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Abstract

This thesis presents two distinct applications of femtosecond laser spectroscopy
combined with molecular dynamics (MD) simulations. The first application is the study
of the dissociation and geminate recombination dynamics of iodine in argon clusters. By
using different size distributions of fhe clusters in a molecular beam, and tuning the
central frequencies of the pump and probe beams, the dynamics over a wide range of
energies, states and reaction coordinates have been resolved. A microscopic picture of
solvation has been established. The MD simulations in this study have covered the
femtosecond to picosecond time scales which are essential for characterizing the
evolution of solvation and its equilibration in clusters. The second application is the
study of vibrational energy and phase relaxation dynamics of iodine in the gas-to-liquid
transition region of rare gases (He, Ne, and Ar). The pressure of the system has been
continuously varied from O to 4000 bar, allowing the relaxation dynamics to be examined
across a wide dynamic range. The usual near-linear density dependence has been found
for the energy relaxation rate, while a striking non-linezr behavior with density has been
discovered for the dephasing rate. The MD simulations in this study adopted both a
classical model and a semi-classical model, and have reproduced the experimental
observations. The novel density dependence of the dephasing rate is attributed to the
combined influence of the solute-solvent forces and the vibration-rotation couplings

which have opposite trends with density in the intermediate and high density regimes.
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Chapter 1

Introduction



The advent of femtosecond lasers has made it possible to resolve microscopic
processes on atomic time scales. With temporal resolutions on the order of 1074 to 10
seconds, molecular reactions can now be examined during the course of transition from
reactants to products. Typically, an ultrafast laser pulse (pump) excites the reactants and
prepares a coherent wave packet along the reaction coordinate. A second (or more) laser
pulse (probe), delayed in time, then probes the transition state and the products. As the
pump-probe delay time is varied consecutively, the dynamic process of reaction is
captured in real time. The introduction of such pump-probe transition-state detection
techniques to the study of chemical reaction dynamics has led to the exciting field of

femtochemistry.!

Since its first application to the study of uni-molecular dissociation dynamics,?
the femtosecond real-time detection technique has been applied to a wide variety of
molecular systems (for reviews, see recent books by Zewail,3 and by Manz and Wiste4).
One particularly fruitful area of research is the study of solvation dynamics in dense
media. Here the time scales of the solute-solvent couplings are typically on the order of
10" to 10" seconds), which is much shorter than the radiative lifetimes (~ 10°
seconds). The random fluctuations of the solvent can quickly bury the spectroscopic
characteristics of the reaction with a thermal distribution. It is, therefore, difficult to
extract unique transition-state information from such solvated systems by traditional
spectroscopic means. With femtosecond pulses, however, the solute molecule can be

excited and probed on time scales shorter than that of the solvent fluctuations. The



nuclear wave packet motions of the solute can then be resolved and the gradual influence

of the solvent can be monitored as the system evolves with time.

To study the solvation dynamics in a controlled manner, two types of solvent
systems are particularly adequate, representing two different approaches. One is
supercritical fluids; the other is molecular clusters. In the first approach, the pressure and,
hence, the density of the solvent can be continuously varied from virtually zero to liquid-
like values, allowing the degree of solvation to be a controllable variable. Combined
with femtosecond real-time techniques, the continuous variation of solvent densities can
systematically link gas phase characteristics to condensed phase behaviors. In the second
approach, the cluster systems offer an opportunity to examine solute-solvent interactions
in a confined environment, potentially bridging the gap between isolated systems and the
condensed phase in a different manner from the supercritical fluids. Molecular clusters
have both microscopic and macroscopic properties which have been studied as a function
of size and composition.6-8 On the femtosecond time scale it should be possible to
examine the elementary motions of reactions in these clusters and elucidate the effect of

the solvent shells and compositions on the wave packet motion.?

In this thesis, the real-time techniques are applied to the study of reaction
dynamics of iodine both in supercritical rare-gas fluids (He, Ne, and Ar) and in argon
clusters. In the former, the focus is on the vibrational coherence (phase) and energy
relaxation; in the latter, the focus is on the dynamics of dissociation and recombination.

The molecular iodine is chosen in these studies for a number of reasons. The



femtosecond dynamics of I, have been studied in a gas cell, and in a molecular beam.10-12
Also, the dynamics of the isolated molecules have been contrasted with those of high-
pressure gases!3:14 and in clusters with one or few rare-gas atoms.!5.16 In addition, earlier
studies have examined the process of caging at high pressures,!7 in liquids,!8-22 and in
matrices.2324 The attractiveness of iodine as a solute lies in its simplicity as a diatomic

molecule and in the characterization of its potential energy curves.25-29

For the supercritical system, the pressure of the rare gases is changed from 0 to
4000 atmospheres (bar). The coherence and population of a nuclear wave packet and
their decay with time are directly examined as the system transitions from gas phase to a
supercritical fluid with liquid-like densities. =~ While the energy relaxation rate
demonstrates a near-linear behavior with the density, the phase relaxation rate shows a
striking non-linear density-dependence. For the cluster system, the average size of the
clusters and the pump and probe wavelengths are varied, and the bond-breaking and
bond-reforming dynamics are resolved across a broad dynamics range. A coherent caging
is observed for the first time in neutral clusters, and is associated with the coherent

dissociation and the rigid structure of large clusters.

Besides the experiments, a molecular dynamics (MD) simulation program has
been developed and used to study the above systems computationally. Based on simple
classical and semi-classical models, the simulation can reproduce the experimental

observations and thereby provide an intuitive interpretation. It also offers an opportunity



to link theoretical concepts to experimental observations and provides insight into the

microscopic processes that govern the reaction dynamics.

The MD simulation program is developed by myself. Most of the theoretical
analysis, modeling, and computation is also carried out by myself. The experimental
work pfesented in this thesis has been performed in collaboration with several coworkers;

their contributions to the relevant projects are described wherever applicable..

Chapter two introduces vibrational dephasing theories, including previous
theoretical models and a general approach. The formula developed in this chapter will be

used in the MD simulations of the phase relaxation dynamics in supercritical rare-gas

fluids.

Chapter three describes the MD simulations designed for the supercritical
systems. The methodology, solvent structures and dynamics as well as a classical and a

semi-classical models used for the dephasing dynamics are described in detail.

Chapter four presents the experimental studies of the coherence and energy
relaxation dynamics of I, in supercritical rare gases. The combination of a femtosecond
laser system with a high-pressure cell apparatus has allowed a direct measurement of
dephasing and relaxation times, as the solvent densify was varied from zero to liquid-like
density. A striking density dependence of the dephasing rate was discovered. The MD
simulation results are also described and compared with the experimental observations
and with other theoretical predictions. The MD simulations have both reproduced the

experimental observations and revealed the underlying microscopic picture of dephasing.



The novel phenomena observed experimentally was attributed to the combined influence
of solute-solvent forces and vibration-rotation couplings which had opposite trend with
density in a motion-narrowing regime. The experimental data presented here were mainly
obtained by Dr. Chaozhi Wan. Mr. Chris Hyland and Mr. Manish Gupta have both

contributed to this work during its early stage.

Chapter five presents the experimental studies of the dissociation and caging
dynamics of I, in argon clusters. The molecular clusters were generated in a molecular
beam and the average size of the clusters can be controlled by varying the backing
pressure. Both direct dissociation (on the A state) and indirect pre-dissociation (on the B
state) of iodine were studied as the pump wavelength was tuned. The bond-breaking time
was found to be a key parameter in determining the time scale and behavior of the
subsequent bond-reforming. In large clusters, following the direct dissociation, a
coherent caging was observed and was attributed to both the coherent nature of the bond-
breakage and the rigid structure of the cluster cage. The text of this chapter has been
taken directly from a published paper.30 This work was done through collaboration with
Dr. Juen-Kai Wang, and was a continuation of an early project which was done through

collaboration with Dr. Earl Potter.31

Chapter six presents the MD studies on the dissociation and caging dynamics of I,
in argon clusters. This work is closely related to the one presented in the previous
chapter. The simulation results presented in this chapter has provided support to the

interpretation given in the previous chapter. The microscopic processes of bond breakage



and bond reformation have been visualized with the help of simple classical models. The
effect of local structures, cluster sizes and temperature, bond distance and the excitation
energies were also examined in the MD simulations. The text of this chapter has also

been taken from a published paper.32

As evidenced by the brief summaries above, the combination of femtosecond real-
time methods with MD simulations provides a powerful means to achieve in-depth
understandings of molecular reaction dynamics and to reveal the underlying microscopic
pictures. Not surprisingly, such approach is being applied to an even broader class of

experiments now and will probably see continued applications in the years to come.
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Chapter 2

Theory of Vibrational Dephasing



11

2.1 Background

The microscopic process of molecular vibration can be observed macroscopically
if the vibration is made coherent, i.e., if all the molecules vibrate in phase. This can be
achieved experimentally by exciting a vibrational mode using femtosecond laser pulses.
In time domain, the laser pulse initiates the vibrational motion momentarily for all
molecules involved. In phase space, it prepares a coherent wave packet on the
corresponding potential energy surface. Once generated, the coherence of the wave
packet decays with time in solvent, as random fluctuations in the solute-solvent
interactions gradually destroy the phase correlation. Fundamental to the solvation
dynamics, the phase relaxation may serve as a sensitive probe of local structures and
details of intermolecular potentials. The time scale of dephasing also establishes a time

frame, within which the reaction dynamics can be made coherent.

| In this chapter the origin of dephasing for a diatomic molegule embedded in dense
solvents is considered. The focus is on the phase coherence and its decay by the so called
pure dephasing process (7). Since the energy relaxation process (7}) is not included
here, it is assumed that T, =7, in this chapter. Later in Chapter 4 we consider both
processes. There are two principle causes of dephasing: one is the external forces,
directly associated with the random solute-solvent collisions, and the other is the
vibration-rotation couplings. The former contribution to the dephasing rate can be
estimated based on the independent binary collision model (IBC) in which the solute-

solvent collisions are assumed to be binary and independent of one another.! Under this
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assumption, the total phase spread (uncertainty) 6 is proportional to the product of the
phase shift A¢ caused by one collision and the fluctuations in the collision number N,

ie.,

5~ Ap- N2, | @2.1)
The collision humber N over time ¢t is given by:

N=t T;:u’ (2.2)
where 77, is the collision rate. The dephasing time 7, is estimated by equating the phase

spread 0¢ to 2m, i.e.,

T, ~ 41’1, [(Ag)’. (2.3)
The dephasing rate is, therefore, given by

T =[(ag) [4n?]- 20, (2.4)
which is linearly proportional to the collision rate 7. According to the hard-sphere
theory, the collision rate has a linear density behavior at low densities and becomes

nonlinear at higher densities due to the increased role of the solvent volume (packing).

Based on the IBC theory and model potentials, analytical expressions for the
dephasing rate can be derived rigorously. Assuming an anharmonic potential for the

vibrational mode:

V(@)= %uwéQZ + %fQﬂ (2.5)
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and an exponential function for the solute-solvent potential, Oxtoby obtained the

following expression for the dephasing rate:2

. . 2
_ k.T 2 _
T2;cloll = £ 2 (1" ﬂ;] Tc::ll' (2.6)

8wp L'y pay
In the above equations, @ is the vibrational coordinate of the oscillator, y is the reduced
mass of the solute, @, is the unperturbed vibrational frequency, f is the cubic force
constant, L is the range of the solute-solvent potential, 1" is the reduced mass of the
solvent relative to the solute, and 77, is the collision rate. The linear dependence of the
dephasing rate on the collision rate is also predicted by the hydrodynamic theory, in

which a modified Langevin equation is solved for the vibration of a homo-nuclear

molecule (anharmonic) in a viscous media.3

Schweizer and Chandler developed a theory of dephasing which takes into
account both repulsive and attractive fofces and vibration-rotation couplings. Using the
general integral expression for the vibration correlation function (see below) and
separating forces based on their time scales, they were sble to obtain expressions for the
dephasing rates induced by different forces. For the repulsive force in the motion
narrowing regime, Schweizer and Chandler have obtained the following expression using

a hard-sphere description:4

- @7
Hay

I [ ~(r./2 )] 3mk,T _(1_211)27;,,
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where m is the solvent mass, 7, is the equilibrium bond length of the diatomic molecule,
Ty is the Enskog hard-sphere collision rate for a sphere of diameter o, at infinite

dilution in a solvent of diameter o, given by:

a8 2 —
. 77 =-§(TFkBT/2Ils)/ po’g(c,.0,,5;p) (2.8)
in which p is the number density of the solvent, y, =mM/(m+ M) is the reduced mass

of the solvent, G=(0,+0,)/2, and g(c,,0,,5;p) is the contact value of the radial

distribution function for a solute atom and the solvent, given by:3

(1—n)[%(1+2n)+%(1_n)]ﬂ]z(%)z

- 5]
g(O'a,O's,G,P)= 2(1_7])3

(2.9)
where 1=7p0; is the packing factor of the solvent. As p—0, g(o,,0,,5;p)— 1,

and 7, — %nﬁz\?xp , which is the collision rate for an ideal gas. According to both Egs.

(2.6) and (2.7), the dephasing rate induced by collision forces increases with increasing

density.

In contrast, dephasing by vibration-rotation coupling has a very different behavior.
The molecular rotation exerts a virtual force, the centrifugal force Fyg, along the
vibrational coordinate. The solute-solvent collisions cause the angular momentum to
change randomly. The corresponding force fluctuation AF,, causes a momentary shift
Awy, to the vibrational frequency. The resulting phase shift is ~ A@,, - T, Where 7,

corresponds to the time duration of the force fluctuation. 7., is of the same order of



15

magnitude as the time interval between collisions, i.e. 7,4 The total phase spread is

given by:

50 ~Aw T, N = Aw -T2 £ (2.10)

coll coll

As done previously for the IBC case, the dephasing rate is obtained by equating the total

phase spread to 2rt. Thus,

- 2
Tz;‘I/R ~ (AwVR/zn) T ot (2.11)
Analytical expressions for T;j",R have been derived by Brueck® and Schweizer and
Chandler* by considering the correlation functions of rotation. In the motion narrowing

regime, for diatomic molecules with an anharmonic potential, the expression is as

follows:4

3,1 (. fr )
T = (3K, 1+—Le , 2.12
2;VR 21120)3’;4 ( 3.11603] YtE ( )

where again r, is the equilibrium bond length of the diatomic molecule, 7, is the
molecular Enskog collision time, and ¥ is an adjustable parameter, which is on the order

of one. The above equation predicts that the vibration-rotation coupling contribution to

the dephasing rate decreases with increasing density in the motion narrowing regime.

Besides the collision force and vibration-rotation coupling, Schweizer and
Chandler have also considered the contribution from the attractive force F4. It is defined
as the induction force caused by vibration-induced polarization and dipole moment
fluctuations.* The relaxation time scale of F, was assumed to be on the order of the

solvent diffusion time over a molecular bond length, which is much longer than the time
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scale of dephasing. Its contribution to the dephasing rate, sz, could, therefore, be

evaluated using a slow modulation approximation. Their result indicated that T,., scaled

with (px)l/ ? where p is the solvent density and y is the compressibility. It should be
noted that F, is different from the attractive part of the static solute-solvent potential,
rather it is the change of the potential parameter due to the vibration of the solute. For the
iodine-rare gas system under study, the static attractive force, which is reflected in the
magnitude of the van der Waals binding energy, has been included in the MD simulations
reported here; its contribution to the dephasing rates has been found to be negligible in

comparison with that of the repulsive force.

In this study, the solvent density changes from low, gas-phase values to liquid-like
values, causing the time scales and nature of relevant microscopic processes to vary over
a wide dynamical range. Accordingly, the previous theoretical results can not be directly
applied. Instead, general expressions wiH be derived in the following and will be used in
the MD simulations to evaluate the corresponding dephasing rates and separate the

influence of the different forces, as prescribed below.
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2.2 General Theory

The coherence and dephasing characteristics of an oscillator is described by its
vibration correlation function, (Q(t)Q(O)), where, Q is the coordinate of the I-I vibration
and (---) represents an ensemble average. Classically, (Q(t)Q(O)) can be evaluated by
averaging the product Q(#)- 0(0) over all possible solvent configurations. Such direct
classical calculations are generally not applicable to quantum systems of rﬁolecular
vibrations, unless the condition Aw<<kpT is satisfied. Here, hw represents the
characteristic quantum energy of the vibrational mode, and k,T is the thermal energy of
the system. For the I, vibration of the B state, we have Ao ~ 100 cm™ and kT ~200 cm
! (at room temperature). Classical approximation may, therefore, be applicable in this
case. Generally, however, the vibration correlation function and, hence, the dephasing

rate must be formulated on a quantum mechanical basis.

The equation of motion for a weakly perturbed oscillator” can be used to describe

the solvated molecular vibration in the weak-coupling regime:
0 =ilw,+w,()]e (2.13)
where, Q is the coordinate along the normal mode of vibration, @, is the un-perturbed

vibrational frequency, and ,(¢) is the instantaneous frequency shift induced by the
solute-solvent forces. The time dependence of w,(f) arises from the classical bath

dynamics of solvent molecules. The solution to Eq. (2.13) is given by:

(1) = 0(0) éxp(ia)ot) exp[i‘[;a)l(t' )a’t']. | | (2.14)
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The vibration correlation function, normalized to the initial value <Q2> , 1s given by:

o Ny ' t
(0(n0(0)) = exp(w)ot)<exp[tjoa),(t )dt ]>, (2.15)
which is exact through second order in the vibration-bath interaction. The pointed

bracket () denotes an equilibrium ensemble average over the initial conditions

associated with the bath coordinates. The second factor on the right-hand side of Egq.

(2.15),1.e.,

o(t) = <exp[ij:Aco(z' )dt ]> (2.16)

characterizes the phase relaxation and frequency shift of the oscillator and is called the
relaxation function of the oscillator.” By the fluctuation dissipation theorem, the

resonance absorption spectrum at the frequency @ is given by

I(0-,)= L‘ w=ao)r . 2.17)

Evaluation of the relaxation function or the vibration correlation function is, therefore,
essential to the resolution of the line shape or dephasing rate. According to a cumulant

expansion theorem developed by Kubo,? the relaxation function can be expanded as

<exp[i£a)l(t')dt']> exp[z (i)" jdt, dt a)l(tl) (ol(tn))c] (2.18)

where (o, (t,)--- @, (t, is a cumulant average, and the first two orders are given by:
LU )] g g y

(@(1), = (@ (0) 2.19)
<C01(t1)0)1 (tz )>c = (wl(tl )(Dl(tz )> - <w1(t1 )le(tz )) (2.20)
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In the weak field limit, the cumulant expansion is truncated at the second order, i.e.,

t 4
o(r) = exp[—J.odtl IO dt,(w,(t) o, (t, ))] (2.21)
in cases where (a)l (t)) =0, i.e, the mean frequency shift is zero. If a stationary condition:

(0, +7),(£)) = (,(7)w,(0)) is satisfied, then the double integral in Eq. (2.21) can be

simplified as given in the following:

j(:dtl '[: d(o,(t)o,(1,)) = .[;dr_[: dt,(@,(T+1)0,(1,)) = J'(: dr(t - )@, (1)w,(0)),

(2.22)

where the first equality is obtained by changing variables, i.e., (t,'tz) —(t=t,—-1,1,), and

the second equality is based on the stationary condition mentioned above. The relaxation

function is then reduced to:

60 =exp|-[Lar(t-Nowo,O)]. (2.23)

In general, if {w, ) # 0, we can define a fluctuating frequency Aw(t) = @,(f) - (w,(r)) and,

following similar procedures, obtain the following expression:

(1) = exp(i{w, }¢) exp[——J: dr(t - T)(Aa)(r)Aw(O))]. (2.24)

The objective is now to transform from the frequency correlation function to the
correlation functions of the acting forces. Two perturbation terms are considered here:

one is the solute-solvent interaction potential V,(Q;7) where 7 represents the solvent

coordinates; the other is the vibration-rotation coupling V,,(Q) = J*/21(Q), where J is the
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angular momentum and 1(Q)=p-r?,(Q) = u(r, +Q/2)2 is the moment of inertia of L.

To a second order in Q, V,(Q;F) can be Taylor expanded to

Vi(@F)=FQ+GQ", | (2.25)
where Fy =(9V,/dQ), and G, = (1/2)(oV;/ dQ"), are functions of the bath coordinates 7
only, and represent the forces exerted by solvent molecules along the normal coordinate
Q of the solute. Following Oxtoby,? Fg and Gy are related for an exponential potential of
the solute-solvent interaction: V,(Q;F) o< exp[—(r—Q/Z)/L] where the Q dependence is
now included to indicate the effective solute-solvent distance.  Accordingly,
Gr=Fg/AL, where L is the range of the repulsive force determined by the inter-

molecular potential, and V,(Q;F) is given by

V()= F(Q+Q"/AL). (2.26)
The change of the moment of inertia during a molecular vibration will lead to an
effective force, the centrifugal force Fyg. Similarly, as for the collision term of Eq.

(2.26), the vibration-rotation coupling can be expanded to the second order in Q, i.e., 48

Vir = Fe(Q- 30 /21,), 2.27)
where,

Fp = (0Vir/ 3Q)0 =2Eg,/[r,, (2.28)
and 7, is the equilibrium distance between the two solute atoms. Eg, = J*/2ur? is the

rotational energy of the solute. The general form of both collision and vibration-rotation

couplings is then given by:
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v(0)=F(0+10?), (2.29)
where A=1/4L for the collision force and A=-3/2r, for the vibration-rotation
coupling.

The solute-solvent couplings will cause time-dependent energy shifts for the
vibrational levels, given by the matrix element V, ,(¢) for the nth vibration level. For a

transition involving two adjacent vibrational levels, n and n - 1, the instantaneous

frequency shift ,(¢) induced by the coupling is then given by:

wl(t) = (‘/nn (t) - ‘/n—l,n-l (t))/h = F(t)(an - Qn—l,n—l + A(Q:,n - Q:—l,n—l ))’ (2'30)

where the last equality is based on Eq. (2.29).

The task now is to evaluate the coupling matrix elements. For an anharmonic
oscillator, described by Eq. (2.5), its eigenstates can be expanded in terms of the
corresponding harmonic wave functions. To a first order in the cubic force constant f, the

eigenstate of the nth level is given by:?

v =|e.)- 3&(" ; 1)3/2 )+ 35(%)3/2 o)
_ g ((n +3)(n ;r 2)(n+ 1))"2 0..)+ % (n(n - 1;(n - 2))"2 0.2)

(2.31)

where

(p") is the wave function for the nth vibrational level of the corresponding

harmonic oscillator, and the parameter £ is given by
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f 5 32
= . 232
: 6hm, ( IO ) (232

According to Eq. (2.31), the coupling matrix elements are given by:

_ n+1 32 n 32 _ 1 P
Qn,n - —6)”[(—“2—_) <¢n+1|Ql(pn> - (—2_) ((plel(pn—l >} = (n + 2)M9 (233)
and
ot lolo (e D)
Q. =(0.10%0.) (n+ 2)#% : (2.34)

Substituting Egs. (2.33) and (2.34) into Eq. (2.30), one obtains the following expression

for the instantaneous frequency shift:

o,(t) = (Az/h)F(t), (2.35)
where,
Ag=_ (1- s 2). | (2.36)
H@o\  2Auwp

The frequency fluctuation Aw(z) is given by

Aw(t) = o,(t) - (@,(1)) = (Az/ R)AF(t), (2.37)
where AF(t)= F(t)-(F(t)) is the force fluctuation, and (@,(f)) is again the average

frequency shift. The relaxation function is then given by

¢(t) = exp(i{w, )t) exp[-(Az/rz)2 j; dr(t— T)(AF(T)AF(O))], | (2.38)

which is now expressed in terms of the force correlation function (in contrast with Eq.

(2.24) for the frequency correlation functions). Consequently, the time correlation
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function of (AF(7)AF(0)) is the central element in the determination of the dephasing

rate. Equation (2.38) can be further simplified in the two limiting regimes of slow and

fast modulation of the forces:

A) Slow modulation:

One notices from Eq. (2.38) that the integral of the force correlation function can

be carried out if (AF(T)AF (0)) is a constant of time. In this case, the decay of ¢(f) will
be governed by a Gaussian function. In general, the correlation function (AF(7)AF(0))

decays with time. Its correlation time 7, defined by

T, <(A;)2> |, av(aF(x)AF(0)), | (2.39)

characterizes the speed of the modulation and corresponds, generally, to the decay time of

(AF(7)AF(0)). For example, if (AF(T)AF(0)) decays exponentially, i.e.,
(AF()AF(0)) = ((AF) ), (2.40)

then it can be shown that 7, =7,. The upper limit of the integral in Eq. (2.38) is on the

order of the dephasing time T of interest. In the limiting case where 7_ is much longer

than T,, (AF(T)AF (0)) can be approximated by its constant amplitude term ((AF )2> for

the whole range of the integral in Eq. (2.38), and the relaxation function takes again a

Gaussian functional form given by:

o(f) o< exp[—(Az/h)2 (aFy)r? /2] = PE, (24D

The dephasing rate is, therefore, given by
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12

;' = (8g/n)(AFY)" =((80))" 242
The last equality was based on Eq. (2.37), and indicates that 7, is governed by the
amplitude of frequency fluctuation in the slow modulation limit.

In the slow modulation regime, the relaxation function ¢(f) may be mainly

represented by the Gaussian type function as given by Eq. (2.41). The line shape in this

case is also Gaussian, i.e.,

P 1 o _(co—a)(,)2
(- a,) _ JEE((Aw)z)VZ p[ ——-—2<( Aw)zﬂ (2.43)

where the line width is given by

172

(80))" = (ag/m){(aFy)", (2.44)

which is equal to the amplitude of frequency fluctuations.

B) Fast Modulation:

On the other hand, if 7. is much shorter than T3, then (AF(T)AF(O))—-) 0 for
T >>7,. Since the upper limit z of the integral in Eq. (2.38) is comparable to or longer

than the dephasing time T of interest, one obtains
[ ax(e— 1) (aF(2)AF(0)) = [ d1(r - 1) AF(x)AF(0))
=t[" di(AF(r)AF(0)) - [ wde(AF(1)AF(0))

(2.45)
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where the approximation J.:Q dt(t - T){AF()AF(0)) = 0 is taken, and the second term is a

constant independent of time f. The relaxation function is then represented by an

exponential form:

¢(t)ocexp[—-(Az/h)2t j(?r(AF(r)AF(O))]Ee"/Tz. 048
The‘dephasing rate in this case is given by:

T = (Ag/h)’ | de(AF(r)AF(0)), (2.47)
which, according to Eq. (2.39), is equivalent to the following expression:

I = (Az/)'((AF) )z, = ((Aw)')r,. (2.48)

The last equality is based on Eq. (2.37).

In the fast modulation limit, the relaxation function ¢(t) is mainly represented by

a single exponential as given by Eq. (2.46). The lihe shape is Lorentzian

1 Y
Ho-0 )=——-{e 2.49
( °) /4 (a)—a)0)2 +7y? (2.49)

The line width in this case is given by
7. =((4o))r,. (2.50)
Since 7, << T,, one obtains <(Aw)2>rc << <(Aoo)2>T2 , which leads to the relations:

I <<(d0y)", 2.51)

and

7. =(A0))r, << ((Aw)z)m- | (2.52)



26

The dependence of the dephasing rate and line width on 7, is distinctively different from

the results in Egs. (2.42) and (2.44), respectively, indicating the origin of the so called

motion narrowing. The short time of 7, has reduced the full range of modulation and

thus reduced the TZ"l and the line width.

The correlation time 7, of (AFR (T)AFR(O)> corresponds to the time duration of the
collision. As shown in the MD simulations, 7, is much shorter than the correlation time
Ty Of (AF,(T)AF,(0)). Following Schweizer and Chandler, we assume that the

fluctuations in the inter-molecular forces and vibration-rotation couplings are

uncorrelated, i.e.,

(AF(T)AF(0)) = (AFR(7)AF,(0)) + (AF,, (T)AF(0)). (2.53)
Throughout the whole density range of interest, 7, is also much shorter than T, so that

Eq. (2.47) can be used to evaluate the dephasing rate induced by the collision forces, i.e.,

T = (Az/h) 7 dT({AF,(2)AF,(0)), (2.54)
with now
__h [, 2f

In the above case for collision forces, 7, is always much shorter than T,. However, for
T,z the situation is different; it could be shorter or longer than T, depending on the
density. At very low densities, 7, is longer than T, as shown in the MD simulations, so

that the slow modulation approximation is applicable at these densities. At high
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densities, however, 7,, becomes shorter than T, and the fast modulation approximation

becomes applicable. In general, the relaxation function is given by

o(f) = exp[—4(Az/hre )y jo dt(t- T)(AERO,(T)AERO,(O))], (2.56)
with now
Ag=—" (1+ fr,zj 2.57)
2pwgr, \ 3uw;
and
AERot(t) = ERot(t) - (ERot(t)> . (2.58)

The dephasing time 7,,, is then determined from the decay time of the relaxation

function.
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Chapter 3

Molecular Dynamics Simulations
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3.1 Methodology

In classical mechanics, the trajectory of a system is definite once the initial
conditions and the interaction potentials are known. The trajectory, however, can not be
analytically solved for systems with more than three particles. The difficulty lies in the
fact that the interaction forces depend on the relative coordinates of all particles involved,

the changes of which are in turn determined by the forces. This problem can be

overcome numerically in MD simulations.

Considering only the translational motion for simplicity, the Hamilton's equations

for a N-particle system ( N >>1) is given by:

quzaH/aPu . e N:j=
{m=-aH/aq.,- (=020 N5 =232, @)

where g; and p; are the ith particle’s position and momentum respectively along the

Cartesian coordinate j (x, y, or z). H is the Hamiltonian of the system, and is given by

2
H=Y"'Y -—2%+V(q, p). 3.2)

Jj=x,5.z i
The potential function V(q, p) generally depends on both the coordinates and

momenta of all particles involved. For the system of interest, it will only depends on the
relative coordinates of the particles. If one further assumes that the total potential is a
sum over pair-wise interactions, and each pair-wise interaction is spherically symmetric,

then V(g, p) is reduced to the following form:

V= zuii'(lqi - ‘ZD = z”ii'(’?i') (3.3)

i'#i i'#i
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where r, is the distance between particle i and particle i', u.(r.) is their interaction

it i

potential. Combining Egs. (3.1) to (3.3), at a given time ¢, the Newton’s equations
governing the motion of particle i are given by
. 1 _
‘—ii(t)z-r-rl_:,-z,‘{vuﬁ'(nr(t))Eai(t) (3.4)
g,(1)=7,(¢)
where &(r) is the acceleration of particle i at time ¢ and can be evaluated according to the
current positions of all particles. To first order, the velocity and position in a time step

At is given by

{v,-(tmt) =¥,(1)+3a,(r) At (3.5)

gi(t+ A =g, (1) +5;(r)- A
Such calculation can be applied to all particles involved so that the acceleration at time
t+ At can be evaluated. The time step At can be made small enough to ensure the
accuracy of the calculation. The trajectofy of the system is then obtained by iterating the

above calculations for many time steps starting from a given set of initial positions and

velocities.

In practice, Eq. (3.5) is not directly used for the integration because of its low
convergence order (second order in time step). Numerous algorithms have been
developed based on Eq (3.4) to improve the accuracy and efficiency of the integration.
For a review, see a recent book by Allen and Tildesley.! A simple yet efficient algorithm

was proposed by Verlet,2 as shown below

gi(t+At)=—g,(1 - Ar)+2g,(¢) +a(r)- Ar? (3.6)
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which is correct except for errors of order At*. The velocities do not appear in the above
equation. The velocities are not needed to compute the trajectories, but they are useful
for estimating various properties of the system, such as kinetic energy and velocity
correlation function. Swope et al3 modified the Verlet algorithm to include the velocities

in the calculation as in the following:

3.7

which is called “velocity Verlet” algorithm and is also accurate to the fourth order in Az.

The Verlet and “velocity Verlet” algorithms are exactly reversible in time and,
given conservative forces, are guaranteed to conserve momentum. They are numerically
stable, convenient and simple and are particularly adequate for simulation of liquids or
high pfessure gases, where computation time is a major concern and relatively low

accuracy is required.! If the pair-wise potential is represented by the Lennard-Jones

function:

12 6
uii‘(’}'i') =4g; (%LJ - (‘?’J (3.8)

then the numerically expensive square-root operations can be avoided in calculating the
components of accelerations along a Cartesian coordinate:

12 6
a,(t)=— Y 24¢, 4% 2("—) —(9—) 3.9)

m, oy r r. r.

i’ i’ i’
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which depends on the 7 instead of ..

Classical trajectories depend on both the system Hamiltonian and the initial
conditions, including initial positions and velocities of all particles involved. For the
system of interest, molecular iodine is embedded in compressed rare gases. The initial
positions and velocities must, therefore, represent a thermal distribution at room

temperature and given density. Typically, the system is prepared in the following way:

First, all the atoms are randomly assigned to matrix sites. Two adjacent sites are
assigned to I, — the molecule is treated as two individual atoms bonded by their potential
well. The coordinates of the two iodine atoms are adjusted so that the I-I distance is
equal to their ground state equilibrium value (2.67 A). The total number of solvent
atoms is determined by the density and the cell size used, as discussed below. The initial

velocities are Monte Carlo sampled from a Maxwell distribution at room temperature

(T, = 300 K).

Second, the system is allowed to relax by integrating the Hamilton’s equations for
a certain period of time (typically 10 ps). At the end of the relaxation, the average kinetic

energy (equivalent to a temperature T) of the system is calculated.

Third, all velocities are scaled by a factor ,/ 1, / T and the system is allowed to

relax again. The cycle will be repeated until the final temperature T is within 5% of the

specified value, i.e., 300 K.
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During the preparation, the two iodine atoms interact with each other according to
the ground state, i.e., X state, potential. At the beginning of the simulation, the I-I
potential is momentarily switched to the valence state, i.e., B state. In doing so, the
potential energy of I, is set to be around the 8th vibrational level on the B state. The
parallel component of the relative I-I velocity is set to be zero, while the perpendicular

component remains unchanged.

The iodine X and B states, as well as the iodine-rare gas potentials are modeled by

the following Morse function:

V(r)=De ) ~2¢ I (3.10)

where D is the binding energy, r, is the equilibrium distance, r is the I-I distance, f8
characterizes the stiffness of the potential, and E_ is the asymptotic value of the potential
energy when the two atoms are separated by a infinite distance. The solvent-solvent

potentials are modeled by the Lennard-Jones functions given by Eq. (3.8). The

parameters used for these potentials are listed in Table 1.

Since all the time correlation functions require ensemble averages, it is necessary
to compute a large number of independent trajectories. The independence is achieved by
using different sequences of random numbers in preparing the initial positions and

velocities for each trajectory.

In the simulation, a finite number of atoms are used to represent the corresponding

infinite physical system. A cubic cell of size L and with N=L’-p solvent atoms is
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selected, where p is the given density. To avoid a surface effect near each face of the cell,
a periodic boundary condition is used. The cubic cell is replicated throughout space to
form an infinite lattice. In the course of the simulation, as a molecule moves in the
original cell, its periodic image in each of the neighboring cells moves in exactly the same
way. Thus, as a molecule leaves the central cell, one of its images will enter through the
opposite face. There are no walls at the boundary of the central cell, and no surface
molecules. During the simulation, it is only necessary to store the coordinates of

molecules in the central cell. All the images can be produced by a translational

transform:

(x,y,2) > (x+i-L,y+j - Liz+k-L); i,j,k=0%1$2,- 3.11)
For efficiency, the potentials are cut off at half the size of the cell in evaluating the

forces. To avoid serious cut-off errors,! the size of the cell is chosen to be L = 60, where

o is the range parameter for the Lennard-Jones potential.

It is important to notice the difference between a small, infinitely periodic system
and the isotropic macroscopic system which it is designed to represent. The significance
of the difference depends on the range of the intermolecular potential and the
phenomenon under investigation. For a fluid of Lennard-Jones atoms, the particle is not

able to “sense” the symmetry of the periodic lattice if the cell size is around or greater
than 60 as the potential scales with (o/ r)6 at long distance, which is relatively short-

ranged. The use of periodic boundary conditions inhibits the occurrence of long-

wavelength fluctuations. For a cube of side L, the periodicity will suppress any density
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waves with a wavelength greater than L. Pratt and Haan? have developed theoretical
methods for investigating the effects of boundary conditions on equilibrium properties.
For the relaxation dynamics under study, the time scale of interest is on the order of 10 ps
or less. The time scales for density fluctuations with wavelength greater than L ~ 24A

are orders of magnitude longer. The influence of the lattice periodicity is, therefore,

expected to be negligible.
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3.2 Solvent Structure and Dynamics

3.2.1. Snapshots:

To help visualize the system under study, snapshots generated from the simulation
are plotted in Fig. 1, Fig. 2 and Fig. 3 for He, Ne, and Ar systems, respectively. In these
figures, the larger and darker spheres, which are visible at low densities, are iodine atoms.
The lighter and smaller spheres are He, Ne, and Ar atoms. The centers of the spheres
correspond to the coordinates obtained in the trajectory calculation. The sizes of iodine
and solvent atoms are scaled to their van der Waals diameters (4.30 A for [, 2.44 A for

He, 3.20 A for Ne, and 3.82 A for Ar).

3.2.2. Radial distribution function:
The radial distribution function g(R) of rare gas atoms with respect to the iodine
atom is calculated based on the snapshots obtained from the trajectories. Such

distributions, normalized by R, are plotted in Fig. 3, Fig. 4 and Fig. 5 for He, Ne, and
Ar, respectively. The function quickly drops to zero at short distances in these figures
indicating the finite sizes of the atoms and the steep repulsive forces among them at close

contact.

At long distance, g(R) is almost constant for helium at pressures up to 600 bar

(see Fig. 4). At high pressures, a peak near 3.5 A appears, which is followed by a valley
at 475 A and a second peak at 6.0 A . These two peaks represent the first two packing

shells. Their very existence indicative of a short-range correlation among solvent atoms.5

For neon, the peaks are visible even at 100 bar. The fist peak is near 4.2 A, valley near
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5.25 A, and the second peak near 6.75 A . For argon, the first peak, prominent even at
very low pressures (50 bar), is located near 3.8 A. The second peak is at 7.0 A. At
pressures near and above 600 bar, a third peak appears which is located at 10 A. At
3200 bar, the radial distribution appears almost identical to the one obtained for liquid

argon at 94.4 K.5 Notice that the density at this pressure is the same as that of liquid

argon, i.e., 1.374 g/em® or 20.7 atoms/nm’>.6

3.2.3. Velocity correlation function and collision rate:

The auto-correlation function of solvent velocity, (¥(r)-¥(0)), characterizes the
dynamical properties of the solvent. It has been calculated by averaging the dot product
(¢)- v(0) over all the solvent atoms in the box and more than 105 snapshots. The results
are shown in Fig. 7, Fig. 8, and Fig. 9 for He, Ne, and Ar, respectively. For He and Ne at
low densities, (V(t)-V(O)) can be fit by an exponential function at short times. At high
densities, the correlation functions become non-exponential. For argon, (17(t)-17(0)> can
be described by a Gaussian function at short times. As shown in Fig. 9, the correlation
function becomes negative near 0.2 ps at pressures higher than 1200 bar. For liquid argon
at 94.4 K, a similar negative minimum around 0.33 ps has been reported.> The negative
region that occurs at high densities is interpreted as the back scattering that occurs when a

molecule collides with one of the neighboring molecules forming a cage around the

central one.”

The decay of (¥(¢)- ¥(0)) over time is mainly caused by random collisions among

solvent atoms. If one assumes that an solvent particle loses its memory once it undergoes
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a collision, then the decay time of (¥(r)-7(0)) will represent the time interval 7

coll

between collisions. ~For simplicity, we assigned the time at which (¥(¢)-%(0)) drops to

one half its initial value to 7,,; the inverse value was taken to be the collision rate 77’

coll*

In Fig. 10 we have plotted the collision rates thus obtained for all three solvents. The
behavior of the collision rates with density is similar for He and Ne. Both show a near-
linear increase at low densities and a non-linear increase at high densities. For argon, the
behavior of so-defined collision rates is somewhat different. The rate increases
drastically until reaching a saturate value at densities around 5 atoms/nm’. This appears
to be caused by the fact that at high densities argon tend to cluster around each other to
form pseudo-stable van der Waals complexes. According to the simulation, some of
these complexes can exist for longer than several picoseconds. The lines in Fig. 10 are

polynomial fits to the simulated collision rates (see Table 2).

In Fig. 10, the corresponding Enskog- hard-sphere collision rates are also plotted
for comparison. The values shown were calculated based on the following equation

derived in previous theoretical works (see Eq. (2.8) in Chapter 2 , or Ref. 8):

n _, 2-mpo’

T = %(n:kBT/m) po (3.12)

(1-mpo® )3
In the calculation, the hard sphere diameter was approximated by the Lennard-Jones o
parameter listed in Table 1. For helium and neon, the hard sphere collision rates are

similar to the simulation results, particularly at low densities. For argon, however, the

results differ significantly. This may indicate that the hard sphere assumption is not valid
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for compressed argon gas because of the significant van der Waals attractions among
argon atoms. It is also possible that the decay time of the velocity correlation function is

no longer accurate measure of the collision time in this case.

3.2.4. Mean square displacement and diffusion coefficient:

The mean square displacement of solvent atoms, which undergo Brownian

motions in a thermal system, is related to their diffusion coefficient D by the Einstein

relation:

(#@)=(F@)- F(O)|2> =6Dr+C, (3.13)
where [F(f)—7(0)] is the displacement of an individual particle from time zero to time .
In the simulation, the mean square displacement is calculated by averaging the
displacement square, l?(t)—F(O)IZ, over all solvent atoms and 512 trajectories. The

results obtained are shown in Figs. 11, to 13 for the rare gases at several different

pressures.

At high densities, the asymptotic linear behavior of (xz(t)> with time is achieved

in less than 1 ps. For low densities, however, the linear dependence occurs only after
several picoseconds. Fitting the asymptotes of these curves to straight lines, numerical
values of the diffusion coefficients are obtained. The results are plotted in Fig. 14. As

density increases, the diffusion coefficient decreases rapidly.
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3.3 Solvation Dynamics
3.3.1. Vibration correlation function

According to Ehrenfest’s theorem,? a wave packet always moves like a classical
particle insofar as the expectation values of its position and momentum are concerned.
Moreover, a quantum system approaches the classical limit if its characteristic quantum
energy, i.e., hw, is small relative to the kinetic energy. For the iodine-rare-gas systém
under study, the thermal energy is about 208 cm™ (300 K), which is much higher than the
quantum energies of the translational (continuum) and the rotational modes. It is,
therefore, fully justified to describe these modes classically. The quantum energy of the
iodine vibrational mode is ~ 100 cm™ which is about half the thermal energy. The iodine

vibration may, therefore, be treated classically as well.

In the simulation, the vibration correlation function (Q(1)Q(0)) was directly
evaluated by averaging the product Q()-Q(0)=[R,_,(1)-r.]-[R._,(0)-r] over 512
trajectories. Here R,_,(¢) is I-I separation at time ¢ and r,= 3.03 A is the equilibrium

distance of I (on B state). Some of the results are shown in Figs. 15 to 17 for the rare
gases at several different pressures. These correlation functions indicate damped
oscillations which are slightly asymmetric with respect to the equilibrium position
because of the anharmonicity of the B state potential. To reduce the anharmonicity-
induced dispersion effect, the initial vibrational energy of the iodine molecule is set to be
the same for all the trajectories. The damping of the oscillation is, therefore, mainly

caused by the dephasing process.
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The envelope of the oscillation decay corresponds to the relaxation function
introduced in Chapter 2. At low densities, the relaxation function is mainly composed of
a Gaussian function, which indicates that a “slow modulation” channel dominates. At
densities near or higher than the liquid values (20 atoms/nm’), an exponential component
becomes significant, indicating that a fast modulation channel becomes more important at
higher densities. At intermediate densities, the relaxation function is a combination of
Gaussian and exponential functions. The two channels will be attributed to two different

types of dephasing process in the following discussion.

3.3.2. Correlation function of collision forces
The force correlation functions were calculated in the simulation based on the

solute and the solvent positions and their model potentials. For the collision force Fpg,

introduced in the previous chapter, the time correlation function (AF,(f)AF,(0)) was
calculated by averaging the product [FQ(t+tk)—I7Q(t+tk)]‘[FQ(tk)—Fb(tk)] over 512
trajectories and over 800 different # values. Here Fy(¢) is the total solvent force
projected along the I-I coordinate obtained by summing over all the pair-wise I-Rg forces
at time . I—Té(t) is the average value of Fy(r) among the 512 trajectories. The variable #

was varied from O to 8 ps at the increment of 10 fs and was used for a temporal average
of the product value. The time average is based on the ergodicity hypothesis and has been
widely used in computation of correlation functions (see, for example, Ref. 10y, The
correlation functions obtained are shown in Fig. 18, Fig. 19, and Fig. 20 for He, Ne, and

Ar, respectively. These force correlation functions will be used to evaluate the collision
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force induced dephasing rates, according to the equations derived in Chapter 2. The

corresponding results will be detailed in the next chapter.

At short times, the force correlation function was fit by a Gaussian function

(AFR(DAFR (0) = £ (p)exp(1F:%). (3.14)
The fitting results for the amplitude f(p) and decay rate ¥ .(p) are plotted in Fig. 21.
The lines are polynomial fit to f(p) and linear fit to 7y .(p), respectively. The fit
parameters are listed in Table 3. The amplitude of (AF,Jt)AIMO)) increases rapidly and
non-linearly with density across the whole density region of interest. The correlation time
T, of (AFR(t)AF}e(O», which is the inverse of y.(p), is, however, not sensitive to the
change of solvent densities. For helium, y.(p) slightly increases with the number
density. For neon and argon, 7y .(p) is virtually a constant over the whole density range
of interest. This is consistent with the fact that 7, represents thé time it takes for atoms
to remain in close contact. = Within the density range of interest, we have

T, ~0.1 ps << T, ~ 1 ps, which justifies the “fast modulation” approximation to be used in

evaluation of the dephasing rate.

At longer times, the force correlation function displays an oscillation about the
zero level, the amplitude of which is greater at higher densities. The feature is also more
significant for neon and argon than for helium. The period of the oscillation is identical
to vibrational period of iodine on the B state. As the vibrational mode of iodine stretches,

the two iodine nuclei extend further into the solvent bath. A stronger repulsion will be
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imposed by the surrounding solvent. The direction of the force at this moment will be
opposite to the motion of the vibration. As the vibrational mode contracts, the repulsive
force will be reduced and the direction of the residue force becomes parallel to the motion

of the contraction. The oscillatory feature is caused by this correlation of vibration to the

solute-solvent forces.

At low densities, the solute-solvent collision is relatively independent of the
solute vibration, because the stretching amplitude (about 0.2 A ) of the iodine molecule is
negligible comparative to the average distance between solute and solvent. At higher

densities, as the solvent atoms become closely packed around the iodine molecule, the

local displacement of 0.2 A will becomes more important. This explains why the

oscillatory feature becomes more significant at higher densities.

3.3.3 Correlation function of vibration-rotation coupling:

The dephasing rate induced by the vibration-rotation coupling is related to the
correlation function <AE,0,(t)AEm,(O)> as shown in Chapter 2. In the simulation, it was
calculated by averaging the product [Em(t+tk) -E(t+1, )] -[Em(tk) -E,_(z, )] over 512
trajectories and 800 r; values. Here E, (¢) is the rotational energy of I, at time t, and
E_, (1) is the corresponding average value. Some of the correlation functions are shown
in Figs. 22 to 24 for the rare gases at several different pressures. The amplitude

<(AE,D‘)2> and decay time 7, of the correlation function (AE,

0t

(HAE,

01

(0)) have also been

obtained. <(AE,0,)2> was taken as the initial value of (AE,,(t)AE,,(0)), and 7,, was
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taken as the time at which (AF,

rot

(NAE,,(0)) dropped to half its initial value. The results

for <(AE,0,)2> and 7., are plotted in Fig. 25 for all three solvents. The amplitude

((AEm,)z> increases drastically with density until reaching a limiting value of about

40,000 cm™ at densities around 5 atoms/nm’ » above which, it remains relatively constant.

The correlation time 7,,, on the other hand, decreases continuously with density across
the whole range of interest. The limiting value of <(AE,0,)2> is expected as the maximum
fluctuation in rotational energy is limited by the thermal energy of the system, i.e.,
k,T =200cm™. The decrease of T,z With density is consistent with the fact that it is
related to the time interval between collisions.

3.3.4 Energy relaxation:

In the simulation, the iodine vibrational energy E,, as a sum of the kinetic and the
potential energies, was also monitored. In general, it decreases with time as a
consequence of solvent-induced vibrational relaxation. Averaged over 512 trajectories,
the behaviors of E,(r) with time are shown in Figs. 26 to 28 for He, Ne, and Ar,
respectively. The decay of E (¢), which increases with density, represents the energy

relaxation rate. The results will be discussed in Chapter 4 along with the experimental

measurements.
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3.4 Pressure to Density Conversion

It is worth noting that the relation between pressure‘ and number density is no
longer linear for the supercritical fluids at densities above certain values (~ 5 atoms/nm’®).
For ease of discussion, the pressure-to-density conversion rates are plotted in Fig. 29, Fig.

30, and Fig. 31 for He, Ne, and Ar, respectively, based on data from previous works (see

Refs. 11,.12, and 13).
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Table 1 Potential parameters used in the simulation
a) Morse Potentials
State/pair | D (cm™) re (A) B(A") | Ex (cm™) | Reference
I-He 14.0 4.0 1.47 0 14
I-Ne 44.0 4.36 1.9 0 15
I-Ar 130.24 4.06 1.5 0 16
X 12547.2 2.67 1.91 0 17
B 4381.8 3.03 1.75 7605 17
b) Lennard-Jones Potentials
Pair gem™) | o(A) |Reference

He-He 7.61 2.64 18

Ne-Ne 29.36 2.764 15

Ar-Ar 83.3 3.405 19

Table 2 Density dependence of collision rate - simulation result.

-1

Tot(P)=Co+ G+ Cp* + Cip’
(p is in unit of nm>)

Solvent Co(ps™) Ci(ps™-nm®) | Co(ps™-nm®) | C3(ps™-nm’)
He -8.84x10™ 0.333 -1.30x10™ 1.67x10™
Ne -1.07x10 0.240 -8.11x107 5.68x10™
Ar -2.58 3.02 -0.236 6.02x107




Table 3 Density dependence of f(p) and y,(p)- (MD).

49

(p is in unit of nm>)

a) f(P)=fo+f1p+f2p2+f3p3+f4p4

Solvent fo fi f f fa
(cm™A™) (em™Anm®) | (cm™A2nm®) (em™*A%nm’) | (em™* A nm'?)
He 0.125 0.125 5.80x10° 0 0
Ne -0.437 -0.704 -3.00x1072 1.15x10° 0
Ar 0.111 0.887 -3.05x1072 -5.93x10° 3.90x10™*
b) v (p)=Co+Cip
(p is in unit of nm'3)
Solvent | Co(ps™) | Ci(ps™ nm®)
He 16.6 0.105
Ne 12.1 0.018
Ar 8.03 -0.019
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3.7 Figure Captions and Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Fig. 10

Snapshots of the I,-helium system at four different pressures as indicated in the
figure. These snapshots are plotted in accordance to the positions calculated in

the MD simulation. The coordinates are in the unit of A..

Snapshots of the I,-neon system at four different pressures as indicated in the
figure. These snapshots are plotted in accordance to the positions calculated in

the MD simulation. The coordinates are in the unit of A.

Snapshots of the I,-argon system at four different pressures as indicated in the
figure. These snapshots are plotted in accordance to the positions calculated in

the MD simulation. The coordinates are in the unit of A .

Normalized radial distribution functions of helium (arbitrary unit). The

horizontal coordinate is the distance of solvent atoms to one of the iodine nuclei.

Normalized radial distribution functions of neon (arbitrary unit). The horizontal

coordinate is the distance of solvent atoms to one of the iodine nuclei.

Normalized radial distribution functions of the argon (arbitrary unit). The
horizontal coordinate is the distance of solvent atoms to one of the iodine nuclei.

(v()-9(0)) of helium (in the unit of 10* m*/s?), obtained by MD simulations at

several different pressures, as indicated.

(\7(1‘)-17(0)) of neon (in the unit of 10* m%s%), obtained by MD simulations at

several different pressures, as indicated.

(V(r)-9(0)) of argon (in the unit of 10* m%s%), obtained by MD simulations at

several different pressures, as indicated.
Collision rates: a) MD simulation results, obtained from the calculated velocity

correlation functions. b) Enskog hard sphere collision rates for He, Ne, and Ar

calculated according to Eq. (3.12). 20
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Fig. 11 The mean square displacement (xz(t)) of helium (in the unit of A?), obtained by

o

MD simulations at several different pressures, as indicated.

Fig. 12 The mean square displacement (xz(t)> of neon (in the unit of A?), obtained by

MD simulations at several different pressures, as indicated.

Fig. 13 The mean square displacement <x2(t)> of argon (in the unit of A?), obtained by
MD simulations at several different pressures, as indicated.

Fig. 14 Diffusion coefficients (in the unit of A’ / fs.) obtained by MD simulations for He
(open circle), Ne (cross), and Ar (filled diamond).

Fig. 15 MD simulation results for {(Q(f)Q(0)) (in the unit of A”), evaluated classically for

iodine vibration in helium.

Fig. 16 MD simulation results for (Q(£)Q(0)) (in the unit of A%), evaluated classically for

iodine vibration in neon.

Fig. 17 MD simulation results for (Q(t)Q(O)) (in the unit of A?), evaluated classically for

iodine vibration in argon.

Fig. 18 (AF(1)AF,(0)) for L in helium (in the unit of cm™/A’), obtained by MD
simulations at several pressures, as indicated.

Fig. 19 (AF;(f)AF,(0)) for I, in neon (in the unit of cm™/A”), obtained by MD
simulations at several pressures, as indicated.

Fig. 20 (AFz()AF,(0)) for I in argon (in the unit of cm™/A”), obtained by MD
simulations at several pressures, as indicated.

Fig. 21 The behavior of: a) the amplitude and b) the correlation time of (AF,(7)AF,(0))

with density for He (open circle), Ne (open square), and Ar (filled circle) (see the
text).
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Fig. 22 (AE,,

(T)AE,O,(O)) for iodine in helium (in the unit of cm™). More than 10°

snapshots were used for the ensemble average.

Fig. 23 (AE,,,(t)AE,,(0)) for iodine in neon (in the unit of cm®). More than 10°

snapshots were used for the ensemble average.

Fig. 24 (AE, ,(T)AE,,(0)) for iodine in argon (in the unit of cm™). More than 10°

snapshots were used for the ensemble average.

Fig. 25 The behavior of: a) the amplitude and b) the correlation time of (AE,,(f)AE,, (0))

with density for He, Ne, and Ar systems, as indicated.

Fig. 26 The behavior of iodine vibrational energy (in the unit of cm’’) with time, obtained
by MD simulations for iodine in solvent helium. The results were averaged over

512 trajectories. The zero energy corresponds to the B state minimum.

- Fig. 27 The behavior of iodine vibrational energy (in the unit of cm™) with time, obtained
by MD simulations for iodine in solvent neon. The results were averaged over

512 trajectories. The zero energy corresponds to the B state minimum.

Fig. 28 The behavior of iodine vibrational energy (in the unit of cm™) with time, obtained
by MD simulation for iodine in solvent argon. The results were averaged over

512 trajectories. The zero energy corresponds to the B state minimum.

Fig. 29 Pressure to density conversion for compressed helium at room temperature. The

plot was based on data taken from Ref. 11.

Fig. 30 Pressure to density conversion for compressed neon at room temperature. The

plot was based on data taken from Ref, 12

Fig. 31 Pressure to density conversion for compressed argon at room temperature. The

plot was based on data taken from Ref. 13,
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Energy Relaxation in Helium
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Energy Relaxation in Neon

| — 100bar | |
800 “w\\\\ _

— 1100 bar

500 | 1t
200 —l AN S N ST U T NS ST N RO M T S N .- [ [YONS MENT IS N ET ST T AN TSNS TN T SR WY M T U N
800 |

500 |

zoohjlll..lll..l..Jl'..

860 bar ] |

800 | 1t -
500 |

Y U S

000 Lot T L T T N
0 2 4 6 8 0O 2 4 6 8

Time (ps) Time (ps)

Figure 27



800

500

200

800 |
500 |

200 L

800

500

200 L

Figure 28

80

Energy Relaxation in Argon
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Chapter 4

Femtosecond Studies of Vibrational Phase and Energy

Relaxation Dynamics of I, in Supercritical Fluids
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4.1. Introduction

Femtosecond studies of molecular reactions in the gas-to-liquid transition region
offer a unique opportunity to examine the solvation dynamics on the time scale of nuclear
motions and as functions of solvent density. Previously, the pressure dependence of
iodine dissociation and caging in rare-gas solvents was examined across a wide range
from O up to 4000 bar.14 Here, the vibrational coherence and relaxation dynamics are
studied for solute iodine in solvent rare gases (He, Ne, and Ar) and across a similar
pressure range. Specifically, by resolving the wave packet vibrational motion and the loss
of its coherence, we are able to examine the density dependence of the different solvent
forces controlling the reaction dynamics. Extensive molecular dynamics (MD)
simulations of the radial distribution functions, force and velocity correlation functions,
and correlation functions of the vibrational amplitude and energy give the microscopic

picture.

In liquids, the subject of vibrational dephasing has attracted considerable attention
over the past few decades (see, for example, Refs. 5-12), Theoretically, based on a simple
independent binary collision model, Fischer and Laubereau predicted a linear dependence
of dephasing rate on the collision frequency and, hence, density.6 Oxtoby derived a
hydrodynamic theory which accounts for a linear dependence.!3 Brueck considered the
effect of vibration-rotation coupling and predicted that its contribution to the dephasing
rate is inversely proportional to the collision frequency in the motion narrowing regime.’
Schweizer and Chandler developed a general theory to include the repulsive and attractive

forces and the vibration-rotation couplings.? In the liquid density regime, they considered



86

the separate influence of the different forces based on different time scales of action.
Their theory predicted a positive density dependence of dephasing rates induced by the
repulsive force and negative density dependence of the rates induced by the attractive

force and vibration-rotation couplings.?

‘MD simulations have been invoked to examine the theoretical predictions (see,
e.g., Refs. 14-16). For example, Michels et al recently examined the isothermal density
dependence of dephasing dynamics in the nitrogen system.!® Their simulations
reproduced the experimental observation and revealed the significance of vibration-
rotation coupling in the dephasing dynamics, particularly at low densities.
Experimentally, the nitrogen system has been studied extensively;10-12 the vibrational
dephasing rate (line-width) displayed a negative density dependence at low density values
and a positive density dependence at high density values. The negative density

dependence was attributed to the vibration-rotation coupling effect.

Here, our focus is on femtosecond studies of the dephasing (T, process) and the
relaxation (T process) dynamics of solute iodine in solvent rare gases, obtained directly
from the transient behavior of the wave packet motion. At room temperature, the solvent
systems are above the critical point as shown in Fig. 1, for example, for argon (T¢ =
150.70 K, P¢ = 48.6 barl7) . As the pressure changes from O to 4000 atmospheres, the
solvent density increases continuously with no phase transition. The phase diagrams are

similar for He (T¢ = 5.19 K, P¢ = 2.27 bar for “He!7) and Ne (T¢ = 44.40 K, P¢ = 26.53
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barl?). The bulk density p can be changed continuously from zero and up to liquid-like

densities.

As the solvent density is increased from p = 0 to about p = 50 mol/l (30 nm™), the
reduced density p* = po’, where o is the solvent diameter, reaches values close to one.
A near-linear behavior of 1/T; with density (except at very high p) is observed, while a
striking nonlinear behavior of 1/7, with density is discovered. At low densities, 1/7T,
increases rapidly with the density. At intermediate densities, 1/75 is essentially constant.
At densities near or above liquid values, 1/T; increases rapidly again. Based on a simple
classical model, the observed results are reproduced for all three solvents by considering

the decay of the correlation function of the reaction nuclear coordinate (Q(t)Q(O)).

With semi-classical analysis, the observed density dependence of 1/75 is found to
be controlled by two different acting forces: the solute-solvent collision forces and the
centrifugal forces (vibration-rotation couplings). The former dominates the dephasing
dynamics only at very high densities. The latter contribution to dephasing is significant at
densities up to the liquid-like values. The opposite trends of change with density for
these two forces give rise to the seemingly “abnormal” density dependence observed
experimentally. With MD simulations (see Chapter 3), we examined the different time
scales for the correlation of these forces and for the solvent fluctuations, covering the two

regimes of slow modulation and fast modulation (motion narrowing).

This chapter is organized as follows. In the next section, the experimental setup is

briefly described and the results are presented. In Section 4.3, the results of MD
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simulations are presented and compared with the experimental observations and with

other theoretical predictions. Conclusions are given in Section 4.4,
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4.2 Experimental

An overall schematic of the experimental setup is shown in Fig. 2,18 and the laser
system is shown in Fig. 3. The 60 fs laser pulses, centered at 620 nm, with a repetition
rate of 100 Mhz and a pulse energy of 20 pJ, were generated from a home-built colliding-
pulse mode-locked ring dye laser (CPM, see Fig. 3). The CPM laser consists of a gain jet
(Rhodamine 6G/ethyleneglycol), a saturable absorber jet (DODCLethyleneglycol), seven
single-stack dielectric mirrors, and four quartz prisms. It is pumped by a multi-line CW
argon ion laser (Coherent Innové 310 with PowerTrack) running at ~ 3 Watt. The 20 pJ
output pulses of the CPM were amplified to more than 1.5 mJ in a four-stage pulsed dye
amplifier (PDA, see Fig. 3) pumped by the second harmonic output of a 30 Hz Nd:YAG
laser (Spectra Physics GCR 4A). Sulforhodamine B dissolved in water was used in the
first amplifier stage, while Rhodamine 640 dissolved in water was used in the last three
stages. Amplified spontaneous emission was reduced by spatial filters after stages 1 and

3 and by a saturable absorber jet (Malachite Green/ethyleneglycol) placed after stage 2.

While the first three stages were pumped transversally, the fourth stage was a
longitudinally pumped double-pass cell, and the YAG laser profile in this cell was
expanded to a diameter of 1 cm. The amplified pulses were temporally re-compressed in
a double-pass, two-prism sequence to a pulse width of 60 fs FWHM (assuming a
Gaussian pulse profile) and then split by a 50/50 dichroic beam splitter into the pump and
probe arms of a Michelson interferometer. In the probe arm, 310 nm pulses with a pulse
duration of 60 fs were generated by frequency-doubling the attenuated red pulses in a 1

mm KDP crystal. The pump beam passed through two polarizers and a half-wave plate to
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allow variation in the relative polarization of pump and probe lasers. The angle between
pump and probe polarization was kept constant at 54.7° (the “magic” angle). Studies of

the rotational anisotropy at high pressures will be discussed elsewhere,19

The pump and probe lasers were overlapped by means of a dielectric beam splitter
and were focused slightly beyond the output window of the high-pressure cell in order to
prevent white light continuum generation. Laser-induced fluorescence was collected at
right angles to the laser propagation direction, collimated into a 20 cm, computer-
controlled monochromator and detected with a photomultiplier tube (PMT). The slit
width of the monochromator was kept at 2 mm, which corresponds to a spectral width of
6 nm (FWHM). The fluorescence signal from the PMT was averaged in a boxcar
integrator and recorded as a function of delay between the pump and probe pulses. This
delay was contfolled using a high precision compqter-controlled actuator that allowed for
optical delays of up to 1 ns with a minimal stepsize of 0.7 fs. Five data points were
accumulated at each actuator position. In a typical experirhental scan, data were recorded
at 200 to 400 different actuator positions. The scans were repeated until the desired

signal-to-noise ratio was achieved, which required, in general, 10 to 80 scans.

The home-built high-pressure cell was constructed from heat-treated stainless
steel (Vascomax 300, tensile strength 300,000 psi). Four optical windows (diameter 6
mm, clear aperture 2 mm) were centered in each of the four walls. The input window is
4.0 mm thick quartz, while the output and fluorescence collection windows are 2.8 mm

thick sapphire. Quartz windows are advantageous in that they reduce the temporal
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dispersion of the femtosecond pulses. The pressure in the cell was constantly monitored
with a high precision strain gauge pressure transducer and the temperature inside the cell
could be measured with a commercial high pressure thermocouple. The distance between

input and output windows was chosen at 6 mm, so that the total cell volume was limited

to 0.2 cm3. Such a small cell volume is essential because it alloWs, even in the case of
rare gases, the use of a small, manually operated, screw-type pressure generator. Pressure
inside the cell was generated by flushing the rare gas into the pre-evacuated cell and
manually compressing it to the desired pressure in an iterative process. To reach
pressures above 1200 bar, the rare gas had to be pre-compressed to 300 bar by
liquefication in a pressure-resistant cryotrap (see Fig. 2). The cell showed no decrease in

pressure (less than 1 bar) during the course of an experiment.

The relevant potential energy surfaces of iodine are shown in Fig. 4. The pump

pulée (620 nm) excites I, from its ground state X 0;(12)20 to a valence state B0:(3H) and

prepares a coherent wave packet around the 8th vibrational level.3 The probe pulse (310

nm) further excites the wave packet to an ion-pair state (E or f) from where laser-induced

fluorescence occurs.18

For iodine in helium, the laser-induced fluorescence transients are shown in Figs.
5 to 7 for pressures ranging from O to 2150 bar. The time zero in these transients
corresponds to a zero time delay between the pump excitation and the probe detection.
The positive time means that the probe pulse follows the pump pulse. In the absence of

the solvent, i.e., at O bar, the fluorescence signal displays periodic oscillations. The
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oscillation, with a period of about 300 fs, represents the periodic motion of the coherent
wave packet near the excitation level (8th vibration level) on the B state. The
modulation, with a long time recurrence at about 10 ps is caused by the anharmonicity of
the B state potential?0, The anharmonicity causes different components of the wave
packet-to become out of phase, by group velocity dispersion, and in phase agai.n as the
dispersion-induced phase shifts become integers of 2x. This dispersion induced phase
modulation is fundamentally different from the dephasing effect to be discussed below in

that the phase shifts are correlated in the case of dispersion. In the case of dephasing, the

phase correlation is permanently lost.

The amplitude of recurrence is reduced as the helium pressure is increased. It
almost disappears at 75 bar, indicating that the solvent induced dephasing has gradually
destroyed the phase correlation among components of the wave packet (at the longer
times of recurrences). At higher pressures the average signal level also decreases with
time. This signal decay reflects the vibrational relaxation and electronic pre-dissociation
of iodine on the B state, while the change of oscillation amplitude is indicative of a phase
spread or dephasing of the wave packet. As the pressure is increased, both the energy
relaxation rate (k;) and the dephasing rate (k) increase, but differently. The transients
obtained for neon are shown in Figs. 8 to 10 for pressures from 0 to 2550 bar; the
transients for argon are shown in Figs. 11 to 13 for pressures from O to 3000 bar. The

behaviors of these transients appear similar to those described for helium; their density

dependencies are given below.
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4.3. Results and Discussion
The wave packet, excited by the pump pulse, consists of several frequency

components @; (i =0, 1, 2, ...), corresponding to different vibrational levels. Neglecting

the coherence between the ground (X) and the exited (B) state, the wave packet can be

expressed as:20

lW) - Zibie—iw,-r—iq),-o—ij{)w,f(t')dt'|l.> (4 1)

where b; is the coefficient of the ith vibrational level, ¢, is the initial phase, a); is the

. 3 - t 7 ? . 3
solvent-induced instantaneous frequency shift, J:) col.(t )dt’ is the accumulated phase shift,

and |i) is the eigenstate of the ith vibrational level of the B state. The transient signal is

given by

v e = 2
S(8) o< [(ip|- B, |w) 4.2)
where lip) represents the ion-pair state, and ﬁ'Epmbe represents the probe-pulse induced

dipole transition between the B and the ion-pair states. For a particular system, one

obtains

: s LY ST W] 2 * i +iQ,;n+id;,
S(t) o ‘Eiaie—xwit—ﬂpio-lfowi(l )dr = RC(Z.'.,' a a],e‘(l)qH' PyoHidy ), (43)

where 0, =0, - ,, @, =(ip|li- E,.,,[i}b;, @0 =P~ @}0, and S, = J:&o,.j(t' )t is the

accumulated phase shift between the ith and jth levels with dw (1) = @](t) - @/(t).

The transient signal is then described by an ensemble average of Eq. (4.3), i.e.,
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S(t) = <Re[2u a,a,expliot+ig,+ i5(p,.j)]>. | @.4)
Aésuming that the relaxation rate k; is the same for all relevant components, i.e.,
~kt

2 . P
lail = ahe ™, the above equation is reduced to

S(ty=e™Y af+e™ 2#1, 4,0, c0s(@,f + @ (D). (4.5)
The factor ¢(¢) = <Re(ei”’&°” () )> is the relaxation function defined in Chapter 2. By

using the cumulant expansion theorem’, ¢(¢) reduces to an exponentially decaying

function in the limit of fast modulation (see Chapter 2), i.e.,

<Re(e”"’5“"f(")"" )> = - (4.6)

where k; =1/T; is the phase relaxation rate (pure dephasing rate). In this case, Eq. (4.5)

is simplified to:

S(t)=Be™ +e™ Z,;,- C; cos(w;jz+goijo), 4.7
where B and Cj’s are constants, and k;(1/T;) is the energy relaxation rate while
k, = k, +k, is the total dephasing rate (1/7; +1/T;). In the limit of slow modulation, ¢(t)
reduces to a Gaussian form, as shown in Chapter 2. For simplicity, the exponential form

was used to fit the experimental transients (for ¢ > 0). For three frequency components,

the following expression was used:

S(t)=A+Be™ +e™ 2; Cpcos(,t+0,). ' (4.8)
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The parameter A is included to account for the signal offset of the transients. The
experimental results and their fits, after subtraction of the second term in Eq. (4.8), are
plotted in Fig. 14 for He at two densities. The features of coherent oscillations,
recurrences, and dephasing have all been fit well by the simple model. Good fits were
also achieved for the transients at higher densities and for other rare gases. To assess the
range of uncertainty in the fits we have also invoked different treatments of the data,
including the use of Fourier transform and fits of the entire data with or without

subtraction of the diagonal term in Eq. (4.8).

It was noticed that the values of the three frequencies become closer to each other
at higher pressures. At pressures higher than 100 bar, the transients could be well fitted
by virtually a single damped cosine function. This is consistent with results from Fourier
transformation given in the preceding paper.4 Three separated peaks were shown at 0 bar.

As the pressure increases, the peaks were gradually spread out and merged into one broad

peak.

The fitting results for k, and k, are plotted in Fig. 15, Fig. 16, and Fig 17 for
helium, neon, and argon, respectively. The lines in these figures are polynomial fits
(filled circle for k,(p), open square for k,(p)) with parameters listed in Table 1 for all

three systems. The general behaviors of both the k,(p) and the k,(p) with density are

very similar for the three rare gas solvents. The measured k, represents the pre-
dissociation/vibrational relaxation rate, as discussed in the preceding papers. Its behavior

with density is as expected: near linear increase at low densities and non-linear increase at
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high densities. The k,(p) behavior, on the other hand, is very striking: it shows a three-

phase density dependence. For comparisons, the classical simulation results for the

dephasing and relaxation rates are also plotted in these figures.

The relaxation rate k; is obtained in the simulation by fitting the calculated E,(r)

curves to exponential functions:

E (t)=Eze™. (4.9)
The parameter k; thus obtained only represents the vibrational energy relaxation rate,
since the non-adiabatic coupling of the B to dissociative states has not been included
explicitly in the simulation. This coupling has recently been modeled in a series of

papers by Ben-Nun et al.2!

The simulation results for the dephasing rate k, were obtained by fitting the
directly calculated correlation functions (Q(t)Q(O)) (see Chapter 3) to the following

damped cosine function:

2 13

(Q(t)Q(O))ngexp(—L—t—z}ZAn cos(nax+@,,), (4.10)

Te 27:8 n=0

where  is the oscillation frequency, 7, and 7. are the dephasing time contributions from
the Gaussian and exponential components, respectively. In the above equation, a double
and a triple frequency components have been included to properly fit the anharmonic
oscillations on the iodine B state. The value of 7. approaches infinity at low densities and

the exponential contribution becomes significant only at high densities. The dephasing



97

rate k; is defined as k, =1/7,,, where 7, is the time when (Q(t)Q(O)) decays to one

half of its initial value.

The experimental results for k, are sums of the pure dephasing rates and the
population relaxation rate k;. Experimentally, k; is a measure of both vibrational and
electronic (pre-dissociation) relaxation rates. To focus on the phase relaxation rate, we
need to obtain the pure dephasing rates for both experiments and simulations. The
experimental pure dephasing rate k, has been obtained by subtracting k,(p) from k,(p).
The results are plotted in Fig. 18a, Fig. 19a, and Fig. 20a for He, Ne, and Ar, respectively.
Similarly, the classical simulation results for k, also have a contribution from the
vibrational energy relaxation rate. For a classical oscillator, its vibrational energy E, is

related to the amplitude of the oscillation Q,, by

E(1)= 310 02u(r). @.11)

If E, decays in time according to Eq. (4.9), then Q,,, Will decay in time at half that rate
(ky/2). This decay of Qp,, will lead to an equivalent decay component in the relaxation
function obtained for an classical oscillator. To obtain the pure phase relaxation rate, this
decay component has been subtracted from k;. The pure dephasing rates obtained from

classical simulations are plotted in Fig. 18b, Fig. 19b, and Fig. 20b for He, Ne, and Ar,

respectively, to compare with the experimental counter-parts.

Besides the dephasing, the central frequency of the nuclear vibration was also

obtained. It was found to be blue shifted due to solvation. From fitting of the
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experimental transients, the frequency shifts have been obtained for all three solvents and
are plotted in Fig. 21a. At O bar, the central frequency is about 113 cm'l, close to the
vibrational period around the 8th vibrational level?0. The frequency shift is caused by
both the mean solvent forces and the coherent vibrational relaxation. The MD simulation

results for the frequency shift are plotted in Fig. 21b for comparison.

The most significant characteristics of the experimental results can be summarized

as follows:

1) The density dependence of the dephasing rate is very different in three different
regions of the number density. At low densities, i.e., p < 5 nm”>, the dephasing rate
almost linearly increases with the density and the rate of change is fast: about 0.1
ps™ [nm™ for all three solvents. At intermediate densities, i.e., 6 nm™ < p < 20 nm™, the
dephasing rate is not as sensitive to the change of number density: slightly increasing for
neon while slightly declining for helium and argon. The slops of the curves in this range
are between plus and minus 0.01 ps™ /nm™ for all three solvents. At very high densities,
ie., p>20 nm’>, the dephasing rate increases again quickly with the density, reaching

about 0.05 ps™' /nm™ for He, 0.06 ps™ /nm™ for Ne, and 0.12 ps™ [nm™ for Ar.

2) Throughout a broad density region, i.e., 0 nm> < p <20 nm, the dephasing
rates measured for the three different solvents are nearly identical: the differences are less
than 20%. On the other hand, from He to Ar, the atomic mass of the solvent changes
from 4 amu to 40 amu, while the I-Rg (Rg = He, Ne, or Ar) van der Waals binding energy

changes from 14 cm™ to more than 130 ¢
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3) The blue-shift of the vibrational frequency increases with the solvent density

for all three solvents. The magnitude of the blue-shift is maximum for argon and

minimum for helium.

The classical simulations have near-quantitatively reproduced all these
observations, except for the frequency shift in argon. The difference in numerical values
of the dephasing and relaxation rates is about 10%, which is surprisingly small
considering the simple model used. In obtaining the classical vibration correlation
functions, 512 trajectories were used in the ensemble average. The statistical errors
involved are, therefore, expected to be about 10% as well. The agreement also confirms
that the classical treatment of the iodine vibration seems valid for the system under study.
Although the classical simulation has reproduced and, in a way, confirmed the seemingly
“abnormal” density dependence of the dephasing rate, it has not provided an explicit
description of the microscopic picture. The question of significance is: What microscopic
processes have caused the three-phase behavior of the dephasing rates? The semi-

classical simulation was carried out to provide the answer.

In the semi-classical approach, the collision force induced dephasing rate T, was
calculated according to Eq. (2.54). The vibration-rotation coupling induced dephasing
rate T,,, was calculated according to Eq. (2.56). The total dephasing rate was taken to be
the sum of T, and Ty,. The results are plotted in Fig. 22, Fig. 23, and Fig. 24 for He,

Ne, and Ar, respectively. The behavior of the total dephasing rate with density was also

plbtted in Figs. 18 to 20 in order to compare with the experimental and classical
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simulation results. From these results, it can be seen that the semi-classical MD
simulations agree well with the experimental and classical simulation results, both for the

general trends and for the absolute values.

In the semi-classical calculations, we separately considered the external solute-
solvent forces and the vibration-rotation couplings. As shown in Figs. 22 to 24, the
former contribution to the dephasing rate increases with the number density almost
linearly at low densities. At high densities the dependence becomes nonlinear and the
dephasing rate increases more drastically. This is because the solvent atoms start to pack
closely with each other and the collision forces increase non-linearly with further density

increase, as shown in Chapter 3.

However, the collision force induced dephasing rate is much less than that from
vibration-rotation couplings, except for high densities. The latter shows a fast near-linear
increase with the number density until a maximum value of about 0.4 ps’ is reached at
about 5 atoms/nm’. In this region, the amplitude of the correlation function of the
rotational energy fluctuation also increases near-linearly, as shown in Chapter 3. The
correlation time, which is related to the time interval between collisions, is longer than
the dephasing time in this region. The vibration-rotation coupling can, therefore, be
described by the “slow modulation,” which has caused the vibration correlation functions

to be dominated by a Gaussian shape at low densities.

The amplitude of fluctuations in the vibration-rotation coupling, i.e., AE,

rot?

is on

the order of k,7 when thermal equilibrium is reached. At densities near or above 5
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3

atoms/nm’, the collision rate becomes fast enough for the solute rotational mode to be

equilibrated with the solvent on the time scale of dephasing. At higher densities, the
amplitude of fluctuations in the vibration-rotation coupling will not increase further, as
shown by the MD simulations reported in Chapter 3. Because the key parameter here is
the thermal energy (kpT), which is the same for all three solvent systems studied, the

maximum dephasing rate induced by the vibration-rotation coupling shall be very nearly

the same for He, Ne, and Ar.

At higher densities, the correlation time 7, continues to decrease with density,
while the amplitude of the coupling remains almost constant. In this density regime, 7,

becomes shorter than the dephasing time, so that the integral in Eq. (2.57) start to
decrease with the increase of the solvent density. As the density is increased further, the
vibration-rotation coupling gradually shifts to the “fast modulation” regime, leading to a

decrease in the dephasing rate as a consequence of the “motion narrowing” effect.

The decrease of the vibration-rotation coupling causes its contribution to the
dephasing rate to become less significant at the high densities. As shown in Figs. 22 to
24, the decrease of the T, is partially compensated for by the increase of T in the
intermediate density region. At densities near or above 20 atoms/nm’, the latter
contribution becomes dominant and increases quickly with the solvent density. The
experimentally observed “three-phase” density dependence of the dephasing rate is,

therefore, caused by the interplay of the two acting forces with opposing trend in the

intermediate and high density regions.
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It is also interesting to compare our results with predictions made by other
theoretical models. The dephasing rate Tg; predicted by the IBC theory® was calculated
according to Eq. (2.6) and the results are plotted in Figs. 22 through 24. We have also

applied Schweizer and Chandler’s theory® and calculated the dephasing rates sz; and

sz",R according to Egs. (2.7) and (2.12), respectively. It is important to note that these

equations were derived based on the fast modulation approximation and we maintained

the 7, < T, criteria (from MD) in the calculation. The calculation, therefore, only covers
the densities above 5 nm™ for T, but is valid for all densities for T5. For the collision
force induced dephasing rates, the IBC theory gives similar values to the simulation
results. The results predicted by the Schweizer and Chandler’s theory for sz,le reproduce
the correct trend; a scaling factor of ~ 3 is needed to bring the absolute values to those of
the simulations. Qualitatively, the negative density dependence of T,_Z",R is predicted, but
the rate of change with density and the absolute magnitude are not consistent with our

results, probably because the fast-modulation approximation is not valid throughout the

density range.

The vibrational frequency shift is a measure of the influence of mean solvent
forces, as shown by Eq. (2.35) of Chapter 2. Experimentally, the behavior of the
frequency shift with density is nearly linear for the three rare gases (Fig. 21a). Such
dependence has been reproduced by the MD simulations at densities of up to ~ 20
atoms/nm’ for He and Ne (Fig. 21b). As mentioned in the preceding paper, the slope is

larger than what is predicted by a hard-fluid model. Furthermore, at higher densities, a
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non-linear behavior becomes significant in the MD simulations. We attribute this
discrepancy to the coherent vibrational relaxation, which causes the wave packet to step
down to lower vibrational levels with higher frequencies because of the anharmonicity.
This transfer occurs impulsively on short time scales to maintain the phase coherence
after relaxation.2223 In the case of Ar, the relatively higher van der Waals binding energy
(about 250 cm’! between I, and Ar; 130 cm’! between I and Ar; 80 cm’! between Ar and
Ar) appears to cause pseudo-stable argon clusters to form at intermediate densities, in
accordance with the MD simulations. The formation of such clusters results in a more

efficient coherence transfer, as shown in Fig. 21b.
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4.4. Conclusion

In this chapter, we have studied the femtosecond coherence dynamics of the
dissociation reaction of iodine in rare gas solvents of He, Ne, and Ar at different
densities. The phase coherence and energy relaxation rates are measured directly from
the transient behavior of the wave packet motion. The separation of 7y and T type
processes shows a striking density dependence and defines three phases of density
behavior. With molecular dynamics simulations, we identify the forces controlling the
behavior over the entire density range, from gas-phase binary colliéions at low densities
to liquid-like densities (p ~ 30 atoms/nm’ ~ 50 mol/l; p* ~ 0.8). We also studied the
effect of the solvent force field on the resonance frequency of the wave packet. MD
simulations reproduced the experimental results and revealed the microscopic elements of
the dynamics. Studies of the radial distribution functions, velocity correlation functions,
collision rates and force correlation functions, and their relevant time scales have
established the origin of the density dependencies and indicated the transition from slow
to fast modulation of solvent fluctuations. Finally, we invoked some analytical
descriptions of dephasing and compared with the MD simulations and the experimental
results. We identify the significance of two opposing forces, the usual collisional force
due to inter-molecular interactions and the centrifugal force caused by the solute rotation
in the solvent structure. The correlation times for these forces change differently with

density and account for the novel phenomena investigated here.
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4.6. Tables

Table 1 Density dependence of k,(p) and k,(p)- experimental results.

a) ky(p)= A, + Ap+Ap* + Ap’

(p is in unit of nm™)

Solvent | Ao(ps™) |Ai(ps™ -nm®) | Az (ps™ -nm®) | As(ps™ -nm®)
He -0.01074 0.01735 -7.697x10™ 2.655x10°°
Ne -0.02130 0.02257 -9.298x10* | 3.348x10°
Ar -0.04134 0.04247 -1.594x10° | 4.929x10°

b) k,(p)=B,+B,p+B,p* +B,p’ + B,p*
(p is in unit of nm™)

Solvent Bo(ps™) By (ps™ -nm’) | By(ps-nm®) | By(ps'-nm®) | Bs(ps™ -nm'?)
He 0.06625 0.1194 -0.01155 4.120x10™ -4.543%10°
Ne 0.04688 0.1069 -0.007434 1.982x10* -8.264x10°®
Ar -0.09692 0.1531 -0.009877 2.967x10™ -2.368x10°
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Table 2 Density dependence of k,(p) and k,(p)- simulation result

a) k(p)= A+ Ap+Ap* + Ap®

(p is in unit of nm™>)

Solvent Ao (ps™h) Ap(ps™ -nm®) | Aa(ps”-nm®) | As(ps™-nm®)

He -6.09x10 9.49x10 -3.92x10™ 1.34x10°°

Ne -1.01x10 1.83x107 -8.75x10™ 3.36x107

Ar | 8.76x107 3.20x10°2 -4.43x10°3 1.87x10°

b) k,(p)=B,+B,p+B,p*+B,p’ + B,p*
(p is in unit of nm'3)
Solvent Bo(ps™) By (ps™-nm®) | By(ps™-nm®) | Bs(ps™-nm®) | By(ps™-nm'?)

He 2.96x107 7.33x1072 -5.05%10 1.22x10™ 0
Ne 4.72x10 7.28x10 -4.17x107 1.04x10™ 0
Ar 3.43x107 1.04x10™ -1.00x1072 -2.13x10* 7.61x10°
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4.7 Figure Captions and Figures

Fig. 1 Phase diagram for argon. The plot is based on the results from Refs, 17:24,25,

Fig. 2 Overall schematic of the apparatus used in the high-pressure studies. CPM:

colliding-pulse mode-locked dye laser; PDA: pulsed dye amplifier; BS: beam

splitter; L: lens; SHG: second harmonic generation crystal; F: filter; P: polarizer;

HW: half-wave plate; PMT: photomultiplier tube. (Courtesy of Chuck

Williamson.)

Fig.3 Femtosecond laser system. Top: CPM. M1 - M7: high-reflectivity mirrors; P1 -

P4: prisms arranged to compensate group velocity dispersion; GJ: gain dye jet;

SAJ: saturable absorber dye jet. Bottom: pulsed dye amplifier (PDA). C1 -C4:

flow dye cells. (Courtesy of Jennifer Herek.)

Fig. 4 Relevant potential energy surfaces of iodine. Arrows are drawn to indicate the

pump and probe excitation and the laser induced fluorescence.

Fig. 5 Laser induced fluorescence transients obtained at low pressures of helium, as

indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.

Fig. 6 Laser induced fluorescence transients obtained at intermediate pressures of

helium, as indicated. The central wavelength of the pump pulse was at 620 nm

and probe wavelength was at 310 nm.

Fig. 7 Laser induced fluorescence transients obtained at high pressures of helium, as

indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.

Fig. 8 Laser induced fluorescence transients obtained at low pressures of neon, as

indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.
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Fig.9 Laser induced fluorescence transients obtained at intermediate pressures of neon,

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

as indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.

10 Laser induced fluorescence transients obtained at high pressures of neon, as
indicated. The central wavelength of the pump pulse was at 620 nm and probe

-wavelength was at 310 nm.

11 Laser induced fluorescence transients obtained at low pressures of argon, as
indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.

12 Laser induced fluorescence transients obtained at intermediate pressures of argon,
as indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.

13 Laser induced fluorescence transients obtained at high pressures of argon, as
indicated. The central wavelength of the pump pulse was at 620 nm and probe

wavelength was at 310 nm.

14 LIF transients of iodine in helium (dots), and their fits (solid lines): a) O bar and b)
75 bar (see text).

15 Density dependence of energy relaxation rate k; (open square) and dephasing rate
k, (filled circle) for iodine in helium: a) Experimental results; b) Classical

simulation results. The lines are polynomial fit to the relaxation rates.

16 Density dependence of energy relaxation rate k; (open square) and dephasing rate
k, (filled circle) for iodine in neon: a) Experimental results; b) Classical

simulation results. The lines are polynomial fit to the relaxation rates.

17 Density dependence of energy relaxation rate k; (open square) and dephasing rate
k, (filled circle) for iodine in argon: a) Experimental results; b) Classical

simulation results. The lines are polynomial fit to the relaxation rates.
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Fig. 18 Phase relaxation rates as functions of number densities in helium: a)
Experimental results; b) Classical simulation results; ¢) Semi-classical simulation

results.

Fig. 19 Phase relaxation rates as functions of number densities in neon: a) Experimental

results; b) Classical simulation results; ¢) Semi-classical simulation results.

Fig. 20 Phase relaxation rates as functions of number densities in argon. a) Experimental

results; b) Classical simulation results; ¢) Semi-classical simulation results.

Fig. 21 Vibrational frequency shift as functions of the density: a) Experimental results; b)
Classical simulation results. Open square for He, filled circle for Ne, and crossed

square for Ar. The lines are drawn through the data points to guide the eyes.

Fig. 22 Dephasing rates of iodine in helium obtained from: a) semi-classical simulations;

b) previous theoretical models.

Fig. 23 Dephasing rates of iodine in neon obtained from: a) semi-classical simulations; b)

previous theoretical models.

Fig. 24 Dephasing rates of iodine in argon obtained from: a) semi-classical simulations;

b) previous theoretical models.
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" Figure 2
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Colliding-Pulse Mode-Locked Dye Laser (CPM)
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Figure 3
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Iodine Potential Energy Surfaces
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Dephasing of lodine in Helium
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Dephasing of lodine in Helium

Figure 6
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Dephasing of Iodine in Helium
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Chapter 5

Femtosecond Studies of Dissociation and Recombination of

I, in Argon Clusters
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5.1 Introduction

In continuation of our efforts to examine the ultrafast dynamics of solvated
reactions (see articles in reference [1]), we give here a full account of our earlier reports
on the studies of atomic reactions in large clusters. This and the accompanying paper [2]
focus on the dynamics of dissociation, recombination, and coherence of iodine in large
clusters of argon atoms. The iodine system is often employed as a solute because of its
two-atom simplicity, long history [3], and well known gas-phase potentials and dynamics
[see, e.g., ref. 4-8]. The dynamics of the nuclear motion in isolated gas-phase iodine
occur on the femtosecond time scale and depend on the state excited [7-8], as discussed
below. In the 1930s, Franck and Rabinowitch [3] proposed that, in solution, the solvent
acts to confine the dissociating atoms and force them back close enough to one another to
reform the chemical bond. Over the years, intensive efforts have been devoted to the
study of dissociation and recombination processes in solution, high pressure gases,

clusters, and solids [see ref. 9-41].

Atomic and molecular clusters provide unique systems for studying the solvation
dynamics of dissociation and recombination, as it is possible to form real solvent shells
around the solute. The number of solvent atoms or molecules can potentially be
controlled, allowing one to study the the dependence of solvation on cluster size [42-50].
The reduced number of degrees of freedom in these finite systems also offers an
opportunity to examine the microscopic effects of the solvent cage on the nuclear motion

of the solute molecule. Previous real-time studies have examined the vibrational and
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electronic predissociation of neutral I, in relatively small clusters of rare gases, I, X

(n=1 to 4 and X =He, Ne, and Ar)[51-53], focusing on the rates of dissociation to
I+1I+ X and I,* + X, and the mechanisms of the reaction. Single atom caging has been

examined since the early 1980s [54-59] and the origin of this novel phenomena has been

explored by a number of research groups [for recent reviews see ref. 59-60].

In order to study, in real time, the nuclear motion of iodine during the course of
dissociation, recombination and relaxation, we have applied the femtosecond
methodology, utilizing laser-induced-fluorescence (LIF) as the detection technique.

Neutral I,-Ar, clusters were generated in a molecular beam. We used the spectroscopic

assignment of Heaven and Tellinghuisen [see ref. 27] and the scaling rules of Buck and

Krohne [61] to identify cluster sizes. The I, molecules were excited to the dissociative
regions of the A, B and II;, states and to the predissociative region of the B state.
Surprisingly, a coherent recombination following direct dissociation of the I on the A

state was observed, providing the first direct observation of the caging process on the sub-
picosecond time scale. Apparently, the solvent confines the atoms in a "frozen" cage; a
picture which is confirmed by molecular dynamics [2]. Following this coherent, direct
caging we have observed vibrational relaxation as the two recombining atoms reach the
equilibrium geometry. The B state dynamics are fundamentally different and involve

dissociation and recombination on a picosecond time scale, as detailed below.
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Coherent dynamics in real time were observed in mass-selected ionic clusters of
I -(COz)n by Lineberger's group [44-45]. They observed recombination and vibrational

relaxation, and showed that full shells of solvent molecules were necessary for both the
observation of the coherent feature and a high quantum yield of geminate recombination
[44-45]. The long-range Coulomb interactions induced by the negative charge play a key
role in the dynamics and in the solvent localization. For our neutral clusters, we used
spectroscopic shifts instead of mass selection to distinguish large clusters from small
clusters and bare iodine. Our interest here is to focus on large clusters with one or more

solvent shells and not on the size identification of small clusters as in previous work on I,

X, (X =He, Ne, and Ar; n=1 to 4) [51-53].

For iodine in Ar clusters, a red shift of the LIF emission (D'—A') was observed
and assigned to the 1owering of the ion-pair states relative to the valence states [27]. This
red-shift has been found to depend on the size of the cluster cages, reaching a limiting
value of 4200 cm! (from 342 nm to 400 nm) for large clusters (N 2=40) [27-28].
Monitoring the red-shifted emission (400 nm) is then equivalent to monitoring the
dynamics in the large clusters. We assume that the valence states (e.g. A/A', B, and I1;,/
I1;g) of iodine are not strongly perturbed by the presence of the argon atoms and,
therefore, use gas-phase potentials for these states (Fig. 1), modified to include the
solvent-induced barrier. This is consistent with the findings in high pressure Ar gas (up

to 2500 bar) [31-32] and in Ar matrices [24] where small changes in the valence-state

potential energy surfaces were found. The relevant potential energy surfaces are shown in
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Fig. 1. The dotted lines in Fig. 1 represent the solvated ion-pair states [27], which are

lower than their gas phase counterparts by 4200 cm-1.

According to the scaling rule developed recently by Buck and Krohne, from their
molecular beam scattering study [61], the average size of the clusters formed under our
experimental conditions was estimated to change from 8 to 40 atoms, as the backing

pressure was varied from 400 to 1100 Torr. The probability of forming more than one I,

in a single argon cluster is negligible because of the low iodine partial pressure (0.3 Torr)
used in the co-expansion [58]. The binding energy between iodine and argon (~ 230 cm-
1) [62] is about three times larger than that between argon atoms (~ 80 cm-!), which
supports the model of the iodine molecule at the center of the cluster as lowest energy

state [2]. If I is on the surface of the cluster, the femtosecond dynamics would be totally

different as shown below.

In our experiments, the pump wavele'ngth was tuned from 460 to 700 nm in order
to examine both the direct dissociation and predissociation. We also varied the probe
wavelength systematically in order to follow changes along the reaction coordinate in the
process of recombination and vibrational relaxation. At pump wavelengths longer than
580 nm, direct dissociation on the A state appeared to be the dominant pathway in the
clusters and a coherent recovery of I, signal was observed. At shorter pump wavelengths
(between 500 and 580 nm), a predissociation out of the B state was observed, which was
followed by a gradual recombination and relaxation on a much longer time scale. The

cluster size dependence of the dissociation and recombination dynamics was also
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explored. We varied the stagnation pressure (backing pressure) of the expanding gas
mixture so as to change the average size of clusters formed in the beam [61,64-65]. To
compare the cluster dynamics with that of isolated systems, we have also examined the

LIF spectra and transients for an I-He beam. The results are shown to compare with that

for the I,-Ar beam.

To help visualize the motion and to understand the microscopic interactions
involved, molecular dynamics (MD) simulations were carried out. We refer to some of
the simulation results in the discussion to compare th¢ experimental results to theoretical
analyses of the solute-solvent and solvent-solvent interactions. A detailed description of

the MD simulations is given in the accompanying publicatibn [2].

This paper is organized as follows. In section II, we briefly describe our
femtosecond laser system, the molecular beam apparatus, and the pump-probe LIF
detection methodology. In Section III, the experimental results are presented, including
(a) LIF spectra, (b) pump wavelength dependence, (c) probe wavelength dependence, (d)
342-nm transients from the iodine-argon beam, (e) backing pressure dependence, and (f)
polarization dependence. In Section IV, we discuss the experimental results and present a

microscopic picture of the ultrafast solvation dynamics of the reaction.
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3.2 Experimental Setup

A tunable linear-cavity dye laser (Coherent Satori) was synchronously pumped by
the frequency-doubled output (532 nm) of a CW mode-locked Nd:YAG laser (Coherent
Antares 76-S) at a repetition rate of 76 MHz. A prism-pair inside the dye laser was used
to compensate for group-velocity-dispersion (GVD). Rhodamine 610/ethylene glycol
(EG) and DODCIEG jets were used as the gain medium and saturable absorber,
respectively, to generate 120.—fs (FWHM) laser pulses at 614 nm. These laser pulses were
passed through a home-built four-stage pulsed dye amplifier (PDA). The PDA was
pumped by the frequency-doubled output (532 nm) of a 20-Hz Q-switched Nd:YAG laser
(Quanta Ray DCR-2). The pump laser was synchronized by fast electronics (Quanta Ray
SM-1) to selectively pump 20 out of the initial 76 million pulses generated by the Satori
dye lasef per second. The unamplified residual pulses as well as the amplified
spontaneous emission (ASE) were absorbed by a malachite green/EG saturable ab_sorber
jet inside this PDA. Kiten red 620/water and Rhodamine 640/water were used as gain
media, and two spatial filters were used to further reduce the ASE. In addition, the final
stage was designed for double pass to enhance the amplification. After the PDA, the
integrated pulse energy was measured to be about 1 mJ with 10% energy fluctuation and
5% ASE. A double-pass prism compressor was placed after the PDA to compensate for
the GVD it induced. The pulse duration was measured to be 120 fs (FWHM) after the
compression with a central wavelength of 614 nm and a spectral width of 5nm

(FWHM). For probe-wavelength dependent measurements, the prism compressor was
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removed because higher pulse energy was required. Without the compressor, the pulse

duration was measured to be 650 fs.

To perform multi-color pump-probe LIF experiments, the amplified laser beam
was passed through a beam splitter. For the pump-wavelength dependent measurements,
one beam was delayed by a computer-controlled, sub-micrometer resolution translation
stage and subsequently frequency-doubled by a 0.5-mm type-I KDP crystal to serve as the
probe. This 307-nm probe beam had a spectral width of 5 nm with an estimated pulse
energy of 50 u). The other beam was focused into a water cell to generate a
supercontinuum. A 10-nm bandpass filter, centered at the desired pump wavelength, was
used to isolate the pump beam which was then sent into a second three-stage PDA.
Depending on the selected wavelength, either part of the doubled (532 nm) or tripled
(355 nm) output of the Q-switched Nd:YAG laser was used in pumping this PDA and
appropriate gain dyes dissolved in methanol or water were chosen as gain media. In this
fashion, the central wavelength of the pump beam was tuned from 460 to 700 nm with a
spectral width of 10 nm. Following compression in another prism pair, the beam was
measured to have a duration on the order of 200 fs and a pulse energy from 50 to 300 yJ
depending on the wavelength with about 5% ASE. For the probe-wavelength dependent
measurements, the KDP crystal after the translation stage was removed to give a 614 nm
beam which was used as the pump while the probe beam was the doubled output of the
second dye amplifier. The second prism compressor was also removed in these

experiments. The probe wavelength was tuned from 280 to 350 nm with a 5-nm spectral
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width. In both cases, the pump and probe beams were recombined by a dichroic beam
splitter (BS) outside the vacuum chamber and were sent collinearly into the molecular

beam apparatus to perform the experiments.

Figure 2 shows the schematics of the optical setup together with the molecular
beam system. The recombined pump and probe beams were focused collinearly into the
molecular beam chamber by a UV lens L1 (f=30cm). A mixture of iodine-argon or
iodine-helium gas was prepared by passing argon/helium gas (99.99%) through a tube

containing powdered iodine crystals. This mixture was then expanded through a pulsed

solenoid valve (d = 500 um; General Valve series 9) into a vacuum chamber (10—4 Torr)
to generate a supersonic molecular beam. The backing pressure of argon was varied from
400 to 1,100 Torr to control the formation condition of iodine-argon clusters, while that
of helium was fixed at 900 Torr. The pulsed nozzle was synchronized with the ZO-Hz Q-
switched Nd:YAG laser pulses, while the time delay and the duration of the nozzle
opening were adjusted to optimize temporal overlap between the molecular beam and the
laser beams. The focused (lens L1, f=30cm) laser beams intersected the molecular
beam at right angles 1.5 cm (x/d ~ 30) from the nozzle opening, well after the termination
of cluster formation. The crossing region was optimized by adjusting the nozzle position

from outside the chamber, as shown in Fig. 2.

The laser-induced fluorescence (LIF) was collected by a convex lens L2 (f=5 cm)
and a convex mirror M2 (r =5 cm), as shown in Fig. 2. The collected radiation was then

focused by another UV lens L3 (f=15cm) into a computer-controlled 10-cm
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monochromator (ff3.5) and was detected by a photon-counting photomultiplier tube
(PMT). The spectral resolution of the monochrometer was adjusted in this experiment
from 2 to 16 nm. The signal output from the PMT was averaged by a gated boxcar
integrator (PARC Model 162 & 164) with a gate width of about 50 ns and an integration
time of 0.25 seconds. Five laser shots were, therefore, averaged over each integration

period. The integrated signal was then sent to an A/D converter and was processed by a

microcomputer.

For each set of measurements, the spectral information of thé LIF was obtained by
scanning the calibrated monochromator in wavelength with a 2- or 4-nm resolution.
Spectra were taken at both a positive and negative delay between the pump and probe
pulses. Background spectra due to the pump or probe beam alone were also recorded.
The monochromator was then fixed at a certain wavelength (342 or 400 nm) with a
broader spectral resolution (4-8 nm). The LIF transient was obtained by scanning the
delay line from a negative time delay to a positive time delay between the pump and

probe laser pulses.

LIF spectra and transients were obtained for both iodine-argon and iodine-helium
expansions. This procedure was repeated for each combination of the pump and probe
wavelengths and each backing pressure of argon. To achieve good statistics, all the
transients obtained were averaged over 40 scans of the delay line, corresponding to an
average of 200 laser shots for each data point. The linearity of the detection ‘system was

carefully checked and verified with calibrated neutral-density filters. The transients
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obtained at different intensities of the pump and probe beams showed identical behavior.
This indicates that the absorption of either the pump or the probe pulses was below the

saturation limit in our experiments.
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5.3 Results

5.3.1. Laser-induced-fluorescence spectra

At a certain time delay between the pump (480 to 700 nm) and probe (307 nm)
pulses, we scanned the monochrometer from 320 to 460 nm and recorded the emission
spectra from both the iodine-helium and iodine argon beam with a spectral resolution of
2nm. The emission spectra from the iodine-helium beam appeared identical to those
obtained from iodine gas cells with the same pump-brobe combination and with the same
spectral resolution (~ 2 nm). Within the wavelength range of 320 to 460 nm, only a
342 nm band was observed to be dependent on the pump-probe time delay. The emission
spectra from the iodine-argon beam, on the other hand, showed two emission bands that
were dependent on the time delay: one around the 342 nm, the other extended from
approximately 370 to 420 nm. As reported earlier [27-28], the center of this broad band
shifted from 375 nm to 400 nm as the stagnation pressure of argon gas was increased
from 650 Torr to 1100 Torr. The relative amplitude of this broad band to that of the
342 nm emission increased with the increase of the argon backing pressure. This broad
emission band became too weak to detect as we lowered the argon backing pressure to
near or below 400 Torr. In contrast, the 342 nm emission became stronger as we lowered

the argon backing pressure.

Figure 3 shows the LIF spectra for two different pump wavelengths (510 and
614 nm) while the probe wavelength is at 307 nm. To record these spectra (thick lines in
Fig. 3) the probe pulse was delayed by 100 ps (positive time delay) relative to the pump

pulse. The spectra obtained when the pump and probe pulses overlapped in time (zero
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time delay) appeared identical to the thick lines in Fig. 3. At negative time delays, i.e.
when the probe pulse preceded the pump pulse, the emission band around 342 or 400 nm
either disappeared or decreased, depending on the pump wavelength (thins lines in
Fig. 3). The emission spectra obtained with only the pump beam (the probe beam was
blocked) were identical to those obtained at negative time delays, suggesting that the
background signal around 342 or 400 nm was caused by the multi-photon absorption of
the pump beam. The background signal at 355 nm (Fig. 3.a) came from the scattered

light of the tripled output of the DCR-YAG laser (the pump laser of the PDA).

5.3.2. Pump wavelength dependence

With the pump wavelength tuned from 480 to 700 nm and the probe wavelength
fixed at 307 nm, we scanned the pump-probe time delay and obtained LIF transients from
both the iodine-helium and iodine-argon beams by detecting fluorescence at 342 and
400 nrh, respectively. The stagnation pressure was fixed at 1100 Torr for the iodine-
argon expansion and at 900 Torr for thé iodine-helium expansion. We first scanned the
relative time delay betweeﬁ the pump and probe pulses on a long time scale (from —20 to
180 ps) to examine the long-time behavior of the transients. We then shortened the
scanning range to time resolve the dynamics within a few picoseconds of the pump
excitation of the system. In the following we shall first describe the transient behavior for
iodine in the helium expansion and then present the corresponding results from the

iodine-argon expansion on short (-2 to 14 ps) and long (=20 ps to 180 ps) time scales

separately.
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(1) IODINE-HELIUM TRANSIENTS

At pump wavelengths shorter than 500 nm or longer than 614 nm, the LIF
transients from the iodine-helium expansion showed only a single peak with pulse-width
limited rise and decay (~200 fs) at zero time delay. The insets of Figs. 4.c & 5.a show
iodine-helium transients on a short time scale (-1 to 4 ps). These transients were fit by a
Gaussian function to estimate the pump-probe cross correlation and to calibrate the zero
time delay (time zero). At pump wavelengths between 500 and 590 nm, the iodine-
helium transients all displayed a plateau after the initial pulse-width-limited rise at zero
time delay. Some of these transients taken at 510, 580, and 590 nm pump wavelengths
are shown on a short time scale (insets of Fig. 4.a and Fig. 5.b & S.c). A modulation
appeared on the 510-nm transient, showing a period of 900 fs in agreement with gas
phase results [8, 66]. The initial rises were also used to calibrate the cross correlation of
the pump/probe pulses and the time zero. For the pump wavelength at 614 nm, an initial
peak occurred at time zero which then promptly decayed to a constant signal level (inset
of Fig. 4.b). The relative amplitude of the constant level to that of the initial maximum

was about 50%. This transient was also used for the purpose of calibration, as discussed

below.

(2) IODINE-ARGON TRANSIENTS ON A SHORT-TIME SCALE

Monitoring the 400 nm fluorescence, we recorded the corresponding LIF
transients from the iodine-argon beam with the stagnation pressure fixed at 1100 Torr and
with the probe wavelength at 307 nm. The 614-nm iodine-argon transient shown in Fig.

4.b is typical of "A-state type" behavior. An initial peak appeared at the zero time delay
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with a pulse-width limited rise and decay (~ 200 fs), which is coincident with the time
zero in the iodine-helium transient (inset of Fig. 4). After decaying to almost zero, the
signal promptly recovered to a level that is comparable to the initial maximum. This
recovery occurred on a time scale (~ 300 fs) that was close to the cross correlation (~
320 fs, FWHM) of the pump and probe pulses. At longer delay time (2 to 30 ps
approximately) , the signal increased almost linearly and much more slowly (see also Fig.
6.d). For pump wavelengths ranging from 590 to 700 nm (4,,,p, = 307 nm), the
transients exhibited similar behavior. Due to the broader pump pulse duration at
wavelengths other than 614 nm, the pulse-width limited rise-decay-recovery feature was
not as well time resolved in the other A-state type transients (Fig. 4.a & 4.c) as in the 614
nm one (Fig. 4.b). A shoulder instead of a peak was observed at the zero time delay for a

700 nm transient (Fig. 4.c).

The iodine-argon transients at pump wavelengths between 500 and 580 nm
displayed a monotonic decay after the initial pulse-width limited rise on the short-time
scale. As a typical example, the transient taken at a pump wavelength of 510 nm is
shown in Fig. 5.b. For comparison, the transient taken from the iodine-helium expansion
at the same pump/probe combination is shown in the inset with a modulation period of
900 fs. At pump wavelengths between 510 and 590 nm, bare iodine molecules are mostly
prepared on the B state [5] and undergo bound oscillatory motion [7, 8] with lifetimes on
the order of ~ 1 its [67). For iodine-argon transients, the behavior changes from the "B-

state type" to the "A-state type" when the pump wavelength is tuned from 580 to 590 nm.
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For iodine in a helium beam, the transient behavior, on the other hand, did not show

pronounced difference between these two pump wavelengths (insets of Fig. 4.a & 5.c).

For the pump wavelength at 480 nm, the iodine-argon transient displayed a plateau
following the initial pulse-width limited rise on this short-time scale (Fig.5.2). The
corresponding iodine-helium transient, in contrast, shows just a sharp peak at zero-delay-
time (inset of Fig. 4.a). At this wavelength, bare iodine molecules are excited to the

dissociative regions of the B (above its bound limit) or ITy, state [S].

(3) IODINE-ARGON TRANSIENTS ON A LONG-TIME SCALE

On a long time Scale, the pump wavelength dependence of the iodine-argon
transients is shown in Fig. 6 for pump wavelengths of 480, 510, 614, and 640 nm.
Transients with pump wavelengths between 590 and 700 nm displayed single multi-slope
rises that reached asymptotic values in 50 ps (Fig. 6.c & 6.d). At pump wavelengths
between 500 and 580 nm, the transient signal decayed on a time scale of 10 to 20 ps after
the first pulse-width limited rise. After reaching a minimum, the signal increased again
and reached a constant level in another 50 ps. As a typical example, Fig. 6.b shows such
a "B-state type" transient taken with a 510-nm pump pulse (Apmbe =307 nm). In the 480-
nm transient (Fig. 6.a), the LIF signal appeared to stay constant for 10 ps following the

initial pulse-width limited rise and then increased gradually to a higher asymptotic value

in another 50 ps.
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5.3.3. Probe wavelength dependence

To examine the probe wavelength dependence of the transient signals at 400 nm,
we have tuned the probe wavelength from 280 to 350 nm. The pump wavelength was
fixed at 614 nm and the stagnation pressure of the argon gas was maintained at 1100 Torr.
The cross correlation of the pump and probe pulses used in this investigation was
measured to be 0.8 ps. Deteéting the 400 nm fluorescence, we scanned the pump-probe
time delay over certain ranges. The results obtained are shown in Fig. 7 on a long time
scale (—20 to 180 ps). At )'probe = 350 nm, the LIF signal rose quickly to a maximum
within 3 ps and then decayed to almost the ground level in another 12 ps (Fig. 7.a). At
shorter probe wavelengths (up to 307 nm), both the rise time and decay times became
longer (Fig. 7.b-d). In addition, a constant signal level after the initial rise and decay
became more significant at shorter probe wavelengths, except for the 580 nm probe. The

rise time (from zero intensity level to maximum) became 10 ps at lpmbe =330 nm, 18 ps
at A,rope = 320 nm, and 50 ps at Aprobe = 307 nm. The decay time (from maximum to the
constant level) was 12 ps at A, = 350 nm, 50 ps at Ap,4p, = 330 nm, and 70 ps at 4
probe = 320 nm. The decay was not apparent at A,,p, = 307 nm (Fig. 7.d). At A, =
280 nm, the rise and decay times became fast again: the rise time was 8 ps and the decay
time was 15 ps (Fig. 7.€). At 4,.0p, = 280, 307, and 320 nm, the transient signal first

reached a certain value after a fast rise (2 ps) and then increased more slowly and almost

linearly for another 6 to 20 ps.
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5.3.4. The 342 nm emission

At certain wavelength combinations and relative time delays of the pump (480 to
700 nm) and probe (307 nm) pulses, we scanned our monochrometer and obtained the
LIF emission spectra from both the iodine-argon and iodine-helium beams. Within the 2-
nm spectral resolution of our detector, the spectra obtained from these two beams
displayed a similar fluorescence band around 342 nm. We then monitored this 342 nm
emission and scanned the pump-probe delay line. The LIF transients obtained from the
iodine-helium beam appeared similar to those from iodine gas cells and were described
previously. For the jodine-argon beam, the probe wavelength was fixed at 307 nm and
the argon backing pressure was kept at 1100 Torr. A transient obtained from the iodine-

argon beam at lpump = 510 nm and /'tpmbe = 307 nm is shown in Fig. 8.b, as a typical

example of the transients obtained at pump wavelengths between 480 and 550 nm. The
maiﬁ features displayed by these transients appeared similar to those obtained with
detection of the same situation at 400 nm emission (Fig. 8.a). For a pump wavelength of
614 nm, an initial peak with a pulse-width limited rise and decay was observed at zero-
time-delay, which was then followed by a slow, almost linear rise after the initial decay
reached the zero intensity level (Fig. 9.a). The fast recovery, apparent in the

corresponding 400-nm transient (Fig. 9.b), was absent from the 342-nm transient.

5.3.5. Backing-pressure dependence

The internal temperature and average size of the clusters are dependent on the

backing pressure of the expanding gas [61,64-65]. We have varied the backing pressure
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of argon from 400 to 1,100 Torr corresponding to cluster sizes from approximately 8 to
40 atoms. We scanned the pump-probe time delay and separately monitored the 400 and
342 nm signals from the iodine-argon beam. The transients thus obtained for the
pump/probe combination of 510/307 nm were fit by a bi-exponential function for both the
400 (Table 1) and 342 nm transients (Table 2). For the 400-nm transients, the relative
amplitude of the long-time asymptote to the initial maximum increased with the backing
pressure. The decay time after the initial pulse-width limited rise was relatively
insensitive to the backing pressure change while the following recovery time became
shorter as the backing pressure became higher. For the 342-nm transients, both the decay
and rise times decreased as the pressure increased. At pressures of 670 and 1,100 Torr,
we also obtained 400-nm transients with the 614/307-nm pump/probe wavelength
combination. The component of the fast recovery appeared to be slightly smaller and
slower for the transient obtained at a loWer backing pressure. On a longer time scale, the

two transients (not shown here) appeared almost identical.

5.3.6. Polarization dependence

At the 614/307-nm pump-probe wavelength combination, we adjusted the relative
polarization angles of the pump and probe beams. Detecting 400 nm emission, with the
Ar backing pressure at 1100 Torr, we recorded transients with the polarization of the
pump and probe beams at parallel (0°) and perpendicular (90°) orien'tations. They
appeared identical within the noise level (not shown). We also took jodine-helium

transients (Ay,ope = 307 nm; detecting 342 nm emission, helium backing pressure at 900
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Torr) for which the angles between the pump and probe polarization directions were set at
0°, 45°, and 90°. The relative amplitude of the initial peak to the long-time asymptote
differed slightly for different polarization angles: the largest for 45° and the smallest for
90°. At a pump wavelength of 510 nm, we conducted a similar measurement on the
iodine-argon expansion (1100 Torr). The transients obtained (Aprabe = 307 nm; detecting

400 nm fluorescence) for different polarizations between the pump and probe beams did

not display a significant difference.
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5.4 Discussion

5.4.1. Cluster size and spectra
According to the gas phase absorption coefficients [5], the pump pulses (460 to

700 nm) used in our experiments could excite I, from the X state to either the B, I, or A

state depending on the wavelength, as shown in Fig. 1. The probe pulse (280 to 350 nm)
further reaches jon-pair states through allowed electronic transitions (e.g. B — f, A — B,
A' — D', and X — D) [6]. In the gas phase, collision induced non-radiative energy
relaxation promptly quenches all ion-pair excitations into the ground state of the lowest
ion-pair state D' [68], from which the characteristic fluorescence (342 nm, D' — A") of

uncomplexed I, is emitted. For I, in Ar, the ion-pair states are solvated by the

surrounding argon atoms leading to a lowering of the ion-pair potentials relative to the
valence states [9,24,27-28,31-32]. In argon matrices, the emission was red shifted by as

much as 2900 cm-! to 380 nm [24]. Recent studies on L, in high pressure argon showed

that the center of this emission band gradually shifts from 342 nm to 374 nm at room

temperature as the pressure of argon gas increases from 9 to 2000 bar [31-32].

Fei et al. observed a broad 400 nm emission as well as the 342 nm band, using
nanosecond LIF detection of clusters. [27] The center of the 400-nm band was observed
to shift from 375 nm to a limiting value of about 400 nm as the backing pressure was
increased from 1140 to 1900 Torr, in their argon expansion conditions (d = 0.3 mm). The
relative amplitude of the 400-nm band to that of the 342-nm band was also enhanced as

the backing pressure was raised. This red shifted emission was assigned to large 1,-Ar,,
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clusters formed in their iodine-argon expansion. Effective solvation of the ion-pair states
by the argon cage was suggested to account for the 4200 cm-! red shift of the fluorescent
emission. The 342-nm emission was assigned, in their work, to the population of bare
iodine molecules in the molecular beam. In our experiment, we also observed the two-
band features in the LIF spectra: one at 342 nm and the other shifting from about 375 to
400 nm as the argon backing pressure was increased from 400 Torr to 1100 Torr. At
backing pressures near or lower than 400 Torr, the red-shifted band almost disappeared
while the 342 nm signal was even stronger. Unlike rigid matrices, the clusters under
study have the most compact structure [65], which enables them to solvate iodine as

effectively as low temperature liquids. [27,69]

Using the scaling rule developed by Hagena, et al. [64], we estimated the average
size of the Ip-Ar, clusters in our beam (nozzle diameter 0.5 mm) to range from 25 to 130
as the backing pressure was varied from 400 to 1100 Torr. Buck and Krohne [61] have
recently characterized the size distributions of Ar clusters in their crossed beam
experiments, in which the scattering cross-section and distribution of the helium beam
was correlated with the cluster size distributions in the argon beam. Their measurement
suggested that the previous scaling rule overestimated the average size of the clusters.
According to their newly developed relation between the average cluster size N and the

backing pressure P(in mbar), the nozzle diameter d (in 4m), and the nozzle temperature T

(in K), N =8695x% plot. 41394, Ty 3'752, the average size of argon clusters formed in our

molecular beam at P ~ 1100 Torr was estimated to be 40. Clusters of this size form
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almost two full layers of argon atoms and suffice to cage the dissociated iodine atoms, as
was shown by the MD simulations [2]. As mentioned above, particles in clusters tend to
form the most compact structure [65] and the solvation of the iodine states is therefore
more complete in the clusters (4200 cm-!) [27] than in the argon matrix (2900 cm-!) [24].
At a backing pressure of 400 Torr, the average size of our clusters was estimated to be
about 8. Most of the clusters at this backing pressure were not large enough to cause red

shifted emissions, as discussed below. The inclusion of I, in the cluster can be deduced

from the observed femtosecond dynamics (free vs. caged wave packet) and is consistent
with the larger binding energy between iodine and Ar compared with Ar-Ar, as discussed

in the introduction.

The probe pulses used in these experiments excited the iodine systems to the ion-
pair states (e.g. f, D, § and D) with some excess energy with respect to the bottom of the
lowest ion-pair state D'. The radiative lifetimes of these ion-pair states are on the order of
several nanoseconds [6] for bare iodine systems. If the lifetimes are on the same order of
magnitude in the clusters, then the efficient non-radiative relaxation on these ion-pair
states may transfer most of the population into the bottom of the D' state and pass the
excess energy to the surrounding argon atoms. Some argon atoms with enough Kinetic
energy could evaporate from the clusters. If we assume that the average binding energy
of each argon atom to the cluster [45] is on the order of 1000 cmrl, then 7 to 8 argon
atoms may be evaporated by an excess energy of 7500 cm-l. This excess energy is

estimated by subtracting the photon energy of the fluorescence (400 nm) from the photon
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energy of the probe pulses (307 nm). When ciusters with a small number of argon atoms
(n < 8) are excited by the probe pulses, this non-radiative relaxation in the ion-pair states
may evaporate all of the surrounding argon atoms and reduce these clusters to bare iodine
molecules by the time fluorescence occurs. In addition, the vibrational relaxation on the
A/A' B, or X state could also cause the evaporation of some argon atoms at longer pump-
probe delay times, as was demonstrated by the MD simulations [2]. This may explain
why the 342-nm transients from the iodine-argon expansion differed totally from those
obtained from bare iodine systems (detecting 342 nm). On the other hand, the clusters
that eventually fluoresce at 400 nm must initially have much more than 8 argon atoms in
order to provide a solvation energy of 4200 cm-! throughout the relaxation and
evaporation processes. This explanation is further supported by the different 340-nm
transients observed in the iodine-argon expansion from the ones observed in the iodine-

helium expansion.

The LIF spectra from the iodine-helium expansion showed only a 342 nm
emission in the 300- to 500-nm region. The transients obtained by monitoring this 342
nm signal from the iodine-helium beam are very similar to those from bare iodine
molecules in gas cells. At the moderate backing pressure (900 Torr) used, He is very
inefficient in forming iodine-helium complexes. The van der Waals interaction between

I, and He (14 cm!) is much weaker than that between I, and Ar (230 cm-!) [62]. The

iodine dynamics would not be significantly affected by the He attachment even if some

small I,-He, complexes were formed in the beam. There is, howe\}er, difference between
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the iodine system in the He expansion and the bare iodine system at room temperatures in
a gas cell. The He expansion provides a collision free environment and a lowering of the
vibrational/rotational temperatures of the iodine molecules to around 30K. The

transients obtained from these systems, therefore, characterize the dynamics of cold

isolated iodine.

We have therefore three conclusions regarding the LIF spectra: (1) the 400 nm
fluorescence comes essentially from large iodine-argon clusters and the detection of the
400 nm emission provides a unique way to monitor the wave packet motion of iodine
molecules inside neutral argon clusters.; (2) the 342 nm emission from the iodine-argon
expansion, on the other hand, originates partially from small iodine-argon clusters and
partially from residual population of bare iodine molecules; (3) the 342 nm emission from
the iodine-helium expansion characterizes cold isolated iodine systems. The solvent shift
observéd here can be related to the large dipole moment of the ion—péir states, and this has

been treated in the papers by Lienau et al [31-32].

5.4.2. Probe windows

As shown in Fig. 1, the probe pulses (Apmbe = 280 nm to 350 nm) used in our
experiments excites the I, to the ion-pair states through allowed electronic transitions,
eg. Bo>f,A—>p,A'> D, and X - D. [4,6] The relative strength of the fluorescence
following the probe pulses depends on several factors: The I, population on the

intermediate states (B, A/A' or high vibrational levels of X), the absorption cross section

of the probe photons at these states, and the fluorescent quantum yield from the ion-pair
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states. The laser intensities were kept constant throughout the delay range in our
experiment. In the argon clusters, non-radiative relaxation on the ion-pair states occurs
on a much shorter time scale (100 ps) than the fluorescent emission (4.5 to 8 ns) sc; that
most of the excited states were quenched non-radiatively into the bottom of D' state
before the fluorescence occurred. The quantum yields for fluorescence were thus nearly
the same for all excitations. The relative amplitude of the LIF signal was then dependent
on the population and the probe pulse absorption. For bare iodines at room temperature,
the absorption cross-section from X to D was measured to be 0.92 A2 at 183 nm probe
[91, and that from A' to D' was measured to be 0.61 A2 at 300 nm probe [70]. For1,-Ar,
clusters, we assumed that the solvation effect simply pulled down the ion-pair states by
4200 cm-l, as shown by the dotted lines in Fig. 1. Using gas phase potentials for the
valence and ground states, we calculated Franck-Condon distributions as functions of
probe wavelengths. For the ground state, the .maximum absorption shifts to lower
vibrational levels as the probe wavelength becomes shorter. At 307 nm, the optimal
absorption is centered around 7500 cm! below the dissociative limit (or 5000 cm! above

the bottom) of the ground state, according to this calculation.

The X to B pump excitation (pumped at 480 to 620 nm) of I, is a parallel
electronic transition. The transition induced by the probe absorption from B to f is also
parallel. The LIF signal near time zero will be enhanced by a factor of three if the pump
and probe pulses are short enough and their polarization are aligned in the same direction

[71]. The X to A transition, on the other hand, is perpendicular. The subsequent A to 3
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probe absorption is again parallel. The pump—probe LIF signal upon excitation of the A
state is thus favoring the perpendicular alignment of the pump and probe beams. At a
pump wavelength of 614 nm, the LIF signal was probably a combination of both A and B
state excitation. The polarization dependence of the LIF signal from the I, in He beam,
therefore, did not favor either the perpendicular or the parallel alignment of the pump and
probe pulses. In the large I,-Ar, clusters, no explicit polarization dependence of the LIF
transients was observed. This may indicate that the symmetry of the ion-pair states were
at least partially destroyed by the Ar solvent shells. We must, however, consider all three

processes, pump/probe/fluorescence, in order to calculate the magnitude of the anisotropy

expected [1].

5.4.3. Direct dissociation and recombination

‘Monitoring the 342 nm emission from the iodine-helium beam, we obtained LIF
transients at different pump wavelengths (480 to 700 nm) while the probe wavelength
was fixed at 307 nm (insets of Figs. 4 & 5). Beginning at a pump wavelength of 614 nm
pump (inset of Fig. 4.b), a dissociative channel becam: important and dominant as the
pump wavelength became longer, as illustrated by the pulse-width limited peak at zero
time delay. This dissociative channel is attributed to pump excitation to the A state. At
room temperature, about 30% of the iodine molecules are excited to the A state at 614 nm
[51. The LIF transients (not shown here) obtained by detecting the 342 nm emission from
iodine gas cells with the same pump and probe combination (614/307 nm) at room

temperature, however, did not show a significant peak at zero time delay, suggesting that
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A state excitation was less important at room temperatures (gas cell environment) than at
lower temperatures (in the He expansion) for the same pump wavelength. This
interpretation is supported by Tellinghuisen's work [72] which indicated that the X to B
absorption of bare iodine was dependent on the vibrational/rotational temperature of the
molecule. At pump wavelengths longer than 580 nm, this X to B absorption becomes

less efficient at lower temperatures.

The X to A absorption may, therefore, be relatively enhanced at long wavelengths
(614 to 640 nm) for cooled (30 K) I, molecules in helium aﬁd argon expansions.
Furthermore, the X to B absorption was previously observed to be blue-shifted by 13 ¢cm-!
per Ar atom in the I)-Ar,, clusters because of different degrees of X and B state solvation
[54]. If we assume that in a full layer (~ 20) of Ar atoms, each atom incites the same
blue-shift, then the X to B absorption will be shifted to shorter wavelengths by as much as
260 cm-!, or 10 nm near 614 nm. This solvation-induced blue-shift may may partially

explain why the I,-Ar,, transients displayed A-state type behavior at 4

pump = 590 nm (Fig.

4.a), a wavelength at which the corresponding bare 1, transient from the He beam
displayed bound B-state behavior (inset of Fig. 4.a). On the other hand, I, excited to its B
state by light near 590 nm (V' ~ 12 to 14) predissociates very rapidly both in Ip-Ar,
clusters [59] and in high pressure Ar gas [31-32]. At /lpump = 620 nm, the predissociation

time of the B state was measured to be about 1 ps at an Ar pressure of 2000 Bar [31-32].

In a recent time-resolved experiment on the I, in liquid n-hexane by Scherer et al. [73]

the predissociation time of the B state following 580 nm excitation was obtained to be on
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the order of 300 fs. In large I,-Ar, clusters, strong coupling between the B and the IT; /T
1g States may have caused direct dissociation of I, below the 590 nm excitation level (v' ~
12 to 14). The initial peak in the LIF signal observed in A-state type transients (Fig. 4)
could, therefore, have some contribution from this dissociative region of the B state as
well as from the A state. At pump wavelengths longer than 640 nm, dissociation
following A state excitation dominated in both the iodine-argon beam and the iodine-

helium beam, as was demonstrated by the transients shown in Fig. 4.c and the inset.

The recovery of LIF signal observed in the transients of I,-Ar, clusters is direct

proof of geminate recombination. After reaching a zero intensity level, the LIF signal

(400 nm emission) from the I,-Ar, clusters recovered on a time scale of 300 fs. The

recovery of signal was best resolved in the 614-nm transient (Fig. 5.b) which was
obtained with the shortest pump and probe pulses (120 fs). The time scale of the prompt
recovery was comparable to the pump-probe -cross correlation which was characterized by
the pulse-width-limited rise and decay of the initial peak. This indicates that the
coherence of the wave packet motion was preserved for as long as 660 fs throughout the
dissociation and recombination process and manifested in the damped oscillations at
longer times [2]. We have ruled out the possibility that this fast recovery could have been
caused by a vibrational motion on the B state, because its vibrational period at this energy
(614-nm pump) is around 300 fs for bare I, [8,66] and I, in high pressure Ar gas [31-32].
At 300 fs of time delay, the signal level dropped to almost zero (Fig. 4.b), indicating that

either the B state became dissociative or the probe photon (307 nm) absorption on the B
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state was very inefficient at this pump excitation energy (614 nm) in argon clusters
(compared to the A state absorption). At longer pump wavelengths (640 to 700 nm) the
LIF transients obtained from the iodine-argon beam displayed coherent features similar to
the 614-nm transients. At pump wavelengths between 700 and 590 nm, the A state is
dissociative with excess energies of 1700 to 4400 cm-!. The fast recovery of signal at 660
fs, therefore, represents a coherent reéombination of I, following direct dissociation in the

argon cage.

As emphasized in our earlier report [30], the key to this coherence lies partially in
the fact that the cluster structure was initially cold and rigid when the dissociation
occurrs. This view is supported by MD simulations [2]. The Ar atoms act collectively in
colliding with the dissociating iodine atoms. After the first series of collisions, some of
the iodine atoms bounce back adiabatically on the original A state and give rise to the
coherent recovery of LIF signal. The non-exponential rise following the coherent
recovery comes mainly from vibrational relaxation on the A/A' states. For an initially
warm (60 to 90 K) cluster, the cluster cage melts and its soft structure excludes coherent
motion [2]. The cluster size may also play a role in determining whether coherent
recombination is possible. As shown by Fig. 9.a, the coherent recovery was absent from
the transients obtained by monitoring the 342 nm emission, which characterizes smaller
clusters, from the iodine-argon beam. Coherent caging had not been previously observed
in the liquid phase or in high pressure gases because of the induced thermal averaging.

Aside from the necessary ultrashort laser pulses, the observation of such coherence
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requires a relatively cold and rigid solvent as well as an ultrashort dissociation time

(direct dissociation) [30].

Upon recombination in the cluster cage, the -] atom pair may be formed either
on the A/A' or X state. The recombination takes less than 2 ps following direct |
dissociation on the A state dissociation [2]. The A and A' states have well depths of 1640
and 2500 cm-l, respectively, for bare iodine systems [4,74-75]. In argon matrix [24],
these states were reported to have radiative lifetimes 6f 143 ps (A) and 6 ms (A"), much
longer than the time scale of our interest. If the Franck-Condon region is centered near
the bottom of these states, the LIF transients are expected to show a plateau following a
monotonic rise, with the rise time reflecting the relaxation time on these states. The
transient obtained at a probe wavelength of 307 nm did show such a behavior , with a rise
time of about 50 ps (see Fig. 6c), which is two to three times longer than the A/A"
relaxation time calculated from the MD simulations [2]. This may indicaté that the MD
simulations tend to over-estimate the vibrational relaxation rate [20]. At the probe
wavelength of 307 nm, the LIF signal remained constant at long pump-probe time delays
(up to 200 ps). This led us to conclude that the LIF si gnal from iodine which recombined
on the X state was not important, if there was any. Otherwise, at all the probe
wavelengths that we invoked (280 to 350 nm), we would have observed a rise and decay

in the signal as the population relaxed into and out of the Franck-Condon maximum of

the probe pulse.
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The transients obtained in the probe-dependent experiments are shown in Fig. 7
for five different probe wavelengths (280 to 350 nm). These transients were all obtained
at the same Ar backing pressure (1100 Torr), with the same pump wavelength (614 nm),
and monitoring the same fluorescent emission (400 nm). Probed at 350 nm, the rise time

was about 3 ps. It increased to about 6 ps at 4,,op, = 330 nm and up to 10 ps at A,,0p, =

320 nm. The time scale of the subsequent signal decay increased from 5 ps at 350 nm to
30 ps at 330 nm and up to about 40 ps at 320 nm. As the probe wavelength was tuned
from 350 to 307 nm, the absorption maximum of the probe pulses shifted from high to
low vibrational levels of the A/A' states. If the iodine molecules recombined into the
A/A' states and underwent vibrational relaxation, we would see the LIF signal increase as
the population steps into the absorption maximum and then decrease as the population
moves past this maximum. Both the rise time and the decay time should be_come longer,
as the probe wavelength becomes shorter, becauée the lower the vibrational level, the

slower the relaxation rate. This is consistant with the above results.

At probe wavelengths shorter than 307 nm, the rise and decay appeared again (see
Fig. 7e, for 280 nm probe). This indicates that the Franck-Condon maximum has shifted
toward higher vibration levels along the opposite side of the A/A' state potential well
(relative to longer probe wavelengths). It is also possible that the ground state population
became visible at these short probe wavelengths and contributed to this signal rise and

decay on top of signal from the A/A' states.
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When probed at 350 nm, the transient signal decayed to nearly zero after a
maximum was reached, indicating that no signal came from the bottom of the A/A' states
at this probe wavelength. As the probe was tuned to shorter wavelengths (330 and 320
nm), the signal decayed to a constant level whose relative amplitude increased with the
decrease of probe wavelength (Fig. 7b and Fig. 7c). When probed at 307 nm, the
transient simply displayed a plateau following a 50 ps rise (Fig. 7d). As mentioned
above, we have assigned the asymptotic signal to the lowest vibrational levels on the A/A'
states. For iodine molecules at room temperature, the maximum probe absorption from
the A' state was measured to be around 300 nm [18]. This maximum corresponds to
resonant absorption from the lowest vibrational levels on the A' state. In solvents, the
absorption is expected to be red shifted because of the lowering of the ion-pair states. In

liquid CCly, the shift was reported to be ~ 20 nm near the 320 nm probe wavelength [18].
The red-shift in Ar clusters was expected to be slightly smaller than that in liquid CCl,
since the polarizability of the Ar atom (1.64x 10-24 cm3) is smaller than that of the CCl,

molecule (11.2x10-24 cm3) [76]. Meanwhile, the fluorescence (D' to A") red shift in the
clusters under study was as much as 4200 cm!. It was therefore concluded that the A'
state absorption maximum at the bottom of the well had been shifted to 307 nm in these
clusters. The A and A' state absorptions are expected to be similar because of their
similarity in potential energy surfaces. In principle, the populations at intermediate levels
of the X state could also be probed at wavelengths from 280 to 350 nm. Vibrational

relaxation on the X state takes a few hundred picoseconds [2] for the population to move
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out of these intermediate regions and reach the lower levels of the well. Accordingly, if
an X state contribution had been significant in our experiment, we should have observed
rise and decay features in all our transients independent of the probe wavelength. The
fact that we did not observe any decay in the 307-nm-probe transient on the time scale of
200 ps indicates strongly that X state absorption was not important in our experiment, at
least for the probe wavelength of 307 nm. This conclusion is consistent with work on

high pressure systems [31, 32, 41].

Many of the A-state type transients (Fig. 7) displayed multi-slope rises after the
pump excitation. In the transient UV absorption experiments conducted in Harris' group

on I, in CCly [19], similar multi-slope rises, followed by multi-slope decays, in the

transient absorption were observed on a long time scale (from 80 ps to a few
nanosecond). In their experiment (with a pump wavelength of 590 nm and a probe
wavelength of 295 to 400 nm), the rise times of the A/A' state signal, which characterizes
the vibrational relaxation on these two states, were estimated to be about 20 ps. A faster
decay (5 to 20 ps depending on the probe wavelength) component was assigned to the
prediséociation of the B state, and a slower decay component (~ 400 ps) was assigned to
the A/A' to X non-radiative relaxation. In our experiment, however, we found that either
the B state was directly dissociative or its contribution to the LIF signal (400 nm) was

insignificant at pump wavelengths below 590 nm.
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5.4.4. Predissociation and recombination

At pump wavelengths between 500 and 580 nm, the LIF transients from the
isolated systems in the He beam indicated a pump excitation to the B state which was
stable on the time scale of interest (200 ps). The corresponding iodine-argon transients
displayed a very different behavior. They were characterized by a pulse-width limited
rise at time zero, a following ~ 10 ps decay and a subsequent slower recovery that
occurred on a 50 ps time scale. The pulse-width limited rise in both the He and Ar beams

characterizes the coherent excitation of I, to the B state (there could be some percentage
of excitation to the IT,, state at 510 or 500 nm, as shown in Fig. 1). The subsequent
decay in the iodine-argon transients on the 10 ps time scale demonstrates the
predissociation of the B state I, in the cluster cages. This predissociation is due to
collision-induced non-adiabatic couplings between the B and II;, states [59,77). The
signal recovery after the predissociation is again attributed to geminate recombination of
the I, molecules inside the cluster cages. These B-state type transients were obtained both
as functions of Ar backing pressure and as functions of the pump wavelengths (Fig. 4.a-b
& Fig. 5). We have used a bi-exponential decay-and-rise function convoluted with a
Gaussian to fit these transients. The fit results are listed in Tables 1 and 2. The fit
function has an additional fit parameter At to allow for a certain time delay between the

decay and the rise. Such a delay often appears in the experimental transients and is

related to the recombination time following the predissociation.
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After I, is excited to high vibrational levels (v' > 14) of the B state by the pump
pulses (500 to 580 nm), subsequent vibrational relaxation efficiently transfers kinetic
energies from the I, vibrational mode to the thermal vibrational modes of the cluster.
Warmed up by this energy transfer, the cluster cage becomes soft and some of the argon

atoms evaporate as they acquire enough kinetic energy. When the I, predissociates, the

soft cluster cage can no longer confine the dissociating I atoms within a small radius. The
two iodine atoms are able to separate to a greater internuclear distance, allowing argon
atoms to intercede [2]. In order for the I, to re-form, the iodine atoms, relaxed through
collisions with the Ar aioms, have to diffuse within the clusters until they reach an
appropriate internuclear separation. It takes, therefore,- a longer time for iodine to
recombine after predissociation than it does after direct dissociation in cold clusters. The
average recombination time ranges from 5 ps to more than 10 ps, depending on the

excitation energy [2]. The internuclear separation of the two iodine atoms following the

predissociation reaches as far as 9 A.

Intuitively, the shorter the pump wavelength, the more excess energy the cluster
receives from the relaxation on or predissociation from the B state. The recombination
time is thus longer at shorter pump wavelengths. The predissociation time is also
dependent on the excitation energy. As observed by Burke and Klemperer [59], in their
study of I,-Ar, the predissociation rate on the B stafe is a modulated function of the
vibrational level. The overall trend is an increase in the probability for predissociation at

lower vibration energies. In agreement with this argument, the transients obtained for
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pump wavelengths between 580 and 510 nm displayed both a longer decay time and a
longer delay time as the pump wavelength became shorter. The transients for pump
wavelengths shorter than 510 nm (480 and 500 nm) displayed an opposite trend. This is

because excitation to the dissociative I1;, state becomes more significant as the pump
wavelength becomes shorter than 510 nm. The percentage of pump excitation to the IT;,

state changes from 22% at 510 nm to 34% at 500 nm and up to 47% at 480 nm (Fig. 1).

The transient behavior following Il;, excitation should be similar to that following A
state excitation [2]. The overlap of a I, transient on a B transient causes the apparent

shortening of the time delay between the initial decay and the following rise, as shown by
the MD simulations [2]. In the specific case of the 480 nm pump, this overlap may have

caused the predissociation-related decay to disappear (Fig. 4.a).

. At 480 nm, the pump pulse excites the iodine to a region of the B state that is
above its gas phase dissociation limit. Inside the argon clusters, however, the dissociation
limit of the B state may be higher as suggested by the blue-shift of the X to B absorption
[54]. Accordingly, the B state dynamics at this excitation energy is similar to those
described for the 510 nm pump. Alternatively, direct caging (back to the B state) might
occurr after the dissociation (into I + I') followed by vibrational relaxation and electronic
predissociation on the recombined B state [2]. These two descriptions may prove to be
equivalent if the direct caging is interpreted as have been caused by the solvg:nt-induced

formation of a potential barrier along the dissociation path (in to I +I*).
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Following predissociation/ecombination in the cluster cages, vibrational
relaxation on the recombined A/A' and X states is expected to be similar to that following
direct-dissociation/recombination. More Ar atoms are expected to evaporate from the
cluster following B state excitation because more energy is injected into the system by
pump photons of shorter wavelengths [2]. No explicit effect of this evaporation on the
relaxation dynamics was observed in our experiments. That is probably because the
groups of clusters that gave rise to the 400 nm emission are too large to be affected by an
evaporation of a few Ar atoms. The fact that the recovered signal at longer time delays
was even stronger than the initial maximum clearly indicates that the probe absorption on
the A/A' states is stronger than that for the B state. If the probe absorption coefficients
are comparable for all the states (B and A/A") involved, the caging efficiency is then
suggested to be near unity. Simulations on clusters containing 44 argon atoms suggests

that such a size was sufficient to provide a 100% recombination yield [2].

5.4.5. Dynamics of small clusters

As pointed out earlier, the 342-nm transients obtained from the iodine-argon beam
represent the dissociation and recombination dynamics in small clusters, in addition to a
bare iodine background. This was further verified by a transient obtained by detecting the
342 nm emission from the iodine-argon expansion (1100 Torr) at a 614/307 nm
pump/probe combination (Fig. 9.a). Following the initial peak, which characterized the
pump excitation at 614 nm, the signal dropped to almost zero at 300 fs and started to

increase again on a 10 ps time scale. The coherent recovery apparent in the
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corresponding 400 nm transient (Fig. 9.b, detecting 400 nm emission) was absent from
this 342 nm transient, indicating that the complexes that gave rise to the 342 nm
fluorescence were not large or rigid enough to directly cage the iodine. The fact that the
signal dropped to ground level after the initial peak verifies that the population of I,
which is excited to the B state either is directly dissociative or is insignificant for the

cluster dynamics at this pump-probe combination (4, = 614 nm; 4,54, = 307 nm).

At shorter pump wavelengths (480 to 580 nm), the transients obtained by
monitoring the 342 nm fluorescence appeared somewhat similar to the corresponding 400
nm transients (see Fig. 8). As shown in Fig. 8, the relative amplitude of the long time
asymptote to the initial peak is smaller in the 342 nm transients than in the corresponding
400 nm ones (at the same Ar backing pressures), suggesting that the caging yield is lower
in small clusters than that in large clusters. Among the 342 nm transients, this ratio
becomes smaller at lower backing pressures. At 400 Torr, a constant signal level instead
of a rise was observed following the decay. This constant level is attributed to LIF
emission from bare I, molecules, the population of which becomes greater at lower
backing pressures. The absence of recombination (rise) at this backing pressure (400
Torr) is also consistent with the absence of red shifted emission in the corresponding
spectral measurements. These 342 nm transients were also fit by the bi-exponential
decay-and-rise function. The fit results are listed in Table 2. The rise times T,, which
characterize the recombination/relaxation time constants, became shorter as tﬁe pressure

became larger (Table 2) and are longer than their counterparts in the 400-nm transients
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(compare Table 1 and Table 2). It should be noted that the bi-exponential decay-and-rise
functions could not fit the experimental transients perfectly. It is likely that neither the
decay nor the rise can be treated as single or double exponential functions. The fit results
for T, are particularly rough, because of the small number of data points along the decay

curves.

Within the ensemble of small clusters, the distribution shifts to larger sizes as the
backing pressure is increased. The initial cluster temperature also becomes colder as the
pressure becomes higher. Accordingly, the relaxation/predissociation and
recombination/relaxation rates increases with the backing pressure. As the clusters grow
larger, forming two or more full layers, the relaxation/predissociation rates becomes

insensitive to the outer shells. This may explain the relative constant decay times T,

observed in the 400-nm transients (Table 1) at different backing pressures.

5.4.6. Comparison with ionic clusters, dense fluids, and matrices

Lineberger’s group studied the photodissociation and recombination dynamics of
I7 in size-selected I5-(CO,);, clusters by using pump-probe ion detection techniques [44-
45]. In their studies, the absorption recovery of the probe pulse in large clusters (n = 14-
17) consists of two components: a coherent recurrence at 2 ps and an slower gradual
recovery on a longer time scale (~ 10 ps). The short-time feature has been assigned to

coherent I.--I- motion following photodissociation. The long-time absorption recovery is

attributed to the vibrational relaxation in lower electronic states. For smaller cluster sizes
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(n < 12), no coherent recurrence was observed and the absorption recovery time increases

to about 40 ps.

The above results are similar to ours in that a coherent recombination of
dissociative iodine atoms can be observed in clusters, although the two systems are

different in nature. The charge induced long-range Coulomb attraction between the

dissociating iodine-(CO,); radicals is critical to the coherent reforming of the I7 in the
clusters. The potential surfaces of I5-(CO,), during dissociation and recombination may

be strongly perturbed from those of the uncomplexed I,~ potential surfaces due to charge

redistribution. In our case, the weaker and shorter-ranged van der Waals interactions
between the iodine and Ar atoms are the dominant forces and are dependent on the rigid

structure of the larger neutral I,-Ar, clusters. The coherent recombination of a

dissociative neutral I---I pair observed in large Ar clusters is primarily due to the
collective solvent collision force. It would be interesting to repeat our experiments using

neutral I,-(CO,), clusters, and to compare with Lineberger's system.

Previous studies in the liquid phase of various solvents have not reported the
coherent caging discussed here. For dense fluids, the coherent motion of the wave packet
during dissociation was observed and examined [26, 31-33], but the prompt (coherent)
recombination was only evident at the highest Ar denéities. For liquids and dense fluids,
the temperature (300 K) in both cases is much higher and long-range order is absent. The
solvent distribution around the iodine is random in nature. It is, therefore, anticipated that

coherence in the dissociation-recombination dynamics would diminish [2, 30].
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Furthermore, due to their high temperature and mobility, the solvent particles can easily
intercede between the separated iodine atoms following the iodine dissociation. The

diffusive channel would then play a more important role in the caging dynamics.

If the solvent structure is made more rigid than the cluster, an enhanced coherence
is expected [30]. Recent time-resolved studies of I, in Ar and Kr matrices systems have
observed the coherent feature in the dissociation-recombination process and showed clear
persistent oscillations [37-38]. For similar pump and probe wavelengths, the LIF
transients obtained in the iodine-argon matrix system appears similar to those from the

large clusters reported here. The coherence extended to longer times in the argon matrix,

due to the lattice structures.
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5.5 Conclusions
Using the femtosecond methodology, with LIF detection techniques, the

dissociation, geminate recombination, and coherence dynamics of I in I,-Ar, clusters (0

~ 8 to 40) has been studied. The primary and secondary processes of caging have been
observed and the mechanism critically depends on the time scale of dissociation in the
solvent cage. After the system was excited to the dissociative A state with pump

wavelengths ranging from 590 to 700 nm, a direct dissociation of I, was accomplished in
300 fs. A subsequent direct recombination took place in another 360 fs in large I,-Ar,

clusters (m 40 or larger), indicating that the coherence of the wave packet motion
following direct dissociation was preserved for at least 660 fs in cluster cages. Damped
oscillations [2] are part of a long-time recovery. This coherent caging dynamics is
determined by bond breakage characteristics within the solvent cage (dissociation time),
energy exchange between the fragments and the solvent cage (chaperon time), and nature
of collective solvent properties (geometry, structure, and temperature). For liquids and
supercritical gases at room temperature, there is a lack of collective binding forces and

the coherent recombination feature is therefore not expected.

Recombination after predissociation from the B state displays a diffusive nature.
The cluster structure is softened by the energy transfer from the I-I electronic/vibrational
mode into the thermal vibrational modes of the I,-Ar, clusters. The diffusive motion of
the separated I atoms is confined by the finite boundary of the cluster, which give rise to a

relatively narrow distribution of recombination times. In liquids and high-pressure gases,



179

on the other hand, the two far-separated iodine atoms can recombine through slow

diffusive motion and, therefore, both primary and secondary recombination can occur.

The time scale for vibrational relaxation on the recombined A/A’ states is found to
be sensitive to the vibrational level, ranging from 3 ps (probed at 350 nm) near the
dissociation limit (into I + I) to 50 ps for energy levels near the bottom of the well
(probed at 307 nm). For the high vibrational levels, the iodine atoms can move to larger
internuclear separations and their interactions with the argon atoms are enhanced and lead
to faster energy relaxation. In addition, due to the anharmonicity of the A/A'-state
potential surfaces, the vibrational-level energy difference is greater around low
vibrational levels. The coupling between the cluster mode and the I, vibrational mode is

therefore relatively weaker, leading to a slower energy relaxation at lower vibrational

energies.

In the accompanying paper, we present MD calculations for the same system. We
examine the different regimes realized experimentally and compare the theoretical results
to their experimental counterparts. The effects of reaction time, caging time, and solvent

characteristics (structure, temperature, etc.) are all part of the MD study [2].
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5.7 Tables

Tablel. Parameters fit for the A; ;r = 400 nm transients. Aprobe = 307 nm.

The transients were fit by convoluting a decay-and-rise function:

f ()= Ay+ Aje==10/n + Aye=U~10~40)/T2 with g(t) = e %,

(a) Pump wavelength dependence (backing pressure = 1100 Torr)

).pump (nm) T, (pS) T, (pS) Aty (ps) A/A,
502 17.4+3.4 16.6x1.4 12.0+0.8 0.40+0.09
510 17.4+1.3 15.1+0.78 12.0+0.4 0.621+0.06
550 159422 11.9£1.0 10.7£0.5 0.52+0.09
570 16.3+4.5 14.8%+1.5 8.410.6 0.30+0.07
580 15.244.7 11.442.7 4.810.7 0.4610.11

(b) Backing pressure dependence ( ?tpump =510 nm)

Backing Pressure (Torr) T1(ps) To(ps) Aty(ps) A/A,
1100 17.4£1.3 15.1£0.78 12.0:04 0.62+0.06
900 18.4+3.4 34.2+2.6 19.0£1.6 0.610.2

650 13.0£2.1 53.6+5.0 25.1£2.5 0.83+0.07
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Table 2. Parameters fit for the A7 = 342 nm transients, where A,,,p, = 307 nm.

The transients were fit by convoluting a decay-and-rise function:

1) = Ay + Ale=~0)/T + A,e~(—~1o~40)/72 with g(r) = e~/
F®)=A+4 2 g(t)

(a) Pump wavelength dependence (backing pressure = 1100 Torr)

Apump (nm) T, (pS) T, (ps) Aty (ps) A/A,
502 150411 22.2+0.91 19.020.7 0.5340.08
510 15.0+0.88 19.9+0.75 18.7+0.5 0.57+0.07
550 15.7+1.4 22.6£1.3 15.640.9 0.66+0.10

(b) Backing pressure dependence ( /lpump =510 nm)

Backing Pressure (Torr)

T, (ps) T, (ps) Aty (ps) A/A,
1100 15.0+0.88 19.940.75 18.740.5 0.57£0.07
900 20.5+2.4 41.1+£2.2 27.2+1.6 0.70+0.13
650 17.7£1.8 45.4+2.1 15.242.1 1.2240.09

400 22.0£1.9 o0
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5.8 Figure Captions and Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Relevant potential energy surfaces of iodine. The dotted lines are obtained by
lowering the 1, ion-pair states by 4200 cm! and are used here to represent the

solvated ion-pair states [27]. The wavy line represents fluorescence from the

solvated D' state to A' state. The dependencies of relative absorption cross

-sections for the A, B, and Il states on the pump wavelength are represented by

the curves shaded from darkest to lightest respectively [5]. The arrows indicate
the corresponding photon energies for the pump wavelengths 480, 510, 614, and
700 nm from highest to lowest. The potential energy values are measured from

the bottom of the X state.

Schematics of the molecular beam system and the two femtosecond-pulse

arrangement.

LIF spectra from the iodine-argon expansion. The backing pressure was kept at
1100 Torr. The probe wavelength was 307 nm. The solid lines were obtained
with the probe pulses preceded by the pump pulses (positive delays); the dashed
lines obtained with negative delays, which is identical to spectra obtained with the
pump beam alone. The peak around 355 nm (part a) came from the scattering of

the tripled output of the YAG laser (DCR-2).

A-state type LIF transients from the iodine-argor: beam on a short time scale. The
backing pressure is 1100 Torr. The probe wavelength is 307 nm. These transients
were obtained by monitoring the 400 nm emission from the beam. Pulse widths
are about 120 fs for the 614 nm transient and about 300 fs for the others. The
insets are transients that were obtained with the same pump and probe
arrangements but from the iodine-helium beam (monitoring 342 nm emission) at a

backing pressure of 900 Torr.

B-state type LIF transients from the iodine-argon beam, on a short time scale. The

backing pressure is 1100 Torr. The probe wavelength is 307 nm. These transients



Fig. 6

Fig.7

Fig. 8

Fig. 9
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were obtained by monitoring the 400 nm fluorescence from the beam. In the
insets are corresponding transients (monitoring the 342 nm emission) obtained

from the iodine-helium beam with the same pump and probe pulses.

LIF transients from the iodine-argon beam. The backing pressure is 1100 Torr.
The probe wavelength is 307 nm. These transients were obtained by scanning the
pump/probe delay over a long time scale (- 20 to 180 ps) and monitoring the 400
nm emission from the beam. The pump wavelength was tuned from 480 to 700

nm.

A-state type transients obtained with different probe wavelengths (detecting 400
nm emission). The backing pressure is 1100 Torr. The pump wavelength is kept

at 614 nm. The probe wavelength was tuned from 280 to 350 nm.

B-state type LIF transients obtained by monitoring a) the 400 nm emission; b) the
342 nm emission from the iodine-argon expansion. The backing pressure is kept

at 1100 Torr. The pump and probe wavelengths are 510 and 307 nm, respectively.

A-state type LIF transients obtained by monitoring (a) 342 nm; (b) 400 nm
emission from the same iodine-argon beam. The backing pressure is 1100 Torr.
The pump and probe wavelengths are 614 and 307 nm, respectively. The pulse
widths are about 200 fs for the 342 nm transient, and about 120 fs for the 400 nm

transient.
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Internuclear separation (A)







191

>

L

Q

&)

C

)

O

10)]

g | | | | | | | 1 | i
] 330 340 350 360 370 380 390 400 410 420 430 440
O

o 1+

©

e

“

o 0.8

4]

3]

-]

0.6

0.2
t

A AL
T AR L T X+‘5?‘**H+""‘+#“$+uf-t+‘¥+ﬁw Ty

] ] ] ] ] | | I I 1
330 340 350 360 370 380 390 400 410 420 430 440

Wavelength (nm)

Figure 3



192

1 | |2‘Arn v
06l . W'M
&' udhs
0.4} Aﬁ 1T
‘ N I :
02+ Q~: 0.5
0 “‘J: ok Bare I,
= a0 1 2 5 4
S I | I l 1 I I
QO
© 11 (b) Apump =614 nm M
QO
ZUJ)) 0.8 wﬂ‘
o 0.6
=
N . ir
8 0.4
n ] 0.5f
S o2 Pt
‘8 o ® 0 Bare |,
- — O ~I |‘ L 1 1 1
- - 0 1 2 3 4
% I ] I ! ! | 1
S
[ ()
1 (¢) Apump =700 nm '..':-.‘;.v..
X' ‘(‘.‘. [\ ‘.'
0.6 .,’s*- ~
0.4} .-‘-"""e‘ T Bare I,
20 .; 3 ;\/\/\"‘/‘\/\z\/\-
®
0 kA 0 LT
| ! ! A T S
-2 0 2 4 6 8 10 12 14
Time delay (ps)

Figure 4



193

Laser-induced fluorescence (a.u.)
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Chapter 6

Molecular Dynamics Studies of Dissociation, Recombination,

and Coherence
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6.1 Introduction

This paper focuses on the use of molecular dynamics (MD) to investigate the
dissociation and recombination of iodine in large argon clusters and to compare with the
experimental results of the preceding paper [1]. The simulations provide an opportunity
to examine the changes in the structure and dynamics of the system with time and to
correlate them with the experimental observables. For the iodine-argon cluster system,
we invoke MD, using classical mechanics, to obtain trajectories of the motion. The
nuclear masses involved are heavy enough to justify a classical apprdximation. Given the
relatively short time scales involved (femtoseconds to picoseconds) and the finite nature
of cluster systems, efficient and accurate trajectory calculations can be carried out on
modern computers. For a microscopic description, the MD simulations are particularly
helpful in identifying the key forces controlling dissociation, recombination and

vibrational relaxation.

In the MD calculations we consider the system of an iodine molecule, excited
either to the A or B state (see Fig. 1), surrounded by large number of argon atoms. The
number of argon atoms varies from' 17 to 44 with the MD calculation specific to a given
size. The excitation is realized in the simulation by instantaneously switching the iodine
potential from the ground state (X) to the excited state (A or B) appropriate to the
excitation energy. The time of excitation is sampled from a Gaussian distribution
function representing the finite width of the initial pump pulse. Following the excitation,
positions and velocities of the iodine and argon atoms are calculated according to the

acting forces as functions of time. From an average of many such trajectories, we can
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monitor the dynamic changes of the separation, energy and electronic states of the jodine
atoms, as well as the response of the cluster cage to the dissociation as a function of the
initial temperature, size and structure of the system. Following excitation to the
continuum of the A state, we closely examine the coherent nature of the dissociation and
recombination and relate this coherence to the initial structure of the cluster as well as to
the time scale of bond breaking. Following excitation to the bound B state, we focus on
the electronic predissociation to a repulsive state and the consequences of this relatively

long-time scale bond breaking.

The MD approach used here for cluster systems has some similarities to previous
studies, but with a different focus. Amar and Berne simulated the dissociation and

recombination dynamics of Br, in Ar clusters of different sizes [2]. Their study showed

the influence of the cluster size and geometry on the caging efficiency. Li et al. studied
the relaxation and evaporation rate of an I, - Ar;, cluster following the excitation of iodine
to its B state [3]. The effect of a single solvent atom on the caging and electronic
predissociation from B-state iodine has been studied both theoretically and
experimentally and an excellent review of the results can be found in Gerber's article [4].

For ionic clusters, recent MD and Monte Carlo simulations carefully studied the influence
of the charge distribution on the structure and dynamics of the I -(COZ)n clusters [5]. A
novel study of the theoretical femtochemical dynamics of large iodine argon clusters was

carried out by Raz et al, where iodine dissociation could be induced by the cluster

collision with a surface [6].
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Our approach here focuses on the elementary femtosecond dynamics of
coherence, bond-breakage and bond-reformation, and the subsequent relaxation on the
picosecond time scale. The simulations are specifically designed to provide a
microscopic picture and support for the interpretation of the experimental results
discussed in Ref. 1. The paper is organized as follows. Section 6.2 describes the MD
methodology and Section 6.3 presents the MD results and discussion. The paper is

concluded in Section 6.4.



202

6.2 Methodology

6.2.1. Cluster trajectories

The MD simulations are based on ensemble averages of many independent cluster
trajectories, which in turn were obtained by numerically integrating Hamilton's equations
over a certain period of time (for a summary, see Ref. 7). For the iodine-argon clusters

containing n argon atoms and two iodine atoms, Hamilton's equations are written as:

gy = 0H/dp; p; =—0H[0dg, (i=12,-n+2;j=x,y,2)>
(1)

where H is the Hamiltonian of the system, and is given by

B=3 % 24 @

i=l j=x,y.z i

The potential function V is taken to be a sum of pairwise interactions.

| The X, A", A and B states of iodine are represented by Morse functions:

V(r) = D{exp[—2[)’ (r— r, )] - 2exp[—ﬂ (r— I, )]}+ E., 3)
where r is the internuclear separation, r, is its equilibrium value and E_, is the dissociation
energy. Parameters for these four states are listed in Table 1. The repulsive IT;, and IT;,
states are represented by a polynomial function:

V(r)=Ar"+B, (C))
where n=9, A =5.24 x 107 cm™, and B = 0 for IT,,[8]; and n = 10, A = 3.455 X 108 cm™

!, and B = -134 cm™ for Iy, [9].
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The Ar-Ar and I-Ar internuclear interactions are modeled by Lennard-Jones

functions:

12 6
V(ry=4e|(o/r)” ~(o/r)]. 5)
The parameters for the close contact distance ¢ and for the dissociation energy € are also

listed in Table 1.

The integration was carried out by using a velocity Verlet algorithm [10] with a
fixed step size of 1 fs (1x107™" second). A fourth-order Runge-Kutta integrator was used
to initialize the integration. Energy conservation was maintained at better than 1 part in
105 over a period of 90 ps. For each set of simulations, more than 200 independent

trajectories were computed to achieve good statistical averages.

6.2.2. Curve-crossing and curve-hopping

To compare with the corresponding experimental results, we have simulated the
excitation of I, to dissociative regions of the A, B and IT;, states as well as .the pre-
dissociative region of the B state. The non-adiabatjc coupling between the B and IT;,(I1
1g) states is modeled by a Landau-Zener-Stiickelberg approximation [11]. The probability

for the B state to cross over to the IT state is calculated according to the following

equation:

2 Wi-n } ©

P(VI-I§WB—H)=1—CXP{~71_ vi—jAF(R})
— X
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where R, is the crossing point; Wy, is the coupling matrix element between the B and TI
state; v,_, is the relative radial velocity between the two iodine atoms above the crossing

point; 7 is the reduced Planck's constant; and

AF (R =3V ooV /a8)_, )

is the difference in the slopes of the two potentials at the crossing point. The effective

crossing region around R, is given by

OR =4Wg_11/AF(R)) . €))

For the trajectory calculations, Eq. 6 was only evaluated when R,_; fell between
R, ~0R and R, +6R. If the probability was larger than a random number (between 0 and
1), then the potential was instantaneously switched from the B to IT state. The crossing
point between the B and IT states was computed from the model potentials (Table 1) used

in the simulations. The coupling matrix element W,_, was chosen to be around 15 cm-l,

corresponding to a time scale of about 10 ps for the B state predissociation at a pump

wavelength of 570 nm.

Following I, dissociation, the potential energy surface of the I.--I system becomes
a mixture of the X, A/A’, I1, and other valence states at large R;_; values as a result of

solvation by the Ar cage. This state mixing causes the dissociating I.--I to effectively hop
from one state to the other. To simplify the problem, we specified a certain value of R -1

(4.5 A) beyond which the curve-hopping was assumed to occur with given probabilities,

and within which curve-hopping was not allowed. To satisfy energy conservation, the
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change in potential energy upon curve-crossing or curve-hopping was compensated for by

an opposite change in the relative kinetic energy along the I-I coordinate.

6.2.3. Laser-induced fluorescence (LIF)

To simulate the LIF signals, we first assigned Franck-Condon regions for each of
the iodine states involved. We used a model potential of the solvated D state to represent
the manifold of ion-pair states. The Franck-Condon regions were then located by
matching the probe photon energies (280 to 350 nm) to the energy difference between the
D and valence states (B, A, and A"). In previous experimental studiés [1,12-14], the D'—

A’ fluorescence emission was found to be red-shifted by as much as 4200 cm! in large I,-
Ar, clusters relative to the gas phase. As discussed in Ref. 1, this red-shift is due to

solvation of the ion-pair states by the Ar atoms which leads to a lowering of these states
relativ¢ to the valence states. In argon matrices, this red-shift was measured to be 2900
cm! and the A/A' states were reported to have a solvation energy of ~ 250 cm-! relative
to the ground state [15]. Assuming that the solvation of the A/A' states is proportional to
the red-shift of the D'—A' emission, the A/A' states are estimated to be lowered by ~ 350

cml in the clusters under study. The potentials for the ion-pair states are modified from

their Rittner form [16] by the addition of an extra term: —C ( R- RS) / R to represent the

solvation effect in Ar clusters. The parameters C and R, are chosen to be 15,576 cm™ and
2.72 A, respectively, so that the bottom of the modified D state is lower than its gas phase

value by about 4200 cm™ and the energy difference between the D and A' states, near the

A’ state equilibrium separation, is close to the photon energy of a 307 nm probe pulse.
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During the trajectory calculation, when the R;_; fell within the assigned Franck-

Condon regions, the delay-time dependent LIF signal §;,-(¢) was computed using the

following formula:

Sur®= o {18V (R, 0) -0, [y Hlosp ot T /] )

where f;, is a scaling factor, AV,_ ,(R,_ ,(t)) is the potential energy difference between the
solvated ion-pair states and the valence states at given R;_; which in turn is a function of
the delay time #, A, yp, is the photon energy of the probe pulse, ¥ is a combination of

the probe spectral width and the inhomogeneous broadening of the ion pair state, ,_, is
the reduced mass of the I--I system, v,_, is the relative radial velocity between the two
iodine atoms, and T represents the absorption bandwidth. In using equation (9), both
energy and momentum conservation have been accounted for and the simulated LIF
transients are not very sensitive to the parameters used. The parameters used in this

calculation are listed in Table 2. The LIF transients obtained were all averaged over more

than 200 independent trajectories.
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6.3 Results and Discussion

6.3.1. Cluster structures

Pure argon clusters have icosahedral or polyicosahedral structures, depending on
their size [17]. With an embedded iodine molecule, this structure is altered to some
degree to compensate for the differing size and potential of the iodine atoms. Since the
van der Waals interactions between an iodine and an argon atom are considerably
stronger than those between two argon atoms, it is reasonable to assume that a structure
with the iodine molecule in the center of the cluster is the most stable configuration. We
assigned the initial positions of 19 argon atoms in accordance with an icosahedral
structure for the I, - Ar; system and of 46 Ar atoms to a polyicosahedral structure for the

I,-Ar,, system. The two central Ar sites were then replaced by two iodine atoms and

their distance was adjusted to the ground state (X) equilibrium value (2.67 A). Random
velocities, sampled from a Gaussian distribution function, were assigned to all the atoms
before the system was allowed to relax for about 10 ps. During this relaxation, the iodine
was maintained in its ground state and the average kinetic energy of the system, i.e. the

cluster temperature T was evaluated. After 10 ps, the velocities of all the atoms were

scaled by /Ty/T and the process was repeated until T was within 10% of T, the

experimental temperature of the cluster.

The coordinates of the iodine and argon atoms were then recorded and used for 3-
dimensional plots of the cluster structure as well as for the radial and angular distribution

calculations. Typical structures of the clusters are shown in Figures 2a and 2b for a 17-Ar
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and a 44-Ar cluster, respectively. At 30 K, the iodine remains enclosed by the argon shéll
after relaxation. The first layer of argon atoms appears to have kept a symmetric structure
with respect to the iodine molecule, similar to the original icosahedral arrangement (Fig.
2a). The second layer (for larger clusters) is less well confined to its original
configuration, and very often becomes asymmetric with respect to the iodine molecule
(Fig. 2b). This is probably caused by the finite thermal energy (30 K) of the system and

the weaker interaction between the outer layer and the iodine molecule.

The radial distributions of Ar atoms relative to the I, center of mass are shown in

Fig. 3 for two different cluster sizes and three different temperatures. At low
temperatures (around 30 K), the well defined inner shell structure of the clusters can be
seen in Fig. 3a (for 17 Ar) and Fig. 3b (for 44 Ar) by the first two sharp peaks in the
radial distributions. The third peak in Fig. 3b becomes broader and smeared out,
indicafing that the outer layer is less confined as mentioned above. As the temperature is
increased to 60 and 90 K, the mobility of the argon atoms increases and the structure of

the cluster becomes less distinguishable (Figures 3¢ and 3d).

The corresponding angular distributions with respect to the iodine bond axis are
shown in Fig. 4. In Figures 4a and 4b, the argon atoms have well localized azimuthal
distributions at low temperatures (30 K). The structure is particularly clear for clusters
with only 17 argon atoms (Fig. 4a). For larger clusters, the angular distribution is

somewhat compromised by the average over the floppy outer shell and the confined inner
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shell. At higher temperatures (60 to 90 K), the argon atoms no longer have preferred

locations and are highly mobile in the cluster, as shown in Figures 4c and 4d.

As discussed below, the iodine dissociation and recombination dynamics are very
sensitive to the cluster temperature. The temperature of the cluster reflects the mobility
of the argon atoms and, therefore, serves as an indication of how well the local structure
around the iodine differs from one system to the other in a micro-canonical group. At 30
K, the clusters are effectively in a solid phase, with Ar atoms localized in a specific
geometric structure. While from 60 to 90 K, the clusters are melted and behave like

liquid droplets. This is consistent with the simulations done by Farges et al. [17]

6.3.2. Dynamics following A state excitation
(A) DISSOCIATION

After preparation of the cluster, the I, potential was instantaneously switched from
the X to the A state at a level ~ 3750 cm'! above its dissociation limit (to I + I). This
corresponds to excitation by a 614 nm photon. In the subsequent dissociation, the two
iodine atoms move away from one another until reaching a certain maximum separation,

R, (I-1), where the recombination process begins. This Ry (I-1) value was

recorded for each individual trajectory so that distributions of R (I-1I) among all the
trajectories could be studied. Shown in Fig. 5a is such a distribution obtained from 700
trajectories of I, - Ar, clusters (with an initial temperature of 30 K). About 54% of the
trajectories gave rise to a maximum I-I separation between 4 and 5.5 A. For I,-Ar,

clusters with the same initial temperature, more than 90% of the trajectories had a
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maximum I-I separation smaller than 5.5 A (Fig. 5b). For larger clusters (with 44 Ar), all
of the 800 trajectories calculated resulted in the jodine atoms caged within the cluster,
whereas for smaller clusters (with 17 Ar), about 21% of the trajectories ended up with

one or both of the iodine atoms outside the bounds of the cluster.

As the initial temperature (7j,;,) was increased, the distribution of Rmax(I_I)
spread out to larger values (Figures Sc and 5d). The probability for Ry (I-1) to be

smaller than 5.5 A dropped from 90% at T;,;; = 30 K to 50% at T3 = 60 K and to 20% at

Tinie =90 K.

(B) RECOMBINATION

At large I-I distances, the potential energy difference between the A and A' states
becomes insignificant, so that a state mixing occurs. Depending on the details of this
mixing, the iodine will have a certain probability of being on either the A or A' state upon
recombination. In our simulations, we assumed that the state mixing was not significant
until the I-I distance reached 4.5 A, after which the probability for the iodine state to
switch from A to A' was 50%. As shown in Figures 5a-d, certain trajectories had a
maximum I-I separation smaller than 4.5 A (as many as 20% for the I, - Ar,, clusters at
T;nie = 30 K). For such trajectories, the iodine was simply bounced back on the A state by

the stiff cluster wall before it had a chance to hop to the A’ state.

To quantify the time scale of recombination, we have defined and monitored the
caging time (fc,, ) during the trajectory calculation; ... Was defined as the time period

from the start of dissociation to the moment when the I-I distance decreased to 3.5 A
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again and the total I-T energy fell to 200 cm! below the dissociation limit. (Note that in a
rigid solvent cage, the gas phase dissociation limit is modified by the solvent barrier.
However, for consistency at all times, we use the —200 cm! criterion with the gas phase
potentials.) The distribution of f,,. was obtained from more than 400 independent
trajectories for each size and temperature configuration of clusters. The distribution for
I, - Ar, at T, = 30 K is shown in Fig. 6a. Among 700 trajectories calculated, 64% of
them had the iodine recombined within 10 ps after the dissociation. The caging
efficiency for this cluster is then assigned to be 64%. The pro‘bability for iodine to

recombine within 500 femtoseconds is ~ 15% and the probability for 7, to be between

0.5 and 1.5 picoseconds is also ~ 15%. As shown in Fig. 6a, there are two distinct peaks
to represent these two channels of caging. The distribution also has a long tail extending

from 1.5 ps to longer than 10 ps as some trajectories did not end up with the iodine

recombined within this period of integration.

At the same temperature for a larger cluster (with 44 Ar), the distribution looks
similar, but the second peak (between 0.5 to 1.5 ps) becomes more prominent, accounting
for as much as 73% of all the trajectories calculated (Fig. 6b). The first peak accounts for
20% in this case. The tail of the distribution only extends from 1.5 ps to about 3 ps,
accounting for less than 10% of all trajectories. The caging efficiency was 100% in this
case, which means iodine recombined within 10 ps for all of the 800 trajectories
calculated. As the temperature increases, the first peak drops from 20% at 30 K to 17% at

60 K and to 4% at 90 K, while the second peak drops from 73% at 30 K to 27% at 60 K
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and to only 4% at 90 K (see Fig. 6b-d). The second peak is no longer distinguishable at
90 K. It becomes part of a long tail at this high temperature (Fig. 6d). The caging

efficiency is 76% at 60 K and is 34% at 90 K.

The two peaks represent two different channels of direct caging. The first channel
involves a head-on collision between iodine and Ar atoms which are closely packed on
top of both iodine atoms at the moment when dissociation occurs. Each of these head-on

collisions can transfer as much as 72.8% of the total available kinetic energy from the

iodine atoms to the cage. The total available kinetic energy is about 5,700 cm’ for the
dissociating iodine atoms when their separation is near the equilibrium distance of the A
state (3.1 A). Thus, an optimum head-on collision leaves the total energy (potential
energy plus kinetic energy) of iodine more than 400 cm™ below its A state dissociation
limit. Following this head-on collision, the iodine will be stabilized before its separation
reaches about 4.5 A. This is verified by the comparison between the caging time
distributions (Figures 6a-d) and the distributions of maximum I-I separation. The
trajectories which had caging times less than 500 fs also had a maximum I-I separation
less than 4.5 A. This caging channel will be closed if the initial excitation energy is so
high that a head-on collision fails to stabilize the iodine, even when the collision occurs
around the equilibrium distance of the A state. For instance, if the excitation energy is
more than 18,000 cm™ (or wavelength less than 555 nm), assuming that the iodine could

still be excited to the A state, the total available kinetic energy near 3.1 A will be about
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7,500 cm™. An optimum head-on collision would still leave iodine above the A state

dissociation limit.

To verify this point, we changed the excitation energy to 18,000 cm™ (555 nm).
With the initial temperature at 30 K and 44 argon atoms in the cluster, we calculated 200
independent trajectories and obtained both the caging time distribution and the
distribution of maximum I-I separation. The results are shown in Fig. 7 with the
corresponding results of a 614 nm excitation. In the caging time distribution (Fig. 7a),
the first peak virtually disappeared, while the second peak is still very strong. For almost

all of the trajectories, the maximum I-I separation is greater than 4.5 A, as shown in Fig.

7b. As a comparison, when the excitation energy is lower than 18,000 cm™, the head-on

caging channel is present even when the cluster temperature is as high as 90 K (Fig. 6d),

or when the cluster has fewer argon atoms (Fig. 6a).

The second caging channel, Which has a caging time around 1 ps, involves
multiple collisions between the iodine atoms and the solvent shells. Upon dissociation,
the iodine atoms lose their excess kinetic energy through a sequence of encounters, none
of which is as drastic as a head-on collision. The duration of the iodine-argon encounter
may be long enough in this case for the iodine motion to be correlated with the stretching
motion of the cluster wall. If the cluster is stiff enough the iodine atoms will be pushed
back to recombine by the reverse motion of the cluster wall. We will show in the

following that this is indeed what happens with the large cluster (44 Ar) at low

temperature (30 K).
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(c) DYNAMICS

We have monitored the time dependence of the total I-I energy (E_p), I-I distance
(R,_)), cluster temperature (T,er) and cluster size (N,,) in each of the trajectories and

averaged the results over 200 to 800 trajectories. If one looks at the iodine as a sub-
system- within the cluster, the behavior of the total iodine energy over time will then
display the dynamic energy exchange between this sub-system and the argon shells.
Figures 8a and 8b show the time evolution of the total I-I energy in a large cluster (44 Ar)
at 30 K following excitation at 614 nm and 555 nm, respectively. Despite the difference
in excitation energies, the two curves look very similar. The iodine energy drops very
quickly over the first one to two hundred femtoseconds, followed by a local minimum at
450 fs for 614 nm excitation and at 650 fs for 555 nm excitation (see the inserts of
Figures 8a and 8b). After this minimum, the iodine energy increases by about 25 cm’

before it undergoes a long time decay.

As mentioned earlier, at the excitation energy of 18,000 cm’! (555 nm), the head-
on caging channel does not exist. That the amount of energy-recovery is the same as that
at a lower excitation energy (614 nm), is an indication that the energy-recovery feature
comes from the second caging channel discussed above. As a comparison, even at the
lower excitation energy (614 nm), the energy-recovery behavior disappeared when either
the size of the cluster was changed to 17 argon atoms (Fig. 8c) or the initial temperature
was changed to 60 K (Fig. 8d). The iodine reaches zero kinetic energy at its maximum

separation (see Fig. 9a). The fact that the iodine gained some energy during its
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recombination indicates that the cluster is at least partially elastic. Following an iodine
collision, the cluster expands then contracts undergoing another collision With the iodine
atoms and transferring some of the original kinetic energy back to the photofragments.
The argon atoms appear to have acted collectively, in very much the same way as in a
matrix [18]. In doing so, the coherence of the iodine nuclear motion is preserved or

partially preserved, as have been observed experimentally [1].

The preserved coherence can also be seen in the plot of I-I distance versus time
(Fig. 9a). The average I-I distance becomes less than 3.5 A at about 1 ps as the caging
process is complete, .but a modulation remains for another few picoseconds, which
indicates that the nuclear motion following the recombination is still coherent.
Immediately after the recombination, the iodine is in high vibrational levels of the A or A'
state. Subsequent interactions between the iodine and the Ar atoms lead to vibrational
relaxation of the iodine. Although the total iodine energy continues to decrease as a
result of this vibrational relaxation, the rate of relaxation becomes increasingly slower as
the vibrational energy approaches the minimum. The whole relaxation process takes

about 15 ps on the A state and more than 30 ps on the A’ state.

The plot of cluster temperature versus time displays high values ( between 70 and
90 K) for the first 2 to 3 ps after the I, dissociation (see Fig. 9b). The average value drops
to a more stable level of about 55 K in 3 ps. The photon excitation of I, provides a

localized (I-I mode) energy deposition into the cluster system within a very short period

of time (less than 200 fs). The prompt I, dissociation following this excitation causes a
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localized energy transfer between the iodine and nearby Ar atoms. There is not enough
time for the system to dissipate all the absorbed energy to reach a thermal equilibrium
within the first 2 to 3 ps. The values in the plot, therefore, only represent average kinetic
energies of the cluster elements (I and Ar atoms) for the first few picoseconds. After 3
ps, the system gradually approaches a thermal equilibrium, with an average temperature
of about 55 K. Notice that there is a also a drop;and-recovery feature before 1 ps, similar
to what has been shown in the plot of iodine energy versus time (see insert of Fig. 8a). In
fact it is caused by the same effect described for the energy-recovery. Near the end of
iodine dissociation, some of the extra energy is transferred into the potential energy of the
cluster, so that the total kinetic energy of the whole system reaches a minimum value.
This potential energy is then quickly converted into both vibrational modes of the cluster
and transitional modes of some individual atoms. In the later case, some of the argon

atoms will be evaporated from the cluster after they have obtained enough energy.

Figure 9c shows that the number of Ar atoms within 25 A from the cluster center
on the average drops from 43 to about 41.5 between 2.5 and 3.5 ps. The cluster size
decreases much more slowly at longer time. The prompt evaporation of one or two Ar
atoms is the result of the cascade kinetic energy transfer from inner cluster shells to the
outermost Ar atoms. This energy transfer is very efficient as shown below, and its
direction is preferentially along the iodine dissociation axis as momentum has to be
conserved. The expulsion of the first one or two Ar atoms occurs around 3 ps, in good
agreement with the timing of the prompt "temperature" drop shown in Fig. 9b. According

to Figures 9b and 9c, the total kinetic energy of the cluster differs by about 1000 cm-!
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before and after the first one to two argon atoms are ejected from the cluster. The Ar
atoms are counted outside the cluster if and only if their distance from the center of mass
(CM) of the system is greater than 25 A. From the initial radial distribution (Fig. 3b), we
know that these Ar atoms are initially located within a distance of 7 A from the CM.
With kinetic energies around 1000 cm'l, the argon atoms have to spend about 2 ps in
traveling the extra 18 A of distance. Thus, these atoms must obtain this excess energy

within one picosecond to correspond with the drops in cluster temperature and number at

about 3 ps.

We have also monitored the population distribution on various states in the
simulation. For excitation of the large clusters (44 Ar) at 614 nm, the time dependence of
state distributions for three different initial temperatures: 30, 60 and 90 K are shown in
Figures 10a-c, respectively. In our simulations, we have allowed the iodine to recombine
onto béth the A and A' states. The contribution of the ground state in the caging
dynamics will be discussed later in this paper. The transient state is defined as the state
when the separation of iodine is greater than 4.5 A or the total energy of iodine is above
the dissociation limit (into I + I). According to this definition, the lifetime of the transient
state will represent how long the two jodine atoms remain separated under given
conditions. The prompt increase in the A state population and the rapid decrease in the X
state population near time zero represent the wave packet excitation. The A state rise and

decay time represents the finite pulse width (200 fs).
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At 30 K, the population in the A and A’ states quickly builds up following the fast
decay of the A state population (Fig. 10a). The time scale of this build-up is comparable
to the pulse width, which indicates that the recombination process is direct and coherent,
in agreement with the experimental observation [1]. In about 1 ps, the population reaches
a constant level, indicating that the recombination process is complete. Vibrational
relaxation then follows, which results in further lowering of the total I-I energy (Fig. 8a).
Notice that the transient state lifetime (full-width-at-half-maximum) is about 500 fs in
this case, consistent with the rise time of the A/A’ state recovery. At higher temperatures,
the transient state has a much longer lifetime: about 4 ps for 60 K and more than 10 ps for
90 K. Correspondingly, the recovery of A or A' population takes much longer than in the

low temperature case.

(D) TRANSIENT SIMULATIONS

For the same system, what we have directly observed experimentally are LIF
transients — the laser-induced-fluorescence signal versus pump-probe delay time [1].
For a direct comparison with the experimental observables, we have simulated the
transient signals using the simple models described in Section 6.2. The parameters used
are listed in Table 2. The result for an I, - Ary, cluster (Tj = 30 K) following A state
excitation (614 nm) is shown in Fig. 1la on a short time scale. Its experimental
counterpart is shown in Fig. 11b. The two transients appear to be very similar: the initial
peak at time zero, the coherent recovery around 660 fs, the slope of the slow rise, and

even some of the modulations are reproduced by the simulation. The simulated transients
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are not very sensitive to the parameters used. This robustness confirms that the transient
behavior reproduced here represent the microscopic physical picture rather than
numerical fittings. The LIF signals from the A and A’ states are both shown in Fig. 11a.
Both of these two states contribute to the coherent recovery of the LIF signal, as the
iodine recombines into either of them promptly following dissociation. The slow rise
after 1 ps is caused by vibrational relaxation, through which the iodine relaxes to lower
vibrational levels of the A/A' states where the Franck-Condon overlap for probing is more
efficient. The signal from the A' state is slightly delayed relative to that from the A state.
The periods of their modulation are also slightly different, as a result of the details of the
two potential energy surfaces. The overlap of their individual contributions makes the
final modulation look irregular, just like what has been experimentally observed (see Fig.

11b). The recovery and oscillations directly reflect the coherent motion in the solute-

solvent potential.

To demonstrate the effect of the size and temperature of the cluster on the
transient behavior, Fig. 12a shows a simulation obtained for a smaller cluster with 17
argon atoms; and Fig. 12b was obtained for a higher initial temperature (60 K). In both of
these two transients, the prompt recovery of signal around 660 fs has virtually

disappeared. Fig. 12a appears similar to the experimental transient obtained from small

clusters (Fig. 12¢) [1].

On a longer time scale (90 ps), the simulated transients are shown in Fig. 13 with

their experimental counterparts for two different probe wavelengths. At 307 nm, both the
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simulated and experimental transients show a slow non-exponential rise before the signal
reaches a constant level. The rise time for the simulation characterizes the time it takes
for the A and A' states to relax to their potential minima, where fhe Franck-Condon
overlap is the maximum for a 307 nm probe wavelength. For a 330 nm probe, the
FranckaCondor; region shifts to higher vibrational levels of the A and A' states. It then
takes less time for the iodine population to relax into these intermediate levels, as shown
in Fig. 13c and Fig. 13d by the faster rises. As the population relaxes further, it will
eventually move out of the maximum Franck-Condon region, causing the signal to decay
agdin (see Fig. 13c and Fig. 13d). The simulation results are consistent with the
experimental results on this trend of variations, though the simulation at)pears to have
over-estimated the relaxation rate on the A and A’ states. This over-estimation is likely to
be caused by the overlook of the quantum effect during the relaxation process, especially
at long times. While classically the iodine can constantly exchange its v’ibrational
energies with the argon atoms, there will be limitations imposed by the quantum
mechanics which would only allow quantized energy transfers between a bound iodine
state and the argon atoms in the clusters. These limitations can potentially lower the

effective rate of vibrational relaxation.

The fact that the experimental signal remains constant at very long times (more
than 200 ps) indicates that the iodine system has reached a relatively stable state on this
time scale. This is not the X state, because the photon energy used (307 nm) can only
probe its intermediate vibrational levels. These intermediate levels are not stable in the

clusters as the relaxation process continues. The time scale for the X state relaxation was
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estimated to be less than 200 ps according to our simulation. The A and A’ states are, on
the other hand, relatively stable on this time scale. The lifetimes of the A and A" states
are a few microseconds and milliseconds, respectively, in argon matrices [15]. We
expect their lifetimes in argon clusters to be comparable. It is possible that iodine
recombines onto the X state as well. In fact Fei, et al have observed the absorption
spectra from recombined X state in similar cluster systems [14]. The LIF signal from the
X state, if there is any, will decay away on long time scales (200 ps or so). This long time
decay was not observed experimentally (see Fig. 13b)[1], which suggests that either direct
caging into the X state is not significant or the probing of the X state is far less efficient
than that of the A and A’ states. In argon solutions [19] the caging on the X state was
found experimentally to be negiigible, consistent with the cluster work [1], and we will

not consider contributions from the X state for most of our discussion here.

6.3.3. Dynamics following B state excitation

The dynamics following B state excitation were similarly simulated. After the
initial preparation of the cluster, the potential of I, was instantaneously switched from the
X to the B state with the excitation energy varied between 17,500 cm-! (570 nm) and
20,800 cm-! (480 nm). The coupling between the B and IT;,/I1;, states was simulated by
the Landau-Zener-Stiickelberg model to allow predissociation. The exact values for the

coupling matrix elements between the B and IT states are not known to us. The results

reported here were obtained using Wen, = 15 cm! and Wpn, =5 cmrl.



222

The time dependence of state populations is shown in Fig. 14a for an excitation
wavelength of 570 nm. After a prompt excitation at time zero, the B state population
decays on a time scale of about 6 ps. The population of the transient state, as defined
previously, covers a broad distribution from a few to more than 60 picoseconds. The
recombination to the A and A’ states is delayed by about 4 ps, and the rise time of the
population on these states is on the order of 30 ps. The results for shorter excitation
wavelengths (510 nm and 480 nm) are similar, except that the B state decay time and the
A/A' delay time become longer. Based on the model potentials used for the B and IT,/I1
1g States, the curve-crossing points are near the bottom of the B state [9,20]. The coupling
is not efficient unless the vibrational energy is very close to the crossing points according
to the Landau-Zener-Stiickelberg model used. For lower excitation energy (570 nm), it

takes less time for iodine to relax into the efficient curve-crossing regions, causing the B-

state decay to be faster.

Following the B-state predissociation, the iodine atoms are well separated so that
argon atoms can intercede between them, as shown in Fig. 14b. In order to recombine,
the iodine atoms have to approach each other diffusively within the cluster. For higher
excitation energies (or shorter wavelengths), the cluster absorbs more kinetic energy from

the iodine and becomes softer which allows the iodine atoms to separate further upon

dissociation.

The influence of excitation energy on the time scales of recombination is clearly

demonstrated by the caging time distribution introduced earlier. As shown in Fig. 15, the
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distribution shifts to longer times when the excitation wavelength is changed from 570
nm to 510 nm. The m<.)st probable value for the caging time is about 10 ps for 570 nm
excitation, and is about 18 ps for 510 nm excitation. The distribution of maximum I-I
separation, which is not shown here, also shifts to longer distances when the excitation

wavelength is changed to shorter wavelengths (or higher energies)

The dynamics following either A or B state excitation are compared in Fig. 16.
Following B state excitation, the I, energy is transferred to the argon atoms through
vibrational relaxation and electronic predissociation, both of which occur on a picosecond
time scale. The recombination also occurs on a much longer time scale following the
predissociation than that following the direct A state dissociation (Fig. 16a). This
difference in time scales is also illustrated by comparing the time dependence of cluster
temperature (Fig. 16b) and cluster size (Fig. 16c). Following A state excitation, the
temperature (or average value of Kinetic energy) and number of argon atoms change
dramatically within the first few picoseconds (Fig. 16b and Fig. 16c, dotted lines). The
cluster is quickly stabilized after 4 ps with a temperature of about 55 K (Fig. 16b, dotted
line). The temperature then decays on a very long time scale ( a few nanoseconds), as the

cluster slowly cools down through evaporation (Fig. 16c, dotted line).

Following B state excitation, the temperature rises to a maximum value of about
65 K in about 20 ps (Fig. 16b, solid line). The temperature then decays on a much longer
time scale. For A state excitation, within the first few picoseconds, one to two argon

atoms are ejected from the cluster through concerted collisions (see Fig. 16¢, dotted line).
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This does not happen in the case of B state excitation, in which argon atoms have to
undergo thermalized evaporation in order to leave the cluster. As a result, the
evaporation rate is much slower following B state excitation than following A state
excitation for the first 4 ps. At longer times, thermalized evaporation becomes dominant
for both cases. The cluster is hotter following B state excitation (Fig. 16b), because the
excitation energy is higher and the average energy taken away by the first few argon

atoms is lower. The rate of evaporation then becomes higher for the B state excitation

than for the A state excitation (Fig. 16c).

For 570 nm excitation, the simulated LIF transient is shown in Fig. 17 along with
the corresponding experimental result. The two transients appear to be similar in nature.
The simulated transients for higher excitation energies (not shown here) also generally
agree with their experimental counterparts [1]. The signal decay following initial
excitation is caused by the relaxation and electronic predissociation on the B state, the
time scale for which increases as the excitation energy is increased (from 570 to 510 nm).
The slow recovery of the LIF signal comes from the recombination and relaxation onto
the A and A' states. The onset of the recovery appears to be delayed relative to time zero
as is the case when we try to fit the experimental transients [1]. This delay is caused by
the fact that the iodine atoms have to remain separate for a finite period of time before the

onset of recombination (see the caging time distribution in Fig. 15).

At 480 nm, the iodine is excited to the B state above the dissociation limit (into I

+ I*), according to the gas phase potential. For all of the 400 trajectories that we have
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computed (for the larger cluster with 44 Ar), the iodine atoms are promptly bounced back
to the B state below its dissociation limit. The B-state transient behavior appears to be
similar at 480 nm to that at 570 nm, except that both B state decay time and the delay
time before recombination are longer. Experimentally the LIF transient at 480 nm
displayed an initial plateau followed by a slow rise that reached a second constant level
some 30 ps later [1]. This behavior is attributed to the extra contributions from the
directly excited I, state at this pump wavelength. The percentage of excitation to the IT
1u State is estimated to be ~46% according to the gas phase absorption spectra [21]. The
transient behavior following excitation of the I, state is similar to that following the A
state excitation on long time scales (like the one shown in Fig. 13a). By overlapping the
B-state and II,,-state transients, we were able to reproduce the experimental results (not

shown here). The dynamics above the B-state dissociation will be published separately,

as new rich experimental and theoretical results are now available [22].
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6.4 Conclusions
In this contribution, we studied the molecular dynamics of iodine in argon clusters
in order to examine the microscopic atomic motions and to compare with the

experimental femtosecond results presented in the preceding paper.

‘At low temperatures (30 K or lower), the cluster system displayed well defined

structures. The Ar atoms are well localized and the I, molecule is enclosed by at least

one full shell in large clusters. For larger clusters (with 44 argon atoms), the collective
binding force of the Ar atoms is strong and the cluster cage is elastic. The excited iodine
atoms are not able to break the cage upon direct dissociation on the A state. The prompt
reflection of iodine atoms from this cage causes the iodine molecules to be coherently
reformed within 1 ps after the direct dissociation. Aside from this concerted caging, we
have revealed another channel of direct caging. The iodine molecule can be promptly
stabiliied by argon atoms that are located head on with the iodine atoms along the
dissociation axis. This channel is purely dependent on the geometry and kinetics of the
systems involved. At higher temperatures ( above 60 K), the Ar clusters are melted much
like a liquid droplet. The high mobility of the Ar atoms allows the iodine atoms to
penetrate through the inner Ar shells following the dissociation. It then takes longer for

the well separated iodine atoms to diffusely approach each other and form a bond again.

The time scales for dissociation are found to play an important role in the
subsequent dynamics of recombination. When the dissociation is prompt (direct

dissociation of I, on the A state), the Ar cage does not have enough time to rearrange
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itself before the I, separation occurs. The excitation process is equivalent to a localized
energy deposition. The subsequent motion of the cluster then preserves some of the
initial coherence for a certain period of time depending on the dissipative nature of the
system. Since the caging process is so fast (less than 1 ps) following the direct
dissociation, the early time dynamics are insensitive to atoms/molecules that are far away
from the iodine. It was originally proposed that similar systems in a cold matrix
environment should display similar coherent features in the caging dynamics [13], which

has recently been observed experimentally for iodine in argon and krypton matrices [18].

When the dissociation is indirect (predissociation on the B state), the vibrational-

transitional energy transfer tends to warm up the Ar cage before the I, separation actually

takes place. Upon dissociation, the iodine atoms are able to depart far from each other,
allowing the argon atoms to intercede between them. The recombination, therefore, takes

longer, because the well separated iodine atoms have to approach each other diffusively.

The comparison between MD and experiments is satisfactory and brings to focus
the nature of the motion under different conditions that we studied: (1) angular and radial
distribution; (2) temperature and size of the cluster; (3) state prepared and state of caging;
(4) wave packet motion; and (5) the change in energy and bond distance for iodine in the
solvent cage. Figures 18 and 19 summarize the MD of the wave packet in the solvent
cage and the associated snapshots for different cluster sizes. The above concepts give the
molecular basis for the dissociation and recombination phenomena: The bond breakage

time is critical to the subsequent caging dynamics, and caging is a mechanism described
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by a dominant (coherent) energy release from the solute to the solvent (lowering of
energy below dissociation limit) and only at very long times by the physical motions of

the solvent (diffusive process).
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6.6 Tables

Table 1. Potential parameters used in the simulation.

(a) Morse functions for the iodine X, A, A' and B states:

V()= D{exp[—-Zﬁ (r— re)] - 2exp[——[3 (r—— r,)]}+ E_

State r.(A) Ay D(em!) E,(cml)

X? 2.67 1.91 12547.2 0
A'P 3.073 2.104 2856 0
A® 3.1 2.104 1990 0
B® 3.03 L.75 4381.8 7605.0

a. see reference 8.

b. see reference 18. Modified in accordance with the solvation in Ar clusters.

(b) Lennard-Jones functions for the Ar-Ar and the I-Ar interactions:

V(r)= 48[(0’/r)12 - (O'/r)6]

Pair o(A) € (cm1)
Ar-Ar a 3.405 83.3
I-Ar b 3.617 130.3

a. see reference 2.

b. see reference 3.
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Table 2. Parameters for the LIF *:

State fo Y(cm!) I'(cm?)
X 100 100 200
A' 100 100 200
A 100 100 200

100 100 200

a. see text.
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6.7 Figure Captions and Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

The iodine potential energy curves that are relevant to the dissociation and caging
dynamics. Wave packets and arrows are drawn to illustrate the dynamical

processes under study. a) I, is excited to the A state above its dissociation limit

(into I +I). Following direct dissociation, the iodine is caged by the surrounding

argon cluster. b) I is excited to the B state, followed by predissociation through

non-adiabatic couplings between the B and II states and subsequent

recombination onto the A/A' and X states.

Snapshots of typical cluster structures at 30 K with different number of argon

atoms: (a) 17 argon atoms; (b) 44 argon atoms.

Radial distributions of Ar atoms with respect to the CM of the iodine. a) I,-Ar;

at 30 K;; b) I,-Aryy at 30 K; ¢) I-Ary, at 60 K; d) I,-Aryy at 90 K.

Angular distributions of Ar atoms with respect to the iodine bond axis. a) I,-Ary4

at 30 K, b) IzAI'44 at 30 K, C) Iz'AI'44 at 60 K, d) IzAI'44 at 90 K.

Distribution of the maximum I-I separation following A state excitation (614

nm). a) I,-Ar;; at 30 K; b) I,-Aryy at 30 K; ¢) I,-Ary, at 60 K; d) I,-Aryy at 90 K.

Caging time distribution following A state excitation (614 nm). The excitation
pulse width was set to be 200 fs. a) I,-Ary; at 30 K; b) I,-Ary, at 30 K; ¢) I-Argy
at 60 K; d) I,-Aryy at 90 K.

(a) Distributions of caging time and (b) distribution of maximum I-I separation
following A state excitation at 555 nm (solid lines) and at 614 nm (dashed lines)

for I,-Ary, at 30 K.

Time dependence of the total iodine energy (kinetic energy plus potential energy).
a) Iy-Aryy at Ty, = 30 K with an excitation wavelength of 614 nm; b) I,-Ary, at

Tinie = 30 K with an excitation wavelength of 555 nm; ¢) I,-Arj; at T

init

=30K



234

with an excitation wavelength of 614 nm; d) I,-Ary, at T, = 60 K with an

excitation wavelength of 614 nm. The critical regions near 1 ps are plotted in the

corresponding inserts.

Fig. 9 Time dependence of a) I-I distance, b) cluster temperature and c) cluster size
(number of Ar) on a short time scale following the excitation of I,-Ar,, at 614 nm.

Recombination onto the X state is not considered.

Fig. 10 The time dependence of the population distribution on various states: a) I,-Aryy at
an initial temperature of 30 K; b) I,-Ary, at an initial temperature of 60 K; c) I,

Ary, at an initial temperature of 90 K. The excitation wavelength is 614 nm and

recombination onto the X state is not considered.

Fig. 11 LIF transients following A state excitation at 614 nm. a) Simulation results for an
I,-Ary, cluster with an initial temperature of 30 K. The signal is calculated in
accordance with a probe wavelength of 307 nm. b) Experimental transient
obtained by monitoring the red-shifted fluorescence (400 nm) from an iodine-

argon co-expansion with the probe wavelength at 307 nm. See Ref. 1 for more

detail.

Fig. 12 LIF transients following A state excitation. a) Simulation results for an I,-Ar;;

cluster with an initial temperature of 30 K. The signal is calculated in accordance
with a probe wavelength of 307 nm. b) Simulation results for an L,-Ary, cluster
with an initial temperature of 60 K. The signal is calculated in accordance with a
probe wavelength of 307 nm. c¢) Experimental transient obtained by monitoring
the iodine fluorescence at 342 nm from an iodine-argon co-expansion with the

probe wavelength at 307 nm. See Ref. 1 for more detail.

Fig. 13 Probe dependence of the LIF transients: a) simulation results for I,-Aryy (T, =

30 K) with the probe wavelength at 307 nm; b) experimental result with the probe

wavelength at 307 nm; ¢) simulation result for Ir-Aryy (T;;, = 30 K) with the probe
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wavelength at 330 nm; d) experimental result with the probe wavelength at 330
nm. The excitation (pump) wavelength is 614 nm. The iodine is assumed to be

excited to the A state and recombine onto both A and A' states in the simulations.

Fig. 14 Time dependence of a) state populations and b) argon insertion following B state
excitation at 570 nm. The cluster simulated is I,-Ary, with an initial temperature

.of 30 K. The coupling between the B and IT states is considered. Recombination

onto the X state is not included.

Fig. 15 The distribution of caging times for B state excitation: a) the excitation
wavelength is 570 nm; b) the excitation wavelength is 510 nm. The cluster

simulated is I,-Aryy with an initial temperature of 30 K. The coupling between the

B and I states is considered. Recombination onto the X state is not included.

Fig. 16 The time dependence of a) I-I energy; b) cluster temperature; and ¢) cluster size
following A (614 nm, dotted lines) and B state excitation (570 nm, solid lines).
The simulation was performed for an I,-Ary, cluster with an initial temperature of

30K.

Fig. 17 LIF transients following B state excitation at 570 nm: a) simulation results for an
I,-Aryy cluster (T, = 30 K) with the probe wavelength at 307 nm; b) experimental

results obtained with the same pump and probe wavelengths.

Fig. 18 Wave packet motion as a function of time. The wave packet was treated
classically as representing the spacial distributions of I-I distances at given times.

The distributions were obtained by averaging over 1000 independent trajectories.

Fig. 19 Snapshots of the clusters at different times. (a) For a cluster with 17 Ar atoms.
At the time of iodine dissociation (t = 0), one iodine atom is not capped by argon
atoms so that the subsequent recombination takes more than 4 ps. (b) For a
cluster with the same size (17 Ar), the iodine molecule is fully enclosed and the

recombination following dissociation is direct. (c) For larger clusters with 44
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argon atoms or more, the iodine is almost always fully enclosed. The caging 1s,

therefore, direct and coherent.
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Potential Energy Curves
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Radial Distributions
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Angular Distributions
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Bond-Distance Distributions
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Caging Time Distributions: Low Energies
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Distributions: High Energies
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Energy Evolution With Time
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Bond distance, Temperature, & Size vs Time
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State Population Distributions
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Experimental vs MD: States of Caging & Coherence
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Experimental vs MD: Size & Temperature Effect
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Experimental vs MD: Longer Time Scales
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B-State Dynamics: Population & Ar Insertion
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B-State Dynamics: Caging Time Distributions
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A- vs B-State Dynamics
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B-State Dynamics: Experimental vs MD
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Wave Packet Motion in the Solvent Cage
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Snapshots
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