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Abstract

HThe solvent environment of molecules' plays a very important role in their
~structuré- and function. In biological systems it is well known that water has profound
effects in the functions of proteins. Simulations assist us in microscopic studies of
chemical and biological phenomena. It is important then to include solvation effects
accurately and efficiently in molecular simulations. In this work we present a novel
approximate analytical method for calculating the solvation energy for every atom of a
molecular system and the forces that act on each atom because of the solvent. The
solvation energy is partitioned into long-range and short-range contributions. The long-
range contributions are due to polar interactions between the solvent and the solute and
the short-range are due to van der Waals and entropic effects. We show how the
calculatjon of these effects, under certain approximations, can be reduced to the
calculation of the volume and exposed area of each atom, assuming a fused-sphere model
for the solute. We demonstrate a fast method for the exact, analytical calculation of the
volume and area of each atom in the fused-sphere model and their gradients with respect
to the atom’s position. We incorporate the fast geometric algorithms into the approximate
formulas we derived for the calculation of the solvation energy, to get our solvation
model, the Analytical Volume Generalized Born - Solvent Accessible Surface (AVGB-

SAS) model.

 The predictions of the polar part of the method (AVGB) are very good‘ as
compared to numerical solutions of the underlying physical model, the Poisson-Boltzman

equation, for small and lafge molecular systems. AVGB does not depend on any fitting



parameters, Which is common in the literature for such approximate methods. It is very
fast compared to numerical solutions of the PB equation or other Generalized Born
methods. Also, the method is parallelizable which allows us to stﬁdy much larger
systems. 'The AVGB-SAS method has been implemented in a parallel molecular
dynamics software package and a molecular docking software package. We have
demonstrated the quality of the results of the AVGB-SAS model in the dynamics of DNA

and in rational drug design applications.
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1 Solvation in Molecular Simulations

1.1 Molecular Simulations

Simulations play a key role in the determination of various physical and chemical
properties of molecular systems. In science, they are the link between experiment and
theory either by validating and challenging new theories or by probing experimental
results on the atomic scale. In industry, they can serve as a great cost-cutting tool, for 7
example by pre-screening molecular targets for a certain property and thus reducing the
amount of experimental work needed to identify the appropriate compounds. For that
reason, a great amount of work has taken place in the field of molecular simulations and
great progress has been achieved, due to both algorithmic improvements and increase in

computational power.

The recent discovery of the sequence of the human genome [1] has opened the
way to understanding, on the molecular scale, many human diseases including possible
methods for prevention and treatment. For this goal to be achieved, it is imperative to
understand various properties of macromolecules, such as structure, binding and
processes. Molecular simulations can address the above questions in different ways.
- Homology modeling and energy minimization can be used to determine the structure of a
protein in water. Molecular docking is used to screen and identify ligands, potential

drugs, which form energetically favorable complexes with proteins in water. Molecular



dynamics can provide atomistic detail on biological and chemical reactions and

processes.

There are many issues that have to be resolved in order to accurately simulate a
molecular system. These issues can range from the structure and geometry of the system,
the nature of the intermolecular and intramolecular forces, the level of accuracy
(quantum-mechanical or classical), the parameters used such as charges and atomic radii,
the effect of external factors such as temperature and pressure and various other elements
that can affect the quality of the simulation [2]. Also, computational efficiency is of
paramount importance since typical studies of chemical and biological systems require
the computation of many (on the order of hundreds of thousands or more) consecutive
calculation steps in order to achieve the accuracy needed. Thus, fast methods, parallel
algorithms, and hardware improvements are another area of focus for molecular

simulations.

1.2 Solvent Effects

The deﬁnition of solvent is “a substance that is liquid under the conditions of
application, in which other substances can be dissolved and from which they can be
recovered unchanged on removal of the solvent” [3]. Water in particular is the
environment in which all biological processes take place. Biological macromolecules like
proteins perform complex functions, such as transport of substances, binding of ligands
and catalyzing chemical reactions, ’in water. The effect of the water environment on those

processes is profound: the solvent influences electronic properties, nuclear distribution,



spectroscopic functions, acidity/basicity, reactive processes and molecular association
[4]. It is crucial to understand and accurately calculate solvation effects in molecular

simulations.

The solvation process is defined as “the process in which a particle of the solute is
transferred from a fixed position in the gas phase into a fixed position in solution at
constant temperature” [5]. The key parameter to describe the effects of the solvent is the

free energy of solvation, AG,,, and is defined as the reversible work spent in the transfer

of the solute under the aforementioned conditions at equal number densities in the gas
phase and in solution [4]. Microscopically, the solvation effect is due to intermolecular
interactions between the solute and the solvent, as well as a change in the intramolecular
interactions of the solute and a reorganization of the solvent because of the solute. In
general, the calculation of the solvent effects is partitioned into three separate parts:

electrostatics, short-range effects and cavitation (see [6] and references therein).

1.2.1 Electrostatic Effects

Electrostatic forces dominate the interactions of molecules due to their strength
and long range. Electron distributions around nuclei in molecules create an electrostatic
field that interacts with that of other nuclei.. The charge distributions of the solute and

solvent play a fundamental role in the solvation process. The polar contribution to the

solvation energy, AG,,,, , includes the work necessary to create the solute’s gas-phase

charge distribution in solution and the work required to polarize the solute charge

distribution. The solute charge distribution polarizes the solvent, which in turn induces an



electric field on the solute. This is called the reaction field and it changes the self-energy
of the solute atoms. Also, the intramolecular coulomb interactions of the solute are

screened because of the presence of the solvent (Figure 1).

Figure 1. Reorganization of the solvent around a solute charge and dielectric screening of intramolecular

interactions.

In addition, the presence of salt in the solvent affects the electrostatic energy of
solvation .and has a significant effect on conformational changes and binding. For
example, DNA is known to go through a structural transition, from B to Z form as the salt

concentration changes [7].

1.2.2 Short Range Effects

~ Besides the polar interaction, there is also the dispersion-repulsion (or van der
Waals) interaction between the solvent and the solute that affects the solvation energy.

These steric forces are of short-range nature and they are due to an effective dipole-dipole



interaction be;tWeen solute and solvent [8]. Usually they are favorable to solvation since
the dispersion forces are stronger than the repulsive forces around the solute cavity. Other
contributions that take place are the hydrogen bonding between the solvént and the solute
and vcharge transfer to‘or from the solute. This is particulaﬂy true for water. All these

effects occur in a short range around the solute, the first solvation shell.

Cavitation, or “hydrophobic effect” is defined as the energetic cost of creating a
cavity in the solvent for the solute to fit in. This term is entropic in nature. It accounts for
the lowering of entropy due to the reorganization of water around non-polar solutes. For
water in particular, it attributes the decrease in the number of ways that favorable
hydrogen bonding can be achieved by solvent water because of the presence of a non-
hydrogen bonding solute. Cavitation includes changes in solvent-solvent dispersion-
repulsion due to the missing solvent in the cavity and changes in the local solvent

structure. It is unfavorable to solvation because the entropy decreases.

1.2.3 Total Free Energy of Solvation

From the above, it is clear that the free energy of solvation has to take into
account all sorts of effects: long range, short range and entropic. It is formally given by

the formula:

AG,, =AG,,, +AG, 4 +AG,, (1)

solv polar
Obviously, the different terms in equation (1) will contribute in different ways for

various combinations of solute and solvent. For example, for a polar solvent like water

the electrostatic term will dominate and the short-range steric interactions will be



moderate. On the other hand, for non-polar solvents the cavitation penalty and the
electrostatic terms should be smaller and the steric interaction should dominate due to
weakef'interactions among the solvent molecules. For polar solutes in pélar solvents the
elect_rostaﬁc term should dominate, whereas for non-polar solutes in non-polar solvents

the steric interactions should dominate.

Properly treating the solvation effect in simulations of biological systems is
critical to obtaining accurate information. Because the effects of solvation are so
complex, a number of assumptions and approximations need to be made in order to make
such simulations computationally tractable. The key assumption is that we can partition
the solvation energy into the different contributions, the short-range van der Waals and
entropic effects and the long-range polar effects. Various methods that exist to calculate

these contributions will be presented in the following.

1.3 Solvation Models

The existing models for the calculation of solvation in molecular simulations can
be separated into two classes: explicit and implicit. The most obvious way of taking
account of the solvent is by explicitly including solvent molecules in the simulation. This
method has many drawbacks, the first of which is computational efficiency. Every atom
that is explicitly included in a simulation adds 3 degrees of freedom. For 200 water
molecules we add 1800 degrees of freedom, whereas for 200 1-octanol molecules we add
16200 degrees of freedom. In orde; to measure structural and dynamical properties of the

system, we’ll need first to equilibrate the system and then average over those additional



degrees of fljeedom. This implies that we need to perform the simulation for a larger
number of steps where each additional step costs more CPU time. One might think that
this additional cost comes at the benefit of a more accurate simulatioﬁ, but this is not
‘nece_ssarilly the case. Explicit solvent models are only as good as the simulation method
and parameters used. Solute electronic polarization is usually not taken into account and
the electrostatic interactions between solvent and solute are dependent on the charges of

the forcefield parameter set used.

For the above reasons, the focus of most research has been on implicit solvation
models. In such models, the solvent is implicitly included by assuming it is a continuous
medium surrounding the solute. That way the effect of the solvent on the solute is already
averaged and the solute is always in statistical equilibrium. The challenge then is to
describe the effects of the solvent accurately under the continuum approximation. In the

following we will present different ways that deal with this problem.

1.3.1 Surface Tension Models

Surface tension models were first introduced by Eisenberg in 1986 [9], [10]. In
such models, the free energy of solvation is given as a product of the solvent accessible

surface area and an empirically determined surface tension parameter, for each atom:
‘ N
AGsolv = Z O-i Ai (2)
i=1

for a molecule of N atoms, where A, is the solvent accessible surface area and o, is the

surface tension of atom i.The solvent accessible surface area (SASA) is defined as the



surface traced by the center of a sphere of certain probe radius, as it rolls over a fused-
sphere model of the solute [11]. An example of the SAS of 3 carbon atoms and the
probe sphere that traces it 1s shown in Figure 2. Treating the solvent molecules as spheres
is reasonable for molecules of spherical symmetry. The appropriate probe radius for
solvents with different properties is addressed in [12]. For example, in a non-polar
solvent like hexadecane, we expect the solvent effects to take place in the first solvation
shell since dispersion interactions should dominate. Thus, for hexadecane a solvent probe
radius of approximately 1.5 A is more appropriate than a much larger radius that would

result if one takes into account the size and shape of the solvent molecule.

Figure 2. The Solvent Accessible Surface (transparent) of 3 carbon atoms with radius 1.7 A (gray), as is

traced by a probe of radius 1.4 A (yellow.)



Surface tension models are conceptually simple and thus not very reliable. Their

shortcomings are as follows:

. Accurate and efficient calculation of the SASA and its gradient with respect to
atomic coordinates is necessary in order for this model to be practically useful in
molecular simulations.

e The surface tension parameters are empirically obtained from a molecule data set.
It is obvious that the accuracy of the model is heavily dependent on the training
set used and the extension of it onto molecules out of that set is questionable.

e Since the model is purely based on the exposed surface, only atoms on the surface
of the solute feel the effect of the solvent. It is thus not capable of calculating
long-range effects such as dielectric screening which in polar solvents dominate

the solvation process.

There have been attempts to correct for the above deficiencies, by modifying
slightly the form of equation (2), [13], or by incorporating the occupied volume of the
solute [14], [15] in the calculation. However, the problem of not treating the electrostatic
contribution with any solid theoretical foundation remains in those theories, and that is

where we will shift our focus in the following.

1.3.2 - Continuum Dielectric Model: The Poisson-Boltzman Equation

Electrostatic interactions in macromolecules have been studied extensively due to

their profound effects on the macromolecules’ functions [16], [17]. Most important
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biological phenomena involve changes in the interaction of various groups with the
surrounding water environment and since polar effects are dominating those interactions,
methods for the calculation of those effects have proliferated [18]. Conﬁnuum dielectric
methods treat the solvent as a dielectric continuum surroundihg the solute molecule. The
calculation space is characterized by the dielectric permittivity £(r), and the solvent is
separated from the solute cavity by a boundary surface. The solute is treated as a charge
distribution, p(F) (which could also be a set of point charges). The electrostatic potential,
®(F), at every point in space would describe the interaction between the solute charge
distribution and the solvent dielectric. It is clear, then, that in this model and in the

absence of salt, the potential ®(7) would be given by the Poisson equation:

—V - (e(F)VO(F)) = 4mp(F) (3)

in the presence of salt, we can employ the Debye- Huckel theory [19] to
incorporate salt effects. In this theory, we assume that the ratio of the concentration of ion
type i around the solute to its concentration far away from the solute is given by the
Boltzman distribution, ’exp(—Wi(?)/kBT), where k, is Boltzman’s constant, T the
absolute temperature and W,(¥) the work required to move the ion of type i from
infinity (where ®()=0) to the point 7. We assume that we have only two types of
ions, negative and positive (such that the total system is electrically neutral). Then, if e,

is the absolute charge of one electron, we must have for each ionic species:

W, (r) = +e O(r) W, (¥) =—e ®(F) (4)



11

and if we assume that the concentration of each species M,, M _at infinity isM , the
Boltzman distribution law gives
M, =M exp(—e D(r)/ k,T) M _ =M exp(+e ®(r)/k,T) (5)

and, thus, the charge density of ions around the solute should be

B

pu(F)=e (M, ~M_)=-2Me, smh[ q)(r)] (6)

By applying equation (6) on (3) and using the ionic strength, 7, instead of the salt

N
concentration M , we get (since [ :O.SZ c,z; =1000M /N ,, where N, is Avogadro’s

number, c, is the molar concentration and z, the charge in electrons of ion species i)

V - (e(F)VD(F))+ k(F)° smh( p (T)] Amp(F) (7)

where the constant xis called the Debye-Huckel screening parameter, which is zero

inside the solute and given by the formula

2
K(F) = _ﬁt_N_AiL (8)
1000 &(F)k, T

outside of the solute. If we assume a constant dielectric permittivity value, € ,, for the

out ?

region outside of the solute, then the Debye-Huckel parameter is also a constant.
Equation (7) is called the Poisson-Boltzman equation (PB) and it is a nonlinear, elliptic,
second order, partial differential equation. In cases of low ionic strength, one could use
the first term of a Taylor expansion of the exponential sign term to get the linearized PB

equation. It is a very difficult equation to solve for arbitrary systems, but it describes very
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accurately the polar effects of the solvent on the solute in the continuum dielectric

approximation.

The most common assumption for solving the PB equation is that the dielectric

permittivity takes two values, £, in the solute cavity and &, outside. For water

in

environment, £, is 78.2. The electrostatic free energy of solvation AG can be

polar

obtained by solving this equation twice, once with the solute inside the solvent dielectric

and once with the solute in vacuum (&, =1). The polar solvation energy, assuming that

out
the solute charge density is a set of N point charges g, at positions 7, is
] N

AG e =5 2,0 (@ (7) - @™ (7)) )

=1

Exact analytical solutions of the PB or in the absence of salt, the Poisson
equation, are not possible except for very few simple cases. In order to get analytical
solutions, we must make crude simplifications in the shape of the solute. For example,
small molecules and globular proteins are treated as spherical cavities, whereas DNA is
modeled as a charged cylinder. Kirkwood [20] introduced an analytical solution for
equation (3) for a set of point charges inside a spherical cavity and Jayaram [21] has
given the analytical solution for the intermolecular problem of two ions embedded in a
dielectric continuum. Although analytical, these solutions are of little value for any
bractical purpose because the simplifications needed in the shape of the solute limit
severely the applicability of the model to realistic systems. For that reason, numerical

solutions of the PB and Poisson equations have been developed instead.
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A number of numerical methods have been developed for the numerical solution
of the PB equation either using finite differences or boundary element rﬂethods. The best
known in the literature are the DelPhi program [22], UHBD [23] and PBF [24]. A major
problem with numerical methods is that they do not calculate the solvation electrostatic
forces along with the energies. These forces can be computed but only at a great
computational expense since they would have to be calculated from numerical
differences. This makes numerical methods useless for molecular mechanics simulations.
At the same time, since a spatial grid is used in order to solve the PB equation, the
accuracy of the solution and the CPU time needed for its calculation are highly dependent
on the density of the grid. Too sparse a grid would result in fast calculations with
inaccurate solutions. Too fine a grid would result in accurate solutions but slow
calculations. For example, DelPhi would take about 25 minutes on a 195MHz SGI
processor to solve problems on a 185x185x185 grid for a system of 600 atoms. Also,

since the solution is based on a grid, the algorithm used will scale with the size of the
solute as O(N?), making it impractical for studying very large systems. Finally,

parallelization of such algorithms has met with limited success.

Regardless of their computational efficiency shortcomings, numerical solutions of the PB
equation have been successful at different applications [18]. This is a proof that the
dielectric continuum approximation, despite its conceptual simplicity (the PB equation
ignores the molecular_‘ nature of the solvent, the finite size of the ions and ion-ion

correlation effects), is a valid approximation. In order to get an accurate description of the
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polar solvatiqn effects in molecular systems, but with a certain computational efficiency,
approximate analytical solutions to equations (3) and (7) have to be found. The goal is to
find solutions that correlate well to numerical solutions of the PB equaﬁon qualitatively
and _quaﬁtitativély, with analytical formulas that are derived using approximations that

capture the physics of the PB equations. Such theories will be described in section 1.3.3.

1.3.3 Approximate Solutions for the Continuum Dielectric Model

e Multipole Expansions

In the multipole expansion approach the electrostatic potential is determined by
assuming very simple shapes for the solute cavity and using limited multipole expansions
to represent the solute charge distribution. The electrostatic potential can be written as a
series of spherical harmonic terms. This method was first introduced by Kirkwood [20] as
an analytical solution to the Poisson equation but has since then been extended for more
complex cavity shapes [25]. Although faster than the numerical solution of the PB
equation, it still is a slow method since the series must converge for the results to be
Valuable, which means many terms have to be included. There have been attempts for a
faster calculation, [26], [27], but the inherent problems of inaccurate description of the
molecular cavity and the need to truncate the series at some point limit the suitability of

these methods to simple systems or qualitative studies.

e Distance Dependent Dielectric (DDD) methods
As was already described above, the solvent molecules surrounding the solute are

polarized due to the solute charge distribution. This generates a reaction field, which in
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turn polarizes the solute. The intramolecular coulombic interactions are screened because

of the surrounding solvent molecules (Figure 1). This effect of dielectric screening on the
polar energy of two atoms, E Zol, can be represented quantitatively by the dielectric

permittivity €:

EV =217 (10)

However, this formula cannot be accurate for small distances 7; since when two atoms

are close together there is not enough space for the solvent to screen the interaction. For
large distances though, we expect that there will be enough solvent and the screening will
be significant. This motivates us to assume that the dielectric permittivity should be

dependent on the distance by a sigmoid profile (Figure 3).

Such sigmoid profile can be described mathematically by an equation of the form:

B
Y=A 11
elry) =4+ 1+ kexp(—ABr; ) (D

In practice, one would calibrate the results obtained from such model by assigning
different parameters in (11), according to the type of atoms involved in the interaction,
[28], [29]. Comparisons with experimental solvation energies or numerical solutions of

the PB equation will determine the exact values of the parameters.
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Figure 3. Sigmoid permittivity profile for the distance dependent dielectric model.

Other formulas more or less complex have been proposed; however, all these
models are ad-hoc in nature. Sigmoid permittivity profiles are predicted by the Lorentz-
Debye-Sack (LDS) theory of polar solvation [30], with reaction field corrections included
[31]. Thus, although qﬁalitatively equation (11) should be able to describe dielectric
screening, there is little formal justification for it. On the other hand, studies on the
intermolecular scfeening of the polar energy due to the solvent have been done with the
PB equation [32]. It is shown there that the dielectric screening only qualitatively is
described by a sigmoid behavior. The phenomenon is just too complex to be described by
‘such a simple fofmula (Figure 4). This method is also heavily dependent on the molecule
set used to train the parameters that describe the exact form of the sigmoidn permittivity,

for each atom type. This would make the extension of the method in different systems
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questionable.. Nevertheless, DDD models are still extensively used because they are easy
to implement and computationally very efficient. DDD models, however, should always
be used with caution in applications, since comparisons with other solvz{tion» electrostatic
models have shown that the resulis from these models can be qualitatively erroneous

[33], [34].

Effective dielectric constant

0 5 10 15
Distance

‘Figure 4, Effective dielectric permittivity for protein A calculated using equation (10), where the pair
energies where calculated from numerical solutions of the PB equation [22]. The sigmoid profile is only
qualitatively described by an equation of the form (11). The phenomenon is more complex. (Figure from

reference [32].)



18

e Generalized Born Model
In the Generalized Born (GB) model the goal is to find an expression for the polar

solvation énergy of the form

o o 11 RS
Gpolar - _5 8__8—— zqiqjyij (12)

in out Ji=t j=l
where 7, is an ad-hoc function that somehow describes the effects of polarization and

dielectric screening. The GB model has been proven to be very successful in predicting
polar solvation energies and has received considerable attention in the literature [33],
[34], [35]. It comes in different variations that differ in the functional form of ;. A
certain variation of the GB model is employed in this work and the theoretical

foundations and approximations behind the GB theory will be discussed in detail in

chapter 2.

e Other methods
An issue that arises with the application of the PB equation on the solvation
electrostatics is the value of the dielectric permittivity inside the solute, €,,. A value of 1
is appropriate only for small molecules but is probably not right for macromolecules.
.Electronic polarization and field-induced nuclear reorientation effects affect the value of
g, . Typically, values that range from 2 to 8 have been used, but even then the

assumption that the solute dielectric permittivity should be isotropic is questionable. In

general, the definition of the dielectric permittivity in proteins can be ambiguous [17].



19

For that reason, the Langevin Dipoles (LD) model was developed [36] in order to avoid

the use of ¢, . In this model, the solute is placed in the center of a cubic grid. Langevin

dipoles are placed on the gﬁd points and the polarization of the solvent with the solute is
accounteci for by reorignting the solvent dipoles, which genefates the reaction field. The
shortcomings of this model are mainly due to the assumption that the electrostatic
potential is represented by a dipole term only; the accuracy and speed depend on the
resolution of the grid used and the results may not be rotationally invariant. However, it

is an interesting idea and an alternative to the continuum dielectric methods.

Another method is the conducting screening model (COSMO) that assumes that
the surrounding medium is well modeled as a conductor [37]. The dielectric behavior is
derived using analytical formulas that allow for the calculation of gradients, which are

necessary for molecular dynamics simulations.

1.3.4 Including First Solvation Shell Effects

Due to the biological importance of the effect of water on macromolecules, the
focus of the calculation of solvation effects in the literature has been on the calculation of
polar effects. This is because water is a highly polar solvent and proteins have polar
groups. In such situations the polar effect dominates dispersion-repulsion and cavitation
effects. Short-range effects, though, canb play a significant role in non-polar solvents and
should be included in order to have a complete solvation model. The nature of van der

Waals and cavity effects was discussed in section 1.2.2.
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The most obvious way to include these effects in solvation calculations would be
by explicitly including solvent molecules in a short range around the solute. However this
would lead to the same problems of the explicit solvent calculatic;ns, -namely the
averaging in time of many more dégrees of freedom and the lack of polarization effects
between solute-solvenf. Instead, the surface tension models (1.3.1) are an attractive
alternative. In this model, the free energy of solvation is determined by equation (2) and a
set of surface tension parameters that are empirically determined. Although this model
cannot describe accurately long-range polar effects, it should be able to reproduce short-
range effects, like dispersion-repulsion and entropic effects like cavitation. Thus, the first

solvation shell effects will be described by the formula:
N
AG, gy +AG,, =304 (13)
i=1

where A, is the solvent accessible surface area [11] and o, the surface tension parameter

for atom i of the solute.

The justification. behind this approximation is that the magnitude of the free
energy of solvation due to first solvation shell effects can be considered proportional to
the number of solvent molecules in the first solvation shell. One expects that entropic
terms like cavitation, along with the averaging of short-range steric interactions between
solute and solvent should be a function of the geometry of the solute and correlate
statistically with the exposed area. The exposed area can be thought of as a non-integer
average (ensemble or time average) number of solvent molecules in the first solvation
shell. The assumptiorn‘rin equation. (13) is that the energy is proportional to the solvent

accessible surface area (SASA), as defined by Richards [11] and weighted by parameters
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that are empirically determined. The quality of the fitting to experimental results and its

predictive ability will be the ultimate judge of the success of the model.

The fact that ‘surface tension models, despite their simplicity, have yielded
qualitatively accurate results prompts us to accept their validity for short-range effects.
Thus, a model that has an accurate method for predicting electrostatic contributions to the
solvation energy accompanied by a surface tension model for including first solvation
shell effects should be capable of predicting solvation energies for a multitude of solvents
and solutes. Of course, the quality of the first solvation shell contribution will depend on

the surface tension parameters used.
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2 The Generalized Born (GB) Model

2.1 The Born Model

The electrostatic energy G,, of a charged dielectric sphere of radius R and
charge g, embedded in a dielectric of permittivitye, can be easily calculated from

Gauss’s law (IE -ds = 47rq) by use of spherical symmetry and the relation between the

electrostatic energy and the electric field E, G :Zl—'[E *dv. It is given by the
T

formula:

2

G =2 (14)

pol 2 8R
Thus, if we assume that the sphere has interior dielectric of 1, and it is reversibly
transferred from the vacuum to a medium of dielectric permittivity €, the change in the

electrostatic free energy change should be

1 1)q’
AG,, =——|1-— 12— 15
pol 2[ SJR ( )

In general, if the interior dielectric of the sphere is €, and the surrounding medium has

permittivity €

out >

then the electrostatic free energy change is

{1 1 \g°
AG,, === —-— & 16
pol 2(8- £ ]R (16)

m out
If we assume now that the sphere is actually an ion and the exterior dielectric is the

solvent environment, we can see that equation (16) actually describes the solvation
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energy of an ion of radius R . This model was first introduced by Born [38] and has been
used successfully for the calculation of the solvation effects on ions [39], [40] and ion

 pairs [41].

The success of the Born model on ions has given the impetus to generalize the
Born equation (16) and create an analytical, approximate model for the description of
electrostatic solvation effects on multi-atom systems such as macromolecules, with
arbitrary size and shape. In the following, the formalism of the GB model will be derived

and the validity of the approximations made will be discussed.

2.2 The Generalized Born Approximation

We will now try to generalize the Born equation (16) for a system of N atoms. As

in section 2.1, we assume that every atom i is a conducting sphere of radius ¢, and
charge ¢,. If the spheres are at a very large distance away from each other, then it is a

safe approximation that the interaction energy between every atom will follow
Coulomb’s law. This is because the spheres are very far away and thus the finite size of
them has no effect on the energy. Effectively, the spheres interact as point charges, as
long as the separation distances are much larger than the spheres’ radius. At the same
time we have to include the electrostatic self-energy of solvation for every atom, which is
given by equation (16). Thus, for the system of N atoms very far away from each other,

the solvation energy is
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oifitsgs] o

=1 & zj=jm By
where- 7, is the distance between atoms i and j. We would like to generalize this

formula to be applicable to molecular systems of arbitrary shape and size. For this, we
have to correct equation (17) for when the spheres get closer to and possibly intersect
each other. We seek for an analytical formula that has the form of equation (12) or,

rewritten to resemble more of coulomb’s law,

AG, —-[—— > 3 9, (18)

in ()ut i=l j=I ij
The functional form of f, can be determined only by an ad-hoc way, as long as it makes

physical sense and satisfies appropriate boundary conditions. The most common form

used is [42]:

f; ={r} +oa; expl-r? [0, (19)
The parameters ¢; and «; are called the Born radii and they represent an effective radius
for the respective 'atoms.' This functional form is chosen because it reproduces the right
solvation energies at the two limits:

¢ when there is only one atom, N =1 and r; =0, then f; =¢;, which means that

the solvation polarization energy is

1{1 1 \g’
AG, & =——| ———0 2L 20
pol 2(8 £ ]a 20)

in out i

which is what is expected from the Born model.
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e At very large interatomic distances compared to the radii, r; — o, the
exponential in equation (19) falls fast to zero, and f; —r,. Then, the

intramolecular solvation energy between atoms i, j, becomes

AG" pu _)_l[L_L) 94, 1)
20 g, € r

in out ij

which is, as expected, Coulomb’s law.

Equation (19) is basically an interpolation formula between the Born and Coulomb limits,

as is shown in Figure 5.
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Figuré 5. The functional form of equation 1/ f (from equation (19)) with Born radii @, = &; = 2,

compared to the coulombic behavior 1/7 .
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The key parameters in this model are the Born radii ¢;. The physical meaning of
the Born radii becomes obvious when one sets all charges g, =0 except for atom k.

Then, the solvation energy of the system becomes

2
AGpol = __l_(i — Ljﬂ. (22)
2 E; gom ak

For a molecule that only atom & is charged, the solvation energy is effectively the self-
energy of polarization for atom k. From equation (16) we can interpret the Born radius

parameter ¢, as the effective radius of an ion of charge g, , whose solvation energy is

equal to the self-energy of polarization of atom & in the molecule. This means that in
order to use the GB model we will have to already know the self-energy of polarization,
since that is the only way to know the values of the Born radii. Obviously this procedure
would be of no practical use since we would need to know the answer in order to solve
the problem. We will have to introduce some approximations in order to predict the

values of the Born radii, and these will be discussed in section 2.3.

Nevertheless, it is instructive to examine the accuracy of the approximations made
already at this point. The interpolation formula (19) along with equation (18) provides an
analytical formula to get the solvation energy for an arbitrary molecular system.
Although we do not have a formal way to calculate the Born radii yet, we can still use
numerical solutions of the PB equation in order to predict these parameters. Specifically,
for a molecule of N atoms, we do N numerical calculations of the solvation energy
where each time all charges are set to zero except for one atom, i. The numerical answer

can be plugged into equatiOn (22) and thus calculate the Born radius ¢, . Then, we repeat
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the numcrical. solution for the real, fully charged molecule and compare the solvation
energy to the predicted energy from the GB model with the numerically derived Born
radii. We performed these calculations on a set of 376 small molecules, n;)t larger than 40
atoms each (see i‘eferenée [43] and the Appendix for the list of molecules). The numerical

calculations were performed using the PBF solvation code [24] and the results are shown

in Figure 6.

GB (Kcal/Mol)

-12 -10 -8 -6 -4 -2 0
PBF (Kcal/Mol)

Figure 6. Comparison between numerical solutions of the PB equation and the predictions of the GB model
with PBF-derived Born radii, for 376 small molecules. Linear regression fit and correlation coefficient

shown.

The results show excellent correlation (correlation coefficient 0.97) between the

GB model and the numerical solutions of the PB equation. The linear regression fit shows
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that the results from the two methods are very close to each other although there is a

small systematic error; the relation is not exactly of the form y = x, but instead the slope

is 0.92. This is proof that as long as we have an accurate description of the Born radii
parameters for the system, the interpolation formula (19) in the GB model (18) describes

remarkably well electrostatic solvation energies, at least for small molecules.

Despite its success, there have been attempts to modify equation (19). Different formulas
have been proposed that satisfy the same limiting conditions already discussed, but
perform better for specific applications [44]. However, there is no systematic way to
introduce an interpolation formula. It is always an approximation that is put to the test by

direct comparisons with numerical solutions to the PB equation.

2.3 Born Radii and the Coulombic Approximation

In order to calculate the Born radii for the GB model, we need to come up with an
analytical approximate solution to the polarization self-energy of an atom in the
molecule. Such a solution was first given in [45] by use of the electrostatic energy
density. Instead, we will present a novel, formal proof, inspired by [35], that clearly

shows the physical meaning of the assumptions made in this calculation.

As was already described in 1.2.1, the electrostatic self-energy of solvation of an atom is

due to the interaction of the solute charge distribution, p(¥) with the induced dipoles of

the solvent. This is called the reaction field ®__(7) and it is responsible for polarizing

reac
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the solute atoms. The polarization is described by the induced surface charge, o, (7),

on the surface of the solute atoms. Then according to electrostatic theory [46], the

reaction field is given by

pol (R)

Ie{l(, §
S ‘r—R|

(23)

where S is the solvent accessible surface of the solute. The polar free energy of solvation

is a functional of the reaction field:
1 - —\ 3
8Gy =2 [ PI® o (F)r (24)

Assuming that the solute charge distribution is a set of N point charges g, located at

N
points 7, p(r)= Z q.0(F —1,) , the polar free energy of solvation becomes
k=1

il C (T ‘
a4 AN (25)

By applying Gauss’s law on an infinitesimal pillbox of surface AS on the

boundary surface that separates the two dielectrics, €, and €, , we can calculate the
discontinuity of the reaction field on the surface of the solute:

§E -ds =4mq

N

or, (26)
(E,, -E, ) ii=4r0c,AS

out pol

where 7 is the normal to the boundary surface and E is the electric field due to the local

polarization charge ‘density. According to the boundary condition for the dielectric
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displacement _D(F ) on the interface between the two dielectrics, the normal component
of the dielectric displacement has a discontinuity that is proportional to Fhe bare surface
charge density ¢ (which does not include the polarization charge) [46].

(B, - D,, ) = 4no 27)
But the bare charge density o is zero since we assume point charges and the dielectric
displacement is proportional to the dielectric constant, D =¢ E. Thus, from equations
(26) and (27) we have an expression for the polarization charge density Gpol(?) as a

function of the normal component of the electrostatic field on the surface of the molecule,
E (F)-n:

in

£

- 1 : =y A
O'pol(r)zzg[f—lj&n(r)-n (28)

By plugging equation (28) into equation (25) and setting all charges equal to zero except

for atom k, which is located at position 7, , we get an expression for the self-energy of

polarization for atom k, AG,,, , in the molecular cavity:

8t e -7

ou,

| 1 (e E (M)A
AGpol,kz Qk[i—lj§ n(7) d’r (29)

Equation (29) is exact, but not very useful since the functional form of the electric
field is not known. We will need to introduce an approximation for the electric field in
order to get a formula for the Born radii. We know from Gauss’s law that for a point

charge ¢, located at point 7, in a spherical cavity with dielectric constant g, , the

electric field is
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. 1 F-F
E(P)=—q 5
gin |r—rk|

(30)
~ which is Coulomb’s law. If we use equation (30) in equation (29), ;Ne can have an

expression for the self-energy of polarization for atom &, only in terms of the geometry

of the system:

8rle €

111 1 F—71)n

AG 1 =——{—— ]qi §( k)4 d’r (31)
in out S

The use of Coulomb’s law for the electric field is exact only in the case of a single

charge ¢, in the center of a spherically symmetric cavity. We can expect that this

approximation for the local electrostatic field will be valid for cases that the molecule’s
surface is locally convex. This approximation is known as the “Coulombic
approximation” and its validity has been examined in [45] and [47]. For cases that the
surface is not locally convex, we cannot be sure how well this approximation will hold.
However, our tests from chapter 4 showed that the Coulombic approximation works very

well for a diverse set of molecules.

We will attempt to reformulate equation (31) from a surface to a volume integral

since this will allow us an analytical calculation of the Born radius. For this, we employ
Green’s theorem for a vector field A, from vector analysis:

A-ds =V -Ad’r 32
§ | (32)

av=$ 14
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We will set the vector field A equal to the expression inside the surface integral in (31),

lq. ——, and in order to avoid the singularity at the center, ¥ =7, we break the

integration over the solute volume V into two regions: the volume of a sphere of radius

R, centered at 7.,

r —Fk| < R,, and the volume of the solute excluding the sphere of

radius R,, Q, =7e R’ :FeV A |?— Fk|> Rk}, where R, is an arbitrary radius.

Then we get
rF—r r—r,
- _.k4 :J.V - _.l\4d3r
av_._g|r r % r rk|
oL I (33)
r—r r—r
:JV- dr+ J V. Ld’r
o |r_”k AN lr_rk|

The integral over the volume of the sphere of radius R, can be rewritten, as a surface

integral over the surface of the sphere, and it yields 47/R, :

k 2
R 34)
R * (

For the integral over the volume €, , we need to calculate the divergence of the vector
field 7 —r, / |F -7 |4 . If we use partial differentiation and the identity V-(F -7, )=3, we
get

F-F, 1 |
= >
k

, ‘r_rk
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Hence, by applying equations (34) and (35) in (33) we get an expression for the surface

integral:

r—r 4r 1 1 3 :
ds = ——— d 36)
|4 g Rk 4 Q,‘.|?—Fk|4 ’ (

V=S8 ll" i

If we apply equation (36) into (31), we can get an expression for the self-energy

of polarization of atom k, AG,,, - By comparing this expression to equation (22) we get
an analytical formula for the Born radius of atom k&, &, :

1 11 1

o R 47er|;7_?](

d’r (37)

|4
The value of the radius R, can be determined if we examine the case of the solute being

just one ion. Then, the GB formula (18) becomes the well-known Born expression (16)

and hence the radius R, will be the ionic radius of that atom. In general, we will take this

to be the van der Waals radius of the atom. The van der Waals radii are atomic

parameters that are usually dependent on the forcefield parameter set used.

The conclusion drawn from equation (37) is that the Born radius, in the
Coulombic approximation at least, is dependent only on the geometry of the solute.
However, the volume integral in (37) is still very difficult to be calculated analytically for
cases of arbitrary molecular geometry. Clearly, we will need to introduce additional
approximations in order to arrive to an analytical formula for the calculation of the polar

part of the solvation energy.
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2.4 Calculation of the Born Radii

The integral in equation (37) cannot be calculated analytically for all but the
simplést' case of a spherical solute. For that reason there has been considerable interest in
the literature for the calculation of this integral, and we will present in the following

different methods that have been proposed.

e Numerical integration
The most obvious way to calculate such integral for arbitrary geometries is by
numerical integration. The integration domain is divided by a cubic grid, elements of

which are assigned as being inside or outside the solute. Then each grid element (of

volume AV and center coordinate 7 ) contributes AV/ |? - ?kl to the integral of the Born

radius for atom k. Comparisons of the results of this method with numerical sélutions of
the PB equation on a set of small molecules andl molecular complexes show that the GB
results correlate very well to the PB answers, although there is a systematic error [48].
This is encouraging since it proves that the Coulombic approximation that was introduced
in 2.3 is valid, at leaét for the molecular systems tested. However, the numerical
integration is not practical for molecular simulations since it lacks derivatives (which are
necessary for the calculation of forces), it is very slow and the accuracy and speed depend

on the resolution of the grid used.

e The asymptotic model
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Since the numerical solution is not practical and we need an analytical formula to
calculate gradients, the asymptotic model attempts to provide an ad-hoc analytical

solution. The model assumes that the Born radius of atom i is given by [49]:-

1 PV. PV. PV.C
e o e 3 38
ai . Ri + ¢ + P] Jestretch r,j Jjebend r,, Jjenonbond r,,

The parameters ¢, P,, P,, P,, P,, are scaling factors that are determined by fitting the

predicted solvation energies to the numerical solutions of the PB equation of a set of
small molecules. CCF 1is a “close contact function” that adjusts radii for nonbonded

atoms that are too close to the central atom i and VJ. is the van der Waals volume of

atom j.

The similarity of equation (38) to equation (37) is obvious. Equation (38) is an ad-
hoc fo@ula with not much formal justificatién besides the fact that the term V;/ r,;.‘
corresponds to the energy loss of a classical charge-induced dipole interaction between
the charge of atom i and the dielectric medium that is displaced by atom j [49]. One can
think this as a first order approximation to the exact integral of equation (37). In fact, the

V; /ri;.1 relationship for the contribution of atom j to the self-energy of atom i will hold
orily asymptotically, for large distances r;. At the same time, the true volume of atom j
in the solute is different than the van der Waals volume V; since the atoms intersect each

other. This is the reason that the parameters of the model need to be fitted to numerical
solutions of the PB equation, and this makes questionable the application of (38) to larger

molecules. For example, in order to use this model for proteins and nucleic acids, a re-
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parameterization was necessary [50]. Again, those parameters will be applicable only for

the molecule set that were trained on and the forcefield parameters used.

. The pairWise descreening approximation (PDA)
In this model the polar solvation energy is calculated using a slightly different but

equivalent formula for the Born radii [47], [51]:

dr 39)

{rkk ,R }au 1%
_ J )

where A(r,{rkk,,Rk,}a” . ) is the exposed surface area of a sphere of radius r centered at

atom k and is intersected by all the other spheres k’ of radius R,., centered at the
locations of all the other atoms &’ at distance r,,. from atom k [51]. Again, the integral

in equation (39) is not possible to be calculated analytically because the atomic spheres
k’ overlap with each other. In order to account for this error, the radius of each atom &’

is scaled by a factor S,.. These factors are less than one so that each sphere is reduced to

an effective volume. The final formula for the Born radii in this model has the form:

i =R =Y H(ry S, Ry) (40)
2

where H(r,.,S,-R,) is a complex expression [51]. The scaling factors §,. are

determined from fitting the solvation energies predicted by the PDA model to the

numerical solutions of the PB equation, for a set of small molecules.

Although this method provides for an analytical approximation to thé Born radii,

the dependence on scaling: factors and fittings to numerical solutions cause it to be not
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easily applied to other molecular systems. Different parameterizations of the model have
to be developed for it to be applicable to different systems [52], [53]. There have been
attempts to improve on the results of the PDA model [54], but the main drawback of the

dependence of the results on empirically determined scaling factors remains.

e The surface generalized Born model (SGB)

In the SGB model [55] the Born radii are calculated using the surface integral
formula for the polarization self—ehergy of solvation, equation (31), instead of the volume
integral (37). The two expressions are formally equivalent but the surface integral has the
advantage of being faster to calculate numerically than the volume integral. By creating a
triangulation of the surface of the solute, we can calculate the contribution to the Born
radius at each surface element and add up to get the value of the integral over the solute.
The advantage of this method is that the CPU time for the surface integration scales
better than the volume numerical integration, as a function of the size of the solute, and
there is no need for any parameterization or scaling factors. In practice, however,
empirical short-range (involving atom-pairs whose spheres overlap) and long-range
corrections (based on the amount of invagination of the molecular surface) are added to
improve agreement with numerical solutions of the PB equation. Also, the accuracy of
the method depends on the resolution of the grid used and derivatives of the Born radii

are not readily available.

e The overlapping spheres approximation and the analytical volume model
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The integration region €2, in the volume integral of equation (37) is the volume

of the solute that is inaccessible to the solvent, V , minus the volume of a sphere of radius

R, centered at 7, . The solute volume is defined as the interior of the solvent accessible
surface, which in turn is defined by the van der Waals spheres of each atom extended by
the probe radius of the solvent, r,, as is shown in Figure 2 [11]. We can partition the
integration regioh into the set of sub-volumes V. that each neighboring atom &’ occupies

and then rewrite the integral as a sum of the integrals over each sub-volume:

J 1|4d3r=21 1|4d3r @l)

Qk|r -, k’#kvk.|r—rk

Equation (41) is exact as long as the partition of the integration region into sub-volumes

is consistent, i.e., sz, =, . However, the shape of the sub-volumes is highly irregular
k#k

and the volume integrals in (41) cannot be solved analytically except in the simple case

that V,. is a sphere (it’s not intersected by the neighboring atoms).

In particular, the integral of the quantity ]/ I? -7, |4 over the volume of a sphere of

radius R,., centered at r,., minus a possible overlap with the sphere (R,.7), can be

solved analytically [45]:
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where 8 =

The five cases result from the different topologies that arise between the two spheres,
Vi =(R,,7,) and V,. =(R,(,,Fk.). They correspond, respectively, to the cases of no

overlap, partial overlap, &k’ completely swallows k but the spheres are not concentric, k’

completely swallows k& and the spheres are concentric, and k completely swallows k’.

Equation (42) would allow for an analytical calculation of the Born radii, if the
solute were a set of non-overlapping spheres. In reality though the atoms intersect each
other so we cannot use (42) without introducing some approximations. In the overlapping
spheres approximation, we attempt to represent the sub-volumes V,. as spheres and use
equation (42) for the calculation of the Born radius of atom k. We cannot simply use the

radii R,. (which are equal to the van der Waals radius of atom k’, R;"" plus the
solvent’s probe radius r,s R,. =R,jf1w +rp) for the sub-volumes becausé we would

overestimate the solute volume due to the interatomic overlap. An attempt to use
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effective radii that depend on atom types [45], derived from studies of crystallographic
protein structures [56], lead to moderate correlation between the calculated atomic self-
energies of polarization and the results of numerical calculations [57]. \This is probably
due to an inadequate description of the molecular geometry. ‘Standard effective volumes
that are dependent only on atom types cannot distinguish between atoms on the surface of
the solute and atoms that are deeply buried inside the molecular cavity. Secondly, these
effective volumes were derived from studies on a finite number of proteins, and the

application of those values to other systems is not obvious.

If we had, however, a fast and accurate way of calculating the true sub-volume of

each atom k in the molecular cavity by using a fused-sphere model of the solute, V, , we
could define for each atom k an effective radius R’ such that the volume of a sphere of

radius R is equal to the true sub-volume V, :

RY = 3‘%‘;—" (43)

Then, we can perform the volume integration in equation (41) analytically by use of (42),
where each integration region is a sphere of radius R;7. Effectively, in this

approximation we assume that the atoms are not overlapping, but the spherical volumes

that we assign to each atom have been corrected for the overlap.

If the method for the calculation of the true sub-volumes V, is analytical, then the

final formula for the Born radii will be also analytical and we will have the capability to

calculate the full gradient of the polar solvation energy. Obviously, for the method to be
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practically applicable in molecular simulations, the volume calculations have to be
computationally very efficient. In the “Analytical Volume Generalized Born” model
(AVGB) that we propose here,‘the volumes are calculated accurately a;ld efficiently by
‘meains of analytical algorithms. Thé algorithms for the volume calculations are described

in detail in chapter 3.

2.5 Improvements on the Generalized Born Model

The GB model as described here has two limitations: the effect of salt on the
solvation energy is not taken into account and the charge density of the solute is assumed
to be a set of point charges. However, there are improvements that can be done on the GB

formalism that address these problems.

e Inclusion of salt effects
The GB model was derived as an approximation between two limits, the case of
two widely separated spheres and the case of a spherical ion. When we include salt
effects we can get analytical solutions for these two special cases, in the limit of low salt
concentration from the linearized form of the PB equation (7). If x is the Debye-Huckel

dielectric screening parameter, then for two widely separated spheres i and j, the free

energy of polarization is [32]:

£ € t,

n out i

AG,, =—(L—e | ]q"q" (44)

and for the case of a spherical ion of radius ¢ it is [19]:
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{1 e \g* 9’
AG, =—a| —-2 |1 _ 45
Pt le, e, o ZeothrKrpi (43)

where r, is the probe radius of the solvent. To a close extend, these two limits can be

obtained by the Asimple substitution [32]:

""f,j
AR NS 6)
gin £0u1 gin gour

where f; is the interpolation formula (19). Although this is a very simple approximation,

this model can reproduce well the salt contribution to the solvation energy, as is shown in

Figure 7.

Sait contribution to AG(solv), kealmol

a0 i u‘ . i :‘ . i

Figure 7. Comparison between PB and GB predictions of the salt contribution to the solvation energy for a
B-DNA structure, as a function of the square root of the concentration of added monovalent salt. (Figure

from reference [32].)
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o Gaussian charge distributions
“'In the derivation of the Born radii of atom k&, equation (37), we made the
assumption that the solute charge distribution was a set of point charges. If instead we

assume that the charge density for every atom has a gaussian shape,

12
P =a,mai expl-al(F-7F) a, = (”f) (47)
k

we can re-derive the formalism of section 2.3 and get a modified expression for the Born
radii. This theory was described in [57] and [58], along with a modification for the
partition of the integral in the overlapping spheres approximation by assuming partial
atomic densities of also gaussian shape. The resulting formulation is more complicated
than the original GB theory (and potentially more CPU intensive), but this is an

interesting addition to the GB model.
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3 Gebmetric Algorithms for the Fused-Sphere Model

In chapter 1 we showed how the short-range contributions to the solvation energy
are dependent on the exposed area of the solute. In chapter 2, using the Generalized Born
approximation, we reduced the calculation of the polar contribution to the solvation
energy to the computation of the occupied volume of the solute. In particular, for every

atom i in the solute (consisting of N atoms total), the exposed area A; and the occupied
volume V, of that atom need to be calculated, along with their gradients with respect to
the atomic coordinates. The sub-volumes V, are needed for the polar part of the
calculation and the areas A, for the short-range cavity-van der Waals term. The definition

of the exposed area and the solvent excluded volume for the solute is, as defined by
Richards, the solvent accessible surface area (SASA) and solvent excluded volume [11].
We assume a fused-sphere model for the solute where each sphere has radius r, equal to

dW

the van der Waals radius of the atom it represents, " extended by the probe radius of

the solute, r,, ie., 7, = rrv

I 1

+r,. We are extending the radii of the atoms by the probe

radius, according to the definition of the SASA as the surface traced by the center of a
spherical solvent probe, as it rolls around the van der Waals spheres of the solute (Figure
2). Since many atoms intersect each other, the spheres are fused into each other, as is

shown in Figure 8.
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The calculation of the volumes and areas has to be analytical and fast, in order for
this model to be practical for molecular simulations. At the same time the algorithms
used will have to be applicable to all different topologies that may arise between an atom
and its neighbors. It is clear from Figure 8 that these topologies can vary wildly from

atom to atom. Therefore, it is crucial to have very robust algorithms.

Figure 8. An example of the fused-sphere model: The central atom (white) is surrounded by a number of

neighbors that define its exposed surface area and volume.
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3.1 VOlume' Calculation

By - Numerical techniques were the first to be used for the calculation of molecular
Volumes, either by grjd or Monte Carlo methods. Grid points or randomly generated
points are iden‘tified as béing in or out of the fused-sphere model. The fraction of the
points inside determines the volume of the solute. Such methods besides not being able to
calculate derivatives are very computationally inefficient and cannot provide the
individual sub-volumes contributed by each sphere. Another method proposed was the
“inclusion-exclusion” method by Kratky [59] where using the inclusion-exclusion
formula of set theory we can calculate the union of N spheres as N summations over

combination of intersections of the individual spheres:

V(ln2n..AN)= iV(i)— EN:V(i N j)+ iv(m jnk)-.. (48)

i i> >k
Obviously this algorithm can be very complex for complicated topologies of multiple
intersections and for systems with large number of spheres. There have been attempts to
simplify these expressions [60], [61] but the implementation of these methods is still
particularly cumbersome and it is not possible to include all topologies. Also, the method

does not provide the individual sub-volumes of each atom.

In order to calculate the individual sub-volumes we need to unambiguously define
a way to partition the fused-sphere model to the individual contributions of each sphere.
"The simplest case of two overlapping spheres can give us the principle of the
decomposition: the two spheres intersect each other and form a circle on the boundary,

the circle of intersection (COI) (Figure 9). The COI defines a separating plane that cuts
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Figure 9. Two intersecting spheres and the circle of

intersection (COL.)

Figure 10. Three intersecting spheres. The COI’s

intersect with each other.

Figure 11. Two intersecting spheres, { and k, Figure 12. Three intersecting spheres and the
separated by the separating plane. The distance corresponding separating planes for the central

between the separating plane and the center of gphere (red.)

sphere 7 is g, .

through the spheres (Figure 11). The intersection of the separating plane with the surface

of each sphere is the COL If there are more than two spheres, the separating planes might
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intersect each other, forming a more complicated topology. The circles of intersection

intersect each other (Figure 10), as the separating planes do also (Figure 12).

The intérsecting planes thaf cut through the spheres separate the fused-sphere
model into building blocks. Each building block is a complicated geometrical shape that
is made of a sphere that has been cut by the corresponding intersecting planes from each
neighbor. Figure 13 illustrates the decomposition of the fused-sphere model into the
building blocks. The building blocks consist of planar faces and regions of the sphere

surface that is left uncut.

Figure 13. Decomposition of the fused-sphere model into the building blocks that correspond to each atom.

The decomposition procedure that we introduce here is very similar to the concept
of the Voronoi diagrams [62] and the weighted Voronoi diagrams or power diagrams
[63], which are fundamental structures in computational geometry and have found many

applications in different fields in science. In short, given a set of points in space their
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Voronoi diag;am divides the space into regions according to the nearest-neighbor rule:
each point is associated with the region of space closest to it. Thus, for every point inside
| a region, its distance to the generating point is less than (or equal to) itg distance to any
other poiht in the set. According to this definition, the regioris are defined by separating
planes, which are the bisector planes between two neighboring points. The weighted
Voronoi diagram is a generalization of the Voronoi diagram; the separating plane is not
the bisector plane, but it is parallel to it. If we assign spheres of different radii to every
point in the set, the separating plane is defined as the plane for which every point in it has
equally long tangent line segments to both of the spheres. If the spheres intersect, this
plane is the separating plane of the two spheres. An example of a weighted Voronoi

diagram is given in Figure 14.

%
§ S *
1

Figure 14. The weighted Voronoi diagram (or power diagram) for a set of spheres, in two dimensions.

(Figure from reference [64].:)
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The difference between the weighted Voronoi diagram and the decomposition
described here is that we do not take into account separating planes between spheres that
do not intersect, as is shown in Figure 14. However, both methods ,preduce exactly the
same deeompoSition of the fused-sphere model. We prefer the method proposed here,
which is essentially a. simplified version of the weighted Voronoi diagram because it
facilitates the calculation of each atom independently of the others, as it will be shown in
the following. Instead, methods for the calculation of the Voronoi diagrams are global in
character [65] which has disadvantages in the parallelizability and robustness of the
implementation of the calculation. A formal study of the applications of advanced

computational geometry constructs on the fused-sphere model is given in [66].

Figure 15. The building block and the planar sections formed by the neighbors.

In order to calculate the volume of the building blocks we need to continue the

decomposition process hjerarchicaily, until we are able to describe the objects from well-
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defined geometrical shape. The building block is made from the atom’s sphere cut by the
intersecting planes between the atom and its neighbors. These cuts are planar sections on
the surface of the block and they correspond to the neighbor that formed them (Figure

‘15).»

If we connect each point on a planar section to the center of the sphere we form a solid
that has the shape of a cone-pyramid with the planar section as its base. If we “carve” out
all the cone-pyramids from the building block, we are left with a spherical sector. The
spherical sector is the solid that results by connecting all points of the exposed surface of
the atom (the spherical part of the building block) to the center of the sphere. The cone-

pyramid decomposition was proposed in [67] and it is illustrated in Figure 16.

Building Block

e

Spherical Sector

Figure 16. Decomposition of the building block into cone-pyramids and a spherical sector.

The advantage of this decompdsition is that the volume of cone-pyramids and

spherical sectors can be calculated analytically. If a cone-pyramid has a base of area A

con—pyr

and distance from the tip d , then the volume is V, = %Ad . Similarly, the volume of
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the spherical sector of radius r is the sum of the volumes of infinitesimal pyramids of
base area ds :

Voo = |V = I%rds =%rS | (49)

5

Thus, the volume of the spherical sector is proportional to the exposed area of the atom.
In general, for the building block of an atom i with radius r, and exposed surface area
S, formed by j = {1,...,M } neighbors that are separated from i by planes of distance

g,; from the center of i, the volume V, is given by

M
Vi zlrisiexp +21gi/’Aii (50)
3 a3

where A, is the area of the planar section that is formed on atom i from neighbor j.
Note that in equation (50) the distance g, of the separating plane of neighbor j from

atom i can be negative if the neighbor “swallows” the atom; that is, the center of i is

buried by j (see Figure 11). The algebraic sum subtracts correctly the overlaps that may

appear between the cone-pyramids in the case of a swallower neighbor [68].

Planar Section

Arc-Sectors

Triangles

Arc (part of a COI)

Line Segment

Figure 17. Decomposition of a planar section into triangles and arc-sectors.
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The area of a planar section, A;, between atom i and neighbor j can be

calculated in a similar fashion by decomposing it into triangles and arc-sectors (Figure
17). In general, the planar section is bounded by a set of arcs and line segments. The arcs

are parts of the COI formed between i and neighbor j. The line segments correspond to

intersections of the atom and neighbor with other neighbors k of the atom. They are
formed by the intersections of the atom-neighbor plane with the other neighbors’
intersection planes. For the decomposition, we need to pick a reference point on the

surface of the i — j intersecting plane that will define the triangles and arc-sectors. This

point is defined to be the intersection between the line that connects the centers of i and

Jj », and the intersection plane. Obviously, the connecting line is normal to the intersection
plane. Thus, if we have M ,.;."“ arcs on the planar section and M ;"g line segments, then

the planar section’s area is
i 1 if l
A=Y —a;S,+ > —ht (51)

where S, is the length of the A" arc on the planar section, a; is the radius of the i—j

COL ¢, is the length of the 4" line segment and h, , the distance between the reference

point and the line segment.

Equations (50) and (51) allow us to calculate the volume of the building blocks

and thus the volume of each atom accurately, as long as we can calculate the exposed

area S;* and all the other quantities, g, a,, t,, h,. We will present a method to

ij,

calculate exposed areas in section 3.2,
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3.2 Area Calculation

~The calculation of the surface area of the fused-sphere model has attracted
considerable attention in the literature because of its importance in the description of the
solvation energgl. The description of solvation in terms of the solvent accessible surface
area (SASA) -see equation (2)- made the calculation of the SASA and its gradient with
respect to the atomic coordinates necessary. Numerical methods are characterized by the
way of approximating the surface, and they are too slow to be used in molecular
simulations (see [69] and references therein). Analytical methods were first proposed by
Connolly [70] and Richmond [71], and they use the Gauss-Bonnet theorem of differential

geometry [72].

The Gauss-Bonnet (GB) theorem is the most fundamental theorem in differential
geometry and topology, and in its simplest form it asserts that the excess over 7 of the

sum of the interior angles ¢, , (pé , @, of a geodesic triangle T is equal to the integral of

the gaussian curvature K over T, or formally
30,-7= [[K()
o, —m=||K(s)ds (52)
i=1 T

The general form of the GB theorem (global GB theorem) is: Let R be a regular region

of an oriented surface and let C,, C,,..., C, be the closed, simple, piecewise regular
curves which form the boundary dR of R.If each C, is positively oriented and Q,, Q,,

..., Q  are all the external angles of the curves C,, then

',‘ijkg (l)dl+”K(s)ds+iQ,. = 27tx(R) (53)

i=1 G
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where / denotes the arc length of C,, k,(/) is the geodesic curvature of the arc, K(s) is

the gaussian curvature of the surface and ¥(R) the Euler-Poincaré characteristic of the
surface R . The Euler-Poincaré characteristic is a topological constant of the surface and,
in general, if a two-dimensional surface has ¢ holes and 4 handles, then

x=2-02h+q) [74].

The global GB theorem can be applied in the case of an atom in the fused sphere
model. We will attempt to calculate the area of an atom that is buried by the neighboring

atoms (Figure 18).

Figure 18. Application of the Gauss-Bonnet theorem on the surface of sphere i, intersected by neighbors

J. k. . (Figure adapted from reference [73].)

The intersecting neighbors form circles on the sphere of atom i, the COI's, which

intersect each other. The buried surface of i is bounded by arcs which are pieces of the
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COIs. We name these arcs the Gauss-Bonnet arcs (GB-arcs) and the closed oriented path
that bounds the buried surface the Gauss-Bonnet path (GB-path). For the A" arc, the arc

length is @/, and the radius of the corresponding COI is a', and the polar angle of the
COl is @’,1 The exterior angle between arc 4 and A+1 is Q. The gaussian curvature
of the sphere of radius r, is K = 1/ r” . In order to calculate the geodesic curvature of the
arc, we apply the GB theorem (53) on a spherical cap of height r, —d’ and radius aj on

the base. Since for a spherical cap the area is 27, (r,. -~ d/’l) and y =1, we have

Kiom + 2, (1, - d} )~ = 21

r;
hence (54)
i
8 i
ra;

Then, since cos©’, = d. /r. , the geodesic curvature of the A arc must be

i
k,1=COS@/1

8

(55)

a;
By applying the GB theorem (53) on the surface buried by the neighbors of atom i and

using (55), we get the buried area:

P i P
cos® o a1 A
Y ——2®hal + S =+ Q) =21y
=1 a4, r; A=l

hence (56)

Spued = p? [27[;{ - EP: (Q’/1 +®', cos®, )il
A=t

The Euler-Poincaré characteristic describes the topology of the buried surface. The buried
surface is topologically equiivalent (homomorphic) to a sphere with n holes, as many as

the closed paths formed by'the neighbors, hence } =2 —n. In general, there can be more
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than one disconnected piece of the surface of the atom that is buried. The exposed area of
the atom is the total area 47" minus the sum of the buried areas of each disconnected

piece, given from equation (56):
S = rf[zn(z - 2)-Y (@} + @, cos @), )} (57)
A=l

where now } is the sum of the individual y’s for each disconnected piece of the buried

surface and P is the total number of GB-arcs on the surface of the atom.

Using the GB theorem, the calculation of the exposed area is reduced to the
calculation of the arcs of the COI's of the neighbors on the surface of the atom and the
angles between them. In order to calculate these quantities, we need to parameterize the
geometrical problem. Initial attempts used a Cartesian system that made the final
formulas extremely cumbersome [71]. Instead, we will use a parameterizatioﬁ that is
equivalent for each atom and was introduced in its basic form in [70] and formalized in
[73]. We will use the center of the central atom i as the center of the coordinate system

(Figure 19). If atom i of radius 7 is located at X, and its neighbor k of radius r, at x,

then the distance from the center of i to the COI that is formed by k is g;4,, where

and (58)

and the radius of the COI, q; , is

al = (s ) (59)
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The polar angle ©} of the COl is

cos@®, =gl /r (60)

Figure 19. Parameterization of the Gauss-Bonnet arcs. In this example, the central atom 7 is intersected by
three neighbors, j, k, [. The i— j and i —k COI's intersect each other, as the i —k and i —1[ do

also. See text for explanation of the vector quantities. (Figure adapted from reference [73].)

Now, if the neighbor % is intersected by two other neighbors, j and /, the i —%
COl is intersected by the i—j and i—I COIs (located at g'/1 and g;i; respectively)

and the i —k COI becomes a GB-arc. The orientation of the GB-Path is very important
because depending on this orientation the calculation of the buried area, equation (57),

will yield the area on one or the other side of the GB-path. The right orientation for the
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GB-arcs in our problem is CCW, looking from above (outside the central atom). Then,
the k GB-arc is bounded by two points, P, and @}, that are the intersection points

between the i—k and i— j COIs and i—k and i—[ COIs respectively. We call these
points “GB—poiﬁts.” If the midpoint of the segment defined by the intersection of the
i—k-and i—j COls is 7j,;, 2y, is the total length of the segment and @, the unit
vector on the direction of the segment, then we have the following:

P a i
cos@; = M, - [;
A=l gl O
Ny =Ty Tl

| _si-sicoss, o
¥ sin” ¢,

~ Y
<,

ikj 3 :
sin @;

ylij = \/’3’2 - gliflij - g;T;k
where ¢,£j is the angle between the i—k and i— j COIs. We are now able to calculate

the GB-points:

Bi o =i i
P, y =My T VWi

- v (62)
OQu =Ty = Vu@u

and then the tangent unit vectors that define the exterior angles 2 between consecutive

GB-arcs,
Al D
X P,
Aik :uk ki
ny = i
ay
Al A
i xXQ,
m,"‘ — :uk ,~ ki (63)
a, :

i N Aij)
Q) = arccos(nj my
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since the exterior angles are negatively oriented [72]. The angular arc length of the GB
arc can be calculated from the inner product of the vectors 7i; and ;" . The arc length is
either the arc-cosine of the inner product or the complimentary angle. In compact form,

we have

@ = (1-5% Y+ 5% arccos(it -
where Y
st =sign(al x (i xm! )

S’ is the sign of the relative orientation of the vector 4, and the tangent vectors A and
m* . Thus, the arc-length of the i —k COI's GB-arc bounded by neighbors j and [ is

% =al@" (65)
This is the arc-length of each arc-sector in equation (51). Finally, for the planar section
formed by neighbor k , since the reference point for the planar section is g, /i ., the base

of a triangle in the decomposition corresponds to the line segment formed by the

intersection of the COIs of the neighbors k and j that define it. Then, the height of the

triangle is (see Figure 19)

i i i
88 COos @y,

h
sin @y;

jk

(66)

and the length of the base, t_;k, can be determined by the positions of the vertices that

define it. These vertices are the intersection points of three spheres, which might or might
not include the central atom (see Figure 15). If the central atom is included, then the
vertex is the corresponding GB-point; otherwise it can be calculated analytically by

employing the same vector parameterization that we have used in this section.
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We now have analytical expressions for the areas and volumes of each atom in the
fused-sphere model. We can differentiate these expressions with fespect to each
neighbor’S coordinates to get partial gradients of these quantities. Since moving the
central atom in one direction is equivalent to moving all the neighbors in the opposite
direction, we can compute the gradient with respect to the central atom by summing the

partial gradients with respect to its neighbors’ positions. In particular, for the exposed

surface area of atom i, S;™, if the central atom has M, neighbors, then

ISP ¥ gse
R 67
o, ; O, ©n

The derivation of the partial gradients is tedious but straightforward and has been
presented in [73]. The total gradient is the sum of the partial gradient with respect to the

central atom and the partial gradient of the neighbors with respect to the central atom:

aSEP M, 9SS
v =20 Ly
TR 2; %,

i

(68)

3.3 Topological Analysis

The analysis in sections 3.1 and 3.2 illustrates the formulas needed for the
analytical calculation of areas and volumes with gradients for every atom in the fused-
sphere model. This assumes that we know for every atom in the model which neighbors
intersect it and in which order. In particular, the application of the Gauss-Bonnet theorem
implies that we know which neighboring atoms create the GB-arcs on the surface of the

central atom and also the ordering of the GB-arcs as they form the closed GB-paths. The



62

topologies thgt may arise in a molecular simulation can vary greatly and can be extremely
complex (see Figure 8). It is imperative that we have an algorithm that can deal with all
| possible topologies and also be .c_omputationally very efficient. There a;e two problems
that we have to solve: First, we need to identify which neighbbrs that intersect the central
atom are truly contributing to the exposed area and volume of the atom. Second, we need

to order the true neighbors as they form the GB-paths on the surface of the central atom.

3.3.1 Intersection of Half-Spaces (IHS)

In order to identify which neighbors intersect the central atom in an efficient way
we divide the simulation space into cells (Figure 20). We assign each atom into the cell
that contains it and then search which atoms intersect the central atom only for the cell it

belongs to and the 26 neighboring cells.

Figure 20. Partition of the simulation space into cells. For each atom we search the cell the atom belongs

to (dark gray) and the 26 neighboring cells’(light gray.)
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If the sphere of radius 7, +2r,, centered on the central atom of radius 7, and a

max

neighboring cell do not intersect, no atom in that cell can intersect the central atom. Thus,

only if the neighboring cell and the 7, +2r,,, sphere intersect we search for intersecting

atoms in that cell. In order for the search to be complete when we restrict ourselves to

searching only the nearest neighbor cells, the length of each cell has to be at least twice

the maximum radius in the system, r

max *

Figure 21. The central atom (red) is intersected by Figure 22, Same as Figure 21, also showing the

h ighbors A, B ¢ . Neigh ; ;
L e 9 L. [gwsen). Neightr B bs intersecting planes of each neighbor.

occluded by A and C.

However, finding the atoms that intersect the central atom is not enough. There
can be many spheres that intersect the central sphere that do not really contribute to the
exposed area and volume according to the decomposition described in section 3.1. This is
because most of the intersecting spheres are actually occluded by the truly intersecting

neighbors. In the example in Figure 21 and Figure 22 neighbor B is occluded by the other
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two neighbors A and C and does not contribute to the area and volume calculation. In
order to identify the truly intersecting neighbors we will transform the problem into a
well-known problem in computational geometry, the problem of “the intersection of N

half-spaces” [65], [73], [75].

Every neighboring atom that intersects the central atom defines an intersection
plane that cuts through the two spheres, as shown in Figure 23. This plane divides the

space into two half-spaces, /| and H, (Figure 24).

Figure 23. The intersecting plane hetween the

Figure 24. The two half-spaces H, and H,

central atom (left) and a neighbor.
defined by the intersecting plane. The exposed area

and excluded volume of the central atom is on /.
The half-spaces can be formally described as follows: A plane in space that is at

distance [ from the origin can be defined by a vector p that is normal to that plane and

such that |p|=1. All points 7 in space that belong to this plane obey the plane equation:

2

Fep-|p =0 (69)
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The plane is the boundary between the two half-spaces it defines:

Fp—|p| <0 for fe H
Fop |p| or feH, 20
F-p=|p| >0 for e H,

According to the vector parameterization defined in section 3.2, the vector that defines
the intersecting plane between atom i and neighbor k is g, /2, , where the unit vector /1!
points towards the center of the neighbor. For the case shown in Figure 24 the solvent
excluded volume and solvent accessible surface of the central atom are on the H, half-
space that includes the origin, which is defined as

gih F-(gi) <0 (71)
where we also include the boundary. A slightly different case arises when the neighbor

“swallows” the central atom, but not completely (Figure 25 and Figure 26).

Figure 25. Example of a swallower: the neighbor Figure 26. The half-spaces defined in the case of a

. swallower neighbor (right). The exposed area and
(green) “swallows” the central atom (white) but

excluded volume of the central atom (left) is on half-

not completely. space H,.
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In such case, the intersecting plane is still defined by the vector g; /4, although now g,

- 1s negative. The half-space H, that includes the excluded volume and accessible area is

the one that does not include the origin, thus

gift -7 -(g) 20
or, (72)
~gil (g ) <0

In general, there can be both non-swallower and swallower neighbors. The
solution to the set of equations (71) and (72) is the intersection of half-spaces (IHS) and it
is the region of space that satisfies all the linear constraints imposed by the intersecting
planes of all the neighbors. Clearly, the IHS will be either an empty set or a convex set
(infinite or finite) bounded by the planes that truly contribute to the exposed area and
excluded volume. Thus, the faces of the convex polyhedron that bound the IHS belong to
the intersection planes of the neighbors that truly intersect the central atom (Figure 27).
By identifying the IHS we identify the true neighbors. The IHS is an empty set if the
constraints posed by the -intersecting planes are inconsistent. This occurs if the central
atom is completely swallowed by its neighbors. The exposed area and excluded volume

for such case is zero.

The problem of finding the feasible points for a set of N linear constraints has
many applications in computational geometry and mathematical optimization and its
efficient solution has attracted considerable attention. We will present here a simplified

version of the algorithm presented in [75] that is suitable for our needs. But first we will
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have to introduce the concepts of geometric duality and the convex hull (CH) of a set of

points.

Figure 27. The IHS for the example of Figure 21. The half-spaces of neighbors A, B and C that include the
central atom’s exposed area and excluded volume are colored blue, red and yellow respectively. The
overlap of the half-spaces is colored by the corresponding overlapping color, ie., yellow+red=orange,
blue+red=purple, blue+yellow=green. The common interior of the constraints is the IHS (green) and it is

only due to the A and C half-spaces. Neighbor B is occluded.

3.3.2 Geometric Duality and the Convex Hull (CH)
As was shown in 3.3.1, a plane in space can be described by the vector p normal

to it. The distance between the plane and the origin is ‘ f)‘ . At the same time, any vector

can define a point in space. In general, we define the geometric inversion in R? as a
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point-to-point transformation of R which maps a vector p applied to the origin to the

2

, applied to the origin [65]. Using geometric inversion we can define

. vector p =p/p

the dual of a plane p as the point p = 13/ | p 2 , and vice versa, the dual of a point p as

the plane p = ﬁ'/lﬁ’r.

The geometric dualization maps points to planes and planes to points. Thus, if it is
applied to a convex polyhedron, its vertices are mapped to faces in the dual space and the
faces are mapped to vertices. In the example in Figure 28 we see how a tetrahedron is

mapped to another tetrahedron with equivalent topology.

Figure 28. Geometric dualization of a tetrahedron. The vertices are mapped to faces and the faces to

vertices. The topology (e.g., faces connected by a common edges) is preserved.

Vertex 1, where faces A, C and D meet, is mapped to face 1 in dual space, which is

defined by the vertices A, C and D, the duals of the respective faces. Similarly, face A,
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defined by vertices 1, 2 and 4 is mapped to its dual vertex A, where dual faces 1, 2 and 4
meet. Edge 1-2, which connects faces A and C is mapped to edge A-C, which connects
| the dual faces 1 and 2. The orientation of each face is preserved in the ciual-space. This
topolpgiczil equivalency between a convex polyhedron and its dual will prove to be

crucial in our algorithm.

The convex hull (CH) of a set of points S in R is the boundary of the smallest

convex domain in R? containing S [65]. We can intuitively think of the convex hull of a
set of points in space as the geometric figure that would arise if we were to tightly wrap
the outside set of points with an elastic band. It is obviously a convex polyhedron and for
any set of points there exists a convex hull. A two-dimensional example of a convex hull
is shown in Figure 29. The CH is defined by the “most outwards” points of the set of

points.

Figure 29. The convex hull of a set of points in two dimensions.

Now we have all the tools needed to solve the IHS problem. The crucial property
of the THS is that if we dualize the intersection planes, which define the IHS, to points,

and construct the CH of that set of points, the dual of the CH is the THS. In other words,
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the dual of the IHS is the CH of the dual of the constraints. A proof of this theorem using
projective geometry is given in [65]. This gives us the recipe for computing the IHS:
Each intersecting plane k of the central atom i is a linear constraint described by the

vector g /1! . The dual of each intersecting plane is the point 4! /g . Then we calculate

the convex hull of all the dual points, including the origin (which is the center of the atom
i). For each face of the CH, we find its dual point. Using the topological equivalence
between the CH and its dual, as shown in Figure 28, we connect the duals of the faces of
the CH. The resulting polyhedron is the IHS. This procedure is shown schematically in
Figure 30 - Figure 37, for a two-dimensional example. Effectively this procedure is able
to remove the occluded constraints because of the nature of the geometric inversion. This
mapping brings points close to the center far away from it, and vice versa. The occluded
constraints correspond to far-away points. By inverting them, we bring their duals close
to the center and then the convex hull of the duals selects the ones farthest away from the
center in the dual space (closest to the center in real space), thus removing the occluded

constraints.

We include the center of the atoms in the set of points for which we construct the
CH because it corresponds to a constraint at infinity. We call the center in the dual space
thev “zero point.” If the IHS is open, like a convex cone instead of a convex polyhedron,
as in the example in Figure 27, the center will be a vertex of the CH. After dualizing the
CH, all faces thaf include the zero point are removed from the IHS polyhedron, thus

creating the open IHS. These faces are called “zero” faces.
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Figure 30. The linear constraints. Figure 31. The normals to the constraint planes.

Figure 32. Dual points of the constraint planes. Figure 33. The convex hull of the dual points.

Figure 34. The normal vectors to the faces of the Figure 35. The dual points of the faces of the CH.
CH.

Figure 36. Connecting the dual points of the CH. Figure 37. The IHS.
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A key property for this procedure is the existence of the coordinate center inside
the THS. In order to dualize the intersection planes, we must have a point with respect to
which we do the geometric inversion. This point was taken as the cer;ter of the atom,
because it is usually inside the IHS. However, if at least one of the neighbors is a
swallower, the center ‘of the atom is no longer in the IHS, as shown in Figure 25 and
Figure 26. Thus, before we can apply the aforementioned procedure, we need to find an
interior point of the IHS. This is a non-trivial issue since we are seeking for a point inside
a region for which we do not yet know its boundaries, and finding these boundaries is the
actual problem we have to solve and we need the interior point for. We can find though a
vertex of the IHS, without knowing anything else but the constraints, by using linear

programming, as described in section 3.3.3.

An additional complication that arises when there are swallower neighbors is the
existence of both a common interior (the IHS) as well as a common exterior, the region
of space for which the constraints (71) and (72) are inverted (if the constraints are not
inconsistent). As described above, the duals of the faces of the CH correspond to vertices
of the common interior (IHS). In the presence of swallowers, however, the duals of
certain faces of the CH correspond to vertices of the common exterior. These faces have
to be identified and removed from the CH in order to build correctly the THS. The
procedure then is slightly modified as follows: The zero point is not included in the
construction of the CH. After the CH is calculated, we identify which faces of it are
visible from the zero innt (the concept of visibility of a face from a point is explained in

detail in section 3.3.4). The duals of those faces are vertices of the common exterior. We
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name these faces “negative” faces because if we reformulate the problem using

homogeneous coordinates in four dimensions, then these vertices are points of the

hyperplane x, =-1, whereas the three-dimensional space we’re working on is the
hyperplane x, =1. (See Figure 38 for a two-dimensional example and Figure 39 for the

projection in three dimensions and [65] for details on homogeneous coordinates and the
interpretation of the problem in higher dimensions). Negative faces actually correspond
to constraints at infinity, much like the zero point corresponds to a constraint at infinity,

thus creating an open IHS.

Figure 38. Constraints and

Figure 39. Projection of the 2D problem in 3D. The constraint lines on the
their half-spaces, in 2D.
. hyperplane X, =+1 become planes that pass through the 3D origin. The

problem is mapped on a 3D unit sphere. (Figure adapted from [65].)

3.3.3 Linear Programming

Linear programming (LP) is a fundamental optimization problem that has found

applications in various fields, from computer science to economics to business
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administration, and it has attracted considerable attention in the literature. In its general

form it is formulated as follows [76]: For N independent variables x,,x,,...,x, we seek

a vector in the N dimensional space that maximizes the linear function

N
Flxxymnxy)= zcixi (called the objective function) subject to M linear constraints,
i=1

N
Za}x ; <ay,, ,where i=1,...,M (some of the inequalities could also be equalities). Any
j=1

vector that satisfies all the constraints is called a feasible vector. The feasible vector that
optimizes the objective function is called the optimal feasible vector. If the independent

variables are restricted to be positive, the LP problem is said to be in its normal form.

An optimal feasible vector can fail to exist for two possible reasons: the
constraints are incompatible or there is a direction in the N - dimensional space for which
one or more of the variables can be taken to infinity while still satisfying all the
constraints, giving an unbounded value for the objective function. The linear constraints
effectively reduce the search space into a convex polyhedron, which could be open. If
there is an optimal feasible vector, since the objective function is linear, it will have to be
a vertex of that polyhedron, which is the point at which some N of the constraints meet.
Thus, we can apply LP on the three-dimensional linear constraints (71) and (72), the half-
space inequalities, with an arbitrary objective function, to find a vertex of the THS.
However, a vertex of the THS is inappropriate to use as the coordinate center for
dualization, because the planes that meet at that vertex will be dualized to infinity. We

must find a truly interior point of the IHS instead.
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In order to find a point in the interior of the IHS we have to “shrink” the
constraint planes by a positive constant £ , towards the half-spaces of interest. Then, if we
apply LP for the shrinked constraints the optimal feasible vector will be a vertex of the

shrinked constrained polyhedron and thus an interior point of the THS (Figure 40).

Figure 40. The vertex of the IHS of the shrinked constraints (dotted lines) is an interior point of the

original THS.

The constraint planes are described by equations (71) and (72), which have the

form

p-F—|p| <0
D [p‘q 73)
F—|p[ 20

S

respectively, where p = gfi is the vector that defines each plane. The constraints can be
rewritten as

7 —|p|<0

F—=[p|20

=

(74)

3>
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The first equation corresponds to the half-space that includes the origin and the second
that excludes the origin, which is the case of a swallower neighbor as shown in Figure 26.
We want to translate the constraints towards the half-spaces of interest by a constant

positive value £, so the constraint inequalities become

~|

—(]13|—8)s0

1’5.
75
p-7—(p|+e)=0 7

as is shown in Figure 41 and Figure 42.

Figure 41. Translating the constraint plane P by Figure 42. Translating the constraint plane p by

£, towards the half-space H |, for the case of a g towards the half-space H ,» for the case of a

non-swallower neighbor. swallower neighbor.

The value of € describes by how much the constraints are shifted. We want an optimal
value for £ to ensure we find a point “way in” the interior of the IHS. We can achieve

‘this by setting it as an independent variable and optimizing its value using LP. So, instead

of solving the three-dimensional LP problem of the M constraints (71) and (72), where
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M is the total number of neighbors intersecting the central atom, we solve the LP

problem in the four-dimensional space (7, &) that consists of the following constraints:

inl i i\ . i
gkﬂk"""'gkg—(gk) <0, if g, >0

i A

—gp F-glet(gl ) <0, ifgl <0 (76)
-£50

which result from equation (75) by plugging p = g/ . We want to optimize the value of
£ to ensure we have an optimal interior point, so the objective function to be maximized
is

f(F.e)=¢ (77)

If there is a solution to the four-dimensional LP problem of equations (76) and

(77), the optimal feasible vector (?op, ,eop,) gives the interior point of the IHS, 7, . If the

constraints are incompatible, there is no solution and the atom is completely swallowed
by its neighbors, so the exposed area and excluded volume are zero. The case of an
unbounded solution has to be considered with care, since it can still provide us with an
interior point as long aé we can identify the direction in the N dimensional space that
gives an unbounded value for the objective function. The standard algorithms used to
solve LP problems [76], [77], assume the problem in its normal form and cannot deal
with unbounded soluﬁons. Instead, we implemented the algorithm introduced by Seidel

[78], which can deal effectively with these issues.

In Seidel’s algorithm, the optimum vertex is determined by a recursive procedure.

Initially, a constraint is picked in random, and a guess for the optimal vertex is made
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Figure 43. The constraints and the objective

function.

Figure 45, Projecting the point to a randomly
picked constraint.
18
o S i ’
/ i
/ 0 o omigin

Figure 47. Adding the last constraint. Solving the

problem in one dimension (on the constraint red-1.)

& oufzia

Figure 44. Choosing a random point on the

direction of the objective function.

omfasn

Figure 46. Adding another constraint. The point

satisfies this constraint.

Figure 48. Optimizing the point with respect to the
last constraint in one dimension and “lifting” the

solution on the two-dimensional space.



79

along the direction of the objective function. Then we keep adding the rest of the
constraints and check if the trial vertex satisfies them. If there is a constraint that is not
‘ satisfied by the trial vertex, we project the vertex and all the other co‘nstraints on the
hyperplané of that constraint and rec‘ursively solve the problem of M —1 constraints in

N —1 dimensions. The recursion will keep going into lower dimensions until we reach a
one-dimensional problem whose solution is trivial. That solution is then “lifted” onto the
higher dimensions. Additional constraints are added dynamically in the algorithm that
bound the optimal vertex in case of an unbounded solution. The pseudocode for this
algorithm is described in detail in [78]. A two-dimensional example of this procedure is
shown in Figure 43-Figure 48. There, the lines in red are the boundaries of half-spaces
that do not include the origin and the lines in blue bound the half-spaces that include the

origin.

3.3.4 Construction of the Convex Hull

As was described in 3.3.2, after we dualize the intersection planes to points, we
calculate the convex huli of the duals in order to eliminate the redundant constraints. If
there are no swallowers, the dualization is with respect to the center of the atom;
otherwise we app.ly LP to find a point in the interior of the IHS and use this point as the
center. The calculatioﬁ of the convex hull is done by means of a randomized incremental

algorithm that has optiinal expected performance [79].

We start the calculation by choosing four points in random to form a tetrahedron.

This is the starting point for the construction of the CH. At every consecutive step we
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will incrementally add and remove faces to this polyhedron until we arrive at the CH. To
do that, we pick a point in ranciom from the remaining set of points and check all the
faces of the current polyhédron to determine which faces are “visible” ‘from that point.
The faces of the polyhédron are oriéntated in a CCW fashion, looking from the outside.
This orientation defines a vector normal to the face pointing outwards. A face is visible

from a point if the point is on the half-space that the normal vector is pointing towards.
Mathematically, if the vertices of the face are the vectors d, b and ¢ , and the point is

d , then the sign of the determinant D determines if the face is visible, where

a,—-d, a —d, a ,=d,
D=|b,~d, b,—d, b —d, (78)
c,—d, ¢,—d, ¢ —d,

If D <0 then the face is visible, if D >0 the face is not visible and if D =0 then the

face and the point are coplanar. This is because the signed volume of the tetrahedron is

D/6 and the sign has to do with the orientation of the triplet a—d, b~d, c—d,

centered at the vertex d . After we determine the visible faces of the current polyhedron
for the picked point, we delete the visible faces that share an edge, along with the
common edge. If visible faces share a common vertex it is also deleted. We then create
new edges from the point to the undeleted vertices of the deleted faces and form new
faces, making sure we preserve the CCW orientation. The polyhedron that arises with the
new faces includes the deleted vertices in its interior. The procedure is continued by
picking another pkoint in random from the remaining set and adding and deleting faces to
the polyhedron after the visibility checks. At the end of each addition the polyhedron

created is the convex hull of the subset of points that have been utilized up to that step.



Figure 49. Set of points, Figure 50. Initial simplex. Figure 51. Visibility check.
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Figure 52. Add new faces. Figure 53. Remove visible faces.  Figure 54. Visibility check.
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Figure 55. Add new faces. Figure 56. Remove visible faces.  Figure 57. Visibility check.
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Figure 58. Add new faces. Figure 59. Convex hull.
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When there are no more points remaining, the algorithm guarantees the final polyhedron
is the CH of the initial set of points. This procedure is shown schematically in Figure 49-
Figure 59 for a two-dimensional case. The visible faces to be removed at every step are

marked with red.

It is clear from the above that the actual speed of the algorithm depends a lot on
the input set of points and the number of points eliminated at every step. The worst case
is if all points are on the surface of a sphere, then all points are included in the CH and
we must examine every point. Also, due to the random nature of the algorithm, the
performance will depend on order of the points picked. The further they are at the
beginning of the process, the more points are excluded and thus fewer points have to be
examined. This implies that if we somehow bias the selection process towards points
further away, we should increase the computational speed. This is the idea behind the
QuickHull variation of the randomized incremental algorithm, which was proposed in

[80] and was utilized in this implementation.

The only change on the incremental algorithm because of QuickHull is that, at the
beginning, we loop over all the points and for each point we find the first face that is
visible to it. For each face we create an “outside” list of points that it is visible to, and the
list is sorted according to the distance ,Of the point from the face. This way we partition

“the set of points to the outside lists of the faces. Then, instead of selecting in random a
point for the incremental algorithm, we select the point with the largest distance from its

face. At each successive step, after some faces are deleted and others created, the points
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in the outside lists of the deleted faces are repartitioned to the outside lists of the new
faces. In addition, the initial tetrahedron is created by four points that have maximum
coordinates. These additions to the QuickHull algorithm make the CH construction much

more efficient.

' 3.3.5 Determining the GB-paths

The procedure described in sections 3.3.1-3.3.4 allows us to determine which
neighbors are truly intersecting the central atom, or equivalently, which neighbors form
GB-arcs on the surface of the central atom. The next task is to identify the exact topology
of the true neighbors on the surface of the atom. If the COIs of these neighbors are

intersecting each other then they intersect at the GB-points (see Figure 18 and vectors
Pk; , Q,’d in Figure 19). Each true neighbor contributes at least one GB-arc (except in the

trivial case of an isolated neighbor, as in Figure 9) and two neighbors that intersect each
other may contribute at most two GB-points. Each GB-arc is a section of the COI of a
particular -neighbor, bounded by two GB-points at the beginning and the end. The
orientation of the GB-arcs is CCW, looking from top, according to the convention we set
in section 3.2. The goal then is to identify which neighbors’ COls intersect each other
thus forming a GB-point, group the GB-points into subsets that belong to each GB-path
and then order the GB-points of each group as they form the GB-path in a CCW fashion.
-When the GB-paths have been deternﬁned we can use equation (57) to calculate the
exposed area and equation (50) for the excluded volume. The key property that will allow

~ us to solve this problem is the fact that the edges of the IHS pierce the surface of the atom
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Figure 60. The THS polyhedron formed by the neighbors of the central atom (white) for the example in

Figure 8.

Figure 61. The IHS polyhedron of Figure 60 as it cuts  Figure 62. The IHS polyhedron of Figure 60.

through the central atom.
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at exactly the GB-points. This is clearly shown in Figure 60, Figure 61 and Figure 62,

where the [HS polyhedron for the central atom in the example of Figure 8 was calculated.

Each face of the THS is a polygon-shaped section of the planar boundary of the
half-space imposed by the corresponding neighbor. The COI of that neighbor lies on the
plane of the face. If the whole COl lies inside the face, the neighbor is isolated (Figure 9).
If the whole COIl lies outside the face (but on the boundary plane) then the neighbor does
not contribute any GB-arcs. If the COI lies partially inside and outside the face, then each
point on the COI that is on an edge of the IHS is a GB point (see Figure 19). An edge of
the THS is common to two of its faces. If an edge pierces the central atom, then the COIs
of the corresponding atoms intersect at the GB points. In the case that all the vertices of
the IHS are completely buried inside the atom, no edges intersect the surface of the atom
and thus there are no GB-points. In such case, the atom has no exposed surface because it
is buried under all its neighbors. However, the volume is not zero and it is the volume of

the IHS.

The edges of the THS pierce the central atom zero, one or two times. This depends
on the location of the vertices of the THS that define the edges, with respect to the surface
of the central atom. If both vertices are buried inside the atom then the edge does not
intersect the surface of thé central atorh. If both vertices are exposed the edge can

‘intersect in two points or none at all. This will have to be determined explicitly by the

following sphere-line intersection test: If a line goes through a point 7, and is parallel to

the direction # then every point on the line obeys the line equation 7 =7, + Aii, for any
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real value of 4. The unit vector # is determined by the positions of the two vertices. All

points on a sphere of radius R, centered at point 7. obey the equation |17 - FC| =R . The
system of the two equations has a solution if the quantity A/4= (@a-a) - (]&lz —RZ) is
positive, where d =7, —7.. Finally, if one vertex of the edge is buried and the other

exposed then the edge pierces the atom at exactly one point. (See Figure 63-Figure 66.)

O O

Figure 63. Buried-buried edge. Figure 64. Buried-exposed edge.
u/6
Figure 65. Exposed-exposed intersecting edge. Figure 66. Exposed-exposed non-intersecting edge.

The Veniées of the THS can give us even more information. By the very nature of
the IHS, a vertex of it is the point in space where three boundary planes meet. If a vertex
is buried then the three neighbors that correspond to each plane are connected on the
surface of the atom. The three edges that emerge from that vertex will necessarily pierce
the central atom once each, creating three GB-points (see Figure 67 and Figure 68). If the

vertex is exposed then the neighbors are not connected and the edges pierce twice,
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creating six GB-points (see Figure 69 and Figure 70). We call these edges “double

piercers.”

GB Point |
A / GB Point

Figure 67. A buried IHS vertex corresponds to three Figure 68. Two-dimensional representation of a

connected neighbors and three GB-points. buried IHS vertex.

1HS vertex

Figure 69. An exposed THS vertex corresponds to Figure 70. Two-dimensional representation of an

three disjoint neighbors and three GB-points. exposed IHS vertex.

In the case of an open IHS, certain vertices are at infinity. These vertices are the
duals of the zero faces of the CH in the case that there are no swallowers. If there are
swallowers there are no zero faces since we do not include the center, but there are
‘negative faces, as explained in section 3.3.2. The duals of those faces are taken to be at

infinity, in order to create the true THS, and clearly, they are exposed vertices (outside the
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central atom). The edges that have such vertices will fall either in the exposed-exposed or
exposed-buried category, depending on the properties of the other vertex. The analysis
for these cases is the same as before, with the exception that the directio;l vector i of the
edge (fof the intersection check) is taken towards the open face of the IHS, which in the

case of a negative face is opposite to the dual of the face.

Using the above ideas, we can generate the list of GB-points that are on the
surface of the central atom. After the IHS is constructed, we loop over each edge and
analyze its vertices to recognize how many GB-points it creates. Each edge is connecting

two neighbors. The GB-points are then assigned to one of the two neighbors, according to

the CCW orientation that we have chosen. For example, in Figure 19, the GB-point 13,;

would be assigned to neighbor j and the GB-point Q,’d to neighbor k. This way we

create a list of connectivities between the true neighbors on the surface of the atom. The

XNDD B W
[y

Figure 72. The connectivity

graph for the example of Figure

Figure 73. The
Figure 71. Example of topology of 71. The oriented edges '
connectivity table for the

neighbors on the central atom. ~ correspond to GB-points.
' example of Figure 71.
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connectivity list is an oriented graph, where each oriented edge is a GB-point and each
node is a neighbor. In the example of Figure 71 the COIs of the neighbors on the surface
of an -atom are shown unfolded onto a plane. The resulting connectivity graph and

connectiizity table of the GB-points is shown in Figure 72 and Figure 73.

It is possible that the connectivity graph can have more than one connected
component. Each connected component corresponds to a disconnected piece of the buried
surface of the atom, for which the Euler-Poincaré characteristic is 2—n where n is the
number of GB-paths on that piece, as was explained in section 3.2. In order to identify
the connected components of the connectivity graph, we use the Depth-First-Search
(DFS) algorithm [81], a recursive graph-searching algorithm. After finding the connected
components, we divide the graph to the respective sub-graphs. We then need to sort the
vertices of each sub-graph, thus ordering the GB-points as they form the GB-paths. The
GB-paths correspond to cycles of the connectivity graph. In the example of Figure 71
there are two GB-paths. However, the related connectivity graph of Figure 72 has more
than two cycles. The reason for this inconsistency is that as we traverse the graph, there

can be more than one option to select the next node, as shown in Figure 74.

In this example, we start traversing the connectivity graph from node 5, so the
next node can only be node 1. However, from that node we have three possibilities for the
‘next step, nodes 2, 3 and 5, as is shown in Figure 72 and Figure 74, because there are 3

GB-points on the COI of neighbor 1. To pick the right one, we use the parameterization

shown in Figure 19. The tangent vector on the COI A%, at the GB-point P from
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neighbors j—k ., points to the direction of the GB-arc for that GB-point. The next GB-

point has to be the end point of that GB-arc and thus the first point we encounter as we

traverse the COI in a CCW fashion. Hence, the next GB-point has to be the “left-most”

point relative to the direction ﬁff , which is easily determined by the dot product of the

direction vector to the vector that connects the current GB-point to the candidate next

GB-points, as is shown in Figure 74.

Figure 74. Traversing the connectivity graph of Figure 71: starting from the GB-point A on neighbor 5, the
next GB-point has to be on neighbor 1. Out of the three possibilities B, C, D, the GB-point B is the correct

choice.

The determination of the cycles (the GB-paths), for each connected component of
the connectivity graph, proceeds as follows: we pick a node in random, and pick an edge
for that node in random. This node is the head of the current GB-path. The next node is
chosen according to the “left-most™ criterion described above. When the next node to be
chosen is the head, we form a cycle, which is the GB-path. If there are oriented edges in

the graph that have not been traversed. we pick one in random and continue this
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procedure until all edges have been traversed. When we have finished this analysis for all
connected components, we have determined all the GB-paths for that atom. (See Figure

75 and Figure 76 for the GB-paths and cycles of the example of Figure 71.)

Figure 76. The seclected cycles (GB-paths) of the

Figure 75. The GB-paths for the example of  (nnectivity graph for the example of Figure 71. The two

Figure 71. GB-paths are: 5-1-2-6-7-3-8-4-1-5 and 1-3-7-6-2-1.

With the topology of the true neighbors on the surface of the central atom
determined, we are free to proceed with the area and calculation as shown in section 3.3.
Also, the knowledge of the IHS and the GB-paths allow us to understand better how the
planar sections of the building blocks are formed, as shown in Figure 77. The planar
sections are bounded by arc-segments and line segments, as was explained in Figure 17.
The arc-segments are the GB-arcs and the line-segments are parts of the edges of the IHS.
The vertices of the line-segments are either buried vertices of the IHS or GB-points. The
identification of these vertices is necessary for the calculation of the volumes using

equations (50) and (51). In particular, the knowledge of which neighbors intersect to
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create the buried THS vertices of the GB-points is needed for the calculation of the length

of the line-segments, ¢, , in equation (51). The calculation of the THS and its analysis, as

explained above, provides this topological information.

Figure 77. Relation of the planar sections of the building block of Figure 15 with the IHS and the GB-

paths.

3.4 Implementation of the Geometric Algorithms

3.4.1 Robustness

The geometric algorithms presented in sections 3.1-3.3 were implemented in a
computer program in the C programming language [82]. It is important for the
implementation td be robust and efficient in order for it to be used in large molecular
systems of complicated topology. The finite precision arithmetic used in computers can
cause round-off errors that may lead to erroneous results, produce numerical infinities or
even cause the program to crash. This is because of the dualization procedﬁre described

in section 3.3.2. If the distance of 2 plane from the center, g, is too small (the plane is
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very close to the center), then the dual point of that plane will be very far away from the
center in the dual space, and vice versa. Also, if four atoms come very close to
interseéting at the same pbint iﬁ space, some GB-arcs can be very cloée to zero length
and this can cause very small faces ‘of the CH and numerical instabilities for the gradient
calculation (see [83] for an analysis of problematic atom topologies). The geometric
predicate used to calculate the CH determines the visibility of a face from a point and it
can give wrong answers due to round-off errors in the aforementioned cases. If the
construction of the CH fails, then the result of the calculation can produce unphysical
results, like negative surface area or volume, or infinite gradients. In molecular dynamics
where the atoms are propagated in space by infinitesimal distances at every step, it is
inevitable that we will come across such cases in the course of a long simulation for a

large system. It is crucial that we can deal with these problems effectively.

These numerical precision problems were already known in the computational
geometry community. The calculation of geometric constructs (convex hulls, Voronoi
diagrams, Delaunay triangulations, etc.) faces similar issues due to finite precision. The
solutions proposed fall ihto two categories: perturbation schemes and arbitrary precision
arithmetic techniques. In perturbation schemes, the results are checked for unphysical
conditions and if errors are detected the spheres in the fused-sphere model are perturbed
about their centers by a very small distance that overcomes the degeneracies and
precision problems [84], [85], [86]. Arbitrary precision techniques attempt to create
geometric pfedicates that produce results of arbitrary precision on finite precision

machines. These techniques are conceptually better but computationally inefficient. New
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adaptive methods, however, promise efficient calculations for the geometric predicates
[871, [88]. In this implementation we used an adaptive arbitrary precision software library

for the calculation of the geometric predicates, which is in the public domain [88].

Finally, another topology that can produce numerical instability is coplanar (or
almost coplanar) molecules, like benzene. The problems are similar in nature as described
above but the solution is simpler: if the centers of the atoms are almost coplanar, instead
of calculating the CH in three dimensions we project the center of every atom on a plane

and solve the two-dimensional CH problem.

3.4.2 Scaling and Performance

For a molecular system of N atoms we have to perform N calculations for the
area and volume of each atom. Each calculation in turn involves the calculation of the
IHS and its analysis. The time for the calculation of the ITHS depends on the number of
neighbor atoms, M , that intersect each atom. The calculation of M half-spaces scales as

O(M log M) [65], thus the calculation of the whole system takes time O(NM logM). 1t

is important then to determine if and how the number of neighbors M depends on the

total size of the system, N [89].

Let us define r,, and r,;, the maximum and minimum radius of any sphere in

X

the system and K =r,,, /r,, their ratio. Also, if d_, is the minimum distance between

n

any two atoms (physically corresponding to the minimum valence bond length), then we
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define the ratio A=d_,, /1,

ax *

Let M be the neighbors of any atom i, or radius r,.
Then, all M neighbors’ spheres will be completely engulfed in a sphere centered at i
with radius 7, +2r,, . For each neighbor we define a sphere of radius Ar,;, /2. Then

these spheres do not intersect each other because their centers are at a distance smaller

than d_ :

2 r min min min

K

max

since x> 1. Hence, the sum of their volumes has to be less than the volume of the

engulfing sphere:

3 3
(420 ) Braw)
M < ) —< ) Z
(5 rmin j (5 rmjn ) (80)
Thus :

M< (6%)3
So, the number of neighbors M is bounded by a constant that depends on the radii and
distances of the spheres of the fused-sphere model. In practice, for the parameters we
used, we noticed that the maximum number of intersecting neighbors never exceeded
150, whereas the average value was around 80. Hence, the calculation of the areas and

volumes scales linearly with the size of the system, O(N) (See Figure 78 for scaling on

an Intel Pentium Xeon 866 MHz).
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The algorithms presented were implemented in three different platforms: Linux
(Intel), Irix (Silicon Graphics) and AIX (IBM) operating systems. The results are
‘extremelly accurate as comparevdv to numérical calculations of the V;)lumes of test
molec;ulesv and very fast. On an Intel‘Pentium 11T 866 MHz the average time spent for the
area and volume calculation of one atom is around 0.8ms (Figure 78). Areas of proteins
of typical size, 2000-5000 atoms can be calculated analytically, with gradients, in just a

couple of seconds. To our knowledge, this is the fastest implementation of the analytical

calculation of areas and volumes per atom for a fused-sphere model to date.

Scaling with system size
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[ B W [0} ~{
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N
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Number of atoms

Figure 78. Linear scaling of the area/volume calculation with respect to the number of atoms in the system.
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4 The AVGB-SAS Solvation Model

The algorithms in chapter 3 allow us to calculate accurately and efficiently the

solvent accessible surface area A. and solvent excluded volume V,, with their gradients,

for every atom i in a molecular system, assuming a fused-sphere model for the system

where each atom is represented by a sphere of radius r, +r,, where r, is the van der

Waals radius of atom i and r, the probe radius of the solvent, as it “rolls” around the

solute. The volumes of each atom are necessary for the calculation of polar solvation
effects according to the continuum dielectric theory, in the Generalized Born
approximation, as was described in chapter 2. In particular, under certain approximations
that were illustrated in sections 2.3 and 2.4, the Born radii are calculated by equations

(37) and (41) for which the solvent excluded volumes V, of each atom i are needed.

Since these volumes are calculated analytically, we name this version of Generalized
Born the “Analytical Volume Generalized Born” (AVGB) method. At the same time, as
was explaiﬁed in section 1.3.4, short range solvation effects are linearly dependent on the
solvent accessible surface (SAS) areas of each atom in the system. The volume
calculations have as a prerequisite the exposed area, so the short-range term is readily
avéilable in this calculation. The full solvation model includes both short-range and long-
range (polar) effeéts and we call this the AVGB-SAS solvation model. In the following
We will investigéte the performance of the model as far as physical predictions and

computational efficiency.
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4.1 Validation of the AVGB Model

The AVGB model is an approximation to.the solutions of the PBLequation (7). In
order to assess the qualjty of the AVGB model, we must compare our predictions to the
results of numer‘ical solutions of the PB equation. The best-known implementations are
the DelPhi program [22], UHBD [23] and PBF [24]. We will also compare our results to
the SGB version [55] of the GB approximation since it is the only GB implementation
that does not depend on fitting parameters, as AVGB does neither. The comparison will
be performed over different sets of molecules: small organic molecules, aminoacids,

large proteins and dimers.

4.1.1 Small Molecules

The 376-molecule set for the comparisons is from reference [43], and each
molecule has at most 40 atoms. The complete list is given in the Appendix. In order for
the comparisons to be unbiased, we must use the same parameters for each test molecule
in all methods. The van der Waals radii are taken from the DREIDING forcefield
parameter set [90]. The charges are calculated from electrostatic potential (ESP) fitting
[91] of the quantum-mechanical wave functions of each atom in the molecule, which in
turn were estimated by Hartree-Fock ab-initio electronic structure calculations using the
JAGUAR program [92] and the 6-31G** basis set. The probe radius of water was taken
to be 1.4A, the hard-sphere radius of wafer in the liquid state [12]. The dielectric constant

of water is 78.2, and for the interior dielectric constant we chose a value of 1.
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Table 6. The RMS difference is 0.62 Kcal/Mol.
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PBF vs Delphi

PBF (Kcal/Mol)
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Figure 81. Comparison of the polar solvation energies between PBF and Delphi for the molecule set of

Table 6. The RMS difference is 0.73 Kcal/Mol.

In Figure 79, Figure 80 and Figure 81 we compare the different methods that
calculate numerically the PB equation, UHBD, Delphi and PBF. All methods correlate
strongly wifh each other, as is shown by the linear regression coefficient R”. The linear
regression fit for every comparison is very close to the ideal y=x line. However,
looking more clo'sely we see that UHBD behaves better overall, as is shown by the RMS
differences between the results of the different methods. Delphi produces erroneous
results for a few molecules and PBF does not correlate as strongly as the other two
ﬁlethods with each other. Thus, for the rest of the comparisons we will focus on UHBD

as the method of choice for comparing GB to PB results.
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AVGB vs UHBD
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Table 6. The RMS difference is 1.79 Kcal/Mol.
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In Figure 82 we compare the results between AVGB and UHBD and in Figure 83
between SGB and UHBD. In both cases we see that the GB results are very well

‘correlated to the PB numerical solutions, as shown by the linear regression coefficient,
with AVGB corfelating slightly better to the PB results than.SGB does (R*> =0.98 for

AVGB and R? =0.94 for SGB). However, in both methods we observe a systematic
deviation from the PB results, as is shown by the regression fits to the line. The slope a
is different than unity and almost the same for both methods, 1.36, which means that both
GB methods overestimate the polar solvation energy as the system gets more solvated.
We observed such systematic deviation in Figure 6, where we used PB-derived Born radii
and the interpolation formula (19). At the same time, the Coulombic approximation
introduced in the Born radius calculation in section 2.3, along with the pairwise
approximation, equation (41), may lead to additional errors that result in the systematic
deviation from the correct PB results. The fact that both GB methods have almost the
same systematic error hints to the fact that the deviation is probably not due to the
volume or area calculation or the approximations used for the calculation of equation
(37). 1t is the interpolation formula (19) and the coulombic approximation that leads to
the formula for the calculation of the Born radii, equation (37), that are inducing the

systematic error in the calculation of the polar solvation energies.

The fact that the error is systematic allows us to calibrate our parameters such that
the predictions of 'AVGB match exactly the PB solutions. Of course, the success of such
approach will depend on the number of parameters that need calibration, and the

applicability of the calibrated results to molecular systems outside the set used for
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calibration. Since the deviation is systematic and linear in nature, we can take advantage
of the dependence on the interior dielectric constant £, of equation (18) to calibrate the

AVGB results. In particular if U,, is the PB polar solvation energy and U, the GB

- polar solvation energy, then, according to Figure 82 it is U, = al/ ;. We can rewrite

1 i
Ug = (;m_" e }y (81

1 Y Y qlq 1 M . . . .
where § = ——2 Z————i . We seek for a value &, of the interior dielectric constant such
=t j=t Jj

equation (18) as

that U, =U,, . Then, we must have

LIV T I
gt"n gout a gin gout
or, (82)

1 1 1(1 1J
—= +—|—-

a\ &, £

in ot n out

Using equation (82) we can predict the value £, that would give results that are very

close to the PB solutions. In our case, using a=1.36, ¢, =78.2 and ¢, =1.0, we get

out

g, =1.3. In Figure 84 we compare the results of AVGB with £, =1.3 to UHBD with

£, =1.0. The correlation coefficient R* =0.98 obviously is the same as in Figure 82,

but the slope of the linear fit is now much closer to unity, a =1.04 . The RMS difference
between the two methods is 0.46 Kcal/Mol. The agreement of the AVGB results to the

numerical solutions of the PB equation is excellent and the differences are not larger than
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the ones between the different implementations of numerical solutions of the PB

equation, as shown in Figure 79, Figure 80 and Figure 81.

AVGB vs UHBD

AVGB (Kcal/Mol)

-20 -15 -10 -5 0
UHBD (Kcal/Mol)

Figure 84. Comparison of AVGB with £, =1.3 to UHBD with €, =1.0 for the molecule list of Table

6. The RMS difference is 0.46 Kcal/Mol.

4.1.2 Large Molecules

The success of AVGB with small molecules is an encouraging step, but in order
for the method to be applicable to realistic systems, it must be equally successful in
predicting the polar solvation energies of larger molecular systems. Also, the calibration

of the interior dielectric constant that was described in section 4.1.1 should not have to be
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redone for the large systems. We compared the polar solvation energies for 11 proteins,
shown in Table 1.The radii used Qere from the DREIDING forcefield [90], charges from
the CHARMM?22 forcefield [93] and the protein structures from thé PDB protein
‘databank. The solvent dielectric coﬁstant was taken £, = 78.2 for water and we tested

AVGB with g, =1.0 and ¢, =1.3, and compared to UHBD with &, =1.0. The solvent

probe radius was 1.4A.

Table 1. AVGB and UHBD polar solvation energies for 11 proteins.

Size AVGB ¢, =1 AVGB ¢, =13 UHBD
Protein (nickname)

(Atoms)  (Kcal/Mol) (Kcal/Mol)  (Kcal/Mol)

L-Arabinose (ara) 4671 -4478.08 -3458.34 -3236.64
Carbonic Anhydrase II (cah) 4032 -3613.93 -2790.97 -2557.5

Carboxypeptidase A (car) 4791 -3985.97 -3078.29 -2665.98
Cytochrome P-450cam (cyt) 6444 -7922.67 -6118.53 -6354.81
Intestinal FABP (fab) 2112 -2091.36 -1615.12 -1549.72
Neuralnjni(iase (nad) ' 5978 -5329.57 -4115.93 -3686.73
Penicillopepsin (pep) 4550 -7003.04 -5408.32 -6061.3

e-Thrombin (ret) 4766 -5407.50 -4176.11 -4106.13
Ri‘bonuclease T1(rib) 1462 -2191.02 -1692.08 -1790.5

Thermolysin (tmn) 4700 - -5 150.37 -3977.54 -3835.41

Trypsin (rp) 3231 -2929.91 2262.71 -2086.56
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In Figure 85 we see how AVGB compares to the numerical PB solution for the 11

proteins when we use the same value for the interior dielectric, £, =1.0. We see that the

two methods correlate Véry well to each other, R?=0.95, but as with the small
molecule's, theré is a systematic error since the slope of the liﬁear fit is 1.29. In Figure 86
we compafe AVGB with the calibrated value of the interior dielectric, £, =1.3. The
AVGB predictions are very close to the PB results as shown by the linear fit slope 0.998.
The RMS difference is 303Kcal/Mol, which is about 10% of the polar solvation energy of
these systems. The differences between AVGB and UHBD are on the same order as

between UHBD and Delphi, which are different implementations of the numerical

solution of the PB equation.

The fact that the calibrated value of the interior dielectric that we obtained from
the small molecule set works so well with these large systems implies that we can use

€, =1.3 for any molecular system in order to get the polar solvation energy of that
system, as predicted by the PB equation with £, =1.0. Obviously, if we want the polar
solvation energy for €, #1.0 we need to redo the calibration procedure explained in

section 4.1.1. From this analysis it is clear that the calibrated AVGB results are
guaranteed to predict the polar solvation energy for molecules of any size and any solvent

and solute dielectric constants.
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4.1.3 Intermolecular Polar Solvation Energies

- In sections 4.1.1 and 4.1.2 we proved that AVGB caﬁ successfully reproduce the
bolar solvation energies for émall and large molecules. For the method to ble applicable to
any systerh, it must be able to describe accurately compléxes and multi-molecular
systems. This problem is more difficult than a single molecule calculation because of the
complexity of the geometry of the solute-solvent boundary and the screened
intermolecular interactions that have to be accounted for. To test the behavior of AVGB
in such cases, we examined the polar solvation energy of a THF dimer in different
orientations, as a function of the distance between the two molecules. Qualitatively, we
expect that the energy of the dimer at infinite distance should be equal to the sum of the
individual molecules’ energies. At very close distances, the polar solvation energy should
increase as the distance decreases; otherwise solvation would favor the collapse of the
dimer. At intermediate distances we expect to have a minimum for which the

configuration is optimally favorable.

In Figure 88 we see the polar solvation energy for the THF dimer of Figure 87,
where the polar oxygen atoms face each other. The solvation energy correctly reproduces
the infinity and zero distance limits, and it is a smooth function of the intermolecular
distance. Similarly, in Figure 90 the polar solvation energy of the THF dimmer of Figure
89 obeys similar behavior. In this case, the polar atoms are away from each other. AVGB
is able to correctly reproduce the intermolecular polar solvation energy. We note that for
the same test cases, all cher methods (UHBD, Delphi, PBF and SGB) did not predict the

right energies at the infinity limits and the polar solvation energy was not a smooth
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Figure 87. THF dimer with the polar parts facing each other.

( Polar Solvation Energy vs Distance
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Figure 88. Polar solvation energy for the system of Figure 87 from AVGB as a function of the distance
between the two THF molecules. The red line shows the energy when the molecules are infinitely separated

from each other.
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Figure 89. THF dimer with the polar parts away from each other.

—
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Figure 90. Polar solvation energy for the system of Figure 89 from AVGB as a fonction of the distance
between the two THF molecules. The red line shows the energy when the molecules are infinitely separated

from each other.



111

function of the distance. It is not clear why these methods fail to calculate the polar
solvation energ