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Abstract

In Part I, steady wakes in inviscid fluid are constructed and investigated using the
techniques of vortex dynamics. As a generalization of Foppl’s flow past a circular
cylinder [5], a steady solution is given for flow past an elliptical cylinder of arbitrary
aspect ratio (perpendicular or parallel to the flow at infinity) with a bound wake of
two symmetric recirculating eddies in the form of a point vortex pair. Linear stability
analysis predicts an asymmetric instability and the symmetric nonlinear evolution is
discussed in terms of a Kirchhoff-Routh path function. The wake behind a sphere
is represented by a thin cored vortex ring of arbitrary internal structure. Steady
configurations are obtained and long-wavelength perturbations to the ring centerline
identify a tilting instability. A generalization of the Kirchhoff-Routh function to an
axisymmetric flow consisting of vortex rings and a body is presented. Using conformal
maps and point vortices, translating symmetric two-dimensional bubbles with a vortex
pair wake are constructed. An instability in which the bubble and vortex pair tilt
away from each other is found as well as a symmetric oscillatory instability. The cross-
section of a trailing vortex pair immersed in a cross stream shear is represented by two
counter-rotating vortex patches. Numerical and analytical analyses are provided. The
method of Schwarz functions as introduced by Meiron, Saffman and Schatzman [13]
is used in the computation and stability analysis of steady patch shapes. Excellent
agreement is obtained using an elliptical patch model. An instability essentially
isolated to a single patch is identified, the nonlinear evolution of the elliptical patch
model suggests that the patch whose fluid elements rotate against the shear will be
destroyed.

Part IT examines a possible mechanism for the generation of water waves which
arrises from the instability of an initially planar free surface in the presence of a
parallel, sheared, inviscid flow. A two-dimensional steady flow comprised of exponen-

tial profiles representing both wind and a drift layer in the water is infinitesimally



v
perturbed. The resulting Rayleigh equation is analytically solved by mean of Hyper-
geometric functions and the dispersion relation is implicitly defined as solutions of
a transcendental equation; stability boundaries are determined and growth rates are
calculated. Comparisons are made with the simpler model of Caponi et al. [2] which

uses piecewise linear profiles.
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Part 1

Vortex dynamics in wake models



Introduction

A canonical wake structure behind a body is typified by bound vorticity which forms
a continuously circulating bubble of fluid. In two dimensional flow, such a wake
consisting of two symmetrically situated counter-rotating vortices is observed in the
early stages of an impulsively started flow past a circular cylinder. While below
a critical Reynolds number (Re ~ 48) this flow is stable, an increase in Reynolds
number leads initially to a symmetry breaking instability followed by the formation
of a vortex street. There is a similar sequence of changes in the flow past most bodies.
For instance, a region of closed streamlines behind a sphere forms a standing ring-eddy
at about Re = 17. Again an instability in the flow pattern develops above a critical
value of the Reynolds number. Recent numerical computations [6], [38]&[25] indicate
that as the Reynolds number is increased the first instability (Re ~ 212) appears in
the near-eddy separated region of the flow as a non-axisymmetric regular bifurcation.
As the Reynolds number continues to increase, shedding occurs. While no regular
pattern of motion like the vortex street appears to form in the wake, Bachelor [1, p.
262] suggests that vorticity is shed “ in something like a succession of distorted vortex
loops not symmetrical about the central aris.”

We hasten to remark that bound wakes are not limited to solid bodies or bodies
with a “no-slip” fluid-body boundary condition. For example, wake formations may
be seen to affect the shapes and behavior of bubbles. Ryskin and Leal [29],[30] first
computed steady shapes and flows for three dimensional axisymmetric rising bubbles
with bound wakes at a variety of Reynolds numbers. In experiments, Kelley and Wu
[7] visualized wake structures behind circular bubbles in a Hele-Shaw cell and present
evidence that wake shedding (whose onset is controlled by the Reynolds number) is
responsible for the zigzagging path of rising two dimensional bubbles.

In 1913 Foppl [5] presented a simple inviscid model representing the wake formed
by two recirculating eddies behind a circular cylinder in incompressible flow. In this
model the two dimensional velocity field is approximated by potential low with two

counter-rotating point vortices symmetrically situated behind the cylinder. Linear
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stability analysis shows the model to be unstable by means of a symmetry breaking
convective mechanism. Of course as this is an inviscid model, it is unable to predict
the critical Reynolds number at which at which the real viscous flow first exhibits
this instability. Foppl’s configurations has recently been re-examined by Delaat and
Coene [4] who extended the model to the case of a simple wing-body combination in
a cross-flow. Tang and Aubry [36] compared the inviscid model to computations of a
impulsively started viscous flow.

In the following chapters we generalize Foppl’s model to address the wake structure
of flow past elliptically shaped cylinders, spheres, and two dimensional bubbles. We
use conformal mapping techniques and image systems in Chapter One to determine
the steady location of a point vortex pair of given strength behind an elliptically
shaped cylinder of arbitrary aspect ratio. The resulting flow is shown to be stable to
symmetric perturbations but unstable to a symmetry breaking perturbation which
tilts the vortex pair. To further investigate the evolution of a non-steady symmetric
configuration, a Hamiltonian based on the finite part of the kinetic energy is formed
(and shown to correspond to the Kirchhoff-Routh path function). For the flow past
an arbitrarily shaped symmetric body, the Hamiltonian allows us to determine from
symmetric initial vortex locations behind the body if the vortex pair will be advected
down stream, orbit steady locations, or over take the body and continue up stream.

Vortex filament theory is used to construct a model of the wake behind a sphere
in Chapter Two. The model is again inviscid and features an axisymmetric configu-
ration of a thin cored vortex ring behind a sphere. For a given flow at infinity, the
down stream location, ring radius and core radius of the ring are prescribed and the
circulation of the ring and the average internal core structure are determined. By
constructing an appropriate image system and modifying the arguments of Widnall
and Sullivan [43] , we show that the wake model is unstable to a symmetry breaking
tilting of the vortex ring. We create a Hamiltonian (which generalizes the Kirchhoff-
Routh path function to vortex rings) which describes the axisymmetric interaction of
vortex rings of arbitrary internal structure with an axisymmetric body.

The role a vortex wake plays in the shape and stability of two dimensional bubble



4

receives attention in Chapter Three. The region of fluid external to a translating
bubble of constant shape is taken to be the image of the unit disk under an unknown
conformal map constructed in a manner which places a vortex pair wake behind the
bubble and satisfies a Bernoulli equation at the bubble interface. For a given Weber
number and nondimensional vortex pair strength, the map (and hence the shape of
the bubble and vortex locations) is numerically calculated. The shapes of the steady
bubbles range from circular (very high surface tension) to having a concave upstream
face (very strong vortex wake). Linear stability analysis indicates that all solutions
are unstable to a perturbation in which the vortex pair and bubble tilt away from
one another. For a certain range of Weber number, a symmetric displacement of
the vortices leads to unstable symmetric oscillations which may be interpreted as a
cooperative instability between two otherwise stable symmetric perturbations; the
oscillations of a point vortex wake and the oscillations of the bubble shape.

While the recirculating eddies are an important paradigm, one observes a separate
class of wakes behind a lifting surface. In an idealization, the vortex field behind a
wing forms a sheet which rolls up for down stream distances into a structure which is
approximated by two parallel counter rotating vortex filaments. A point of principle
interest is the behavior of the wake for large distances from the lifting surface, as the
existence of these counter rotating trailing vortices presents a hazard for aircraft and
may be used to deduce the location of submarines. Aeroplanes may experience a loss
of control when passing through the trailing vortices created by other aircraft and
the trailing vortices created by submarines may be detected when they impinge upon
the ocean surface as elevation disturbances or by the cold water or salinity they may
transport from the depths. By modeling the trailing vortices as two infinitely long
counter-rotating vortex filaments in unbounded potential flow Crow [3], identified a
three dimensional co-operative instability which may lead to the mutual destruction
of the vortices. We investigate a two dimensional mechanism which leads to the
destruction of only one of the trailing vortices in Chapter Four. We take the trailing
vortices to be immersed in a cross-stream shear, representing perhaps the wind in an

atmospheric boundary layer. We assume no spanwise variation in the vortices and
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examine a characteristic two dimensional cross-section of the flow. Patches of constant
vorticity embedded in a linear shear velocity are used to model the cross-sections
and steady patch shapes are numerically determined. Two families of solutions are
found. One is stable to two dimensional perturbations and the other is unstable.
The two solutions differ primarily in the shape of the patch whose fluid elements
rotate against the shear, this patch is more elongated in the unstable solution. An
examination of a perturbation with a corresponding positive growth rate suggests that
the instability is relatively isolated to that patch. We formulate an analytic model
based on elliptically shaped vortex patches in shear combined with the dispersion
relation for a single patch in unbounded shear and strain. This simple approach
produces results which are in excellent agreement with our numerics and allows us to
examine the nonlinear evolution of the patch shapes. The evolution of the patches
under this elliptical approximation suggests that the trailing vortex which is signed

against the shear may be destroyed while the other trailing vortex persists.



Chapter 1 The Foppl Problem for non-circular
bodies

1.1 Introduction

The inviscid two-dimensional problem of two counter-rotating point vortices of strengths
+I" and —I situated symmetrically behind a circular cylinder of radius ¢ in uniform
flow was first studied in 1913 by Foppl [5]. Placing the co-ordinate origin at the center
of the cylinder and orienting the axes such that the flow at infinity tends to parallel
flow of speed U in the x direction, Foppl found that the vortex pair is steady with
respect to the circular cylinder if it lies on the curve defined in polar co-ordinates
(p, ) by

a2

(1 - —5) = +2sin6 (1.1)
0

with a strength I' specified as

I _ (p2 B a2)2 (P2 + CL2) (1 2)
2rlUa ap® ' '

A second family of steady solutions can also be given for the vortex pair on the y-axis

centered about the cylinder where

P 2P+ -
2nUa ~ ya((y? + @) + 2a(y — @)’ (1:3)

See Figure 1.1.

F'oppl examined the stability of the vortex pair behind the cylinder to infinitesimal
two dimensional perturbations of the positions of the vortices. Despite some mathe-
matical errors as pointed out by Soibelman (private communication), Féppl identified

correctly an instability to asymmetric disturbances. Descriptions of Foppl’s steady



(a) Vortex pair behind éylinder (b} Vortex pair centered on cylinder

Figure 1.1: The two symmetric stationary configurations for r/a = 1.5. In (a) the
curve defined by (1.1) is drawn

configurations can be found in some of the standard references: it is included in
Lamb’s “Hydrodynamics” and “Theoretical Hydrodynamics” by Milne-Thomson as
well as Saffman’s “Vortex Dynamics”. The stability characteristics of such flows have
recently enjoyed a renewed interest as simple models of possible convective instability.
Tordella [39] examined the stability of Féppl flow during transient motions and De-
Laat and Coene [4] analyzed a generalized Féppl flow related to the case of a simple
wing-body combination in a cross-flow.

In this chapter, after a brief review of complex flow, we will use simple conformal
mapping techniques to generalize Féppl’s original configuration. This generalization
is effected by replacing the circular cylinder with an elliptic cylinder of arbitrary as-
pect ratio. We will maintain symmetry by requiring either the major or minor axis be
aligned with the flow at infinity. Two families of steady solutions are identified. Both
are shown to be unstable to infinitesimal asymmetric perturbations but one family is
shown to be stable to infinitesimal symmetric disturbances. We generalize this sym-
metric result by using Kirchhoff-Routh functions to describe the trajectories on which
the non-steady symmetric vortex pair travels. In subsequent chapters we examine two
further generalizations: a vortex ring behind a sphere and a two-dimensional bubble

with a point vortex wake.



1.2 Complex Flow

For the sake of completeness and notational clarity we begin by reviewing the mathe-
matical connection between two dimensional, incompressible, almost irrotational flow
and the theory of complex analytic functions. By “almost irrotational” we allow
vorticity only in the form of isolated delta functions.

For a two dimensional flow we use the common notation u = (u,v), where u is
the velocity of the fluid in the z-direction and v is the velocity in the y-direction.

The equations of incompressibility V - u = 0 and irrotationality V x u = 0 may be

written as
ou Ov
oxtay =0
ou  Ov
2 =0 1.4
Jdy Oz (1.4)

which may be interpreted as the Cauchy-Riemann equations for an analytic function
F = u — iv of the complex quantity z = z + 7y. The first integral of this function

defines the complex potential W(z),
Wi = [P e (15)
Which when split into real and imaginary parts,
W =&+, (1.6)

gives the scalar potential ® and the streamfunction W. The velocity field at point in

the fluid may be obtained from either;

ov oo
ov 0P

A point vortex is represented by a delta function of vorticity. Including a point
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vortex with circulation I' at the point z, in the flow mathematically requires
Vxu=T 0(z—z) (1.9)
or in terms of the streamfunction,
V20 = T §(2 ~ 2,). (1.10)
Solving for the corresponding infinite space Green’s function gives
r
U =——Ilog|z — 2z (1.11)
2m
which, when combined with its harmonic conjugate, gives the complex potential
T
Wi(z) = ~li5- log (z — z,) . (1.12)
T

To satisfy boundary conditions in a given region of interest or to account for the influ-
ence of other point vortices, the complex potential may be modified by the addition
of a locally analytic function F'(z). In general the complex potential in the region of

a point vortex has the form
T
W(z) = —i5— log (z — 2z,) + F(2). (1.13)
s

As a final point in our discussion of the complex flow, we note the velocity field defined

by this potential is singular at the point of vorticity itself;

_ darr I 1
U—10=——1—

. 1.14
dz 21 2 — 2, ( )

This singularity is simply the infinite rotational velocity induced by the delta function

of vorticity: the point vortex is advected by the locally analytic flow,

w(z) — iv(z) = g(zo). ‘ (1.15)



10
1.3 Two counter-rotating point vortices behind an

elliptic cylinder

In his paper Foppl [5] suggests that the flow may be modified to the configuration of
a vortex pair behind a flat plate which is perpendicular to the flow at infinity. Foppl
does discuss heuristically such a configuration but suggests in error that the locus of
steady points is simply the image of the stationary curve behind the circular cylinder
under the map which takes the circular cylinder to the plate. Furthermore, Foppl
makes no speculation about the stability of such a system.

We generalize the problem by replacing the circular cylinder in the Foppl flow
with an elliptic cylinder, of arbitrary aspect ratio, whose major axis is either perpen-
dicular or parallel to the direction of the flow at infinity, thus retaining a degree of
symmetry. Of course our solutions will include the case of a flat plate either parallel
or perpendicular to the flow at infinity as well as Foppl’s original flow. We mention
that in the perpendicular flat plate limit, the flow has an infinite velocity at the plate
ends and no Kutta condition is applied.

In general we find two families of steady locations for a vortex pair: behind the
elliptic cylinder and centered about the cylinder. We perturb the steady solutions
infinitesimally to examine the stability of the configuration to two dimensional dis-

turbances.

1.3.1 A derivation of the equations of motion for a vortex

pair in the presence of an elliptic cylinder

In this subsection we formulate the equations which govern the locations of two point
vortices with opposite strengths in the presence of an elliptic cylinder centered at the
origin. The boundary of the cylinder is a streamline and the flow tends to parallel

flow at infinity with the positive z-axis pointing in the downstream direction.
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To find the flow we use the complex velocity potential

a’ L ((=¢) T (@®—¢()
W (¢ :U<C+—)——log————i—+—log———_+—; 1.16
N ()Tt T ey MY
where the derivative dW/d( gives the instantaneous velocity field u —14v for flow about
a circular cylinder of radius a with point vortices of strength +I" located at (. We
combine this potential with the conformal Joukowski transformation which maps a

circle to an ellipse, and its inverse which maps the region outside of an ellipse to the

area outside a circle:

02

Z = C+Z“<‘ (1.17)

¢ = %(Z‘F \/;2——7) = f(z) (1.18)

where ¢ is complex, ¢ = |c|exp (i¢), and |¢| < 2a. Notice that under the map (1.17)
the image of a circular cylinder ¢ = aexp (if) is given by
: e’ e
¢ = exp (i9) <(a + E) cos (1) +i(a — Za—) sin (7’)) (1.19)
where 7 = 6 — ¢. This describes an ellipse tilted an angle ¢ with major axis (a +
le|? /4a) and minor axis (a — |¢|* /4a). The branch-cut in (1.18) is taken to be a
line between z = =¢, and thus inside the ellipse defined by (1.19), and the branch
is chosen so that ( ~ z for large z. We restrict ourselves to ¢ = 0, which will
correspond to an ellipse with its major axis aligned with the direction of the flow
at infinity; and to ¢ = 7/2, which will correspond to the ellipse with its major axis
perpendicular to the direction of flow at infinity. With this understanding we define
the real quantity A = ¢/ (4a®) which defines the shape of the ellipse. The aspect
ratio may be computed as (1 — A) /(1 + A) so that when A = —1 we have a flat plate
perpendicular to the flow, A = 0 corresponds to the circular cylinder and A =1 gives
the flat plat parallel to the flow.
The image of [¢| = a gives the boundary of the elliptic cylinder with area 7a? (1 - /\2);
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the z-plane will be considered to be the physical plane occupied by the fluid. The
physical boundary condition of no flow into the elliptic cylinder implies that the
boundary of the cylinder is a stream line. This condition has already been met by the
complex potential W[f(z)] we defined in equations (1.16). Notice that when z is the
image of a circle of radius a under the map (1.17) we have ¥ (f(z)) = S[W (f(2))] =
R [W (aew)] = 0.

For a given ellipse, the locations of the point vortices define the flow and are
in general time dependent. We can quickly derive the coupled ordinary differential
equations which govern the position of the vortices. The locations zy of the two point

vortices are given as the images of (. under our map (1.17) so that

CL2
2o = (it A— (1.20)
Ct

Cx+ = [flzs) (1.21)

where ¢ = f (z)is the inverse map defined in equation (1.18). Notice that since A is
real, Z, is the image of ¢ + and Z_ is the image of (_. In general the complex velocity

1© — v at a point z in the physical domain may be computed by using the chain rule

AW df
where according to equation (1.16)
W (- (1.23)
daf ¢? '

iT 1 c, L. C_
w\C=Cs (G —a? (¢ (C_—a)
As we have mentioned such velocities are singular at the point vortices due to the

infinite rotational velocity of a point vortex. The velocity of the flow which advects a

given point vortex is found by removing the simple pole singularity when evaluating
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(1.22) at the vortex, so

dz, . a®\ df

o = Am{U (1‘?>£ (1.24)
AR S S S P
27 \ ¢ — (4 CZ+—a2 (—C.  ((_—a?)dz 2mz—2zy

where ( = f(z). Using the relation

f fw 11w
}Hy{f(fv—f(y) x—y} 2 (7 ) (1.25)

we find the equations which describe the motion of two counter-rotating vortices in

the presence of an elliptical cylinder:

dZs  _ a®\ df (24)
- =V (1 - g) 5 (1.26)
__ZE N f/l (Z:t) B Z_;,_ _ 1 n ZA df(zi)
2m 2(f (Zﬂ:))2 Cinr —a? (i —C Ciz~ —a? dz

1.3.2 The steady locations for a symmetrically situated vor-
tex pair

We impose 2z, = Z_ since we are looking for steady solutions of our system - defined
by equation(1.26) - which are symmetric about the z-axis, i.e., the direction of flow

at infinity. The steady system then satisfies

a? i f//(z+) Z+ 1 -
I-=)= 5 — - (127
(-8) =50 (s ) 0

To find the locus of possible positions of the point vortices, we start with the elim-

ination of the parameter QZ;TFU by dividing equation (1.27) by its complex conjugate;

dropping the subscript and simplifying yields

~(C+0) (¢ = a®? + 1<l (¢~ O)) (1.28)
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= |2 = el a? (A - a?)C* + AC? — a?)C")

where in terms of

"
2(f"(2))
A
(=2
We find steady configurations for the vortices behind the elliptical cylinder by
assuming ¢ # ty. This leads to

2= AP {0¢P - a®) +1¢P (- O} (1.30)
= 2?2 - a?| {aQ)\ e @+ A + P (=0 + |C[4}

Describing ¢ in complex polar notation, { = r;exp (i) ; this equation simplifies to

give the curve
9 (5)" - 12()° =
sin“(#y) = —¢ 5 1.31
G -

in the non-physical (-plane. The image of this curve under the map (1.17) defines

the curve in the physical plane on which a vortex pair lies. Recall that the cylinder
in the physical z-plane has aspect ratio (1 — A) /(1 + A) with |A] < 1 and the fluid
corresponds to the image of points outside the circular cylinder indicating r;/a > 1.
When A = 0 this result reduces to the curve (1.1) given by Féppl for the flow behind
a circular cylinder. This curve emanates from the stagnation point at the back (or
front) of the ellipse. The fore-aft symmetry of the curve is a result of the fore-aft
symmetry of the ellipse and the time reversibility of the Euler equations. Equations
(1.31) and (1.27) are used to determine the strength of a stationary vortex pair. The

image of a given point { = r, exp (+i6,) on the curve (1.31) will represent a stationary
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vortex pair when the strength of the pair is given by

As an aside we note that there does not exist a steady symmetric vortex configuration
behind a flat plate perpendicular to the flow such that the velocities at the tips of the
plate are finite so that the Kutta condition can not be satisfied by such a configuration.

The equations for the vortex strength (1.32) and vortex location (1.31) in the
(-plane together with the map define a first family of steady solutions. Obviously
this is just the generalization of the solutions for the vortex pair behind the circular
cylinder: equations (1.1) and (1.2). Figure 1.2 displays various steady solutions with
point vortices behind elliptical cylinders; the curve on which any steady vortex pair
must lie is also included.

The generalization of a second family of solutions comes from noticing that ¢ = 7y;,
corresponding to vortices on the vertical axis in the physical plane z = i(y, — a®)\/ys),
will solve the steady equation (1.28). This solution for point vortices located above

and below the ellipse has strengths given by

r o 2((2)" — 1)((%)" + 1)2((%)
2l () (%) + 12 + 0 +2 (%) 0

a

(1.33)

‘)
5 :

- N((%)"-1)

Representative steady solutions are presented in Figure 1.3. One finds that this

configuration also does not satisfy the Kutta condition in the case of a flat plate

perpendicular to the flow.

1.4 The stability of the configuration

1.4.1 A derivation of the perturbation equations

To study the stability of the steady configuration with the vortex pair symmetrically

situated down stream from an elliptic cylinder, we analyze the response to an in-
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Figure 1.2: The generalized Foppl flow with vortices behind cylinders of various
ellipticities. The locations and strengths of the vortices are determined by r;/a = 1.5
in equations (1.31) and (1.32). The curve defined by (1.31) is also drawn.
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(©) A=+5 (d) A= +1.

Figure 1.3: The generalized Foppl flow with vorticies centered on cylinders of various
ellipticities. The strengths of the vortices are determined by y,/a = 1.5 in equation
(1.33).
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finitesimal two dimension perturbation in the vortex location. The circulations £I'

of the vortices are held constant. We assume the vortices’ locations, z, and z_, are

given by
2y (1) = 2.+ €z (1) (1.34)
z_(t) = 2%+ ez (). (1.35)

The quantities with an overhat are the time dependant perturbations and the super-
script s denotes the steady solutions. The steady vortex locations, 2§ and 2?, are
the image of (% = r,exp (if,) and its complex conjugate ¢* under the map (1.17).
Recall 7, and 6, are defined for a specific ellipse and vortex strength by equations
(1.32) and (1.31). To study the stability, we substitute the perturbed vortices, (1.34)
and (1.35), into the equations of motion (1.26), linearize about the steady solution,
and solve for the evolution of the infinitesimal perturbations.

We choose to examine the problem in the non-physical {-plane. Let

Cp = CL+eC,(t) (1.36)
(. = C+e_(t) (1.37)

so that under the conformal map (1.17) Zi relates to zx by

Ze(t) = (1 - A (za;) ) Ci()+0(&). (1.38)

Using the relationship 1 — A (a/zft)2 = 1/%, the full equations of motion can be
replaced with approximate evolution equations in the z plane accurate through order

€:

.
di

df (21)
dz

¢i
_£<i ffe) G 1 T
2m \ " 2(f" (24))"  CuCy —a® G —C (L —a?

~ U <1 - a—z) (1.39)

) |
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Notice that |df /dz|> will have the same value at either point vortex since z% are
conjugates. To formulate our perturbation equations, we linearize the right hand side
about the steady locations in the (-plane. Spliting the vortex locations into real and

imaginary parts in the nonphysical plane,
Co (8) =2 + iyl + e(@2(8) +i94(2)), (1.40)

and assuming the time dependence of the perturbations is of the exponential form

exp(ut) leads to an eigenvalue problem;

2

Mz = uz (1.41)

df (2°)
dz

where # = {&., ., %_,9_}" . We define instability as the existence of an eigenvalue

with positive real part.

1.4.2 A simplification due to physical symmetries

Given a stationary location for the vortex pair in the non-physical (-plane, (¢ =
x® +1y*, the appropriate linearized system (1.41) has certain symmetries. Let M; ; be
the elements of the matrix M; a change of basis to the physically motivated system
of symmetric and asymmetric perturbations exploits these relations by de-coupling

some of the equations, giving

df(zs) 2 Mll + M13 M12 — M14 . .
‘ dz xsym = lu’symxsym (142)
My + Mas =My — Mas
and
df(zs) Mll - MIS M12 + M14 .
’ dz Lasym = :u’asymwasym (143)
M21 - M23 M13 - M11

where Zyym = {2, +2_, 9+ — §_}" is the symmetric part of a perturbation and

Zasym = %{JEJF — T,y + Q,}T is the asymmetric part. The corresponding eigenval-
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ues are given by

4

df (2°) <(M11 + My3)? + (Mys — Myy)(May + M23)) (1.44)

2
H‘sym = ‘ dz

and

4

Y& ((Mn — Mi3)* + (May — Mas)(Miz + M14)) . (1.45)

2 —
lu’asym - ‘ dz

Recall that we have two fundamentally different configurations for steady vortex pair
in the presence of the elliptical cylinder. The pair is symmetrically located behind
(and actually also ahead by time reversal) the cylinder or centered about the cylinder.
We examine the stability of these two cases separately.

In order to calculate the growth rates for perturbations to a stationary vortex pair
we must calculate first the matrix elements M, ;, the analytic forms of which can be

found in Appendix A.

1.4.3 The stability of the vortex pair behind an elliptical
cylinder

In the case where the steady vortices are located behind the vortex as the images of

¢S = rsexp (£if;), we find at either steady vortex

o ®(® )

(1.46)

’ df (2*)
dz

Recall that r;/a > 1 for point outside the cylinder. Using the relations which define
the location of the steady pair behind the elliptical cylinder (1.31) and the vortex
strength (1.32) we are able to calculate the eigenvalues for both the symmetric and
asymmetric part of an infinitesimal perturbation. For the case of the circular cylinder,

A = 0, the eigenvalues reduce to simple forms. The symmetric perturbations are seen
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(a) Symmetric frequencies iu (b) Asymmetric growth rates g

Figure 1.4: The growth rates ;1 nondimensionalized on a/U for the vortex pair behind
the cylinder.

to be stable

< 0 for r,/a > 1/V3 (1.47)

(%)2 () | = 3 (%) ((%)(:)S;%) “ D4 0 for al rofa.  (1.48)

The growth rates for the A = 0 case have also recently been calculated by DeLaat
and Coene [4].

To examine the response to the perturbations for a general elliptic cylinder (1 >
A > —1), we present in Figure 1.4 contour plots of the eigenvalues as functions of
the downstream distance of the vortex pair and the ellipticity of the cylinder. By
computing the growth rates p, we find that a steady solution representing a vortex
pair behind an elliptical cylinder is always stable to symmetric perturbations and

always unstable to perturbations with an asymmetric component. Figure 1.4 (a) is a
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contour plot of the frequency i of the stable symmetric perturbations as a function
of A and z - the downstream distance of the vortex pair measured from the back of the
cylinder. The growth rates 4 of the unstable asymmetric perturbations are shown
in Figure 1.4 (b). The stability to symmetric perturbations is of special interest as
it indicates stability for a flow in which the fluid is confined to the upper half plane
with a boundary along the z-axis. In such a case the vortex in the lower half plane

is simply the symmetric image.

1.4.4 The stability of the vortex pair centered about an el-
liptical cylinder

We now turn our attention to the case of the steady vortex pair on the vertical axis of
symmetry, about the center of the elliptical cylinder. The steady vortices are located

at the images of (, = %ir;. We find that at either vortex

o
(()

Using the relation (1.33), which defines the vortex strength, we calculate the growth

)4
+A)2. (1.49)

df (2°)
dz

2o | |3

rates for an infinitesimal perturbation. For the circular cylinder, A = 0, the growth

rates have the simple forms

AV ey | 2B ZDE) +10(5)" —8(%) + 14(5) 1
(g) i) 1= () + ()~ 1 o

; (1.51)

(5 ) | = PG 5 5=
o) o) L e ) 4 ) -
notice that these quantities are positive for points outside the cylinder (rs/a > 1).
Any perturbation to the steady configuration will be unstable.

We present in Figure 1.5 contour plots of the eigenvalues as functions of the ellip-
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(a) Symmetric growth rates p (b) Asymmetric growth rates p

Figure 1.5: The growth rates p nondimensionalized on a/U for the pair centered
about an elliptical cylinder. All perturbations are unstable

ticity of the cylinder and the vertical distance of a vortex measured from the boundary.
By computing the growth rates p we find that a steady solution representing a vortex
centered about the elliptical cylinder is unstable to any two dimensional perturba-
tions of the vortex locations. Figure 1.5 (a) is a contour plot of the growth rates +p
of the symmetric perturbations as a function of A and y - the vertical distance of a
vortex measured from the top of the cylinder. The growth rates +u of the unstable

asymmetric perturbations are shown in Figure 1.5 (b).

1.5 The nonlinear trajectories of the symmetri-
cally located vortex pair

Given parallel flow at infinity aligned along the z-axis and given the elliptic cylinder
centered at the origin and symmetric about the z-axis, a vortex pair also initially
symmetric about the xz-axis will remain so in the absence of any external asymmetric

perturbations. This symmetric development also reflects the motion of a single vortex
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when the z-axis is considered to be a wall. In the previous section we found steady
locations of the symmetric vortex pair in the presence of an elliptic cylinder and
performed linear perturbation analysis to study the stability. We found the steady
locations for the vortex pair behind the ellipse to be stable to infinitesimal symmetric
perturbations, but the stationary vortex pair centered about the ellipse was shown to
be unstable to such perturbations. We now produce the trajectories that a symmetric
vortex pair will follow under the full evolution equations from an arbitrary symmetric
initial locations. It should be mentioned that while some such trajectories for the
case of a circular cylinder have been numerically calculated by time integrating the
nonlinear equations (DeLaat and Coene [4]), our intention, after consideration of the
kinetic energy, is to present an analytic function which defines the trajectories.

We construct a conserved function with Hamiltonian characteristics which repre-
sents the finite part of the energy of the flow for this time evolving system. Such
a function for point vortex evolution is known as a Kirchhoff-Routh function (see
Saffman [32]) or Routh’s stream function (see Milne-Thompson [17]). Given the ini-
tial strength and location of a symmetric vortex pair behind an elliptical cylinder, it
will be an easy matter to determine if the pair will remain with the cylinder while or-
biting the steady solution behind the cylinder, be convected permanently away from
the cylinder, or overtake the cylinder and continue upstream.

We begin with a derivation of the Kirchhoff-Routh function, followed by a con-
struction of the path function for the case of two point vortices in the presence of a
circular cylinder. We then use that result to formulate the Kirchhoff-Routh function

for the more general case involving an elliptic cylinder.

1.5.1 The Kirchhoff-Routh function

We can quickly derive the Kirchhoff-Routh function for the case of a flow with N
point vortices in the presence of a stationary body. Saffman [32] has shown that
in the absence of a background flow, the finite part of the kinetic energy can be

identified as the Kirchhoff-Routh function. To generalize this result, we show that
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with the addition of a time-independent background flow ¢, the finite part of the
energy is still conserved and takes the form of the Kirchhoff-Routh function.
Using complex notation, z = = + iy, we take the time dependent locations of the
vortices to be z, () with strength .. The stream function for such a flow has the

general form

(2, Z,t) = ¢,(2,2) + ¢, (2,Z,t) (1.52)
with N
Y, (2,2,0) = Y wGl(2,7% (1), % (1)) (1.53)
and
ezl (1).G (1) = 2 logle = = ()] +9(5 715 (0,7 (@) (154)

The function ¢, is a time-independent irrotational flow about the body with the
boundary conditions ¢, = 0 on the body surface B and 7, tending to parallel flow
at infinity. The term ¢, represents the flow due to the point vortices. In the fluid
domain G(z,%|2,,z,) is the Green’s function representing a point vortex at z, with
the conditions G(z,%|2,%,) = 0 on the body surface and g(z,Z|%, z,) tending to a
constant at infinity.

We calculate the kinetic energy (K.E.) of the flow and examine the evolution of

its finite part. Integrating over the fluid, the kinetic energy is given by

1
KE = 3 / (v +v*) dA (1.55)
all fluid
1 S
= 3 Vi - Vip dA. (1.56)
all fluid

We subtract the time-independent (and possibly divergent) kinetic energy of the

background flow and define the resulting energy as T’

1 I 1 L.
T o= / Vo - Vi dA — / Vi, - Vib, dA (1.57)

all fluid all fluid
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_ / §¢0.6¢vdA+% / (WU)2 dA. (1.58)

all fluid all fluid

An application of Green’s formula gives boundary integrals over the arc at infinity

and over the body as well as an area integration;

= lim 7{%8”(1 —%w Y ds — / ¥, Vi, dA (1.59)
|zI=R

R—o0
all fluid

> | Jim ?{z/; %W 4 —]{zpv%‘i”ds— / ¥, V3, dA

|z| R oB all fluid

The boundary conditions for the background streamfunciton 1, and the vortex stream-
function 1, imply that the boundary integrals contribute nothing. The remaining area

integration may be calculated;

T = — / <w0+%wv) V), dA (1.60)
all fluid
= Zw 2 (t Zw 5 (1),%; (1)
1 N N
= Z ke, (20 (1) ,Z0 (1)) + 5 ZZ kikeG (24, Z| 2k, Z1)
r ik k
1 ] 1. oL k2
+3 ang(z,zm (t),z (1) — 512% gloge
J

The divergent term represents the time-independent infinite kinetic energy due to
singular velocities at the points z.. Subtracting this divergence from 7', we identify

U as the finite part of the kinetic energy

N N N N
1 _ _ 1 _ _ _
¥ = 3 Z Z kikkG (24, Zj| 2k, Z1) + 3 Z /i?g(zj, Zilzi, Zj) + Z ki, (2;,%Z;) . (1.61)
j#k K j j

This quantity ¥ which represents the finite part of the kinetic energy is conserved.
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Notice that the velocities of individual vortices may be recovered from ¥,

=1 = 2 1.62
dt lij 8% ( )
— = ——, 1.63
di Iij 837j ( )

These equations imply that

dv oV dy; 0V dz;
il o Ty = (). 1.64

J
We have shown that an inviscid fluid in the presence of a body moving with fixed
speed ( corresponding to a time-independent background flow v, ) conserves kinetic
energy. For a given flow, ¥ is known as the corresponding Kirchhoff-Routh function.

If one re-writes equations, (1.62) and (1.63) with the notational change ¢; = \/|f;|z;
and p; = \/|k;]y;, then ¥ is interpreted as a Hamiltonian.

1.5.2 The trajectories about a circular cylinder

For the case of point vortices in the presence of a circular cylinder of radius a, the
stream function due to both the background v, and the presence of point vortices,

located at z, with strength k., is given by

Y(2,2) = 4,(2,2) + > #:G(2, 2|2, 2,) (1.65)
where
Gleralen ) = 3o (logle =l plog(1- )0- £)) (o9
and
bo(2,2) = %(Z+%2—Z— E?) (1.67)

with z = x + iy and the overbar denoting complex conjugation.

The path function ( i.e. the Hamiltonian ) can now be constructed:
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1
U = ;ﬁ;s(ws + 51a0s) (1.68)
where
1
Yy =V, (2s,Z5) + = Z/ﬁmsG(zT, Zy|2s, Zs) (1.69)
2
T#8
and
1
gs = lim [G(Z,Z|zs,fs) + —log|z — z]| - (1.70)
22 27

We are interested in the problem of only two point vortices; the locations given by
21 and 29 and with the corresponding strengths k; and k9. In this case the Kirchhoff-

Routh function has a simple form;

v (Zla 211227 22) = Klwo (Zla 21) =+ HQwO (225 22) (171)
B

a
1— ——
1, a2> 1, < a2>
+—kilog|{1l— —= | +—krilog |1 — —=].
i g( ) " ax 27

1
- 1 — 4l -1
- ) oz 1] = log |1~

And for the case of the symmetric vortex pair, we say 23 = 22 and K = K1 = —Kq

with the flow parallel to the z-axis. Calling the symmetric Routh path function ¥,

we find
a2 2 2
U, = 2yk (1 P y2> + 5 log [2y| + —log |1 — Yy (1.72)
1 k2 | (22 — 3% — a2)” + 422y
———1Io
225 " (a2 +y2)°
where z; = z + iy. Relating ¥, to ¥ one finds
1 0V,
U = —— (1.73)

2k Oy
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1 0,

e (1.74)

v =

1.5.3 The trajectories about an elliptical cylinder

To generalize the Kirchhoff-Routh function for the case of an elliptic cylinder, we
choose to use conformal mapping techniques. As earlier, we use the Joukowski trans-

formation pair. Recall
2

2= (+/\% (1.75)

maps a circle to an ellipse, while its inverse

= % (s + V=173 (1.76)
takes the region outside of an ellipse to the area outside a circle. The branch cut is
chosen to be contained within the ellipse. The z-plane will be the physical plane, in
which the boundary of our body is an ellipse, while in the non-physical plane (the
(-plane) the boundary is circular. We require A be real so that the ellipse will have
major and minor axis aligned on the co-ordinate axis. When A = —1 a circle of radius
a will be mapped to a flat plate on the y-axis, while A = 1 maps the circle to a flat
plate on the z-axis.

In order to construct the Kirchhoff-Routh function in the z-plane, let I'(2q, Z1 |22, Z2)
be the Green’s Function in the z-plane and G((y, ¢ [¢y, ;) its image in the (-plane.
Define v and ¢ as the additional harmonic parts of the stream function required to

satisfy boundary conditions; so that we may write
_ _ _ _ 1
F(Zl, 2’1|22, ZQ) = ")/(251, Zl|ZQ, ZQ) - 57-; IOg |Zl — 29 (177)

and

G(Cu&l@@z) = 9(C1,21'C2az2) - ‘QI;IOg ¢y — Cal- (1.78)

Since the Green’s function in the (-plane is simply the map of the Green’s function
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in the z-plane, if we let {; tend to the image of z; we find

1 le

Q(C1>Z1|<17€1) = (21, 21|21, 21) — Idﬁl (1.79)

With this in mind the path function for the case of two point vortices in the

presence of an ellipse becomes

VU (21,Z1]22,22) = K1, (Cpa) + Ko, (CQ?ZQ) (1.80)
2
_”“21"‘2 <1og|g1 G~ logll — - )
T 162
K2 dz 2
+E (log dC1 +log |1 |§1|2 )
5 (1|2 )
T (1 g‘dcz el iGEl)

We are interested in the special case of a vortex pair symmetrically located behind

a cylinder, z; = Z, and kK = k1 = —k5. Call this path function Uy, then
v, (Zl>§1> = K (wo (C1az1) — 1, (Zlv C1)) (1.81)
;2 _ 2
too (10glC1 — (| —log|1 - a2 >
K2 dz; 2
+—(lo +log |1 > .
o ( &ldc, T

where, from the map equations (1.75) and (1.76), we see that % =1- Aa?/¢? and
(=3 (a+ VE—2aN).

The contours in the Figure 1.6 give the trajectories of a vortex in the upper half
plane which is half of a symmetric pair. Due to time reversibility and the physical
symmetry of the cylinder, the trajectories are symmetric about the y-axis. The
stationary point for the vortex behind the cylinder forms the center of a class of
orbiting trajectories. The steady location for the vortex above the cylinder is the
saddle point from which the separatrix emanates. The separatrix closes at the points

{z,y} = {%o0,k/ (4xU)}. A vortex pair in unbounded fluid will travel at the speed
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30l

Figure 1.6: The Contours of Hamiltonian for k = —7/27, nondimensionalized by the
choice U,a = 1. The ellipse is defined by A = —.5.

U = k/(2ml) where [ is the separation distance, so the point at infinity where the
separatrix closes represents a steady location for the vortex pair which does not see
the cylinder. Those trajectories within the separatrix are closed orbits. If the vortex
is above the upper branch of the separatrix it will be convected down stream, while
it if is below the lower branch of the separatrix the vortex pair will pass about the
cylinder and head up stream. We also mention that since we have an analytic location
for the saddle point, (1.33) with (1.75), given a vortex strength it is a simple matter

to calculate the value of the Hamiltonian which defines the separatrix.
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Chapter 2 The Generalization of Foppl Flow to a
Vortex Ring Behind a Sphere

2.1 Introduction

In his numerical examination of the time variation of equipressure surfaces in mod-
erate Reynolds number flow past a sphere, Shirayama [34] relates the leading wake
instability to a tilting of the ring-like wake. We construct a simple model for the
eddy structure observed behind a sphere, and the stability analysis is done with the
hope that it may give insight into the convective mechanism that produces the wake
shedding.

In this chapter we study the motion of a thin cored vortex ring in the presence
of a sphere of radius a moving with constant speed U in an inviscid fluid. The
vortex ring itself is a vortex filament with strength I' and a core radius ¢, whose
centerline forms a circle of radius R; by “thin cored” we mean that the ratio ¢,./R
of the core radius to the ring radius is small. While there are many ways in which
a vorfex ring might interact with a sphere we will limit ourselves to a generalization
of Féppl’s two dimensional wake model studied in the last chapter. In particular
we will be looking for axisymmetric solutions which are steady with respect to the
sphere. The linear stability properties of such steady solutions are then analyzed by
adding an infinitesimal sinusoidal perturbation to the centerline of the vortex ring
and computing associated growth rates.

A circular vortex ring in unbounded flow at rest at infinity will travel in the
direction of its axis of symmetry with a speed which depends on its strength, radius,

and core radius. The so called self-induced velocity, first calculated in 1867 by Kelvin,
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of a uniform finite cored vortex ring is to leading order given by

r 8R 1
l - —1. 21
v= 47TR|:Og(CT) 4} (2.1)
By taking into account the internal structure of a vortex ring, Saffman [32] used

energy considerations to deduce that the speed of a thin cored vortex ring is given by

U= 4FR [mg(if)—%—?%ﬁ OCTT[ () dr +4§; CTT[U(T)]%ZT] (2.2)

where w is the swirl velocity and v is radial velocity.

To give an expression for the velocity field u outside the core of a vortex filament,
we first note that, since the flow is incompressible, u can be represented as the curl of
a vector potential A. We assume the velocity field induced by a thin vortex filament
is adequately approximated by the field induced by a filament for which all of the
vorticity is concentrated on the centerline. Under this assumption the expression for
the vector potential at point P, outside of the core, due to the vortex filament is given

by a Biot-Savart line integral;

r S
o ] (23)
and thus
(P —
R(s, t 7 (2.4)
}P R(s,t)|

where R(s, ) is a parameterization of the vortex filament centerline and ds is a line
element of the closed curve of integration coincident with the line vortex. To calculate
the value of the velocity field at a point on the thin cored filament of a vortex ring,
Thomson [37] suggested a cut-off method be used to circumvent the fact that the
integral in (2.4) diverges logarithmically as P approaches a point R on the curve. In
the absence of other flows, the equation for the motion of a point on the filament is

given by

OR(s',1) _ __F_/ (R(s,t) — R(s, 1)) < ds 25)

ot 5 [R(s',t) = R(s, )|’
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where the subscript [6] indicates that a section of length 2dc, centered on the point
R(s,, t) has been removed from the range of integration. When used to calculate the

velocity of a ring, equation (2.5) gives

r 1+ cos (6£%)
= ——log | —— 28 2.
v 8TR ° (1—COS (5;—&)) (2:6)
r S8R\ 1 8R\?1 - cos (65)
= — |1 — ] - = ) 2R
47R og(q) 210g<<c,~> 1+cos(6%))}

which when d¢,/Ris small has the leading order form

r

U= 1% [log (?) log (25)] . 2.7)

A comparison with the velocity (2.2) may be made to determine the correct cut-off
value J for a given internal structure.

As a result of their higher order theory for filament motion, Moore and Saffman
[21] showed that the cut-off approximation is a dynamically consistent method for
describing the motion of thin cored filaments in the case that the cut-off length is

prescribed by the internal structure of the filaments as

1 2 Cr 4 2 Cr
log (26) = 5+ 8—;— rw (r)) dr — F—ﬂ-g 7 [v ()] dr (2.8)

where Jc¢, is small compared to the local radius of curvature of the centerline. A
uniform core without swirl implies v (r) ~ ['r/(27¢?) from which one calculates
log (26) = 1/4 in agreement with expression (2.1); for a stagnant core one finds
log (26) = 1/2.

We shall not assume any specific internal structure in this chapter; our results will
be equally applicable to all core structures which satisfy certain compatibility criteria.
In particular, for a given steady vortex ring location we will calculate a value for the
ratio d¢,/R; our work will only be applicable to core structures ( i.e., és) such that
¢-/R is small. In order to use the cut-off equation in our stability analysis we will

also require that the perturbation wavelength be large compared to 2dc,, the cut-off
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length.

2.2 Steady configurations

2.2.1 The axisymmetric flow

In looking for a steady configuration of the vortex ring behind a moving sphere of
radius a, we define a cylindrical polar coordinate system (p, ¢, z), with p radial, ¢
azimuthal, and z axial. The corresponding velocity components are (v, w,u). The
origin is taken to be the center of the sphere and the positive z-direction points
downstream. The center of the vortex ring will be located a distance Z downstream,
so the centerline of the ring will be located on the curve (R, ¢, Z). Since the steady
solutions we are seeking are axisymmetric and swirl-free outside the filament, the

corresponding vector potential has one nonzero entry,
A= (O7 g,()) . (2.9)
p

From the function 1/, known as Stokes stream function, velocities are readily available:

1 0y

uw = 2% 2.10

) (2.10)
=Y

To create the streamfunction for our configuration, we combine the simple irrotational
flow past a sphere, the flow induced by a vortex ring in unbounded fluid and a flow
referred to as an image. The image is that irrotational flow which balances the flow
induced by the vortex ring across the sphere’s surface and decays to zero for large
distances from the sphere.

In the absence of the vortex ring,

3

I P
() oy

¢bg
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Core radius: C(@

Sphere radius: a

3 :SnIper SuIIsuS)

Figure 2.1: A sketch and cross section of a axisymmetric vortex ring and sphere.

gives the irrotational flow past the sphere. We shall refer to this as the background

flow; hence the subscript bg.
To calculate the velocity field due to a thin vortex ring of radius R in unbounded
fluid a distance Z down stream from the origin, we make the following substitutions

in expression (2.3) for the vector potential A:

P —R(s,t)| = \/(z — Z)* + p? 4+ R? — 2pRcos (p—¢) (2.13)

ds = egRcos (¢ — @) do + e,lisin ((/) — ng') do . (2.14)

The integrand in the e, direction is odd and sums to zero. We find the Stokes stream

function due the vortex ring has the simple form

IL'pR [*" cos
Ar Jo /(2 —2Z)2+ p?2 + R2 — 2pRcost

wvorteaz (Z, P) = d@ (215)

Such an expression could be represented in terms of elliptic integrals of the 1°¢ and
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274 kind.

As discussed in Saffman’s “Vortex Dynamics,” a distribution of vorticity can be
prescribed within the sphere in such a way that it serves as an image system for
any vorticity outside the sphere. That is to say it preserves the physical boundary
condition of no flow across the surface the sphere. Ordinarily such an image system
is quite complicated; but in the case of a circular line vortex which lies on a spherical
surface concentric with our physical sphere, the image system can be constructed
as an axisymmetric vortex ring inside the sphere. This image ring has its vorticity
concentrated on its own centerline with strength I". The image ring is located on the

curve (R’, o, Z ') where the quantities are related to the physical vortex ring by

2

' a
R = R———— :
R (2.16)
o a2
4 = L 2.1
Z? + R? (2.17)
, R
' = T4/ —=. 2.18
R/ ( )
Accordingly we find the stream function due to the image;
I'pRa 2 cosf
image \ %> = de. 2.19
Vimage (2 ) 4V Z2+ R? Jo \/(z—Z")2+ p*+ R? — 2pR cos (2.19)

It is simple matter to check that ¥, i0; + Yimage = 0 for points on the surface of the

sphere.
Combining the stream functions for irrotational flow past a sphere, the ring in-

duced flow and the image system, gives the Stokes stream function for our system:

¢ = 77/}bg + zl}vortem + wimage‘ (220)

The velocities are given by the relations u = (0v/dp) /p and v = — (0 /0z) /p , at
a point on the filament of the thin cored vortex ring the cut-off equation is employed

in evaluating the contributions from v,
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2.2.2 Computation of steady configurations

In order to arrive at the equations which govern the axisymmetric interaction of a
thin cored ring with a sphere, we use expression (2.6) for the self-induced velocity of
the ring. Recall that this velocity corresponds to the leading order approximation to
the cut-off integration for a ring. Under this approximation the downstream location

7 and radius R of the centerline of the ring evolve according to the equations

dz 10

—d? - EE/_) (wbg(Ra Z) + wimage(R7 Z)) (221)
_F_ 1+ cos (520—1’{)
+87TR log (1 — cos (5;—;{))
dR 10
= = g (VB 2) + Ve R, 2)) (2:22)

To conserve the volume of the thin cored ring, we also require R(t) ¢2(t) = const.

A steady configuration satisfies the following equations:

1 0¢, 10, r 1+ cos (0)
0 = ——2 4 "¢ log | ———28C 2.23
R o R O0Op N 8RR o8 1 — cos (55}—%) (223)
0 o,
0 l wbg _1_ wzmage . (224)

R 0Oz R 0z

For a given background flow speed U and sphere radius a, our approach is to choose
a steady ring location Z and radius R and to use equations (2.23) and (2.24) to
calculate the strength ' of the vortex ring and its corresponding core radius ¢,. In
order to be consistent with our approximate self-induced ring velocity, ¢,/ R must be
small.

From equation (2.24) we find a relationship between the strength I' of a steady
vortex ring and the speed U of the fluid at infinity; particularly their ratio is a function

of ring location Z and radius R,

Ul &P (2 + R%)*? /27r cos " (2.25)
r 6ar o (d*+2a?R*(1 — cos 9))>? ‘
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(a) 8¢, /R = 0.097, T/(Ua) = —2.094 (b) 6¢,/R = 0.411, [/(Ua) = —2.110

Figure 2.2: Streamlines for a steady vortex ring behind a sphere. Swirl is required in
(b) for the ring to be thin cored.

where d?> = R?>+ Z? —a?. We calculate the corresponding value of ¢, /R from equation

1—cos (6C—T) 8t [0, oY, )
log | ———28L ) = — g LA 2.26
°8 <1+cos (526—;%)) r < op + dp ’ (2.26)

(2.23);

or more specifically as a function of R and Z

Cr 1- f
5—1% = 2arccos L n f] (2.27)
where
U 3a® R? a?
1 — 81— - _ _
8f) = Srph (1 a7 +R2)3/2) (229

de.

QaR/QW cosf ((Z2 — a?)? + R*(Z*? — a*cos0))
0 (d* + 2a2R2(1 — cos 0))*/?

Recall that aU/T is a function of R and Z by expression (2.25).
The vortex strength T and core radius ¢, of steady rings are plotted as functions

of R and Z; Figures 2.3 (a) and (b). Since we are considering a wake model, we
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(a) ¢ /R (b) I'/(Ua)

Figure 2.3: The core size and strength of a steady vortex ring behind a sphere.

have only plotted these quantities for positive downstream distances Z. Obviously
the time-reversibility of the Euler equations implies that there are corresponding
upstream values.

Recall as defined in equation (2.8), the cut-off ratio ¢ is dependent on the internal
structure of the filament; e.g. § = exp (1/4) /2 for a uniform core. From the contour
plot of d¢c, / R we may check the criterion that ¢, /R be small for a given core structure;
such locations correspond to consistent solutions of our system. Since 2dc; is the cut-
off distance in calculating the induced velocity, the corresponding angle 2d¢, /R must
be less than 27. From and examination of Figure 2.3, we see that in much of the area
behind the sphere the cut-off angle 20c¢, /R is relatively large. A ring in this area may

only be thin cored if § is large, implying a large swirl velocity inside the ring.

2.3 Stability analysis

2.3.1 Formulation of the stability problem

Before proceeding to address the stability of our configuration we note that Thomson
[37] first investigated the stability of a thin cored vortex ring in unbounded fluid to

infinitesimal sinusoidal perturbations of its centerline. In his analysis, consistent to
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Figure 2.4: A sketch of a perturbed vortex ring and sphere.

O (In (¢;/R)) , he concluded that rings were stable to disturbances in which nc,/R
is small, where n is the number of waves on the ring of radius R. Widnall and
Sullivan [43] employed the cut-off equation to examine the same stability problem;
their analysis included terms of O (1). Widnall and Sullivan found instability only
for perturbation wavelengths too small to be consistent with the use of the cut-off
approximation. It should be mentioned that later, through the work of Widnall, Bliss
and Tsai [42],[44] and of Moore and Saffman [22], a short-wave co-operative instability
was identified. By a construction of a suitable image system and utilization of the
results of Widnall and Sullivan [43], Lough [9] shows that a vortex ring in a pipe is
subject to a symmetry breaking tilting instability. Following a similar approach, we
shall show that a vortex ring behind a sphere is unstable to a tilting perturbation.
In this section we study the response of a thin cored vortex ring behind a sphere
to infinitesimal sinusoidal perturbations of its centerline. We limit our attention to
perturbation wavelengths consistent with the cut-off equation. In cylindrical polar

coordinates the vector to a point on the perturbed vortex filament is given by

R = (R+ere™) e () + (Z + e ,e™) e, (2.29)

I

where the origin is at the center of the sphere and €, points downstream.
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In order to derive the linearized evolution equations for the location and shape of
the vortex filament, we begin by examining the general velocity field. As in the steady
calculations, the field can be considered to be the sum of three parts: the flow induced
by the vortex, the background flow past the sphere, and the flow induced by the image
system. Since the Stokes stream function can not account for non-axisymmetric terms
introduced in the flow by the perturbations, we choose to represent the background
flow past the sphere and the contribution from the image system as the gradient of a
scalar potential field . The velocity at some point P outside the vortex core is given
by

r (P —R.)

P)=— ¢ ——= N . .
u(P) = ! P-R, x ds, + Vo (2.30)

The scalar field ¢ is determined by requiring that, when evaluated at the surface of
the sphere, the normal component of u is zero, u tends to parallel flow at infinity,
and VZp = 0 in the fluid.

To calculate the velocity of a point on the vortex filament (P goes to a point R
on the centerline) we must replace ¢ by the cut-off f[ 5 For such an approximation to
be valid, the perturbation wavelength 27 R/n must be much longer than the cut-off
distance 2dc,.

To order € , the potential may be written as

¢ = 0y (2,0) + 0 (2,0) + €™ {100, (z,0) + (oo (2:0)} +O () (2.31)

where

3
0y, = Uz (1 + ——“—-—) (2.32)

2(22 + p2)*?
is the background flow past a sphere and ¢, accounts for the leading order image flow.
We note that the potentials ¢,, and ¢, are equivalent to the Stokes streamfunction
Yy ad Yj0, defined by equations (2.12) and (2.19). The computation of the image

corrections, ¢, , and ¢, ,, is described in Appendix B. They are obtained by imposing
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the boundary condition of no flow into the sphere:

dp T (P —R.)
87‘ - 471_n7' f IP _R*‘ X ds*|7‘:a (233)

where r is the radial co-ordinate in spherical co-ordinates and n, is the normal to the

sphere’s surface.

2.3.2 The perturbation equation and the calculation of growth
rates

In the absence of any background the potential flow or image system, Widnall and
Sullivan [43] used the equations of motion resulting from the cut-off equation (2.5) in
their stability analysis to show that the motion of a point on the filament due only

to the velocity induced by a perturbed vortex ring in unbounded fluid obeys

8820 = Vs (6%;71) ¢, (2.34)
%Cto = Us (5%;7‘&) To (2.35)

for applicable wavelengths, where the self-induced velocity perturbations are given by

47 R? Cr 1 1

Vs (5-5,71) = F)+50m-DF(m+)-Sn+DF(n-1) (236)
A1 R? Cr 3 3 1

—Us (5E,n> = —S-5FO+3FQ) (2.37)

1 1 1
+SF () + 5 (1=20) F (n+1) + 5 (1+20) F (n = 1)
with
1 [T cosmb

With the formulation of Widnall and Sullivan in mind, we see that once the

potential ¢ has been determine to order e the equations linearized about a steady
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solution take the form

0 To To
2 M (2.39)
¢, Co
with
82 6 82 8
v [ (05 +©31) + 55%rn aroz (Pog +¢3) + o Pen + Vs (2.40)

2 2
636}{ (Qpbg + 902') + %gpr,n + U, 8_827 ((pbg + 901') + %%"c,n

where the matrix entries are evaluated at a steady solution defined by (2.25) and
(2.27). Writing Z (t) = {r,, ¢}, we perform the standard separation of variables,

T (1) = exp (u,t) T, (0), to arrive at the eigenvalue equation
M7, = p, . (2.41)

The mode of the perturbation is denoted by the subscript n on the eigenvalue. Eigen-
values, p,,, with positive real parts represent instability.
We anticipate that eigenvalues will come in 4 pairs. Since the matrix is 2 x 2 the

eigenvalues will, from the quadratic equation, have the form

Hy, =t \/B (2.42)

Furthermore time reversal is equivalent to a reflection about the y-axis for our steady
state so that if p, = X is an eigenvalue, so is p,, = —A, thus a = 0.

In order to justify the use of the cut-off equation in evaluating the induced ve-
locities Us and V's, we restrict our stability analysis to steady solutions in which the
cut-off distance 2d¢, is much smaller that the perturbation wavelengths.

We calculate the first six growth rates at eight different locations indicated in
Figure 2.5 and present them in Tables 2.1 and 2.2. We find that the ring is always
stable to an axisymmetric displacement (n = 0 mode). When the steady vortex ring
is far from the sphere, it is unstable to a tilting (n = 1) perturbation, but stable to

all higher modes.
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Figure 2.5: The locations of steady rings for which we compute growth rates, distances
have been non-dimensionalized on the sphere radius.

In his study of wakeless axisymmetric bubbles, Mieron [12] found bubbles shapes
to be stable to all perturbations with oscillation frequencies determined by the ratio of
inertial forces to surface tension know as the Weber number. We conjecture that the
natural frequencies of a bubble may be tuned by means of the Webber number to lead
to a cooperative instability with a vortex ring wake for given modal perturbations.

For rings closer to the sphere, the eigenvalues of higher modes appear, in order, to
pass through the origin and become unstable. For most core structures we are unable
to draw any concrete conclusions from this behavior for a subtle reason: in calculating
the image flow we assumed that the velocity at the surface of the sphere induced by
the thin vortex ring may be adequately approximated by the velocity induced by a
delta function of vorticity lying along the centerline of the ring. When the distance
from the vortex to the sphere is of the same order as the vortex core radius ¢, this
approximation may no longer be valid. Of course the core size of a given steady
solution depends on the internal structure of the vortex by means of equations (2.8)
and (2.27). For a given steady location of the vortex ring near the sphere the ratio
d¢,/R is calculated, one could in principle choose a core structure (hence a ) such

that the core size is small enough to satisfy our approximations. ‘
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(b)

()

(d)

Zla,R/a | 2.473,1.662 | 1.089,1.356 | 0.997,1.036 | 0.986,0.694
der/R 0.08973 0.09192 0.091791 0.883900

'/ (Ua) —8.1306 —4.32309 —3.0436 —1.56399
=T 10.0837 10.30929 10.55983 11.19298
g 0.3316 0.64272 0.858324 1.02720
po g 10.4240 10.99353 0.026460 1.34451
s 11.0010 11.67467 11.85708 11.31257
== 11.4823 12.51483 12.94033 12.95861
tTusp 11.8537 13.13988 13.73117 14.10829

Table 2.1: The first six growth rates p, corresponding to perturbations exp(ind)
computed at four different steady solutions shown in Figure 3.5.

(e) (f) () (h)
Z]a, Rja | 0.780, 1.588 | 0.641,1.222 | 0.689,1.027 | 0.831,0.785
dcy /R 0.04489 | 0.045215 | 0.04553 0.0477
T/(Ua) | —4.2867 | —29752 | —21707 | —1.3297
+p,&  d0.17281 | 4317387 | i0.57133 i1.0959
tp, 051112 | 0.775162 | 0.97283 1.0139
e i0.80758 | 0.217324 | 1.27313 1.93570
st 0204214 | 42.05502 | i1.22269 | 41.74478
4, e 0331178 | i3.64643 | 3.16675 | i1.82264
+us® 460039 | 521764 | i4.91042 | i3.98436

Table 2.2: The first six growth rates p, corresponding to perturbations exp(inf)
computed at four different steady solutions shown in Figure 3.5.
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2.4 Hamiltonian for axisymmetric problem

Pedrizetti and Novikov [28] present without derivation a particular Hamiltonian for
a thin cored vortex ring interacting with a sphere, for which the velocity of the ring
in absence of the sphere would be given by U = ;- [log(%ﬁi) +3/2 - log(8)]. This
speed is evidently particular to a certain class of core structures. In this section we
construct a more general Hamiltonian corresponding to axisymmetric flow consisting
of a vortex ring with swirl in the presence of a sphere moving at a constant speed.
By examining the isolines of this Hamiltonian, we can make observations about ax-
isymmetric interactions between a vortex ring and a sphere as well as the stability
of a steady configurations to axisymmetric perturbations. Qualitatively, our investi-
gation and results reflect that of two dimensional Féppl flow. We also present the
Hamiltonian for the interaction of multiple vortex rings, each with their own core
structure, in the presence of a body and background flow under the requirement of
axisymmetry.

As in the chapter on Foppl flow, we examine the finite part of the kinetic energy
(K.E.) in arriving at a Hamiltonian. We consider an axisymmetric flow consisting of
a vortex ring with core radius ¢, and centerline radius R interacting with a sphere
embedded in otherwise potential flow. Let us start by computing the kinetic energy

for axisymmetric flow with swirl about a body;

1
KE. = 5 / (v* +v* + w?) p dpdgdz (2.43)
fluid

= W/(u2—|-112+w2)pdpdz,

where we have exploited axisymmetry in performing one integration. We assume
that the azimuthal velocity w is purely swirl so that v and v may be obtained from
a Stokes stream function ¥ = v, + 1. Here 1, represents the time-independent
irrotational background flow and 1, produces the flow induced by the axisymmetric
vortex ring. On the boundary of the body ¢, = ¢, = 0 and 7, tends to plain flow

for large distances while 1, tends to a constant. Vorticity will point in the azimuthal
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direction and may be obtained as

1%y, 10%p, 104,
_ _ 2 _ 44
YT T2 pop W p Op (2:44)

To compute the finite part of the kinetic energy, which we will call T', we subtract

the energy of the background flow ¥,;

T = 7r/(u2+v2+w)pdpdz—7r ( %(%) dpdz (2.45)

B 1 (,\* 0%, 0, 1 T 0, 99,
‘”/E((ap>+apa>d”d /E((“) 80)dpdz

+7T/w2p dpdz.

After integration by parts and using the boundary conditions for ¢/, and %, we find

T=m / (29, +9,) w dpdz + ﬂ/pr dpdz. (2.46)

The integrations are over all fluid, but we expect the vorticity w to only be non-zero
in compact regions (the vortex filament). We reduce the generality of this expression
for the finite part of the energy by requiring that the swirl velocity w and vorticity w
exist only with in the vortex ring. Furthermore, we split the streamfunction %, into

two parts;

1/)11 = wuorte:r + ¢image (247)

where ) represents the flow induced by a ring in unbounded fluid - away from the

vortex

vortex core it has the approximate form given in expression (2.15). The remaining

term ¥ is the irrotational flow which allows v, to meet the given boundary

image
conditions on the sphere and at infinity; equation (2.19) gives 1,44, The finite part

of the kinetic energy may now be written as

T [ (2t Vi V) 0 Aol [ lpdpdz (248)
vortex v

ortex
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where the integrations are over a cross-section of the ring.

We divide T into three parts which we compute separately;
T = Tvortea: + To + T%mage- (249)

To leading order Saffman [32] has computed the kinetic energy due a single vortex

ring Tyorter S

Toortes = 7T/ (wvortezw—}_pr) dpdz (250)
vortex
1., 8R 2r?2—  2mict—
~ il [log<7>_2+ A L

where the overbar denotes average across the ring cross-section. The kinetic energy

T, due to the interaction of the background flow with the vortex ring is computed as

T, = 7T/ 2w dpdz (2.51)
vortex
p? a3
~ LAt [ — — d
WFU/ > | ! RV 6(z—2)6(p—R) dpdz

2 3
P L7 L
2 (R? + 722)*?

where Z is the downstream distance of the ring. Similarly we compute Tjyqg., the

kinetic energy of the interaction between the image system and the vortex ring;

Tonage = 7 | g dpd (2.52)
vortex

N _P2§2_a 2 cos @ 40
4 Jo \/d*+2a2R%(1 — cos0)

where d? = R* + 7% — o®.
Imposing conservation of vortex core volume 6 (Rc?) = 0 and vorticity 6 (T') = 0

Saffman [32] showed
5Tvortea:

OR

=2n'R Uself (253)
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Figure 2.6: The contours of the Hamiltonian for a vortex ring and a sphere. Distances
are non-dimensionalized on a. Here I'/(Ua) = —1.564 and o = 0.0796.

where Use; is the self induced velocity of a vortex ring, (2.7) and (2.8). It is now a

simple matter to show that T will be conserved; using (2.53) and direct differentiation

we can show

oT dz
oT dR

which takes Hamiltonian form if we make the identifications p = 7['R? and ¢ = Z.

For a uniform thin cored ring without swirl, the conserved quantity is given by

2 3 3/2 1
T = 9T (1 - (——a———> + Lpr [log <8R ) —24 Z] (2.56)
o

9 R? + Z2)3/2 2
2 27
—F2R a / cos 0
4 Jo +/d*+2a2R?*(1 — cos#)

where o = ¢, (0) \/R(0), and results from conservation of volume.
We see in Figure 2.6 a similarity to the plot of the Kirchhoff-Routh function for
the point vortex pair behind the cylinder.

We can, in analogy to the Kirchhoff-Routh function, give the Hamiltonian for
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an axisymmetric constellation of NV thin cored vortex rings each with their own in-
ternal structure interacting in the presence of a body and with a background flow.
The locations of the vortex rings are given by (Z;, R;) and they have corresponding
strengths T';. Given the irrotational background flow v, (2, p) , which is zero on the

body boundary; we define

R, [T cost
G@mwﬁ&)zig/“\ﬂ o + g (z, p|Z;, R;)
o Z —

Z;)? + p* + R} — 2pR;cosd
(2.57)
by requiring G (2, p|Z;, R;) = 0 on the body boundary, V?¢ = 0 in the fluid, and g¢
tends to a constant at infinity. Following similar steps to those above, we find that

the finite part of the kinetic energy is conserved and takes the form

H = YN TTwG(Z;, R\ 2, R) + Y T39(Z;, R;|Z;, Ry) (2.58)
k#j i j
+ 3 TP (25, Ry) 42y Ui, (25, Ry)
J J

where T7 is related to the self induced energy of the 3% vortex ring

SR 2mct 27
log ( j) —2+ Luf + P Twi (2.59)
) J

L1
T; =54

The individual rings evolve according to

oOH dz;
7
oOH dR;

In form, equation (2.58) differs from the Kirchhoff-Routh function only by the inclu-
sion of the self induced energy terms. The finite core radius of the vortex rings leads
to a finite self induced energy. In calculating the finite part of the kinetic energy
for two dimensional flow in the last chapter, we removed the divergent self induced

kinetic energy for point vortices.
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Chapter 3 A two-dimensional bubble with

point-vortex wake

3.1 Introduction

There has long been much interest in the problem of rising bubbles. In 1956 Saffman
[31] presented a theory of zig-zagging bubbles which assumed irrotational flow near
the front of the bubble, while Moore [18],[19] showed that when the Reynolds number
is sufficiently high, the viscous effects are confined to a narrow boundary layer on
the surface of a bubble. In his investigation of the shape and stability of an inviscid
bubble rising at a constant speed in potential flow, Meiron [12] neglected both gravity
and viscosity assuming that while the terminal velocity may be determined by the
balance between small viscous and gravitational effects, the inviscid pressure forces
and surface tension determine the shape and stability of the bubble. A parameter of
interest in such a case is the ratio of inertial forces to surface tension, referred to as a
Weber number. In his study Meiron examined the linear stability of three-dimensional
perturbations to axisymmetric bubbles in potential flow; he found stability for all
computed steady solutions. Ryskin and Leal [29],[30] first computed axisymmetric
rising bubbles for a variety of Reynolds numbers, many with bound vorticity in the
wake. The linear stability of such solutions remains an open question largely due to
the computational intensity of the problem.

The case of two-dimensional bubbles rising in irrotational inviscid fluid has re-
ceived its share of attention. McLeod [11] presented an exact analytic solution for a
particular Weber number. Shankar [33] numerically computed the shape of steady-
state bubbles with aspect ratio from 1 to oo, identifying a maximum value of the We-
ber number (= 0.745) above which no steady symmetric two-dimensional solutions

were found to exist. Nie and Tanveer [27] examined the stability of these bubbles
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and found, as Meiron has for the three-dimensional analog, the bubbles to be linearly
stable for all Weber numbers. From numerical integration of the nonlinear equations,
Nie and Tanveer found that an initial condition that consists of a steady high aspect
ratio bubble and a suitable symmetric eigenmode may result in pinching of the bubble
neck as it tends to oscillate about the steady state. They present a estimate of the
finite perturbation amplitude necessary for such an occurrence.

In this chapter we generalize the Féppl flow to a two-dimensional bubble with a
simple recirculating wake formed by a vortex pair. In this way we extend the current
work on two dimensional bubbles. We numerically solve the steady system and present
solutions for a variety of vortex strengths and Weber number. We find the addition of
the point vortex wake increases the maximum Weber number and affects the bubble
shape by breaking the fore-aft symmetry. A numerical computation of linear stability

shows such flows are unstable; both pure growth and oscillatory growth are found.

3.2 The physical considerations

In this section we derive equations which govern the evolution of a system consisting
of a two dimensional incompressible bubble traveling at a constant rate in inviscid
fluid and a counter-rotating vortex pair. As a simplification, the internal structure of
the bubble is not specified; instead we assume a constant pressure P, at the boundary
of the bubble. This pressure will become a part of a Bernoulli constant and will not
be an independent parameter. Physically one could interpret our results in terms of
a drop rather than a bubble when P, is not zero.

Differential equations relating the location of the vortices to the fluid flow will
result from desingularizing the velocity field by removing the self induced infinite
rotational velocity at each vortex. The bubble’s shape will be determined by requiring

that the interface be a material line, and from an application of a Bernoulli equation.
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3.2.1 Nondimensionalization and the Weber number

We assume that our two-dimensional bubble is rising through a fluid of density p at a
constant speed U, which results from a balance of viscous drag and buoyancy. The
bubble has area A and surface tension S at the interface.

Following Nie and Tanveer [27], we non-dimensionalize with respect to L, V¥, and

p where

e 61
. S
Vo= ,/p—L. (3.2)

From these characteristic scales, we can construct the non-dimensional quantity re-

_ . JPE
We=Us\[ 5 (3.3)

3.2.2 The vortex wake model

ferred to as the Weber number:

Selecting the centroid of the bubble as the origin and orienting the right handed co-
ordinate axes in such a way that the z-axis points in the downstream direction, we
adopt standard complex notation for two-dimensional flow, z = z +iy. Modeling the
wake behind a bubble, we place a point vortex of strength I' at z; and another of

strength —T" at z_. Define the non-dimensional strength v as
~v=T/(V*L). (3.4)

We utilize the complex velocity potential formulation as in previous chapters. The

complex potential, W, is related to the streamfunction, 1, and velocity potential ¢ by

W(z) = ¢(2) + 1(2). (3-5)
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The fluid velocities may be obtained from W by

ow

o (3.6)

U — U=

Recall that in unbounded flow a single point vortex at z, with circulation ~y cor-
responds to a complex potential —iv/ (27)log (z — 2,) . In general, the velocity field
is singular at a point vortex. To relate the velocities of the point vortices at z+ to
our flow, we subtract the singular rotational velocities of the point vortices when

evaluating the velocity field,;

3Z+ N . a LY
(%) = tm g (W igtoste - =) 0
Oz_ L0 Y
(W) = Jim o (Wi log (e - =) (3:8)

where the overbar denotes the complex conjugate. We refer to this desingularization

as applying the non-self induction condition.

3.2.3 Boundary conditions at the bubble-fluid interface

The existence of viscosity is only implied in the idea of a terminal velocity for our
bubble so we use the Euler equations. We limit ourselves to almost irrotational flow,
allowing only the wake point vortices. Neglecting the body force gravity, the Euler

equation reads

ou 1 2 P .
E+V<§Iu| —I—Z)—uxw. (3.9)

Away from the point vortices, we represent the flow as the gradient of a potential ¢

so the Euler equation implies

8 1. o P\ _
\Y <E + 5l + ;> = 0. (3.10)
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Integrating gives
' P

99 + % lu)® + 5= Cy (t) (3.11)

at

on the interface. We require that % tends to zero at infinity.
We assume that the pressure inside the bubble at the interface is a constant, P,.
We make no further assumptions about the interior of the bubble. Continuity of force
across the interface requires a jump in the pressure balanced by the product of the

curvature x and the surface tension S;

P — P, =k&S. (3.12)

Eliminating the pressure from Bernoulli’s equation (3.11) gives
1
¢t [’ + £S/p = (Ci (t) — Po/p) (3.13)

on the bubble interface.

There also is the kinematic condition which requires the interface to moves with

the fluid;

09

B = v, (3.14)

where 7 is the outward normal and V}, is the velocity of the boundary in the direction
of . Together equations (3.13) and (3.14) relate the evolution of the bubble to the
fluid.

3.3 The equations expressed in terms of a confor-
mal map

To easily meet the boundary conditions, we view the physical z-plane as the image
of a non-physical (-plane in which the boundary of the bubble is circular. The map,
Z ((), which takes the unit circle to the boundary of the bubble will be an unknown for
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which we solve. In the following subsection we examine the connection between the
non-self-induction condition and the conformal map by addressing the relationship
between the velocity of a vortex in the physical and non-physical planes. Then we

re-write the interface conditions in terms of the conformal map.

3.3.1 The velocity of a vortex in the physical plane

Given a complex velocity potential W defined in the non-physical (-plane and a
conformal map z = Z(() to the physical z-plane, the map can be used to eliminate ¢
in W and thus give a complex velocity potential in the z-plane. Away from any point

vortices, the expression

U(z) —iV(2) = %V;V (3.15)

can be used to find the velocity of the flow. In general it is easier to forgo the

elimination of ¢ and simply compute

. dW dZ

So the velocity at a point in the physical plane is just the velocity of its pre-image
-1
multiplied by the factor (%) . This relationship does not hold at point vortices.
Suppose in the (-plane we locally have a single point vortex and potential flow

W(¢) = —iz-log(¢ = ) +9(C). (3.17)

Were we to apply the non-self induction condition in the nonphysical (-plane, we

would find the velocity of point vortex as simply

d
Uy — Uy = d—“g (¢y)- (3.18)

which might lead us to the false conclusion

dz (¢.)
¢,

(uy —1vy) / (3.19)

TN
o))
%/
N—’
I
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where z, = Z (C+) .
To obtain the correct velocity of the point vortex we apply the non-self induction

condition in the physical z-plane;

(92 _ . 0 ,7
<W> N 21521 9z (W Tigs log (z — z+)) : (3.20)

In terms of ¢ the velocity of the point vortex located at zy = Z (( +) may be computed

as
(%) = dm g (weigizo-2C0) /g 62
dg dZ iydZ  (dZ\*
(% & " am dg? (E) ) o= &2

3.3.2 The interface conditions expressed in terms of the con-

formal map

In the previous section we related the velocity of a vortex point to the conformal
map. In this section we give a form for the map which takes the unit circle in the
(-plane to the boundary of our bubble in the z-plane. We give an expansion form
for the complex potential in terms of ¢ and rewrite Bernoulli’s equation (3.13) and
the kinematic boundary condition (3.14) in terms of the map and the potential. The
equations we formulate reduce to those of Nie and Tanveer [27] when the point vortices
are neglected.

We assume that a point in the fluid is the image of a point in the unit disk and
the boundary of the bubble is the image of the unit circle itself under the conformal
map Z ((,1).

We may simply express the unit normal n and the curvature x in terms of the

map. When evaluated on the bubble interface

2 (3.23)

07 1072
=G|
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gives the unit normal to the boundary. Since the boundary of the bubble may be
parameterized as given by Z(exp(if),t) = X (6,t) + iY (0, ¢); the curvature, given by
o — (YNX/ _ XH},!) / (XI2 + Y/2)3/2

"o |Zlc| <1+%(C f)) (324)

We assume the map has an expansion of the form

, takes the form

Z(¢,t) (3.25)

Under this assumption, the non-dimensionalized area condition A = 7 gives the

simple relation

A=ra?, <1 - ]aﬁ) = . (3.26)
7=1

We require that our bubble is rising at a constant rate, ostensibly determined by
viscous drag and gravity balancing the buoyancy of the bubble. The flow at infinity
tends to parallel flow of speed Uy, in the positive z direction. Notice from definitions
(3.2) and (3.3) that the ratio Uy /V* gives the Weber number W,.

Assuming our bubble has no circulation, the velocity potential defined in the

(-plane is given in general by

W(C,t) = Wea—gl— +> bt — z‘%log (gﬂ) ZQllog (%%%) (3.27)

PPN

where ¢, (t) is in the unit disk and Z({,(t),t) = z5 gives the location of a point
vortex with strength ++.
Rewriting Bernoulli’s equation (3.13) using the conformal map Z the complex ve-

locity potential W and the curvature gives the nonlinear dynamic boundary condition
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oW aZZ>_ 1‘6W Y4

" (w5 EIES

6g/a_gt 2 ~—1—<1+§R<—Zﬁ>>+a (3.28)

A Z;

Since the dot product in complex notation has the form a-b = R(ab), we see that the

2) (3.29)

in terms of the map and we also find that the velocity of the boundary in the normal

normal fluid velocity at the interface becomes

oW |07
W'”:%(ga—g/’?f

direction is

V, = R (%) (3.30)

EQ

where we have used ¢ = 1/¢ on the boundary. The kinematic boundary condition

2) — % (%) | (3.31)
8¢

(3.14) as described by the map becomes

ow |07
%<CY/ %

3.4 The steady problem

The evolution of a bubble interacting with point vortices located at Z (¢, (¢),¢) is
given by map functions a; (), complex potential functions b; (¢), as well as the pre-
images (, (t) and ¢_ (¢) which satisfy the boundary conditions, (3.28) and (3.31), and
the velocity equations, (3.7) and (3.8). We look for steady solutions with symmetry
about the z-axis which points in the downstream direction. Recall that the quantities
P,, L, and S are related to the bubble as the physical properties of the pressure within
the bubble, the length based on the bubble area, and the surface tension while the

fluid is described by its density p and upstream pressure P, and velocity U,,. These
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all combine to form a single nondimensional number €2 we refer to as the Bernoulli
constant. Following the streamline from infinity to the stagnation point at the front
of the bubble fixes the constant in the Bernoulli equation (3.13); nondimensionalizing

we find

1
¢ + 5 lu> + 5 =Q (3.32)

where () = (%pUgo + Py — Po) L/S. Other parameters for our problem are the Weber
number W, = Uy+/pL/S and the nondimensional strengths of the vortices v =

I'/+/SL/p.

3.4.1 Reduction of our equations for the steady problem

We may simplify our equations when searching for solutions to the symmetric steady
problem. The symmetry of the bubble about the x-axis implies S(a;(t)) = 0; we
define d; = R (a;) so that the map for the steady symmetric bubble may be written

as

20, 1) = Z,(0) = dy (% + fj dj<j> . (3.33)

We also assume the point vortices behind the rising bubble are symmetrically situated
about the x-axis, z; = Z_. Real d; then implies, that the pre-image of the vortices

are also conjugates,

¢ =C.. (3.34)

The condition that the bubble boundary has the same normal velocity as the fluid
simplifies the form of the complex potential (3.27); from an examination of the kine-
matic condition (3.31) we see that the complex potential for the steady problem has

the general form
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The Bernoulli equation (3.13) evaluated on the boundary, |¢| = 1, reduces to

. (1+ ( 0%, 07, )) _o (3.36)

The equations for the steady symmetric vortex pair are complex conjugates and thus

Q_%‘aws/azs

2 ‘azs

only one need be examined;.
d
lim — (W(Q) +i5-108(2(C) = 2(.))) =0, (3.37)

or explicitly

N v f -1 11 11
0 = Wedo (12 ) —il _ = L 3.38
(1-%) Z%(Q_Cﬁm”l@[? m_ﬁ)( )
wd2
! (1)

The area constraint takes the form

A2 (1= jdi) =1. (3.39)
j=1

Solving the steady problem requires finding the vortex location Z, (C +) and real map

constants d; such that equations (3.36), (3.38) and (3.39) are satisfied.

3.4.2 The numerical problem

We truncate the map (3.33) which defines the bubble shape so that d; = 0 for all
j > N — 2. To create the numerical problem, we evaluate the Bernoulli equation
(3.36) at the discrete points ¢, = exp (ikn/(N — 1)) for k € [0, N — 1], giving N
boundary equations. The steady vortex equation (3.38) and the area equation (3.39)
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bring the number of equations up to N + 2.

We treat €2 and v as given and solve, using Newton’s Method, for the unknowns
We,d;, and (.. To do such, it was found to be most convenient to specify {2d_,
and v/(d_1W,) and solve for W2d_y, {,, and d; (N > j > ~1) using the boundary
equations and the vortex equation, then use the area equation to determine d_; and
thus We.

At first glance the counting seems fine, N + 2 equations and N + 2 unknowns, but
on further examination it becomes apparent that our equations are translationally
invariant: specifically they are independent of dy. Rather than impose a centroid
condition, the pseudo inverse from Singular Value Decomposition was used when
inverting the Jacobian in Newton’s Method. After a steady shape was converged
upon, dy was adjusted to place the centroid of the bubble at the origin. An analytic

Jacobian allowed for quick computations.

3.4.3 Steady results

In computing the steady results we had no problem in obtaining L, errors less than
10~ with a double precision code. The numerical accuracy of converged results
was tested by reproducing the calculations with double the number of unknowns.
Calculations at N = 64 confirmed the results found with only N = 32 shape expansion
coefficients.

Notice that the ratio of vortex strength to the Weber number gives the vorticity

non-dimensionalized on the flow at infinity and the characteristic radius of the bubble:
RO (3.40)

We performed a continuation in the Bernoulli constant, 2, for several different fixed
values of v/W,. At each value of Q we computed both W, and the generalized aspect

ratio, A defined as
Zs (Z) B Zs (_Z)

AL 7 ().

(3.41)
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Figure 3.1: Aspect ratio of the steady-state solution as a function of (a)W, and (b)
Q). The curves are labeled by the fixed values of v/W.,.

The folds in Figure 3.1 (a) indicate that more than one bubble may exist for
a given vortex strength and Weber number, but in Figure 3.1 (b) we see that the
Bernoulli constant together with the vortex strength will uniquely specify a bubble.

In the absence of vorticity it has been shown, Shankar [33], that symmetric steady
bubbles exist for Weber numbers below a maximum (= 0.745). From an examination
of Figure 3.1 (a) we see that the inclusion of the vortex pair wake increases the
maximum Weber number.

As Figure 3.1 (b) shows, increasing the Bernoulli constant, while holding the
vorticity constant, increases the aspect ratio, A, of the bubble. Further plots ( Figures
3.2, 3.3 and 3.4 ) of the streamlines show that as the aspect ratio increases the ends
of bubble tilt forward giving the bubble a concave feature. We interpret this tilt
as the result of the pressure maximums at the stagnation points. Similar bubble
shapes have been computed for three dimensional axisymmetric bubbles in moderate

Reynolds number flows, Ryskin and Leal [29],[30].
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(a) W, = 0.823, 2 = —0.233 (b) W, = 0.820, Q = —0.023

(¢) We = 0.772, Q = 0.043 (d) W, = 0.681, Q = 0.078

Figure 3.2: Streamlines for a range of 2 with v/W, = 0.75
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(a) W, = 0.9001, Q = —0.1172 (b) W, = 0.8700, Q = 0.0256

= S
—\ -

1 I ! ! L

(c) We. = 0.8146, Q = 0.0763 (d) W, = 0.7784, © = 0.0901

Figure 3.3: Streamlines for a range of 2 with v/W, = 1.0
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=

(a) W, = 0.8960, Q = —0.4743

(c) W, = 0.8921, Q = 0.1540 (d) W, = 0.7509, Q = 0.1409

Figure 3.4: Streamlines for a range of Q with v/W, = 1.5
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3.5 Infinitesimal perturbations

In studying the stability of our two-dimensional bubbles, we infinitesimally perturb
the shape of the bubble and locations of the point vortex pair while leaving the
strength of the vortices and area of the bubble unchanged. By linearizing the gov-
erning equations about a given steady solution, we arrive at equations for the devel-
opment of the perturbations. Those perturbations which do not grow with time are

said to be stable, the others are unstable.

3.5.1 Linearization of the governing equations

To linearize the time-dependent equations we decompose the map and velocity po-

tential in terms of a known steady solution and infinitesimal perturbation,
2(¢,1) = Z,(Q) + €Z(G b), (3.42)

W (¢, t) = Wi(Q) + W (C, 1), (3.43)

We do likewise with the locations of the point vortexes in the (-plane,
Colt) =y +eCy (1), (3.44)

Co(t)=Cy +eC.(b). (3.45)

Substituting into the time dependent boundary equations, (3.28) and (3.31), and
retaining only O(e) terms yields the linearized equations. Requiring that [{| = 1 on
the bubble boundary leads to the following linearized equations:

7, ow
R =R|{{(— ‘
(—) ( ac)/

2 (3.46)

dZ,
dg
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and
—  ~dW, dZ, AW, dz,|> (oW dw, 87 dZ,
§R<Wt & d<> - _‘ %<'ff & T dg) (347)

27, d7, 07 dz,\ . |dZ,
+(1+m( >) (a_c chﬁc_,
a?z dZ, d?Z dZ,\* 07
g 2/(%) Z)

From the original series expansion of the conformal map and the complex velocity

potential we deduce that

260 = "0 1 a0 (3.4)
por
and
W(.t) = Wea(?” + f}?(t)d (3.49)
g
“in <<+1— it —ch:a ey —icﬁ)

where @(t)_; is real to preserve the original flow velocity at infinity. As a result of this
conservation of flux at infinity, we expect the perturbations to conserve the bubble’s
area.

For the vortex which is the image of the point { (t) = (, + 62 +, the linearized

equation for this quantity’s evolution is given by

d¢. dZ, YA Az
% ac = tar le=c,= (F /dC> le=¢, (3.50)
with
T 'S at) 2\ ~
Poo= D b= We= g + Wedo, ( ><++ (3.51)
=1 ¢ ¢4

. fy —~ =~ o~ -~
—igk (cag+ + O, +CL + CdC_> +
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927 YA
47T (CC +Cf8<2 +CgaC)
and where

1 ¢, —C.

G @G- 5
N (v — ¢ 20 (¢ <)
(G-1¢(1-¢¢) (G-1 (1)
i "
c, = ﬁ (3.54)
Cp = (1%;)2 (3.55)
c, = ngs/dZ (dzzz/dz> (3.50)
c; = CilZC (3.57)
c, — —d;CZ; (%)2. (3.58)

The evolution for the linearized motion of the second vortex is similarly governed;

simply exchange the subscripts + and —.

3.5.2 The numerical problem

In order to compute solutions to the linearized equations, we truncate the map per-
turbation (3.48) at j = M — 2 and the complex potential perturbation (3.49) at

j=M — 1. We define as X (t) the vector of unknown functions

o~

o _ {81 R@0)-R(@u-2), @) S(@nr—2), Rbo)- Rbrrr), SO1)-- S arr),

b
R(C)), S, R(E), ()T
(3.59)
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We evaluate the linearized boundary conditions, (3.46) and (3.47), at the discrete
points (, = exp (i2kw /(M — 1)) for k € [0, M — 1] to create a linear system of ODEs

of the form R
dX

BX 3.60
7 (3.60)

A

where A and B are two 2M —1x 2M —1 real matrices. The substitution X (¢) = X,e”t

gives the generalized eigenvalue equation,
cAX, = BX,. (3.61)

Modes for which R (o) > 0 are termed unstable. If S (o) # 0 ( hence the eigenvector

550 is found to be complex ) the solution of our differential equation is obtained by
X(t) =R (e‘f”w)?o) (3.62)

where @ is an arbitrary phase factor. Solutions to the generalized eigenvalue problem

were obtained by use of the standard LINPACK routines.

3.5.3 Stability results and conclusions

Fixing the vortex strength /W, (as 1/4, 3/4, 1 or 5/4 ) we computed the eigenvalues
for a number of steady solutions corresponding to a range of the Bernoulli constant
Q. In every case we found unstable modes as well as a wide range of purely imaginary
eigenvalues. An examination of the form of the computed eigenvectors shows that
the perturbations may be classified as either symmetric or asymmetric. Recall that

the bubble boundary perturbation is of the form

a(?_l + Zaj ()¢ (3.63)

Z((,t) =
and that the perturbed vortices have the locations the non-physical plane

Co(t) = o+ (1) (3.64)
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Figure 3.5: The tilting instability computed for /W, = 0.75 and © = 0.07875. The
steady solution is shown for comparision, the steady vortex location is w and z is the
perturbed vortex location.

C(t) = ¢, +eC (). (3.65)

Those eigenfunctions of our linear equation for which all the expansion coefficients
a;(t) are found to be real and ¢ L, = cong (Z_), will be symmetric about the z-
axis. For asymmetric perturbations the expansion coefficients a@;(t) are imaginary
and Z+ = —cong (Z_) .

The computed purely imaginary eigenvalues correspond to stable oscillations of
the bubble shape. Both symmetric and asymmetric perturbations were found. Such
oscillations in the presence of the vortex wake are a continuation of the symmetric and
asymmetric stable modes computed by Nie and Tanveer [27] for a wakeless bubble.

The unstable modes are those for which the eigenvalue has a positive real part.
Both purely real eigenvalues and complex unstable eigenvalues were computed. We
assume that the eigenvalue with the largest real part will determine the dominant
nature of the bubble’s instability.

For any given steady bubble computed, exactly one positive real eigenvalue was
calculated. An examination of the corresponding eigenmode shows the real eigenvalue

corresponds to a generalization of the basic asymmetric instabilities calculated for the



Q00
0.000090999¢ L L L L
-0.9 -0.8 -0.7 Q -0.6 -0.5 04

Figure 3.6: The imaginary part of the first four eigenvalues corresponding to sym-
metric perturbations for v/W, = 0.75

Foppl flow past a rigid elliptic cylinder: the bubble tilts as do the vortices as they
are shed. Figure 3.5 is a plot of the perturbed boundary 7 = 7, + eZ , Where 7 is the
asymmetric unstable mode, and ¢ is taken to be 0.2 for effect.

On the other hand, for a given steady bubble, at most one complex unstable
growth rate was computed. The complex instabilities were found to be symmetric
perturbations. Recall that the form the perturbation for a complex growth rate
involves an arbitrary phase factor as shown in expression (3.62). In figure 3.7 we have
the boundaries corresponding to the addition of the steady solution with the unstable
symmetric eigenmode evaluated with different phase factors. In this instability the
point vortices spiral away from the steady locations and the bubble bends forward
and back.

To gain insight into this symmetric instability we fix the vortex strength as /W, =
3/4 and plot the first four symmetric eigenvalues as a function of €2, see Figure 3.6. All
four of these eigenvalues are initially purely imaginary; the upper three eigenvalues
correspond to a continuation of the stable oscillation which exist in the absence of a
vortex wake, the bottom eigenvalue relates to the stable symmetric perturbation of
a vortex pair. The two higher eigenvalues displayed remain imaginary for the range
of computed Q. At & = —0.4781 the two lower imaginary eigenvalues intersect at

approximately o = ¢1.224. For larger values of €2 these eigenmodes share an imaginary
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Figure 3.7: The oscillating symmetric instability computed for /W, = 0.75 and
Q = 0.07875. The steady solution is shown for comparision, the steady vortex location
is w and z is the perturbed vortex location.



75
part but have opposite real parts. We interpret this unstable symmetric perturbation
as the cooperative interaction between the symmetric (stable) perturbations found in
Foppl flow past a rigid elliptic cylinder with the symmetric (stable) oscillations of a
wakeless bubble.

In Figures 3.8 (a) through (d) we have fixed value of the vortex strength, /W,
and plotted the growth rate of the tilting eigenvalue, and the real part of the leading
complex eigenvalue. We also present, in Figures 3.9 (a) through (d), plots of the
imaginary part of the unstable complex eigenvalue. It was found that for small values
of the Bernoulli constant €2, corresponding to aspect ratios near unity, the tilting (real)
instability dominated. As the Bernoulli constant increases the oscillating instability

appears, and in some instances is the dominant instability.
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Figure 3.8: The growth rates, (o), for the two unstable modes as a function of the
Bernoulli constant, 2, with fixed vortex strength. The solid line corresponds to the
symmetric instability and the dotted line is the asymmetric real instability.
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Figure 3.9: The imaginary part, $(o), for the symmetric unstable mode as a function
of the Bernoulli constant, €2, with fixed vortex strength.
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Chapter 4 Counter-Rotating vortex patches in

shear

4.1 Introduction and the model system

We assume that the vortex sheet behind a lifting body has rolled up into two counter-
rotating, parallel vortices. Typically, the separation distance between the vortices is
an order of magnitude greater than their radius. To investigate the effects of a cross-
stream shear on such a vortex configuration we examine the case of an ambient linear
shear flow taken to be perpendicular to the vortex axes; we simplify our system by
considering the flow as two dimensional with no variation along the length of the
vortices. Furthermore, we assume the effects of viscosity and compressibility to be
small and accordingly we neglect them. The two-dimensional incompressible Euler

equations govern our system.

4.1.1 Point vortex model

One idealization of such a flow would be a point vortex system. Assuming delta
functions of vorticity with strength +I" embedded in a linear shear flow of vorticity

wWee produces an instantaneous velocity field of the form

r 1 r 1
u—iv:z&;ﬁ(z—z)—ki——— —i—

4.1
2mz — 2_ 2m 2z — 24 (4.1)

where, following standard complex notation, z = x + 4y and the overbar denotes
the complex conjugate. Notice that the co-ordinate axes have been chosen with an
orientation such that the shearing velocity is aligned with the z-axis and that the
vortex located at zy has strength +I". The time-dependent locations of the vortices,

z4 and z_, result from requiring each vortex to be advected by the shear and the
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Figure 4.1: A simple sketch of trailing vortices with a cross shear perpendicular to
the vortex axes.

velocity induced by the other vortex:

d _ Woo _ T 1

%Z,F = 27 (Z+ — Z+) —+ Z%Z———Z_— (42)
d Weo .r 1

—7 = — R _ 4.
i’ "2 (o =2 )+227rz+-—z_ (4:3)

It seems to have gone without notice in the literature that the general problem of
a counter-rotating point vortex pair in arbitrary linear flow comprised of shear and
strain can be analytically solved for any given initial condition. Such a solution is
presented in Appendix C, but here we focus our attention on the simpler problem in
which both the point vortices are initially on the z-axis and separated by a distance L,
so that the mutually induced velocity of the vortex pair is orthogonal to the direction
of the shear flow. For such initial conditions the equations (4.2) and (4.3) admit the

solution
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(a) No shear (b) weo/T' = 0.05

Figure 4.2: The streamlines for point vortex pair in shear with I' = 7 and L = 5.

In this configuration the vortex initially at +1/2 has strength +I" and the strength of
the vortex with initial location —L/2 is —I'. Notice that the point vortices maintain
a constant separation z, — z_ = L while traversing a parabolic curve. Physically
we anticipate I' > 0, which implies that the vertical motion of the vortex pair is
downward. In the frame of reference in which the point vortices are steady and

located at (z,y) = (+£L/2,0), the velocity field is given by

r 1 T 1

P S 4.6
LTy R m— (46)

u—z’v——-—iVoo—i—iw—;i(z—Z)
where V., = I'/ (2w L) balances the mutually induced downward velocity of the pair.
In Figure (4.2) we present streamlines in the frame of the steady vortex pair. We
observe that with the introduction of a shear with positive vorticity, the atmosphere
of the —I" vortex decreases in size and is oriented with its major dimension parallel
to the vertical axis. It is worth noting that while this solution of Euler’s equation is

not stable; infinitesimal perturbations only grow algebraically in time. For example
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as part of the general solution, it is shown in Appendix C that

tané,

tanf = 4.
a 1 — twy tan b, (47)
sin @
R = R,—= 4.8
sin @ (4.8)

where z; —z_ = Rexp (i0) . Since our steady solution corresponds to (8,, R,) = (7, L),
we see that perturbations which increase 8, ( rotate our vortex configuration counter-

clockwise) are unstable with initially linear growth.

4.1.2 Vortex patch model

The point vortex model has a severe limitation; it is unable to predict instabilities of
the vortex boundaries which in turn may lead to the destruction of a trailing vortex.
The aim of this chapter is to study a generalization of the steady configuration.
Specifically, instead of a point vortex, the cross-section of each trailing vortex is
assumed to be a simply connected region of constant vorticity, referred to as a vortex
patch. The constant shape of the patches and the mutually induced velocity, Vi,
are the unknowns for which we solve. Such solutions are obtained by following the
methodology devised by Meiron, Saffman, and Shatzman [13], hereafter referred to
as MSS.

In the frame of reference of the moving patches, the velocity field has the form
u—iv=—iVy + zc—gﬁ (z—2)+Vi(z—L/2,y)+V_(x+L/2,y) (4.9)

where V. are the velocities induced by each patch relative to their own centroid and
tend to zero for large distances. It is assumed that the centroids have the same y
coordinate. The curl of the velocity induced by a given patch is constant within the
patch and zero outside of the patch. The patch of constant vorticity +w, induces the
flow V.. and has its centroid at (x,y) = (+L/2,0) while the patch with vorticity —w,
is centered on (—L/2,0) and induces the flow V_. To insure that the patches, like the

point vortices, have equal effective strength in the shear flow, we require each patch
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to have an equal magnitude of circulation relative to the shear vorticity ws. This
implies

(Wo — Woo) Ay = (Wp + Weo) A (4.10)

where A, is the area of the +w, patch and A_ gives the —w, patch area. Without loss
of generality, we take w, and w, to be of the same sign. Solutions with the opposite
direction of the shear, i.e. the other sign of wy,, may be obtained by a reflection of
the flow about the y-axis.

One can show that for non-steady patch evolution, the vertical separation of the
centroids of the patches will remain constant if the relative circulation relationship
(4.10) is satisfied. Briefly, this result follows from that fact that the finite part of one
component of the impulse is conserved, namely [ All Space Y (W — weo) dA = Const. By

defining y+ as the y coordinate of the +w, patch one can show that

1 (Wo — Weo) Ar — (W + Woo) A
ey = — W) dA — .
Y+ Y (wo _ woo) A+ Y (U} w ) A+ (wo _ woo)
All Space
(4.11)
It follows that
d (y+ — y—) - (wO _ wOO) A+ — (U.)O + wOO) A dyA (412)

dt B Ay (wo — Weo) dit

and we see that the vertical separation of the patches is a constant of the motion
when the relative circulations of the patches are the same.

A dynamically consistent weak solution representing inviscid incompressible fluid
flow must satisfy two conditions on the patch boundaries. First, the kinematic con-
dition that the velocity be continuous everywhere including across the patch bound-
aries insures continuity of pressure. Second, the dynamic condition requires that the
boundary of a given patch be a material surface. Let Z (s,t) denote a parametric
representation of the boundary of a patch so that requiring the difference between

07/0t and the fluid velocity at the boundary be parallel to the surface is equivalent
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{2 i} ] o an

By way of an introduction to the basic techniques we shall use, we begin with a

to the condition

derivation of the well known analytic equations, originally given in part by Chaplygyn
[15] and rediscovered by Kida [8], which govern the evolution of a single elliptical patch
embedded in a linear flow. Following this, we turn our attention to the problem at
hand. A description of the two counter-rotating patches in shear is given in the form of
general maps which define the patch boundaries. The direct calculation of the velocity
induced by a given patch is discussed; by using Plemelj solutions to a Riemann-Hilbert
problem the expressions of Contour Dynamics are derived as well as the Schwarz
function expansion of the induced velocity. We then outline the numerical methods
employed in determining steady patch shapes and formulate the equations which
determine linear stability characteristics to two-dimensional boundary perturbations.
Steady solutions are presented over a range of shear strengths for several fixed vortex
separations. Confining our attention to perturbations which neither affect the areas
nor displace the centroids of the patches; both a stable and an unstable solution
branch are calculated. It is found that the eigenvalues agree well with the growth rates
predicted by the dispersion relation Moore and Saffman [20] presented for a single
patch. Based on the equations for a elliptically shaped patch in linear flow, a simple
analytic model is formulated for the counter-rotating pair and its predictions are found
to compare excellently with the numerics in the areas of study. Furthermore, from
this elliptical patch model we are able to make some predictions about the nonlinear
stability of the system. We show that certain initial conditions in the elliptical patch
model evolve in such a way that the —w, patch is destroyed (its aspect ratio tends to

infinity) while the +w, patch maintains its form.
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4.2 An elliptical vortex patch in a linear back-

ground

Moore and Saffman [20] presented exact steady solutions of the Euler equation in
the form of a single vortex patch of strength w in the shape of an ellipse embedded
in a linear background flow of strain and shear. They then used a representation in
elliptical curvilinear co-ordinates to analyze stability to two-dimensional infinitesimal
disturbances of the boundary shape; showing that the growth rate, u, of an infinites-
imal perturbation of mode number m to the boundary of a steady elliptic patch is

given by

O = H{E ) GR)T e

where A = a/b > 1 is the aspect ratio of the patch and w is the vorticity due to back-

ground shear. Kida [8] generalized Moore and Saffman’s steady results by considering
non-steady elliptic patches. He was able to demonstrate, by means of an ingenious
transformation of the Kirchhoff vortex, that in the absence of perturbations a non-
steady patch which is initially elliptic and embedded in linear flow remains elliptic. In
doing so, Kida formulated differential equations, originally given by Chaplygyn [15],
which describe the evolution of the orientation and aspect ratio of an elliptic patch
embedded in a linear flow.

In this section we derive the equations which govern an elliptic vortex patch in a
background flow consisting of linear shear and an arbitrarily oriented strain. Rather
than following Kida’s approach, we will use a Schwarz function method which we may
easily generalize to multiple patches. While this example serves illustrative purposes,
the results will be utilized later in this chapter as building blocks of a simple analytic
approximation to the problem of a counter-rotating vortex pair in shear.

The constant vorticity in the background shear is taken as w., and the vorticity in

the patch has the value w,. We exclude the trivial case of w, = wy. In the standard
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complex notation, we take the background shear and strain field to be of the form
up ~ v = i—- (z—2) 4+ 0e"z (4.15)

where we, 0, and ¢ are real. The first term represents a linear shear and the second
term defines a straining flow. External to the patch the complex velocity is assumed
to be of the form
i .
ug — ivg = —i(w—woo)G(z)+uB—wB (4.16)
where G (z) is analytic outside the patch and its product with —i (w, — we) /2 Tep-
resents the induced flow due to the patch. While inside the patch the velocity has

the form

ur — vy = % (W—we) F(2) —i—2%, (4.17)

and the function F' (z) is analytic within the patch.

In order to obtain solutions of Euler’s equation, we begin by deriving the general
form of the velocity induced by an arbitrarily shaped vortex patch. We then calculate
the simple analytic form of this velocity for the case of an elliptic patch and impose
a dynamic condition at the boundary of the patch to arrive at ordinary differential
equations which govern the elliptic patch.

To find the velocity induced by the patch we impose continuity of velocity across

the patch boundary, this implies
F(2)+G(z)+Coz=2 (4.18)

on the boundary. The constant C, is given by

(iweo/2 + o€')

(W — Weo)

C, =12 (4.19)

Notice that the function G* (2) = G (2) is analytic everywhere outside of the patch,
and the function G~ (2) = —F (2) — C,z is analytic within the patch. We may now
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re-write the continuity of velocity in the familiar form of a Riemann-Hilbert problem,
G () =G (2) =z (4.20)

on the patch boundary A with the requirements that G* be analytic exterior to the
patch and decay for large z, while G~ be analytic everywhere within the boundary.
In essence by identifying Gt and G~ we are splitting a function which is assumed
to be analytic in the neighborhood of a closed curve with presicribed values of Z (2)
on the curve. Such a function is called a Schwarz function. The Schwarz function
approach was originally suggested by Jimenez and implemented by MSS who found
the induced flows by examining Laurent series. Here we note this problem may be
simply solved by use of the Plemelj formula: for points outside the patch

G (2) = —1—7{9 _Z(é)dz, (4.21)

271 A?:'—‘Z

while inside the patch

G (2) = — fé &) (4.92)

- 57}—2- A zZ—z
We see that for an arbitrarily shaped patch the velocity induced by the patch may

be calculated as

w— iy = W o) ?f 28 4 (4.23)
47 dA % — R

One could use Green’s formula to derive from (4.23) the standard integrals of Contour

Dynamics.
We now assume that the boundary of the patch is an ellipse. The boundary is the

image In the z-plane of the unit circle in the (-plane under the map

2= al + B/C. (4.24)

We define a as the length of major axis of the ellipse and b as the length of minor
axis. The area of the ellipse is then given by 7wab. Measuring counter-clockwise from

the positive z-axis to the major axis gives the angle 6. These three real quantities
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are related to the complex map coefficients by

aexp (i) = a+pf (4.25)

bexp (1) = a—p. (4.26)

To compute the induced velocity (4.23), we note that on the boundary of the patch

z=a/¢+ B¢, (4.27)

so that the induced velocity may be calculated as

U—iw=-—->= a—B/C7)dC. 4.28
4w I¢]=1 (al + B/C — z) ( / ) ¢ (4.28)
After performing minor algebraic manipulations and evaluating the residue, we find

that the induced flow for points outside of the patch is given by

b
u—1v=—i(w— W) ¢ . (4.29)
z+ /2% —4daf

By construction, the square root is continuous outside the patch and tends to z for
large distances. The branch points +2/af = £+/a? — b? exp (i) are on the major
axis within the patch; the branch cut connects the branch points and remains in the
patch. The complex velocity field outside and on the boundary of an elliptic vortex

patch in a linear background flow is given by the following expression,

ab w .
up — g = —1 (W — Weo +i—=2 (2 — Z) + ez 4.30
P g = =i —w) e R (- 9 (1.30)

On the boundary of the patch, this velocity can be expressed simply in terms of ¢ as

ab

5z Hig (a0 B/C— /¢ = B)+(aC + /¢ oc** (431)

Uup—ivgp = — (W — Weo)

by means of the map (4.24).

Dynamically, the evolution of the vortex patch is governed by the requirement
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that the boundary be a material line. That is to say the boundary of the patch moves
with the flow. If s parameterizes the patch such that Z (s,t) defines the boundary,

the dynamic condition is equivalent to

(12 o} 2] <o s
evaluated on the patch boundary. We parameterize the patch by making the iden-
tification ( = exp (is) in the map (4.24) and we assume that the patch maintains
elliptical form so that only the coefficients « and 3 are allowed to evolve with time.
We will justify this assumption by finding closed equations for the evolution of o and
8. In terms of ¢ the tangent to boundary and the velocity of the boundary take the

forms

0z

= = ial —if/¢ (4.33)
%—f = &+ B/¢ (4.34)

where the overdot indicates the derivative with respect to time.

Substitution of (4.31) and (4.34) into (4.32) leads to an expression of the form
C2/C% + o+ ca(® =0 (4.35)

where ¢, is real but ¢y is in general complex. Requiring ¢, = 0 leads to conservation

of area

d
~ (ab) =0, (4.36)

while ¢, = 0 gives an equation for the evolution of the aspect ratio, A = a/b,

% (A) =2 (0’ cos (20 + ¢) — w—;— sin 29) (4.37)
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and the patch orientation

i@z—A—(w—woo)%—w—;g(l—cosQO

dt O\ +1)2 osin (20 + ¢). (4.38)

A+ 1> X+
NM—-1) X-1
These three differential equations, (4.36),(4.37), and (4.38), form a closed system
describing the evolution of a vortex patch of elliptic shape in a linear flow; equivalently
they determine « and . The steady elliptic patches investigated by Moore and
Saffman [20] corresponds to the stationary solutions of these equations. In the absence
of strain, an examination of the steady equations shows that only for a finite range
of weo/w, are there steady solutions. In particular, two steady patch solutions of
different aspect ratios exist when wy /w, is in the range {(1 - \/5) /2, O} and only

one solution when wy/w, € {0,1}.

4.3 The numerical approach

In this section we directly calculate the steady shapes and linear stability of counter-
rotating vortex pairs in linear shear. In doing so we follow the basic approach imple-
mented by MSS. As in the previous section, we express the boundary of each patch
relative to its own centroid as a map of the unit circle and by requiring the coeffi-
cients in an expansion of the boundary conditions to be zero we satisfy the condition
that patch boundaries be material lines. We also use a Schwarz function approach
to calculate the flow induced by each patch, although a summation representation is
chosen rather than the integral form of (4.23).

Recall that we are seeking the steady shapes of two counter-rotating vortex patches

of constant vorticities +w, embedded in a background flow of the form
. . . Woo _
u—iv = —iVy + = (z —2) (4.39)

where the centroids are located on the z-axis separated by a fixed distance L. Ex-
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plicitly, we take z = +L/2 to be the centroid of the +w, patch and z = —L/2 to be
the centroid of the other patch. By counter-rotating, we mean that each patch has
an area which gives it an equal strength relative to the background shear. To insure
this, the area A_ of the —w, patch equals the area A, of the +w, patch scaled by
(Wo — Weo) / (Wo + weo). The circulation due to a given patch beyond the value pro-
duced by the background shear has the magnitude I' = (w, — weo) A+. The shape of
the vortex with vorticity +w, is assumed to be adequately described by a conformal

map of the unit circle || = 1 of the form

N
24 :R+g{1+2‘z—j} (4.40)
7j=1

while the boundary of the vortex —w, has the expansion

N
z_:R_C{1+Za—g’3;}. (4.41)
j=1

We anticipate that z,,z_ = 0 corresponds to the patch centroids. These expansion
coefficients and the vortex induced mutual velocity V, are the unknowns of the
system. The boundary shapes will result from requiring the boundary to be a material
line. Before discussing the resulting system of equations, we describe the method of
computing the flow induced by a patch. We choose not to perform the direct numerical
integration suggested by the boundary integral form of the induced flow. Instead we

use the exact analytic technique of arbitrary accuracy employed by MSS.

4.3.1 The induced flow

Given a vortex patch of vorticity w embedded in a background flow with constant

vorticity we, the flow external to the patch of arbitrary shape has the form

up — Vg :—E(w—woo)GE (Z)—l—z?'o (z—2)+ H (%), (4.42)
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and

uy — vy = ——;—(w—woo) G* (z)+i%z—i%Z+H(z) (4.43)

in the patch. The function H(z) represents some locally analytic flow, perhaps in-

duced by other patches. Continuity of velocity implies, by means of the Plemelj

formulae,
1 -z (2) .
E — —_—
GP() = 5 S, (4.44)
1 s
Gl (z) = — 22 45 (4.45)

271 foq 2 — 2

where OA defines the boundary of the patch. Briefly, we relate our induced flow to a
more common form, often found in Contour Dynamics, which reflects a summation of

point vortices; by use of Green’s theorem and Cauchy’s theorem, we have for points

1 —Z (é)dg = _;1;// djdg. (4.46)

z outside the patch

271 5A Z—z Z—z

We can represent the induced velocities as sums whose coefficients have simple
geometric interpretations. For large |z| we can expand the integrand in G as a

geometric sum

GP (2) = Zgjz'j (4.47)
7=1
where
1 .
—— I1zdz. 4.4
g] 27_”/ oA Z zaz ( 8)

Likewise for small |z| we can express G' as

Gl z)==)_f; & (4.49)
7=0
with
1 .
o —j—1z
i 5 j{mz Zdz. (4.50)

Notice that if the function Z (z) which takes the value Z on the patch boundary has
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a convergent Laurent series we would find
2(2) = 9/ Y+ fi 7. (4.51)

MSS provide a geometric interpretation for the coefficients g; as moments of the shape

of the vortex since

g = é‘jﬁ » #zdy = -71; / / (2" dzdy. (4.52)
A

Notice that g» is proportional to the patch centroid, while wg; gives the patch area.

For the purposes of our numerical scheme, we choose to use the summation rep-

resentation (4.47) in our calculations of the induced flow. To precisely calculate

coefficients in the expansion of u + v, we observe that the equation (4.48) for g;

taken with an expansion of the boundary z ((, ) in terms of ¢ implies that

.. d
g; = coefficient of ¢! in the product zj‘lzd—z (4.53)
and
o dz
g; = —coefficient of ("' in the product zjlzd—z. (4.54)

From the assumed forms of the shape expansions, (4.40) and (4.41), these quantities

may be easily computed.

4.3.2 The steady system

The fact that the steady boundary of a patch is a material line, implies that at the
boundary there is no normal fluid flow. Combining the induced flows calculated from
the two patch shapes, (4.40) and (4.41), with the background flow, the velocities on
the boundaries of patch +w, and —w, are respectively given by

. . Woo ~ r/1 1
uy —ivg = —iVy + = (zy —Zy) + i5 (IGE (z4) — IG]E (24 + L)&.55)
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o0 T
u_ —iv_ = —in+i%(z_—2_)+z§<

1

G (e~ 1) = Lgr (z_)94.56)

A_

where G¥ (2) is induced by the +w, patch and relative to its centroid, similarly G¥ (2)
results from the —w, patch. Our steady boundary conditions implied by the kinematic

condition may be expressed as

Bi(¢) = (uy —ivy) %ig( (ut + tvy) aaigf =0 (4.57)
B_.(¢) = (u-—1v.) %% — (u_ +iv_) aaig_ =0 (4.58)

to be satisfied when |(| = 1.

Unfortunately the summation which represents the velocitiy induced by a given
patch may not converge on the boundary of that patch. If the sum (4.47) represents
the velocity induced by a patch relative to the patch centroid, its domain of conver-
gence will be |z| > ¢, where ¢, is some critical radius. Such a critical radius is related
to the branch points of the inverse of the function which maps the unit circle to the
boundary. While all of these branch points are assumed to be within the patch, if the
patch is far from circular there may be points on the patch boundary with magnitude
less than ¢,. To overcome this problem, we use the boundary expansion to re-express
the velocity sum in terms of powers of ( when evaluated on the patch boundary. One
could think of this as evaluating the velocity in the (-plane where the patch is circular
and the velocity sum converges everywhere on the boundary.

To form the numerical system corresponding to the steady equations we follow
MSS by treating the shape coefficients and their conjugates as independent vari-
ables which creates 4N + 4 complex unknowns: R, ai4,...ax4, Ry, 814,... 0Ny,
and R_,ai_,...an—,R_,a1_,...ax—_. We have two additional complex unknowns
in the form of V,, and V., which represent the mutually induced velocity of the
pair. Steady solutions are obtained by Newton iteration, and only those in which
aj+ = conjugate (a;+), Voo = conjugate(Vy) and Ry = conjugate(R:) will have
physical meaning. Such an approach simplifies the later stability calculation. The

induced velocities are approximated by truncating the associated summations (4.47)
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to include M terms where M is some integer chosen such that M > N.
In essence our numerical approach is a spectral method. Our system of equations

result from expanding the boundary conditions, (4.57) and (4.58), as Laurent series

in ¢ = exp (is);

B_;
B.(¢) = >, CJ L+ Bos+ Y Bl =0 (4.59)
7=1 j=1
B . .
B_() = 2 C;’ +B0,_+21Bj,_d:0, (4.60)
J= J=

and equating the first 2/NV + 1 coefficients with zero:
B;y=0,B;,_=0 (-N<j<N). (4.61)

This provides 4N 4 2 equations. In calculating these boundary condition coefficients,
it is necessary on the boundary of each patch to express the velocity field induced by
the other patch in powers of (. For example, we assume the summation form of G¥
converges on the boundary of the +w, patch and use a discrete Fourier transform to
expand GT (2. + L) in terms of ¢ = exp (is). To insure that the vortices are separated
by a distance L, we require that the local origins within each patch coincide with the

centroid of that patch; we treat this requirement as 4 complex equations
924+ = Jo4 = 92— = G2, = 0. (4.62)

Two further equations result from the condition that the vortex patches have given

areas;

N
A, = 7R.R, {1 - Z j—1)(aj+) (@j,+)} (4.63)

Jj=2

A = WR_R_{ Z Jj—1)(aj- (a,j,_)}. (4.64)

Notice that within the maps defining the boundaries, the phase of { is arbitrary; this
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is fixed by specifying the phases of Ry and R_. In particular, we will seek steady

solutions in which R, and R_ are real:
R+ = R+, R_ = R_. (465)

We briefly discuss the hidden constraints of the system. At this point we have
4N + 10 equations for 4N + 6 unknowns. In their paper MSS identified dependencies
within the system of equations. A necessary observation is that the flow across ds,
an infinitesimal length of a vortex boundary, is given by u,ds = B ({) df/2, where
Uy, is the component of the fluid velocity normal to the boundary. Since the velocity

field constructed is divergence free this implies

0= ]4 s = /0 " B(C)do (4.66)

and hence By and By _ are automatically zero. Since our system contains back-
ground vorticity in the form of linear shear, we modify the arguments of MSS to
obtain further constraints. By identifying a with the velocity field minus the shear

flow in the vector identity
1 2
ax (an):§v (a®) —a-Va (4.67)
one can show that for our two-dimensional flow

// (U + weol) X (w — weok) dxdy = 0. (4.68)
all fluid

This results from an application of Green’s theorem in which the resulting surface
integrals are taken to be at infinity. Recall that the patches have vorticity +w, so

that equation (4.68) becomes

(Wo — Weo) // (U + wooyi) drdy — (wo + Woo) // (U + weoyl) dzdy = 0.  (4.69)
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The y components of the patch centroids are equal to zero by our placement of the
patches on the z-axis, so the integrations f[ 4y dxdy contribute nothing. Another

application of Green’s theorem leads to

(Wo — Woo) ]{ Xt ds — (Wo + Weo) 7{ XUunpds = 0. (4.70)
AL 8A_

This equation may be expressed as

(wo — wc,o)/0 e £ 2By (C) — (wo+ woo)/0 G+ 2B (O)do=0. (471)

This is obviously a constraint between all the coeflicients B; ; and B;_. If we apply
the directly imposed boundary condition B, (¢) = 0, this implicit constraint (4.71)

along with the boundary expansion for the second patch(4.41) gives

B +Bi_+Y laj-Bj_+a, Bi_; ]=0 (4.72)

§=2
where a;_ and a;_ are the assumed small expansion coefficients in z_ and z.. We
now see that is sufficient to eliminate our explicit equations B_;_ = B;_ = 0, as
a converged solution of the reduced set of equations will automatically satisfy these
conditions. We now have a system with 4N + 6 equations and unknowns, which we

solve by Newton iteration with an analytic Jacobian.

4.3.3 The stability calculation

In this subsection we formulate the equations which govern the response of a com-
puted steady vortex patch pair to infinitesimal two-dimensional perturbations of the
patch boundaries. Given that Z (s,t) describes a boundary of a patch, the unsteady
condition that the vortex boundaries are materiél lines takes the form

3 H aazt* ~(u- m)} ‘Z—ﬂ 0. (4.73)
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Using primed quantities to denote the perturbations, we assume that a perturbed

boundary and its conjugate are of the form

Z = z(s)+72 (s,1) (4.74)
Z = 2(s)+% (s,1) (4.75)

where z denotes the undisturbed steady solution and z*, its conjugate. Since the
velocity field is determined in part by the shape of a given vortex patch, perturb-
ing a patch produces a corresponding disturbance in the velocities. Linearization of

expression (4.73) and the identification ¢ = exp (is) produces the equation

dz’ gdz dz dz* ( : w’) dz (u N w’) dz" (u— iv) dz’ i) dz ¢
—(—=—— =<(u — _—— —w)— —(u+1
dt >d¢ dt” d¢ d
(4.76)
to be satisfied on the vortex boundary.
We introduce the disturbances to the steady shapes by perturbing the coefficients
in the maps which describe the boundaries. We assume, for example, that the per-

turbation to the steady patch defined by z; in equation (4.40) has the expansion

7, = {1+Z ”}+R gz ” (4.77)

and that the perturbation of the conjugate of the steady patch, z., is given by

!

2 =R_(t) 2 {1 + Zaﬁd} + R % a; ()¢ (4.78)

Similar expansions with the coefficients R, R~ ,a] _,a; _ are assumed for the per-

turbation to the boundary of the other steady patch. We explicitly note that the

response of the velocities to a perturbation of the vortex boundaries can be expressed

in terms of these perturbation coeflicients, for example to calculate the infinitesimal
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velocity change produced by a perturbation of the boundaries

! ! / d ! d lay d A7 d
i = It g4 p 2 i 4.
v {R+dR++R‘dR TR T —dR*_}(” ) (4.79)

7 d N d N d .
+ +a, ——+4+a;, ,——+a,_—— ¢ (U —1V).
Z { J +da] 7= daj,_ 3t da;‘-,_i_ Js da;,_ } ( )

We see that by means of expansions like (4.77),(4.78) and (4.79), the boundary condi-
tion on each patch, (4.76), is linear in the unknown time-dependent perturbation co-
efficients. Solutions are searched for in which all primed quantities are proportional to
exp (ot) . In doing so, we choose to treat Z and %' as independent functions producing
4N + 4 unknowns. Representing these unknowns, R'Jr, a;, 4 R, a;- R'Jr, aj s R, d;,ﬁ
by a vector ¢ allows the linear condition on each boundary to take the form of a

generalized eigenvalue equation

N()d=M(() ¢ (4.80)

In a manner similar to that used in the computations of the steady boundaries, 4N +2
equations are obtained by expanding the linear boundary conditions as Laurent series
and equating the coefficients of " to zero for nin the range —N < n < N. Two of
the unknowns of our system are eliminated by fixing the phase of the perturbations
by requiring R/+ = R'Jr and R = R_. The stability problem has now been reduced
to calculating the eigensytem of a 4N + 2 generalized system. Only perturbations
which do not affect the patch areas will be considered in assessing the stability of the
configuration.

At this point we make a comment to justify our treatment of z' and %" as indepen-
dent functions. If a physically realistic perturbation has the form z;, = feot + gre”t
then its actual complex conjugate would be 27 = ge®* + f*e°"". As the time expo-
nentials are linearly independent our method will compute the two related solutions,
(z’,é’) = ¢’'(f,g) and (z’,é’) = e (g%, f*), from which we could re-create the

physical perturbation modes.
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4.3.4 Numerical results

The steady equations were solved by Newton’s method with an analytic Jacobian.
Most computations were done with N = 15 shape coeflicients for each vortex, and
were duplicated with double the number of unknowns. It was found that N = 15 was
sufficient for obtaining solutions with double precision accuracy. Only seconds were
required on a Sun Sparch workstation to compute a steady solution.

In performing the numerical calculations, length was non-dimensionalized with
respect to the characteristic radius of the +w, patch, r, = \/m, and the time unit
was defined by 1/w,. After preforming such scalings we find the problem has only
two free parameters, these are the distance between patches and the strength of the
shear. Steady solutions were computed for a wide range of L/r. and wy,/w,. The
separations distance L/r. between the patches was fixed at either 5,10, or 15 while
solutions were continued in the relative strength of the background vorticity we,/w,.
Recall that w, and wy, are taken to be of the same sign so that the fluid elements
in the +w, patch rotate with the background shear, but the fluid in the —w, patch
rotates against the shear.

The steady solutions computed correspond to patches with nearly elliptical shapes
symmetric about the z-axis; as an example a typical solution is plotted in Figure 4.3,
in this case for L/r. = 5 and we/w, = 0.135. Generally, such solutions can be
sufficiently described by the orientation angle and aspect ratio of the patches for a
given separation. All computed —w, patches had major axes parallel to the y-axis,
and in general the +w, patches were oriented with their major axis on the z-axis. In
terms of the coeflicients which describe the patch shapes, we define the generalized

aspect ratios,

1— aq +
Ay = —— 4.81
+ - (4.81)
1- ap —
Al = ——— 4.82
1+ ay — ( )

where A, corresponds to the +w, patch and A_ gives the ratio for the —w, patch. A
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Figure 4.3: The boundaries of steady patches whose centroids are separated by a
distance L/r. = 5 with background shear wy,/w, = 0.135. The patches have aspect
ratios A. = 1.20422 and A_ = 4.87017.

series of plots, Figures 4.4, 4.5, and 4.6, is presented which summarize the computed
solutions. As the separation distance increases, the maximum value of wy,/w, for
which solutions are found tends to (v/2 — 1)/2. This is not a surprise as beyond this
value there is no analytic solution representing an isolated stationary elliptic patch of
vorticity —w, embedded in unbounded linear shear with vorticity we.. It should be
noted that for very small background vorticities, the aspect ratio of the +w, patch
decreases to one and then increases as the patch changes from being oriented with
major axis parallel to the xz-axis to having the major axis aligned with the y-axis as
the +w, patch becomes the image of the —w, patch in the case of no shear. This
feature is most visible in Figure 4.4(b) for L/r. = 5. The plots indicate two solution
branches which meet at a point that appears as a fold. Since the radius of convergence
of induced velocities is closely related to the aspect ratio of a given patch, steady
solutions were not calculated for A\_ > L/r.. For such values one finds the velocity
induced by the —w, patch ceases to converge on the boundary of the +w, patch.

One could calculate solutions with A_ > L/r. by use of the integral representation
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Figure 4.4: The aspect ratios of the steady patches for L/r. = 5.

of the induced flow rather than the summation we employed, but much additional
computation time would be required; as this appears to be an unstable branch such
calculations were not performed.

Stability analysis indicates that the solution with the more elongated —w, patch,
corresponding to the upper branch, is unstable. The lower branch with the more
circular —w, patch is found to be stable to perturbations which do not affect the
area or displace the centroid. A comparison of computed eigenvalues with the growth
rates predicted by the dispersion relation for a single elliptic patch in unbounded flow,

restated here for convenience

2 2m
M>2 1 2mA Weo ( woo)2 A—1
-] =—= =1+ —] —{1-— N , 4.83
(w 4 { (/\2 +1 w w A+1 (4.83)
suggests that the perturbations may be interpreted in terms of unrelated oscillation
on the boundaries of the individual patches. To investigate the idea that a given

eigenmode primarily affects the shape of one patch we indroduce a measure of the

coupling between the shape perturbations. Recall that the perturbation to the patch
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L/r, 5 L/r. 10 L/r, 15
A, = 4 1.23481 A = 4 1.20014 Ay = { 1.30158
A 4.23650 A 4.93457 Al 5.07538
o/w, Cpl o/we Cpi o/we Cpl
+0.1764789 | 1.8 1072 +0.1711631 | 2.3 1073 +0.173240 9.2 107°
10.3151811 | 2.8 1073 +0.1665352 | 5.1 10~* +0.169222 71107
—40.3151811 | 7.4 107 0.1729736 | 1.2 10~* 0.1428217 | 2.3 107°
10.5483986 | 2.5 1072 —30.1729736 | 5.9 107° —40.1428217 | 1.9 1075
—40.5483986 | 4.0 10~* 0.3935393 | 8.1 10~ 0.3657090 | 6.1 1077
10.5531450 | 1.8 10? —40.3935393 | 6.5 107 —40.3657090 | 7.6 1078
—10.5531450 | 2.6 10.5433638 | 6.9 103 0.5411926 | 2.4 10*
i0.7752003 | 2.7 10* —10.5433638 | 1.0 10? —30.5411926 | 3.5 10°

Table 4.1: The first eight eigenvalues and corresponding c,; solutions on the unstable
branch at three different speration distances L/r, with wa,/w, = 0.15. Real growth
rates indicate instability

shapes are defined as

;o . N oalL (1)
2o =Ry ()¢ 1+Z—C%— +Ri<23—’<j—. (4.84)
7=1

Jj=1

We define the coupling ratio ¢y by

12
RS s P RGP
Cpl: .
A

' 2
“j,+‘

2 N 2 N o2’
{1 + 2 -] } + IR—IQijl |5 |

(4.85)

for a given eigenmode c,; compares the size of the perturbation to each patch. Very
large ¢, indicates the eigenmode is relatively isolated to the +w, patch and very small
¢p corresponds to eigenmodes which affects mainly the —w, patch. In Table 4.1 we
present the first eight eigenvalues and the corresponding c,; for steady solution with
three different separations; such calculations show the eigenmodes affect primarily a
single patch. It is interesting to note that while eigenvalues come in + pairs, the
eigenfunctions related to an imaginary eigenvalue and its conjugate have different
forms as indicated by different values of coupling measure.

Rather than present copious tables and plots of eigenvalues, we remark that the
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Figure 4.7: The unstable eigenfunctions for a solution on the upper branch with
L/r. = 5 and we/w, = 0.135 The solid lines represent the steady solution and
the dark dashed lines give the steady solution plus 0.2 times the eigenmode. The
perturbed 4w, patch is indistinguishable from the steady solution.

analytic dispersion relation accurately reproduced the numerically computed growth
rates for perturbations to the calculated steady solutions. As an example Table 4.2
contains the computed eigenvalues for a specific steady numerical solution and the
growth rates calculated from the aspect ratios by expression (4.83). For an explana-
tion of the excellent agreement, recall that relative to a patch centroid, the velocity

induced by a patch has the form
u— v = Zgj/zj (4.86)
j=1

where ¢g; and go are proportional to the patch area and centroid respectively. We see
that modal perturbations to a patch boundary induce velocities that must decay as
O(1/2%) which implies that the boundary perturbations are relatively uncoupled. To
further investigate the nature of the eigenfunctions, the unsteady modes are ploted

in addition to the steady solution, see Figure 4.7. Here we have used the steady
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Computed w/w, for p/w, for
Eigenvalues A =1.40628 A = 2.38878
+¢0.04807 +:0.54516 +:0.04791
+¢0.46610 +21.01756 +10.46606
+10.54517 411.48985 £:0.82392
+10.82396 +41.96200 +21.18027
+:1.01757
+:1.18033
+171.48985

Table 4.2: The first seven eigenvalues compared with the m = 2,3,4,5 modes of
isolated patches with the same aspect ratios as the steady solution. The steady
solution is given by A, = 1.40628, A\_ = 2.38878, L/r. = 10, and we/w, = 0.20143.

solution already displayed in Figure 4.3; it has two unstable eigenvalues o/w, ~
0.15205, 0.17181. The dominant eigenfunction is shown Figure 4.7 (a); it appears as
an elliptical perturbation elongating and tilting the —w, patch and its corresponding
coupling factor is ¢;; = 1.9 1072, The perturbation in Figure 4.7 (b) has eigenvalue
o/w, ~ 0.15205 and ¢, = 8.2 1073, we see that is corresponds to a mode number
m = 3 disturbance to the —w, patch.

At the fold point in our solution curves, Figures 4.4, 4.5, and 4.6, the stable
and unstable branches meet. At this point the two computed eigenvalues related to
an elliptical (m = 2) perturbation to the —w, patch cross at the origin, changing
from purely imaginary on the lower branch to purely real on the upper branch. At
points along the upper branch other modes also become unstable as the 4 imaginary
eigenvalue pairs pass through the origin and become real eigenvalue pair. These
eigenvalues correspond to higher (m > 2) modal perturbations to the —w, patch.
Such points along the solution curve indicate bifurcations to patch shapes which are
not primarily elliptical, but since such solutions would necessarily still be unstable to

the m = 2 mode, they were not studied.
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4.4 The elliptical patch model

Motivated by the fact that our results described elliptically shaped vortex patches,
we now produce a simple low dimensional model for the interaction of the counter-
rotating vortex pair in shear based on the equations which govern a single elliptical
patch in unbounded linear flow.

We begin by deriving the equations which approximately describe the evolution
of a group of elliptical patches of different constant vorticities and areas embedded in
linear shear. In doing so we assume that each patch sees a strain field corresponding to
an approximation of the induced flow from the other patches as well as the background
shear. In Appendix D we present a Hamiltonian for this system independently given
by Ngan, Meacham and Morrision [26]. Our specific case of two counter-rotating
vortex patches of equal strength is then studied. The predictions from this simple
model compare excellently with the numerically computed steady solutions of the
last section. Augmenting this elliptical patch model with the dispersion relation for a

single elliptical patch allows us to calculate very good approximate stability results.

4.4.1 The interaction of elliptical patches in shear

In this subsection we use an elliptical vortex approximation to produce a series of
coupled equations which describe the interaction of a constellation of elliptic vortex
patches in shear. In particular we assume that the separation between patches is
large enough that on the boundary of a given patch, the induced velocities from all
the other patches can be adequately approximated by a linear strain. The velocity of
the center of a patch is given by averaging the external velocity through the patch.
This implies the well known result that if z. gives the centroid of an elliptical patch

in a background flow defined by the complex potential W, then

i(z)-— @/_
dt ¢\ dz

1 . d3W
Ac c c i20e .
)zc + o A (A —1/Ac) e <—dz3 )Z (4.87)
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where |A,| is the patch area, A, gives the aspect ratio and 6. is the angle measured
counter clockwise from the horizontal to the major axis.

To formulate the equations of motion for a system of elliptically shaped patches
interacting in an external shear, we examine the action of a given patch in the flow
induced by all the other patches as well as the background. In the neighborhood
of a vortex patch with centroid z;, the velocity field resulting from the other ellipti-
cally shaped patches with centroids zy = X + ¢Y), as well as a constant shear and

translation, is given by

. i (wh — woo) | A
uE—sz—z'VooJrz'%(z—z)Jr; ws W“’ JAd g (ass)

with

-1
Fi,k = <Z — zZ; + ik + \/(Z — 2 + Zi,k)Q — IAkI (/\k — 1/)\k) ei%k/’ﬁ) . (489)

The quantity z;; = z;— 2z = R;x exp (i6; ) represents the vector between the centroid
of our vortex patch and another patch in the ensemble. Assuming the characteristic
radius of each patch is small compared to the separation distance between patches

we may make the local approximation

1 14
Iy~ _M

) 1
~ 206 (Np —1/0) — —— (2 — 2 — (2 —z)>. 4.
) 22k | 8 Zg’kﬂ'e ( k / k) (z Zz) + (Z ZZ) ( 90)

The equations describing the motion of the centroid of our patch may be obtained by
identifying up — ivg with dW/dz in equation (4.87);

|Ak] 1
Zig 2T

Lz = iV + z“-2i°- (7= Z) =1 Y Wk = woo) (4.91)

ki

, Wi — Weo) |A i i20;
=i 3 el L a0 (0 1/00) 14 O - 1/0) €20
foti ik

We assume that the evolution of the boundary of the patch is determined by the

induced flow from the other patches as approximated by a local strain. The strain
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field contributed by all other patches then has the approximate form

— W) Akl s ,
u—1v (2 —2)1t Z (e 27rwR2) | ’“|€*z29,,k =0 (2 — z). (4.92)
k#i i,k

Inserting this strain into the equation governing the development of the aspect ratio

of a single patch (4.37) gives

d (wk - woo) |Ak| . .
%)‘z = )\z { ﬂ'Rik sin 2 (Hi,k — 01) — )\Zwoo Sin 201 (493)

Likewise this local strain implies from (4.38) that the orientation angle will develop

as
d (wi - woo) )\Z Weo )\2 +1
Lg, = WiTWeo) i Yoo [y AT 09, 4.94
dt A+n? 2 ( 21 > (4.94)
1+ A |4j] (wj — woo)
+ % ; [ I, cos2(0; —0,,;)] .

Taken together, equations (4.91) (4.93) and (4.94) define a model for the inter-
action of a system of elliptical vortex patches interacting via their induced flow in a

strain field.

4.4.2 'Two counter-rotating patches in shear

Turning our attention to the problem of two counter-rotating vortex patches in shear,
we seek solutions to our approximate equations which are steady in a frame of refer-
ence moving with the patches. Recall that the patches are taken to each have vorticity
+w, and are situated with the centroids aligned with the shear. In particular we as-
sume that in our co-ordinate system the background flow representing both shear and

vortex induced translation is of the form

w—iv = —iV + z“% (z— 2). (4.95)
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Without loss of generality we take +w, and wy, to be of the same sign. In this
configurations we refer to the 4w, patch as rotating with the shear and the —w,
patch as rotating against the shear. We seek steady solutions for which the centroid
of the +w, patch z. is found at L/2 and the centroid of the —w, patch is given by
z_ = —L/2. Recall also, to insure that the patches have equal strength relative to
the background vorticity, the area A_ of the —w, patch is related to the +w, patch

area A, by
Ap (wo —weo) = A (wo + Weo) - (4.96)

The magnitude of additional vorticity due to a patch defines I' = (w, — woo) A+.
Under the elliptical patch approximation, time independent patch configurations are
the steady solutions of the evolution equations: (4.91), (4.93), and (4.94).

From equation (4.91), the vertical component of the velocity of the vortex pair

dy+ dy_
= = = 4.97
dt dt ( )
1T 17T A —1 A2 —1
= - —— | A_— 20_ + A, -t 20
Voo 5T 83 ( oS + Ay N cos +>

in conjunction with the stationary requirement . = 0 produces the translational
velocity V., which balances the self-induced downward motion of the vortex pair.
Notice that the leading term gives the velocity of a point vortex pair, while the
following terms are geometric corrections related to the finite areas of the patches.

The horizontal velocity of the vortex pair may be computed from equation (4.91) as

dr dx_
g e T g T el (49%)
T N1 A—1
= §2p3 (A_ S sin 20_ + A, o sin 20+> :

In our configuration with the centroids aligned on the same horizontal, the elliptical

patches develope independently; according to equations (4.93) and (4.94) the patch
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which rotates with the shear evolves according to

dX r
d—: = Ay (W — woo) sin 26, (4.99)
do, IPDW Weo 11+ A2 r
= o4z o — —= 20 4.100
dt A (a7 2 Tar e \Um T E) (4.100)

while the elliptical patch which rotates against the shear obeys

d_ r _
LY (m i ww) Sin 20 (4.101)
do_ —TA_ w 11+ r
_ Yoo | 2 | we + —— 20_.  (4.102
7 A_(1+)\_)2+ 5 +21_)\3 <w +7TL2>COS ( )

From the equations (4.99) and (4.101), we observe that two possible orientations
for each patch, 6 = 0 or n/2, insure steady aspect ratios. By means of formula
(4.98), these orientation angles also imply £, = 0. By definition, only aspect ratios
greater than one will be considered admissible solutions. We assume that . = 0 and
0_ = m/2 ; if an aspect ratio A < 1 is calculated, it will be interpreted as an aspect
ratio of 1/A with an orientation increased by /2.

Re-writing the steady orientation angle expressions 9+ =6_=0, gives the follow-

ing algebraic equations for the aspect ratios

Wo _ 1+ (1 - 2(L/TC)2)’\+2+ (1 +2(L/TC)2))‘3— +)‘3- (4103)
Weo (14+2(L/r)* +Ay) (1+22)
—w, 1+ (M2 L/r)?) A+ (L= 2(L/re)*) A2+ 42

Weo (2(L/re)* = 1) Ao = 1) (1 +2%) (4104

where 7, = \/m Over the range of vortex separations and aspect ratios we
studied numerically, the curves equations (4.103) and (4.104) define are visually in-
distinguishable from the computed solution curves displayed in Figures 4.4, 4.5 and
4.6.

As an example of the accuracy of the analytic model, we use the aspect ratios it
produces and the analytic dispersion relation for a single patch in unbounded flow,

equation (4.83), to predict the location of the fold, where the m = 2 eigenvalue
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m=2 m=3

analytic numeric analytic numeric

Weo/Wo 0.204608 | 0.204609 0.175181 | 0.175174
L=15 A4 1.42615 | 1.42618 1.35783 | 1.35786
A 2.41922 | 2.41942 3.98510 | 3.95890

Woo /W 0.201464 | 0.201472 0.172075 | 0.172031
L=10 A, 1.40623 | 1.40638 1.33870 | 1.33897
A 2.42554 | 2.42558 3.96752 | 3.96952
Weo/Wo 0.184094 | 0.184357 0.154927 | 0.154497

L=5 Ay 1.30336 | 1.30635 1.23957 | 1.24409
A 2.46087 | 2.46465 4.01799 | 4.04888

Table 4.3: Locations in solution space of the fold, m = 2, and first bifurcation, m = 3
analytically predicted and numerically calculated.

becomes unstable, and the location on the upper branch where the next eigenvalue,
m = 3, becomes unstable. Table 4.3 shows that the analytic predictions agree very
well with the numerically calculated values, indicating the accuracy of the elliptical
vortex model. It is quite remarkable that the elliptic vortex patch model augmented
with Moore and Saffman’s dispersion relation for a single patch can effectively replace

much more complicated numerical procedures.

4.4.3 The non-linear evolution of the elliptic model

In this subsection we make some observations about the nonlinear stability of the
elliptic patch model defined by equations (4.96)-(4.102) which govern the location,
orientation, and aspect ratio of each patch. We show that certain initial conditions
in the elliptical patch model evolve in such a way that the aspect ration of the —w,
patch tends to infinity while the +w, patch maintains compact form. In such a case
the shear causes the destruction of the —w, patch.

As the patches evolve, the patch centroids may not follow a simple parabolic
path since the aspect ratios A (¢),. and the patch orientations 6 (t), are involved in
calculating the location of the centroids of the patches via equations (4.97) and (4.98).
In turn the aspect ratios and orientations depend on the relative locations of the

patches. For certain initial conditions the relative locations of the patches is constant.



112
The equations for the patch centroids imply that if the patches are initially separated
by a distance L and are horizontally aligned, the separation distance will be constant
and the patches will remain horizontally aligned; mathematically if z (0), —z (0)_ = L
and y (0), —y(0)_ = Othen z (t), —x(¢t)_ = L and y(t), — y(¢)_ = 0. We shall
assume our patches are initially thus aligned.

As we have shown the separation distances between patches is constant for our
patches; an examination of equations (4.99) - (4.102) shows that the geometry of
the patches evolve separately. In Appendix D we constructed from consideration of
the excess energy a Hamiltonian for a constellations of interacting elliptically shaped
patches. For our system of two aligned patches the Hamiltonian reduces to the sum
of two conserved quantities, H, and H_; each defines the evolution of the geometry

of a patch. For the +w, patch, which has the same signed vorticity as the shear,

4r 1 Ay +1)° lwel+ A2 1 /22 -1\ (we Ay
Hooo = —Zlog| 22120 ) — = - 2 ) cos?2
T2 9 Og( W 2wy 20, 4\ 2), o, wpz) oW+

(4.105)

defines the conserved quantity H, while

1 D) Twel+A 1N -1 (we | Ao
H4W:——1Og<()\—+—)—>+—ww - _-l——( — )(w +—>00820_

T2 2 A 2w, 2\ 4\ 22 w, | wL2
(4.106)

defines the quantity H_ which is conserved for the patch whose vorticity is signed
against the shear. As a check, direct differentiation and comparison with the equations

which govern the evolution of the elliptical patches shows

OH: _ [A4|T (1—2%) df.

4.10
A 87 Ay dt (4.107)
OH, |AL|T (1= M%) ds
= 4.108
80i + 8 )\:t dt ( 0 )

which implies H. are conserved.
In Figure 4.8 we choose L/r, = 10 and wy/w, = 0.15 and plot the constant

contours of the Hamiltonians in A, # space for both patches. Due to the symmetry
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(a) The —w, patch: 6_ vs A_ (b) The +w, patch: 8, vs A4

Figure 4.8: The trajectories of non-linear patch evolution for L/r, = 10 and weo/w, =
0.15

of an ellipse, the Hamiltonians are periodic in 8 with period w. Notice from Figure
4.8 (b) that there is one steady orientation and aspect ratio for the patch whose fluid
elements rotate with the shear, and this patch is stable in sense that its aspect ratio
remains bounded. But the patch whose fluid elements rotate against the shear has
two steady points in Figure 4.8 (a), a nonlinear center and saddle. Since the geometry
of each patch evolves independently with for our aligned system, we may predict the
evolution of any initial orientation and aspect ratio. For instance, by combining the
center for the +w, patch with either the center or saddle for the —w, patch, we can
create a steady solution on the stable or unstable branches which we first identified
numerically. Notice that some small perturbations from the saddle point lead to an
unbounded aspect ratio as the —w, patch is pulled apart by the shear, yet at the

same time the +w, patch remains compact.
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Part 11

Wave generation
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Introduction

A possible mechanism for the generation of water waves arrises from the instability of
an initially planar free surface in the presence of a parallel, sheared, inviscid flow. In
such an model the free surface represents an air-water interface and the parallel flow
may be chosen to describe wind blowing across the water, a drift layer in the water or
both. In the simplest models the steady parallel flow is described by a piecewise-linear
function; such a profile is referred to as a “stick profile”.

Only two-dimensional motion is considered as for every unstable three-dimensional
disturbance there is a corresponding two-dimensional disturbance with larger growth
rate; this follows from the inviscid form of Squire’s theorem for coupled free-surface
flows. Perturbation analysis is conducted by aligning the free surface with the x
axis and examining the response to two-dimensional perturbations proportional to
ef@=ct) where k is a the wavenumber and c is the wavespeed. Requiring that the
air-water interface be a material line and imposing continuity of force leads to an
eigenvalue problem defining the dispersion relation ¢ (x) . For general profiles pertur-
bation and wavespeed may be found by simple numerical techniques. Waves with real
wavespeeds are said to be stable.

Howard’s semicircle theorem is a powerful result in the analysis of the unstable
wavespeeds. Assuming that Upay and Uy, are the maximum and minimum veloci-
ties of the steady parallel flow, the semicircle theorem says that wavespeeds ¢ with
positive imaginary part lie in the semicircle in the upper-half c-plane with origin
% (Umin + Umax) and radius % (Umax — Umin). Originally a result for inviscid channel
flow, the theorem was extended to a flow with a free surface by Yih [45] and further
extended to coupled free-surfaces flows by Morland and Saffman [23]. A proof of this
theorem with the addition of surface tension at the free surface interface can be found
in Appendix E.

In the absence of surface tension, Morland and Saffman [23] investigated the linear
stability analysis of inviscid parallel flow of air over stagnant water. They used

several smooth profiles and made comparisons with results predicted by the critical
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layer theory of Miles [16]. Miles’ approximate formula was found to overestimate the
growth rate by a factor of two.

A drift layer in the water is a current with shear ostensibly due to the drag of wind
over the water (of course it could be created by running a stream over the surface).
The drift layer instability was originally investigated by Stern and Adam [35] and
Voronovich et al. [41] who employed a piecewise-linear velocity profile in the water
and ignored the surface tension and the dynamics of the wind. Morland, Saffman
and Yuen [24] extended this model by including surface tension and using a variety of
smooth velocity profiles. In all cases it was found that the fluid surface velocity must
exceed the minimum wavespeed of stagnant fluid for instability to occur. Unstable
growth rates were found to be relatively insensitive to which smooth profile was used
but significantly smaller than those associated with the stick profile.

Piecewise-linear profiles in the air and the water were used by Caponi et al. [2] to
model wind blowing across a drift layer in water. To reduce the number of parameters
in this model, they assumed a characteristic ratio of wind speed to drift layer speed
and related the thickness of the drift layer to the shape of the wind profile by assuming
continuity of tangential stress across the air-water interface. Analysis of the eigenvalue
equation for the wavespeed c lead to the identification of two non-overlapping regions
of instability related to the drift layer instability and wind driven instability.

In Chapter Five we extend this model of wind blowing across a drift layer by
including surface tension and replacing the stick profiles by smooth profiles. In par-
ticular we represent the wind and drift layer by exponential profiles, the form of which
allows for analytic simplifications. Working in a frame of reference where the fluid
velocity at the air-water interface is zero, we classify unstable waves as right-traveling -
(in the range of the wind profile ) or left-traveling (in the range of the drift layer).
We separately investigate the behavior of these waves. In terms of layer thicknesses
and windspeeds, we determine stability boundaries by an application of Howard’s
semicircle theorem. We directly compute unstable wavespeeds and compare with the
results from the stick profile. For a given set of independent parameters (e.g. wind-

speed, layer thickness etc.) the wavenumbers calculated by the stick and exponential
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profiles corresponding to the most unstable waves are found to be in good qualitative

agreement.
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Chapter 5 Infinitesimal waves in the presence of

wind and drift layers

5.1 Mathematical formulation

We choose to use a right handed Cartesian coordinates system with the z-axis lying
along the undisturbed interface between the water and air. The force of gravity points
in the negative y direction and has modulus g. We assume that at any instant the
free surface can be described as a single valued function of z, and that it is given
by y = n(z,t). The assumption that the flow in question is incompressible and two
dimensional implies that the fluid velocity u = (u, v) and the pressure p are governed

by the Euler equations and equation of continuity,

1 ~
w+u-Vu = —;Vp-gj (5.1)

V-.u = 0, (5.2)

[19h)

where p represents the density of the air or water. When necessary the indices “a
and “w” may be used to indicate air and water. The free surface develops under
two requirements: the interface is a material line and force is continuous across the
interface. These requirements take the form of the following two equations evaluated

on the free surface y = n;

n,+u-Vp = 0 (5.3)
[p]fu = T Nz (5-4)

(,/1—I—n§)37

where T is the surface tension and the notation [p], represents the jump in the

pressure at the interface, p, — pu.
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Figure 5.1: The wind-water shear flows with waves

We wish to linearize about a simple steady solution that represents wind and a
drift layer in the water. Such a solution consists of a planar surface n = 0, with
parallel flow u = (U (y),0) and hydrostatic pressure p = —pgy. Linearized equations
are obtained by assuming small time dependent perturbations to the velocity and
pressure as well as the interface: u = (U (y) + u',v’) p=—pgy+p,andy=17.

Linearizing produces the equations governing the velocity perturbations,

up+ Uty + U’ = =py/p (5.5)
v+ Uv, = —p,/p (5.6)
Uy, +v, = 0, (5.7)

and the interface conditions to be applied on the unperturbed surface y = 0,

77;—|—U77;—v' = 0 (5.8)
Mw -0 (5.9)
M: = 9P — Pu) N + Ty (5.10)
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Furthermore, we require that the velocity perturbations tend to zero at y — Z£oo.
In order to study the evolution of infinitesimal periodic waves, we seek normal mode

solutions of the linearized equations. Analysis requires that

u = qﬁyei"(“’_“) (5.11)
v o= —ikge™@e) (5.12)
p = p (qSy (c—=U)+ gbUy) i@ —et) (5.13)

: ¢ (0) pin(a—ct) (5.14)

)

With out loss of generality, the wavenumber « is taken to be positive. Elimination of
the pressure terms from the linearized form of Eulers equation leads to the Rayleigh
equation,

Dy — (HQ + UU—in) ¢ =0. (5.15)

This equation is to be solved in the fluids, subject to the requirement ¢ — 0 as
y — +oo and to the boundary conditions which result from the linearized interface
conditions. These boundary interface conditions, given by the following equations
evaluated at y = 0, represent a jump in the tangential velocity and continuity of

normal velocity;

[poUy +p(c=U)o,]. = ¢U {9(pa = puy) — &°T} (5.16)

C —

5(07) = 9(0). (5.17)

The Rayleigh equation in the fluids and the boundary interface conditions to-
gether with the requirement ¢ — 0 as y — £oo form an eigenvalue problem. For a
given background flow U (y) we assume that the wavenumber & is specified so that the
wavespeed c is the eigenvalue. After one has found continuous bounded solutions to
the Rayleigh equation, the boundary interface condition (5.16) will define an implicit
dispersion relation. A wavespeed with an imaginary part indicates that the ampli-

tude of an infinitesimal wave of the given wave length grows or decays exponentially
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while the wave travels with speed R (¢). Notice that time reversal and a reflection
about the y-axis implies that complex eigenvalues come in conjugate pairs. We define

perturbations with real wavespeeds c as stable.

5.2 An exponential profile for wind and drift layer

As pointed out by Miles in an appendix to Moreland and Saffman [23], the Rayleigh
equation may be analytically solved in the case that the velocity profile for the parallel
flow is given by simple exponentials. Representing a simple continuous wind and water
profile with exponentials, we take

U(y) = Ua (L —exp[=2y/As)) y>0 [ (5.18)

Uy (exp [2y/Ay] — 1) y <0

Notice that the velocity of the water and wind is zero at the undisturbed interface,
y = 0; the wind increases monotonically to the speed U, at infinity, while the water
velocity decreases to —U,, at minus infinity. Most of the velocity profile change occurs
in a thin layer above and below the interface; the lengths A,, A,, > 0 are the centroids
of vorticity in the air and water and will be referred to as the thickness of the wind
layer and the drift layer. In general we assume some relationship between the steady
profile in the wind and in the water resulting from physical considerations. We define
the nondimensional ratios v = U,, /U, and w = A,/A,, as well as the ratio s = p,/p,,
of the air and water densities; s has the approximate value 0.001226. For the parallel

flows given (5.18), the Rayleigh equation has the form

2 \? U,e2/Ba
¢yy _ (I‘CZ + <Z;) Uae_Qy/Aa — (Ua — C)) qﬁ = O, Yy >0 (519)

2 U, e/ Bw

2
by — (,@ + (-A;> A (s C)> 6 = 0, y<0. (520

As mentioned earlier, such equations may be solved by means of complex Hypergeo-

metric functions F'(a, b, ¢, z). Imposing decay at +o0o as well as continuity across the
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undisturbed interface y = 0 produces the solution

F(P7%P+(I+1,Ua exp(—2y/Aa)/(Ua—C)) y > 0
b = eIyl F(p,g:p+q+1,Ua/(Ua—c)) (5.21)

F(lmy-+m+1,Uy exp(2y/Aw)/(Uw+c))
mF(l’:nm’H‘mjlf)Uwy/(Uw‘FC)) y < 0
where the parameters are given by
p = KAJ2+ 1/ (KA/2)° + 1 (5.22)
I = kA,/2+ 1/ (5A,/2)° +1 (5.23)

and ¢ = —1/p, m = —1/I. Recall that the wavenumber x is taken to be positive.
We have yet to satisfy the interface condition representing the jump in the tangential
velocities at y = 0. In a notation we will continue to use throughout this chapter, we
suppress the parameters in the Hypergeometric functions and introduce the subscripts
“a” and “w” to distinguish between the solutions in the air and water. The boundary

interface condition now takes the form

2(s—yw)U, 1( 1-s T 2 F, (Z,) 2 _ F.(Z)
R A — =1 Zy =2 Zy ==
<g K + pr> e IiAaw ’F, (Zs) +S/£Aa 'F, (Z1)

(5.24)

KA, C c?

where Z, = U,/ (U, — ¢), Zy = U/ (Uy + ¢) , and the primes denote differentiation.
This equation can be considered to be an implicit dispersion relation.

The exponential decay of the form exp (—« |y|) found in the velocity perturbation
is characteristic of interface waves and can be directly deduced from the Rayleigh
equation. Recall that & is the wavenumber of the perturbation, this exponential
suggests that a wave exist on a vertical scale proportional to its wavelength. With
this in mind we briefly examine the dispersion relation (5.24) in two limits of the ratio
of wave length to layer thickness: very short waves and very long waves. We show
that in the limit of large layer thicknesses the dispersion relation tends to the ordinary
gravity-capillary dispersion relation, and in the limit of small layer thicknesses we

reclaim the unstable Kelvin-Helmholtz dispersion relation.
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5.2.1 The gravity-capillary limit: kA, — oo

In examining the implicit dispersion relation for the large kA, limit in which the ratio
of layer thicknesses w = A, /A, is held constant, it is useful to first nondimensionalize

with respect to the gravity-capillary wavespeed, ¢, (k) ;

? P

2 = (g(i?—) + Ti> J(1+s). (5.25)

In the absence of a background flow, i.e. U, = U, = 0, equation (5.25) defines
the dispersion relation for infinitesimal perturbations; notice such perturbations are
stable. For this dispersion relation we see that there exists a wave of minimum speed

Upmin With wavenumber Kyn,

ATAYE /1 - 1/4
Puw (1 -+ S)

fmin = /91— 5) 22, (5.27)

For an air-water interface Upin ~ 23.2 em/s and kpin ~ 3.6 1/cm. By defining the
nondimensional quantities ¢ = ¢/¢, and U= U,/c,, we may rewrite our dispersion
relation (5.24) as

I+s (1
S—W’}/—f—KJAa‘—z‘?j“ 5—6 =

'

F, (%) F, (Z3)
(SZ1 Fa (Zl) + CUZQ Fw (Z2)) . (528)

Hf o)

We see that as kA, — oo, the dominate term in the dispersion relation requires
1/¢—¢— 0. In other words, the dispersion relation for very short waves tends to the
dispersion relation one would find in the absence of a background flow U (y). This
result may be anticipated since short waves don’t see very far into the flow and in a
vertical strip much smaller than the layer thicknesses and centered on the undisturbed

interface, y = 0, the background profile is approximately zero.
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5.2.2 The Kelvin-Helmholtz limit: kA, — 0

To investigate the behavior of the dispersion relation for wave lengths much longer
than the layer thickness, we use an asymptotic expansion for the Hypergeometric

function for small kAg;

F 1,72 1 2-7
(P,(Z,ZH-C]*F s ):_ -I—/QAG“—“—Q_"O(HACL)Q: (529)

F(p,g,p+q+1,2) 1-Z 2(1-2)

recall that pg = —1 and p = KA,/2 + 4/ (,«;AG/Q)2 + 1. Surprisingly, standard ref-

erences only present expansions of the Hypergeometric function about the singular
points of the defining differential equation; equation (5.29) was obtained directly from
the Hypergeometric differential equation.

As kA, — 0 with w = A, /A, held constant, the dominant term in the expansion

of the general dispersion relation (5.24) becomes

1 1—s I 2~ 7 2— 7y > _
- +T— ) =cll+s+ 7 + sZ , 5.30
¢ (g K w) ( 2(1 — 22)2 1(1 —21)2 ( )

where Z;, = U,/ (U, — ¢) and Zy = U,/ (U, + ¢). Solving for the wavespeed ¢ we

arrive at the Kelvin-Helmholtz dispersion relation;

c= SU;”J:SU’” + i S\/g(l ;52) +T(1+s) ;’2 — s (U, + Uy)*. (5.31)

This is the dispersion relation one would compute for infinitesimal perturbations
when the background velocity profile is a step function; U (y) = (U, + Uy,) H (y)—U,.
Notice that the Kelvin-Helmholtz dispersion relation may be unsteady for a certain
range of wavenumber. We can say that in the small kA, limit, the transitional wind
and drift layers about the interface are too small to be noticed by the relatively much

longer waves; instead the waves see a step velocity profile.
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5.3 Stability regions

In Appendix F we examine stability boundaries for two simple models of wind blowing
across a flat free surface: an exponential wind profile over stationary water and a
constant wind over a drift layer in water. In this section we assume a wind profile
and a drift layer, both modeled by exponentials. We choose a frame of reference
such that the velocity at the undisturbed interface is zero and study the stability
boundaries associated with this flow. As we have already stated in expression (5.18),
the undisturbed profile in the air and water is given by
S TS E VAN R 52
Uy (exp[2y/Ay] —1) y <0
We proceed to reduce the number of parameters in this profile in the manner in
which Caponi, Caponi, Saffman and Yuen [2] related stick wind profiles to stick water
profiles. We assume speeds of air and water relative to the stationary undisturbed
interface are related by U, /U, = 7 where v is a known number; Valenzuela [40]
suggest typical values of 0.044 and 0.057. Although the steady flow u = (U (y),0),
with U (y) given by (5.32), is not an exact solution to the equations of motion when
viscosity is included; the thickness of the drift layer is assumed to be related to the size
of the layer in the wind by imposing continuity of tangential stress: p,v,U,/A, =
PuVwlUu/Aw, where for water and air p,/p, = s ~ 0.001226 and v,/v, ~ 14.94.
Choosing a typical value for the velocity ratio v determines the layer thickness ratio
A,/A, = w. For the purpose of making plot in this section, we shall proceed with
~ = 0.057. Only two parameters are now required to specify the undisturbed profile:
the wind velocity U, and the wind layer thickness A,.
After nondimensionalizing with respect to the minimum gravity-capillary wavespeed

Umin and its corresponding wavenumber ki, the dispersion relation which we earlier
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Figure 5.2: Sketch of the compex wave speed ¢(k) for wind and drift layer entering
and exiting the Howard semicircle.

derived (5.24) takes the form

'3

2 U 1 (1+s) (1 2 F. (Z,) 2 _ F.(Z)
Z(s— - k) =1 Ly 2z ta
0T (k+ ) T LY R (Z) kT ()

(5.33)
where U = U, /Upiin, C = ¢ (&) /Umin, do = DgKmin, and k = £/Kmin. Recall that the
functions denoted by F are the complex Hypergeometric functions of the second kind
and represent the y dependence of the air and water eigenfunctions, as indicated in
expression (5.21), and also that Z; =1/ (1 - ¢/U,) and Zy =1/ (1 +¢/Uy) .

From the Howard semicircle theorem presented in Appendix E, we know that the
real part of the complex wavespeed associated with an unstable wave will be in the
range of the parallel flow: U, > R [c (k)] > —U,, or in terms of our nondimesonalized
quantities U > R [C] > —~U. Unlike the profile in Appendix F, the Howard semicircle
may be entered from either side, see Figure 5.2.

Depending on the value of U, the dispersion relation (5.33) can lead to right and
left traveling unstable waves. Since unstable right-traveling waves have speeds in the
range of the air profile, {0, U, }, we anticipate a stability boundary near U =1 as the
wind speed overtakes the slowest right-traveling wave. Likewise we expect the slowest
left-traveling waves to become unstable near yU = 1.

We choose to examine right and left traveling waves separately. We will first
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determine the stability regions for the right-traveling waves and then for left-traveling

waves.

5.3.1 Right-traveling waves: in the range of the wind

To find the wavenumbers & at which the complex wavespeed for the right-traveling
waves enters and exits the Howard semicircle, we substitute C = U into our dispersion

relation (5.33). The implicit equation for such wavenumbers takes the form

O g (%M) TR %133 feyty (kfl)Q

(5.34)
Unfortunately, we can not solve explicitly for the layer thickness as a function of
wavenumber because the Hypergeometric functions depend on layer thickness in
a complicated manner. Recall that F, (Z) = F(l,m,l+m+1,Z), where | =

kd,/ (2w) + \/(k’da)2 / (4w?) +1 and ml = —1. Instead we solve equation (5.34) for

U and make contour plots in the (k,a) plane corresponding to different wind speeds;
see Figure 5.3. For a given layer thickness and windspeed, we find at most two
nondimensional wavenumbers k,; and k.o such that C (k,;) = C (ks2) = U. Those
wavenumbers between k,; and k. are correspond to unstable right-traveling waves.
We find that when U < +/1+ s/ (1 + ) all right traveling waves are stable. For
values of wind speed U such that 1 > U > +/1+5s/(1+7) there is a region of
instability for a range of layer thicknesses beginning in the Kelvin-HelmholtZ' limit (
layer thickness d, = Agkmin — 0) and extending to a finite layer thickness dependant
on U. The stability boundary for a given wind velocity in this range forms an inverted
u-shaped curve d,(k) with the endpoints d, (k;) = 0, and d, (k}) = 0 and with a
maximum value which tends to infinity as U — 1. The area beneath this curve
is an unstable region. The values of k¥ may be determined directly from equation

(5.34) or by solving the Kelvin-Helmholtz dispersion relation (5.31) for ¢ = U, and
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Figure 5.3: Stability boundaries d(k) for right-traveling perturbations labeled by
nondimensional windspeed U = U,/Upin. These curves correspond to waves which

travel at the wind speed, ¢ = U,

nondimensionalizing; one finds

L Ur(1+9) \/U4 (1+7) = (1+5)
ke = : (5.35)
145 1+s

When the wind velocity is faster than the minimum gravity-capillary wavespeed,
i.e. U > 1, there exists unstable wavenumbers for any layer thickness. The unsta-
ble region stretches between the Kelvin-Helmholtz limit (d, = Agkmin — 0) and the
gravity-capillary regime (d, = Agkmin — 00). For U > 1, the stability boundary in
the (k,d,) plane appears as two curves and the area between which is unstable. The
curves connects (k;,0) with (k,o00) and (k7,0) with (k{,00),where k¥ is given

above and ki has the form

Et=U? 4+ VU - 1. 5.36
1

By calculating the maximum of d, (k) as a function of the drift speed U, a curve
can be drawn in the space of wind speed vs. layer thickness. Such a curve is shown in

Figure 5.4. This curve separates the region in which any right-traveling perturbation
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Figure 5.4: Stability boundary for right-traveling perturbations in the (U, Ak) plane.

is stable from that in which there exist unstable right-traveling wavenumbers. In the
transitional range of wind speeds, in this case 1 > U > /1 + s/ (1 + ), increasing the
wind layer thickness can stabilize a flow. This is unlike the results we obtained with a
wind profile over still water in Appendix F. We mention that this is a very small range
of wind speeds as v/1+ s/ (1+ ) ~ 0.95 for the typical values v = U, /U, = 0.057
and s = p,/p,, = 0.001226.

5.3.2 Left-traveling waves: in the range of the water

To find the wavenumbers &k at which the complex wavespeed for the left-traveling
waves enters and exits the Howard semicircle, we substitute C = —~U into our
dispersion relation. Recall that the range of the profile in the water is {—~U, 0}. The

implicit equation for the entry and exit wavenumbers takes the form

2(s — ) <1+8>(1 k): 2 s F(/0+7) H(zw)?_

vkd, 27202 \k Ckdy 1+ F, (1/(1+7))
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Figure 5.5: Stability boundaries for left-traveling perturbations labeled by nondimen-
sional windspeed U = U,/Upin. These curves correspond to waves which travel at
the drift layer speed, ¢ = —~U,. The wind-drift speed ratio v = .057 was used.

Again, we can not solve explicitly for the layer thickness as a function of wavenum-
ber due to the Hypergeometric functions in this equation. Recall that F, (Z) =
F(p,q,p+q+1,7Z),where p = kd,/2 + (kda)2 /441 and pg = —1.To investigate
the unstable region, we define the inverse layer a = 2/d, and use equation (5.37) to
make plots for various wind speeds in the (k, a) plane; see Figure 5.5. For a given
wavespeed and layer thickness we may determine the entry and exit wavenumbers
C (ky1) = C (ky2) = —yU and conclude that the wavenumbers between k,; and k2
are unstable left-traveling waves.

We find that when the slowest gravity-capillary wave is faster than drift layer
speed, i.e. 1 > ~U, the dispersion relation does not enter the semicircle from the left
implying that all left-traveling waves are stable. For values of wind speed U such that
VA +1/s)/ (14+7) > U > 47! there is a region of instability for a range of layer
thicknesses starting in the gravity-capillary limit ( layer thickness d, = Agkpin — 00)
and extending to a finite layer thickness dependant on U; thin layers remain stable.
The stability boundary when the wind velocity is in this range is an inverted u-shaped
curve a(k) with the endpoints a (k;) =0,and a (k;) = (0 and with a maximum value

which increases with increasing U, see Figure 5.5. The area under this curve for a given
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U is an unstable region. The values of k5 may be determined directly from equation
(5.37) or by solving the gravity-capillary dispersion relation (5.25) for ¢ = —U, and

nondimensionalizing; one finds
k= (yU)? +4/(yU)* - 1. (5.38)

Notice in Figure 5.5 that for wind speeds greater than /(1 + 1/s)/ (1 + 7) there
is a second unstable region which extends down from the Kelvin-Helmholtz limit
(dg = Agkmin — 0) as well as the original unstable region which reaches up from the
gravity-capillary region (d, = AgKmin — 00). When the wind speed is in the range
U, > U > /(1+1/s)/ (1 +7), where U, is a critical speed, these two unstable
regions are not connected. For wind speeds U in this range, the sperate regions of
instability indicates that thick and thin layer are unstable and that there exists an
intermediate range of layer thickness for which all waves are stable. For a windspeed
ratio of v = 0.044 we observe from computations that U, ~ 41.28, while for v = 0.057,
U, ~ 33.39. The stability boundary for this second unstable region is defined by a
u-shaped curve with endpoints (k,a) = (k,jt, oo). The wavenumbers k,jt correspond

to the Kelvin-Hemlholtz waves which travel at the speed —vUy:

U2 (14+)s \/U4 (1+7)'s2—(1+s)

5.39
1+s 1+s ( )

k=

We produce a curve in the space of wind speed vs. layer thickness for v = 0.044
shown in Figure 5.6. This curve separates the region in which any perturbation is
stable from that in which there exist unstable wavenumbers. As the layer thickness
A, tends to infinity, the curve tends to U, /Upin = 1/7v =~ 22.73. Notice that this curve
has a fold corresponding to the point at which the two unstable regions in Figure 5.5

(b) meet.
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Figure 5.6: Stability boundary in the (U, Ak) for left-traveling waves.

5.4 Complex wavespeed results

In this section we study the unstable wavenumbers resulting from the simple model
discussed in the previous section. That is, we calculate the complex wavespeed c
resulting from unstable perturbations n = exp(ix(z — ct)) to the interface between
wind and a drift layer. Recall that the number of parameters in our background

profile,

Uy) = U, (1 —exp|—2y/As]) y>0 | (5.40)
Uy (exp[2y/Ay] — 1) y <0

was reduced by the assumptions of continuity of tangential stress and of proportional-
ity of wind and drift speeds: p,v,U,/As = ppvuUy/Ay and U, /U, = . For air and
water, the ratios of densities and viscosities assume the values p,/p,, = s ~ 0.001226
and v, /v, ~ 14.94. To maintain consistency with the previous section, we choose the

speed ratio v = 0.057. As we have shown, the implicit dispersion relations resulting
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from this profile may be written as

(Z2) 2 _ F,(Z)
Z) a2 E (7))

2(s —yw) U, 1(g1—8 T

+ st 2wz,
= k— | = s w
KA, c? K Pw KAg  Fy

where w = Ay /Ay, Z1 =1/ (1 —¢/U,) and Zy =1/ (1 +¢/U,) .
Also in this section, we will make comparisons with the complex waves speeds
resulting from a simpler velocity profile studied by Caponi et al. [2] known as a

“stick profile.” Such a profile is a piecewise continuous velocity profile defined as

( 3
U, y > A,
Uy/Ay Ay >y>0
U (y) = | > . (5.42)
Uwy/Aw 0> y> —Aw
\ U, —Ay >y )

Notice that the stick profile was constructed to have the same vorticity centroids (
the integral of yU, over the air or the water) as the smooth profile. Compared with
equation (5.41) the implicit dispersion relation for the stick profile is relatively simple

in that the dependence on ¢ is only algebraic:
KA, (74 ¢/U,) — ywe™ e/ cosh (KA, /w)

kA, (7 + ¢/U,) — ywe™ e/ sinh (kA /w)
=)l 1 (gl =5, T) _ FA(1= ¢/U,) — e cosh (rA,)

(5.43)

KA c? e kA, (1 —c/U,) — e "Peginh (kA,)

Puw

We mention that unlike the spectra for the exponential profile, there may be sta-
ble perturbations with wavespeed in the range of the stick profile since such be-
havior does not necessarily introduce a singularity in Rayleighs equation, ¢,, —
(k* + Uy /(U —¢)) ¢ = 0, as Uy, is zero almost everywhere. We also mention that
in their study of drift layers, Morland, Saffman and Yuen [24], observed that stick
profiles generally predict much higher growth rates than smooth profiles.

Before we calculate the unstable wavespeeds resulting from perturbations to the

smooth profile (5.40); recall that in the absence of wind and drift, the dispersion
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relation produces the gravity-capillary waves speed +¢, (k) defined by

co (K) = \/<g(1 - 9 4 Ti> /(1+s) (5.44)

w

where g and T represent gravity and surface tension. This dispersion relation has a
minimum wavespeed Uy, occurring at the wavenumber ;.. In our examination of
stability regions resulting from the wind and drift profile, we determined that left and
right traveling perturbations may be unstable. These perturbations could be thought
of as continuations of +c¢, (k) and —c, (k) respectively. Such an observation motivates
nondimensionalizing the implicit dispersion relation on the speed ¢, (k) . We did this
earlier when examining the large layer limit, Ax — oo, and found that the implicit

dispersion relation, equation (5.41), becomes

!

14+s (1 —~ c F/ (Zl) F (ZQ)
§— wy+ KA, ——= (;— c> = = <3Z = + why2 5.45
K 2U c U 1F’a (Zl) 2Fw (Z2) ( )

with Z, = 1/ (1 _ a/ﬁ), Zo =/ (7 +5/(7) and where € = ¢/c, (k), U = U, /c, (k).
We observe that ¢ is just a function of two parameters: U and kA,. Contour plots
of R (¢) and I (¢),see Figures 5.7 (a) and (b), allow us to identify and summarize
the behavior of unstable perturbations for various wind speeds and layer thicknesses.
For comparison we have included the contour plot of & (¢) generated by the stick
profile. Notice that there are qualitative similarities between the unstable regions for
the smooth and stick profiles ( Figure 5.7 (b) and Figure 5.8 respectively) but the
stick profile has compact unstable regions and predicts much higher growth rates.
We proceed in the manner of Caponi et al. [2] and examine the response of
specific wavenumbers. To make predictions about the response of given wavenumber
as wind speed increases while the layer thickness is held constant, one examines the
horizontal line A,k = const. For instance, if we fix A,k = 0.5, such a model predicts
that as wind speed increases, the right-traveling wave with wavenumber s become
unstable when U, /¢, (k) is near one. Initially the growth rate of such waves increases

until U,/c, (k) ~ 8 and then decreases. At U,/c,(k) ~ 27the left-traveling wave
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becomes unstable and quickly surpasses the right-traveling wave in growth rate. This
suggests that as one watches a gust of wind blowing across water, initially waves of
a given wavelength appear, then disappear only to be replaced by the same wave
length traveling at a different speed. In a similar manner, one could also consider
an idealization of the generation of an initial spectrum by a constant wind as the air
and water layers grow with time. As the layer thickens, the response of an individual
wavenumbers x for fixed wind speed U, is predicted by looking along the vertical line
defined by U,/c, (k) = const.

A few qualitative observations about the unstable dispersion relation can be made
from Figure 5.7 (b) with fixed wind speed U, and layer thickness A,. In order to make
these observations we must first notice that the curve (U,/c, (), Ayk) parameterized
by x € (0,00) has two branches which meet at a fold located at (U,/Upin, Aamin)-
The lower branch corresponds to gravity waves, 0 < Ayk < Agkmin; it connects the
origin and the fold. The upper branch, A fmin < Agzk < 00, represents capillary

waves and it connects the fold to the limit (U,/c, (k),Agk) = (0,00). Looking at
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Figure 5.7 (b), when the fold (U,/Umin, Aakmin) is to the left of the unstable region
for left-going waves, only the right-traveling waves will be unstable. In this case
we will find two distinct peaks in the growth rates for these waves. These two peaks
correspond to the gravity and capillary branches of the curve (U, /¢, (k) , Ayk) passing
over the most unstable regions for right-traveling waves in Figure 5.7 (b). When the
fold is moved to a point with in the unstable region for left-traveling waves, there will
still be the gravity and capillary peaks in the right-traveling spectra; but there will
now also be a peak associated with the left-traveling waves with wavenumbers near
the fold.

To gain a better understanding of the growth rates S (o) = S (k¢) / (KminUmin) for
fixed U, and A,, a series of plots has been constructed from the dispersion relation
for the exponential profiles in air and water. In Figure 5.9 the wind speed U,/Upin
is held at 44 while the layer thickness Agkmin is varied; (a) and (b) show the gravity
and capillary peaks for right going wave, while (c¢) shows the peak for left-going
waves. Notice that the peaks diminish and move to lower wavenumbers as the layer
thickness increases. Also notice that the left-traveling waves are the most unstable
and the gravity right-going waves become more unstable than the capillary right-
traveling waves as the depth increases. In Figure 5.10 the layer thickness Agfmin iS
held at 0.6 while the wind velocity, and hence drift speed, is varied. We see in Figure
5.10 (a) and (b) that the gravity and capillary peaks for the right-traveling waves
separate as wind speed increases. Higher values of the wind speed lead to unstable
left-going waves; see Figure 5.10 (c).

As we mentioned earlier, the stick profile may lead to growth rates S (o) which are
much larger than those predicted by smooth profiles. The wavenumbers corresponding
to the maximally unstable waves, i.e. the peaks of & (o), on the other hand, are in
reasonable agreement. As an example, in Table 5.1 we compare the maximal growth
rates and corresponding wavenumbers for left-traveling waves resulting from both
profiles for various layer thicknesses. In Table 5.2 we compare the right-traveling
gravity and capillary peaks of the exponential profile; also included for comparison

are the gravity peaks predicted by the stick profile.



138

0.035 R
- 0.05 T ’/_/ \~\‘\
3 o / ~.
003f i / 02
[ B / N
C 0.04} / .
n L , N,
0.025 i 7 N
[ - ! N
: 0.03 ! \
002 Phadd | i
CHl CRN
E T E I /
Toisf [
- 002
N | !
0.01f [
.| i : ! Phs D o Y -
- 0.01 | /,’// ~ .
0.005 - L/ S~ _
0~| "-?vx:. 0' TR DR P I
0 0.05 0.1 0.15 0.2 0.25 0 10 20 30 40
K / Kmln L / K min
(a) The gravity peak for right-traveling waves (b) The capillary peak for right-traveling waves
03
[ VAR
= /v‘ ‘\l
o2sf ;0\
[ 4
L \
o2 | 4
o \
[ \
- -] \
Sisf | 02
.g [ ! "\
- ’ '.\
o1l |~ \
[ // AN A\
- / 05 N,
[ N
0.05| : | \\ ~
| -
L 10 N o
] ~ ~..
| ~ ~..
ol 1 P ST ot S0 RSN |
0 1 2 3 4 5 6
K / K min

(c) The peak for left-traveling waves

Figure 5.9: Growthrate peaks computed for various depths A,km,i, and fixed wind
speed U, /Upin, = 44.



139

0.05 .
s 0.01F
0.045 o .
- 0009F
0.04 - E
- 0008, ;
0.035 A
- 0.007 |
0.03F 12006 E
) o5 - °©
BF Eoos |
002 0.004 -
0.015 0.003
0.01F o002 f
- I N ~
0.005 0.001 |- AN T
ok 03,“y|...||l\..\1—4~l,
0 005 01 015 0.2 025 03 035 04 045 05 0 10 20 30
K/ X mn K/ K i
(a) The gravity peak for right-traveling waves (b) The capillary peak for right-traveling waves
0.014F
0.013F
0012
0011 F
001 F
0.009
e
Eoo7 |-
0.006
0.005
0.004F
0.003 F
0.002 F
0.001 F
3 L
%

(c) The peak for left-traveling waves

Figure 5.10: Growthrate peaks computed for various wind speeds U, /U, and fixed
layer depths A,k = 0.6.



140

() (b)

Aa,’fmin kmax N (U) kmax 3 (U)

0.1 1.1135 0.57807 | 1.5242 0.5776
0.2 0.9305 0.28716 | 2.1745 0.6015
0.3 0.9452 0.17878 | 1.5332 0.4724
0.5 0.9134 0.09954 | 0.9561 0.2963
0.6 0.8703 0.07909 | 0.8146 0.2447
0.7 0.8277 0.06406 | 0.7114 0.2065
0.8 0.7885 0.05264 | 0.6396 0.1773
0.9 0.7533 0.04376 | 0.5816 0.1542
0.0001 | 3.4121 3.0215 | 3.4051 3.0160

Table 5.1: The most unstable left-traveling waves for various depths calculated by
(a) the exponential profile and (b) the stick profile. Quantities have been nondimen-
sionalized with respect to U, and K. The wind speed U, is fixed at 44Upp.

(a) (b) (c)
Aa’fmin kmax R (U) kmax & (U) Rmax R (0)
0.1 0.0636 0.0123 | 29.0073 0.13655 | 0.0710 0.0181
0.2 0.0967 0.0200 | 19.9596 0.05963 | 0.0803 0.0270
0.3 0.0970 0.0265 | 15.8004 0.02889 | 0.0734 0.0302
0.4 0.0934 0.0303 | 13.3202 0.01938 | 0.0669 0.0310
0.5 0.0890 0.0322 | 11.6405 0.01433 | 0.0614 0.0309

Table 5.2: The most unstable right-traveling waves for various depths. The peaks for
the gravity (a) and capillary (b) branches of the exponential profile are given as is
the gravity (c) peak for the stick profile. Quantities have been nondimensionalized
with respect to Uy, and K. The wind speed U, is fixed at 44Uy,



141

Appendixes and Bibliography



142

Appendix A Matrix elements in Foppl stability

In examining the stability of the vortex pair behind an elliptical cylinder in Chapter
One, it is necessary to calculate matrix elements. Given a stationary location for
the vortex pair in the non-physical z-plane, 2° = x§ & 4yj, the appropriate linearized

system (1.41) has the following matrix element relations:

My = Mg+ Ay Moy =—Myy Moy =M+ Ay My = My
Msy = M3 Mso = —Myy  Mss = My, Msy = —Mys (A1)
My = —Mos Myy = M3 Mz = —My Myy = —Mn

where M, ; are the elements of the matrix M in (1.41).
In studying the stationary vortex pair represented in the non-physical plane by
2% = x £y we calculate first the appropriate vortex strength I' and then fundamental

matrix elements as

57— 4y7) (A.2)

a :
) = 20,3 Tz — Y ’["6

U
r 1 (a* — 7%
_ Qur/T2 — 12
orUa” YV Y {(1"2 —a?)? * ((a? — 12)? + 4a?y?)?
(4r* + 8(Aa® — r?)?) + Aa?(2r? — Aa?)? + Aa?(5r* + 16y*) — 6r°
rt((Aa? — 12)2 + 4)ha?y?)?

M (

2

+a? v’

(3r? — 4y?) L L, 2°+a®>—1r? 1

a
M (5) = 2a% r6 B 27rUaa (a® —r?)? + 4—y2 (4.3)
+r2((a2 ~ )2 4 4a%?) — 29 (a? + 12)?
(a2 — 12)2 + 4a2y?)?
a2t Mat(2y? — r?) + Aa?(5r* — 1672y + 16y*)
r4((Aa? — 1r2)? + 4)ha?y?)?
2 (=77 + 30rty? — 48r2y* + 32¢/%) (A4)

rt((Aa? — 1r2)2 + 4Xa?y?)?
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— 247r5y% 4 247%y*

2nUa

and

where 7 = /22 + 2.

a I 5 1
My (ﬁ) = srat gz te

rt((Aa? — %)% + 4)a?y?)? b

s (P —a’ =2y
dya®+/r? — 12 )
YEVT V@ )2 1 4a2y)2

o (0% —12)? + 4y?(a® — 2r% + 2y2)}
((a® — 12)2 + da?y?)? ;

r 20>
2nUa (r? — a?)?
r a?
orUa 2y2’
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Appendix B Computation of the image correction

We adopt spherical co-ordinates for the task of finding the order e corrections to the

scalar potential:

x = rsinfcos¢ (B.1)
y = rsinfsing (B.2)
z = rcosb (B.3)

so the location of the centerline of the perturbed vortex ring is given by

z, = (R+eree™)cosg (B.4)
yr = (R+er,e™)sing (B.5)
2 = Z+eC,e™. (B.6)

At a given a point (rp, Oy, ¢p)we find the induced velocity in the radial direction is

given by
n,-u(x,) = —i, j{ %, x ds (B.7)
r R (Rcosb, —Zcostsm@)dt
~oan D3/?
P .
+eﬂem¢? (roAr + (,A¢) + O (€%)
where
97 . . .
2R cos b, cosnt + Zsin b, (nsinntsint — cos t cos nt)
A, = /0 2 i (BS8)

dt

27 : _ . B .
—3R/ cos ni (Rcosb, Zcostsgf/g) (R —rcostsing,)
0
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and
°T cost cosnt inntsint
A = —Rsinﬁp/ cos cosn;gsmn sint (B.9)
0
2 .
i Rcosb, — Z costsinf
-3 (Z—TCOSHP)R/O cosnt( €5 D5/§OS o p)dt
with D as
D=rl+R+ 72 — 21,7 cos 6, — 2r,Rcostsinf,. (B.10)

From the boundary condition of no flow into the sphere (2.33), we find the condition

dgr T
£"+EAT =0 (B.11)
op§ T

A =0 (B.12)

evaluated at the sphere’s surface, r = a. Solving V? (emggp;, ei“%g) = (0,0) subject
to these boundary conditions, and using the requirement that the flow due to these

corrections tends to zero for large distances, gives

r r C7 , ‘ ) —n)!
’ S wfl\/Qj LU= pn (s ) (B.13)

= —— - n
90% Am j=n CJC 2 (] + n)
where
cr 742 ; o) [ A (r=a,0
| o e 21l o n)! / " =000) pr (cos6) singds. (B.14)
cs g1y 2 G+t \ A (r=a,0)

The functions PP (z) are associated Legendre functions.
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Appendix C The Counter-Rotating Point Vortex

Pair in Linear Flow

In two-dimensional incompressible fluid flow, we refer to two delta functions of vor-
ticity with equal strength and opposite signs as a counter-rotating point vortex pair.
In this appendix we solve for the general time dependent evolution of such a config-
uration embedded in unbounded linear flow.

The complex velocity for a vortex pair in a linear background flow is given by
¢ % T
2z —2z. 2mz— z4

u—1v=r"yexp (—id) z + ay + ifz + (C.1)

where z, is the location of the vortex with strength +I'. Since each point vortex
is advected by the linear background and the flow induced by the other vortex, the

velocities of the vortices are given by

d-— 1 T

G = _ ' L 2

dt(z+) vexp (—i@) zy + oyt +ifr, + Sz — (C.2)
- ] r

%(z_) ~ yexp(—id) 2 +ay_ +ifr + §%Z+ —. (C.3)

C.0.1 Finding the orientation and separation of the vortex
pair
Physically we can de-couple the orientation and separation of the vortex pair from

its absolute location. Defining
Rexp(if) = z_ — 24 (C.4)

implies that R will be the separation between vortices and 6 will describe the angle

that a line passing through the vortex pair will make with the z-axis. Using the
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overdot to denote the time derivative, we see that
Re? + iR e” = yexp (i¢p — i0) R+ aRsin — iR cos b.

Spliting into real and imaginary parts and simplifying leads to two differential equa-

tions:

§ = ~sin(¢— 20) — Bcos’h — asin®f (C.5)
R = R {%(a — ) sin(26) + v cos (¢ — 20)} . (C.6)

Notice that the equation for the orientation # is independent of the separation R so
that we may first solve for the orientation as a function of time and then integrate

the equation for the separation,
‘1
R(t) = R(0) exp [/ 5(04 — B3)sin (20) + 7y cos (¢ — 26) dT| . (C.7)
0

Alternately, for constant background flows, the separation R(¢) may also be deter-

mined from the orientation by noting that
¥ = R? (asin®6 + fcos® 0 + ysin(26 — 9)) (C.8)

is a constant of the motion.

In order to find the orientation, we re-write the differential equation as

%tan@ = — (ysin¢ + ) tan® @ — (2ycos @) tan ) — (3 — ysin @) (C.9)

This differential equation may be solved for a variety of time dependant background
flows, but here we choose to give the general solution for the steady background case.

From the integral

dx B+ 2Ax
/ AxQ n Bz " C = 2 arctan <\/~—4ﬁ> /V 4AC — B2 (ClO)
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or = —2tanh™! (\/%ﬂ———__?z_o) /VB? —-4AC  (C.11)

-9 -
or = oo when B* =4AC and A # 0 (C.12)
or = log(z+C/B)/B when A=0 (C.13)
where
A = —vysing — o (C.14)
= —2ycos¢ (C.15)
C = —f+ysing (C.16)

we see that the background flow determines if the vortex pair will tumble in its
orientation, or settle to a steady direction. We may classify four different types of
steady background flow simply from the values of A, B, and C. To gain insight the

we examine the streamfunction for the linear background flow,
1 2 2
v, = D) (Ay — Bxy+ Cx ) , (C.17)

and we find that 1, = const corresponds to closed curves, i.e. ellipses, only when
D? = 4AC - B% > 0.
Since the orientation of the vortex pair is a driven by the linear flow alone, it is

not surprizing that when D? > 0 we find that

D D B +2Atand, B
tan 6 = ﬁtan (—2—1? + arctan (_—l—)—)) ~ 53 (C.18)

which implies that the counter-rotating vortices will tumble about each other. While
for other background flows the pair will tend to a fixed orientation. When D? < 0

and A # 0 the orientation will obey

D D
tanf = ’——I tanh ('2—lt -+ arctanh (

2A

B+2Atand, B
2A

D - = (C.19)
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which in the long time limits to tan6 = (B + |[D])/(24). While if D2 <0 and A =0

we find
(C.20)

@ Q

tan @ = e®* tand, + (eBt — 1)

o

so that the final angle will be +7/2 or arctan(—C'/B) depending on the sign of B.

And the case D = 0 with A # 0 gives the solution

tanf = —

B ( 2tand, + B/A )

24  \#(B+2Atand,) — 2 (©21)

which tends to tanf = B/(2A) algebraically.

C.0.2 Finding the absolute location of the vortex pair

Now that we have the orientation and separation of the vortex pair as functions of
time, we give an analytic form for the location of the vortex pair relative to the
origin. Define 2z, = X + Y as the vector from the origin to a point halfway between

the vortices,

2z, = %(ZJF +z_). (C.22)

The evolution of this point is given by

) r )
(2c) = 277 + oY +ifX —ig—se™. (C.23)

We re-write this complex equation as two coupled ordinary differential equations by

grouping real and imaginary parts;

d JY JY
— =M +f (C.24)
dt Y Y
where
CoS sin ¢ + « T —sinf
M = 7 ¢ Vsin g and f=_-—

ysing — 3 —ycos¢ 2R cosf
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Solving gives

X X, ¢

= exp (tM) + / exp ((t — 7)M) £(7) dr
Y Y; Jo .,
~ vortex for:::d motion

o

~
advection with background

where agreeably enough the homogeneous solution represents the advection of the
vortex pair, while the particular solution contains the effect of the self-induced trans-
lation of the vortex pair. If one desires, the location of a given vortex can now be

easily found;

1 .
2y = Xo+iY, — §Rew

1 .
2. = X,+iY, + —Q—Rew.

C.1 Three simple examples

Recall that the instantaneous velocity field representing a point vortex pair embedded

in linear flow has the form

r T

u— v =yexp(—ip)z + ay +ifzr — i (C.25)

rz—2. 2mz—z

By certain prescriptions of the quantities which define the background flow we ex-
amine a few basic flows: solid body rotation, constant cross-stream shear, and strain

with a time-dependent strength.

C.1.1 Vortex pair in solid body rotation

We begin with the simple case of a background comprising of only solid body rotation.
This is obtained by requiring o = § = —{2 and v = 0. Not surprisingly the separation

of the vortices remains constant, while their relative orientation is simple rotation;

o = Qt+9, (C.26)



R = R,. (C.27)
Solving for the absolute location gives

X = cos () X, —sin ()Y, — % sin (2t + 6,) (C.28)
m

0

r
Y = sin (%) X, +cos(Q) Y, + 5 ! cos (Qt +0,), (C.29)

T,
which we can re-write as a rotation matrix times the solution for the vortex pair
moving with no background flow:

X\ _[ cos(@) —sin () Xo = gagtsinfo , (C.30)

Y sin (Qt)  cos () Y, + gt cost,

Vo '
Rotation Matrix translating pair

C.1.2 Vortex pair in a linear cross-shear

To produce a simple cross-stream shear we chose § = v = 0; this leads to the

orientation and separation

tanéd,
= —— 31
tan ¢ tatanf, + 1 (C31)
sind,
= —_— 32
i T sin 0 (C.32)

Notice that this implies the vertical separation between the point vortices, Rsin8,
is constant; this corresponds to the conservation of linear impulse in the x-direction.
The absolute locations are given by the integrations

t
— F e
Y = /0 m cos (7') dr + }0 (033)

X = / aY(T)—Wg e () dr + X, (C.34)
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which can be easily done by using § = —asin? . Integrating for V' we find

¢
o T )
Y = /0 7R (7) cosf (T)dr +Y, (C.35)

sin @
0 Y, '
a2nR,sind, ©8 ( sin 6 ) Yo, (C-36)

and likewise for X;

X = / aY(T)—Wl; =y sin () dr (C.37)

r | 1+l (322
" 2raR,sinf, \ sinf, sin 6 + (0 —0,) | +aYst+ X,(C.38)

Notice that from the differential equation for 6, we see that fiifai > ( for all time, so

that the log s are always well behaved.
The case of 8, = 0 is obviously of interest, since then the orientation angle 8 is
steady. The case 8, = 7 need not be examined directly due to symmetry. Taking the

appropriate limits indicates that the vortex pair travels on a parabolic path:

& = 0 (C.39)
R = R, (C.40)
X = & Lo favit x (C.41)
N 27TROa2 ? ? '
r
Y = Y,. 42
%ROH (C.42)

C.1.3 Vortex pair in simple strain of time dependent strength

In this case we take o = [ = 0 and with out loss of generality, we orient the axis
relative to the strain such that ¢ = 0 . We assume that the strength of the strain vy
is given by the derivative of a known time-dependent function T (¢) with T (0) = 0;

dr

=— (C.43)

v



153

The orientation and separation of the vortex pair are now given by

tanf = exp(—2T (t))tanb, (C.44)
R* = R?(exp(2T (t)) cos® 0, + exp(—2T (t)) sin®6,) . (C.45)

Solving for the absolute location gives

r [ sin 6(7)

X = X, — — T(t)-T .

xp(T (0)X,— 3= [ exolT () =T () ar ()
r [t cos 0(7)
Y = =T (1))Y, + — T(r)—T(t d C.47
exp(T ()Y, + 5 [ explT (1) =T (1) 5 (.47
For the particular case of a constant strain, v = const, we find

tanf = exp(—2vt)tand, (C.48)
R* = RZ(exp(2yt) cos® 0, + exp(—27t) sin6,) . (C.49)

For this case the integrations for the location of the vortex pair may be done analyt-

ically;
' exp(v?) 1+ tan? 0, exp(—4~t)
X = 1) X, + — - 1 .
exp(74) X, + 27 4yR,sin b, © 1+ tan?4, (C-50)
r —vt
Y = exp(—t)Y, + I exp(=yt) log (cos® 8, exp (4t) + sin’6,) . (C.51)

27 4vR, cos b,
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Appendix D Hamiltonian formulation for patches

in shear

We briefly present the Hamiltonian for elliptic vortex patches in a background flow
with constant vorticity we.. The inclusion of the background vorticity is an extension
of the work of Melander, Zabusky, and Styczek [14]. This generalization has been
done independently, by Ngan, Meacham, and Morrison [26] who also assume,as we
do, that the Hamiltonian for vortex patches can be identified with the finite part
of the kinetic energy of the system. We show that the equations arrived at by this
assumption are consistent with the elliptical model we developed from first principles
in Chapter Four.

We assume that the flow is composed of a background linear shear producing a
constant vorticity we and a collection of vortex patches each with vorticity (w; + weo)
and occupying a region A;. We decompose the streamfunction representing such a
flow into a time independent background flow which describes the shear, v, and

time-dependent functions, v, which represent the flow induced by each patch:

Y (2,y,t) = woothg (T, ) +Zwiwi (z,9,1) (D.1)

where
Vg = -1 everywhere (D.2)
V&), = —1in A, (D.3)

and 1, is irrotational outside of the region A;.
Due to the flux of fluid at infinity, the Kinetic Energy for such a flow is infinite.
We choose to subtract the time-independent energy of the background shear to give,

H, the finite part of the kinetic energy. H may be computed by an application of
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Green’s formula as

H = % / (V)2 dA — % / (Vi ,)? dA (D.4)
— %Z (wf / @Z)idAi) + %Z; (wiwj / widAj> (D.5)

+§i: (wiwoo / szdAi) : (D.6)

where it has been assumed that

R—o0 on

lim ]{ @/;bawidz:o. (D.7)
|z}l=R

The first sum is the self induced energy of the patches, the second term represents
the mutual energy of the interaction of patches, and the third sum give the energy of
interaction between the steady background flow and patches. Previous presentations
of the Hamiltonian for vortex patches in a steady irrotational background flow with
flux at infinity required an appeal to the reciprocal theorems for harmonic fields in
the introduction of the third term. As this Hamiltonian has been independently
produced by Nga, Meacham, and Morrision [26], we choose not to concern ourself by
the introduction of Poisson brackets for H. Instead we approximate this function to
create a simple analytic Hamiltonian for elliptically shaped vortex patches interacting
in a background shear flow, and we then use direct differentiation to demonstrate the
Hamiltonian structure.

The streamfunction, ,, for a vortex patch of unit strength in the region A; can

be computed as

1 t !
Y, = “5- log 'r —r ’dAi. (D.8)

For the case of linear shear plus a constant translational velocity, the contribution

from background flow is given by
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Assuming the patches are elliptical with aspect ratios A;, the self-induced energy term,
Hg, and the energy from the interaction with the background, Hp, can be evaluated

exactly since

Hy = %Z(& / z/)idAi) (D.10)
_ %;<_§//1og’r—r’]dA;dAi) (D.11)

1 —w? | 4] (N +1)° |A;] 1
- - J ] - .
5 Zl: ( in log iy + log p + 1 (D.12)

and

Hp = Z (M% / deAZ-) (D.13)

Lo
= Y= > wi AL (A7 + (1= A7) cos® ¢;) + |A;| Y (D.15)
2 - 47r)\2 ? 2 1 2
D wiVeo |A] X (D.16)
Where the centroid of the patch is found at (X;,Y;) and [A,| gives its area; ¢, is the

orientation angle.

To calculate the interaction energy, Hy,

1 / /
H; = _Ezgwiwj//log‘r—r ’dAidAj (D.17)
1 jF

we write

log‘r—r/‘ =log’RZ- -R;+(r—R;) — (r, —Rj)

(D.18)

and assume the characteristic lengths of the patches are small compared with the
separation distances between the patches, allows us to replace the logarithmic term by

a linear Taylor series. Under this approximation, equivalent to truncating a moment
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expansion of the energy, H; takes the form

Hy=—— XZ: ;wi% | Ai| [A;] [bg R;; - WRL cos2(¢; —0i;)| (D.19)

where the vector between centroids defines I2;; and 6;; by

(Xz - Xj, Y’z — Y}) = Ri,j (COS 92‘7]', sin Hi,j) . (DQO)

To demonstrate the Hamiltonian nature of H = Hg + H; + Hp, direct differentia-

tion and comparison with the equations of evolution for derived in Chapter 5, shows

that
oOH dY;
OH dX;
oy, ~ Y | Al T (D.22)
H AP w; (1= 22 do.
OH _ AW (2 i) 49 (D.23)
H AP wi (1= 223) d)
0% 8T dt

These equations may be put in canonical Hamiltonian form by defining the variables

as

A w (14 )

P = D.25
q oy (D.25)
i = ¢ (D.26)
X = VwilAlX; (D.27)
Y, = wilAlY. (D.28)
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Appendix E Howard Semicircle Theorem

The Howard Semicircle theorem for perturbations to two fluid parallel flow with

surface tension at interface (Rayleigh equation with our boundary conditions): Given
Unin = min, U (y) and Upay = max, U (y) (E.1)

f R(c) > Unax or R(¢) < Upin then I(c) = 0. Furthermore if S (¢) # 0 and
&*T + g(p, — p,) > 0 then

2

1
C — 5 (Umax + Umin) S (Umax - (]min>2 . (EQ)

e e

Proof with addition of surface tension 7' : Fist we change to a new dependent

variable

Fy) = % (E.3)

where W = U — c. Rayleigh equation becomes

7

(WQF') — K2W2F =0 (E.4)
and the jump at y = 0 is
(w2F') - w2F =0, (E.5)
Multiplying (E.4) by p,F* and integrating the water,

0

Pu {(W2F’) F*lyeo — /_oo W

Likewise, multiplying by p,F™ and integrating the air

os {(WQF'> Folymo — /OOO W

' 2 0
F ’ dy — ,3/ w2 |F|2dy} =0. (E.6)

! 2 >
F f dy — ,«ﬂ/ w? IF[2dy} = 0. (E.7)
0
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Adding (E.6) and (E.7) and appluing the boundary condition (E.5) gives

<,ow / "yt /0 ) dy) W2Q] = |F () (T +g(py— ps)  (BS)

—0

where

2
Q= IF‘ +R2|F (E.9)

Say ¢ = ¢, + ic;; the S[(E.8)] gives

0 o]
Ci <pw/ (U - ¢,)Qdy +pa/ (U - c) Qdy) = 0. (E.10)
-0 0
— ¢; = 0 if ¢, isn’t in the range of U (y) - (E.11)

If ¢; # 0; 2¢,/¢;, we see that S[(E.8)] + R [(£.8)] becomes

(pw/ﬁ0 dy+pa/ooody> =G =) Q=FOF (KT +9g(py—ra): (E12)

o0

using the inequality (U — Upnin) (U — Upax) @ < 0 and the relation (E.10) we find

A <pw /_OOC Qdy + p, /OOO Qdy) > |F(0)]° (°T + g (pu = a)) (E.13)

with A = ((Unax + Umin) ¢ — €2 — ¢ = UpmaxUnmin) - For those wavenumbers, &, such

that x*T + g (p, — pa) > 0 we see that
(Umax + Umin) CT’ - 072~ - C? - Uma,xUmin > 0, (E.14)

or equivalently ,

1
€= 5 (Umax + Umin) < (Umax - Uvmin)2 - (E15)

==
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Appendix F Stability region for two simple

profiles

F.1 Stability regions for wind only

In this section we identify stability boundaries for infinitesimal perturbations to a flow
which represents a smooth parallel wind profile blowing over still water. By choosing

U, = 0, the velocity profile (5.18) becomes
U(y) = Us (1 —exp [—2y/A]) H (). (F.1)

The implicit dispersion relation (5.24) simplifies somewhat to give

!

2 1/ 1-s T 2 F(Z)
4= Z ) =cf1 7, , .
mAaUs+c(g - +l€pw> c( +8+S/€Aa 1Fa<Z1)> (F.2)

with Z; = U, /(U, — ¢).

By the Howard semicircle theorem, we know that if a infinitesimal wave with
wavenumber x and wavespeed ¢ (k) is unstable then 0 < R (¢ (k)) < U,. Sketching the
curve defined by ¢ (k) in the complex c-plane, see Figure F.1, we note that the slowest
right-traveling waves become unstable immediately upon entering the semicircle at
the point U,. To identify the stability boundaries we shall obtain the wavenumbers
at which the right-traveling wavespeed enters and leaves the semicircle. These two
wavenumbers will define a range; those right-traveling waves with wavenumbers in
this range will be unstable. We point out that the left-traveling waves are always
stable. It is a simple matter to show from equation (F.2) that the left-traveling
waves do not enter the semicircle. Taking the limit ¢ — 0 one finds & is defined by
k% = —g (1 — s) p,/T and this implies imaginary wavenumbers as s = p,/p,, is less

than one.
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Figure F.1: Sketch of the compex wave speed ¢(k) for the case of wind only entering
and exiting the Howard semicircle.

In order to find the entry and exit & for the right-traveling waves, we set ¢ = U,.
For this choice of wavespeed, the form of the function ¢ simplifies;

exp (— K2+ 4/Agy) y>0 (F3)

exp (ky) y <0

The dispersion relation which now defines the wavenumbers of the right-traveling

waves which travel at speed U, takes the form

2 2 \? 1/ 1-s T
Ugs A (nAa) +1 +—(};<g - —|—/€;};>_Ua. (F.4)

We choose to non-dimensionalize with respect to the physically relevant minimum
wavespeed Uy, and wavenumber kp;, of the gravity-capillary dispersion relation
(5.25), see equations (5.26) and (5.27) . Under this nondimesionalization, say U, —

U,k — k, and A, — d,. The interface condition (F.4) is now written as

sv/k?+4/d2 =2s/d, — k + (12;;25) (1+ %% (F.5)
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Figure F.2: Stability boundaries a(k) labeled by nondimensional windspeed U =
U,/Umin. These curves correspond to waves which travel at the wind speed, ¢ = U,

or solving for d

8sU? (1 + s+ k* (1 + s) — 2kU?)
(14+58)(2kU2 =1 - k) (1+s+k2(1+s)+2kU? (s —1))

do (k) = (F.6)
For fixed values of U = U, /Uy, equation (F.6) produces a curve in the (k, d,) plane.
By our definitions of the profile and wavenumber, the region of physical interest is
k,d, > 0.

For values of U? < 1 all perturbations are stable as the equation (F.6) does
not admit solutions with positive &, d,. Thus we need the wind speed U, to exceed
the minimum speed of an infinitesimal gravity-capillary for instability to occur. For
values of U > 1 there exist unstable wavenumbers. Notice that the neutral curve

d, (k) defined by (F.6) limits to infinity at the points
EE=U? £VU* - 1, (E.7)

this corresponds to the fact that at these wavenumbers gravity-capillary waves are
traveling at the speed U. To simplify graphing we choose to plot a (k) = 2/d (k).

For values of the nondimensional wind speed U such that (1+s) > U? > 1, the
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Figure F.3: Stability boundary in the (U, Ak) plane for wind only.

curve a (k) which separates the stable and unstable regions has a finite maximum,
see Figure F.2 (a). The area beneath the curve for a given U is unstable. This
indicates that if a wind layer is thin enough, i.e., a = 2/ (Agfmin) above the curve, all
wavenumbers are stable. But for higher winds speeds,U? > (1 + s), the a (k) curve

asymptotes to infinity for the wavenumbers

(o= @v )

| ) F.
2 14+ s ( 8)

This result maybe anticipated, as we have shown in the limit a — oo (d — 0) with
finite £ the Kelvin-Helmholtz dispersion relation is reclaimed. It is necessary that
U? > (1 + s) for a Kelvin-Helmholtz wave to travel at a speed less than U and the
points ki are the wavenumbers at which the Kelvin-Helmholtz wavespeed enters and
leaves the Howard semicircle. In Figure F.2 (b) we see that the curve a (k) in the
(k, a) plane connects the point (]Cl_, 0) to the limit (k;, oo) and (k;’, oo) to (kfr, 0).
Thus when U? > (1+s) we see that for any given inverse layer thickness a there
exists a unstable wavenumbers.

By calculating the maximum of a (k) as a function of the wind speed U, a curve
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can be drawn in the space of wind speed vs. layer thickness. Such a curve is shown in
Figure F.3. This curve separates the region in which any perturbation is stable from
that in which there exist unstable wavenumbers. It is interesting to note that in the
transitional area of (1 +s) > U? > 1, an increase in layer thickness destabilizes the

flow.

F.2 Stability regions for drift layer only

In this section we assume that wind is traveling parallel to the flat surface of the water
at a uniform constant velocity equal to the velocity of the water at the interface. We
choose a velocity profile in the water which resembles a drift layer, perhaps initially
caused by wind induced stress and we perturb the flow to study waves generated by
the drift layer. In a frame of reference in which the undisturbed interface is stationary,

the velocity profile u = (U (y),0) is taken to be of the simple form
U(y) = H(~y) Uy (exp (2y/Ay) — 1) (F.9)

with A, > 0. The wavespeeds ¢ for infinitesimal perturbations to the interface of
the form 7 (z,t) = exp (ik (x — ct)) may be obtained from a simplified form of the
implicit dispersion relation (5.24);

!

2 1 T 2 F. (%)
- U, + = —J=cl1 e F.1
YAV +c (g K +/€,0w> C( +S+/§Aw 2Fw (ZQ)) (F.10)

where Zy = U,/ (U, + ¢) . We will not actually use equation (F.10) to calculate the

wavespeeds, but instead we will determine stability regions from a simpler equation.
But we note that the implicit dispersion relation implies that the wavespeed ¢ = 0
can not be obtained by real valued wavenumbers when 1 > s = p,/p,,-

An application of the Howard semicircle theorem tells us that —U,, < R (¢ (k)) < 0
for unstable waves. Sketching the curve defined by ¢ (k) in the complex c-plane, Figure
F.4, we see that the slowest left-traveling waves become unstable immediately upon

entering the semicircle at the point —U,. Stability boundaries are obtained from the
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Figure F.4: Sketch of the compex wave speed ¢(k) for the case of a drift layer only
entering and exiting the Howard semicircle.

wavenumbers at which the left-traveling wavespeed enters and leaves the semicircle.
These wavenumbers will define a range; those left-traveling waves with wavenumbers
in this range will be unstable. The right-traveling waves are always stable: It would
be necessary for the dispersion relation to pass thru the origin, but as we mentioned
earlier ¢ cannot equal zero for real wavenumber « .

Setting ¢ = —U, we calculate the wavenumbers x associated with entering and
exiting the semicircle. For this choice of wavespeed, the form of the function ¢
simplifies;

exp (—Ky) y>0

(F.11)
exp ( K2 +4/A%Uy) y <0

We find from the dispersion relation (F.10) that the wavenumbers for left-traveling

perturbations with speed —U,, are defined by the equation

2 2 \? 1 1—s T
Uw E— (KUAw) +1 +U—w<g P +H—w)—Slei. (Fl?)

Nondimensionalizing with respect to the minimum waves speed Uy, (5.26), of a

gravity-capillary wave and its corresponding wavenumber Kyi,, (5.27); we say Uy, —
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Figure F.5: Stability boundaries b(k) labeled by nondimensional drift layer speed
U = Uy/Upnin- These curves correspond to waves which travel at the drift layer

speed, ¢ = U,

U,k — k, and A, — dy,. The interface condition (F.10) may now be expressed as

1
V2 +4/d2 =2/d, — sk + ( 2;;25) (1+%), (F.13)

or solving for the inverse the drift layer thickness

8U%(1+s+k?(1+s) — 2ksU?)
Q+s)ChUZ—1—k) (1+s+ k> (1+5)+2k(1—s) 0%

dy = (F.14)

All perturbations are stable when U? < 1 as in this case d,, calculated by equation
(F.14) is negative for all positive k. This implies that the curve ¢ (k) does not enter
the unstable semicircle. The velocity which defines the drift layer speed must to
exceed, in absolute value, the minimum speed of an infinitesimal gravity-capillary for
instability to occur. For values of U2 > 1 there exist unstable wavenumbers. We find

the curve d,, (k) limit to infinity at the points

EE = U £ VU* - 1; (F.15)
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at these wavenumbers gravity-capillary waves are traveling at the speed U. We define
b= 2/d, and make a series of plots to investigate the unstable region. In Figure F'.5
we have fixed values of U = U, /Upn and used equation (F.14) to produce a curve in
the (k, b) plane.

For values of the nondimensional wind speed U such that (1 +1/s) > U? > 1, the
curve b (k) which separates the stable and unstable regions has a finite maximum,
examples of which can be seen in Figure F.5. This indicates that for drift speeds in
this range all wavenumbers will be stable if the drift layer is thin enough. This is a

rather large range as /1 + 1/s ~ 28.189.
For higher drift speeds, i.e. U2 > (1+1/s), the b (k) curve asymptotes to infinity

(U2 + /Ut - (1+ 1/5)2>

1+1/s

for the wavenumbers

ki = (F.16)

The Kelvin-Helmholtz dispersion relation is reclaimed in the limit b — oo (d, — 0)
with finite k. Setting U, to zero in the Kelvin-Helmholtz dispersion relation (5.31) one
finds that it is necessary that U? = (U, /Uni)® > (14 1/s) for a Kelvin-Helmholtz
wave to travel at speeds in the range {—U,,, 0}, and one also discovers that the points
ki are the wavenumbers at which the Kelvin-Helmholtz wavespeed enters and exits
the Howard semicircle. The curve b (k) in the (k,b) plane connects the point (ki ,0)
to the limit (k5 ,00) and (k3,00) to (ki,0). When U? > (1+1/s) we see that for
any given inverse layer thickness b there exists a unstable wavenumbers.

By calculating the maximum of b (k) as a function of the drift speed U, a curve
can be drawn in the space of drift speed vs. layer thickness. Such a curve is shown
in Figure F.6. This curve separates the region in which any perturbation is stable
from that in which there exist unstable wavenumbers. As we found in the previous

section, an increase in the layer thickness may destabilize a flow.
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Figure F.6: Stability boundary in the (U, Ak) plane for a drift layer only.
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Appendix G A variational principle for a bubble

in potential flow

Luke [10] presented a variational formulation for gravity waves. Luke describes a
least action principle in which the pressure serves as the Lagrangian density and an
elimination of the first variation results in the equations of motion for irrotational
waves in the absence of surface tension. In this section we alter the geometry to
that of two-dimensional bubbles in potential flow and make the addition of surface
tension at the bubble interface. By consideriﬂg the potential energy stored in both

the interface and the pressure field as the “action,” we are able to obtain the complete

equations of evolution.

For our two-dimensional bubble, the time dependent interface is defined in polar

co-ordinates as

r=R(6,1). (G.1)
Starting with the Euler equation,
1 9 1
Ve + 3 (Vo) +f )= —;VP, (G.2)
we integrate along some arc from the bubble surface to a point in the fluid
1
P=p et (Ve + 1|4 o0 @3)

where Q = ¢, + 1(Vp)® + f + P evaluated on the surface of the bubble. Setting

density equal to one, define

| R 1 ) R\’
£:/0 / [cpt+§(V90) +f:|rdr+T <@> + R?| df (G.4)

o
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where f is the body force and T is the surface tension. Notice that the square root
is just an infinitesimal length element of the interface; the product with T' represents
the potential energy stored in an element of the interface via the tension. We will be

interested in the variations of I , where
t2
I= / £ dt. (G.5)
t1

Physically £ is the total potential energy stored in the pressure field and stored in

the interface. The total first variation of I is

t. 27 2 2
2 1 9 R* 4+ 2R; — Ry
o+ = (Vo) ' +f+T
/tl /0 [t 5 (V%) (R2 + R2)*/?
to t2
+/ //&ptdAdt—I—/ //V5<,0-V<pdAdt
t1 ty

where the term in braces on the first line is evaluated at the interface. We recognize

RSRdOdt (G.6)

that

_ R? + QRg — Ry

(R2 + R?)*” S

gives the curvature.

After an application of Green’s formula, the variation of the stored energy be-

comes;

to 2 1
/ / {g@t + 3 (Vo) + f + Tlijl R 6R df dt (G.8)
t1 0

2 g
+/t1 E//&pd/ldt
—/ttZ//égDVQcpdAdt
/tz/%[a—w—gﬁ}Réwdet
4 ot
—Tli)rgo/t/ [ ]r&gpd&dt

we admit variations such that [ f d0p dA = 0 at the two times 1, 5.
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Of course we are now interested in 6/ = 0. The independent variation of the

bubble interface, dR, gives us Bernoulli’s equation on the interface
1 2
got+§(Vg0) +f+Tk=0 (G.9)
while variations of the potential imply incompressibility
Vip =0, (G.10)

and the kinematic boundary condition

dp _ R

gl (G.11)

Restricting ourselves to variations which don’t effect a prescribed flow at infinity,

implies lim, oo fttf 027r [—g—%} r 8¢ df dt = 0.
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