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Abstract

The rheology and microstructure of complex fluids are intimately related, and this
relationship is explored to gain a deeper understanding of the physics of colloidal
dispersions, emulsions and polymer solutions.

The nonequilibrium microstructure and rheological properties of dispersions in
steady, simple shear flow are calculated by solving the Smoluchowski equation as
a function of dimensionless shear rate. The particles have a purely repulsive inter-
action with an hydrodynamic radius, a, and a thermodynamic radius, b. For hard
spheres, b/a — 1, shear thinning is caused by a decrease in the Brownian contribu-
tion since Brownian motion becomes less important with increasing shear. Shear
thickening occurs because of an increase in the hydrodynamic viscosity caused by
the increased probability of finding particles near contact with increasing shear when
particles hydrodynamically interact. The first normal stress difference changes sign
since Brownian and hydrodynamic contributions have opposite signs, while the second
normal stress difference is always negative. Scaling arguments are made 1o extend
these dilute results for concentrated dispersions. Similar calculations and analyses are
performed to study the effects of hydrodynamic interactions and varying b/a ratios
on rheology and microstructure.

Scaling arguments for the volume-fraction dependence of the bulk stress of emul-
sions al the critical capillary number are presented along with experimental evidence
using an unstabilized emulsion of polymerized castor oil dispersed in polydimethyl-
siloxane. It is shown that the droplet contribution to both the relative shear viscosity
and first normal stress difference is linear in volume fraction for a given viscosity ratio
for dilute to moderately-concentrated emulsions in steady, simple shear flow.

Stress jump measurements are performed for the first time for (i) shear startup
and (ii) polymer solutions in shear. The startup viscosity of a polymer solution

of polyacrylamide in fructose-water at equilibrium is equal to the measured high-
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frequency dynamic viscosity, as expected, since both methods measure the viscous
contribution to the viscosity associated with the equilibrium microstructure. Since
polymer solutions exhibit stress jumps different from the solvent viscosity, effects of

shear on the hydrodynamic viscosity can be investigated.
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Jomplex fluids are multicomponent systems in which there are at least two different
length scales. Often these different length scales are inherent in the components,
where, for example, colloidal dispersions consist of small particles suspended in a
fluid, where the particles have a characteristic length ~ O(10~" m) and the suspend-
ing fluid molecules are ~ O(107'° m). Alternatively, all components can have the
same characteristic length, but at least one of these components interacts in such a
way that structures with larger length scales are formed. An emulsion of two im-
miscible Newtonian fluids has components that both have the characteristic length
of a molecule, ~ O(107'° m), but droplets are formed having a characteristic length
~ O(107® m) because the fluids are immiscible.

When flowing, a complex fluid may be shear thinning and/or shear thickening,
where shear thinning (thickening) is a decrease (increase) in the steady viscosity with
an increase in the applied rate. Complex fluids may also exhibit interesting physical
behavior during flow, such as rod climbing when a single rod spins in a reservoir of
fluid and/or die swell when a complex fluid flows through and exits a die. Phenomena
such as rod climbing and dic swell are results of normal stress differences.

The main theme of this thesis is the exploration of the relationship between the
microstructure of a complex fluid and the macroscopic rheological properties in simple
shear flow. These rheological properties include shear viscosity, first and second
normal stress differences and the nonequilibrium osmotic pressure.

Colloidal dispersions arc analyzed in Chapters 2 and 3, where the microstructure
is found by solving the two-particle Smoluchowski equation and then used to calculate
the macroscopic rheological properties. In Chapter 2 the analysis focuses on behav-
ior at small shear rates while the analysis of Chapter 3 is valid for arbitrary shear
rates. In both chapters, the colloidal dispersions consist of spherical particles with a
hydrodynamic radius, a, and a thermodynamic radius, b. Three different cases are
studied: (1) b/a =1 and hydrodynamic interactions are neglected, (2) hard sphere
particles, where b/a — 1 and two particle hydrodynamic interactions are included,
and (3) steric or charged stabilized particles, where b/a is varied and two particle

hydrodynamic interactions are included. For hard sphere dispersions, shear thinning
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is caused by a decrease in the Brownian stress due 1o the decreasing importance of
Brownian motion with increasing shear rate. Shear thickening occurs at high shear
rate because there is a large probability of finding two particles near contact and
these particles hydrodynamically interact, resulting in an increase of the hydrody-
namic contribution to the viscosity. The first normal stress difference, N, is positive
at small shear rates, passes through zero. and is negative at high shear rates since
the Brownian and hydrodynamic contributions have opposite signs. At low shear
rates the positive Brownian contribution dominates while the negative hydrodynamic
contribution dominates at high shear rates. The second normal stress difference, N,
is negative for all shear rates. Lastly, since |N;/Ny| ~ O(1) and Ny < 0, there is
only negative rod climbing. The cffects of hydrodynamic interactions on rheology
and microstructure arc studied by changing b/a. There arc only minor effects on the
microstructure, but rheology is quite sensitive to the value of b/a.

Next, in Chapter 4. emulsions of two imimiscible Newtonian fluids are studied. A
scaling argument is presented for the volume-fraction dependence of the bulk stress
of an emulsion at the critical capillary number. At the critical capillary number, the
droplets are just about to burst and a small increcase in the shear rate should cause
droplet breakup. This scaling argument relies on the hypotheses that the size, shape
and orientation of the droplets are relatively insensitive to changes in volume fraction
for dilute to moderately-concentrated emulsions at a given shear rate. Experiments
are performed on an unstabilized emulsion in simple shear flow using a constant stress
rheometer, and the scaling argument for the volume-fraction dependence for viscosity
and first normal stress difference is confirmed; thus, ., — 1 ~ O(¢) and N; ~ O(n,¢)
for any value of applied stress (or rate) and for dilute to moderately-concentrated
emulsions, where 7, = n/7, is the relative viscosity. n is the emulsion viscosity, 7, is
the suspending fluid viscosity, % is the shear rate, and ¢ is the volume fraction of the
dispersed phase.

Finally, polymer solutions are discussed in Chapter 5. Linear viscoelastic and
stress jump measurements at flow startup are completed for polymer solutions of

polyacrylamide in fructose-water. Stress jumps at startup are made for the first time,
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confirming the relationship n* (¢t = 0;5) = n.,, where n(t; %) is the viscosity growth
function after flow startup at time ¢ and shear rate v, and n/_ is the high-frequency
dynamic viscosity. This relationship is valid simply because both measurements yield
the viscous contribution to the viscosity associated with the equilibrium microstruc-
ture. Furthermore, it is shown that stress jumps at startup also yield G(t = 0), where
((!) is the linear viscoelastic relaxation modulus; thus, startup stress jumps can be

used to test predictions of n/_ and G(# = 0) of different rheological models.



Chapter 2

Normal stresses in colloidal dispersions



2.1 Introduction

Colloidal dispersions — suspensions of small particles dispersed in a fluid medium
— occur in a wide variety of situations, including slurries, paints, péstes, dyes, poly-
mers, protein solutions, many foodstuffs and ceramic sols. 1n these “microstructured”
materials the suspended particles interact through hydrodynamic, interparticle and
Brownian (or thermal) forces. The balance between thermal and interparticle forces
determines the equilibrium behavior, which can give rise to a variety of states, from
dispersed amorphous gas- or liquid-like microstructures with a relatively low shear vis-
cosity to highly ordered crystalline dispersions with elastic moduli and yield stresses.
Under the action of an external driving force such as shear, hydrodynamic forces
come into play and compete with thermal and interparticle forces to set the structure
and determine properties. An cven richer variety of microstructures is now possible,
with flow-induced melting or ordering, etc., and transport properties in these highly
nonequilibrium states can be vastly different from those at cquilibrium.

Our understanding of colloidal dispersions has increased markedly in the last
decade. This has resulted from three developments: 1) The excellent experiments on
well-characterized model systems [van der Werfl & de Kruif (1989); van der WerfT el al.
(1989); van der WerfT (1990)], 2) the invention of Stokesian Dynamics as a technique
to numerically simulate suspension behavior [Bossis & Brady (1984, 1987, 1989);
Brady & Bossis (1985, 1988); Phung & Brady (1992); Phung (1993)], and 3) a new
scaling theory capable of predicting behavior near maximum solids fractions [Brady
(1993a, 1993b, 1994)]. The scaling theory successfully predicts the near-equilibrium
behavior of colloidal dispersions, specifically to first order in the perturbation of the
microstructure caused by flow. This first order perturbation is sufficient to determine
the shear viscosity, but in order to determine normal stresses, perturbations to second
order in the shear rate are required. The purpose of this paper is to extend the
perturbation theories to second order, and thereby predict normal stresses and the
shear-rate dependence of the osmotic pressure of colloidal dispersions.

To our knowledge the only analysis of normal stresses in colloidal dispersions is
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that of Blawzdziewicz & Szamel (1993), where they considered the dilute limit of
Brownian hard spheres in simple shear flow in the absence of hydrodynamic inter-
actions. By using an eigenfunction expansion they were able to compute the mi-
crostructural deformation and resultant rheology up to Peclet numbers of 12.5. The
Peclet number, Pe = ya?/ Do. measures the relative importance of hydrodynamic
shear and Brownian forces. Here, a is the particle size, ¥ the magnitude of the shear
rate, and Dp the Brownian diffusivity of an isolated particle; Dy = kT/6mna, with
kT the thermal energy and n the viscosity of the suspending fluid.

On the experimental side there have been numerous measurements of normal
stresses in polymeric fluids, and of suspensions dispersed in polymeric liquids, but
there have been very few measurements of suspensions in Newtonian fluids. Indeed,
we have found only three such studies: Al-Hadithi, Barnes & Walters (1992), Jomha
& Reynolds (1993), and Laun (1994). A very limited range of conditions were covered
in these studies and, in particular, the shear rates were too large to extract the low-
shear-limit behavior considered here.

The only other results on normal stresses in colloidal dispersions are the Stokesian
Dynamics simulations of Phung (1993) for suspensions of Brownian hard spheres.
Phung has simulation results for both the first and second normal stress differences
for volume fractions ranging from 0.316 to 0.51 and for Peclet numbers from 1072 to
101, We shall compare our theoretical predictions with his simulation results below.

Several recent papers in the literature have pointed out that the perturbation to
the suspension microstructure by flow is singular rather than regular [Ronis (1984);
Dhont (1989)]. In a linear flow there is always a region far from a particle where
the effects of convection and diffusion balance regardless how small the Peclet num-
ber [Leal (1992)]. This “outer” region occurs at a distance of O(aPe™'/?) from a
test particle and renders the perturbation singular with the appearance of fractional
powers and logarithms of the Peclet number. However, the perturbation of the pair-
distribution function by a linear flow has the character of a quadrupole, which is weak
in the outer region, and it is possible to proceed as a regular perturbation expansion

up to O(Pe?). Thus, the low shear limit of the normal stresses can be obtained as a
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regular perturbation expansion for a general linear flow.

In section 2.2 we introduce the N —particle Smoluchowski equation and reduce
it down to the equation for a pair. We show cxplicitly that the perturbation to
the microstructure proceeds as a regular expansion up to Q(Pe?) and determine
the form of this expansion for a general linear flow. We also show that the next
correction to the microstructure is Q(Pe®/?) and that this term can be obtained by
simply matching with the lowest order outer solution. In the next section we discuss
the separate Brownian, hydrodynamic and interparticle force contributions to the
stress and determine the general form of the rheological behavior to second order.
We also show that the O(Pe®/?) correction to the microstructure gives an O(Pe?/2)
contribution only to the osmotic pressure. The next term in the deviatoric stress is
O(Pe?).

In section 2.4 we present the exact results for the dilute O(¢?) contribution to the
stress, where ¢ 1s the volume fraction of the suspended particles. We also introduce
the scaling theory of Brady (1993b) which shows that the dominant contribution
to the stress as maximum packing is approached comes from the Brownian stress.
Further, this scaling theory shows that the appropriate Peclet number is that based
on the short-time self-diffusivity, D§(¢), at the volume fraction of interest, not on the
infinite dilution or “bare” diffusion coefficient Dy. The perturbation expansion now
proceeds in powers of Pe = ya?/D(¢). This theory predicts that the normal stresses
scale as Pc g(2;¢)/f)3(¢) as ¢ approaches maximum packing, ¢,, (and as Pe — 0).
Here. Di(¢) = Dg(¢)/Do. At random close packing, ¢,, =~ 0.63, the equilibrium
radial-distribution function diverges as ¢(2;¢) ~ (1 — ¢/é,,)~! and the shori-time
self-diffusivity vanishes as D§(d) ~ Do(1 — @/¢m ), so that the normal stresses diverge
as (1 — ¢/¢m) ?Pe or as (1 — ¢/¢pn)~2Pe. This scaling prediction is shown to be
in reasonable agreement with the available simulation data. This dependence of the
rheological response on Pe also explains why suspensions at higher concentrations
shear thin at corresponding lower shear rates (c.f. Brady 1993b).

We conclude in section 2.5 with a discussion of how the results we have obtained

for Brownian hard spheres can be used to predict the normal stresses in suspensions
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where the particles interact through repulsive interparticle forces. If the interparticle
forces are short-ranged, then there is only a slight quantitative change in the normal
- stresses; the scaling relations at maximum packing still apply. For long-range repulsive
forces characterized by a length b (>> a), the scaling changes as the suspehsion 18 now
hydrodyhamiczilly dilute but “thermodynamically” concentrated. The relevant Peclet
number is now based on the length scale b, Pe, = 4b*/ Dy, with the short-time self-
diffusivity, which is a function of the hydrodynamic or truc volume fraction, given
by the infinite dilution or bare diffusivity, Dy. The equilibrium radial-distribution
function now depends on the “thermodynamic” volume fraction ¢, = 47nb*/3, and
diverges at random close packing based on b, ¢,,,. Thus, the normal stress differences
arc predicted to scale as (1 — &/, )71 Pey, as ¢ — dprm.

Finally. we also show how this perturbation approach can be extended to higher
shear rates (or Peclet numbers) to give the complete rheological response as a function
of shear rate. We also remark on a singular limit at high Peclet numbers that has
recently been worked out {Morris & Brady (1994)] which predicts finite normal stresses

in the hydrodynamic limit.

2.2 Perturbation to the microstructure

We consider a suspension of identical spherical particles of radii ¢ subjected to Brow-
nian, interparticle and hydrodynamic forces at low Reynolds number (pya?/n < 1).
The equation governing the distribution of particles — the microstructure — is the
well-known N-particle Smoluchowski equation:

0Py

2L V30 =0,
(‘)t+ an =0, (2.1)

where Py is the probability density for the N particles to be in configuration . The

probability flux g is given by

dn = UPy + Ryy-(FF — kTVIn Py)Py. (2.2)
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In (2.2) U is the velocity of the particles due to the shear flow, and in writing this
we have combined the individual particle velocity vectors (for spherical particles only
the translational velocities and the positions of the centers of cach particle need be
considered) into a single 3-N vector U. The colloidal interparticle forces are denoted
by FP, and the Brownian forces arc given by kT times the gradient with respect 1o
the configuration vector @ of the log of the probability density, —kT'V In Py. The
3N x 3N hydrodynamnic resistance tensor Rppr relates the hydrodynamic force exerted
on the particles to their velocities, and its inverse, Rz, is the N-particle mobility
giving the velocities in terms of the forces. From the Stokes-Linstein relation this

mobility multiplied by kT is the N-particle diffusivity tensor:

D = kTR}. (2.3)

With interparticle forces derivable from a potential,

FF=-VV,

the equilibrium distribution (U = 0) is given by
in=0,
which, since D is positive definite, requires that
FY = E1'Vn Py,
whose solution is the Boltzmann distribution
Py ~ exp(—=V/kT), (2.4)

where the superscript © denotes equilibrium. For the case of Brownian hard spheres,

the potential is infinite if the particles were to overlap and zero elsewhere, and (2.4)
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gives the well-known hard-sphere distribution.

In the presence of a shearing motion, U # 0, the particle velocitics arc given by

where (I') = (E) 4 (€2), and (E) and (€2) arc the bulk or macroscopic rate of strain
and vorticity tensors of the imposed lincar flow, respectively. The hydrodynamic
resistance tensor Rpp gives the hydrodynamic forces on the particles due to the
imposed flow. In the absence of hydrodynamic interactions (i.e., Rprg = 0), the
particles would simply be advected by the imposed linear flow: U = (I')-.

The flow causes a departure of the microstructure from equilibrium, which we

write as

Py = PY[L + fn). (2.6)

The determination of fy and the resulting rheological response is the central point
of this work.

We nondimensionalize all lengths by the particle size a, all velocities by ya, where
4 = |1, and the diffusivity by Dy = k7'/67na, the isolated single particle diffusivity,
and integrate the N-particle Smoluchowski equation over N —2 particles. Neglecting
direct coupling to a third particle (which is necessary for analytical progress, but does
not affect the form of the Peclet expansion), the equation governing the perturbation

1o the pair distribution, f, becomes
V,-g(r) (D)3 Vo f = PeV,-g(r)(U, 901 + f), (2.7)
with boundary conditions of no flux at the surface of contacl of the two particles:

7 (DY, f = Pei (U1 + ) @ r=2 (2.8)



and no perturbation at large distances
f~0 as r— oo . (2.9)

In (2.7) and (2.8) U, = U,;—Uj is the relative velocity of two particles arising from the
imposed shearing motion, D, is their relative diffusivity: D, = Dy;+ Dy — Dy, — Dy,
and V, is the gradient with respect to # = 7, — #1. The unit vector along the line of
centers of the two particles is denoted 7.

The angle brackets ( )3 denote a conditional average over the equilibrium distri-

bution with two particles fixed:

1
(Up(ri,m2)); = W/Ur(rl>r2a'--er')

0 ;
X PN—2/2(7'37 c B PNITL Ty )dey -y

where P§_, , is the conditional probability for finding particles at r3,...,7x given
that there are two particles at #; and r,. The normalization factor (N — 2)! arises
because the particles are indistinguishable. We have also introduced the equilibrium
pair-distribution function P§ = n2g(r), with ¢g(r) the radial-distribution function.
Before proceeding with the perturbation expansion, we must first understand the
singular nature of the problem. This is simplest if we consider the limiting form
of (2.7) in the absence of hydrodynamic interactions because the singular region is
far from contact where hydrodynamic interactions are weak. Without hydrodynamic

interactions (2.7)—(2.9) become

2Vif = Pe(l)r-V,f, (2.10a)
P V.f = Per-(EV#(1+[) @ r=2, (2.10b)
f ~ 0 as r—oc, (2.10c)

where the factor of 2 in front of diffusive term comes from the fact that the relative

diflusivity 1s twice the single particle diffusivity, and the " denotes a nondimensional



13

quantity. It is well known [Leal (1992)] that even though the Peclet number is small,
at distances r ~ O(Pe~'/%) convection is as important as diffusion in (2.10). Thus,
1/2

there is an “outer” region where r» = pPe™'/? and in outer variables (2.10) becomes

2Vif = ([)p-V,/. (2.11)

The solution to this outer equation must satisfy the outer boundary condition f ~ 0
and match the “inner” solution as p — 0.

In the “inner” region with r ~ O(1), we sce that departure of f from unity is forced
by the boundary condition at contact. This boundary condition has the character of
a quadrupole forcing — forced by the second order rate of strain tensor (E) — of

magnitude O(Pe¢), and thus the leading inner solution is
[ =-Pe —=(#(E)- 1), (2.12)

which satisfies the inner boundary condition and asymptotes to 0 at large r.
Now the inner solution (2.12) will be the leading term that must be matched with

the outer solution. Rewriting (2.12) in outer variables gives
—=(p(E) p), (2.13)

which shows that the leading outer solution must be of O(Pe®/?) in order to match
with the inner solution. Since this is of lower order than the next regular — O(Pe?)
-~ term in the inner region, the perturbation expansion can be written as a regular

series up to O(Pc®?). Specifically, we write
[ = Pefi 4 P f, + O(Pe¥?). (2.14)

To determine the normal stresses, it is sufficient to solve the regular perturbation
problem for f;. The next term in the expansion is singular and its form is determined

by matching with the O(Pe5/?) outer solution, which we shall do below.
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The first-order perturbation f; is a scalar and must be linear in the imposed flow,

SO we may write

fi = —hi(r)e(E)-7, : (2.15)

Batchelor (1977) was the first to derive the equation for k; and dctermine the shear
viscosity at Jow shear rates for dilute dispersions.
In a similar manner, the second order perturbation f; is also a scalar and must

be quadratic in the imposed flow. Thus, f; has the form

fro= =ha(r)(#(B)-#)* — hy(r)i-(B)-(Q)-#
—ha(r)i-(B)-(B)-# — hs(r)(E): (E). (2.16)

The ordinary differential equations governing h; through h; found by substituting
(2.15) and (2.16) in (2.7)-(2.9) are listed in the appendix. Note thal because of the
normalization of the pair-distribution function, from (2.6) we have the solvability

condition

/ g(r) f(r)dr = 0. (2.17)

Carrying out the angular integrations shows that f; satisfies the requirement, and for

f2 we have

7 9tr) (Bhalr) + Shatr) + hotr)) r2dr = 0. (2.18)
2

2.3 Macroscopic stress

The bulk or macroscopic stress of a suspension at low Reynolds numbers can be

written as

() = =PI+ 2(E) + (Zp), (2.19)

where (p) is a constant setting the level of the pressure, and 25(E) is the deviatoric
stress contribution from the fluid. The particle contribution to the stress (X p) is
given by

(Xp) = —nkTT+ n[(ST) + (8B) + (SP)]. (2.20)
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Here, —nkT1T is the isotropic stress associated with the thermal kinetic energy of the
Brownian particles. I is the isotropic tensor and n is the number density of particles.
The hydrodynamic, S, Brownian, S®, and interparticle, S”

, contributions to the

stress are given by

(8" = —(Rsy'Rpy-Rrp — Rsg): (E), (2.21a)
(SP) = —kT(V-(Rsu-Rpy)). (2.21b)
(S7) = —((xI+Rsy-Ry},)-F"). (2.21c)

The additional hydrodynamic resistance tensors, Rsy and Rgg, relate the particle
stresslets {symunetric first moment of the force distribution integrated over the particle
surface, which gives the stress) to the particles’ velocities and the rate of strain,
respectively. The tensors Rsy and Rgsg here are not taken to be traceless in their
first two indices as has been the convention in the past. The trace of these functions
can be used to determine the osmotic pressure. From the symmetry of the low-
Reynolds number resistance tensors, Rsy is equal to the transpose of Rpg. The
angle brackets ( } denote an average over the distribution Py.

Brady (1993b) showed that the particle contribution to the bulk stress could be

rewritten into the more convenient form

<2p> = —-nkTI- nkTaj{ngngPl/l(rglrl)ng — 7l<:l:FP>
—TL(RSU'RI_;L-RFE — RgF;> . <E>
—n{Rsv Ry [FY — kTV 1In Py)), (2.22)

where Pj;i(ra|ry) is the probability density for finding a particle at 7, given that
there is a particle at =y, and the integral is over the surface of contact of the two

touching particles; n, is the unit normal along the line of centers from particle 1 to

9

Equation (2.22) is identical to (2.20) and is the exact form for the particle stress

both in and out of equilibrium. At equilibrium, (E) = (@) = 0, F¥ = kTVIn Py,
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and (2.22) reduces to the osmotic pressure of a colloidal dispersion. The osmotic

pressure, 11, is defined, mechanically , to be minus one third the trace of (¥p):

) 1
1I = —";II <2P>-, (223)
and at equilibrium
I° i P
= 1+ 49g(2a) ~ L{a-FF/kT), 2
= 1+ 409(2a) ~ 3(@ FV/ET), (2.24)

where ¢ = 4wa®n/3 is the volume fraction of particles. The Brownian contribution
to the osmotic pressure is given by the equilibrium radial-distribution function at
contact g(r = 2a), and the interparticle forces give the familiar (z-F¥) pressure.

Introducing the perturbation to the structure (2.6) the particle stress becomes

(Zp) = —I°L+ 200, (E) — n*Tda*g(20) § ## [(r)an
—n2g! / Fir Fra(r)g(r) f(r)dr
—n({(Rsu Ry Rre — Rsp) fa)g: (E)
—nkT(Rsy-Ryh-V fn)l. (2.25)

In (2.25) TI° is the equilibrium osmotic pressure of (2.24), and we have assumed that

the interparticle forces are central and pairwise additive:
P P_ ap
F2 = —.Fl = TFIQ(T').

The high frequency dynamic viscosity, 1., is defined as the equilibrium average of

the hydrodynamic contribution to the stress:
25 (B) = —n(Rsy Ri} Rrp — Rap)S: (E). (2.26)

Note that in the surface and volume integrals from Brownian motion and interparticle
forces, knowledge of the perturbation to the pair-distribution function, f, is required,

while the other two contributions involving hydrodynamics require knowledge of the
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full N-particle distribution fx. In (2.25) d§} denotes the solid angle: dS; = (2a)?df).

In order to understand the origin of the different contributions to the stress, we

shall denote

the separate contributions to the stress in (2.25) that depend on the

deformation to the structure as (XBY), (Z2F), (XY, and (X5, respectively. In-

troducing the general form for the perturbation expansion for ), neglecting couplings

to a third particle arising from many-body hydrodynamics in (Z’ﬁ> and <Ef§2>, and

carrying out

(Z2h)
m

the necessary integrations we have to O( Pe)

36

(
+ Pe (Lhy(2
+ Pe (4,

——
“»
e
3
—_———
=
e
S
——t
——
b
()
N
S—

9 9 P/t

gﬁb X{Il <E>

+ Pe (515 + 217 + 31T) ((B): (B)T

+ Pe (17 + IF) [(B)-(B) — L((B): (B)1)

+ PelIP((B)-(Q) + (2)T- langleE))} (2.28)
4¢* Pe x {]5 /:O B(r)hy(r)g(r)ridr((E)-(B)I (2.29)

= [ (L8 + HM))E) b (r)g(ryrarl(B)-(B) — L((E): By}

St (PR

+f@ﬂf%muﬁwwv+<ﬂﬂxﬁny (2.30)
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where

/2-1):/ Fio(r)hi(r)g(r)r3dr, (2.31)

2
- B(r) is a pressure moment function introduced by Jeffrey et al. (1993),_(1,(7«))3 and

(M(r))).are the conditionally averaged hydrodynamic functions associated with the

hydrodynamic stress, and IP%(a) are given by

) = [ (A + bW B a2

Before we present results for the stress contributions, we first discuss the order
of the next correction in Peclet number to the stress. From the regular perturbation
expansion for f, (2.14), we see there will be an O(Pe¢?) contribution from the hydro-
dynamic stress, {34), involving the perturbation functions hy—h4. For simple shear
flow this hydrodynamic stress does not contribute to normal stress differences; it only
changes the shear viscosity. Although we could present this correction now, we shall
see that the Brownian (or interparticle force) contribution to the stress will also have
a correction of O(Pe?) which we have not determined.

The contributions presented above are all from the “inner” region where » ~ O(1),
and we must determine the magnitude of the contributions from the “outer” region
~1/2

with r ~ pPe™"/%. At large distances, the hydrodynamic contribution to the stress

behaves as
xf L
KT;JH ~ /:gfgerr ~ O(Pe*/?) (2.33)

since f ~ O(Pe®?) in the outer region. The two Brownian contributions can be
combined and from the form given in (2.21), we know that at large r

B

(XF)

1 1 . '
Pl / —fgrtdr ~ O(Pc?). (2.34)
Yy el r

Similar arguments would apply for the interparticle force contribution; a detailed
estimate requires knowledge of how Fy, decays with r. (This is discussed further in

section 2.5.) Thus, all contributions from the outer region are at most O( Pe®/?).
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The next contribution to the stress will come from the next term in the inner
region, which is O(Pe%?). This term will generate an O(Pe®?) correction to both
the Brownian and interparticle force contributions to the stress. However, as we now
show this next term will only contribute to the isotropic stress. The next inner term
of ()(Pés/Q), denoted by f3, satisfies a homogeneous differential equation with homo-
geneous inner boundary condition. The solution is forced by matching to the outer
problem. The leading outer term satisfies (2.11) and behaves as the quadrupole (2.13)
as p — 0. Examination of this solution as p — 0 shows that the first mismatched
term of O(L€*/?) is simply a constant C' P¢%2. The inner solution at O(£¢%2) must
asymptote to a constant at large r; thus, f3 must be proportional to €' and therefore
it has no angular dependence — it is a purely radial [unction. A disturbance in the
structure that is purely radial only generates an isotropic macroscopic stress from the
Brownian or interparticle force contributions. Thus, the Q(Pe%?) correction to the
structure contributes only to the osmotic pressure; this contribution being O( Pe®/?).
The next correction to the deviatoric stress is therefore of O(Pe?). This O(Pe?) con-
tribution comes from two sources: the O(Pe*) deformation to the structure through
the hydrodynamic stress contribution discussed above, and the O{ Pe?) correction to
the structure through the Brownian and interparticle force contributions. (Note that
the O(Pe*?) perturbation to the structure will gencrate a deviatoric contribution

from the hydrodynamic stress of O(Pe®/?).)

2.4 Results

2.4.1 Dilute suspensions: O(¢?)

The ordinary differential equations governing h, through A5 in the appendix have been
solved numerically in the dilute limit in the absence of interparticle forces. The two-
body hydrodynamic functions are used, and we solve the equations for h; through ks
by the following method: far-field asymptotic results are used to numerically integrate

inward to r = 2 using a sixth-order Adams-Bashforth integrator, supplemented with
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the proper near-field form given by an asymptotic analysis. This solution method
follows in the same spirit as that used by Batchelor (1977) to solve for hy.

Thus, correct to O(¢? Pe), the bulk stress in a general linear flow is given by

H
<‘:§> — (56 + 9.86¢2)(E) + 0.9406% Pe((E) : (B))I
—1.62¢* Pe[(E)-(B) — L((E): (E)I] — O(¢*Pe?, ¢%),  (2.35)
and
B
%ﬁ = 1.96¢*(E) — 0.532¢% Pe((E): (E))I

A

+0.378¢* Pe[(E)-(E) — L((E): (ENT]
~0.899¢° Pe((B)-(§2) + ()T -(E)) + O(0?* P2, ¢%),  (2.36)

where we have combined the Brownian contributions into a single expression and
have included the O(¢) and O(¢?) contributions from 7/, in (X%). Note that the
O(#?Pe*?) error in the Brownian stress is only to the isotropic part; the deviatoric
stress is correct to O(Pe?).

For a simple shear flow with velocity in the 1 direction, velocity gradient in the 2
direction and vorticity 3, the relative viscosity, first and second normal stress differ-

ences and the osmotic pressure are:

n o= 14 %d) +5.91¢% = O(¢?Pc?), (2.37)
N ;
L = 0.899¢%Pe + O(¢*Pe?), (2.38)
Yy
N. (

2 = —0.788¢*Pe + O(¢* Pe?), (2.39)
Y
I ‘

—= = l+46+ 0.156¢Pe? + O(oPe?). (2.40)

It is important to note that there are no contributions to the relative viscosity
from the O(Pe?) distortion of the equilibrium microstructure through the Brownian

stress, nor from the O(Pe) distortion to the structure through the hydrodynamic
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stress; so there is no O(Pe) correction to the relative shear viscosity. A second-order
analysis is not sufficient to predict a shear-thinning viscosity. The viscosity thus shear

thins in simple shear flow at O(Pe?). Note also that the hydrodynamic stress does

not contribute to the first normal stress difference for simple shear flow — only terms
proportional to (E):(2) contribute.
At present, there are no experimental nor simulation data available to compare

with the theoretical predictions for the normal stress differences for dilute suspensions

at low Peclet number. Note, however, that at low shear rates,
Ny, Ny ~ 42,

as expected. It is encouraging that N, is positive and N, necgative at small Peclet
numbers, in agreement with the results of Phung (1993) for more concentrated sus-
pensions.

As discussed by Jeffrey et al. (1993), we see that the O(Pe?) deformation of the
microstructure contributes an O(¢Pc?) term to the osmotic pressure. There is no
O($Pe) correction since I: (E) = 0 for an incompressible material.

We should also note that the solvability requirement, (2.17) and (2.18), is satisfied

by the solution for f; when matching to the outer solution is taken into account.

2.4.2 Scaling theory as ¢ — ¢,,

Brady (1993b) has shown that as maximum packing is approached, the dominant
contribution to the macroscopic stress comes from the contact integral of the Brownian

stress:

(ZBYY = —n?kT4a%g(24) ]4 i [ (r)dO). (2.41)

This result immediately shows that the stress will be proportional 1o the equilibrium
radial-distribution [unction at contact g(2a).
Now, in the pair-evolution equation (2.7), the relative diffusivity which balances

the convective motion, (D,)J, is not simply the infinite dilution value 2I (in dimen-
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sionless form), but rather twice the short-time self diffusivity at the volume fraction

of interest. That is

where Dg(o) is the nondimensional short-time sell-diffusivity at the volume fraction

®. Thus, we see the appropriate Peclet number for the asymptotic expansion is
Pe = 4a*/ D3(9). (2.42)
The perturbation expansion proceeds in powers of Pe, and we have for <21131>

Xp > 36
<77n; Lo 772 - )¢2 = {hl 2)(E)

Dg(¢)
+ Pe (302(2) + 2ha(2) + 205(2)) ((B): (BN

T ()}, (2.43)

This scaling analysis predicts that the stress scales as g(2; ¢)/D3(¢) x F(Pe), where
in (2.43) we have given the result for a general linear flow for F to O(Pe).

As random close packing is approached, ¢ — ¢,, = 0.63, the radial distribution

function at contact diverges as [Woodcock (1981))
9(26) ~ 1.2(1 = ¢/dm) ™

and the short-time self diffusivity vanishes as [Brady (1993b); Phung (1993)]
D3(#) ~ 0.85(1 = &/ ¢m).

Thus, the theory predicts the stress to diverge as (1 — ¢/¢,,)"2. This prediction

for the shear viscosity was shown to be in excellent accord with experiment [Brady

(1993b)].

To obtain a numerical prediction for the behavior near maximum packing, we need
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an estimate for h;(2). Here we shall use the simple approximation of Brady (1993b)
and estimate hi(2) by neglecting hydrodynamic interactions. The contact values of
h; are listed in the appendix.

I'or simple shear flow we have as ¢ — op,:

n o~ 13(1 = ¢/dn)"2 + O(Pe?), (2.44)
N ; _
Lo~ 0511 = /o) Pe+ O(PeY), (2.45)
n-y
N —0.36(1 — ¢/d,,) 2 Pe + O(Pe?), (2.46)
7y
Il

T~ 2901 = 0/gn) T 402701 — 0/6m) P+ O(PE). (2.47)
s

Unlike the dilute limit, we can test our theoretical predictions for the normal stress
differences using the simulation data of Phung (1993). At this point it is useful to

introduce dimensionless normal stress difference coeflicients,

N,
o= 2.48)
X1 7]‘.}’P€7 ( /
and
Ny .
, = ) 2.49
Xz nyPe ( )

These coefficients are constant at low Peclet number for a given volume fraction.
In Figures 2.1a and 2.1b we see very good agreement for y; and Y, between our
theoretical predictions and the simulation results at Pe = 0.01, the smallest value
of the Peclet number for which results are available. We also see that the results at
Pe = 0.1 are substantially less than those at Pe = 0.01, so it is not certain that the low
Pe asymptote has been reached. Note also that in terms of the “bare” Peclet number
Ya?/ Dy, the normal stress differences are predicted to diverge as (1 — ¢/¢n )73 Pe.
The requirement for the perturbation expansion is now that Pe < 1, which is a very

severe requirement as ¢ — ¢,.
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2.4.3 Structural deformation

With the solution of the ordinary dilferential equations for iy through ks in the dilute
limit in the absence of interparticle forces, the microstructure of the suspension in a
given flow can be determined. In this section we analyze the microstructure in simple
shear flow to determine how the microstructure affects macroscopic properties and to
discuss the effects of hydrodynamic interactions on the microstructure.

Figures 2.2a 2.2¢ are density plots of f for a dilute suspension in simple shear flow
at Pe = 0.1 ncglecting interparticle forces; shown are plots in the velocity-gradient.
vorticity-gradient, and velocity-vorticity planes, respectively. These density plots are
created so that the test particle at the center of each picture has a value of f = 0 and
is 50% black. The regions that are greater than 50% black are regions in which f is
positive, and the regions lighter than 50% black are regions of negative f.

In Figure 2.2a we see a slight asymmetry with respect to the extensional and com-
pressional axes. This asymmetry is due solely to the hg(?")f"(E> : (fl) F contribution
to f because this contribution is symmetric with respect to the axes in the veloc-
ity /gradient directions. All other contributions are either symmetric with respect to
the extensional /compressional axes or have an isotropic contribution in the 1-2 plane.
Thus, the first normal stress difference is determined solely by hs(r), as remarked in
section 2.4.1.

Also in Figure 2.2a we see a slight distortion of the microstructure along the
gradient axis. Previous investigators have been concerned with the deformation of
the structure along this axis [Ronis (1984); Schwarzl & Hess (1986); Dhont (1989);
Blawzdziewicz & Szamel (1993)], but only the theory of Blawzdziewicz & Szamel
(1993) predicts a distortion of the microstructure along the gradient axis. They show
that the deformation is small for shear rates up to Pe = 0.5. From our analysis we

find the dcformation along the gradient axis in simple shear flow to be

fr;2 —azis) = — (ha(r) — ha(r) — 2hs(r)) Pe.

| =

We see that the deformation is O(Pe?) which explains why Blawzdziewicz & Szamel
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(1993) report only a small distortion for small Pe.

Since the O(Pe) deformation only distorts the structure in the velocity-gradient
plane, the structural changes in the vorticity-gradient, Figure 2.2b, and velocity-
vorticity, Figure 2.2c, planes are O( Pe?). Although there is an O(Pe?) deformation
to the microstructure in the vorticity-gradient plane, this contribution does not lead
to a shear-thinning viscosity in the absence of hydrodynamic interactions, as was
postulated by Blawzdziewicz & Szamel (1993). As discussed earlier, it is the O(Pe®)
deformation to the structure that leads to a shear-thinning viscosity. It should be
no surprise that structu.ral changes in the vorticity-gradient plane are not correlated
with shear-thinning since Bossis & Brady (1989) report a shear-thinning viscosity in
monolayer dispersions.

Since we have solved for the structure of a dilute suspension at low Peclet number
both with and without hydrodynamic interactions, we can assess the contribution
to the structure solely due to hydrodynamic interactions. These contributions are
plotted in Figures 2.3a-2.3c at Pe = 0.1 for the velocity-gradient, vorticity-gradient
and velocity-vorticity planes, respectively. As before we use the test particle in the
middle at 50% black; so hydrodynamics have a negative eflect in lighter regions and
a positive effect in darker regions.

In the velocity-gradient plane (Figure 2.3a) at large distances, we see that hy-
drodynamic interactions increase the particle density along the extensional axis and
decrease the density along the compressional axis, but the opposite occurs very near
the particle surface. This sign change is an O(Pe) eflect given by h; (c.f., (2.14)
and (2.15)), as shown below. The value of h; at contacl is h; g(2) = 0.71 and
hinu(2) = 0.67 for the cases of two-particle hydrodynamics and no-hydrodynamic
interactions, respectively; therefore, h; gy — hiyy > 0 very near the particle sur-
face. Far away from the particle, hy g(r) ~ 4.46/r® and hy yg(r) ~ 5.33/r; thus,
hy g — i ve <0 as v — oc and hydrodynamic interactions have opposite effects on
the microstructure in these two limiting cases.

We shall first analyze the compressional axis to describe why this sign change

occurs. Far from the test particle, hydrodynamic interactions tend to hinder a second
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particle from approaching; so we expect a negative contribution from hydrodynamic
interactions élong the compressional axis at large distances. Close to the test particle,
however, the second particle is trying to diffuse away from the test particle while the
external flow tends to push the particles together; external flow dominates near the
pa.rticle,. resulting in a build-up of particles near the surface along the compressional
axis. Along the extensional axis the situation is reversed: hydrodynamic interactions
tend to stop the particles from moving apart at large distances, leading to a positive
hydrodynamic contribution far from the test particle. Near the test particle, the sec-
ond particle is diffusing away and the external flow is pulling the particles apart, and
there is a negative hydrodynamic contribution near the particle along the extensional
axis.

We can confirm this physical picture by solving the differential equation for h; for
a suspension of particles that interact with a hard-sphere potential characterized by
a length b (> a). The appropriate length scale for the pair-evolution equation (2.7)
is now b, and the no-flux boundary condition (2.8) is applied at a distance 2b from
the particle, while all hydrodynamic interactions remain scaled by the particle size,
a. As a result of this scaling, we can solve the differential equation for hy, as it is
presented in the appendix with Pe replaced by Pe, = 6%/ Dy, and we simply apply
the no-flux boundary condition at » = 2b/a. Since b/a > 1, lubrication effects are
eliminated but both the far-field hydrodynamic interactions and the balance between
convective and diffusive fluxes at the hard-sphere surface are retained; therefore, the
effects of hydrodynamic interactions near the hard-sphere surface are a result only of
the no-flux boundary condition. The results of this study are valid for Pe, < 1 and
for suspensions that are dilute based on the thermodynamic volume fraction, ¢;.

Before presenting the results of this study, we analyze two limiting cases, b/a — 1
and b/a — oo. For the case of b/a — 1, both the hydrodynamic and thermodynamic
length scales are identical, and we recover our previous results for Brownian hard
spheres in the absence of interparticle forces. If 5/a — oo, hydrodynamic interactions
are negligible and we recover the solution for the case in which hydrodynamics is

neglected with Pe replaced by Pey; thus, hydrodynamic interactions have a negligible
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cffect on the microstructure as b/a — oc. When b/a ~ O(1), we find that h; g —hy nvp
is positive near r = 2b/a and negative at large distances for 1.25 < b/a < 9, and we
see that the sign change in h; y — hy np is caused by the balance of the convective
flux and diffusive flux at r = 2b/a and not lubrication. It is interesting to note that
there is a maximum value of hig — hyng at 7 = 2b/a for b/a = 4, and we conclude
that lubrication has the expected effect — a reduction in the particle density near the
test particle along the compressional axis. but the effect is quantitative rather than

qualitative.

2.5 Conclusions

In this paper normal stresses in a suspension of Brownian hard spheres at low shear
rale have been determined theoretically. An evolution equation for the pair-distribution
function was developed, and it was shown that the perturbation to the microstructure
is regular to O(Pe?) for a general linear flow with the next term being O(P¢/?). The
bulk stress for a dilute suspension in a general linear flow was determined to O(¢* Pe),
and normal stresses in simple shear flow were determined to be: N|/ny = 0.899¢%Pc
and N, /1y = —0.788¢% Pe for Pe < 1.

A scaling theory was presented for concentrated suspensions using the corrected
time scale; a?/ D§(d), and the appropriate Peclet number, Pe = Yya*/ Di(¢), replacing
Pe = 4a®/ Dy. This scaling theory predicted that the stress diverges near maximum
packing, ¢, as ¢g(2; cf))/f)f)(d)) because the dominant coniribution to the stress comes
from the Brownian stress. lence, normal stress differences in simple shear flow diverge
as N;/ny ~ Pe g(2; B)/ Di(¢) ~ (1 — ¢/¢m) ?Pe as & — on, and Pe « 1. This
scaling theory does not rely on any of the assumptions made in deriving the evolution
cquation for the pair-distribution function (e.g., neglect of third-body interactions)
and relies on the use of the appropriate time scale, a?/ Dj(¢). In addition, the scaling
theory emphasizes the importance of both thermodynamic and hydrodynamic effects
on rheology since both contribute to the divergence of the normal stresses — there is

a thermodynamic contribution of (1 — ¢/¢,, )1 through the divergence of g(2; ¢) and
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a hydrodynamic contribution of (1 — ¢/¢,,)" since f)g(¢>) vanishes as ¢ = on,.

With knbwledge of this scaling theory and the similarity between the Brownian
and intérparticle force contributions to the stress, we can analyze Brownian parti-
cles that interact through interparticle forces. If the range of the colloidal force is
compardbl(: to the particle size, both hydrodynamics and thermodynamics are im-
portant, the scaling does not change near maximum packing, and the normal stress
differences diverge as N;/ny ~ (1 — ¢/dy ) ?Pe as ¢ — ¢,n. On the other hand, if
the particles interact through long-range repulsive forces, the thermodynamic volume
fraction, ¢ = 4rb®n/3. is much greater than the hydrodynamic volume fraction,
the stress diverges only through ¢(2;¢;) as random close packing of the thermody-
namic volume fraction is approached, and the normal stress differences diverge as
N;/ny ~ (1 — ¢y/ Gpm )  Pey as ¢ — dpm, where Pey = ¥0?/ Dy.

A natural extension of this work would be to include conditionally averaged hydro-
dynamic interactions to extend the results to mildly concentrated suspensions at low
Peclet number. The conditionally averaged hydrodynamic quantities can be obtained
quite simply from Stokesian Dynamnics because they depend only on the equilibrium
distribution of particles at a given volume fraction, ¢, and the separation between
two particles. Despite the simplicity of these functions, this approach may prove to
be inadequate because the evolution equation for the pair-distribution may no longer
capture the proper physics due to one or more of the closure assumptions (e.g., neglect
of third-body interactions and/or breaking of non-linear averages, (fg) = (f)(g))-

This work may also form a starting point for an extension to higher Peclet numbers
by expressing the pair-distribution function in terms of an eigenfunction expansion.
A similar method was used by Blawzdziewicz & Szamel (1993) for the case of a dilute
suspension in simple shear flow in the absence of hydrodynamic interactions where
the pair-distribution function is expressed as a linear combination of multipoles using
the Elrick solution. Although the Elrick solution provides the correct eigenfunctions
for this particular system, an expansion that uses general eigenfunctions may be re-
quired to include hydrodynamic interactions, external flows other than simple shear

flow, and mildly concentrated suspensions. For suspensions near maximum pack-



29
ing, the expansion used by Blawzdziewicz & Szamel (1993) should give reasonable
approximat;ibns by using the scaling theory presented here.

One important rheological feature that we would like to predict through an eigen-
function expansion is the sign change in the first normal stress difference. It has
been found by Phung (1993) and Laun (1994) for simple shear flow, that at low
Peclet number N; > 0 and at high Peclet number Ny < 0 with the sign change oc-
curring around Pe = 1 — 10. From the data of Phung (1993), there is a positive
Brownian contribution that decays ~ 1/Pe¢, and a hydrodynamic contribution that
is negative and approaches a constant valuc as Pe — oo. At low Peclet number the
Brownian contribution dominates, yielding a positive Ni; while at high Peclet num-
ber, the hvdrodynamic contribution dominates and N} < 0. Thus, the hydrodynamic
contribution must be predicted.

We would also like to use this method to confirm the theoretical findings of Morris
and Brady (1994) for normal stress differences at high Peclet number. By performing
an asymptotic analysis of the microstructure of a suspension as Pe — oo, they have
been able to determine that N; and N, ~ ¥ as Pe — oo. This scaling has been

numerically confirmed by Phung (1993).
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Appendix A

The equations governing the perturbation functions k; defined in (2.15) and (2.16)

arc found by substituting f from (2.14) into the steady pair-evolution equation (2.7).

We make use of the following definitions for the relative diffusivity and velocity:

Labi(r) = =3 = b (1 = (A 20
Laba(r) = (W) = 1+ (BOIR) g(r)hir)
(1 - (A ),

Lghg(?‘) = —hl(’f‘),

Layha(r) = —SEETZQEM(T) + (1= (B(r))S) ha(r),

Lohs(r) = —2 Wy o)

2

with the operator, L, defined by

r2 dr

ch = ii (7Zg(r)<(;(r)>(2)%) _ Oz((,! + 1)9(7')(7}-](7'»2 i

and with (W(r))J given by

W) = 3 ((BONE — (Ar)3) — r 2T

(2.52)

(2.58)

All five ordinary differential equations have the same boundary condition at large

hi(r) ~0 as r— oo,

(2.59)
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but they have different inner boundary conditions @ r = 2:

(G (r) = —(1—(A(r)%), | (2.60)
(Gr)Shy(r) = ha(r) (1= (A(r)3), (2.61)
(G(r))zhs(r) = 0, (2.62)
(G(r)ghy(r) = 0, (2.63)
(G(r)3hs(r) = 0. (2.64)

Note that when complete hydrodynamic interactions are used, the inner boundary

conditions are all the same:
(G(r))5hi(r) =0 @ r=2, (2.65)

The functions (A(r))3, (B(r))y, (G(r))S, and (H(r))9, are nondimensional effective
hydrodynamic functions between two particles in the suspension. These functions
depend only on the equilibrium distribution and the relative separation between two
particles. In the dilute limit, the effective hydrodynamic functions are simply equal to
their two-particle values (i.e., (A(r))3 = A(r)) and have been well-studied [Batchelor
& Green (1972); Kim & MifHlin (1985); Yoon & Kim (1987); Kim & Karrila (1991)].

For future use, we record here the solution to h;-As in the absence of hydrodynamic

interactions:

) = 55 m@)=3 (2.66)
hy(r) = 5; G - i(’) ha(2) = 0 (2.67)
hs(r) = % G - %) ;o ha(2) = ;7— (2.68)

I'rom the above solutions for h,-hs, we see that the solvability condition (2.18)
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1s apparently not satisfied by the 1/r terms in hs-hs. This slowly decaying function
must be matched to an outer solution, and when this is done, the full uniformly valid

expansion for f satisfies the solvability condition (2.17).
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Figure 2.1: Comparison of the theoretical predictions for the dimensionless normal
stress coefficients, (a) x1 and (b) —x2, for Brownian hard spheres in simple shear flow
with the Stokesian Dynamics results of Phung (1993), where x; = N;/nvPe. The
dotted lines are the theoretical predictions for dilute suspensions, Equations (38) and
(39), and the solid lines are the scaling theories, Equations (45) and (46), as random
close packing, ¢,, ~ 0.63, is approached. The symbols are the results of Phung (1993)
for N =27 at: Pe = 0.01 (solid circles) and Pe = 0.1 (solid diamonds).
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Figure 2.2: Density plots of the perturbation quantity f in the (a) velocity-gradient,
(b) vorticity-gradient and (c) velocity-vorticity planes for a dilute suspension in simple
shear flow with two-particle hydrodynamic interactions in the absence of interparticle
forces at Pe = 0.1. The test particle at the center is at 50 percent black, darker
regions have positive f while lighter regions have negative f.
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Figure 2.3: Density plots of the contribution to the perturbation quantity f from two-
particle hydrodynamic interactions in the (a) velocity-gradient, (b) vorticity-gradient
and (c) velocity-vorticity planes for a dilute suspension in simple shear flow in the
absence of interparticle forces at Pe = 0.1. The test particle at the center is at 50 per-
cent black, where there is no effect from hydrodynamic interactions; hydrodynamics
has a positive effect in darker regions and a negative effect in lighter regions.
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Chapter 3
Colloidal dispersions
at arbitrary Peclet number

in simple shear flow
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3.1 Introduction

The nonequilibrium microstructure and macroscopic propertics of hard-sphere col-
loidal dispersions in simple shear flow are predicted by solving the twc;—particle Smolu-
chowski equation for a range of Peclet numbers and evaluating the bulk stress. Dilute
results are extended to higher concentrations by using the scaling theory of Brady
(1993b). ‘The colloidal particles have a hydrodynamic radius, a, and a thermody-
namic (or effective hard sphere) radius, b, allowing hard sphere (b/a — 1), sterically
stabilized (b/a < 1.1), and charge stabilized (b/a > 2) systems to be studied while in-
cluding two-particle hydrodynamic interactions. The Peclet number associated with
such systems is Pe, = 6mn,yab*/kT, where 7, is the Newtonian viscosity of the sus-
pending fluid, 7 is the shear rate, & is the Boltzmann constant, and 7' is the absolute
temperature.

In section 3.2, the nonequilibrium microstructure is expanded in terms of surface
spherical harmonics and the resulting two-particle Smoluchowksi equation and its
boundary conditions are derived in a form that can be used for any linear flow.
Symmetry arguments are made for simple shear flow to reduce the number of coupled
ordinary differential equations. The solution method is discussed and compared and
contrasted with the work of Lionberger (1998), who uses approximations for the outer
boundary condition. These approximations are not used in the current work.

After finding the nonequilibrium microstructure, the macroscopic properties are
calculated by using the equations for the bulk stress in section 3.3. The equations for
the hydrodynamic, Brownian and interparticle force contributions to the bulk stress
are valid to O(¢?). where ¢, = 47nb3/3 and n is the particle density, and are derived
in a general form for arbitrary values of b/a for spherical particles. The bulk stress is
not traceless and the nonequilibrium osmotic pressure is calculated.

Section 3.4 is split into three parts. In part 3.4.1 the particles have b/a = 1 and
hydrodynamic interactions are neglected. In the next part, part 3.4.2, the particles
hydrodynamically interact with b/a — 1. Finally, in part 3.4.3 sterically stabilized

and charge stabilized dispersions are studied by varying the value of /a while keeping
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two-particle hydrodynamic interactions.

When hy‘drodynamic interactions are ncglected and b/a = 1 (section 3.4.1), nu-
merical results are obtained for Pe < 20. At large Peclet number, the interparticle
force stress has a viscous scaling, ~ O(7ns7), and the viscosity, normal stress differ-
ences and osmotic pressure all have non-zero asymptotes in the limit e — oc. These
non-zero asymptotes are caused by the formation of a boundary layer at particle con-
tact in the compressional zone in which the probability of finding a second particle is
~ O(Pe). Atlow Peclet number, the relative shear viscosity is constant and then shear
thins with a term that is ~ O(¢?Pe?). Dilute results for viscosity are extended to
higher concentrations and compared with Brownian Dynamics [Foss & Brady (1999)]
with reasonable agreement at small volume fractions but poor agreement at high
volume fractions. The poor agreement is caused by a relaxation time that is depen-
dent on the volume fraction [Bergenholtz (1999)], while the scaling theory of Brady
(1993b) predicts a single relaxation time for Brownian Dynamics, independent of vol-
ume fraction. A Cox-Merz rule is shown to be valid over the range volume fractions
for which the relaxation time is independent of volume fraction, and a Padé approx-
imate is formed for the numerical results of this study. Normal stress differences at
low Peclet number have the form, N;/n,% ~ O(Pe) + O(Pe®?). The O(Pe®/?) comes
from the O(Pe™/?) deformation of the microstructure since the O(Pe?®) deformation
yields contributions only to the isotropic and shear stresses. The scaling theory of
Brady (1993b) is used and the dilute results qualitatively predict the behavior of
Brownian Dynamics simulations [Foss & Brady (1999)]. Furthermore, the normal
stress differences only cause negative rod climbing, as shown by using the heuris-
tic argument of Lodge, Schieber & Bird (1988), since |N;/Na| ~ O(1). Finally, ch6
osmotic pressure has the form, II/nkT — 1 — 49 — (16/45)pPe? + O(Pe®/?), at low
Peclet number, as shown by Brady & Vicic (1995). The coefficient of the O(Pe®/?)
term is predicted by matching the O(Pe®/?) isotropic term of the inner expansion with
the first mismatched term of the outer expansion, and the coefficient is in excellent
agreement with the numerical results. The results are extended to higher concen-

trations by a scaling theory [Brady (1993b)] and are in reasonable agreement with
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Brownian Dynamics simulation data [Foss & Brady (1999)].

In section 3.4.2 two particlés hydrodynamically interact and b/a — L. The limit
of b/a — 1 is used instead of b/a = 1 to avoid closed streamlines; to account for
surface roughness or the presence of a steric stabilizer, and to avoid a singularity in
the prob’lem since the radial component of the relative diffusivity vanishes at particle
contact when b/a = 1. The shear viscosity is constant at low Peclet number, shear
thins, reaches a constant value and then shear thickens at high Peclet number. Shear
thinning is caused by a decrease in the Brownian viscosity due to the reduced impor-
tance of Brownian motion as Peclet number increases in agreement with experiments
[Kaffashi et al. (1997)] and simulations [Foss et al. (1999)]. Shear thickening occurs
because of an increase in the hydrodynamic viscosity, again in agreement with exper-
iments [Bender & Wagner (1995); O'Brien & Mackay (1996)] and simulations [Foss
et al. (1999)]. The root cause of hydrodynamic shear thickening is the formation
of a boundary layer in the compressional zone at particle contact and the presence
of hydrodynamic interactions, resulting in an increase in the hydrodynamic contri-
bution to the viscosily with increasing rate. The constant viscosity at intermediate
Peclet numbers occurs simply because the hydrodynamic viscosity is incrcasing at the
same rate that the Brownian viscosity is decreasing. Scaling theory ‘Brady (1993b)]
is used to extend these results to finite concentrations. The scaling theory collapses
experimental and simulation data to a single master curve, but the dilute results are
in only qualitative agreement.

The same interplay between the Brownian and hydrodynamic contributions is also
evident for the first normal stress difference. At low Peclet number the first normal
stress difference is positive, but it is negative at high Peclet number. The sign change
occurs because the Brownian and hydrodynamic contributions have different signs,
and the Brownian contribution dominates for Pe <« 1 while the hydrodynamic con-
tribution dominates at Pe > 1. The sign change occurs near Pen’, = 10, where 7. is
the nondimensional high-frequency dynamic viscosity, and the dilute theory properly
predicts the sign change for Stokesian Dynamics simulation data [Foss et al. (1999)]

after using the scaling theory [Brady (1993b)]. The hydrodynamic contribution to
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the first normal stress difference is O(Pe®/?) at low Peclet number and arises from the
O(Pe®?) term of the outer exbansion. Also, the first normal stress difference at high
Peclet number is negative because the boundary layer extends into the extensional
zone with a relatively small downstream shift of the maximum contact value in the
boundary layer..

Since both the hydrodynamic and Brownian contributions are negative for all
Peclet number, the second normal stress difference is always negative. The dilute re-
sults correctly predict a maximumnear Pen/ = 4 when compared to scaled Stokesian
Dynamics results [Foss ¢t al. (1999); Brady (1993b)]. This dilute theory also predicts
that only negative rod climbing should occur, and this fact has been experimentally
confirmed by Leighton (1997) in the high Peclet limit.

Next, in section 3.4.3 the value of b/a is varied. Shear thickening occurs at larger
values of Pe, as b/a increases, and the degree of shear thickening decreases since
lubrication interactions are eliminated and the effects of far-field hydrodynamic in-
teractions are reduced as b/a increases. At some large value of b/a, the hydrodynamic
viscosity will appear only as a small constant value for all Peclet numbers since hy-
drodynamic shear thickening is slight. The shear viscosity decreases with a decrecase
in the thermodynamic radius, b, for a system in which the particle radius, a, and par-
ticle volume fraction, ¢,, are kept constant. Physically, this situation is achieved by
adding salt to a charge stabilized system; thus, reducing the Debye length. The the-
ory predicts the same behavior as seen in experimental systems [Mallamace, Micali &
Vasi (1990)]. The shear viscosity increases as the hydrodynamic radius, a, decreases
for a system in which the Debye length and the hydrodynamic volume fraction, @,,
are held constant; thus, shear viscosity increases as b/a increases when ¢, is constant.
Experiments [Ogawa ef al. (1997)] confirm this behavior.

Not only does shear thickening occur at higher Peclet numbers as b/a increases,
but the sign change in the first normal stress difference also occurs at higher Peclet
numbers as b/a increases. The Brownian and interparticle force contributions have
the same sign, different from the sign of the hydrodynamic contribution. As b/a

increases, the effects of hydrodynamic interactions are reduced and the hydrodynamic
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contribution to the first normal stress difference decrcases. At some large value of
b/a, there will no longer be a sign change in the first normal stress difference since
the hydrodynamic contribution will be nearly zero.
Finally, in section 3.5 it is shown how the method presented here can be extended

to other flows, other interparticle forces, and other spherical bodies, such as droplets.

3.2 Nonequilibrium microstructure

The microstructure of a dispersion of equal-sized, spherical particles subjected to
Brownian, interparticle and hydrodynamic [orces with small particle Reynolds num-
ber, pya?/n, < 1, is governed by the N-particle Smoluchowski equation,

0Py

= T Vv =0, (3.1)

where Py is the probability density for the N particles to be in configuration @, and
p is the fluid density.

The probability flux g5 is given by
v = UPy + RuL-(FF — kTV In Py) Py, (3.2)

where U is the velocity of the particles due to the external flow, F is the total
nonhydrodynamic interparticle force, and KTV In Py is the Brownian force. In addi-
tion, Rpy is the hydrodynamic resistance tensor that relates the hydrodynamic force
exerted on the particles to the particle velocities. Its inverse, Ry, is the mobility
tensor relating the velocities to the forces. By multiplying the mobility by £7', the

Stokes-Einstein relation yields the particle diffusivity,

D = kTR (3.3)
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The particle velocities are non-zero in the presence of an imposed flow, and
U=z (T)+ Ry Rip: (E), (3.4)

where (T')=(E)+(2), and (E) and (£2) are the bulk rate of strain and vorticity
tensors of the external flow, respectively. The hydrodynamic resistance tensor Rgg
gives the hydrodynamic forces on the particles due to the imposed flow. In the absence
of hydrodynamic interactions (i.e., Rpg = 0), the particles would simply be advected
by the imposed lincar flow: U=a-(T').

The N-particle Smoluchowski equation, integrated over N — 2 particles and ne-

glecting three-body effects, becomes
V,'D, V.g(r) = PeV, (U.g(r)), (3.5)

where ¢ (r) is the nonequilibrium pair-distribution function. In equation (3.5) we
nondimensionalize all lengths by the effective hard-sphere radius, b, the relative ve-
locity, U,, by b¥, the relative diffusivity, D, by Dy = kT/67n,a, the bare-particle
diffusivity. The Peclet number, Pe, = (6*/Do)/(1/%) = 6mn,vab?/kT, is the ratio
of the diflusive and convective time scales. In terms of two-particle hydrodynamic

functions, the relative diffusivity and relative velocity are written,

D, = 2(G(r&) st + 1 (r2) (1- 1)), (3.6)

U, = r(T)—r(E)- (A (rl) 2t + B (r}) (I - ), (3.7)

where V. is the gradient with respect to the interparticle separation, r = ry — ry,
t is the unit vector along the line of centers between the two particles, I is the
isotropic tensor, (¢ (r%) and H (7%) are the radial and tangential components of
the relative diflusivity, D, =Dyy+D;— D3~ Dy, and A (r%) and B (r%) are radial
and tangential components of the relative velocity, U, =U,—Uj, due to the imposed
flow [Batchelor & Green (1972a); Batchelor (1976)]. Note that all of the two-particle

hydrodynamic functions include b/a in the argument because r is nondimensionalized
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by the thermodynamic radius, b, but the hydrodynamic functions are evaluated based
on the hydrodynamic radius, a.

The no-flux boundary condition for two particles at contact is

I
B

7-D,-V,g(r)= Pe,#-U,g(r) @ r \ (3.8)

and there is no deformation of the equilibrium structure at large distances,
g(r)~1 as r— oo. (3.9)

Since the nonequilibrium microstructure decays to unity at large separations, this
behavior is subtracted so that the deformation function, f, decays to zero for large
values of |r|. In addition, the deformation function, f, is a convenient choice for
reporting results for the microstructure since the surface value of f scales with Pe,
for both Pey « 1 [Brady & Vicic (1995)] and Pe, > 1 Brady & Morris (1997)]. We

introduce the deformation of the equilibrium microstiructure,
g(r; Pey) =1+ f(r; Pesy), (3.10)

and expand f in terms of surface spherical harmonics,

J(r;Pey) = > By (r; Pey) Yo (0, 0) (3.11)

¢
lm|<2

where the surface spherical harmonic, Y;..(6, @), is defined [McQuarrie (1983)],

24+ 1(4— 1m.})!>1/2

Yem (0’“’):( 47 (£ + |m])!

P[Imt (cos i4]) exp [imyp], (3.12)

and P7"(cos[f]) is the Associated Legendre Polynomial [McQuarrie (1983)],

m?)mﬂ d" Py (z)

dz™

P (x) = (1~ , (3.13)
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where P;(z) is the £ Legendre Polynomial. The expansion for f, equation (3.11), is
substituted into the Smoluchowski equation, equation (3.5), and boundary conditions,
equations (3.8) and (3.9), to obtain a series of coupled, ordinary differential equations

by using the orthogonality property of surface spherical harmonics,
[ Yem ¥, d = Gty (3.14)

where Y " is the complex conjugate of the surface spherical harmonic Y, ;, d is the

differential surface area and ¢;; is the Kronecker delta function,

1, ife=y;
8 = (3.15)

0. otherwise.

The resulting ordinary differential equation for B, ,(r; Pey) can be written for a

general linear flow,

a

(*(.b) @By, + (QG(TS) + G (72)) dBye plp+1)

el g2 r dr

= %PebW (rt) 5

ryPe S (W8 B (1- 4 () Bz

tlml<e dr

+ (1= B(rt)) (8 + 84) B + (Bs + o) Bem (3.16)

with the no-flux boundary condition at particle contact,

) dB,,

G (28) =22 = Pey (1 - 4 (2}))

a

ﬁl+ Z [32,711»’32

£,|mi<s

Q r=2, (3.17)

and the boundary condition of no deformation at large distances,

Byy~0 as r — oo. (3.18)
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The constants, [3;, in these equations are dependent on 4, m. p, and ¢ and cause the

ordinary differential equations for B, , to be coupled,

B = /(f-(E)-i')Y;qu, (3.19)
8, = / (#+(B)-£) Yo Y7 dO, (3.20)
b = [ (#(®)-0) ago’mvpfqda, (3.21)
g = [ (29 O?émY;qu, (3.23)
Bs = /(f-(ﬂ)-@)Si:w]ag:’om};:qdﬂ. (3.24)

In these integrals ¢ and ¢ are the unit vectors in the - and ¢-directions for spher-

ical coordinates, and the partial derivatives of the surface spherical harmonics are

evaluated using
Yo rm
d9

=1mYym, (3.25)
where i = v/—1 and

OYem
O

= |m|cot[0]Yem

2¢ - — |m| =D\ ?
- ([e—lrn|m+nm|+11)‘“(”““ Im| ”')

Ar (£ 4 |m| +1)!
X Pflml-l-1 (cos [0]) exp [imep] . (3.26)

We can immediately reduce the number of equations in (3.16) by using the fact
that f is real as well as using symmetry arguments for different lincar flows after
choosing a coordinate system. For all flows, the deformation function, f, must be

real,

By (r; Pey) = By (73 Pey) (3.27)

reducing the number of equations by approximately half. Turthermore, for simple
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shear flow, if (I') = %2, then
Bim (r; Pep) = 0 when £ is odd, (3.28)

based on symmetry of the imposed flow. Similar arguments can be made for planar,
uniaxial and biaxial extensional flows. For uniaxial and biaxial extensional flows, if

the coordinate system is chosen so that f is independent of the p-coordinate, then
B¢ = 0 when |m| > 0, (3.29)

and the number of equations in (3.16) is drastically reduced. In addition for exten-
sional flows, 34=/3s=0 since (2)=0.

The integrals for ;. equations (3.19)-(3.24), are numerically evaluated using the
rate of strain and vorticity tensors for the given external flow field. The integrals with
respect to i are simple and are completed by hand using orthogonality. The integrals
with respect to 0 are numerically evaluated using the equation in Appendix A for
integrals of the product of two Associated Legendre Polynomials and most powers of
sin[f] and cos[6].

To numerically solve the ordinary differential equations, the domain is transformed
from 7 € [2. 00) to t ¢ [0,1] by using the transformation variable ¢ = 2/r. By using this
transformation, the outer boundary condition, equation (3.18), is exactly applied since
the infinite r-domain is transformed