (300,200,400,450),1G0
150 GO TO 500
200  PEAKVA=B(IDX+1)*EXP(-2.77259*((X~-B(IDX))/B(IDX+2))*#%2)

RETURN

300 PEAKVA=(B(IDX+1)*(B(IDX+2)/2.)**2)/( (X-B(IDX))#**2+(B(IDX+2)/2.)
,%%2)
RETURN

c K(X,RATIO) is B. Armstrong'’s power series expansion of the Voigt fcn.

400  ZZ=(X-B(IDX))/INHOMO
RATIO=ABS(B(IDX+2) /INHOMO)
PEAKVA=B(IDX+1) *K(ZZ, RATIO)

RETURN .
c DCADRE, an IMSL routine, computes the voigt function by Romberg integr.
c It is slow B expensive, used only to check K(X,RATIO).
450  PEAKVA=DCADRE(CONVOL, XMIN, XMAX,0.03,0.03, ERROR, TER)

RETURN

500 WRITE(6,600)

600 FORMAT(' No such function is in peakva now, User either has an
,error in input or must supply a new function peakva') ‘
STOP
END

//LKED, SYSLMOD DD DSN=DDS.NONLIN(PEAKVA),

// DISP=OLD, VOL=SER=CITSLS5

// EXEC FORTXCL,PARM.FORT='OPT=2',PARM,LKED='LIST, NCAL,LET'

//FORT,SYSIN DD *

c

c subroutine pcode
c
SUBROUTINE PCODE(P,X,B,F,I)
c This is a routine required by LSQENP. When possible or practical,
c the user supplies the partial derivatives of the fcn to be fit here.
c When the S/N is very high, analytic partials should improve the quality
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c of the fit.
DIMENSION P(1),B(1),X(500,1)
COMMON/FCN/IFCN(10)
COMMON/NUMPK /NPEAKS, M2
DO 250 JY=1,NPEAKS
ID=3*(J-1)+1
IGO=IFCN(J)
GO TO (100,200,300,300),IG0
50 GO TO 300
100 VIDTH
DENOM

(B(ID+2)/2.)%*2
(X(1,1)-B(ID))**2+WIDTH
P(ID) B(ID+1)*WIDTH*2 .#(X(1,1)-B(ID))/DENOM**2
P(ID+1)= WIDTH/DENOM
P(ID+2)= B(ID+1)*(SQRT(WIDTH) /DENOM-WIDTH**1,65/DENON**2)
GO T0 250
200 EXPRES = EXP(-2.77259%((X(I,1)-B(ID))/B(ID+2))*%2)
P(ID) = (2.%2.77259%B(ID+1)#*(X(I,1)-B(ID))*EXPRES)/(B(ID+2)**2)
P(ID+1)= EXPRES
P(ID+2)= (2.%2.77259*B(ID+1)*((X(I,1)-B(ID))*%2)*EXPRES)/
» (B(ID+2)%%3)
250 CONTINUE
P(M2+1)= 1.
P(M2+2)= X(I,1)
300 RETURN
END
//LKED.SYSLMOD DD DSN=DDS.NONLIN(PCODE),
// DISP=0LD, VOL=SER=CITSL5
// EXEC FORTXCL,PARM, FORT='0PT=2',PARM,LKED='LIST,NCAL,LET'
//FORT.SYSIN DD #
c

c subroutine fcode
c
SUBROUTINE FCODE(Y,X,B,F,I)

c This subroutine is called by LSQENP. It calculates the valune

c baseline and calls subroutine PEAKVA to calculate the peak’s

c contribution, If not fitting line shapes, it calls YMODEL.
REAL*4 LINE

DIMENSION Y(1),X(500,1),B(50)
COMMON/ USRMSG/TITLE(20) ,FITTST(20)
COMMON/ NUMPK/NPEAKS, M2
DATA LINE/'LINE'/
IF(FITTST(1) .NE,LINE) GO TO 300
F=B(M2+1)+B(M2+2)*X(1,1)
DO 200 IDX=1,M2,3
200 F=PEAKVA(X(I,1),B,IDX)+F
RETURN
300 F=YMODEL(X(I,1),B)
RETURN
END
//LKED.SYSLMOD DD DSN=DDS.NONLIN{(FCODE),
{/ DISP=0OLD, VOL=SER=CITSLS
// EXEC FORTXCL,PARM.FORT='0PT=2"',PARM,LKED='LIST, NCAL, LET’
//FORT.SYSIN DD
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4+

function k

FUNCTION K(ZZ,RATIO)

This function is the real part of the complex probability
or the Voigt spectrum line profile.

REAL K,K1,K2,K3

COMMON/VOIGT1/W(10),T(10),Y2

One must use the ABS(ZZ) since Armstrong’s routine does not calculate
the symmetric Voigt function for negative arguments (understandably).
Given a negative argument, functionm k will pick the wrong subroutine

(k1,k2,k3) and the subroutine will return the wrong value since many

of the statements are not even with respect to ZZ.

A=ABS(ZZ)

Y2=RATIO**2
IF(RATIO.LT.1.0.AND.A.LT.4.0.0R.RATIO.LT.1.8/(A+1.0))GO TO 300
IF(RATIO.LT.2.5.AND.A.LT.4.0) GO TO 200
E=K3 (A, RATIO)

RETURN

K=K2(A,RATIO)

RETURN

K=K1(A,RATIO)

RETURN

END

//LKED. SYSLMOD DD DSN=DDS,NONLIN(K),

// DISP=0LD, VOL=SER=CITSLS

// EXEC FORTXCL,PARM.FORT='OPT=2',PARM,LKED='LIST, NCAL,LET’
//FORT.SYSIN DD *

c
c
[+

OO0 unw

function K1

FUNCTION K1(A,RATIO)

COMMON/HUMMER/C

REAL*8 C(34),COEFF,BNO1,BNO2,BN,X1,F

REAL K1

F3(T)=EXP(T%%2-A%*2)

Y2=RATIO**2

IF((A®#*2-Y2) .GT.70.0) GO TO 2

U1=EXP(-A%*2+Y2) *COS(2.*A*RATIO)

GO TO 5

U1=0,0

IF(A.GT.5.0) 6O TO 1000

Clenshaw’w algorithm as per Hummer. From statement 5 TO 30,Dawson’s
function is computed. Chebyshev coeffs, C(I), are in COMMON/HUMMER/.
BNO1=0,0D0

BNO2=0,0D0

X1=A/5.0D0

COEFF=4 ,0D0*X1%#*2-2,0D0

DO 20 I=1,34

I1=35-1

BN=COEFF*BNO1-BN02+C(I1)
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BNO2=BNO1

BNO1=BN

F=X1%(BN-BN02)
DNO1=1.0-2.0*A*SNGL(F)
DN02=SNGL(F)

60 TO 1200
DNO1=—(.5/A%**2+,75/A%**%4+1 ,875/A%*6+6 .5625/A%*8+29,53125/A**10+
1162.4218/A%*12+1055,7421/A%*14)
DNO2=(1.-DNO1)/(2.#*A)
FCN=RATIO*DNO1
IF(RATIO.LE.1.0E-08)GO TO 2500
G=1.0

YN=RATIO

DO 2000 I=2,50
DN=(A*DNO1+DN02) *(-2,) /FLOAT(I)
DN0O2=DNO1

DNO1=DN
IF(MOD(I,2))2000,2000,1500
&=-Q

IN=IN*Y2

G=DN*YN

FCN=FCN+Q*G :
IF(ABS(G/FCN) .LE.1,0E-08)GO TO 2500
CONTINUE

K1=U1-1.12837917%FCN

RETURN

END

//LKED, SYSLMOD DD DSN=DDS.NONLIN(K1),

// DISP=OLD, VOL=SER=CITSLS5

// EXEC FORTXCL, PARM.FORT='OPT=2',PARM,LKED='LIST,NCAL,LET’
//FORT,SYSIN DD *

[
c
c

100

O 000

function K2

FUNCTION K2(A,RATIO)
REAL K2
COMMON/VOIGT1/W(10),T(10),Y2
G=0.0
Using S=T(I)+A is also correct since -ARCTAN(Q)=ARCTAN(-Q)
DO 100 I=1,10
R=T(I)-A
=-T(I)-A
The next two statements are exactly as in Armstrong’s program.
Though I believe the arguments of the logarithms to be wrong,
I have demonstrated the accuracy Armstrong quotes is still right,
G=G+(4 ,%T(I)*%2-2,)*(R*ATAN2 (R, RATIO) +S*ATAN2 (S, RATIO)~,5*RATIO*
» (ALOG(Y2+R*#2) +ALOG(Y2+S%%2) ) ) *W(TI)
The following is 20 term Gauss-Hermite quadrature using the Voigt

fcn integrated by parts once, not twice. Althouvgh less accurate, it's

faster.

G=G+(ATAN2 (R, RATIO) + ATAN2(S,RATIO))*T(I)*W(I)*2.0
K2=0.318309886%G

RETURN
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END
//LKED.SYSLMOD DD DSN=DDS.NONLIN(K2),
// DISP=0LD, VOL=SER=CITSLS
// EXEC FORTXCL, PARM,FORT='OPT=2‘,PARM,LKED='LIST,NCAL, LET'
//FORT.SYSIN DD *
c

c function K3
c
FUNCTION K3(A,RATIO)
REAL K3
COMMON/VOIGT1/W(10),T(10),Y2
G=0.0
DO 100 1I=1,10
100 G=G+(1.0E0/((A-T(X))**2+Y2)+1.0E0/ ((A+T(I))**2+Y2))*W(I)
K3=0.,318309886 *RATIO*G
RETURN
END
//LKED.SYSLMOD DD DSN=DDS.NONLIN(K3),
// DISP=OLD, VOL=SER=CITSLS5
// EXEC FORTXCL,PARM.FORT='0PT=2',PARM,LKED="'LIST,NCAL,LET'
//FORT.SYSIN DD #*
c

c function convol
c
FUNCTION CONVOL(Z)
DIMENSION BN(50)
COMMON/ IDENT/ID
COMMON/FIT/BN
COMMON/POSIT /XN
FCN1=(BN(ID+1)*((BN(ID+2)/2)%%2))/((XN-Z)**2+(BN(ID+2)/2) *#*2)
FCN2=EXP(-2.77259%((Z~-BN(ID))/1.8) **2)
CONVOL=FCN1*FCN2
RETURN :
END
//LKED, SYSLMOD DD DSN=DDS,NONLIN(CONVOL),
// DISP=OLD, VOL=SER=CITSLS5
// EXEC FORTXCL, PARM.FORT='OPT=2',PARM,LKED='LIST,NCAL, LET'
//FORT.SYSIN DD *
c

c subroutine fcnout
c
SUBROUTINE FCNOUT(CNEW,M,FIXED, PARDES)

¢ This subroutine is called to display the results of fitting
c non—-lineshape data (i.e. if ome fits data that are not spectra
c to some functional form other than Gaussian, Lorentzian or Voigt).

DIMENSION CNEW(100),PARDES(20,50) ,FIXED(2,50)
COMMON/ USRMSG/TITLE(20) ,FITTST(20)
WRITE(6,100)

100 FORMAT(26 (5H®%%s%))
WRITE(6,500)
WRITE(6,125) (FITTST(I), I=1,20)

125 FORMAT(' THIS IS A ',20A4)
WRITE(6,130) (TITLE(I), I=1,20)
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FORMAT(' ’,20A4)

DO 1000 I=1,M

WRITE(6,150) I

FORMAT(' PARAMETER NUMBER ’,I11)

WRITE(6,200) (PARDES(J,I),J=1,20)

FORMAT(10X,20A4)

WRITE(6,250) (FIXED(J,I),J=1,2)

FORMAT(10X,’  PARAMETER IS ',2A4)

WRITE(6,300) CNEW(2+*I-1)

FORMAT(10X, ' INITIAL PARAMETER VALUE IS=’,E14.7)
WRITE(6,400) CNEW(2*I)

FORMAT(10X,' FINAL PARAMETER VALUE 1S=',E14.7)
WRITE(6,500)

FORMAT(' ')

CONTINUE

WRITE(6,100)

RETURN

END

//LKED, SYSLMOD DD DSN=DDS.,NONLIN(FCNOUT),
// DISP=OLD, VOL=SER=CITSLS5

- // EXEC FORTXCL,PARM.FORT='0PT=2',PARM,LKED='LIST,NCAL,LET'

//FORT.SYSIN DD *

c
c
c

c
c

100

125

150

175

180

185

200

300

subroutine output

SUBROUTINE OUTPUT (CNEW, NPEAKS)

This subroutine is called to display the results of fitting
lineshape data only.

DIMENSION CNEW(100)

REAL*4 LORE, GAUS, VOIGT, INHOKO

COMMON/NAME/FUNCT (3,12) , INHOMO

COMMON/ USRMSG/TITLE(20) ,FITTST(20)

DATA LORE, GAUS,VOIGT/'LORE’, 'GAUS’,'VOIG'/

WRITE(6,100)

FORMAT (26 (5H*%**#))

WRITE(6,125)

FORMAT(' ')

WRITE(6,150) (FITTST(I),I=1,20)

FORMAT(' THIS IS A ',20A4)

WRITE(6,175) (TITLE(I), I=1,20)

FORMAT(' ’,20A4)

IF(FUNCT(1,1) .NE.VOIGT) GO TO 185

WRITE(6,180) INHOMO

FORMAT(' THE INHOMOGENOUS FWHM FOR THE VOIGT FCN IS FIXED TO =’
,»,F7.3)

WRITE(6,125)

WRITE(6,200)

FORMAT(5HOPEAK, T9, 'FUNCTION’ ,T24, ' INITIAL’,T40, 'FINAL’,T56, ' INITIA
,L',T73,'FINAL' ,T88, 'INITIAL’,T104, 'FINAL',T120, 'FINAL’)
WRITE(6,300)

FORMAT(1H ,T24, 'POSITION’',T40, 'POSITION',TS56,'AMPLITUDE' ,T72,
, ' AMPLITUDE’ ,T89, 'FWHM’ ,T104, 'FWH}' ,T120, 'AREA’)

DO 500 I=1,NPEAKS
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IDX=6*(I-1)

IF(FUNCT(1,1) .NE.GAUS) GO TO 400
c To calculate the area beneath a Gaussian, 1.064*FWHM*HEIGHT

AREA=1 .06 447*CNEW(IDX+4) *CNEW(IDX+6)

GO TO 500
c To calculate the area beneath a Lorentzian, 1.57*FWHM*HEIGHT
400  AREA=1.57*CNEW(IDX+4)*CNEW(IDX+6)

IF(FUNCT(1,I).EQ.VOIGT) AREA=0.0
500 WRITE(6,600) (I,(FUNCT(K,I),K=1,3),(CNEW(IDX+J),J=1,6),AREA)
600 FORMAT(1EH ,I3,2X,3A4,7F15.3)

WRITE(6,125)

WRITE(6,700)
700 FORMAT(1HO,19HBASELINE PARAMETERS)

WRITE(6,800)
800 FORMAT(1H ,T16,7HINITIAL,T32,5HFINAL,T48,7HINITIAL,T64,SHFINAL)

WRITE(6,900)
900 FORMAT(1H ,T16 ,6HOFFSET,T32,6HOFFSET,T48,5HSLOPE, T64,5HSLOPE)

WRITE(6,1000) CNEW(6*NPEAKS+1) ,CNEW(6*NPEAKS+2) , CNEW(6*NPEAKS+3),

1CNEW (6*NPEAKS+4)
1000 FORMAT(12X,E12.5,4X,E12.5,4X,E12.5,4X,E12.5)

WRITE(6,125)

WRITE(6,100)

RETURN

END
//LKED, SYSLMOD DD DSN=DDS,NONLIN(OUTPUT),
// DISP=0LD,VOL=SER=CITSLS5
// EXEC FORTXCL, PARM,.FORT='OPT=2',PARM,LKED='LIST, NCAL, LET'
//FORT.SYSIN DD *
¢

c subroutine read
c
SUBROUTINE READ(X,Y,N)
DIMENSION X(500,1),Y(500)
READ(5,100) N
100 FORMAT(I4)
WRITE(6,150) N
150 FORMAT(1HO, 'NEW DATA SET USED,',I4,' DATA POINTS')
READ(5,200)(X(1,1),Y(I),I=1,N)
200 FORMAT(E16.9,E16.9)
RETURN
END
//LKED,SYSLMOD DD UNIT=SYSDA,DSN=DDS,NONLIN(READ),
// DISP=OLD, VOL=SER=CITSLS5
// EXEC FORTXCL, PARM.FORT='OPT=2',PARM.LKED='LIST,NCAL,LET’
//FORT,.SYSIN DD *
c

c subroutine plotpk
c
SUBROUTINE PLOTPK(X,Y,N,B,M2)
c This routine does the plotting. Currently plots on the versatec.
REAL*4 ORIENT(3),LINE
INTEGER HORSIZ, VERSIZ
DIMENSION X(500,1),Y(500),B(50),DOC(3)
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DIMENSION C(100) ,PEAKX(151) ,PEAK(151),SUM(151)

COMMON/ USRMSG/TITLE(20) ,FITTST(20)

COMMON/AXSLBL/ HORIZ(16) ,VERT(16) ,HORSIZ,VERSIZ, ORIENT
COMMON/YLIM/IFP, YMIN, YMAX

COMMON/XLIM/XMIN, XMAX

COMMON/ COMPXY/ITEST, XLNGTH, YLNGTH

DATA DOC/0.,0.,1./

DATA LINE/'LINE’/

DATA VERTST/'VERT'/

Draw the axes.

ITEST=1

XLNGTH=8 .0

YLNGTH=5.25

IF(ORIENT(1) .NE.VERTST) GO TO 50

XLNGTH=5.25

YLNGTH=8 .0

CONTINUE

YMAX=YMAX*1.15

YMIN=0.0

CALL NEWPEN(2)

CALL VLABEL(0,0,0.0,XMIN,XMAX,XLNGTH,4,HORIZ,HORSIZ,0,'(F8.1)"',8)
CALL VLABEL(0.0,YLNGTH,XMIN, XMAX,XLNGTH,-4,' ',-1,0,'(F0.0)’,0)
CALL VLABEL(0.0,0.0,YMIN, YMAX, YLNGTH, 4, VERT, VERSIZ,1,'(F8.1)',8)
CALL VLABEL(XLNGTH,0.0,YMIN, YMAX,YLNGTH,4,’' ',-1,1,'(F0.0)’,0)
Write the title at the top of the sheet.

CALL NEWPEN(5)

YLONG=YLNGTH+0 .1

CALL SYSSYM(0.0,YLONG,.15,TITLE,80,0,)

CALL NEWPEN(1)

Reduce the number of data points to less than 257.

DO 200 I=1,5

NPLOT=N/1

IF(NPLOT.GT.257) GO TO 200

ISP=1

GO TO 204

CONTINUE

Plot the raw data points,

CALL PLOTXY(N,X,Y,XMIN, XMAX, YMIN, YMAX,0,0,3, ISP,DOC)
XINC=(XMAX-XMIN)/150.

IF(FITTST(1) .NE.LINE) GO TO 600

XINC1=XINC*10,

Draw the baseline.

DO 205 I=1,16

IVAL=XMIN+(I-1)*XINC1

PEAKX (I)=XVAL

PEAK(I)=B(M2+1)+B(M2+2)*XVAL

CALL PLOTXY(16 ,PEAKX,PEAK,XMIN, XMAX, YMIN, YMAX,0,1,0,1,D0C)
Draw each peak, then draw their sum.

DO 300 I=1,151

XVAL=XMIN+(I-1) *XINC

SUM(I)=B(M2+1)+B(M2+2) *XVAL

PO 500 IDX=1,M2,3

DO 400 I=1,151
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XVAL=XMIN+(I-1) *XINC
PEAKX(I)=XVAL
PEAK (1)=PEAKVA(XVAL, B, IDX)

400  SUM(I)=PEAK(I)+SUM(I)

500 CALL PLOTXY(151,PEAKX,PEAK,XMIN, XMAX, YMIN, YMAX,0,1,0,1,D0OC)
CALL PLOTXY(151,PEAKX, SUM, XMIN, XMAX, YMIN, YMAX,1,1,0,1,D0C)
RETURN

600 DO 700 I=1,151
XVAL=XMIN+(I-1)*XINC
PEAKX (I)=XVAL
PEAK(I)=YMODEL(XVAL, B)

700  CONTINUE
CALL PLOTXY(151,PEAKX, PEAK, XMIN, XMAX, YMIN, YMAX,1,1,0,1,D0C)
RETURN
END

//LKED, SYSLMOD DD DSN=DDS.NONLIN(PLOTPK),

// DISP=0LD, VOL=SER=CITSL5
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// EXEC FORTXCL,PARM.FORT='OPT=2',PARM.LKED='LIST, NCAL,LET’
//FORT,.SYSIN DD *

c
c
c
C
C

C
c
C

e NeNeNeNp)

subroutine lsqgenp

SUBROUTINE LSQENP(N,K,M,Y,X,B, IP, IB, IDVT, ICON, IQUIT, IPRNT)

LSQENP AND CONLIM REVISED FEB., 1975
C REVISED 9-18-73
REVISED 11-20-72 TO ADD OPTION FOR NOT PRINTING OBSERVED AND CALCULAT

23

31

34

35

39

42

43

49

55

VALUES AFTER CONVERSION., SET IPRNT LESS THAN 0.
REVISED 6-12-70 TO CALCULATE SUM(( F -Y(I))*#*2) IN DBLE PRECISION
NONLINEAR LEAST SQUARES
DIMENSION BS(50),DB(50),BA(50),G(50),SA(50),P(50),A(50,51)
DIMENSION X(500,1 ),Y(1),B(1),IB(1)
COMMON/LSQPLT/IFP, YMIN, YMAX
COMMON /PARAM/FF,T,E,TAU, AL, GAMCR, DEL, ZETA
COMMON/WEITS/WIS(500)
COMMON /AFCLSQ/ SE,PHI,PHIZ,V¥S,XL, IFSS2,IFSS3,IWS6,I,J,JJ, IBK2,
» IBKA, IBKM, IPLOT, BS, SA,A
REAL*8 PHD,XLL, DTG, GTG
DATA JBCH,JOCH, JPCH, JXCH, YYCR/1H ,1HO,1HP,1HX,1HY/
IWS4=IQUIT
IWS6=ICON
IPLOT=IFP
IF (IFP .EQ. 1) SPRD=YMAX-YMIN

MAX NO OF PARAMETERS IS K=50
MAX NO OF OBSERVATIOMS IS N=500
IWHER = 1 MEANS GET P S AND F
IWHER GREATER THAN 1 MEANS GET F ONLY
IWHER = 0
GO TO 43
CONTINUE
CALL FCODE(Y,X,B,F,I)
IF (IWHER.NE.1)GO TO 39
IF (IFSS2.NE.0)GO TO 39
CONTINUE
CALL PCODE(P,X,B,F,I)
CONTINUE
IF (IWHER.EQ.0)GO TO 43
1 2 3 4
GO T0(106,363,114,125), IWHER
ITCT=0
IF (IPLOT .LE. 0) GO TO 55
CONTINUE
IBCH=JBCH
I0CH=JOCH
IPCH=JPCHE
IXCH=JXCH
IYCH=JYCH
IF(IP.LE.0)GOTO 62
DO 61 I=1,IP
IF (IB(I).GT.0)GO TO 61



356

58 WRITE (6,402)
STOP
61 CONTINUE
62 CONTINUE
XXKDB = 1,
START THE CALCULATION OF THE PTP MATRIX
IBKA=1
IF(IPRNT .LE. 0) GO TO 82
WRITE (6,383)N,K, IP, M, IFP, GAMCR, DEL,FF, T, E, TAU, AL, ZETA
82 CONTINUE
DO 86 I=1,K
G (I) =0.
DO 86 J=1,K
8 A (I1,J)=0.
GO T0(88,91,91),IBKA
88 IFSS3=IPRNT
IFSS2=IDVT
GO TO 92
91 IFSS3=1
92 IF(IFSS3 .GT. Q) WRITE(6,384)(B(J),J=1,K)
92 WRITE(6,384)(B(J),J=1,K)
IF (IFSS3 .LE. 0 .OR. IPRNT.LT. 0) GO TO 99
IF (IPLOT .LE. 0) GO TO 98
¥S =YMIN+SPRD
WRITE(6,382)YMIN, WS
GO TO 99
98 WRITE (6,386)
99 I=1
PHD=0.
IF (IFSS2.EQ.0)GO TO 104
GO TO 111
103 IF (IFSS2.EQ.1)GO TO 112
104 IWHER=1 ’
GET P S AND F
GO TO 31
106 IF (IP.LE.0)GO TO 132
107 DO 109 II=1,IP
IWS=IB(II)
109 P(IWS)=0.
GO TO 132
THIS IS THE ESTIMATED P S ROUTINE
111 CONTINUE
112 IWHER=3
G0 TO 31
114 FWS=F
J=1
116 IF (IP.LE.0)GO TO 120
117 DO 119 II=1,1IP
IF ((J-IB(II)).EQ.0)GO TO 128
119 CONTINUE
120 DBW=B(J) *DEL
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IF (B(J) .EQ. 0.) DBW = DEL
TWS=B(J)
B(J)=B(J)+DBW
IWHER=4
GO TO 31
B(J)=TWS
P(J)=(F-FWS) /DBV
GO TO 129
P(J)=0.
J=J+1
IF ((J-K).LE.0)GO TO 116
F=FVWS
END OF ESTIMATED P S ROUTINE
NOW, USE THE P S TO MAKE PARTIALS MATRIX
DO 136 JJ=1,K
G(JIX)=G(IT)+(Y(I)-F)*P(JJ)
DO 136 II = JJ,K
A(II,JY)=A(I1,JJ)+P(1I)*P(JT)
A(JY,II)=A(11,JY)
IF (IPLOT .LE. 0) GO TO 184
IF (IFSS3.LE.0)GO TO 188
' PLOTTING Y(I),F
I0 = (Y(I)-YMIN)*100./SPRD
IPP = (F-YMIN)*100./SPRD
IF (I0.EQ.IPP)GO TO 148
IF (I0.GT. IPP)GO TO 153
Y(I) OUT FIRST
IP1=10CH
IP2=IPCH
I1=10
I2=1IPP
60 TO 157
ONLY ONE CHARACTER
IP1=IYCH
IP2=1IBCH
I1=10
I2=IPP
GO TO 157
F OUT FIRST
IP1=IPCH
IP2=10CH
I1=IPP
I2=10
ZERO PLOTS IN THE LEFT HAND COLUMN, SO I1 IS ITS
OWN BLANK COUNTER
OVERFLOWS PLOT X IN COLUMN 102
UNDERFLOWS ALSO PLOT X IN COLUMN ZERO
IF (I2.LE.101)GO TO 165
12=101
IP2=IXCH
IF (I1.LT.101)GO TO 165
I1=101
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IP1=IXCH
IP2=IBCH
GO TO 171
165 IF (I1.GE.0)GO TO 171
166 I1=0
IP1=IXCH
IF (I2.6T.0)GO TO 171
169 I2=1
IP2=1IBCH
171 I1M1=I1
I1M=I2-11-1
IF (I1M1.GT.0)GO TO 179
174 IF (I1M2.GT.0)GO TO 177
175 WRITE (6,404)IP1,IP2
GO TO 188
177 WRITE (6,404)IP1,(IBCH,II=1,I1M2),IP2
GO TO 188
179 IF (I1M2.GT.0)GO TO 182
180 WRITE (6,404) (IBCH,II=1,I1M1),IP1,IP2
GO TO 188
182 WRITE (6,404) (IBCH,II=1,I1M1),IP1,(IBCH,II=1,I1M2),IP2
GO TO 188
184 WS=Y(I)-F
IF (IFSS3 .LE. 0 .OR. IPRNT.LT. 0) GO TO 188
187 WRITE (6,401)X(I1,1),Y(I),F,V¥S
188 WS=WIS(I)*(Y(I)-F)
PHD=PHD+WS*WS*1.,0D0
I=I+1
IF (I.LE.N)GO TO 103
PHI=PHD
IF (IP.LE.0)GO TO 199
193 PO 198 JJ=1,IP
IWS=IB(JJ)
DO 197 II=1,K
A(IWS,II)=0.
197 A(I1,IWS)=0,
198 A(IWS,IWS)=1,

INSERT 1
199 IF(IBEA .EQ. 1)GO TO 204
IBKS=1
CALL CONLIM(N,K,M,Y,X,B, IP, IB, IBKS, IBD)

GO To(82,314,38,359,38) ,IBD
SAVE SQUARE ROOTS OF DIAGONAL ELEMENTS
204 CONTINUE
DO 206 I=1,K
206 SA(I)=SQRT (A(I,I))
DO 219 I=1,K
DO 214 J=1,K
WS = SA(I)*SA(J)
IF(WS.GT.0.)GOTO 213
A(I,T) =0.
GO TO 214
213 A(I,J)=A(I,X)/WS
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214 CONTINUE
IF(SA(I) .GT.0.)GOTO 218
G(I)=0.
GO TO 219
218 G(I)=G(I)/SA(I)
219 CONTINUE
DO 221 I=1,K
221 A(I,I)=1.
PHIZ=PHI
WE NOW HAVE PHI ZERO
IF (ITCT.GT.0)GO TO 230
FIRST ITERATION
225 XL=AL
ITCT=1
DO 229 J=1,K
229 BS(J)=B(J)
BS(J) CORRESPONDS TO PHIZ
230 IBK1=1
WS=N-K+IP
SE=SQRT (PHIZ/WS)
IF (IFSS3.GT.0)GO TO 239
IF(IPRNT .LE. 0) GO TO 310
234 IF (IFSS2.EQ.0)GO TO 237
235 WRITE (6,387)PHIZ, SE,XLL, GAMMA, XL
GO TO 310
237 WRITE (6,388)PHIZ, SE,XLL, GAMMA,XL
GO TO 310
239 IF (IFSS2.EQ.0)GO TO 242
240 WRITE (6,379)PHIZ,SE,XL
GO T0 310
242 WRITE (6,385)PHIZ,SE,XL
GO TO 310
244 PHIL=PHI
WE NOW HAVE PHI LAMBDA
DO 247 J=1,K
IF (ABS(DB(J)/(ABS(B(J)) + TAU)).GE.E)GOTO 251
247 CONTINUE
WRITE (6,399)
IBS=4
GO TO 371
251 IF (IWS4.BQ.0)GO TO 257
IF (IWS4.BQ.1)G0 TO 255
IWS4=IWS4-1
GO T0 257
255 WRITE (6,400)
GO TO 371
257 XXDB = 1,
IF (PHIL.GT.PHIZ)GO TO 281
259 XLS=XL
DO 262 J=1,K
BA(J)=B(J)
262 B(J)=BS(J)
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IF (XL.GT..00000001)GO TO 268
264 DO 266 J=1,K
B(J)=BA(J)
266 BS(J)=B(J)
GO TO 82
268 XL=3XL/10.
IBK1=2
GO TO 310
271 PHL4=PHI
VE NOW HAVE PHI(LAMBDA/10)
IF(PHL4 .GT.PHIZ)GOTO 276
273 DO 274 J=1,K
274 BS(J)=B(J)
GO TO 82
276 XL=ILS
DO 279 J=1,K
BS(J)=BA(J)
279 B(J)=BA(Y)
GO TO 82
281 IBK1=4
XLS=XL
XL=XL/10.
DO 285 J=1,K
285 B(J)=BS(J)
GO TO 310
287 IF (PHI.LE.PHIZ)GO TO 296
288 XL=XLS
IBK1=3
290 XL=XL*10.
291 DO 292 J=1,K
292 B(J)=BS(J)
GO TO 310
294 PHITA=PHI
WE NOW HAVE PHI(10*LAMBDA)
IF (PHIT4.GT.PHIZ)GO TO 299
296 DO 297 J=1,K
297 BS(J)=B(J)
GO TO 82
299 IF (GAMMA.GE.GAMCR)GO TO 290
300 XKDB = XKDB/2.
DO 303 J=1,K
IF (ABS(DB(J)/(ABS(B(J))+TAU)).GE.E)GO TO 291
303 CONTINUE
DO 305 J=1,K
305 B(J)=BS(J)
WRITE (6,410)
IBS=4
GO TO 371
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SET UP FOR MATRIX INVERSION
310 CONTINUE
DO 312 I=1,K
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350
351
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A(I,I)=A(I,I)+XL
GET INVERSE OF A AND SOLVE FOR DB (J)S
IBEKM=1
THIS IS THE MATRIX INVERSION ROUTINE
K IS THE SIZE OF THE MATRIX
CALL GJR(A,K,ZETA,MSING)
GO T0(316,38) ,MSING
INSERT 2
IF (IBKM .EQ. 1)GO TO 321
IBKS=2
CALL CONLIM(N,K,M,Y,X,B, IP, IB, IBKS, IBD)
GO T0(82,314,38,359,38),IBD
END OF MATRIX INVERSION, SOLVE FOR DB(J)
DO 325 I=1,K
DB(I)=0.
DO 324 J=1,K
DB(I)=A(I,J)*G(J)+DB(I)
DB(I)=XKDB*DB(I)
XLL=0.0
DTG = 0.
GIG = 0.
DO 334 J=1,K
XLL=XLL+DB(J) *DB(J)
DTG = DTG + DB(J)*G(J)
GIG = GTG + G(J)**2
IF (SA(J) .GT. 0.0) GO TO 333
WRITE (6,332) J,SA(J)
GO TO 335
CONTINUE
DB(J)=DB(J)/SA(J)
CONTINUE
B(J)=B(J)+DB(J)
CONTINUE
KIP=K-IP
IF (KIP.EQ.1)GO TO 350
CGAM=DTG/DSQRT (XLL*GTG)
JGAM = 1
IF(CGAM.GT..0)GOTO 342
CGAM = ABS(CGAM)
JGAM = 2
IF(CGAM .GT. 1.0)CGAM=1.0
GAMMA = 57.2957795%(1.5707288+CGAM*(-0.2121144+CGAM*(0.074261
1-CGAM*.,0187293)) ) *SQRT(1.-CGAM)
GO TO(351,344), JGAM
GAMMA = 180.-GAMMA
IF (XL.LT.1.0)GO TO 351
WRITE(6,398) XL, GAMMA
IBS=4
GO TO 371
GAMMA=0.
XLL=DSQRT (XLL)
IBK2=1
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GO TO 359
354 IF (IFSS3.LE.0)GO TO 358
355 WRITE (6,380) (DB(J),J=1,K)
WRITE (6,381)PHI,XL,GAMMA,XLL
358 GO T0(244,271,294,287),1IBK1

2 002500008 L LS EEPE NN BLNOLNLEOE00SNL0RCECEOLNILOIOCECIEIBIOEEROIOEOIOETRGTS

CALCULATE PHI
359 I=1
PHD=0,
IWHER=2
GO TO 31
363 CONTINUE
PHD=PHD+((Y(I)-F)*1,0D0*WIS(I))**2

I=I+1

IF (I.LE.N)GO TO 31

PHI=PHD

INSERT 3

IF (IBK2 .EQ. 1)GO TO 354

IBKS=3

CALL CONLIM(N,K,M,Y,X,B, IP, IB, IBKS, IBD)
. GO To(82,314,38,359,38),IBD
371 CONTINUE

IBES=4

CALL CONLIM(N,K,M,Y,X,B, IP, IB, IBKS, IBD)

GO T0(82,314,38,359,38),IBD
38 RETURN

332 FORMAT(5X'J=',1I5,5X'SA(J) = ',E15.6)

376 FORMAT (2513)

377 FORMAT (7F10.0)

378 FORMAT(12A6 )

379 FORMAT (/13X,4H PHI 14X,4H S E 9X,7H LAMBDA  6X,
1 25H ESTIMATED PARTIALS USED / 5X,2E18.8, E13.3 )

380 FORMAT(/12H INCREMENTS 5E18.8/(12X,5E18.8) )

381 FORMAT (13X,4H PHI 10X,7H LAMBDA 6X,7H GAMMA 6X, 7H LENGTH /
1 5X, E18.8, 3E13.3)

382 FORMAT(1X,1E9.2,86X,1E9.2 /1X,1H+ 99X,1H+ )

383 FORMAT( SHIN = I3,5X,5H K = I3,5X,SHIP = I3,5X,5H M = I3,5X,
1 7H IFP = 13,5X,13HGAMMA CRIT = E10.3,5X,6HDEL = E10.3/6H FF =
2E10.3,5X,5H T = E10.3,5X,5H E = E10.3,5X,7H TAU = E10.3,5X,6E XL =
3 E10.3 , 4X, THZETA = E10.3 /)

384 FORMAT(/12H PARAMETERS 5E18.8/(12X,5E18.8) )

385 FORMAT (/13X,4H PHI 14X,4H S E 9X,7H LAMBDA 6X,
1 25H ANALYTIC PARTIALS USED /5X, 2E18.8, E13.3)

386  FORMAT(//T12,'X(1,1)’,T31,'Y OBS.’,T49,'Y PRED.’,T68, 'DIFF'/)

387 FORMAT (/13X,4H PHI 14X,4H S E 11X,7H LENGTH 6X, 7H GAMMA 6X,
1 7H LAMBDA 6X, 25HESTIMATED PARTIALS USED /5X, 2E18.8, 3E13.3)

388 FORMAT (/13X,4H PHI 14X,4H S E 11X,7H LENGTH 6X, 7H GAMMA 6X,
1 7H LAMBDA 6X, 24HANALYTIC PARTIALS USED /5X, 2E18.8, 3E13.3)

389 FORMAT(2X,I3,20H PARAMETER NOT USED )

390 FORMAT(2X,13,12H NONE FOUND )

391 FORMAT(2X,13,36X,2E18.8 )

"
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392 FORMAT(1H /13H PTP INVERSE )
393 FORMAT(1H /30H PARAMETER CORRELATION MATRIX )
394 FORMAT( 2X,I3,5E18.8)
395 FORMAT( 1H /1H / 13X,4H STD 17X, 16H ONE - PARAMETER 21X,
1 14H SUPPORT PLANE / 3X, 2H B 7X,6H ERROR 12X, 6H LOWER 12X,
2 6H UPPER 12X, 6H LOWER 12X, 6H UPPER )
396 FORMAT( 1H /1H /30H NONLINEAR CONFIDENCE LIMITS / /
1 16H PHI CRITICAL = E15.8 )
397 FORMAT(1H / 6H PARA 6X,8H LOWER B 8X,10H LOWER PHI 10X,8H UPPER B
1 8X,10H UPPER PHI )
398 FORMAT(18H GAMMA LAMBDA TEST,5X,2E13.3)
399 FORMAT(14H EPSILON TEST )
400 FORMAT(11H FORCE OFF )
401 FORMAT (5X,6E18.8/59X,2E18.8)
402 FORMAT ( 40H BAD DATA, SUBSCRIPTS FOR UNUSED BS =0 [/ / /)
403 FORMAT(2X,I3,5E18.8 )
404 FORMAT(1H , 110A1 )
405 FORMAT(10A1)
406 FORMAT (7F10.0)
407 FORMAT (8F10.0)
408 FORMAT(1H1)
409 FORMAT( 5HIN = I3,5X,5H K = I13,5X,5HIP = I3,5X,5H M = I3,5X,
1 / 6H FF = E10.3,5X,5H T = E10.3,
2 5X,5H E = E10.3,5X,7H TAU = E10.3 / )
410 FORMAT (19H GAMMA EPSILON TEST )
411 FORMAT (3X,I5,2X,10F10.4)
412 FORMAT (27HO NEGATIVE DIAGONAL ELEMENT )
END
BLOCK DATA
COMMON/LSQPLT/IFP,PLOT(2)
COMMON /PARAM/ PARAM(S)
COMMON/WEITS/WIS(500)
DATA IFP,PLOT/0,2%*0.0/
DATA PARAM/4.,2.,.00005,.001,.01,45.,.00001,.1E-70/
DATA WTIS/500%1.0/
END
SUBROUTINE CONLIM(N,K,M,Y,X,B,IP,IB, IBKS, IBD)
C R T T T T T
C THIS IS THE CONFIDENCE LIMIT CALCULATION
DIMENSION BS(50),SA(50),A(50,51)
DIMENSION X(500,1),Y(1),B(1),IB(1)
COMMON /PARAM/FF,T,E, TAU, AL, GAMCR, DEL, ZETA
COMMON /AFCLSQ/ SE,PHI,PHIZ,WS,XL,IFSS2,IFSS3,IWS6,1,J7,JJ,IBK2,
» IBKA, IBKM, IPLOT,BS, SA,A
C TO INITIATE CONLIM
IF (IBKS .EQ. 4)GO TO 21
GO T0(15,17,18),IBKS
15 IBKA1=IBKA-1
GO TO0(27,32),IBKA1
17 GO TO 43
18 IBK21=IBK2-1
J=INDEX
GO T0(158,27,125,134,144),IBK21
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21 DO 22 J=1,K
22 B(J)=BS(J)
WRITE (6,201)N,K, IP,M,FF,T,E, TAU
IBKA=2
THIS WILL PRINT THE Y,YHAT,DELTA Y
IBD=1
GO TO 204
27 IF (IPLOT .LE. 0) GO TO 32
28 IBKA=3
IPLOT=0
IBD=1
GO TO 204
32 WS=N-K+IP
SE=SQRT (PHI/WS)
PHIZ=PHI
IF (IFSS2.EQ.0)GO TO 38
36 WRITE (6,189)PHIZ, SE,XL
GO TO 39
38 WRITE(6,190) PHIZ,SE,XL
NO¥W WE HAVE MATRIX A
39 CONTINUE
IBEM=2
IBD=2
GO TO 204

NOW WE HAVE C = A INVERSE
43 DO 45 J=1,K
IF(A(J,J).LT..0)GO TO 47
45 SA(J)=SQRT(A(J,T))
IBOUT=0 :
GO TO 48
47 IBOUT=1
48 KST=—4
WRITE (6,194)
50 EST=KST+5
KEND=KST+4
IF (KEND.LT.K)GO TO 54
KEND=K
54 DO 55 I=1,K
55 WRITE (6,196)I,(A(I,J),J=KST,KEND)
IF (KEND.LT.K)GO TO 50
IF (IBOUT.EQ.0)GO TO 61
WRITE (6,203)
IBD=3
GO TO 204
61 DO 68 I=1,K
DO 68 J=1,K
¥S=SA(I)*SA(T)
IF(WS.GT. 0.)GOTO 67
65 A(I,J)=0.
GO TO 68
67 A(I,J)=A(I,J)/VS
68 CONTINUE
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DO 70 J=1,K
70 A(J,))=1,
WRITE (6,195)
KST=-9
73 KST=KST+10
KEND=KST+9
IF (KEND.LT.K)GO TO 77
KEND=K
77 DO 78 I=1,K
78 WRITE (6,202)I,(A(I,J),J=KST,KEND)
IF (KEND.LT.K)GO TO 73
GET T*SE*SQRT(C(I,I))
DO 81 J=1,K
81 SA(J)= SE*SA(J)
82 WRITE (6,197)
Ws=K-IP
DO 98 J=1,K
IF (IP.LE.0)GO TO 89
86 DO 88 I=1,IP
IF (J.EQ.IB(I))GO TO 97
88 CONTINUE
89 HJTD=SQRT(WS*FF)*SA(J)
STE=SA(T)
OPL=BS(J)-SA(J)*T
OPU=BS(J) +SA(J) *T
SPL=BS(J)-HJTD
SPU=BS(J)+HJTD
WRITE ( 6,200)7J,STE,OPL, OPU, SPL, SPU
GO0 TO 98
97 WRITE (6,191))
98 CONTINUE
NONLINEAR CONFIDENCE LIMIT
IF (IWS6.EQ.1) IBD=3
IF (IWS6.EQ.1)GO TO 204
VS=K-IP
WS1=N-K+IP
PEN=WS/WS1
PC=PHIZ*(1.+FF*PKN)
WRITE (6,198)PC
WRITE (6,199)
IFSS3=1
J=1
109 IBKP=1
DO 112 JJ=1,K
112 B(JJ)=BS(JJ)
IF (IP.LE.0)GO TO 117
114 DO 116 JJ=1,IP
IF (J.EQ.IB(JJ))GO TO 173
116 CONTINUE
117 Db=-1,
IBKN=1
119 D=DD
B(J)=BS(J)+D*SA(J)
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IBK2=4
IBD=4 L4
INDEX=J
GO TO 204
PHI1=PHI
IF (PHI1.GE.PC)GO TO 137
D=D+DD
IF (D/DD.GE.5.)GO TO 177
B(J)=BS(J)+D*SA(J)
IBK2=5
IBD=4
INDEX=JY
GO TO 204
PHID=PHI
IF (PHID.LT.PC)GO TO 127
GO TO 146
D=D/2.
IF (D/DD.LE..001)GO TO 177
B(J)=BS(J) +D*SA(J)
IBK2=6
IBD=4
INDEX=J
GO TO 204
PHID=PHI
IF (PHID.GT.PC)GO TO 137
XX1=PHIZ/D+PHI1/(1.-D)+PHID/(D*(D-1.))
XK2=~(PHIZ*(1.+D)/D+D/(1.-D)*PHI1+PHID/(D*(D-1.)))
XK3=PHIZ-PC
BC = (SQRT(XK2%XK2-4,*XK1*XK3)-XK2)/(2.%*XK1)
GO TO(151,153), IBKN
B(J)=BS(J)-SA(J)*BC
GO TO 154
B(J)=BS(J)+SA(J)*BC
IBK2=2 '
IBD=4
INDEX=J
GO TO 204
GO TO(159,164), IBKN
IBEN=2
DD=1.
BL=B(J)
PL=PHI
G0 TO 119
BU=B(J)
=PHI
GO T0(167,169,171,175) , IBKP
WRITE (6,196) J, BL, PL, BU, PU
GO TO 185
WRITE (6,193) J, BU, PU
GO TO 185
WRITE (6,196)J,BL, PL
GO TO 185
WRITE (6,191)J
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GO TO 185
175 WRITE (6,192)7
GO TO 185
177 GO TO(178,180),IBEN
C DELETE LOWER PRINT
178 IBKP=2
GO TO 158
180 GO TO(181,183),IBKP
C DELETE UPPER PRINT
181 IBKP=3
GO TO 158
C LOWER IS ALREADY DELETED, SO DELETE BOTH
183 IBKP=4
GO TO 158
185 J=J+1
J1=J-1

IF (J1 .NE. K)GO TO 109
DO 184 JJ=1,K
184 B(JJ)=BS(JJ)

IBD=5
189 FORMAT (/13X,4H PHI 14X,4H S E 9X,7H LAMBDA 6%,
1 25H ESTIMATED PARTIALS USED / 5X,2E18.8, E13.3 )
190 FORMAT (/13X,4H PHI 14X,4E S E 9X,7H LAMBDA 6X,

1 25H ANALYTIC PARTIALS USED /5X, 2E18.8, E13.3)
191 FORMAT(2X, I3,20E PARAMETER NOT USED )
192 FORMAT(2X,I3,12H NONE FOUND )
193 FORMAT(2X,I3,36X,2E18.8 )
194 FORMAT(1H /13H PTP INVERSE )
195 FORMAT(1H /30H PARAMETER CORRELATION MATRIX )
196 FORMAT( 2X,I3,5E18.8)
197 FORMAT( 1H /1H / 13X,4H STD 17X, 16H ONE - PARAMETER 21X,
1 148 SUPPORT PLANE / 3X, 2H B 7X,6H ERROR 12X, 6H LOWER 12X,
2 6H UPPER 12X, 6H LOWER 12X, 6H UPPER )
198 FORMAT( 1H /1H /30E NONLINEAR CONFIDENCE LIMITS / /
1 16E PHI CRITICAL = E15.8 )
199 FORMAT(1H / 6H PARA 6X,8H LOWER B 8X,10H LOWER PHI 10X,8E UPPER B
1 8X,10H UPPER PHI )
200 FORMAT(2X,I3,5E18.8 )
201 FORMAT( 5HIN = I3,5X,5H K = I3,5X,5HIP = I3,5X,5K M = 13,5X,
1 / 6H FF = E10.3,5X,5H T = E10.3,
2 SX,5H E = E10.3,5X,7H TAU = E10.3 / )
202 FORMAT (3X,15,2X,10F10.4)
203 FORMAT (27HO NEGATIVE DIAGONAL ELEMENT )
204 RETURN
END
SUBROUTINE GJR(A,N, EPS, MSING)
C GJR  OBJECT DECE DATE 9-18-73
C GAUSS~JORDAN-RUTISHAUSER MATRIX INVERSION WITH DOUBLE PIVOTING,
DIMENSION A(50,50),B(50),C(50),P(50),Q(50)
INTEGER P,Q
MSING=1
DO 39 K=1,N
C DETERMINATION OF THE PIVOT ELEMENT
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PIVOT=0.
DO 13 I=K,N
DO 13 J=K,N
IF(ABS(A(I,J))-ABS(PIVOT))13,13,10
PIVOT=A(I,J)
P(K)=I
Q(K)=J

CONTINUE
IF(ABS(PIVOT)-EPS)56,56,15
EXCHANGE OF THE PIVOTAL ROW WITH THE KTH ROV
IF(P(K)-K)16,21,16
DO 20 J=1,N

=P(K)
Z=A(L,J)
A(L,X)=A(K,J)
A(K,J)=Z
EXCHANGE OF THE PIVOTAL COLUMN WITH THE KTH COLUMN
DO 26 I=1,N
L=Q(K)
Z=A(I1,L)
A(I,L)=A(I,K)
A(I,K)=Z
CONTINUE
JORDAN STEP
DO 36 J=1,N
IF(J-K)33,30,33
B(J)=1./P1VOT
C(I)=1.
GO TO 35
B(J)=-A(K, J)/PIVOT
C())=A(J,K)
A(K,J)=0.
A(J,K)=0.
DO 39 I=1,N
DO 39 J=1,N
A(I,J)=A(I,7)+C(I)*B(J)
REORDERING THE MATRIX
DO 54 M=1,N
K=N-M+1
IF(P(K)-K)43,48,43
DO 47 I=1,N
L=P(K)

Z=A(1I,L)
A(I,L)=A(I,K)
A(I.K)=Z
IF(Q(K)-K)49,54,49
po 53 J=1,N
L=Q(K)
Z=A(L,J)
A(L,J)=A(K,T)
A(K' J)=Z
CONTINUE
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55 RETUBRN
56 WRITE (6,57) P(K),Q(K),PIVOT
57 FORMAT(16HOSINGULAR MATRIX3H I=13,3H J=13,7H PIVOT=E16.8/)
MSING=1
GO TO 55
END
/ /LKED, SYSLMOD DD DSN=DDS.NONLIN(LSQENP),
// DISP=OLD, VOL=SER=CITSLS
1
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APPENDIX V.
SOLUTIONS TO DIFFERENTIAL EQUATIONS MODELING

TRAP-TO-TRAP ENERGY TRANSFER
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APPENDIX V.

This appendix summarizes the solutions for the differential equations
used to model energy transfer between the monomers (m) and dimers (d) in
DBN. Three cases are considered: (1) the m-to-d and d-to-m transfer rates

1/2

are time independent, (2) both transfer rates depend on time as t and

1/2

(3) the m-to-d rate goes as t and the d-to-m rate is a constant. The
rate equation models are approximate and do not conserve state occupation

probabilities.
CASE 1.

Define nm(t) as the population of the monomer, Bm as the intrinsic
monomer decay rate, mmd as the m-to-d transfer rate. Similarly, define
a set of rates for the dimer by replacing subscripts "d" with "m" and
o n

m' with "d" where appropriate. A phenomenological set of coupled

equations are used:

]

; -8+
n (Bm mmd)nm +w,. n

dm d

; - + + .
%4 (Bd wdm)nd mmdnm
A more exact treatment would solve explicitly for the ground state and
excited state probabilities, e.g. Pm for the excited monomer and lf?m

for the ground state monomer occupation probabilities. Laplace transform

the two equations:

]
[}
w
=]
+
€
=]

sn_ - nm(O)

snd - nd(O) = n_-oan
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Y ' = = a n
where B (Bm + wmd) and o (Bd + wdm)’ s nd are the transforms of

n and ny- Algebraically manipulating the transformed equations:

- N oo -
nm(s +8") nm(O) + wdmnd

n, = nd(O) +w .n

md m
(s + a)

d

Substitute the expression for n, into the expression for Em to find

d
(L n_ = nm(O)(s +a) + wdmnd(O)
(s +u)(s B'") - w, w

dm md

Find the expressions for n. in terms of s and constants

- N _
T nm(o)" “dm’d

(s +8")

substitute into the expression for ﬁd:

Ed(s +q) = nd(O) + wmd(nm(O) + wdmﬁd)

(s +87)

(2) n; = nd(O)(s +87) + wmdnm(O)

(s +a)(s+8") - © 49 dm

Now we want to do the inverse Laplace transform so we must find the
zeros of the denominators for the expressions for Ed and Hm (thus we
will find the residues for the inverse Laplace transform and we can do

a partial fraction decomposition). Equations (1) and (2) can be recast

as (we'll find the same poles this way)

ﬁm = nm(O)(s +a) +‘”dmnd(0)

(s - sl)(s - Sz)
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™y = nd(O)(s #7) +-wdmnd(0)

(s - sl)(s - sz)

where s, and s, are the zeros of (s + 2)(s +B8”) —w_w. and are given

1 2 md dm
by
_ . 2 . 41/2
$1,2 = (o +87) £ [(@+B87)" + 4wy 0 4 —aB?)]
2 2
Substitute in the expressions for a and B and let Bm = Bd=8‘.

Sp,2 = /2B +ugy *owp) F Qg ¥ opy)]

s1 =8 , 82 =B + wod + mdm

Now, do a partial fraction decomposition on the expression for nos

nm(O)(s +a )+ hd(O)mdm = A + B
(s = s)(s - s2) (s = s;) (s = s5)

One finds the coefficients A andB to be (easily check by substitution)

[0y (0 + ng(Dlw, = A

mdmwmd

[nm(O)wmd - nd(O)wdm] = B

w + w

md dm

Therefore, collecting all the previous results:

ﬁm(t) = nm(O)(s + a) + nd(O)wdm

(s - sl)(s - s2)

=[nm(0) + nd(O)]wdm + [nm(O)wmd - nd(O)wdm]

(wmd+ wdm)(s—s]? (wmd+wdm)(s-sz)
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Thus, the inverse Laplace transform is (substituting back in the

expressions for $1 and sz)

a(t) = (nm(O)-mdm))wdm}e'Bt + (0 Oy = 00 ) o~ (BF w gty )t

w + w

md dm w tow J

md dm

N et

Similarly, one finds

-8

ny(6) = (@ (00 e nd ™ am’ ©

t
+ EE(O)wmd—nd(O)wdm) e-(B+w +

“am ¥ “md ) “4m ¥ g )
which can be tested by differentiation.

CASE 2.

@ g and ©4m depend on time as t-l/z. One cannot do a Laplace

transform on the system of equations since the transform of terms like

-1/2 -1/2

nm(t)mmdt and nd(t)mdmt cannot be explicitly evaluated for

arbitrary nm(t), nd(t). In other words, we have

-1/2
Pm - (Bm + mmdt )nm + w

t-l/zn
dm d
~1/2

-1/2
Pd - (Bd + wdmt )nd + mmdt no.

*
n
m

[

e
n

d

Therefore, one guesses ata a solution by naively replacing w

wmdt and ©4m y wdmt

md by

in just the exponential arguments.

Fortunately, the resulting solution is exact as tested by substitution.

- 1/2 1/2

-8t -(Bt+2w . t7 “42w ., t )
nm(t) dm(nm(0)+nd(0) e + wmdnm(O)-wdmnd(O) e md dm

| “md T %nm “nd ¥ Y4m

1/2 1/2

_ -8t -Bt+2w_ 7 420, t777)
nd(t)— wmd(nm(0)+nd(0»]e + wdmnd(o)-mmdnm(o))e md dm

w md + wdm J wmd + wdm J
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CASE 3

~-1/2
amd goes as t / and ® 4m is a constant. Again, the Laplace

transform cannot be performed due to terms containing t:—l/2 and a
solution must be guessed at. I have arrived at a variety of approximate
solutions with error terms having different time dependences, bu the

the solution used in fitting the data was:

1/2
_ -ft -1/2 1 A-Bt=-2w . t7 T t)
nm(t)— mdm(nm(0)+nd(0))e + w 4t nm(O)—wdmnd(O) é md dm
-1/2 -1/2
wmdt + w dm wmdt + wdm |
- 1/2
_.-1/2 -8t oo-1/2 (Bt-2w . t7"“ww ¢
nd(t)-mmdt (nm(0)+nd(0))e + mdmnd(O)—umdt nm(O) e md mn)
-1/2 -1/2
wmdt + wdm wmdt + wdm

Differentiating the solutions, one finds

ﬁm=—snm-wmdt'l/2nm+wdmnd + o.5t'3/2mmdwdm(nm(0)+nd(0))e*t(l_gzwmdtuzﬂu«q
(wmdt“l/2 + wdm)2
. -1/2
ny = -Bnd + mmdt Wy ® 4m®q
- O.Swmdt_3/2wdm(nm(0)+nd(0))e—stél-ec_zmmdtl/z—mdmt])
<wmdt—l/2 + mdm\t

For the trial solutions to be correct, the last term in the last two
equations must be negligible. Since the prefactors are small (for
typical fitting parameters) and the exponential factors range from

0 to 1, the approximation should be good enough.



