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ABSTRACT

A general first order theory is presented for treating
forced oscillations in multiple degree of freedom quasi-linear systems.
It is shown that under suitable conditions ultraharmonic or subharmonic
motion may exist in addition to the harmonic motion which a linearized
theory would predict. A general study of the stability of such motions
reveals that a sufficient condltion for the instability, and consequent
Jump phenomens, of forced oscillations, is that the amplitude freciuency
responge curves possess a vertical tangent., By considering some
fairly general two degree of freedom systems it has been shown that
2 necessary and sufficient condition for stable forced oscillations in
non-linear passive systems is that the amplitude lie outside the region
enclosed by the loei of vertical tangency. For systems containing an
energy source there 1s, in addition, & restriction on the magnitude of
the non-linear damping force, |

The general theory has also been applied to ultraharmonic and
subharmonic motion in a one degree of freedom system having a cubic
non-linearity in the restoring force. It has been shown here also,
that a necessary and sufficlent condition for stability is thé.t the
amplitude of forced oscillation lie outside the region enclosed by the
loci of vertical tangency.

A study of the dependence of the motion on the initial con=
ditions reveals that, while ultraharmonic and harmonic motions are
relatively insensitive to the initial conditions, the existence of sub-
harmonic motion can be achieved only for a rather restrictive set of
initial conditions.
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1, INTRODUCTION

In essence all problems encountered in mechanics are non-
1inear in nature and the linearizations commonly used ars only approxi-
mations, though in many cases such approximstions are sufficiently good
for all practical purposes. There are, however, some problems in
which a linearlized theory falils completely to explain an experimentally
observed phanomenchlFor this reason the englineer 1s scmetimes forced
to exemine, in some detail, the bshavior of non-linear systems, The
purpose of this paper is to focus attention on those aspects of the
problem in which non=linearity introduces essentially new phenomens,
such as jump behavior, ultrsharmonic or subharmonic motion, and frequency
entrainment, phenomena which cannot be explained by a linear theory,

Forced oseclllations are of considerable engineering interest
and the subsequent discussion of non-linear systems will be restricted
to the analysias of forced oscillations.

Historically, the earliest report of forced non-linear
vibrations 1s undoubtedly Huygen's observations on the synchronocus
time-keeping of two clocks hung on the sams wall, Almost two hundred
years passed before any further contributions were made to the subject,
moat notable of nineteenth century contributions were the writings of
Helmholtz and Reyleigh, The early part of this century saw Duffing's
classic work on forced oscillations in a one degree of freedom mechanical
system, but it was not untlil the advent of the thermionic electron tube
that serlious interest was shown by engineers and applied physicists in

the general problems of non-linear mechanics. The work of Appleton
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in England and Van der Pol in Holland attracted considerable interest,
particularly from the Russian school of physicists, and it is true to
say 'bhé.t the most significent contributions of the last thirty years
have been of Russian origin,

Perhaps the best known of these contributions is the work
of Kryloff and Begliuboff and this papsr is chlefly concerned with
the application of their method to the solution of forced oscillations
in non-linear systems,

It is interesting to observe in passing that, while the single
degree of freedom system has received considerable attentlon, the multi-
periodic case has been almost entirely neglected despite the fact that
the methods of solution are essentially the same in both cases.

As 1s well known, exact solutions of non-linear problems exist
in only a few cases, and in any approximate solution one must be gulded
by the physics of the problem. The existence of subhermonics in non=
linear systems 1s a well known experimental fact, but as is shown in
this paper and in Ref, 1, the existence of subharmonics 1s dependent
on the initial conditions, It is alao a well known experimental fact
that in systems with small non-linearity, the frequency bands over which
one can obtain subharmonic or ultraharmonic motion are rather small
compared with the separation between them. These experimental facts
allow congiderable simplification to be mede in the analytic treatment
of the problem for, instesd of trying to solve the complete problem one
can break the problem down into several parits, each of which can be

solved with comparative ease,
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2. GENERAL THEORY

2404 Forced Oscillations in a "n" Degres of Freedom Non-[inear Syvgtem.
- Differential equations of the form:

oo 2 °© a %
yi * 'Wi ;’fi **/u.fi(:}'l, ass 9 yny y}_, ase 9 yn) '/u_Ai COS(.m + Qi)

is= 192, ase 9 Ny /U- << 1 (2.1)

in which all non«linearities, damping and coupling terms are grouped
in the tarm//k.f1(~«- )s occur in many branches of physics and Qngineer—
ing.

An approximate solution, correct to the first order in /u. »
will be developed for the case where the non-linearities and coupling
terms are small in comparison to the linear terms, and where the
frequencies W i differ from one another by an amount of first order
in//A.. The restrictions on the coupling terms and the frequencies
can be relaxed if one is interested only in the stability close to
the steady atate solutioms,

From the theory of differentlal equations it is knowm that
eqﬁations such as (2.1) possess solutions yi(t) which are uniquely
determined once the initial conditioms are specified. In the case of
& linear system there ias only one set of periodic solutions after
transients have dled out, Non-linear systems possess the distinctive
characteristic that various types of periodic solutions may exist
depending on the initial conditions and the relative values of the

natural frequencies and the forcing frequency.

Henceforth this term will be dencted by (ses).
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If the discuesion is restricted to forced oscillations of
a system having non-linearities in the restoring forces, then three
sssentially new phenomena are introduced:

a) 'Pfedominantly harmonic solutions--such solutions have a peried
equal to that of the forcing function, Harmonlc non-linear solutions
may exhibit Jump phenomena--a feature which dlstinguishes them from
linear harmonic solutions.

b) Predominantly ultraharmonic motion--under suitable conditions =2
system may exhibit ultraharmonic solutions, in which the main component
of the motion cccurs at some integral multiple of the frequency of the
forcing function. Ultraharmonic motion exhibits Jump phenomena similar
to which occurs in a), the existence of such phencmena cannot be
predicted on the basis of a linear theory,

¢) Predominantly subharmonic motion=--a non-linear system may
under suitable conditions, exhibit subharmonic motion in which the
main component of the motion has a frequency which is a rational fraction

of the frequency of the forcing function,

If the system has non-linear damping such that steady self excited

oscillations are possible, then an additional phenomenenis introduced,
d) Fréquency entrainment-~a non-linear self excited system in the

presence of a foreing funetion may exhlbit the phenomenanof frequency

entraimment in which the oscillating aystem pulls into gynchronism

with the forcing function over narrow frequency bands--a phenomenenwhich

is without parallel in linear systems,.



A) Predominantly Harmoniec Motion.
In the case of predominantly harmonic motion solutions of

equation (2.1) may be taken of the form
¥, = A vo8 X, (2.2a)
yy = =S24; sinx, (2.2b)

vhere Xy =t o+ ﬁi’ A:l. and 251 are slowly varying functions of time,
The implication of equation (2.2b) is that:

A, cos x, - ﬁi A; sin x; = 0, (2.3)
Substituting (2.2a) and (2,2b) into (2.1)

(v i - 9_2) Ai 008 X; = Q Ai 8in Xy -g}_Ai ,';31 cos X,

"'/U- fi(...) "/“Al cos(xi + ai - 1) . (204)

Multiplying both sides of (2.4) by cos X35 (2.3) by o sin x;» and
adding,

2 2 2 y
("ﬂi - ) Ai cos xi -QAi ﬂi ‘l’/u_fi( co) cos xi

=l ct)s(x:L ta, - ﬂi) cos x, (2.5)

E. Trefftz [Math. Ann. 95, p. 307, 1925] points out that (in one
degree of freedom) if a solution of (2.1) is stable, it must ultimately
lead to a periodic solution whose period iz equal to that of the
forcing function, or to some integral multiple of that period.

Recently, D. Graffi has extended the existence proof to two
degrees of freedom, and it seems reasonable to extend it to n degrees
of freedom. [Math. Ann, 54, p262,1951]



-b -

Since A, and ,f.‘ri are slowly varying functions of time, they may be

i
replaced by thelr average values over one cycle, Denoting the average

values by barred superscript

* n l2 2y T a8
A -Z_Q,Aiii*(di- )Ai"'#;;'(-/ f:l( )cosxidxi

==/¢ & cog(ﬁi - czi) (2.6)
which may be written as
208, B, = o) (2.7)
where
N N A1 &
hy(++0) = = (o = w2) Ey + 1,/D £,(+++) cos x, dx,
-/“-Ai cos(ﬁi - °1) . (2.8)

If now, equation (2.4) is mltiplied by sin x,, (2.3) by o cos x,,

and the resulting equations subtracted, then
(wz- 2) A, sin x, cos x -g_.a + o f,(+++) 8in x
1% i 1 1 i M 1
-/‘"Ai c':>s(:\:i *ay - ﬁi) ain x, . (2.9)

Averaging over ome c¢ycle
- e o
-200, + T/o £,(+++) sin x, ax, "ty sin(B, - a,) (2.10)

which may be written:

zﬂzi - gi("') (2'11)



where

2
gyloee) = *ﬁ?)/; £y(++2) oln x, dx, - ply sin(B, - a,) (2.12)

The behavlor of the system 1s therefore described by the 2n set of
equations:

. (2.13)
2S).Ai 'gi("")o

From equations (2.8) and (2.12) it will be observed that if the
detuning is emall, ieg=w,]| = Ol(/l-l_), then h,(ee) and g () ave

quantities of order /a » and the approximations made in the XKryloff

change of variables are therefore Justified since ﬁi and Ii are Tthen

of order /u .

Steady State.
The steady state forced oscillations are characterized by
: =

constant amplitude and phase, i.e., by Ai

state solutions are determined by the equations

j = O, Hence the steady
1

hi(...) = 0
(2.14)
gi(oon) = (O,

From this set of 2n equations, the steady state phases ° ﬁi’ and

amplitudes A

oty can be obtained.,



Stabllity of Steady State Solutiong.

The stability of the steady state soclutiona will be studied
by wﬂyzing the stabllity of equations (2.13). let
A= oy + &1
(2.15)
By =l * 1
where §° i and vl g are small perturbations on the steady state
amplitude and phase, 031, dai’
Substituting (2.15) into (2.13), the perturbation squations

ares '
o n_oh n oh
" — —
25t A = +
A EE T EE )

f (2.16)
n agi n agi

25L = * ——
Ei .‘]Z.aﬁj Ej ;aﬁj iF J
Aasuming solutions of the form:
”11“9“;
§ ~e)\t
i

results in a set of 2n linear homogeneous squations, for non-trivial

golutions, the determinant of the 2n equations should be zero, hence



og og
—+-20) ,—=,
3k, 3k,

i

3 anasaRssasaar §

- L) - T Seow
aAl 0A,
Expanding out

e9se 3

-9—

% %)
298 -, ’ 0....00.0...’

aﬁl aﬂn

oB, o8,

) 0
'_)1 - 2Q)\Kl *a3y ""'h-l'

s00
of, of_
oh. oh

sen 3 —Agoo«- ’ ""']'1' - 2Q>\En
a8, B

= 0 (2.17)

e (2207 +a, (@M L e (20)) v =0 (218)

The nature of the roots of the characteristic equation can be determined

by use of the Routh-Hurwitz criteria .

(2.18) 1s given by

o)
=,

ok
%,
azl ’
o
a§1 ’

Efl

o

In particular,

og 8

9 sssse —;— 9 ase o "‘"g'l'
o, o8,
ng ag2

P evene 3T 5 ese § =
o, af,
0 a

9 ensse 9 j 3 ses -ﬁ
o o,
ahn ﬁhn

9 seneas 9™ 9 eee g T
a8, oB_

a, in equation

{2.19)



a(g,gsu«-a ’ joungh)
. 1 &) & N (2.20)

° a(Ala AQ’ vea 3 An’ gl’ vee 9 ﬁ)

In equations (2.14)

g(+e4) = 0
hi(-ao) = ()

but X, Kys eee 3 By eee s B are all functions of frequenmcy, <1,

Thue
i 6(g1, gzyyacgg ° h Y h2, eae 9 h ) }
EA_j.-. a(Alj A2’.0‘)Ai lj je L] Ai+l”.‘,al,'..’ﬁ )
4] {a(gl, gz,..., gn, hl’ 2, ess 3 1 ) }
a(Al. A.zaoons Ana 5 ’ E 3 one 9 B )

(2.21)

S g 8leys &pr «oe 2 Bpp Mys By oo 4 By )} a, (2.22)
3. a(ﬂ.lg Aza o P Ana Bl’ srvese 9 ﬁ ) °

According to the Routh-Furwitz criteria, a sufficient condition fof
the system to be unstable is that a, < O, Now a =0 marks the

transition from stability to instability but from equation (2.22) it

84
wlll be obserwved that -5-& > as a > 0, thus, at the boundary

between stability and instability the amplitude/frequency response
characteristic has a vertical tangent. Conversely if the amplitude/

frequency respons has a vertical tangent, a, is zero and the system

is on the boundary of stability,
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B) Ultrgharmonic and Subharmonic Motion.

Consider now the case of predominantly ultraharmonic or
subharmenic motion.

Since ultraharmonics and subharmonics occur at frequencies
well sepsrated frum those at which predominantly hermouic motion occurs,

approximate solutions of egquations (2.1) may be taken in the forms:

J; = A; cosat + B, cos Vi (2.23a)
¥, = =af, sinet - 2 2B aln Y, .o (2.23D)
0= B cos Y Fi B, sin Y (2.23¢)

vhere, A 1 cosyt are the sclutions of equations (2.1) in the absence

of unltraharmonica or subharmonics

Y=gt By

Bi and Fi being slowly varying function of time, p and g are

both integers, If p =1 and € = 243y eas 3 Iy Bi '1/1. Ai is the

th

amplitude of the r™ subharmonic, If g=1, p =r, r = 2,3,4, etc.

then B A, 1is the amplitude of the rth ultrahermonic, For

=
i P
convenience in further work, let g =01, Substituting equations

(2.2a) and (2,2b) into equation (2.1) gives:

2 2 2 ) R
("’1“9. )Ai coB Lt + (Wi-g_'z) By cos\li--‘;;ﬂ By ain\"i

+/,L {(. ) -o' B (31 cos Yi =/1,¢Ai cos(Qt + ai) R (2.24)
i



-l2 -

Multiplying both sides of (2.24) by cos Y 4 (2.3) vy o' sin yi

and adding .
(2 = %) B, cos?y, = 'R, Ry * (292) cos ¥
17 ) 179 By Ryt 1
2 2
+ (wi -er) Ay cosntb cos Yi =/uAi cos{nt + ai) cos ¥,

(2.25)
Since Bi and F g &re slowly varying functions of time they may
be replaced by their average values over one cycle, Denoting the average

values by bar superscripts:
-Zn*ﬁ‘.i-(z-’z)ﬁ +/-(i Tf("')condV*“O
1[§1 b T e i $719 7
o

The integral being evaluated over the lowest
common period,. (2.26)

Equation (2.26) may be written as
2&’ §1 Fi zHi(ooo) (2,27)

T .
2 2y = v
where Hi("') 2wttt - wi) By + "1?- [o fi("°) cos )’i d )’i
(2,28)
If now, equation (2.24) is multiplied by sin Y 3> (2:23) by
o'cos Y 40 and the resulting equations subtracted, then

2y o B
(wi -a! ) Bi sin )‘i cos )’i - Bi +/4_f1(ooa) sin yi

2 2 '
+ (wi -a°) A; cosnt sin yi =/,¢Aicos(_o_t + ui) sin }’i (2.29)
Averaging over one cycle
L] /‘

.
- 20! ﬁi *';r‘/ f:l("‘) gin Yi d Yi =0 (2.30)
[}
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vhich may be written

20! B, =0y(**) (2.31)

whers

T
6,(+*) =;§-/@ £,(->) sin Y, aY, (2.32)

The subharmonic or ultrahsrmonic behavior of the system is therefors

described by the 2n set of equationss

257.’ Ej_ ﬁ-i = Hi(moo)
(2.33)

29 By = Gy(eoe)
From equations (2,28) and (2,32) it will be observed that if the detuning
is small, i.e., }w;_ -t = 0(/&), then H,(ee*) and Gy(+2*) are
quantities of order /u s and the approximations made are therefore

Justified since f{ 4 end §i are quantities of order /c .

Steady State Selutions,
Steady state conditions are characterized by constant amplitude
and phase, i.e. by %i = Pa:l = 0.
Hence the steady state solutions are determined by the equation
Hi(...) =0
(2.34)
Gi(ooo) s 0
From this set of 2n equations, the steady state phases Jg 4> and
amplitudes ogi can be calculated,
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Stability of Steady State Solutions.
The stability of the steady state solutions will be studied

by analyzing the stability of equations (2.33). ILet

By=oBy* &y
(2.35)
[5.5. "o -{ii TR
where F 1 and kl. g are small perturbations on the steady ‘state amplitude
and phase cﬁi’ orai" k

Substituting (2.35) into (2.33), the perturbation equations

arss
2ot B e i aHi n ahi
S)_ = —— L m—c
o'1 " 1 j=1a§§3 gaﬁq:}
J | (2.36)
2 g6 601§_ i aGi
S)_‘ 1 = 2 .—:. j % ..:... j
J=1 8B, 1 ofy r[
Assuming solutions of the form:
L gmett
§ ‘1 ~ o A

result in a set of 2n 1linear homogeneous equations }for non-trivial

solutions, the determinant of the 2n equations should be zero, hence:



w 15 =

8G: , aG ac
—to2sh =L, —=

"1 %2 OBy

oG oG oG,

=2, —E-aan, | =2

0: o, 0B,

a 9 & @2 @H S 3 9 4 S 2 & ¥ I H 3 A2 S F D 2@ B A D D = O

? @ @ 9 O & 4 B 2 B 2 H @ P B & 2 4 B B 4 B B 3 @

oH, oH_ OH oH, 2ot §
T 9 T 9 esssssecsasssae 9 T ? . - 40 an
a§1 aﬁn 6{%_1 bFi.
(2.37)
Expanding out

By (22730 + b, (200 W

resssan b1(29-' AN) + b, =0
| (2.38)
The nature of the roots of the characteristic equation ean be determined
by the use of the Routh-Hurwitz eriteria,
In partiéular,_ bo in equation (2,38) is given by

) a(ﬁi Gos see s H.: Hys eee s H&Z (2.39)

b
4] - - - - -
G(Bl, B2’ vee 9 Fl’ ﬁaa e 3 ,311)

Now in the steady state equations (2.34)
Gi(OOQ) =0
Bl’ Bzg ase 3 F1,P29 ses 9 ﬁn
Hi(oqo) = 0 ’

are all functions of frequency Sl,.
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Thus
. 8(8ys Gps wee 5 Gos Hps Hys e » H)
o8, Sa(Bl, ByseeasBy 109y B 1+1""’431’*""?n)}
s " 8(Gys Gpr vve 5 Gy By Hos w5 H)
2 8(B)s Fps ooe s B 0 Bpo 200 o ) }
(2.40)
. f:;_,_% a(G,gf...,G,l,n,...,H) } .
0 B(By> wee s By g sis Bpugs e sffys aee S/ °

(2.41)
The condition that the-amplitﬁde/frequency curve have a vertical tangent
i1s clearly that bo = 0. Hence locl of wertical tangency is given by

G(G goto,G ’H’.O.’H)
b, = 22 22 e bl ,-=o (2.42)

5(511 BZ’ 20e » Bn’F‘l’ I&zs aas aﬁn

According to the Routh-Hurwitz eriteria., a sufficient condition for
instability in the system is that b, X 0. That is, b, = 0 marks
the transition from possible stability to definite instabilify, but
bo,ﬂ 0 defines the loci of vertical tangency, thus, on one side of
bo =0 the system may be stable, on the other side it is unstable,
The general theory presented above gives a method of attacking a wide
class of non-iinear forced oscillation problems. It establishes the
fact that a sufficient condition for instability of harmonic, ultra=
harmonic or subharmonic motion is that the solutions lie inside the

region enclosed by the loci of vertical tangancy, Unfortunately it
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&ces noi seem possible to establish both necessary and sufficient con-
ditions for stability in general. However, by treating some fairly
general two deg'ée of freedom systems, it has been possible to show

tﬁat for any small monotonically increasing non-linearity in the restoring
forces a necessary and sufficient condition for the stability &f harmonic
oscillations is that sclutions lie ocutside the region enclosed by the
locd of vértical tangency. The problem of the existence and stability
of ultraharmonics and subharmonics has been treated for a single
degree of freedom system with a cubic non~linearity and againvit has
been possible to show that for stability, solutions must lie ocutside

the region enclosed by the loci of vertical tangency.



3, APPLICATION OF GENERAL THECRY TO HARMONIC OSCILLATIONS IN FORCED -
NON-LINEAR MOTION,

The application of the general theory to harmonic oscillaticns

will be made to two classes of systems:

1) Those systems having non-linearities in the restoring
forces,

2) Those systemé having non-linear damping,

In 1) the general theory will be applied to two simple two
degree of freedom systems having one non-linear spring. The effect
of linear damping and initial conditions will be studied for a simple
one degree of freedom non-linesr spring mass system.

In 2) the general theory will be applied to Van der Pol's
equation in two degrees of freedom, in addition a study will be made

of a system with hysteresis damping.



3. APPLICATION

Cagse 1. Consider the simple two degree of freedom system shown in
Fig. 1, in which one of the end springs has a small non-linearity.

Equations of Motion.

m‘;l + k-lyl + k]_F(yl) + k12(y1 - y2) =0 .
| (3.1)
my, + k¥, + ko7, = ¥y) = P cossit

where le(yl), the non-linear part of the restoring force on the first
mass 1s an odd function of yl*.
Rearranging equatiom (3.1)
AR R R AR AEEARY.
| (3.2)

LX:]

v * "’5’2 * "’iz("z -7 " 'ul?: cos %

2 2
where w = kl/m, Wi, = klz/m. By comparisom with equation (2,1), it

- will e seen that:

Wi = wiz’ /"’fl("') = 7’%‘(31) * wiz(yl - yz)’/*Al =0
| | (3.3)

wg = W§Q M fz("") = "diz(yz - 3’1)’/"‘32 = P/m

s« from equation (2,8)

2r
hl('") = (wi - ?)El + %/;{ wiF(Al cos x.l) cos X,

+ wiz(é.l cos x, = A, cos xz)}cos x, dx

The reason for choosing an odd function of y, is simply that jump
phencmena and instabllities are first order &ffects, with an even
funotion such phenomena are second order effects. See p.66=70,
N.W. Mclachlan, Ordinary Non-Linear Differential Equations.
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¥

o
[]

L= 0, —Y) B 8 s(E) - iR, cos(B, - By)  (3.4)

2
s(El) = :}r /o F(Ki cos xl) cos x, dx, (3.5)

from equation (2,12)
vy o1 [ 2 2
gl( ) = = / {wl F(Al cos xl) sin x, + wlz(Al cos x,
o
= A, cos xz) sin xl}dxl
& & = wiz Kz s:’m(ﬂ:2 - 51) (3.6)

In the same way

h =(w2- 2)2\' + 1 ;’2 (4., cos - A co ) cos x., dx
2 1 27w [, "12'%2 Xq = 4y CO8 X/ 08 x, X,
P

s By E ("’i * ”’iz -%) Ky -wj, By cos(B, - B)) -~z cos B

(3.7)
=1 2”'“2(‘& cos X, - cos x,) sin x, dx -zsinﬁ
8w [, Melpesmpmhycexn 2 % “n st hy

o 2 = , b4
se 82 = wlz Al Siﬁ(ﬁl L 52) - a gin 52 (3-8)
Steady Stat

The steady state equations are obtained, as shown in equation

(2.14), by setting 8y 8y hl and h, equal to zero, Thus
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W2, &, sin(B, = ) = 0 )

52.4 sin(B ﬁ) —sinﬂ
\

(o + vdy =% + o2 8(R) =, Ky cos(d, ~ By) = 0 (3.9)

- - p
(“’i * "’.%2 '512)“2 - "52 Ay cos(B, - B)) = cos 4,

J
Frem the first two equations ﬂz - 51 = 0, T, ﬁz =0, T, If Ki, Kz
are allowed to take on either positive or negative values, then it

is sufficient to consider the case where ﬁl = 32 = 0, Thus if KZ A0

(wl2 + wl )A1 + w s(Al) - w A = 0

(3.10)
2

2 2\~ P
(g * ) =4, - 12 i =

m

Or, eliminating Ké from equation (3.10)

[z + 34 =) =0y + 3504, +f =a) s(E) = f

=R ]

(3.11)

Loci of Vertical Tangency.
If 32 is eliminated from equation (3.9), the amplitude

equation occurs in exactly the same form as (3.11), but both sides of
the equation occur squared. Using this form of the amplitude equation
the loci of vertical tangency are obtained by differentiation with

respect to Kl’ setting acx/aii = 0,



If Ki # 0, the loci of vertical tangency are

2 2 22 4 2
{(“1 AT LR A" (“12"“1 - <)

8(:;) }x

o 2 -
3 (wiz *) - 512)3 - Wﬁz + wi(wiz * ¥y -512) ' (Al)} =0 (3.12)

or -«

+w§- 2 S(fl)..o
A

2 2

2 -
(iyy + vy -s? - "ﬁz * "‘i("’iz * vy - s£) s'(a) =0

2 2 22 4 2,2
(W * Wy =2)7 =iy, + (v,

Stability of Steady State Solutions.
The nature of the stability of the steady state solutions

will be determined by the roots of equation (2.17), i.e.,

“2a) s le Sin(ﬁz ﬁl)s ""12-“2 003%2 - l), * Vl 003(5 ‘al

W5, sin(By - B, 29X, v,k cos(y - B)s = 3,5, cos(B, - B,)

p .
- = cos ﬁz _

(wiz + wi -_QE) + wi st(ji), —wiz cos(ﬁé - ﬁi), -Mizﬁzsin(ﬁ -Ei)
- 25’-‘11)\ ’ 2A2 813‘(5 - E )

-w cos(B, - ), (w + wlp_ -5, W§22t'1 sin(d, - 3,)

- o,k sin(B, - B) - Zsin B, - 290,

(3.14)

[}
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making use of the steady state equations:

2 - 2 .

“22% 0s = V1p ofpe Y12 o2
» 2T 2. 2 2 =
0, -2 SLN Wio oo - (wl * vy, ~5>_)0A2

2 2 2. . 2 ., - 2 .
(W * vy =) +wy 8'( )y =W,y =2ALA, 0

2 2 2 2 -
=W (W v, -27), 0 -2 84,

(3.15)
Expanding out and grouping terms

(29‘)‘ )4 oﬁl oiz * (2 ‘9‘>‘)2 {2w§2 ozl oE2 * (wi * "iz T2 )2 A1 GE2
12 oﬁzi A (”' * w -9? * wi s’(ozl))} }

Wap By = (5, + “' s )01220%{( 2 -5

2 2 2. 2 ., 4 |
x (Wpy +W) = o+ 8'(4)) "'éz] =0

(3.16)
making use of equations (3.10) and (3.11), equation (3.16) can be

written

QKZL 032{(257'%)4 . (2&)\)2 ‘_2&1?2 * (w +w§2 -57_2)2

* 04 +w12'5{2""“% # ()04 + iy 28( )]
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1t A OA?_#O, then
A 2 _ _
(Rax)+b(2aN) " te=0 (3,18)
.where
Iy 2.,.2 _ 22 2,2 _ 2,2 -
b= 2y * (W) W, =) v (gt~ g v 8 ()

x(2 2 z'wi —is(o ))

wli-wlz-ﬁ-) -
oh

. 2 2 _ 2,2 2_ 2,2 2y Lk
c {“12*"'1 )Wy + W) = ) 8T (A)) =y,

(0, o 2Bl o E o 0 2 P L] s
The conditions for stabllity are
c>0, b2>0 b2 2 Aea ‘ (3.20)
Consider the first condition, ¢ > O3 this implies that

[ 002 v =20, +of - o] o0 (B =, ]

L)

2 ,.2_ 2.2 ,2_2, 2 84 4

xi(wlzi-wl g;_)(wlz‘*wl SUt W T -wlz]?_c
1

Comparison with equations (3.13) shows that this condition is simply
a statement of the fact that Kl mist lie outside the region enclosed
by the locl of vertical tangency,

Second condition, b >_ 03 regarding b as a quadratic

2

function in 7, the condition that b shall always be positive, is

that the discriminant be negative,



-%‘

. 2 -
b =20 - 22%@df + 2, + -;l- (s'(E) + i(—f_ﬁ-)- )]

oh

2 2 2 . 2.2 22 o2, 258
* (g ¥ "12)2 * gyt vy 8 (AN, + W] 4w i )+2,,,§2
0 ]

(3.21)

whose discriminant can e written as

! - s( ) - s( A)
o= 40 - T - gy
o

©

(3.22)
Thus b will be positive if
16n i Y
—{-1-% + (s'( ) * ﬂiﬁl)z z 2(s' (X)) - i(-.‘ifﬁf
1 oAl (e}
(3.23)

This conditlon 1s automatlcally satisfied for a cubic or a fifth power

non~linearity for any °K1. For any monotonic non=linearity the cone

dition will also be satisfied if such non-linearities are amall,
Third requirement:

b2 = 4e > 0

For convenience ¢ may be written in the form

2 - 2
b - 8(_4,)
e = {(wiz + wi '5).2)2 - “:?_'2 + 'é}' (“iz + wi -9_2)(8‘ (Ay) * ..{i.)}
o
A

v s( L)
- 7}' (W§2 + W§ - 9%)? (s (K) - —EﬁL)2 (3.24)

o]



‘w‘

Thus the third requirement becomes

[4(“3%"“12"9-) + vy 8‘(°A1)—£1-+2w(w +w2 57_2)

x (8" (K +—§—K—1—) ]
ol

s{ A.)
&4‘1?2 + Wét g! (Ozl) —iL] A(le + W§ "9.)

o
- s( &)
x (1 [F) - 22
oM
The first term is positive except In & small regicn
2 wi EI(c ) 2 wlzl
(v * "12) vy <ot ] r ) gt (T
)

The €irst term has its mininmum wvalue at

bl

2 -
W - s(_ A)
0% e ey 2 () TR
- o

and is equal to 4

- (e (L) - ——ﬁ—)

0

b2 -~ e therefore has the value

o -
1(8' i ._..i.) [ w? s"(OK].) f-(-.o;i)
031 QA].

{3.25)

(3.26)

(3.27)

(3.28)
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| s( 1)
(5% = 4edpyn = 3z ¥i(e' (1) - Zeuly

o]

x &—16&112 + (s'( Al) '—5“‘)2 ] (3.29)

To insure that 1 1s positive

lfm > wl*(a'( Al‘ - ——A'L)

o)

3o (bz - Le) min 18 negative, at this point,

However, substitution into the steady state amplitude equations shows that
the amplitude is single valued and of the same order of magnitude as
the driving force, which is agssumed to be small, of order P
Therefore, [(b2 - Je) minll/ 2 s very small, of order/u2 and can be
neglected in a first order theory.

Thus the condition for first order stebility i1s that ¢ 2 O

(3.30)

This means that those solutions are stable which lie outside the regiom

enclosed by the loci of vertical tangency,

Topological Discussion of Resultg.

The results of the above analysis may be summarized as follows:
For the non-linear system described by equations (3.1), the amplitude
is governed by equations (3.10), and {3.11), those solutions will be
stable which lie outside the region enclosed by the loci of vertical

tangency as defined by equations (3.13),
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For the purposes of this discussion the amplitude equation (3,11)

may be written

2 P 2 ,.2_ 22 4
o( 1) = g Jaimte) “vp g
o T2 L 2oB T2 R oD ot
1t T TS W2 T TS

(3.31)
i F(yl) is amonotonically increasing odd function of Yy0 then
8(031) is also a monotonically increasing function of oEi' Four

distinet regions may be recognized in equation (3.31).

Region 1.

2 2 2 2
Wi * W T > vy, | (3.32)

In this region no vertical tangents can occur, as is seen from squations

(3.13). The single root of equation {3.31) is readily seen to be
positive; see Fig. 3.

2 P
w t—
od = i2 m
2, 2 2 2
Wy (Wl * W) =)
(3.33)
| ":lfz - ("‘:?.2 * "’i - o2
Slope: bde = arc tan === =
(wz R - 2)2
12 "M
Region 2.
2 2 2
0 <uly + g = 57 <l : | (3.34)

There are three solutions, a, b, ¢, to the amplitude equation (3.31).

Solution a 1lies inside the reglon enclosed by the loei of vertical
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tangency and is therefore unstable, Solutions b and ¢ 1lie cutside

the region of vertical tangency and are therefore stable; see Fig. 4.

Region 2.

(3.35)

There are no vertical tangents in thils region, The single root of

equation (3.31) is readily seen to be negative, and stablej see Fig 5.

ngion bs

2 2 2
MtV s <0

(3.36)
(wiz + W§ -2 w‘f{z
There are three solutlons a, by ¢, to the amplitude equation, two are
positive, and one negative; see Fig. 6. Solutions a and b are stable,
Fig. 7 shows a typical response curve for the gystem of Fig., 1.

There are two regions of instability, inside which vertical jumps will
take place. Region 2 starts at the lower of the two linear natural
frequencles and region 4 starts at the upper frequency. It will be
observed that despite the presence of the non-linear spring, large
amplitudes will result close to the lower natural frequency unless
damping is present, this is quite different from what happens in one
degree of freedom. The response of only one mass has been plotted,

the response of the second mss is very similar’ - in nature to that

of the first mass,



FTEVLIENN

e

ye

(vo)s

0v°)s
3ngvis - o

FgviSNN ~ D
31gvis — o puo q

¥ NOI93Y -9 38N9d ¢ NOI93H -& 3JHN9Nd




18

AONIONYL TYOLLMEA
40 1907

«wmz.ﬂ.\\/\,

~

SOILSIHILIOVHYHD ADNAN0IM4 /7 3ANLINTHAY  TVIIdAL

N
N

N,

T
| —
< ) L , ».\

N

+ NOt93Y

€ NOI193u 2 NOI93Y

W3LSAS HO4d
—L 3¥NNI

I 3HN9i4 NI

NCI93Y

By




case 2.

Hon-L’Q ear Coupling Zpring,

In recent papers L.A, Pipes(])

and R.E, Roberson(z) analyzed
"a simple lnon-l:‘lnear vibration absorber, Such a system is an example
of the use of a non-linear spring to couple two systems, and a detailed
analysis 1s given below of a simple system, such as Pipes used, with

particular emphésis on the stability of the steady state solutlonsy "
QSFQC{TO twe problem not Prev'wu.s‘tj considened.

Consider the simple system shown in Pig, 2, p. 20,

Equationg of Motion.

my, * klyl + k(y + F(y)) = P cosnt

(3.37)
my, = k(y + F(y)) =0
where F(y) is an odd function of ¥y, Rearranging
se 2 ) 2 = _Pi_
¥y ¥ upyq *wip,(y *+ F(¥)) my cosnt
. ) (3.38)
yz - z(y * F(y)) =0
where
2.5 2 2
Wy === W. T o, W, & o=,
1 m, 12 n 2 m,
Subtracting equations (3.38) and substituting y = ¥, -7,
- " 2 P
vt wiyl + wlz(y + P(y)) = 51- cos Nt _
(3.39)

o 2 2 2 2 2 P
y+ (w12 + w2) y+ ("12 + wz)F(y) * Wy, = ;1_ cosSLt

1. Analysis of a Non-linear Dynamic Vibration Absorber, L.A.Pipes,
P 515, JeAMo Dec. 1953,

2. Synthesis of a Non-linear Vibration Absorber, R.E. Roberson,
JQFQI. _VOl. 254’ Septo 19520



Comparison with equation (2.1) shows that
2 _ 2 .2 _P
. Wl = Wla/A fl wl2(y + F(y))) /«LAl ml
2 .40)
w-w *wz,/uf +w)1’t‘(y)+ yl’ (3.40)

P

Let y = A cos x, y1=Alcos X . Thus

2 2= .1 [% 5
hl“"(Sl - 1)A1 *';;/o ulz(A cos x + F(4 cos %)) cosxldx

- Z— cos 251

n = ~(e® - vk + v, K cos(B - By)

+ wig s(k) cos (ﬁl B - ml cos ﬂl ‘ (3.41)

where s(i) == f F(A cos x) cos x dx (3.42)

g = % /ox wiz(A cos x + F(A cos x)) sin X, dx - j:; sin ﬂl

g = W§2 K_ sin(@, - 3) + S(K) sin(ﬁl -3 - % sin 4,
(3.43)
h ='-(9_2-w2-w2 )'A'+-]-'/2F{w2A cos + (wz r ) F(4 cos x)
2 27 M2 Ty [ TR ! 2" Y12 }

P
xcosxdx-;cosﬁ
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h, = -(2° - wg - iz)K ".Wi i cos(P - )
o+ (wg + wiz) s(L) - ﬁ cos , (3.44)
g, =3 /02" [(42 + v2,) F(a cos x) + oA, cos x] sin x dx
-ﬁ gin B
g, = oL sin(B - ) -Z ein B (3.45)

Steady State Fouations,

The steady state equations are obtained, as was shown in

equation (2,14), by setting g1> €y N> h, equal to zero, Thus

~( 522 - i)oxl * "’:%2 s(oxl) cos(oﬁl - oﬁ) * "'52 oK cos(ﬁl - 0,5)

- §1- cos ogl =0 \
3 w§2 QK Sin(o'al - oﬁ) + s(QE) sin(oﬁl* oﬁ) - 5‘;—' sin oﬂl =0
| 7 (3.46)
f('sv_z - "'g - ‘”’iz)o‘? * wi ol cos(P - oﬁl) * (wg * wlz-z) 3o

-%coa}6=o }

2T E
wlAlsin(ﬁ-ﬁl)-msinﬂ*O |
From the second and fourth equations oﬁl = oﬁ =0 orm, & # 0.

If £ and Kl are allowed to take on positive or negative values, it
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is sufficient to consider oﬁl = oﬁ = 0,

2 - 2 .20 = 2 .2 2=-_FP
V) by * (W], *wp) s(R) ¢ (W], Wy =) = m (3.47)
Kl(‘”'i -0) > ’ﬁ’izﬁ * "’:2L2 s(k) = 11-:1- (3.48)
Eliminating Kl_ between (3.47) and (3.48)
[s(B) + B G202, +v2) =22l » T 5202 - &B) =P .
(3.49)
or eliminating straight from (3.46)
Jls(h) + JI208, +wd) =2 wdle T 25 m} s <;§1->2
(3.50)

Ioci of Vertical Tangency,

Using equation (3.50), the loci of vertical tangency are
readily obtained by differentiation with respect to &, setting
s

= =0, Thus if X # O, the loci of vertical tangency are:
8k '

[s( D)/, I+1][0205, +va) =2 w2l +02(2 -5 =0

(3.51)

ts=(o£>+1usz2(w§2+w§> Bl el =) =0

Stability of Steady State Solutions.
The nature of the stability of the steady state solutions

will be determined by the roots of equation (2.17), 1.€.,
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Using the steady state conditions oﬁ = 051 = 0, (3.52) becomes

- -~ P 2 - -
-25L%, 0, wiz(oA *8(h)) =5 (A s(R)

2 = 2 = P
0 4, =28}, =y b o oM - o
=0
2 =2y w1+ 8 (D), 22 TN, O
2 2 -
Wi (v + W) (D) + 1) -5, 0, -2 I
(3.53)
Expanding the determinant and grouping terms
r T 4 2P =« 2 ey L B2 2
oM OA[Z_O.)\] + [22.)\]°] Awlz(l + s’(oA)) + (wl <)

m o m

* (wf 0K1 - %){t S)‘z - wg(l * ’5'(0E):r~l K:I.
Fle (B + (I - AP, s(Dr § 0 L R6E- D) )
r 2205 -sH ) =0 (3.54)

Using the steady state equations (3.46) and (3.47), equation (3.54)

can be written in the form:

o of [2axl®+bl2anl®+e =0 (3.55)
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whers
¢ = [(8'( ) + (S0, + v3) = viwd) +220 = &)1

s( %)

x [( * l)(xz(W§2 * wg) - wgwg) +sz2(w§ - 2]

X
.. s( %)

b= (=g s f - (i, )2 e () .,%_.35)_2 L (3.56)

o

2 2 -
+1) + W)y wﬂz + 8 (A)

- s(_A)
+ (w2, + w3 (B + 1) 2
s}
$( 8)

M J

L

It Kl A # 0, the conditions for stability are:

¢>0, b>0, b>ejhe>O0,

Firast Condition, c >0,
This condition, as will readily be seen by inspection of
equation (3.51), is simply the requirement that the solution lie

outside the region enclosed by the loci of vertical tangency,

Second Condition, b>0,
Treating b as a quadratic function in 53_2, the condition

that » shall be positive is the requirement that the discriminant

of the quadratic be negative, Now

s( R)
a4 2% (o (D) - =2 2
X
. s(_R)
-4 1“11’ s i, = w3)(2 + o' (D) ¢ ; )

©

| _ ()
v (B, o922 (1 + s (AN + - =) |
. O



Iif Wiy =W, ‘ i

- s{ k)
8= (g + i) () - —2=)% -y {"iz“"i * ¥pp)

OA
’ _ s(R) _ s( k)
* gyl + w2 (81 () » )+ (i 2 ) @ (D) |
0 o

(3.57)

for a cubic or fifth power non-linearity the condition that b > 0
is automatically satisfied; for any other type of non-linearity the
condition can be satisfied by restricting the non-linearity to small

values,

Third condition. b° = 4¢ > O,

s( )

(b2 = 4e) = { (3= )% + o ~(i2, + 2N (2 + &1 (D) + T)szz
-}
s( %) _ 8(E) o2
wiwizﬁ-—g—- + s’(oﬁj +2) + (w§2+ wg)z(l + s’(oA)(l+ 3 )}
© 0

A

s( %) _
-4 302 0 (D » =208, D= i) 2 - 5%
o
s(OK)

o

| - 2,2 . 2, 2 272
* (e (A) - ) %51 (wpp *+w3) =) ""2}
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(&)
(6% = 4e) = § (2 - 2032 + (2, + D22 + o1 () + —2=)
A

- s( &)
05 2 D0E - ashie s (D =) ]
A o

()
x i g, 0 (DA 3—;;—-3
J

Ly
2+ 81 ( F)
o

) 8
+ W2 (wa, = w2

+ (s = =22 (f ("’12""”2) -w } } (3.58)
A

This is positive except in a small nelghborhoed around

‘ _ s( k)
o 2e36d o2, D) e 262, Do (D) =)
- o
vhere it may become negative, the minimum value being
2 2 242 - (g )
- 40 = [(wlz + "2) (B! (OA) A )
<)
4
2 s( E)
- 1&412 > ] 2 (s( D) ---—-—--) (3.59)

O

which may be negative, however, in the neighborhood of this point,

the émplitude' OK, is single valued and of the same order of magnitude
as the applied force, which is assumed to be small, Hence (b2 - z,r:)l/2
is of the order Of//& 2 at this point and can be neglected in a'first
order theory. Thus, on the assumption of small non-linearity and small

driving force, the steady state solutlons given by equation (3.50) will
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be stable provided such solutions lie outside the region enclosed

by the loci of vertical tangency as defined by equations (3.50).

Discussion of Results:

As In case 1, the results of this analysis lend themselves
to simple topological dlscussion, It can again be shown that thers

are four regionsg of intersst

Region 1.
2,22 .2 2 2.2
(W Y, PV mg) mw Wy <0

(3.60)

2
208, + v3) = v, Wy <0

in this region X is single valued and is stable, hence Kl and Kz

are single walued and stable,

Region 24
2,2, 2 2 2 2 2
n (W) Ty YWy =) =Wy Wy > 0

(3.61)
2, 2 2 2
(W * W) =y <0
in this region 2 is triple valued, two values are stable and one

is unstable. TFrom this it follows that there are two stable amplitudes

for El and 'Kz.

Region 3.
2, 2 2 2 2 2
LWy +wl, =ST) ~wl, W >0
1 12 12 "2 (3.62)

2,2 . .2 2 2.
o (wl2 + wz) = Vi, Wy > 0



a Lhy =

in this region I is again single valued and stable, ag are Ki

and 1A

"2t
Region 4,
2,2,.2 _ 2 _ 2 2
sy *pp msil) - Wi vp €0
(3.63)
2 2 '
TR R
in this region 1 is again triple valued, as are Zi and Kz 3

two values being stable and one unstable,

The points of greatest interest in cases 1 and 2 are
1) If there is no damping present; jump phencmena and instabilities
can occur in sultable frequency ranges and for small monotonically
increasing non-linearities these phenomena are independent of the
exact nature of the non-linearities,
2) Despite the presence of the non-linear spring 1t 1s still poasible

to obtaln very large amplitudes unless some damping is present,

Effect of Damping on Stability.
In the foregoing analysis the effect of damping was neglected,

for the present it will suffice to consider the effect of damping
on the stability in one degree of freedom, Consider the simple non-

linear system, with damping, described by the equation
y + vy * u@D7 + (7)) = e & const (3.64)

Comparison with equation (2,1) shows that:
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Feod 10 = e e ), ete,

27
s qu=-@?ﬂ@zv$/ { -2 & stnx + F(a oos )]
. o

x cos x dx - 1A cos 51 (3.65)

hy (s == (2 - i)z * p s(Z) —/,,(A cos B, (3.66)
Similarly

g (") = = 42k - xbsin §) (3.67)

Steady State Hguations.
The steady state equations will be obtained by setting

gl(-n) and hl("') squal to zero, Thus

721)5103 =/,,(A sin Qﬁl
(3.68)

(w2 -512)°K +/(s(°K) ==/“A cos oﬁl
Squaring and adding

(62 =D, + ua(B1? + 4P By () = ymz (3.698)

Loci of Vertical Tangency.

As In previous examples the loci of vertical tangency can

be obtained by differentiation of equation (3,69) with respect to 1,

setting g?' = 0.

BA



Thus 1f X # O, the loel of vertical tangency are:

s(A

Uw -SL) /Aaz(ﬁ.)][ (w -9.) /.( 1.;452?(/@);2:

(3.70)

It will be obsgerved that if D = 0, equation (3.70) reduces to the

ssme form as eqﬁations (3.13) and (3.51).

Stability of Steady State Solutions.
The nature of the stability of the steady state solutions

will be decided by the roots of equation (2,17), For this system
(2.17) becomes
{=42D5L = 2L - 4O co
( A S )s /(4 cos 951 -0 |
2 .2 - | -
(s =)+ ust (@), ¢ Asin Fo = 23NEL (5
nov |

4 A cos oﬁl ='§ (wz -»57?)'
A sin b i D Su
Ve 2 b

L 2uap s 25007 + ((F = 58) + ue BN (O - 5F)
| s(A )

ik

igeo,

s(KD)

25) = 2puaDxd /{I(wz -2®) + st ()] L

(3.72)



The system will certainly be stable 1if

s(ﬁo)

(67 =) + et BIOA =07 s u—2 12 0

)

-If
| (7))
(07 =) ot AILOF - o) %sﬁ: 1<o

the system will be unstable, if

s(X))

49.2(/&)2 v (P =D */u 8! (503]{(‘?52 “S)?) “‘/u_

(2]

2] <0
4

(3.73)
Comparison with (3.70) shouws that this condition is simply the require=
ment that the solution of (3.69) lie inside the region enclosed 5y the
loci of vertical tangency. Conversely, for stability, solutions should
lie outside the region,

A simple topclogical discussion, similar to that used in

case 1, shows that for a hard spring, independently of the exact form
| of F(y), triple solutions are to be expected if Q > Wy, twé of thesa
solutions will be stable and one will be unstable,

The sketch in Fig, 9 shows the general nature of the amplitude-
frequency éharacteristics for the system., For small values of damping
D and relatively large values of A, jump phenomena and instability
can still occur, but if the damping is large, or the driving force is
émall, no such phenomena will ocecur,

The general nature of the effects of damping carry over into
the multipericdic case, and it is again found that for stability, the
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solutions of the steady state equation should lie outside the region

enclosed by the locl of vertical tangency.

Effect of Tnitial Conditions on the Steady State Solutions.

In discussing cases one and two, it was pointed out that within
certain frequency bands two stable solutions could be found which
satisfied the amplitude equation. The stability analysis was performed
close to thess solutions and it was shown that if one of these solutions
exists then it is stablej this does not answer the question: 'When will
such a solution exist?' In this section the dependence of the steady
state solutions on the initial conditions will be studied, for simplicity
the discussion will be restricted to a system with one degree of fresedom,
however, the results of this discussion are qualitatively true for a
system of any ordsr,

The method of solution will follow that of Andranow and Witt,
but bears the same relationshlp to their method as does the Kryloff
method to the Van der Pol method.

From equations (2.,7) and (2.11) and equations (3.66) and

(3.67) of the last section

-2k ’/uZSlZD * ud sin ']

_ (3.74)
-2080 = (9_2 - wz)Z -/(S(K) +/,<A cos #
L B ~Poi e slemg s (3.75)

B (S - - (D) + s con §

For the present, neglect damping, i.e., D = O,
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Singular points,
The singular points, neglecting damping, will be given by:

| /a. A .sin =0, (9_2 - wz)i -/,Ls(}'i) */A cos B (3.76)

and if oﬁ#o, then sin 8 =0
(s =) = (DT = (e )? (3.77)

Nature of Singular Points.
The nature of the gingular points can easily be obtained

from the perturbation equations

20) = £ d / (2 -D et BN (O -sB) + us(B )/

(3.78)

Phase Trajectories.
If damping is neglected, equation (3.75) may be written

ai J(o" = vII = pu8(® + et con BY - (uE 8 stn B)a = o
But this is the exact dlfferential of

%(9_2 - w2)'A' 2. /,{fs(f&)dﬁ +/u_§ A cos P = const (3.79)

Ecamgle.
If the non=linear function is a cubic, then s(Z) = % A 3.
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N da . AAsin @
ag (_9_2-»:2)5 nﬂ%KB'*/uAcos a

Let

b
34=6

%‘(512 - Wz) =;;/A—

For this case, the singular points are given by

sin8 =0

-T2 +6=0

+

i.60 (E+1(X+2)(X=-3)=0

i.é‘. OX "l, "2, 3»

Stability.
The stabllity depends on the sign of

O = % s (DI =+ (D]
- t§/~12 [-6+38 %) [6+17)

if positive, system isstable,

if negative, 5ystem is unstable,

A==l stable - vortex point no, 1
o’ = .2 unstable - saddle point no, 2
A= 3 stahle -~ vortex point no, 3

(3,80)

(3.81)

(3.82)

(3.83)



FPhase Trajectories.

The equation of the trajectories is
1,2 2-2 3 =4, = ;
) (o =w)A -/u 18 A +/L<A A cos ﬂ const,

1.€4, KA'lAKZ-ZAKCO'ﬁﬁg consto

Now

L4

»s  the equation of the trajectory is

74 -1 12 -_;24 x = constant (3.84)

Eguation of the Separatrix, »
The separatrix passes through the saddle point, hence the

constant is determined by the condition that

Hence the separatrix is defined by the equation

ateu Poaxas (3.85)

Filg.410 shows the separatrix and several typlecal integral curves.
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For stable forced oscillations the initial conditions must
lie inside the region ABCD, if the initial conditions lie inside the
regioﬁ AEFG, oscillation will be about vortex point one, but if they
-1le inside ABCDGFE, the oscillations will be about vortex point

number three,

Effect of Damping,
Qualitatively, the effect of introducing a small eamount of

damping into the system will be to convert the vortex points into
stable focal points and to prevent closure of the separatrix. If the
initial conditions lie within the region AEFG, the oscilllations will
spiral down to focal point number one, and if they lis inside the
other region, they will spiral down to focal point number two.

For a qualitative treatment of the case with damping see
ref, 1, In this paper Hayashi treats the case of a system with a cubie
non~linearity with damping « but without the linear term in the stiffness,
The results of his analysis can be made applicable to our problem by

writing the equation (1.3) of his paper in the form
a%y av 3
— e + V' + (1 «xt )YV =Becos T (3.86)
at? an=> Ve 7

By substituting

V(T) =x(T) sinT +y(T) cos T (3.87)

into the differential equation and carrying out the Van der Pol pro-

cedurs, one readily cbtains
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/“gfc = 2B - ki + "% o + 53y = X(x,7) (3.88)
. /7% =%§i- x-ky + %(xz + y)x] = T(x,y) (3.89)

With the exception of the replacement of T tﬂ;/pt1rg this is exactly
the same as equation {1.5) of Hayashl's analysis, and so the integral
curves obtained by him are directly applicable to the present problem.
The result of this analysis i1s to show that in the region
vhere two stable solutions are possible, the existence of a particular

solution depends only on the cholce of initlal conditions,
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B. Forced Osclllations in & Two Degree of Freedom System With

Non-Linear Damping,

Case 1. Consider the simple two degree of freedom system shown in

Fig. 11.

Eguations_of Motion.
LYY 1

1 Ay - ;o=
Wy *+evy t o vy =7y) +2(yydyy = 0

12

M i - =
Ly2 * c V2 * 2P (yz y1) Peosn v

Dividing through by L and letting

1 _ 2
Ie M

2

_—'w

Lclz 12

L.

o .2 2 .
yl + wlyl + wlz(yl - yz) + I‘l f(yl)yl =0

o0

2,2 B
Yo ¥ Wp¥y + ¥ (3, = 3y) = f cosat

Comparison with equation (2,1) shows that

2, 2 2 1.0y =
Mt e fy Tip(ny s y) AL )y, s =0

2_ .2 2
LN S PR P P S

/«Az‘f

(3.90)

(3.91)

(3.92)
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FIGURE [i- SIMPLE TWO DEGREE OF FREEDOM SYSTEM
WITH NON-LINEAR DAMPING
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thus
2
hl = (wi -9_2).41 +% /o wiz(Al cos x; = A, cos xz) cos Xy
1
< f(Al cos xl) (-_QA:L sin x‘l) cos x; dx
if f(y) is an even function of y, then

byt 0 2y - 2 -, Ty cos(B, - B) (3.93)

h2 = (wl - )A2 s /0 wlz(Az cos x, - L, cos xl) cos x, dx

P
- T cos fﬂ'z
h, = (W] * W), =5 K, = vy, Ky cos(ﬁl %2) T o8 %2 (3.94)

=23 a 2( cos - A_cos x,.)
& v/, [ wip(ay cos xy - &, 2

+ %f(Al cos x, ) (-~ 4y Bin*xl)}sin % dx

fogy ==, Ky sin( - B,) + o (L) (3.95)
where

2T
ko3 G(Kl) = % / % f(Al cos xl)(-szAl sin xl) dxl (3.96)

o
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=3 sz(A cos x, - A, cos x,) sin x, dx --Eainﬁ
& w [, "2'% p ~ &y cos X 2 8% = 1 2

. :a 82 = - W212 El Sin(ﬁz - El) -'g gin 52 (3-97)

Steady State squations.

The steady state conditions are obtained by setting h» gy

equal to zero,

iO 02 sin(oﬂz E‘3.) * QG(OKJ.) =

031(“52 * wi -9-2) = w§2 ozl cos(oﬂ‘l - 032) =0
Al w12 sin(ﬁ ﬁz) sin ﬁ | (3.98)
oxz("'iz * "'i =) oAy ¥ W 2 cos( B, = B) = L cos B,

2 2 2
Tet W= (w12 + ) - )3 eliminating OEZ and 051 glves

wé*z 032 = % ¢+ P OElZ (3.99)
-
(v - 12)2031 + 7 6252 (P) (3.100)

ccl of Vertical SNCY .,

‘he loci of vertical tangency can be obtained from equation

(3.100) by differentisting with respect to K, and setting 2= =0,

%t



Thus if Al #0

G(K)

(‘Ifz-wz)‘“}gn.

- G (oKl) =0 (3,101)
ol

gives the loci of wertical tangency,

Stability of Steady State Solutions,
| As in previous cases the stability of the system depemh on

the roots of equation (2,17). For the system under analysis this

squation 1s

= & Al)-z‘s")" 12 optnly=By)s =i, oK, °°"‘(o§1‘052)’

T, cos(Fy- )
~if sin( B - B )y 0-23\ 5 W2, ohqcos( B~ B )y

12 oheos( Pom ) - T I cos B,

L2 _ 2 =
Y wycos( B, fl)’ ""12 o 2sm(fz ﬁ )= 20“1’”‘ My Ay

sin(aﬁé-

i} 008( Fy=gB)s U w2, ysin( - B)s =2, K, stn( B~ 7,

p -
+ sinf, - 22k, X

(3,102)
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Using the steady state equations this may be written

26 -29), &, -y , 0
' oAZ
26 ozl aﬁf - oizz
- 99 = RSLN » -V ] - v
o'2 0";‘2 ozl oAZ
- X 1 2=0 ‘
0A1 26 OAJ'
v ) -W?g (= =-2:3) =2:2X%
o2 oﬁl
1y v 20 26 ot
- ’ » = » TS =E2na
oA.?-. 02 05‘2 cAl

(3.103)

Expanding out and grouping terms the characteristic equation becomes

i i, G(L) - oA
;Afg%ﬁ_ (220 )* + (2 »zx)B[ 25— - 261 (E) 2 |

oAl aAl o‘A‘l oAl
X 1
v 2o )?] L2 ok, o ) 2 22 2o f) & (F)
' oAl oA:L 0
2.2 - I -
+Qf(°f1)+(-°-_-+9-})m2] +(2&>\)X-‘f G(SAJ‘) -9?_2
oM o2 oM o 2 o ol



N [ . efz ZG'(oﬁl) (A) P ¢ &), ¢ (oAl} SLG(QAl)WZ
o) oﬁl 0A2 oAl 0A2 oAl

=0 (3»104)

Making use of the steady state equations (3.104) can be reduced to

ol

€]

o h)]

K oy { (22))" - (22)e |

G( A)
+ 20 | 204, + )+ 22 e (L) —-f’:i- ]
L8

- (2s28)) [(wé*z + P)( ES‘-’%) + a0 () )]

o

¢( 1)
+ i(wz -4+ P2 e () o'y ] =0

o

(3.105)

it X A # 0, this equation is of the form:

: A 3 2 =
aAh + a3h »+:a2h + alh + ao 0

where h = 2.S1.)
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The §outh-ﬂurwits criterion is

1) all coefficients positive
2) 28, > 8.8,
| 2 2
3) alazaz > alalp * aBaO'
For the given equatliom
ga =1 4( -
G
= o ___Oi.
%3 ( T * G,(ozi) ) 32
oM
G( Al) -

= 2(w§t2 + qf?) +522 3 - ! (Oﬁl)
¢

6( 1) -
a = -0 + ) o (%*G’(oﬁ))

)

o (P ke nla L )

OA

First condition. a5 > 0 (6(,8))/ & + 6'( c,E'l))< 0

a,>0 Liea, 20k, + ¥+ @ (&) [6(E)/ 51> 0

this can be satisfied for small non-linearities. a

1>O,ifa >0

3
a is also positives; LR > 0, 1,044

- .
- )? = P o) L 5 o

*)

It will be noted that this issimply the requirement that the solution
Ki l1lie ocutside the region enclosed hy the loci of vertical tangency
as defined by equation (3.101).



Condition 2. a2 » ao a3

| G
1a8s '(wﬁ‘z + ) o (= v 1) { 2(w +7°) + % &) ("Al) }

0 ol

- g[ﬂiﬁ*%@][ (o - )? Pty S )

0 1 )

6( K, )
L.e., 2047, + ¥)° r GO, + ) 6 (oFy) =2~

oﬁl

» (@2 ..le) + \IF ’52 Gi( A1) OAl)

0

G( i)
:t W + .‘1,2) + lp 'q’z + 'Q le G (oﬁl) Ofl >0
A .

ol

o» For small non-linearities, therefors, a) 8, > a, 8,

Condition 3, a1 a a > al a, + a2

(A)
1460, -(wiz *WZ)S)_ g ?—%- +G!(°Kl)} [ 2(w§2 +‘P2)

o

+ G'(oil)f(—fﬁl][ - sz(g%li) *G'(ozl))]

G( A ) _ 2 G( 4) - ?
ek (T o) ot (T )
s o1l
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_ . o
Tf condition l-£2§l~ * G’(OKI))f 0, then condition 3 becomes
0
- . G(L)
("’f{z + ) [2(w§*2 +®) + F o (M) —-j_’;—AL]

ol

6( &)
> (R s )2+ (i, - P20 PR o2 01 )~k

ot

G( &)
R
o)

for small non-linearities this condition can be satisfied, except,
perhaps clegeto ¥ = 0 where it may become negative, TIxamination of the

amplitude equation (3.100), shows that at ¥ = 0, L, is small, of the

1

order of % » which was assumed small; hence condition 3 will be
satisfied up to the second power in Ao Thus for small non-linear
damping all stablility conditions will be satisfied, to the first order

in small quantities, provided

G( &) »'
1) —(ﬁﬁ— + G"(oxl) <0 ) (3.106)
¢}
and - )
‘ G
2) (w§'2~‘§3)2+ sfwze'(oﬁ'l)—(—‘%l—>o
o]

The second condition, as already pointed out, is simply the requirement
that the solution Kl lie outside the region enclosed by the loci of

vertical tangency.
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Two cases may be distinguished.

a) If G 031) is a monotonically increasing or decreasing function,

the system will be unconditicnally stable, ror unstable, depending on

“the sign associated with G( oKl}’

b) If Gf oﬁl) is a functlon vhich changes sign, a much more interesting

sltuation arises; to illustrate this, consider the damping function:

£(y,71) = (=b +e353) 3,

for this casse

SR) = (-3 1A,

(3.107)

(3,108)

Substituting equation (3,108) into the amplitude equation (3.100) gives

- BF e o - B R - B

vwhich may be written in the form:

(“’2""23)2 23 3 2,2 =23
, ....Q-p(]_--?. Kl)zl_g

Tab 7o yiy b

b (Py2
S ) s v#o
P2
Let

AR (52

—-@-—_glg = x; 29_ _:EJ:.'E. = E
W R

(3.109)

(3,110)
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Equaticn (3.109) can be expressed as
A+ (1-0"=F (3.111)

This equation is exactly of the same form as Van der Pol derived for

the forced oscillations of a vacuum type oscillater.

For Stabilityv,

G(3,) -
o' (E) * i “e-R2LH -2 BY <o
= -3 L <o,
Threshold amplitude Al jj;" /é’h = ./-%: AO where EO is

the amplitude of free osclalltions, The other condition for stability
is the solutions should lie ocutsilde the region enclosed by the loei

of vertical tangency, as defined by

(P - )2+ PP -E LA -2L% =0

Cde., (A -30Q-Y)=0 (3.112)
: 2
(x-%
i.e.4 the ellipse f =+ 32 =1 (3.113)
1 1
(7%- ) 13)
g raph
For a good e2p= of these functions see McLachlan, ps 82, Chapter IV,
Since \92 _ w’l*’ (m-z _ w2 _ w2)2 ) w2
g 12 . . _422 ;_?: 12
vadb (X -y, = 1)5).1)

¥ will have the same value for two different values of S ,



From the form of the equations it is easy to see that the
amplitude (Oﬂl) is of the general nature shown in Fig, 13 . The
shaded regions are unstable in the sense that the motion 1s a mixture
.of forced and free oscillationd. The solid curves indicate the regions
where stables forced oéeillations%xis‘t, free ogscillations being com~
pletely suppressed. Polnts at which the solid curves emerge from the
shaded zones, represent polnts at which free oscillatiorgend beat

phencmensa disappear and are replaced by pure forced oscillationg,

Cape 2. Hysteresis Damping.

As a8 second e xample of non~linear demping, consider the
steady state of vibration of a mass m moving under the action of a
restoring forece XF with hysteresis characteristics and excited
by a simple harmonic force P cosst, While the following analysis
is applicable to any number of degrees of freedom, it will be restricted

in this case to a single degree of freedom for simplicity.

Equations of Motion:

my + kKF(y) = P cos su t (3.114)
 or rearranging slightly

LX) 2 2 - P

y + Wy *w(F(y) -y) == cosqt (3.115)

This is now in the form required for the general theory.
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Using the general theory

Wy R P
g=_[ (F(A cos x) - A cos x) sin x dx =~ = sin B (3.116)
T/, m 1

2 2, "’i 2 P
h=(wl,-g)ﬁl*~;/o (F(Acosx)-Acosx)c%z{dﬁzn;c@sﬁl

(3.117)

For @ group of simple non-linearities, the restoring force F(y)

can be written

F(y) = £(A cos(x + B ))

where F is a phase shift which may depend on the frequency and the

amplitude, but for several simple cases may be assumed constant,

" Cage 1, Classical problem, 'linear spring' with hysteresis damping

F(y) = k(& cos(x +B ))

P
= ! (A cos(x + P)—Acosx) sfmxélx-»mainﬁ1

g =~ X sin,i -;E sin ﬂl (3.118)

h=-5§§1 *willcosls—gcos»ﬂl (3.119)
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Steady State Eguations.

The steady state equations are obtained by setting h = g = 0

*

| =, 2,2 P =
s Al("_gz, +wlcos(?>) mcos;d‘

(3.120)
- 2 P -
Alw sinF =-Esin,d|
eliminating ﬁ?,
x
1= 2
\
\/ [W4~25§ W cos,S +Q_4]
which can be written in the form
- §se -
A= (3.121)
' 2 4yl
/-2 o+ (D]
1 1
Similarly eliminating X
- £
tan g = —=218 (3.122)

2

coslﬂ - (;%)

Equations (3.121) and (3.122) are identical with those obtained by

Myklestad (J.A.M., p. 284, Vol. 19, Sept, 1952),

Stability.
The perturbation equations lead to the characteristic equation

(w2 sin[% *25?.}\)2 = o (S)?-wz cca[$)2
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i.e., 20\= = u? sin 3+ 4(° = W cos ) (3.123)
F

For equation (3.123) it will be seen that for stability sin F > 0,

which implies that for small /3 ’ ﬁ > 0,

The whirling of a vertical shaft offers a very nice example
of hysteresis damping, and the effect of the phase angle /? on the
stability of the system. For rotational speeds below c:tn’ﬁc,j.w'.ia.l3 it
can be shown that /5 is positive (see p. 340 of Edition II of
Mechanical Vibrations by J.P. Den Hartog) and so the system is stable.

and so
At speeds above the eritical [3’ hecomes negative"the system is unstable,

Hon=-linear Spring with Hysteresis.

As a second example of a system with hysteresis damping,

take the spring characteristie

F(y) = k(a cos(x‘ + B )) */uk(A cos(x + ﬁ))3

for this spring force

gs'..wizsinﬁ -isinb'-/u%wfifsm)e (3.124)
S)%El Acos’& /&A l- cos/S -ﬁcos 51 (3.125)

Steady State Equations.

Setting g =h =0 gilves

(3.126)
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_ 2
W (R */L’?I e $RF -2 ”’33(31)* FE, cone = ()
(3.127)
and
_ sin B(E + 21°) w2
tan f= - 55— g’l‘. NP (3.128)
wl(Al‘+/MZ,A1 ) cos/S - sL A
The loci of vertical tangency is given by
O B0 B e at
-;wi I?.- + 3/‘«312 ] cos/S =0 ‘(3.129)

Stability.
Following the standard procedure leads to the characteristic

equation
(22))? + 2(2a2) W(2 + 3 X ?) sin B

+ sinzﬁ (1 */u.'z- E 2)(1 +/("Z" i 2): '

+ (512 - wz(vl + %7(1' 2) cos S )(512 - w2(1 + %}j 2)cos/@)=0



l.g.y

252)\= - wg(z + 3/,( 'y 2) gin [>

,+5_\/{W§(17%12)(1%ﬂ%12) +Q_4-

-5;? wi(z + %/J.Klz) cos Fs - wA(Z + 3/L4K 2) gin® ﬁ
(3»130)
For stabillty wo(2 + z/uﬁ 2y sin pzo

- Qw2 2 -
gw_f{(l + %A (1 +/u% B9 - o w2 +}.A Al‘?')ees/3 "'_514]3 o

It will be observed That ihis,éondition is simply the requirement that
& 1ie outside the regién enélased by the loci of vertical tangency,

as given by equation (3.129), Thus for stability > o
J //AA
1) sin |3 > 0 and for small )3 this requires that F >0

2) 1 1ies outside the region enclosed by the loci of vertical

tangency,

From the few examples given above, it will be seen that the
Kryloff Bogluiboff analysis is a very powerful method for obtaining
the first order solutions of non-linear problems involving forced
oscillations, Simple extensions of the method héve enabled us to study
the stability of forced oscillations and to prove analytically that
points of vertical tangeney in the amplitude/frequency response correspond

with points of instability, a fact long recognized experimentally,



The present treatment i1s far from being exhaustive, and
it is hoped that numerous other problems will be treated by this

simple yet elegant technique,



4+ APPLICATION

%4.0. The Existence and Stability of Ultraharmonics and Subharmonics
in Forced Non=Linear Oscillations.

In order to illustrate the application of the general theory
to the existence and stability of ultraharmonic and subharmonic oscil-
lations, consider the forced osclllations of a single degree of freedom

system with a small cubic non=linearity in the restoring force.

2
51_;% + kg% + v12y+ 3'3= P cos Lt
dat

A) Ultraharmonic Oscillations
Under sultable conditions, & non-linear system may exhibit

marked ultraharmonic osclllations in which the main component of motion
has a frequency which 1s an integral multiple of the frequency of the
driving force, In the case of a cubic nonelinearity, marked ultraharmonic
behavior has been observed experimentally when ihe frequency of the
driving force was reduced to about one third of the natural frequency

of the system.

In the spirit of Treffitz, one is led to try a solution of

the form:
y= Al cos Lt + AB cos (350t + ¢3) (4.1)
_ | 9 .
where ~ 1 W, hence A, = P = 8
2% 3 ¥ 1 2 2 2
M 1

A3 and }53 are slowly varying functions of time, For

convenience let Q' = 350 , then ' = W



Comparison with equation (2.1) shows that

(4.2)

) tuy e B =4
oy Bk BT h

Hence substituting into equation (2.28)

émr
Hi(o.o ) E - (52'2 "wi) EB */fr‘/ [/u (Al cos 2t + .A.B cos8 yl)B
Q

- k(Alsz sin wt + A3 sin Yl) ]cos )’l '%._):1

P
-3

("’1 Q! )A3 /u( A1 i, + % cOSBB)

Hence substituting into equation (2.27)

P-LPI

Similarly substituting into equations (2.32) and (2.31)

. 3 -
20" 5 * k9 KB’/“%‘ sin #, (4.4)

Steady State Solutionas
The steady state ultraharmonic solution corresponds with

ol o
3| &
]

2
2| &
L]

(@]



which leads to
3

xn°K3=/u2?— sin 6,
K3

2 = .3 33, . ) p
0?3 " L of3 ) "/“"ZL' cos By | (45

P R N
oAB(wl -2') /u (g oM

Fliminating 0213

=3
pe

- (x2")? 0K32 * [(wi - ') o* */“(% oK?l,:2 o3 *‘Z OIBB)]Z

(4.6)

and gin » (4.7)

o

u’&.l

* % oz32)]

J e v b - ok B

provided

gﬁfo

Locl of Vertical Tangency.
Viewed as a function of cﬁé, the locd of vertical tangency

can be obtained from equation (4.6), they are

(Kat)? + [\é - o' +/“'(% oKl2 +% 0K32)] {wi - 7“(% 0312
"Rl =0 (-9
if X << 1 w2

1’



the lecl are approximately

.-2)

2 2 3 -2.3 .
vy - 2! */(2 oM *Lofgl =0

2 2 2 (4.9)
A RCH */u(% oM "29', 0332) =0

As in the case of harmonie oscillations, it will e observed that on

the upper locus sin 053 =41, 0;63 = %, 3% » otc.

Stability of Steady State Solutions.

let

(4.10)

]

Writing perturbations on equations (4.3) and (4.4)

3=+ ¥ }

13

Zm’g + KS).’%“/M'QZ-J‘— cos oBB ,,L

= LR L 42 3 -2,9 72
22t §("'1 ') “/4.(2 of1 *% ot )j F
(4.11)
& o
o
"/4 4 sin 0253 Vl_

Assuming solutions of the form e L s and substituting for cos 0153 and
sin 033 from equation (4.5)
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(250 h + Ksz’)f = {(sz'z - i) or3 "/%53(‘3 0512 *% 0532)} n
(4412)

%"‘é"ﬁ» AT @ATL 403}?8633[25&"\ *K‘Q‘]"L

which leads to the characteristic equation

(220007 + 221 ) @Ee) +JEmaD? + (68 -0 + @ ZF+ § D]

X104 =% + wG A7 2 KD
=0 (4.13)
For stability; X > 0
and
k2 + (62 - /,,(2 o’ * 7 ] 0 - r?)
* e K1 4 o 3 20 (4.14)

Comparison with equation (4.8) shows that the second condition for

o3
enclosed by the loci of vertical tangency.

stability is simply the requirement that X, 1ie outside the region

‘If X <<1 it will be observed from equation (4.9) that for
,AB real

PR +//.% i* |  (4.15)

Figure 14 shows a typical Amplitude Frequency curve for ultraharmonie

of order 3,
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FIGURE 14— TYPICAL AMPLITUDE /FREQUENDY RESPONSE
FOR ULTRA HARMONIG MOTION OF CORDER THREE
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The general features of the amplitude frequency response
‘are identical with those for harmonic oscillations, At points P and
/ Q where eié enters the unstable region, vertical Jumps occur, exactly
as in the hﬁrmonic case., With the exception of a small region close to
% vy » the amplitude oﬁé is small compared to czl’ and hence may be

neglected,

Effect of Initial Conditions on Ultrsharmonic Solutions.
The effect of the initial conditions on the ultrsaharmonic motion

can best be studied by means of the integral curves for the motion. To

obtain the integral curves for the motion equations (4.3) and (4.4) can be
wriltten in the form

= 3
- - 2
/‘L%' joinfy - XK' Ky
.~ (4.16)

-

- -2 - - ¢ ;
(wi - i +/(% A12 Ky 2 A33 + ‘2%" cos 4,

X

if damping 1s neglected (4.16) becomes

ar,
"3 ,
5. (4217)
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Comparison of equation (4.17) with equatien (3.80) gshows that if

Aa is replaced by Al

53 is replaced by 251
i 3
e S is replaced by A
i P e (4:18)

2 -2 2
Wy V% Al is replaced by vy

&’2 is replaced by 52_2

then the two equations are identical in form, and the remarks made about
the harmonic motion will be equally true for the ultraharmonic motion,

If the forcing frequency <> lies in the rangek w! §SL< wh
the amplitude equation (4.6) has three solutions, and if damping is
neglected the three singuler points ave:

‘No. 1 Ay = IM - steble - ceni“.er point, 0163 =7

No. 2 A; = IN - unstable - saddle point, 0;53 = - (4.19)

Yo. 3 OAB = L0 - stable - center point, °¢3 =0

Equation (4.17) can be integrated directly, to give
| -2. 2 3 =2 2 3 =4 K1352 p
- - 1 =

A, (v “'/.« 5 A - ) +/.& g I '*/u 5= cos ¢3 const
‘ (4.420)
Figure 15 shows some typical integral curves for the case of ultraharmonic

motion with three singularities.



- 8 =

For stable ultraharmonic oscillations, the initial conditions
mst 1ie inside regilon A B C D. If the initial conditions lle inside
| ‘region A B F G oscillation will be about center No, 1, and if the
initial conditions 1ie inside ABC DG FE the oscillations will be
about center No, 3. The effect of intreducing & small amount of damping
into the problem will be to change the center Into stable focal points
and to prevent closure of the separatrix, It will still be true, however,
that the separatrix will define two regions such that, if the initial
conditions lle within one region the oscillations will spiral down to focal
point No. 1, and if they lie inside the other region the oscillations will
spiral down to focal point No. 3.

Thus the particular value of the steady state ultraharmonic will

be completely determined once the initlal condltilons have been specified.

B) Subharmonic Motlon.
Under suitable conditions a non-linear system may exhibit

subharmonic oscillations, in which the main component of the motion has
a period which is an integral multiple of the peried of the fercing
function. In the case of a cuble non-linearity,'marked subharmonic,
behavior has been observed experimentally when the frequency of the forcing
function is increased to sbout three times the natural frequency of the
systenm,

Following Mandelstam and Papolexi*, one ia led +to try a

solution of the form

y = A cost A /508 (‘;}G + ﬁl /3) (4.21)

* L. Mandelstam and N. Papolexi, Z. Physik 73, 227 (1932) .
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vhers

9D = 3w1, hence Al e~

by /g and ﬁ&/B are slowly varying functions of time,

Let
S22

Comparison with equation (2.,1) shows that

oty () =y’ 4 i B =2
Yt T BT hys

Hence, substitution into equations (2.2%?) and (2.27) yields the first

of equations (4.23). Similarly substitution in equetiona (2.32) and (2.31)
yields the second of equations (4.23)

25" by * Ko Ay s “/‘*f Bjy Rjs by oin3 B

29" b3 By = 65 43R -2 By (4.23)

ady Sta bharmonic Motion

The steady state subharmonic motion will be obtained from

equation (4.23) by setting §1/3 = ¢1/3 = 0, whence
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K" b s a i 0‘7‘153 oMy 8in 3 021/3 »
(4.24)
| s 2y T =3 . =2 = y
| ("’J? * %/“ f::Al2 =S )oAl/B d'/"(i of1/3 "/'«'-'12,, of1/3 oty c08 30;51/3
eliminating dgl /3 gives
-2 o =2 _ 2 =, 3 732
(%/’ oAZIj?» oAl)? = {(w].? * ag/""o“‘l -a") 0A1/3 /’*% oA‘l/B} '
skt &0 (4e28)

and 1f K /o #0

y X X
sin 3 0’61/3 = (4026)

j(x am)? + [(Wi? + %/« 0512 ‘_9_"2) 7« i 05173]2

Loci of Vertical Tangency.
Viewed as a funetion of Kl /3° the locl of vertical tangency

 are obtained from (4.25) by differentiation, they are

5173 { (64 + %/«512 -2 sud byl 164 + g/uzl? —ar)

: 2 - -2
* 7 Mpl- 2‘i‘/‘*‘*l/s A) ] =0
From which Al /3 = (Q, or

a0 s Rt oa s QAR 0 e
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if X << 1 the second locus 1s given approximately by
3 52 . 2,3 =2 _ 2
Z Mptr b -e™)

Using the négative sign, it will be obserwved that if °A1/3 liss on the

upper branch of the loei then

ﬁinBOBl/Bgzl 3 iaaag 3 °¢1/3=%@%99tce (4028)

Stability of Steady State Solutions
Let

bhys® hyst ‘§’
Buys= By n

then writing perturbations on equation (4.24)
29"? tES"E = %/*011/3 oh i3 B /5 €
" %/*«:3153 K cos 3 031 /3" j (429)
29" Jh/3n (g - o + ‘%/* oxlz)g‘ K 7 oh1/3 ol o1n 3 051/3 (5
| "/42 (3 Eyjs + 2 931/2 ol 08 3 f /3 § (4.30)

Assuming solutlions of the form ek K and substltuting for sin 3 dﬁl/B

andrcos 3 cﬂl/B from (4.24), gives the characteristic equation
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(227 ))% + (2am)) (2Ka") - 3(xs)?
+3 i(fﬁ E7? - (0 eq s Q/OXIZ )2} =0 (4.31)
?br stabilzi;'ty K20
Gpodp? -G dpg - wrze

Tt will be observed that this condition is simply the requirement that
eﬁl /3 lie outside the region enclosed by the loci of vertical tangency,
as defined by equation (4.27). |

From equations (4.29) and (4.30) it can also be shown that for
stability

by oy /p cO8 3 o¢1/3 20
but since R, is negative and L /3 1s positive, it follows that
cos 3 B /3 s positive. Thus, those values of A /3 &re admissible,
for stable subharmonics, for which sin 3 o¢1 /3 is given by equation (4.26)
and for which cos 3 0;61 /3 is positive. |
If the damping is small, then except close to points of instability
sin 3 o¢1 /3 = 0s from which

‘°¢1/3 0:3’ 3:”3%‘3%

Since cos 3 0251 /3 mast also be positive, o‘él /3 may take on only the
values O, 2n/3, 4w/3 .
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Thus there exists three subharmenics with amplitude 051 /3 but

differing in phase by 120°
From equation (4.25) it will be observed that if oil /3 #0

(4/-0“1/3 1) = (ka? + [ /»L 2 -am?) ‘*/“% oAi/332
from which
SRV RREIE O L SR
- (xam?- (}»ri + ‘g/qui - :;_"2)2}
= - (,,, N 8/4051 - o) */{2("’;*%/‘9‘&% -a™
X (-2 /«QKlz) - (xsum? } (4.34)
for real 031/3

C3 1222 L T2 ) L (gamag .
‘/AoAl (uy * lé/AoAl o ") - KoM 20.
This requires that

2" 2W *igM oM

GRS 2%‘ -——‘1—- ®? ) (4.35)



If X << 1 the lousr bound is
< 2
oy # 2 w 16 A (4-36)

The general features of amplitude frequency response for sub-
harnonic of order 1/3 are indicated in Fig, 16. For any frequency between
w' and w", three solutions exist to the amplitude equatiom, the two
solutions corresponding to 'OKI/BI = 0, and 1N, being stable while the
third solution [°A1/31 = IM 1s unstable. At points A and B, vhere
the upper branch of the amplitude curve enters the region of instability,
vertical jumps occur, both downwards. It will be observed that the general
nature of sutharmonics differ considerably from either harmonic or ultra-

harmonic motion.

Effect of Initial Conditions on Subharmoniec of Order One Third.

To get a more complete plcture of subharmonics it 1s necessary

to examine the dependence of the steady state amplitude on the initial
conditions, The easiest way to do this is by studying the integral curves

for the motion, to this end equations (4.23) are writien in the form:

- -3 - ~ g2

A VU EL VR EALY,
Wiy R d % o) L R85, + By 5y Kieos 3 4 45)
3 Wy 2/,,,A1-_9_ A1/3/4A1/3 A1/3A1cos3¢1/3

(4.37)

If K= 0 then
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FIGURE 16~ TYPICAL AMPLITUDE /FREQUENCY RESPONSBE

FOR SUBHARMONIGCS OF ORDER ONE-THIRD
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dKA . 2 33 1 sinBB
1/3 . Dl W ¥ e 173
2 - 2 w2y T . 73 .72 = p
d‘él/3 | (wl + Z/MA:L - ) Al/B /(_2% (Al/B A1/3 Al cog 3 ¢1/3)

(4.38)

If w' < <" in Fig, 17 then the amplitude oM /3 has three
golutions, 0, IM, and LN while OB]_ /3 has the values O, % ) .‘;__v? y
%’1 and -5-’3{ » The nature of the singular points can be determined from
equations (4.32) and (4.33),

Classificalion of Singwlar Points.

oﬂl /3 Classification

0™1/3

No. 1 1N 0 center - stable

No, 2 IM " saddle point - unstable
No, 3 M % saddle point - unstable
No. 4 N %Lr conter - shtable

No. 5 N %1{ center - stable

No. 6 M %’I saddle point - unstable
No., 7 0 indeterminate center

Singularity No., 7 is phase unstable, but amplitude stable,
If damping is neglected equation (4.38) can be integrated to

give

o+ 3 pR* -2 ) 3R vud G RJ5 03 Bjp 4 o083 By5) = const
» | (4440)
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Figure 17 shows the general feature of the integral curves
for subharmonic motion of order onme third, when damping is neglected.
If the Initial condition lies inside the shaded regions stable sub-
harmonic motion will be obtained, outside these regions stable subharmonics
cannot be obtained, This is quite different in nature from the case of
harmonic and ultraharmonic motion in the fact that the second zone has

shrunk down to zero,

Effect of Damping,
Qualitatively, the effect of adding a small amount of damping

to the system will be to transform the centers into stable focal points
and to prevent closure of the separatrix, However, it will still be
true that the separatrix will divide the phase plane into four regions,
inside three of which stable subharmonie will be obtained, For a
guantitative discussion of a system with a cubic non-linearity with heo

linear term; see ref, 1,



5. CONCLUSIONS

The general first order theory presented in section 2 gives
a method for treating forced oscillations in any mudlpericdic quasi=-
linear system, it also gives a method for determining the stability of
such motions, and in particular shows that points on the amplitude/
frequency response curve having vertical tangents are likely to be
points of Instability, Detailed analysis of some fairly general systenms
revealed that a necessary and sufficient condition for the stabllity of
forced harmonic oscillations is that solutions lie outside the region
enclosed by the locl of vertical tangency. Thus points on the amplitude/
- frequency response curve having vertical tangents are indeed points of
instability, a fact first observed experimentally by Appleton and Van
der Pol in their classic work on the synchronization of a triocde
osclllator. Ultrsharmonic and subharmonic oscillations were found to
have the same type of stability eriteria as harmonic oscillationsj
detailed and ysls in this caée was restricted to the discussion of a
specific system,
From the general theory and from the detsailed applications

of ihe general theory the :oilowing conclusions can be drawn:
1) Harmonic Oscillations.

| In a quasi-]linear system with small damping, predominantly
harmonic oscillation will exist close to the linear natural frequencies
of the system, these oscillations will be stable provided the ampiitude
lies outside the region enclosed by the loci of vertical tangency, thus

jump phenomena may result close to the natural frequencles of the system,
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If the non-linearities are small, the amplitudes of oseillation nay
well be co:r;i)arable in magnitﬁde to those in a linear system; the
effect of the non-linearity simply ceusing a shift in the rescnances
of the system, Unlike a llnear system operating at constant exciting
frequency, the steady state asmplitudes in a non-linear system are
dependent on the initial conditions. Fig, 10 shows such dependence in

the case of a one degree of freedom system with zero damping.

2) Ultraharmonic ogcillations,

Close to % times the linear nétural frequencies of the syétem,
predominantly ultraharmonic motion of order n may exist. The stability
of such motion again requires that the amplitude lie outside the
region enclosed by the locl of vertical tangency. Detailed analysis
of a one degree of freedom system with a cubic non-linearity shows
that close to one third of tﬁe linear natural frequency marked ultra=
harmonic motlion results, especially if the damping in the system is low,
however, the amplitude of such motion is generally much smaller than
- that of the harmonié oscillation which occurs close to the linear
resonant frequency. As in the case of harmonic forced oscillations,
the steady state amplitude of ultraharmonic oscillation depends on

the initial conditions,

3) Subhermonic Oscillation.
Close to n times the linear natural frequencies of the

system, predominantly subharmonic motion of order % may exist,
The stability of such motlon again requires that the amplitude lie out-
side the region enclosed by the loci of vertical tangency. Detailed
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analysis of a single degree of freedom system with a cubic non=
1inear§ty in the restoring force reveals that close to three times
the linear natural frequency, marked subharmonic motion results,
'especiallj if the damping is smell., Indeed, 2 study of the effect of
demping, shows that subharmonics can occur only if the damping is
small, The existence of pubharmonics 1s very sensitive to the choilce
of initial eondiiions, which may explaln why there has been so much

misunderstanding on the subject of subharmonics.

Engineering Tmplications of Small Non-Linearities in Dynamic Systems.
As the detailed analysis of forced harmonic oscillations amply
1llustrates, the differences between linear and non-linear systems are
differences at large, and are not dependent on the exaét nature of
the non-linearity. The existence of ultraharmonies, subhaﬁmonics and
Jump behavior depends on the existence of vertical tangents in the
system
amplitude frequency response of the) and this does not depend on
the exact nature of, the non-]inearity, The intreduction of damping
into a non-linear system restricts the regions of vertical tahgency
and may place them outside the normal range of cperation. In general
it may be sald that small non-linearities beccme important only if the
damping in the systen ié emall, and there exists the possibility of
TeSonance.
Since most engineering problems involve components which
are at best only quasi-linear, it might be thoughtthat non-linear
béhavior should be of more frequent occurrence. The reason why this

is not the case is that dynamic systems are usually designed for
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stability, and for this reason, are usually quite well damped. In

such systems the 1oci of vertical tangency lie well outside the normal
rangerof operation of the system, and the normal behavior of the systen
-ean be prééicted, with sufficient accuracy, by a linearized theory.

This is particularly true of control systems where the relatively

large amounts of damping necessary for stability, effectively neutralisze
the effects of any small non-linearities., Here however, large scale
non~linearities are very important, unfortunately large scale non-
linearities do not lend themselves readily to analytic treatment, and
little can be said in general about large non-linear effects,

Small non-linearities become very important in those systems
where the damping is naturally small and where the introduction of
further damping is undesirable if not impossible., There are many
references to subharmonics and jump behavior in systems ranging from
aircraft structures to three phase induction motors, where, from the
nature of the system, the natural damping is small, Such effects
~ are usually regarded as parasitic, and the engineer is usually con=- .
'cerned with means of controlling or preventing them. As in the case
of linear systems, non-linear effects can be reduced or suppressed
either by detuning or by increasing the damping., In most cases a
small-increase-in the damping is sufficient to suppress subharmonic
motion, Increasing the damping is not quite as effective in suppressing
harmonic jump behavior; however, it is usually a better remedy than
detuning the system,

There is no reason to regard non-linear effects as being

entirely undesirable. In the past many ingenious uses have been made
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of non-linear effects, for example, the use of subharmonic frequency
entrainment for frequency demultiplication in sueh diverse systens as
oscilioscope time bases and quartz standard clocks, or the use of
 Jump behavior to make a rugged, non-electronic flip-flop., It is felt
that non-linear mechanics is still in its infancy and that the next
decade will see very rapid strides both in the analysis and the |
synthesis of non-linear systems. This is especially true as applied
to control problemé, vhere the optimization of a given system requires
the use of non-linear elements in the control computers (18,19,20,21).
In theory, at any rate, it is possible to synthesize a control system
to meet any desired set of integral criteria, and tﬁe problem of
analysis of non-linearities is thereby avoided since the synthesized
system is the best possible system that will meet the specified
requirements. However, engineering design is dictated to a large
extent by economic factors, and at present the cost of a synthesized
control system is out of all proportion to the job it does, for this
reason we are still faced with the problem of analyzing non-linear
systems, which if not as good as the ideal system, are at least

realizable economically.
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