
  
 

ADVANCES IN FORCE FIELD DEVELOPMENT AND SEQUENCE  
OPTIMIZATION METHODS FOR COMPUTATIONAL PROTEIN DESIGN 

 
 
 

Thesis by 
 

Premal S. Shah 
 
 
 

In Partial Fulfillment of the Requirements 
 

for the Degree of 
 

Doctor of Philosophy 
 
  
 
 
 
 
 
 
   
 
 
 
 

 
 
 
 

California Institute of Technology 
 

Pasadena, California 
 

2005 
 

(Defended March 30, 2005) 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2005 
 

Premal S. Shah 
 

All Rights Reserved 



 iii

 
 

This thesis is dedicated to  
 

D. J. Patel 
and 

R. C. Shah 
 

Two men whose lives were defined by hard work, love for their families,  
and an unwavering desire to help everyone. They continue to inspire.



 iv

Acknowledgements 

 
 Only when I started thinking of writing this section of my thesis did I begin to 

truly appreciate the number of people who have influenced and contributed to my life at 

Caltech. So many people, both at Caltech and in the “real world” have made a difference 

in my life and my hope is that I do everyone justice here. 

 I would like to thank my advisor, Steve Mayo, for giving me the opportunity to 

work and learn in his lab. Steve’s mentoring philosophy can be likened to that of Linus 

Pauling: fall on your own, get up on your own, and grow on your own. This tough love 

methodology is supplemented with Steve’s amazing talent as a scientist, his 

business-savvy approach to today’s science, and his desire to assure the comfort of his 

students. I have learned so much from him and hopefully, I have contributed to the 

overall goal of his lab.  

 The members of my thesis advisory committee, Profs Doug Rees, Frances Arnold, 

and Niles Pierce, have been a valuable resource; they’ve always been willing to answer 

my questions. It’s been especially nice having Doug and Niles in the Broad Center. 

Knowing they’re an arms length away is a luxury I haven’t taken for granted. 

 I’ve always claimed that a research lab is the equivalent of a dysfunctional family. 

No place is this more true than at Caltech. A fusion of highly competent, opinionated, 

ambitious people can only make for some fond memories. I’ve had the good fortune of 

being surrounded by the world’s most amazing (and interesting) people.  

 My two closest colleagues in lab, Possu Huang and Geoffrey Hom, have been 

with me from day one. We’ve shared trips to Vegas, Japan, and various other 

establishments. Possu is one of the best molecular biologists I know and Apple 



 v

Computers’ most valuable public relations guy. Geoff is responsible for my love of poker 

and moving me towards the correct side of the moral spectrum. Both of them provide 

endless entertainment. Whether it’s deciphering Possu’s unique speaking ability or 

marveling at the many different poses Geoff strikes while sleeping under his desk, both 

of these guys have been an absolute joy to be around.  

 Rhonda Digiusto has been a friend above all, but also an irreplaceable resource in 

lab. She has always listened to my rants about the ups and downs in my life, answered 

early morning calls for assistance in lab, and made some of the best desserts I’ve ever 

had. It’s safe to say we all dreaded the days Rhonda wasn’t in lab. Not to be outdone in 

the dessert competition is Cynthia Carlson. Not only were her brownie treats the highlight 

of some weeks, Cynthia’s organizational skills are in a league of their own; my friends 

around campus marvel at how smooth our existence in lab is because of her efforts. 

Along with Rhonda and Cynthia, Marie Ary completes the lab’s trio of guardian angels. 

To say Marie helped me with my scientific writing would be a huge understatement. At 

some stretches, Marie probably spent more time with me than her own kids. If this thesis 

is a testament to anything, it’s Marie’s ability to teach the art of scientific writing.  

 The other person in lab who has been with me from the beginning is Scott Ross. 

Scott’s scientific ability as an NMR spectroscopist is unmatched, but it is his infectious 

personality that makes him so pleasant to be around. Whether it’s his stories of tasseling 

corn in Iowa or anecdotes from his own Caltech graduate days, Scott does everything 

with a smile and at 100%. He was a collaborator on several projects and is one of the best 

teachers I’ve ever been around. Scott always took the time to answer my questions 

regarding NMR spectroscopy and life in general and I thank him for that.  



 vi

 I’ve had the pleasure of growing close to several other members of Steve’s lab. 

Jessica Mao was my neighbor in Braun labs and served as a personal psychologist. 

Jessica is one of the nicest people the world has to offer; never have I seen someone so 

upbeat and pleasant. Kyle Lassila and Eric Zollars have never let me get away with 

anything. They’ve kept me on my toes and served as sounding boards for late night rants 

following long and frustrating days. Kyle’s bacteria spreader and ethanol stock have 

helped me on many occasions and Eric’s upfront, in your face attitude can be refreshing 

in a world often plagued with false praise. They are also co-founders of the eppendorf-

toss attention grabbing system which to this day drives me crazy.  

 I would not have been able to rise above the trauma of the 2004 Presidential 

election if it were not for Christina Vizcarra. Christina is one of the most informed people 

around and we’ve shared countless hours pondering the state of our country. Even though 

she’s declined on several occasions, I’m confident Christina will run an effective 

campaign for me in my first congressional run.  

 John Love is the oldest kid I know. John’s upside-down face is just one of many 

charming characteristics. He and I shared many good times together, and even after he 

left for Shangri-la, we’ve kept in touch and been good friends.  

 So many others in Steve’s lab have influenced me. A complete list of all lab 

members who have contributed to this thesis appears at the end of this section.  

 One of the great things about Caltech is the intimate atmosphere of the campus. 

As a result I’ve grown close to many people outside the lab. Chris Otey was one of the 

first people I met when I arrived and we’ve been great friends right from the beginning. 

In addition to being a roommate for three years, he’s been the defensive coordinator on 



 vii

my football team, a reliable scientific colleague, and a compassionate friend. Chris is also 

responsible for my wasting countless days with incessant instant messaging. It’s safe to 

say everyone needs a Chris in graduate school. I’m incredibly fortunate to have met him.   

 I met Angie Mah the same time I met Chris. Angie is truly unique in all aspects of 

life. An all business type of girl, Angie and I have cried together, laughed over the silliest 

things, and spent years worrying about our futures. A mention of Angie without 

commenting on her dog, Mackenzie, would be inappropriate. Mack is the only dog I’ve 

ever liked and I know Angie wouldn’t be offended if I say I’m going to miss him more 

than her.  

 In the last couple of years I’ve become incredibly close to a couple of engineering 

guys who have educated me in the ways of wine, women, and their own “scientific 

method.” Adam Olsen and Mohan Sankaran have made my last couple of years at 

Caltech an absolute joy ride. We’ve spent hours talking about the most ridiculous things 

in life, usually accompanied with several bottles of really cheap wine. What is so unique 

about our relationship is that each of us has a very different lifestyle and our motivations 

in life are completely dissimilar. It’s this unique blend that makes us enjoy each other’s 

company so much. I’m confident that even though we move forward in our own separate 

ways, we’ll remain the best of friends. 

 Growing up in the Washington D.C. area, I was inundated with political talk 

shows. One of these was the “McLaughlin Group” and I always fantasized that one day I 

too would sit around a table discussing the political events of the week with other 

informed people. Well, even though we don’t have our own TV show, Ryan Austin, 

Anders Olson, Terry Takahashi, Adam Frankel (all from Rich Roberts’ lab) and I spent 



 viii

lunch after lunch discussing the day’s headlines and other discussion-worthy stories. 

Although the conversations often wavered towards the absurd, the bottom line was 

always the same: we had a great time. A mention of lunch without acknowledging Ernie 

would be wrong. Ernie is a Caltech establishment and has been the source of fuel for 

almost everyone at one point or another. Other members of Rich’s lab that became good 

friends are Bill Ja, Shelley Starck, and Chris Balmaseda. Shelley’s husband, Harry Green 

is also a friend. 

 Members of Niles Pierce’s lab have been great floor-mates in the Broad Center. 

They’re always there when you need advice on anything from science to the Tour de 

France. Robert Dirks and Justin Bois especially, have been great colleagues.  

 Although I’ve known her for only a short time, Ami Badani has been a welcome 

addition to my life. Her free-spirited and caring personality blends seamlessly with her 

ambition to be the best in all aspects of life. I thank her for the added perspective she has 

shared with me and her loving support; saying Ami is special is an enormous 

understatement. 

 Pradman Qasba was my first research mentor. His warm, caring attitude towards 

teaching helped me learn the fundamentals of research and propelled me to become 

excited about science.  

 Anyone who knows me can attest to how grateful I am for the support I receive 

from my family. My parents, Sunil and Rashmi Shah, have been nothing short of massive 

pillars of support throughout my life. They’ve taught me to look at the good in the world 

and always strive to be the best person I can be, regardless of the end result. They’ve let 



 ix

me be my own person without letting me sever ties with my roots and culture. If I can be 

a tenth of the parents they are, I’ll be a success. 

 My brother, Pratik Shah, is one of my best friends. Ironically, the farther I’ve 

moved away from him, the closer we’ve become. We’ve always been told we have 

completely different personalities, but what I’ve recently become increasingly aware of is 

just how similar we are. Among other things, Pratik and I share a love for sports that is 

downright freakish. Countless hours have been spent dreaming about another Redskins 

Super Bowl and an Orioles World Series. My return to the Washington DC area was 

motivated mostly by my desire to be close to my brother. Everyone should be as fortunate 

to have a brother who is such a good friend.  

 The West Coast part of the family has gone beyond the call of duty to make me 

feel comfortable and welcome. My aunts, Bharti Patel and Nayan Patel, and their families 

have welcomed me as one of their own. I am so grateful for their love and support and 

leaving them is one of the unfortunate consequences of moving. 

 I have too many cousins to exhaustively acknowledge here, but I want to thank 

Hemang and Vandana Patel for their support. Even from 3000 miles away, I felt I never 

really left them. I eagerly look forward to being around them again upon my return to 

their area. Also, here in Los Angeles, I’ve come to really know another cousin, Anup 

Patel. Growing up, we really didn’t get to know each other, but my time here has 

afforded me the opportunity to become close to him. I hope that even after I leave, we 

continue to remain friends. 

 Finally, I want to mention my late grandmother, Champaben Patel. Never will I 

meet someone so devoted to assuring the well-being of her family. The only thing that 



 x

mattered to her was my happiness. Accolades and successes were never important to her; 

she loved all of her children unconditionally. I know she is looking down, proud to be a 

part of this moment.  

 Caltech has been an amazing place to do graduate work. Recruiting efforts here 

always emphasize the uniqueness of the institute that is “the size of a high school with the 

resources of Harvard.” It is absolutely true. The relationships I’ve forged in my time here 

will stay with me for a lifetime. To anyone I’ve failed to mention, I apologize but thank 

you for your support. 

 

Other members of the Mayo lab (in order of appearance):  
 
Pavel Strop, Ben Gordon, Niles Pierce, Cathy Sarisky, Dan Bolon, Shannon Marshall, 
Chris Voigt, Julie Mayo, JJ Plecs, Dee Datta, Julia Shifman, Shira Jacobson-Rogers, Eun-
Jung Choi, Oscar Alvizo, Josh Marcus, Peter Oelschlaeger, Ben Allen, Karin Crowhurst, 
Tom Treynor, Heidi Privett, Jennifer Keeffe, Mary Devlin, and Sarah Hamilton.  



 xi

Abstract 
 

The overall goals of computational protein design range from designing new 

protein folds and protein-protein interfaces to the de novo design of enzymes. All goals 

require that two equally challenging components of computational protein design be 

addressed. First, the physical model that describes a protein’s intermolecular and 

intramolecular interactions must be accurate. Second, energetically optimal amino acid 

sequences must be identified from an enormous number of possibilities. This thesis 

describes work that makes progress in both these arenas. In addition, the effectiveness 

and applicability of computational protein design is demonstrated by tackling challenging 

design problems. 

Improvements to the physical model have been made by developing a more 

accurate method for calculating rotamer (amino acid side-chain conformation) surface 

areas for use in our surface area-based hydrophobic solvation term. With this method, 

surface area errors were decreased dramatically and the experimental stabilities of 

proteins generated from computationally predicted sequences were improved. Also, our 

direct surface area calculation approach significantly reduced the compute time required 

for sequence optimization using dead-end elimination (DEE)-based algorithms. 

Although DEE-based algorithms have been effectively used for many challenging 

design problems, the daunting task of sequence optimization can cause even the most 

efficient DEE-based methods to fail. We developed a sequence optimization technique 

called Vegas that combines elements of non-DEE-based as well as DEE-based 

algorithms. For design problems that were already tractable using DEE-based methods, 

Vegas delivered the GMEC in significantly less time. In cases where DEE-based 
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algorithms stalled and failed to deliver the GMEC, Vegas produced an answer that, at the 

time, was better than any other algorithm. This is illustrated by Vegas’ solution to a 

challenging problem: the full sequence design of a 51-residue fragment of the Drosophila 

engrailed homeodomain (ENH). We generated a variant of ENH predicted by Vegas and 

compared its thermodynamic properties with a protein obtained using a Monte Carlo 

search. We found that the thermodynamic properties of the two molecules were identical. 

We also solved the solution structure of the Vegas-based molecule using nuclear 

magnetic resonance (NMR) spectroscopy and found that it folded accurately into the 

target fold. 

 Obtaining water soluble variants of membrane proteins might alleviate some of 

the problems encountered when working with them and facilitate our understanding of 

the different forces contributing to protein stabilities in membranes. We made progress in 

developing an automated design scheme that can generate water soluble variants of 

membrane proteins. We analyzed and compared the surfaces of membrane proteins and 

water soluble proteins, and developed a metric for altering membrane protein surfaces. 

Using this metric, we can design membrane protein surfaces using the ORBIT suite of 

protein design algorithms and convert them to those resembling water soluble protein 

surfaces. We tested this strategy on two proteins and although we have not been 

completely successful, we have established rules and guidelines that will aid future 

efforts towards achieving this goal. 
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 In 1954, Anfinsen and colleagues observed that a protein’s amino acid sequence 

determines its folding pattern.1 This discovery led to the creation of the field of protein 

structure prediction in which researchers attempt to identify a protein’s three-dimensional 

structure from just its amino acid sequence. To achieve solutions to what is known as the 

protein folding problem, researchers strive to understand the molecular forces that drive 

proteins into their biological native states and the thermodynamic forces that govern a 

protein’s intramolecular and intermolecular interactions. Great strides have been made in 

various aspects of protein structure prediction, yet 50 years after Anfinsen’s studies, the 

field remains far from achieving its goal.  

 Whereas researchers tackling the protein folding problem attempt to predict the 

three-dimensional structure of a protein, the field of protein design seeks to identify 

optimal amino acid sequences that are compatible with an already known experimentally 

determined target fold. Although an incredibly challenging problem, protein design is 

slightly easier than the protein folding problem because of the large degeneracy 

associated with it (Figure 1-1); only one structure is associated with a given amino acid 

sequence, but a large number of amino acid sequences are compatible with a target fold. 

 Like protein structure prediction, the protein design paradigm is used to gain a 

better understanding of the physical forces that contribute to protein structure 

stabilization. In addition, protein design has been used to design novel protein folds,2 

introduce catalytic activity onto inert scaffolds,3,4 and increase the thermodynamic 

stability of target folds.5-8 Selective binding to ligands has also been performed using 

protein design9 and more recently, the de novo design of protein-protein dimers has been 
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attempted.10 Protein design techniques have also been utilized to increase the efficiency 

of directed evolution experiments.11-14 

 There are two main equally challenging components of protein design. First, the 

physical model describing the interactions of amino acid sidechains and the forces 

contributing to protein stability must be accurate. Second, sequences that provide the 

most energetically favorable structures must be identified from an enormous number of 

possible sequences. 

 The ORBIT (Optimization of Rotamers By Iterative Techniques) suite of 

algorithms was developed for the automated design of proteins.15 ORBIT uses 

physically-derived terms inspired by the DREIDING16 force field and includes terms for 

van der Waals (vdW) interactions, hydrogen bonding, electrostatics, and surface-area 

based hydrophobic solvation. The vdW term17 contains a long range attractive component 

and a short range repulsive component and can be calculated using a Lennard-Jones 6-12 

potential. The hydrogen bond scoring function18 has a distance-dependent term and an 

angle-dependent term. The electrostatics term is Coulomb’s law and approximates the 

interaction of two point charges in the presence of other charges or dipoles. The 

hydrophobic effect and the interaction of sidechains with solvent are considered in the 

surface area-based hydrophobic solvation term.15,19 Nonpolar surface area burial is 

benefited while polar burial is penalized. A negative design term that penalizes nonpolar 

surface area exposure is also included.  

 Identifying the most favorable sequence in a protein design problem is a daunting 

computational challenge. Even a relatively small protein of 100 amino acids has 20100 

(~10130) possible solutions. When different conformations of amino acids, or rotamers 
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(Figure 1-2),20-22 are considered, the complexity is increased further. As a result, despite 

considerable progress in computing power, a computational exhaustive search of 

sequence space is nearly impossible. Sequence optimization in ORBIT is based primarily 

on the dead-end elimination (DEE)23 theorem. Algorithms based on DEE15,24-28 are useful 

because solutions are guaranteed to be the global minimum energy conformation 

(GMEC). This is  desirable when making improvements to the physical model because it 

assures that the model is not compromised by identifying a non-optimal solution.15 Also, 

if the physical model is accurate, the GMEC sequence provides the optimal stability for 

the target fold. 

 DEE-based algorithms have contributed to the success of many challenging 

design problems;4,5,8,9,29 however, more ambitious designs can sometimes cause even the 

most effective DEE-based algorithms to stall. In such cases, alternative approaches may 

be employed. Algorithms based on Monte Carlo (MC) methods,30,31 self-consistent mean 

field (SCMF) techniques,32,33 and genetic algorithms (GA)34,35 have all been effectively 

implemented. The major drawback when using these algorithms is that solutions are not 

guaranteed to be the GMEC. 

 The work detailed in this thesis contributes to both of the challenging aspects of 

protein design described above. Improvements to the physical model have been made by 

developing a more accurate model for the calculation of rotamer surface areas for the 

surface-area based hydrophobic solvation term. The previous model relied on a pairwise 

calculation of rotamer surface areas15,19—a restriction imposed by DEE-based 

algorithms.23 While extremely effective, a pairwise decomposition of rotamer surfaces 

will over-count surface area burial while under-counting surface area exposure (Figure 
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1-3). Our model calculates rotamer surface areas directly from multi-body 

approximations generated from MC searches, thereby eliminating the need for pairwise 

approximations. We demonstrated both in silico and in vitro that our new model is more 

accurate and effective than the previous model; designed sequences had less surface area 

errors and led to proteins with improved stabilities. An added feature of using our new 

model is that compute times for DEE-based algorithms are significantly reduced. 

 The limitations of the sequence optimization algorithms mentioned above were 

also addressed. We developed a sequence optimization technique called Vegas that 

combines elements of non-DEE-based as well as DEE-based algorithms (Figure 1-4). For 

design problems that were already tractable using DEE-based methods, Vegas delivered 

the GMEC in significantly less time. In cases where DEE-based algorithms stalled and 

failed to deliver the GMEC, Vegas produced an answer that, at the time, was better than 

any other algorithm.  

 This is illustrated by Vegas’ solution to a challenging problem: the full sequence 

design of a 51-residue fragment of the Drosophila engrailed homeodomain. Full 

sequence designs are difficult problems because of their enormous computational 

complexity; they also serve as robust tests for the accuracy of the physical model. When 

we commenced our work, only one full sequence design had been performed for which 

both thermodynamic and structural information had been obtained.29 We generated a 

protein predicted by Vegas and compared its thermodynamic properties with a protein 

obtained using an MC search. We found that the thermodynamic properties of the two 

molecules were identical. We also solved the solution structure of the Vegas-based 

molecule using nuclear magnetic resonance (NMR) spectroscopy and found that it folded 
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accurately into the target fold. In the conclusions, we comment on the need to obtain the 

GMEC for challenging design problems. 

 An interesting challenge in structural biology is converting a membrane protein to 

a water soluble protein without altering the protein’s structure. Membrane proteins serve 

many critical roles in cellular operations (Figure 1-5). These include acting as receptors 

for ligands, ion pumps, channels, and transport proteins. They also contribute to 

maintaining the structural integrity of the cell and mediate intercellular interactions. 

Membrane proteins also work as enzymes involved in metabolism and aid in cellular 

defense mechanisms.  

 The importance of this group of proteins might lead one to believe much 

structural work has been done. However, the problems associated with working with 

membrane proteins have prevented researchers from obtaining the plethora of structural 

data that has become so readily available for water soluble proteins. These problems 

include limited levels of expression, poor stabilities in detergent solutions, and greater 

difficulties in obtaining high-quality crystals that diffract well. Obtaining water soluble 

variants might alleviate some of these problems and facilitate our understanding of the 

different forces contributing to protein stabilities in membranes. For these reasons, it is 

desirable to develop an automated design scheme that can generate water soluble variants 

of membrane proteins.  

  We analyzed and compared the surfaces of membrane proteins and water soluble 

proteins, and developed a metric for altering membrane protein surfaces. Using this 

metric, we can design membrane protein surfaces using the ORBIT suite of protein 

design algorithms and convert them to those resembling water soluble protein surfaces. 
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We tested this strategy on two proteins and although we have not been completely 

successful, we feel our strategy effectively builds on previous work and makes progress 

towards the goal of designing water soluble variants of membrane proteins.   

 The last part of this thesis details work done in collaboration with Kevin Plaxco’s 

laboratory. De novo designs performed with ORBIT are ideal for studying certain aspects 

of protein folding because our design algorithms lack the constraints or selective 

pressures for protein folding that are imposed in nature. Questions such as, “Are proteins 

selected based on folding rates or thermodynamic stability?” can be answered using de 

novo designed proteins. We found that our proteins, which were designed for improved 

thermodynamic stability, had significantly higher folding rates than the wild type, 

suggesting that nature’s proteins select for stability rather than high folding rates. The 

way in which proteins confer their stability can also be studied using de novo designed 

proteins.  
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Figure 1-1: Protein design and the protein folding problem.   
Protein design is the inverse of the protein folding problem. Only one structure is 
associated with one amino acid sequence, while many sequences are compatible with a 
given structure. Despite this advantage, protein design is a tremendous biophysical and 
computational challenge. 
 
Figure from Shannon Marshall (California Institute of Technology) 
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Figure 1-2: Different conformations of amino acid sidechains are represented by 
rotamers. 
Amino acid sidechains can adopt many different conformations; each different 
conformation is called a rotamer. (A) Arginine sidechains possess several degrees of 
freedom and can be represented by many rotamers. (B) Different rotamers of some of the 
amino acids. 
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Figure 1-3: Pairwise decomposition of surface areas overestimates burial. 
Because the GMEC is not known a priori, rotamer surface areas must be approximated. 
In our previously reported model, we use a pairwise decomposition of surface areas 
because use of DEE-based algorithms limits the interaction of rotamers to two bodies. 
Although pairwise surface areas can be calculated well (A-C), when three or more 
rotamers interact, there will be an overestimation of buried surface area (D, black area). 
Our new model eliminates the need for pairwise approximations because each rotamer is 
sampled in the context of a multi-body approximation of the GMEC obtained using an 
MC search. From this structure, the rotamer’s exact surface area can be calculated. 
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Figure 1-4: Schematic representation of the Vegas algorithm. 
The Vegas algorithm prunes rotamer space by judiciously eliminating candidate rotamers 
by evaluating them in GMEC-like structures. High scoring rotamers, where the energy of 
the structure containing the candidate rotamer is the score, are eliminated. In this way, 
rotamers incompatible with the GMEC are eliminated. When a pruned rotamer space is 
handed to DEE-based algorithms, they proceed faster and more efficiently, and are able 
to provide solutions to design problems that are better than other optimization algorithms. 
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Figure 1-5: The various roles of membrane proteins. 
Membrane proteins serve several roles in cells. They can act as transporters of everything 
from water to proteins, or be vital in maintaining cell structure by linking together 
various structural elements. Membrane proteins can take on the role of receptors that 
propagate signals throughout the cell and can exhibit enzymatic activity, catalyzing 
reactions.  
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Chapter 2  

 
 

Direct Calculation of Rotamer Surface Areas in Protein Design 
 
 
 
 

The text of this chapter has been adapted from a manuscript that was co-authored with 
Professor Stephen L. Mayo. 
 
Premal S. Shah and Stephen L. Mayo, Submitted (2005) 
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Abstract 

 The incorporation of a surface area-based hydrophobic solvation term in the 

scoring functions used for protein design has been shown to improve the stabilities of 

designed variants.  Use of a surface area-based solvation term requires the accurate 

calculation of the surface areas of the amino acid conformers (rotamers) used in 

side-chain selection. Current methods utilize pairwise approximations that overestimate 

surface area burial and underestimate surface area exposure. Although scaling factors 

have been used to compensate for these errors, the surface areas obtained are still inexact. 

We have developed a method that changes the nature of the approximation used in these 

calculations from a pairwise method to a full, multi-body method based on Monte Carlo 

(MC) simulations of the design space. Each rotamer is held fixed on the protein backbone 

and the MC search algorithm is used to estimate the optimal side-chain sequence and 

conformation for the rest of the molecule. The fixed rotamer’s surface area is calculated 

directly from the MC-generated structure. With this method, surface area errors were 

decreased dramatically and the experimental stabilities of proteins generated from 

computationally predicted sequences were improved. Also, our direct surface area 

calculation approach significantly reduced the compute time required for sequence 

optimization using dead-end elimination-based algorithms. 
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Introduction 

 The hydrophobic effect is believed to play a dominant role in stabilizing the 

folded state of proteins.1-3 The effect implies that hydrophobic (nonpolar) residues in 

proteins tend to be buried to minimize unfavorable interactions with polar solvent, 

resulting in energetically more stable molecules. The benefits of the hydrophobic effect 

have stimulated efforts to incorporate burial of nonpolar surface area as a design criterion 

in engineering proteins with improved stability. When a surface area-based hydrophobic 

solvation term was included in the scoring function used for protein design, the sequences 

produced were more stable;4 their predicted energies also showed a better correlation 

with their experimental stabilities.5 Appropriate use of such a term requires accurate 

calculation of the surface areas of the amino acid conformers (rotamers) used in 

side-chain selection. The sequence optimization algorithms commonly used in protein 

design are based on the dead-end elimination (DEE) theorem.6 DEE-based algorithms5,7,8 

restrict calculation of sequence energies to include terms involving the interaction of, at 

most, two bodies. However, the surface area buried by three or more interacting rotamers 

can overlap, and with pairwise calculations, the overlapping area is counted more than 

once, resulting in values that are larger than the true buried surface area. Thus, buried 

surface area is overestimated and exposed surface area is underestimated. To compensate 

for this error, empirically validated scaling factors have been used, resulting in significant 

improvement.5,9 But because of the pairwise restriction, the surface areas obtained are 

still inexact.   

The exact surface area of each of the rotamers could be calculated directly, 

without using any pairwise approximations, if the location and identity of all the 
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surrounding atoms in the global minimum energy conformation (GMEC) were known. 

Unfortunately, the GMEC is not known a prori, but it can be accurately and efficiently 

approximated.  

In this report, we use the Monte Carlo (MC) search algorithm10,11 to approximate 

the GMEC.  The structures generated using MC are then used to directly calculate exact 

rotamer surface areas. We call this new method type 4 solvation (T4-solvation), while 

referring to the previous pairwise approximation method as type 2 solvation 

(T2-solvation). Comparison with true surface areas revealed that T4-solvation calculates 

surface areas more accurately than T2-solvation. Experimental studies with two proteins 

showed that sequences predicted using T4-solvation also had stabilities that were 

comparable to or improved over those predicted using T2-solvation. In addition, 

T4-solvation significantly reduced the time required to perform the optimization 

calculations. 

 

Direct Calculation of Rotamer Surface Areas 

 With T4-solvation, the approximation of surface areas is moved from a pairwise 

method to a full, multi-body method based on structures that approximate the GMEC. 

The rotamer is held fixed and MC searches are used to find the optimal sequence and 

conformation for the rest of the molecule. The rotamer’s surface area is calculated in the 

context of the MC structure and this value is used in our surface area-based hydrophobic 

solvation term5 to obtain the rotamer’s solvation energy, which in turn is used to compute 

a new total energy for the rotamer. This is done for each rotamer, then the whole process 

is repeated using the updated energies.  The updated energies allow MC searches to find 
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more accurate solutions with each iteration. To increase calculation efficiency, a 

threshold is specified that eliminates high-energy rotamers from subsequent iterations; in 

this case, the rotamer’s surface area prior to elimination is used. We used five iterations 

for calculations in this report. 

 

Results 

T4-solvation surface areas are more accurate 

 To test the computational accuracy of T4-solvation, we performed side-chain 

placement calculations6 on ten proteins spanning a wide range of sizes and compared the 

surface areas calculated using T4-solvation with the true surface areas calculated after the 

GMEC was known. Surface areas calculated from the GMEC using T2-solvation’s 

pairwise approximation method were also compared with the true surface areas. Results 

are presented in Table 2-1. For both core and boundary regions, total buried surface areas 

calculated using T4-solvation compared well with the true total buried surface areas 

obtained from the GMEC (maximum of 0.1% error).  Errors were also quite low, though 

slightly worse with T2-solvation.  

 The greatest difference is observed when comparing errors in exposed 

hydrophobic surface areas. For the core, the maximum error for T2-solvation was 141%, 

while T4-solvation produced a maximum error of only 7.7%. The T4 method also 

performed better than T2-solvation for the boundary.  
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T4-solvation produces stable variants 

 To further assess the validity of the T4-solvation method, we performed boundary 

designs on two proteins using T2- and T4-solvation and evaluated the physical properties 

of the proteins constructed from the predicted sequences. The two proteins used were the 

β1 domain of Streptococcal protein G (Gβ1) and the engrailed homeodomain (ENH). We 

used previously optimized variants of both proteins as starting sequences because they 

are thermodynamically more stable than the wild type and allow destabilizing variants to 

be produced without incurring problems with protein expression. We used a 

core-optimized variant of Gβ1, Gβ1-FII,12,13 and a surface- and core-optimized variant of 

ENH, ENH-SC1.14 The optimal sequences predicted from the design calculations are 

compared with the starting sequences in Figure 2-1.  For Gβ1, of the 14 designed 

positions, use of T2-solvation predicted a sequence with 11 mutations (Gβ1-T2) and T4-

solvation predicted a sequence with 13 (Gβ1-T4). For ENH, 11 positions were designed, 

and use of T2-solvation predicted 10 changes (ENH-T2), while T4-solvation predicted 8 

(ENH-T4). 

 CD wavelength scans of both the Gβ1 variants are similar to Gβ1-FII (Figure 

2-2). However, the minimum of the Gβ1-T4 spectrum is shifted slightly to a shorter 

wavelength compared to the other two proteins. This blue-shift often results from an 

increased number of Trp residues or from Trp residues in closer proximity to each 

other.15 Gβ1-T4 contains an additional Trp residue at position 27 (Figure 2-1), which, in 

our predicted structure, is close to Trp-43. Mutation of Trp-27 to Ala or Phe eliminates 

this blue-shift (data not shown). One-dimensional proton nuclear magnetic resonance (1D 

1H NMR) spectra of the three Gβ1 proteins display sharp, narrow linewidths and high 
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dispersion—properties indicative of well-folded proteins (Figure 2-3). Temperature and 

chemical denaturation experiments show that Gβ1-T4 is more stable than Gβ1-T2 and as 

stable as Gβ1-FII (Table 2-2).    

 CD scans of the ENH variants produced spectra similar to ENH-SC1 and 

characteristic of α-helical proteins (Figure 2-4). 1D 1H NMR spectra exhibit sharp, 

narrow linewidths and high dispersion (Figure 2-3). Temperature and chemical 

denaturation experiments indicate that both variants are significantly stabilized compared 

to ENH-SC1 (Table 2-2).  

 

Computational optimization speed increases using T4-solvation 

 Use of T4-solvation improved the efficiency of the sequence optimization step in 

our protein design calculations. The Gβ1-T4 calculation converged to the GMEC almost 

five times faster than the Gβ1-T2 calculation (1.9 versus 8.8 processor hours). No 

differences in optimization times were seen with ENH designs. This was expected 

because we split the boundary into three regions and ran separate calculations on each; 

each of these calculations was very small and therefore converged extremely quickly. 

Separate calculations were run to remain consistent with previous ENH boundary 

designs.  
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Discussion 

 This study showed that the direct calculation of surface areas using T4-solvation 

is more accurate than previous methods that rely on pairwise approximations. These 

results suggest that an efficient search algorithm can be used to model the GMEC with 

sufficient accuracy to allow for the direct calculation of exact surface areas. We chose 

MC as our optimization algorithm because it has been used successfully in protein 

design16-18 and has been shown to more accurately predict the GMEC than other 

commonly used approximate algorithms.19 However, other optimization algorithms could 

be used. 

 The proteins predicted using T4-solvation had stabilities that were comparable to 

or improved over those predicted using T2-solvation. The improved stability of Gβ1-T4 

may be due to the fact that it has fewer nonpolar residues than Gβ1-T2 (six versus eight). 

Expression levels were better for Gβ1-T4 than for Gβ1-T2. Also, Gβ1-T2 expresses 

poorly into the soluble fraction, suggesting aggregation. One explanation for these 

differences may be that because T2-solvation does not calculate surface areas accurately, 

exposed nonpolar surface area is under-penalized, which in turn leads to the prediction of 

sequences with more nonpolar residues. Gβ1-T2 buries more nonpolar surface area than 

Gβ1-T4 (2032.9 Å2 versus 1758.9 Å2) yet its higher exposure of nonpolar surface area 

(469.0 Å2 compared to 395.3 Å2) most likely is the dominating force that leads to lower 

stability. This is an effect observed previously in our laboratory; increasing the nonpolar 

content of boundary designs by even one position can lead to dramatic differences in 

protein stability and specificity.20 
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 We noted that use of T4-solvation increased the computational speed of sequence 

optimization with our DEE-based algorithms. However, the total calculation time for the 

Gβ1-T2 calculation was only 43.3 processor hours compared to 144.96 processor hours 

for the Gβ1-T4 calculation; the calculation of rotamer surface areas is longer for 

T4-solvation. However, as mentioned above, we used five iterations for our T4-solvation 

calculation but found that reducing the number of iterations to three greatly reduced the 

compute time without compromising accuracy. In addition, varying the threshold can 

safely eliminate a larger subset of rotamers after each iteration, allowing subsequent 

iterations to proceed more rapidly. Given the increase in accuracy of surface areas and 

stability of proteins generated with T4-solvation, the slight increase in compute time is 

acceptable.   

 

Materials and Methods 

Computational methods 

 A description of force field potential functions and T2-solvation can be found in 

previous work.5,9,21-23 An expanded version of the backbone dependent rotamer library 

described by Dunbrack and Karplus24 was used. Surface areas were calculated using the 

Connolly algorithm25 as described previously.9 An automated algorithm was used that 

classified residue positions as core, boundary, or surface.5 Side-chain placement 

calculations and sequence optimization for Gβ1 designs was done using HERO,8 an 

extension of DEE. Sequence optimization for ENH designs was done as described 

previously.20 Calculations were performed on either an SGI Origin 2000 supercomputer 
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with R10000 processors running at 195 MHz or on an IBM SP3 machine with Power3 

processors running at 375 MHz.  

 For studies done with T4-solvation, our implementation of the MC algorithm can 

be found in previous work.19 We used five annealing cycles of 106 steps per cycle. Five 

cycles were chosen to keep computation time to a minimum and 106 steps per cycle was 

selected to be consistent with previous studies in our laboratory. Increasing the number of 

cycles or steps per cycle did not result in greater surface area accuracy. Low and high 

annealing temperatures were 150 K and 4000 K, respectively. The threshold value for 

T4-solvation calculations was set conservatively at 100 kcal/mol.     

 For side-chain placement calculations, residue identities were kept fixed but their 

conformations were allowed to change. When one region was analyzed (i.e., core or 

boundary), the residues in the other two regions were kept fixed in identity and 

conformation.  

 Boundary positions for both Gβ1 and ENH designs are indicated in Figure 2-1. 

For Gβ1 designs, we allowed all 20 natural amino acids except Gly, Pro, Cys, and Met. 

For ENH designs, we used a fixed binary pattern of the B6 molecule in the Marshall and 

Mayo study20 to partition the boundary region into core and surface. We allowed Ala, 

Val, Leu, Ile, Phe, Tyr, and Trp for positions classified as core; for positions classified as 

surface, we allowed Ala, Asp, Asn, Glu, Gln, His, Lys, Ser, Thr, and Arg.  

 

Protein expression 

 The genes encoding the protein variants predicted by the calculations were 

constructed using recursive PCR26 and cloned into a variant of the pET-11a (Novagen) 
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vector. DNA sequencing was used to confirm all sequences. Proteins were expressed in 

Bl21(DE3) Escherichia coli cells and isolated using a freeze-thaw method.27 Purification 

was done with reverse-phase HPLC using a C8 prep column (Zorbax) with a linear 

acetonitrile-water gradient with 0.1% TFA. Protein masses were confirmed using 

electrospray or MALDI-TOF mass spectrometry.  

 

Circular dichroism spectroscopy 

 CD analysis was performed on an Aviv 62A DS spectrophotometer. Gβ1 

experiments were performed in 50 mM sodium phosphate buffer at pH 5.5. For 

wavelength scans and thermal denaturation experiments, 50 µM protein was used in a 

one mm pathlength cell. Thermal denaturations were performed from 1 ºC to 99 ºC with a 

step size of 1 ºC, equilibration time of 120 seconds, and a data averaging time of 30 

seconds. Melting temperatures for Gβ1 variants and ENH-SC1 were determined by 

fitting a two-state transition.28 Guandinium denaturation of Gβ1 proteins was done using 

an auto-titrator with 5 µM protein in a 10 mm pathlength cell. To maintain consistency 

during the experiment, stock solutions of guanidinium also contained 5 µM protein at the 

appropriate pH. A step size of 0.2 M, a mixing time of 10 minutes, and a data averaging 

time of 100 seconds were used. All ENH experiments were carried out at pH 4.5; all 

other parameters were the same as for the Gβ1 experiments. Guanidinium denaturation 

data were fit assuming a two-state transition and using the linear extrapolation model.29 

For thermal and chemical denaturations, a wavelength of 218 nm and 222 nm was used 

for Gβ1 and ENH proteins, respectively.  
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Nuclear magnetic resonance spectroscopy 

 A Varian 600 MHz spectrometer using a Varian triple resonance probe was used 

to obtain 1D 1H NMR spectra. Samples were approximately 0.5 mM protein, 50 mM 

sodium phosphate in 10% 2H2O. The pH was 5.5 and 4.5 for Gβ1 and ENH proteins, 

respectively.   
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1gpr 158 41 49 9,092 82 0.0 1.3 0.0 119 8,727 1,130 0.0 0.4 0.0 0.3
1gcs 174 53 36 11,658 160 0.1 0.3 7.7 32 6,803 677 0.0 1.2 0.0 4.5
1edt 265 96 73 20,820 209 0.0 0.4 1.3 41 13,535 1,196 0.0 0.0 0.3 3.7
1pbn 289 98 81 21,012 288 0.0 2.0 0.1 105 16,051 1,763 0.1 0.2 0.3 3.8

Table 2-1: Error in calculation of exposed nonpolar surface area and total buried surface area for ten proteins of various sizes using the 
T2- and T4-solvation methods.  
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Table 2-2: Thermodynamic stability for starting sequence 
protein and designed variants of Gβ1 and ENH.  

 
Protein 

∆Gunfold
a

(kcal mol-1) 
mb

(kcal mol-1 M-1) 
Tm

c

(ºC) 

Gβ1-FII 6.9 1.7 89.0 
Gβ1-T2 3.5 1.8 64.7 
Gβ1-T4 6.9 1.9 86.0 
ENH-SC1 3.7 1.5 83.0 
ENH-T2 5.0 1.0 > 99d

ENH-T4 5.0 1.1 > 99d

  
 a Fee energy of unfolding at 25 ºC. 

 b Slope of ∆Gunfold versus denaturant concentration; measure of 
cooperativity. 

 c Melting temperature. 
 d Proteins were folded as monitored by CD at 99 ºC. 
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Gβ1 Sequences 
 
  ----|----1----|----2----|----3----|----4----|----5----|- 
Gβ1-FII TTFKLIINGKTLKGETTTEAVDAATAKKVFFQYANDNGIDGEWTYDDATKTFTVTE 
Gβ1-T2       |||||||||||F|||K|H||||I|E|||Y|||L|||K|||||||I||||Y|||||| 
Gβ1-T4  |||||||||||Y|||R|H||||R|Q|W|Y|K|L|||N||||||||||||K|||||Q 
 
 
 
ENH Sequences 
 
  ----|----1----|----2----|----3----|----4----|----5- 
ENH-SC1 TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI 
ENH-T2 S||||||||K|||V||||Q|I|||EL|||A||||||||||||||||W|||R 
ENH-T4 S||||||||R|||Y||||N|I|||RL|||A||||||||||||||||W|||Q 
 
 
 
Figure 2-1: Comparison of designed sequences with wild type. 
Optimal sequences predicted for the Gβ1 and ENH designs using T2- and T4-solvation. 
A bar indicates the same amino acid as the starting sequence (Gβ1-FII and ENH-SC1 for 
Gβ1 and ENH designs, respectively). Boundary positions are indicated in grey. 
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Figure 2-2: Far UV wavelength spectra of Gβ1 variants. 
CD wavelength scans of starting sequence protein (Gβ1-FII) and designed variants 
(Gβ1-T2, and Gβ1-T4) measured at 25 ºC.   
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Figure on Following Page 

 

Figure 2-3: NMR spectra of variants and wild type. 
1D 1H NMR spectra of (A) Gβ1 starting sequence protein (Gβ1-FII) and variants (Gβ1-
T2, and Gβ1-T4) and (B) ENH starting sequence protein (ENH-SC1) and variants (ENH-
T2 and ENH-T4). For clarity, only the aromatic and amide regions are shown. The sharp, 
narrow, well-dispersed lines are characteristic of well-folded proteins. 
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Figure 2-4: Far UV wavelength spectra of ENH variants. 
CD wavelength scans of starting sequence protein (ENH-SC1) and variants (ENH-T2 and 
ENH-T4) measured at 25 ºC. Both designed variants are similar to ENH-SC1 and are 
typical of α-helical proteins.  
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Chapter 3  
 

  

Preprocessing of Rotamers for Protein Design Calculations 
 
 
 

 
 
The text of this chapter has been adapted from a published manuscript that was 
co-authored with Professor Stephen L. Mayo and Geoffrey K. Hom. 
 
Premal S. Shah, Geoffrey K. Hom, and Stephen L. Mayo, J. Comp. Chem., 25, 
1797-1800 (2004). 
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Abstract 

We have developed a process that significantly reduces the number of rotamers in 

computational protein design calculations. This process, which we call Vegas, results in 

dramatic computational performance increases when used with algorithms based on the 

dead-end elimination (DEE) theorem. Vegas estimates the energy of each rotamer at each 

position by fixing each rotamer in turn and utilizing various search algorithms to 

optimize the remaining positions. Algorithms used for this context specific optimization 

can include Monte Carlo, self-consistent mean field, and the evaluation of an expression 

that generates a lower bound energy for the fixed rotamer. Rotamers with energies above 

a user-defined cutoff value are eliminated. We found that using Vegas to preprocess 

rotamers significantly reduced the calculation time of subsequent DEE-based algorithms 

while retaining the global minimum energy conformation. For a full boundary design of a 

51 amino acid fragment of engrailed homeodomain, the total calculation time was 

reduced by 12-fold. 
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Introduction 

 An important goal of computational protein design is to identify the amino acid 

sequence and side-chain orientations that correspond to the global minimum energy 

conformation (GMEC). However, searching for the GMEC is challenging due to the 

enormity of sequence space; even a small protein of 100 amino acids has 20100 (~10130) 

possible sequences. Accounting for side-chain flexibility by including different 

side-chain conformations called rotamers1-3 further increases the combinatorial 

complexity. Consequently, exhaustive searches for the GMEC are almost always 

intractable.  

 Algorithms based on the dead-end elimination (DEE) theorem4 have been 

developed to address combinatorial optimization problems in side-chain placement and 

protein design. If DEE-based algorithms converge, the solution is guaranteed to be the 

GMEC. As a result, not only are these algorithms useful when performing force field 

improvements or parameter optimization,5,6 their use has proven to be successful for 

many challenging design problems.7-11 While recent enhancements to DEE have allowed 

difficult designs to be performed,12-15 more ambitious design problems can cause even the 

most effective DEE-based algorithms to stall. In addition, some calculations take an 

impractical amount of time to converge to the GMEC. In such cases, other algorithms 

may be employed. These include Monte Carlo (MC) methods,16,17 genetic algorithms,18,19 

self-consistent mean field (SCMF) techniques,20,21 and Branch-and-Bound methods.22 

Although these approaches can provide solutions when DEE-based algorithms stall, they 

typically have the drawback of not being able to guarantee that their solutions are the 

GMEC even when starting from a DEE-reduced rotamer space. As a result, there is still 
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ample motivation to develop techniques to improve or assist current DEE-based 

algorithms. 

One approach is to reduce the number of rotamers in a calculation by eliminating 

a subset of rotamers prior to use of DEE-based algorithms. An example of this strategy 

can be found in the high-energy threshold reduction method.23 In most cases, by 

eliminating rotamers possessing energies above a user-defined threshold, De Maeyer et 

al. were able to eliminate over one-third of rotamers without sacrificing the GMEC in 

side-chain placement calculations. Remaining rotamers were then evaluated with DEE.  

Here, we present a similar approach for protein design calculations; we prune rotamer 

space by judiciously eliminating rotamers, thus allowing DEE-based algorithms to 

proceed more efficiently. Our method, which we call Vegas, scores each rotamer at each 

position by fixing it in turn and using MC or SCMF to optimize the rest of the positions. 

The rotamer’s score is the energy of the resulting solution. In addition, a rotamer’s score 

can be calculated by evaluating an expression that generates a lower bound energy.22 

Rotamers remaining after the elimination step are passed on to a DEE-based algorithm. 

We can safely eliminate a large subset of rotamers without compromising the GMEC and 

we observe a significant reduction in total compute time. 

 

Vegas 

 Vegas reduces the number of rotamers in protein design calculations by applying a 

rejection criterion after obtaining a score for each rotamer at each position. This is done by 

fixing the rotamer to be scored and using various optimization algorithms to generate a 

rotamer sequence for the rest of the molecule. The rotamer’s score is the energy of the 
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resulting solution. In this report, two optimization algorithms were used: one based on 

Monte Carlo (MC) methods,24 and another based on self-consistent mean field theory 

(SCMF).24 In addition, a rotamer’s score was also obtained by evaluating an expression 

that provided a lower bound energy22 for the fixed rotamer. Rotamers with scores above 

the best score for that position plus a user-defined threshold value are eliminated. 

Remaining rotamers are then optimized with HERO,15 an extension of DEE. 

 

Results 

 We used two test cases to assess the effectiveness of Vegas. We started with the 

designs of different regions of a very small protein and increased the computational 

complexity with the second test case. Vegas’ effectiveness was evaluated by its ability to 

retain the GMEC and increase computational efficiency. To check Vegas’ performance in 

not eliminating GMEC rotamers, the GMEC was first obtained without Vegas in a 

reference calculation using HERO alone. The different versions of Vegas are referred to 

with an underscore between Vegas and the method used to obtain the rotamer score. For 

example, use of MC with Vegas is referred to as Vegas_MC.  

 

Test case 1 

We performed designs of the core, boundary, and surface regions of the β1 domain 

of protein G (Gβ1).25 These small, relatively simple designs were done to demonstrate the 

ability of Vegas to safely apply a rejection criterion to eliminate rotamers without 

sacrificing the GMEC. Table 3-1 lists the number of rotamers eliminated as the threshold 

value is increased. All versions of Vegas performed equally well for core and boundary 
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designs; the most aggressive threshold value (5 kcal/mol) allowed about 90% of rotamers 

to be eliminated without losing the GMEC. Elimination was more difficult with surface 

residues. Compared to Vegas_MC, Vegas_SCMF and Vegas_Bound allowed for more 

aggressive threshold values to be applied without losing the GMEC. 

 

Test case 2  

A boundary design of a 51 amino acid fragment of the engrailed homeodomain 

(ENH)26 was performed to determine Vegas’ ability to increase computational efficiency 

without compromising accuracy (Figures 3-1 and 3-2). Vegas_MC and Vegas_SCMF 

retained the GMEC when threshold values of 10 kcal/mol and larger were used. At 10 

kcal/mol, 72% and 64% of the 3571 total rotamers in the calculation were eliminated with 

Vegas_MC and Vegas_SCMF, respectively. Interestingly, a threshold of 5 kcal/mol for 

Vegas_MC produced the same amino acid sequence as the one in the GMEC; however, the 

conformations of some of the amino acids were different. We could not be as aggressive 

with Vegas_Bound; a minimum of 20 kcal/mol was required to obtain the GMEC. At this 

threshold, 41% of the rotamers were eliminated.  

 Although Vegas_MC and Vegas_SCMF allowed the use of more aggressive 

threshold values while retaining the GMEC, comparison of total calculation times shows 

Vegas_Bound to be more efficient (Figure 3-2). At a relatively conservative threshold 

value of 40 kcal/mol, Vegas_Bound obtained the GMEC almost four times faster than the 

reference calculation. At 20 kcal/mol, it produced the GMEC in only 8 processor hours—a 

12-fold improvement over the reference calculation.  In comparison, Vegas_MC was only 
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able to achieve a two-fold overall speed enhancement. Vegas_SCMF, on the other hand, 

actually caused the calculation to run two times slower than the reference calculation. 

 

Discussion 

 Vegas is an efficient protein design tool that can reduce computational complexity 

without sacrificing the ability to obtain ground-state solutions. Its computational efficiency 

becomes more pronounced with increasing problem size. Vegas produced a 12-fold 

reduction in the time required to solve the boundary design of ENH, decreasing the total 

processing time from 92 to 8 hours. This increase in computational speed resulted from 

elimination of about 41% of the rotamers, without losing rotamers in the GMEC. The high 

efficiency of Vegas_Bound for this design compared to Vegas_MC and Vegas_SCMF 

(Figure 3-2) can be attributed to a dramatic difference in time for scoring the rotamers. The 

rotamer scoring times for Vegas_MC and Vegas_SCMF were 45 and 198 processor hours, 

respectively, while Vegas_Bound scored rotamers in less than one minute on a single 

processor.  

 The accuracy and increased efficiency provided by Vegas can extend the 

capabilities of protein design. For example, Vegas allows the use of larger rotamer 

libraries, which may provide lower energy solutions to design problems. Larger rotamer 

libraries have been shown to improve accuracy in side-chain placement calculations.23 The 

use of Vegas can also allow more difficult designs to be performed and can facilitate the 

design of many features including functionally important properties.  

 A recent side-chain placement algorithm called FASTER27 has shown promise 

when adapted to protein design (data not shown). Elements of FASTER could be 
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implemented as an additional rotamer-scoring method within Vegas. Vegas_FASTER, as 

well as Vegas with other optimization algorithms, is a viable option in the future. We used 

Vegas here as a preprocessor to HERO; however, Vegas is a general preprocessing method 

and can be combined with any relevant optimization algorithm.  
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Methods 

Computational methods 

 A description of force field potential functions and their parameters can be found in 

previous work.5,7,28-30 We used an expanded version of the backbone-dependent rotamer 

library described by Dunbrack and Karplus.3 An automated algorithm was employed that 

classified residue positions as core, boundary, or surface.5  For core positions, we allowed 

the selection of the amino acids A, V, L, I, F, Y, and W. For surface positions, we allowed 

A, S, T, D, N, H, E, Q, K, and R, and for boundary positions, we allowed all amino acids 

except G, P, C, and M.  HERO and the bounding expression were implemented as 

described by Gordon et al.,15 and MC and SCMF were implemented as described 

previously.24  For MC, we used 5 annealing cycles of 106 steps per cycle. Low and high 

annealing temperatures were 150 K and 4000 K, respectively. For SCMF, we used initial 

and final temperatures of 20,000 K and 300 K, respectively, with the temperature lowered 

in 100 K increments. A convergence criterion of 0.001 and a pair-energy threshold of 100 

kcal/mol were used. 

 

Test case designs 

 In test case 1, we designed the core, boundary, and surface regions of Gβ1 (PDB 

code 1pga).25 Core positions were 3, 5, 7, 9, 20, 26, 30, 34, 39, 41, 52, and 54. Boundary 

positions were 1, 12, 16, 18, 23, 25, 27, 29, 31, 33, 37, 43, 45, 50, and 56. Surface 

positions were 2, 4, 6, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 24, 28, 32, 35, 36, 38, 40, 42, 

44, 46, 47, 48, 49, 51, 53, and 55. Design of a region involved allowing all allowable 

amino acids for that region, while keeping the other two regions fixed in both identity and 
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conformation. Test case 2 was the boundary design of ENH (PDB code 1enh;26 positions 

1, 3, 10, 14, 19, 21, 25, 30, 47, and 51). Core and surface positions were kept fixed in 

identity but their conformations were allowed to change. All calculations were performed 

on an IBM SP3 running 375-MHz Power3 processors. 
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Table 3-1: Number of rotamers eliminated with varying threshold values for core, 
boundary, and surface designs of the β1 domain of protein G: Comparison using 
Vegas_MC, Vegas_SCMF, and Vegas_Bound. 

 
 Core (413)a Boundary (2663) a Surface (4971) a

Threshold 
(kcal/mol) 

Vegas_ 
MC 

Vegas_ 
SCMF 

Vegas_ 
Bound 

Vegas_ 
MC 

Vegas_ 
SCMF 

Vegas_ 
Bound 

Vegas_ 
MC 

Vegas_ 
SCMF 

Vegas_ 
Bound 

    5 373 373 362 2254 2319 2357 4540b 3795b 3355b

  10 332 337 323 1371 1495 1516 2995b 1901 1536 
  20 262 269 225 336 360 371 700 536 496 
  40 183 186 173 130 129 128 278 272 269 
  80 141 143 137 96 96 96 225 222 219 
160 120 20 117 84 0 87 165 10 163 

 
a Initial number of rotamers. 
b Calculation failed to produce GMEC.  
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Figure 3-1: Elimination of rotamers with Vegas. 
Number of rotamers eliminated with varying threshold values for the boundary design of 
engrailed homeodomain. The reference calculation (i.e., with HERO alone) contained 
3571 rotamers. Threshold values that failed to produce the GMEC are shown with open 
symbols.  
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Figure 3-2: Total calculation times with Vegas. 
Total calculation times for the boundary design of engrailed homeodomain. The reference 
calculation (i.e., with HERO alone) took 92 processor hours. Threshold values that failed 
to produce the GMEC are shown with open symbols. 
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Chapter 4  
 

 

Thermodynamic and Structural Characterization of Full Sequence 
Designs 

 
 
 
 

 
The text of this chapter has been adapted from a manuscript that was co-authored with 
Professor Stephen L. Mayo as well as Geoffrey K. Hom and Scott A. Ross. 

 

Premal S. Shah, Geoffrey K. Hom, Scott A. Ross, and Stephen L. Mayo, Submitted 
(2005). 
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Abstract 

Sequence optimization algorithms based on the dead-end elimination (DEE) 

theorem are preferred in computational protein design because if they converge, their 

solutions are guaranteed to be the ground-state solutions. However, the increasing size 

and complexities of designs can cause DEE-based algorithms to stall, failing to deliver a 

solution. We have used three alternate sequence optimization algorithms in concert with 

the ORBIT protein design software to simultaneously optimize every position of a 51 

amino acid fragment of the Drosophila engrailed homeodomain. Two of the sequences 

obtained from the calculations were studied in detail. The optimized sequences share no 

statistical similarity to any known sequence and differ from the wild-type sequence by 

approximately 80%. Based on physical studies of the optimized variants, we conclude 

that the proteins are nearly identical to each other, displaying hallmarks of well-folded, 

all α-helical proteins. The thermodynamic stabilities of the designed variants were 

enhanced by approximately 2 kcal/mol over the wild-type protein at 25 °C. In addition, 

the designed variants have melting temperatures in excess of 100 °C compared to 43 °C 

for the wild type protein. We solved the solution structure of one of the designed variants 

and found that the protein folds accurately into the desired target fold. Knowledge that 

non-DEE-based sequence optimization algorithms can be used for large, challenging 

problems leading to variants with markedly improved stability and high specificity for the 

target fold allows for more ambitious protein design problems to be undertaken.  
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Introduction  

 Computational protein design seeks to find amino acid sequences compatible with 

a target fold. In general, the global minimum energy conformation (GMEC) is desired, 

since this sequence and conformation confers optimal stability for the fold, provided the 

physical forces governing protein structure and stability are accurately modeled. 

Obtaining the GMEC while simultaneously optimizing every position in a protein is a 

challenging combinatorial problem; for a relatively small 50-residue protein, the GMEC 

must be identified from 1065 possible amino acid sequences. When different conformers 

of amino acids (rotamers) are included, the complexity grows substantially, requiring the 

consideration of over 10100 rotamer sequences. 

 Many difficult designs1-5 have been performed using algorithms based on the 

dead-end elimination6 (DEE) theorem. DEE-based algorithms are ideal because if they 

converge, their solutions are guaranteed to be the GMEC. However, increasingly 

challenging design problems can prevent even the most effective DEE-based 

algorithms7-10 from converging in any practical amount of time. Furthermore, in some 

cases, these algorithms stall and fail to converge entirely. As an alternative, non-DEE-

based algorithms may be employed to obtain sequences compatible with a target fold. 

However, these algorithms also have their limitations: they do not necessarily provide the 

GMEC, and their performance has been shown to decay as the size of the design 

increases.11 

 Our goal was to determine whether the use of non-DEE-based algorithms on 

large, complex designs can provide solutions that are stable and assume the target fold. 

We undertook the full sequence design of a 51-amino acid fragment of the Drosophila 
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engrailed homeodomain (ENH). Non-DEE-based algorithms were required because 

DEE-based algorithms failed to converge. We used three algorithms: Monte Carlo12,13 

(MC), Vegas,14 and FASTER.15 MC is a commonly used stochastic search algorithm, 

Vegas is a rotamer pruning algorithm recently developed in our laboratory that is 

efficient for large designs, and FASTER is a fast and accurate side-chain placement 

method, which we adapted for protein design applications. The protein variants predicted 

with these algorithms were expressed, purified, and characterized thermodynamically. 

Furthermore, the solution structure of one of the variants was solved in order to assess 

whether the designed proteins adopt the desired target fold. This work adds to the small 

number of full sequence designs performed to date for which thermodynamic and 

structural studies have been perfomed.16,17  

 

Results 

Computational sequence optimization 

 We divided ENH18 into core, boundary, and surface regions with an automated 

residue classification algorithm19 and modeled the physical forces within each region 

with a potential energy function that includes van der Waals, electrostatic, solvation, and 

hydrogen bonding terms.19-22 Only nonpolar amino acids were allowed in the core, while 

on the surface, only polar amino acids were considered. A fixed binary pattern was used 

that assigned boundary positions to either the core or the surface based on exposed 

surface area;3 this fixed binary pattern has been shown to confer added stability to the 

ENH fold.3 The amino acid identities of positions involved in helix capping and helix 

dipoles were further restricted as described previously.4 To account for the torsional 
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flexibility of amino acids, a backbone-dependent rotamer library,23 based on that of 

Dunbrack and Karplus,24 was employed. The total initial search space for this calculation 

was 10111 rotamer sequences.  

 Our laboratory has successfully used DEE-based sequence optimization 

algorithms7-10,16 to generate sequences for many design problems.1,2,16 In this study, we 

initially attempted optimization with HERO,10 an extension of DEE that performs more 

efficiently on large calculations. However, HERO stalled and failed to provide an answer. 

As a result, three non-DEE-based sequence optimization algorithms, MC, Vegas, and 

FASTER, were used to predict sequences compatible with the target ENH fold. The best 

rotamer sequences generated by Vegas and FASTER are identical and have simulation 

energies of -225.0 kcal/mol. This sequence (FSM1_VF) is a 39-fold mutant of the 

wild-type sequence (Figure 4-1). The best MC solution (FSM1_MC) has a slightly higher 

simulation energy (-223.4 kcal/mol) and is a 40-fold mutant of wild-type ENH and an 11-

fold mutant of FSM1_VF. A BLAST25 search indicated that the two optimized variants 

have no statistically significant similarity to any known sequence. 

 

Physical characterization of ENH variants 

 Far ultraviolet (UV) circular dichroism (CD) spectroscopy of FSM1_VF and 

FSM1_MC revealed spectra characteristic of α-helical proteins (Figure 4-2). The spectra 

for the two variants are almost superimposable and are characteristic of α-helical proteins 

with minima at 208 and 222 nm. The spectra are also very similar to those for wild-type 

ENH as well as other well-folded ENH variants produced in our laboratory.3,4,26 1D 1H 

nuclear magnetic resonance (NMR) spectroscopy performed on both proteins produced 
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spectra displaying the sharp, moderately-dispersed lines expected of a well-folded protein 

(Figure 4-3).  

 Thermal denaturations monitored by CD at 222 nm revealed that both proteins do 

not complete their unfolding transitions by 99 °C, indicating that they are still folded at 

this temperature (data not shown). In comparison, the wild type has a Tm of 43 °C (Table 

4-1).26 Chemical denaturations using guanidinium hydrochloride were performed to 

determine unfolding free energies (∆Gunfold). The variants were over 2 kcal/mol more 

stable than the wild-type protein under similar conditions (Table 4-1).27 This is a 

remarkable result considering that approximately 80% of the wild-type sequence was 

mutated to obtain our designed sequences.  

 ANS (1-anilino-napthalene-8-sulfonate) binding was used to further validate the 

structural integrity of the ENH variants. ANS selectively binds molten globule states of 

proteins.28 Molten globules exhibit pronounced secondary structure and compactness but 

lack packed tertiary structure. Hen egg white lysozyme (HEWL) in 25% HFA 

(hexafluoroacetone hydrate) was used as a positive control; under this condition, HEWL 

binds ANS and exhibits molten globule characteristics.29 Although the ENH variants 

showed some evidence of ANS binding, it was almost eight-fold lower than HEWL (data 

not shown). This slight ANS binding is most likely due to exposed hydrophobic patches 

rather than the result of binding to a molten globule state (see below).28 Overall, the 

spectral and thermodynamic data indicate that the designed variants are very stable and 

are physically and structurally similar. 
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Solution structure of FSM1_VF 

The solution structure of FSM1_VF was solved by NMR. Evidently due to the 

helical structure and relatively low sequence diversity of FSM1_VF (Figure 4-1), its 

NMR spectra display considerable chemical shift degeneracy.  Thus, it was necessary to 

use both HNCACB/CBCA(CO)NH and HNCO/HN(CA)CO experiment pairs on 

uniformly 15N, 13C-labeled protein to sequentially assign backbone atom chemical shifts.  

Other standard double and triple resonance NMR experiments were then sufficient to 

achieve nearly complete assignment of side-chain atom chemical shifts.  Over 1300 loose 

geometric constraints (interproton distances from NOEs, dihedral angles, and hydrogen 

bonds) on the structure were derived from NMR data (Table 4-2).  The program ARIA30 

was used both to assign many of these constraints and to calculate an ensemble of 

structures consistent with them (Figure 4-4). The ensemble is of a precision typical for 

homeodomain NMR structures,31 with 0.59 Å root mean square (r.m.s.) deviation to the 

mean for backbone heavy atoms of residues 3-45; the ensemble is also of good 

stereochemical quality, with 96.6% of residues in most-favored or allowed regions of φ,ψ 

space. 

The calculated ensemble shows that FSM1_VF adopts the anticipated ENH fold.  

Helices 1 and 2 are well-defined, as is the tight turn between helices 2 and 3 and the first 

two turns of helix 3.  The termini are poorly localized, as well as residues 18-20 in the 

loop between helices 1 and 2.  Paucity of data makes the origin of this imprecision 

uncertain for the loop residues. However, intermediate 3JHNHA coupling constant values 

for residues 1-5, 46, and 48-51 suggest that the termini are disordered.  Disorder in the 

backbone in these portions of the sequence is accompanied by side-chain disorder as 
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indicated by low χ1 and χ2 angular order parameters for nominal core residues W3, F43, 

F44, and F47. 

We compared the FSM1_VF solution structure to the ENH crystal structure.  The 

experimental structure closest to the mean of the ensemble in Figure 4-4 has a backbone 

r.m.s. deviation of 2.5 Å from the crystal structure for Cα atoms of residues 3-45 (Figure 

4-5).  The largest differences from the crystal structure were found at the termini and in 

the orientation of helix 3 with respect to helices 1 and 2.  Indeed, solution structures of 

homoedomains uncomplexed to DNA frequently show disorder in both the N terminus 

and the C-terminal portion of helix 3.31  In addition, the starting structure is a truncated 

version of the crystal structure due to lack of electron density at the C terminus. The 

crystal structure of ENH is thus quite possibly a nonphysical template for these regions of 

the molecule in solution.  Furthermore, the different orientation of helix 3 could easily be 

an effect propagated from the disordered C terminus, and the disordered aromatic side 

chains in the termini could account for the modest ANS binding observed.  For the 

remainder of the structure, FSM1_VF matches the template closely. 

 

Discussion 

Use of non-DEE-based algorithms 

 Non-DEE-based algorithms have been used to produce stable proteins;17,32-35 

however, most of these designs were restricted to the core and were less complex than the 

design performed here. A quantitative comparison showed that the performance of non-

DEE-based algorithms decreases as the complexity of the problem increases.11 
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Performance was defined as the fraction of rotamers predicted incorrectly compared to 

the GMEC. The goal of the present study was to determine the effectiveness of non DEE-

based algorithms on complex problems such as full sequence designs; that is, the ability 

to yield stable proteins that retain high structural specificity for the target fold.  Baker and 

colleagues recently performed full sequence designs using MC with reasonable success;17 

however, the structures of the proteins have not yet been solved. In this study, we clearly 

demonstrate that three alternatives to DEE-based algorithms (MC, Vegas, and FASTER) 

can be used on complex problems to predict sequences with protein stabilities much 

higher than wild type. In addition, we verified that the designed variants have the same 

topology as the target fold, as shown by the solution structure of FSM1_VF. 

 These results suggest that many highly stable proteins can be obtained for 

complex design problems without identifying the GMEC.  In fact, an MC search 

performed around the FSM1_VF sequence showed that there are at least 900 unique 

amino acid sequences with simulation energies between FSM1_VF (-225.0 kcal/mol) and 

our other stable variant, FSM1_MC (-223.4 kcal /mol). It is certainly plausible that all of 

these sequences would yield proteins that are equally stable and target fold-specific. 

Taken further, there are likely many sequences with simulation energies higher than that 

of FSM1_MC that would also adopt the target fold and possess stabilities higher than 

wild type. 

 The knowledge that very large, previously intractable designs can be successfully 

performed with non-DEE-based algorithms allows protein designers to tackle more 

ambitious problems. Catalytic activity can be designed onto larger scaffolds, improved 

stabilities can be obtained for larger proteins, and complex protein-protein interactions 



 61

can be studied. Larger rotamer libraries can also be used to enhance the accuracy of the 

solutions generated. 

Methods 

Computational modeling   

Description of potential functions and parameters can be found in our previous 

work.19-22,36,37 For ENH, we identified 11 core positions (7, 11, 15, 29, 33, 34, 35, 39, 40, 

43, and 44), 11 boundary positions (1, 3, 10, 14, 19, 21, 25, 26, 30, 47, and 51), and 29 

surface positions (2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 23, 24, 27, 28, 31, 32, 36, 37, 

38, 41, 42, 45, 46, 48, 49, and 50). The fixed binary pattern of the B6 design in the 

Marshall and Mayo study3 was applied to boundary residues. Residues 4, 22, and 36 were 

treated as helix N-capping positions; residues 5, 6, 23, 24, 37, and 38 as helix N-terminal 

dipole positions, and residues 16, 17, 31, 32, 49, and 50 as helix C-terminal dipole 

positions. The rules that govern these positions are described in previous work.4 

 

Construction of mutants, protein expression, and purification 

Genes encoding the ENH variants were made using recursive PCR techniques38 

and cloned into a modified pET11a (Novagen) vector. Recombinant protein was 

expressed by IPTG induction in BL21(DE3) hosts (Stratagene) and isolated using a 

freeze/thaw method.39 Purification was accomplished using a linear acetonitrile/water 

gradient containing 0.1% TFA. Molecular weights were verified by mass spectrometry. 

The resultant protein was a 52-mer, with a methionine at the N terminus. 

 



 62

CD analysis  

CD data were collected on an Aviv 62DS spectrometer equipped with a 

thermoelectric unit and an autotitrator. Wavelength scans and thermal denaturation 

experiments were performed in a 1 mm path length cell with 50 µM protein in 50 mM 

sodium phosphate at pH 5.5. Thermal melts were monitored at 222 nm. Data were 

collected every 1 °C with an equilibration time of 2 min and an averaging time of 30 sec. 

Guanidinium chloride denaturations were done in a 1 cm path length cell with 5 µM 

protein in 50 mM sodium phosphate at pH 5.5 and 25 °C. To keep the protein 

concentration constant, a saturated solution of guanidinium chloride was prepared with 

buffer that also included 5 µM protein. A 10 min mixing time and 100 sec averaging time 

were used. Data were fit and ∆Gunfold values were obtained using the linear extrapolation 

method.40 

 

NMR spectroscopy  

NMR experiments were performed at 20 °C on a Varian INOVA 600 

spectrometer.  Data was processed using nmrPipe41 and analyzed using NMRview.42  

Backbone chemical shift assignments were obtained from 3D HNCACB, CBCA(CO)NH, 

HNCO, HN(CA)CO and HNHA spectra.  2D DQF-COSY and 3D C(CO)NH-TOCSY, 

15N-TOCSY-HSQC and HCCH-TOCSY spectra were used to assign aliphatic side-chain 

atom chemical shifts.  Aromatic resonances were assigned from 2D DQF-COSY and 

TOCSY spectra and from 2D 13C-CT-HSQC and (HB)CB(CGCD)HD and 

(HB)CB(CGCDCE)HE spectra.  Exchange of backbone amide hydrogen atoms was 
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monitored by 15N-HSQC spectra following suspension of protiated 15N-labeled protein in 

deuterated buffer.   

 

Structure determination  

Distance restraints were derived from two 3D 13C-NOESY-HSQC spectra 

(aliphatic and aromatic), a 3D 15N-NOESY-HSQC spectrum and a 2D 1H NOESY 

spectrum.  All NOESY spectra were acquired with a 75 ms mixing time.  3JHNHA coupling 

constants were extracted from the HNHA spectrum.  These were used, in combination 

with TALOS43 analysis of chemical shifts, in the selection of dihedral angle restraints.  

Where TALOS and coupling constant analyses were consistent, both φ and ψ restraints 

were included.  Where TALOS failed to make a prediction, a φ restraint was included if 

warranted by the coupling constant.  Error bounds on dihedral restraints were set to ± 

30°. 

 A set of 586 manually assigned NOE-derived distance restraints and 57 dihedral 

angle restraints were used as initial input for ARIA1.2.30  ARIA identified 659 additional 

NOESY cross peaks, for a total of 953 unambiguous and 292 ambiguous distance 

restraints.  At this stage, separate ARIA calculations were carried out fixing the methyl 

group stereochemistry of each V or L residue in the sequence in turn to obtain 

stereospecific assignments.  In each case, one choice of assignments yielded an ensemble 

of structures with lower energies, lower χ1 (and χ2 for L residues) circular order 

parameters, and fewer NOE restraint violations than the alternate choice.  Finally, the 

ensemble was examined for likely hydrogen bonds.  Hydrogen bonds were judged to be 

present, and restraints included, if the amide proton had a hydrogen exchange protection 
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factor ≥ 1000 and if the residue was in a helix.  Nineteen residues were thus restrained 

(1.3 Å < dNH-O < 2.5 Å and 2.3 Å < dN-O < 3.5 Å).  Of 100 structures generated in a final 

ARIA calculation using all of these restraints, 43 had no NOE restraint violations > 0.5 Å 

and no dihedral angle restraint violations > 5°.  This subset was analyzed with 

MOLMOL44 and PROCHECK.45 
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Table 4-1: Thermodynamic data of variants and wild type. 

Thermodynamic dataa

 Wild type FSM1_VF FSM1_MC 

∆Gunfold (kcal/mol) 1.9b 4.2 4.2 
Tm (°C) 43c >99 >99 
m valued (kcal/mol M) 0.8b 1.3 1.2 
Cm (M)e 1.5b 3.2 3.5 
 

a All data were collected with protein in 50 mM phosphate, pH 5.5 unless noted. ∆Gunfold was calculated
from experiments performed at 25 °C using guanidinium hydrochloride denaturation.  
b Mayor et al.27 (done at pH 5.8 at 25 °C using urea denaturation).  
c Morgan26 (done in 5 mM phosphate buffer, pH 4.5).  
d Slope of ∆Gunfold versus denaturant concentration.  
e Midpoint of unfolding transition. 
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Table 4-2: NMR structure statistics. 

 
NMR structure statisticsa

Summary of restraints   
NOE distance restraints  1245 

Unambiguous  953 
Ambiguous  292 

Hydrogen bondsb  19 
Dihedral angle (φ,ψ) restraintsc  57 

R.m.s. deviation from restraints   
NOE restraints (Å)  0.024 ± 0.004 
Dihedral restraints (°)  0.26 ± 0.12 

R.m.s. deviation from idealized geometry   
Bonds (Å)  0.0037 ± 0.0002 
Angles (°)  0.53 ± 0.03 
Improper (°)  1.57 ± 0.14 

Ensemble atomic r.m.s. deviations from mean structured (Å)   
Backbone  0.59 
All heavy  1.29 

Ensemble Ramachandran statisticse   
Residues in most-favored region (%)  83.2 
Additionally allowed region (%)  13.4 
Generously allowed region (%)  2.3 
Disallowed region (%)  1.1 

 

a Statistics calculated for the ensemble of 43 structures (out of 100 calculated in ARIA30) which had no NOE 
restraint violations >0.5 Å and no dihedral restraint violations >5°.  

b Each hydrogen bond yields two experimental restraints.  
c Dihedral angle restraints were derived from HNHA analysis and chemical shift analysis with TALOS43. ψ 

restraints based on TALOS results were included if the HNHA and TALOS results were in agreement for the 
corresponding φ and if the residue was found to be in a helical conformation in structures calculated in the 
absence of angle restraints.  

d Ensemble precision was calculated for residues 3-45.  
e Ramachandran analysis was performed with Procheck.45 
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                 Simulation  
                                                                   energy 
             ----|----1----|----2----|----3----|----4----|----5- (kcal mol-1)  
Wild type:   TAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI   -117.7 
FSM1_VF      KQW|ENVEEK||EFVKRHQRI|QEELH|YAQR|||||EA|RQF|EEFEQRK   -225.0 
FSM1_MC      KQW|E|VERK||EFVRRHQEI|QETLHEYAQK||||QQA|EQF|REFEQRK   -223.4 

 
 
Figure 4-1: Comparison of designed sequences with wild type. 
Sequence alignment and simulation energies of the wild-type sequence and the designed 
variants of ENH, FSM1_VF, and FSM1_MC. Positions that have the same identity as the 
wild type are indicated with a bar. FSM1_MC has 40 mutations and FSM1_VF has 39 
mutations, differing from the wild-type sequence by 79% and 77%, respectively. 
FSM1_MC and FSM1_VF have all but 11 residues in common.  
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Figure 4-2: Far UV wavelength spectra of designed variants. 
Circular dichroism wavelength scans of FSM1_VF and FSM1_MC. Spectra were 
obtained at 25 °C in 50 mM phosphate buffer at pH 5.5. 
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Figure 4-3: 1D 1H NMR spectra of designed variants. 
1D, 1H nuclear magnetic resonance (NMR) spectra of FSM1_VF  and FSM1_MC. For 
clarity, only the amide region is shown. The sharp, dispersed lines are characteristic of 
well-folded proteins. 



 73

 

 
 
 

Figure 4-4: FSM1_VF ensemble. 
Stereoview of the FSM1_VF structure ensemble. Best-fit superposition of 43 simulated 
annealing structures, showing the backbone. The N terminus is located at the top of the 
image.
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Figure 4-5: Superposition of FSM1_VF with crystal structure. 
Stereoview of the backbones of FSM1_VF (green) and the crystal structure of ENH 
(purple). The r.m.s. deviation of Cα atoms of residues 3-45 is 2.5 Å 
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Chapter 5  

 

Computational Design of a Water Soluble Variant of Bacteriorhodopsin 
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Abstract 

 The membrane protein bacteriorhodopsin acts as a protein pump in 

Halobacterium; isomerization of a covalently attached cofactor, retinal, drives the pump. 

Computational protein design techniques were used to design a water soluble variant of 

bacteriorhodopsin. Using exposed nonpolar surface area as a metric, we designed the 

surface of bacteriorhodopsin to resemble water soluble proteins; a database survey of 

water soluble proteins structures and membrane protein structures provided distributions 

centered at approximately 63% and 93%, respectively. The designed variant, which is a 

58-fold mutant of the wild type, was expressed with high yields into inclusion bodies in 

E. coli, purified using a Ni2+ affinity column, and re-folded using rapid dilution. The 

protein is highly soluble and stable at concentrations up to 2.5 mg/ml in aqueous buffer, 

but was unable to incorporate retinal. As a result, the designed protein exists in 

equilibrium between monomer, dimer, and mostly high order aggregated states. 

Biophysical characterization showed that although the variant displays properties of 

helical proteins as measured by circular dichroism spectroscopy, it is most likely a molten 

globule—likely due to its inability to incorporate retinal.  
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Introduction 

The number of protein structures available from the protein data bank (PDB)1 has 

grown considerably over the past decade; almost 24,000 structures were available at the 

end of 2003 compared to approximately 1,700 structures at the end of 1993. However, 

due to the difficulty associated with determining structures of membrane proteins, only 

83 have been deposited in the PDB as of this writing. The slow growth in the availability 

of high resolution x-ray structures of membrane proteins is primarily due to the 

difficulties typically encountered when working with them. These include low levels of 

protein expression, low stability in detergents, and the inability to generate high-quality 

crystals that diffract well. Obtaining water soluble variants of membrane proteins might 

alleviate some of these difficulties. In addition, water soluble variants that do not 

compromise structural integrity can provide insights into the different forces contributing 

to protein stabilization in membranes.  

An important class of membrane proteins is the G-protein coupled receptors 

(GPCRs). Although sharing a conserved structure comprised of seven trans-membrane 

helices, the natural ligands for these receptors are extremely diverse. Ligand binding 

leads to conformational changes in GPCRs. These changes serve as a switch, transferring 

the signal to the trimeric guanine nucleotide binding regulatory proteins (G proteins), 

thus inhibiting or stimulating the production of intracellular secondary messengers such 

as cyclic adenosine monophosphate (cAMP) and Ca2+ ions. 

From a drug discovery standpoint, GPCRs are prominent; 50% of all drugs 

launched in 2001 targeted GPCRs, producing worldwide sales exceeding $30 billion.2 

Design of novel drugs targeting GPCRs can be aided by obtaining water soluble variants 
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that maintain structural identity with the wild type; water soluble variants will afford 

researchers the opportunity to obtain more accurate binding constants in non-detergent 

environments, thus leading to better binding drugs.  

A computational design approach3-6 to generating water soluble membrane 

protein variants requires a high-resolution crystal structure as a starting point. To date, 

only one mammalian GPCR three-dimensional structure has been solved—bovine 

rhodopsin.7 The paucity of GPCR structures and the low resolution of the single 

mammalian structure led us to use the structure of bacteriorhodopsin (BR) as a paradigm 

to probe our ability to convert GPCRs to water soluble proteins. BR is a light-driven 

proton pump from Halobacteria that possesses an all-trans-retinal whose isomerization 

drives the proton pump. Comparison of BR with bovine rhodopsin shows that their 

overall topologies are similar (Figure 5-1).8 Superpositions using structural alignments 

alone reveal that the structures have a Cα root mean square deviation (RMSD) of only 

2.13Å.8 BR has been intensely investigated and the numerous structural studies have 

provided us with a high resolution structure (1.55Å, PDB code: 1c3w9).  

An early hypothesis suggested that membrane proteins are “inside-out proteins” 

stabilized predominantly by polar interactions. This idea has been proven false. Structure 

analysis of known membrane proteins has revealed that their general structural features 

compare remarkably well with those of water soluble proteins.10-12 The average 

hydrophobicity of the core is the same for both types of proteins, and the same 

interactions contribute to protein stability.  However, the surfaces differ; membrane 

protein surfaces are predominantly nonpolar in composition, while water soluble protein 

surfaces are more polar. The common forces observed in both types of proteins have led 
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many researchers to suggest that water soluble variants of membrane proteins can be 

created by converting their surfaces to resemble those of water soluble proteins. 

Computational protein design identifies optimal amino acid sequences that are 

compatible with a protein backbone. Our goal was to start with the high-resolution 

bacteriorhodopsin structure, redesign a more polar surface applying our previously 

determined rules for protein surface designs,13,14 and experimentally validate the resulting 

variants by testing for solubility in water.  

 

Results 

Water soluble versus membrane protein surfaces 

 Effectively converting membrane protein surfaces to resemble those of water 

soluble proteins requires an understanding of how the surfaces differ. We calculated the 

nonpolar content of the surfaces of 16 membrane proteins and compared them with the 

nonpolar content of the surfaces of 49 water soluble proteins (Figure 5-2). For water 

soluble proteins, we observed a distribution centered at 64%. In contrast, membrane 

protein surfaces have a higher nonpolar content, with a distribution centered at 93%.  

BR exists as a lipid-mediated trimer in the membranes of Halobacteria. Due to the 

nonpolar nature of lipid-mediated contacts, we were concerned that once the nonpolar 

surface of BR was converted to a more polar one, the trimer would not assemble. 

Therefore, we worked with only a monomer unit of BR; BR exists as a stable monomer 

in detergents. Wild-type BR (PDB code: 1c3w) has a nonpolar surface area of 93%. This 

surface area analysis served as a metric for our BR surface design; we used 
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computational design to convert BR so that its nonpolar surface area would fall within the 

water soluble protein regime.  

 

Computational design of bacteriorhodopsin 

 We used an automated algorithm that divides a protein structure into core, 

boundary, and surface residues based on the residue’s Cβ distance from a 

solvent-accessible surface.15,16 For the BR design, residues classified as core or boundary 

were kept fixed in both identity and conformation. The retinal cofactor is attached via a 

Schiff base mechanism to Lys 216 and was classified as a core residue. All nonpolar 

residues on the surface were designed using previously established rules.13,14 Surface 

residues that were already polar were allowed to change in conformation but their 

identities were kept fixed. The four Gly residues on the surface were designed with the 

rules applied to nonpolar residues because their backbone phi/psi angles are in helical 

space. The ground-state sequence was identified from approximately 10160 possible 

sequences using an algorithm3,17 based on the dead-end-elimination (DEE) theorem.18 

The predicted sequence (Figure 5-3), a 58-fold mutant of the wild type, has a nonpolar 

surface area of 63%—in the regime of our surveyed water soluble proteins.  

 

Expression and purification of designed bacteriorhodopsin 

 The gene (Blue Heron Biotechnology) encoding the designed BR variant 

(WS-BR) was expressed in E. coli with a six-residue N-terminal His tag. Expression was 

carried out under various conditions to try to incorporate the retinal cofactor at this step 

(see Table 1). All trans retinal (Sigma) was added in various concentrations and 
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expression was carried out at temperatures ranging from 20 ºC to 42 ºC. We did not 

observe the incorporation of retinal as monitored by colorometric analysis and mass 

spectroscopy under any of the conditions tested. Purification was performed under 

denaturing conditions on a Ni2+ affinity column (Figure 5-4). Dialysis of the sample to 

remove denaturant resulted in a large amount of precipitate. As a result, the eluent was 

rapidly diluted 200-fold to reduce the denaturant concentration and then subjected to ultra 

concentration to reduce the volume. We found that rapid dilution with high 

concentrations of NaCl (1.5 M compared to 0.1 M) resulted in far less precipitation of 

WS-BR upon concentration. A 1.5 M NaCl concentration was therefore maintained in all 

subsequent protein analysis unless noted. The protein was stable at concentrations up to 

2.5 mg/ml in aqueous buffer for up to a week. Electrospray mass spectrometry confirmed 

that the sample was the apo form of BR.  

 

Attempts to incorporate retinal 

 The membranes of Halobacteria are referred to as “purple membranes” due to the 

deep purple color resulting from the retinal chromophore in BR. This purple color serves 

as a convenient spectroscopic assay to query for retinal incorporation. In addition, since 

the association of retinal to BR is covalent in nature (via a Schiff base mechanism), mass 

spectroscopy can be used to confirm the presence of retinal. Attempts to incorporate all-

trans retinal were unsuccessful. Table 5-1 details the experiments performed at each step 

of the expression, purification, and refolding process. 
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Physical analysis of WS-BR 

 Far ultra-violet circular dichroism (CD) spectroscopy of WS-BR at 25 ºC (Figure 

5) suggests a molecule that contains elements of secondary structure; unfolded proteins or 

random structure display a single minimum at 205 nm. The spectra of α-helical proteins 

display minima at 208 and 222 nm. WS-BR exhibits a broad minimum in the 208-220 nm 

range. Therefore, although WS-BR does not exhibit the hallmarks of unfolded proteins, it 

also does not resemble a typical α-helical protein.  

 Analytical gel filtration chromatography shows that the WS-BR sample was not 

mono-dispersed. We found a distribution of oligomeric states (Figure 5-6) with the 

majority of the sample existing as high-order oligomers and only small amounts 

appearing as monomers or dimers. Analytical ultracentrifugation results (data not shown) 

also suggest a distribution of states. 

 ANS (1-anilino-napthalene-8-sulfonate) binding was used to further validate the 

structural integrity of WS-BR. ANS selectively binds molten globule states of proteins. 

Molten globules exhibit pronounced secondary structure and compactness but lack 

packed tertiary structure. Hen egg-white lysozyme (HEWL) in 25% HFA 

(hexafluroacetone hydrate) was used as a positive control; under this condition, HEWL 

binds ANS and exhibits molten globule characteristics. WS-BR binds ANS in a 

concentration dependent manner (Figure 5-7). This result suggests that WS-BR is most 

likely a water soluble molten globule. 

 Temperature denaturation of WS-BR also confirmed that the protein is most 

likely a non-monodispersed molten globule (Figure 5-8). Under low (0.1 M) NaCl 

conditions (Figure 8A), WS-BR unfolds slowly and large amounts of precipitate are 
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observed following the experiment. At a much higher concentration of NaCl (1.5M, 

Figure 8B), WS-BR exhibits a more stable baseline and a sharper transition to the 

unfolded state; however, a precipitate is still observed following the experiment. These 

results suggest that although higher concentrations of NaCl help stabilize WS-BR, the 

salt merely helps by holding an aggregated molten globule-like species together longer.   

Discussion 

 We used BR because of its structural similarity to the only mammalian GPCR 

structure that has been solved (Figure 5-1). In hindsight, the selection of BR as our first 

design target may have been too ambitious. However, the lessons learned from working 

with BR will help us identify other suitable targets and will facilitate attempts to make 

them water soluble.  

 Computational protein design seeks to find amino acid sequences compatible with 

a target fold without regard to the folding pathway traversed to obtain it. Disregarding the 

folding pathway can be a problem, however, when designing proteins that require 

specific folding pathways in order to incorporate ligands or cofactors. The folding 

pathway of BR has been well-studied19-21 and it is hypothesized that the formation of an 

intermediate is required before retinal can be first loosely associated and then covalently 

attached (Figure 5-9). Once removed from the membrane, the folding pathway of BR is 

most likely disrupted or altered, preventing the formation of the requisite intermediate 

and therefore the incorporation of retinal.  

 The physical data obtained for WS-BR leads us to conclude that the molecule is 

an aggregate of molten globules that contains some helical character. These observations 
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are consistent with previous work. The binding of retinal provides stability to BR22 but is 

not necessary for initiating helix formation.19 Even after subjecting WS-BR to a myriad 

of conditions, we were unable to incorporate retinal into the protein. Without the 

incorporation of retinal, the computationally predicted structure of WS-BR contains a 

large void in its core that most likely leads to the observed molten globule states and 

subsequent aggregation.  

 A recent study by DeGrado and colleagues23 demonstrated their ability to design 

water soluble analogues of the KcsA potassium channel. In light of their work and our 

results for WS-BR, we have identified certain criteria that should be met in our designs 

for the immediate future. First, an ideal design target should contain no cofactors that are 

incorporated during the folding of the molecule for the reasons mentioned above. Second, 

a protein whose functional unit is a homo-oligomer might be beneficial; the interfaces of 

the subunits can provide a driving force for folding, and the number of mutations 

required on each subunit will most likely be significantly less. However, it is important 

that the molecule not undergo any changes during the formation of quaternary structure.  

 While we were unable to obtain a properly folded WS-BR with retinal 

incorporated, our molecule was soluble in high concentrations in aqueous buffer for long 

periods of time. This suggests that our strategy for converting membrane proteins into 

water soluble variants is probably sound, but the choice of BR as an initial target may not 

have been prudent.  
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Materials & Methods 

Nonpolar surface area calculations 

 We calculated the exposed nonpolar surface area of 48 water soluble proteins. 

The proteins were a subset of the Top-100 set from Richardson and colleagues (Table 

5-2).24 The exposed nonpolar surface areas were calculated using the coresurf_z program 

(J.J. Plecs, Caltech). Briefly, a 1.4 Å radius probe was rolled over the surface of the 

protein structure, generating a dot surface that was used to obtain surface areas. Nitrogen 

and oxygen atoms were considered polar while carbon atoms were considered nonpolar.  

 The surface area calculations for the membrane proteins we surveyed were 

performed in the same way as above. However, only the membrane-spanning region of 

the protein was analyzed. We therefore evaluated the most hydrophobic 30 Å stretch in 

the protein as determined by the number of carbon atoms (Figure 5-10). This follows the 

work of Spencer and Rees25 and effectively identifies the membrane spanning region of 

membrane proteins.  

 

Computational design of bacteriorhodopsin 

 The 1.55 Å structure of bacteriorhodopsin (PDB code: 1c3w)9 was used as the 

template for our designs. All lipids and water molecules were eliminated from the 

structure file. The retinal was manually attached to Lys 216. Hydrogens were added using 

MOLPROBITY.26 To relieve backbone strain and eliminate clashes, 50 steps of 

conjugate gradient minimization were performed on the molecule using SMIN from the 

ORBIT3 suite of protein design programs.  
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 Residues were classified as either core, boundary, or surface using an automated 

algorithm.15,16  Residues that were classified as core or boundary were kept fixed in 

identity and conformation. Nonpolar residues (Trp, Tyr, Ala, Phe, Val, Ile, Leu, Met) that 

were classified as surface were designed to be either Asn, Glu, Gln, His, Lys, Arg, Asp, 

or Ala. Surface residues that were already polar were fixed in identity but allowed to 

change conformation. Furthermore, surface positions that were in helix N-capping 

positions or participated in helix dipoles were allowed to be designed according to 

previously established rules.14 The four Gly residues had backbone conformations in 

helical phi/psi space and were therefore designed to be polar. A backbone-dependent 

rotamer library based on that of Dunbrack and Karplus27,28 was used.  

 

Expression and purification of WS-BR 

 The gene encoding the WS-BR amino acid sequence was purchased from Blue 

Heron Biotechnology and cloned into Novagen’s pET15b vector downstream of a 

six-residue His tag. The protein was expressed in BL21(DE3) cells (Stratagene) under the 

control of an IPTG-inducible promoter. A final IPTG concentration of 1 mM was used to 

induce protein expression. Variations in the expression protocol were explored to induce 

incorporation of retinal (see Table 1). Cells were harvested following expression and 

lysed by sonication. Inclusion bodies were separated from the soluble fraction by 

centrifugation at 30,000 x g for 30 min. SDS gels showed that >99% of the protein 

expressed into the inclusion bodies. Inclusion bodies were dissolved in 6 M guanidinium 

HCl (GuHCl) and the protein was purified under denaturing conditions on a Ni2+ affinity 

column. The loading buffer was 6 M GuHCl, 0.1 M NaH2PO4, 0.1 M Tris-Cl, pH 8.0. 
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The column was washed with 6 M GuHCl, 0.1 M NaH2PO4, 0.1 M Tris-Cl, pH 6.3, and 

pH 5.9. The protein was eluted with 6 M GuHCl, 0.1 M NaH2PO4, 0.1 M Tris-Cl, pH 4.5.  

 The sample was refolded by rapidly diluting with 50 mM phosphate buffer, pH 

7.2 so that a negligible concentration of GuHCl remained. Various concentrations of 

NaCl were included in the buffer (see Table 5-1) but no less than 0.1 M. In addition, 

many different conditions were used to try incorporating retinal (see above and Table 

5-1). The sample was concentrated using Amicon’s ultra-concentration apparatus. In 50 

mM phosphate, 1.5 M NaCl, pH 7.2, the protein was stable at room temperature in 

concentrations of at least 3 mg/ml for up to a week.  

 

Analysis of WS-BR 

 CD spectroscopy was performed on an Aviv 62DS equipped with a thermoelectric 

unit. The buffers for CD analysis varied depending on the state of the protein being 

analyzed. Temperature melts were done by incrementing the temperature in 1 ºC steps 

from 1 ºC to 99 ºC allowing the temperature to settle at each temperature for 2 min and 

using a 30 sec averaging time.  

 Analytical gel filtration chromatography was performed on Perkin Elmer’s 

Biocad 710E using the S-75 column. Results were compared to molecular weight 

standards run under identical conditions.   
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Table 5-1: Different conditions explored in efforts to obtain a mono-dispersed WS-BR 
with the incorporation of retinal.a 

 
Step Condition Result 

Expression Temperature (20-42 ºC)  Protein in inclusion bodies. 
 Addition of all-trans-retinal (5-50 µM) Protein in inclusion bodies; no 

indication of retinal incorporation 
pre/post purification. 

 Induction time (1-5 h) Increasing levels of protein until 3 h, 
but almost all in inclusion bodies. 

   
Purification Ni2+ affinity chromatography under 

denaturing conditionsb
Pure protein, soluble in 6 M Gu-HCl. 

   
Refolding Dialysis to remove denaturant (varying 

sample volume starting in 6 M Gu-HCl) 
• Addition of all-trans-retinal  (5-50 µM) 
• Addition of L-Arg (200 mM) 

Large amounts of protein precipitation 
under all conditions. 

 Rapid dilution to remove denaturant (varying 
final volume of Gu-HCl (20-100 µM)) 

• All dilutions carried out in 50 mM 
phosphate buffer 

• pH varied (5.0-9.0) 
• Presence of NaCl (100 mM, 500 mM, and 

1.5 M) 
• Addition of TFEc (10-50%) 
• Addition of all-trans-retinal under most of 

the conditions listed (5-50 µM) 
• Temperature (4 ºC or room temp) 
• Addition of L-Arg (200 mM) 

Little protein precipitation under all 
conditions but no evidence of 
incorporation of retinal. Protein 
remained stable in aqueous buffer 
at concentrations up to 2.5 mg/ml. 
A little less precipitation as NaCl 
concentration was increased. All 
conditions resulted in a non-mono-
dispersed protein solution. 

a This table is representative of variations performed at each step, but is not exhaustive. 
b According to protocol from Qiagen Inc. 
c 2,2,2-Trifluoroethanol. 
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Table 5-2: Water soluble proteins used to determine exposed nonpolar surface areas. 
  

PDB Code      Lengtha Nonpolar 
S.A. (%)b

PDB Code Lengtha Nonpolar 
S.A. (%)b

      
1aac  105 67 1ptx 64 67 
1amn  174 59 1rcf 169 55 
1aru  344 67 1rgeA 96 64 
1benAB  51 68 1rroH 108 58 
1bkf  107 64 1smd 496 64 
1cem 395 60 1ttaA 127 65 
1cnr  46 74 1whi 122 61 
1cnv 283 61 1xyzA 319 62 
1ctj  89 62 2cpl 164 64 
1cus 213 64 2end 137 67 
1fus 107 60 2erl 40 65 
1igd 61 61 2hft 211 60 
1iro  53 58 2mhr 118 68 
1jbc  237 62 2msbA 111 65 
1kap 481 63 2phy 125 59 
1knb 185 65 2rhe 114 65 
1lit 144 65 2rn2 155 63 
1lkk 133 60 3b5c 85 63 
1mla  307 66 3chy 127 63 
1mrj  247 60 3ebx 62 64 
1nif 332 65 3lzm 164 63 
1phb 404 64 3pte 347 63 
1plc 99 59 4fgf 123 62 
1ptf 87 64 7rsa 124 62 

 
a Length (number of residues) was determined from the structure file. 
b Surface area (S.A.) calculated using the coresurf_z program (J. J. Plecs, California Institute of 

Technology). 



 92

Table 5-3: Membrane proteins used to determine exposed nonpolar 
surface areas. 

 
 

PDB Code  Exposed Nonpolar 
S.A. (%)a

PDB Code Exposed Nonpolar 
S.A. (%)a

    
1aij 94 1fx8 91 
1bgy 89 1kzu 89 
1bl8 92 1msl 90 
1brx 93 1occ 91 
1el2 92 1pcr 94 
1eul 86 1qla 94 
1f88 91 1qle 94 
1fum 94 2prc 93 

 
a Only the membrane spanning region was analyzed (see Methods). Surface are (S.A.) 

calculated using the coresurf_z program (J. J. Plecs, California Institute of Technology).
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Figure 5-1: Superposition of bovine rhodopsin and bacteriorhodopsin. 
Superposition of bacteriorhodopsin (pink transparent cylinders and connecting coil) on 
molecule A of bovine rhodopsin (colored helical ribbons and connecting coils). (A) On 
the right, the view is rotated 180º about the vertical axis. (B) On the left is a view of the 
top (cytoplasmic) surface of the molecules. Note the differences between helices IV and 
V in the two molecules. At the right is a bottom view of the molecules.  
This figure was borrowed from Teller et al. (Reference 8).  
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Figure 5-2: Exposed nonpolar surface areas of water soluble versus membrane 
proteins. 
Database survey of exposed nonpolar surface areas of water soluble proteins compared to 
membrane proteins. The water soluble protein structures are a subset of Richardson and 
colleagues’ Top100 set. The membrane protein structure files were obtained from Prof. 
D.C. Rees (California Institute of Technology). Only the membrane spanning regions of 
the membrane proteins were evaluated. Surfaces were analyzed using the coresurf_z 
program (J.J. Plecs, California Institute of Technology).  
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            *  **  *  **  ** **  *           *   *  *      *   * *   *           *   *  **      * 

 
---------1---------2---------3---------4---------5---------6---------7---------8---------9---------100
MQAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEQNPIYWARYADWLFTTPLLLLDLAL 

 

 

 

 

     TGRPEWEWLREGTDLMRDGTEEFRRKGEGVSDPDAKKFYHITTKVPEIAFTMYQSMLEGQGLTKVPFGGEQNPIYQARYQDWRETTPLLLEDLAL 

LVDADQGTIKALREADEEMIKTGLKGATTKEYSERERWWRQSTEAMKKILEVLREGF     SMRPEVDSTFKQLRNVTEKLWSKYPEVWQQGSEGQGNV 

PLNEETQLFMELDVSAKVGFGEILLRSRAIEG 

 

---------1---------2---------3---------4---------5---------6---------7---------8---------9---------200
LVDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKAESMRPEVASTFKVLRNVTVVLWSAYPVVWLIGSEGAGIV 

---------1---------2---------3---------4---------  
PLNIETLLFMVLDVSAKVGFGLILLRSRAIFGEAEAPEPSAGDGAAATS 

         *  **  **  *   *  *  *  * **  **  *  **  *  **             *    *     **   *  *  **    * * 

 
   *  *   *          *        * 

Figure 5-3: Sequence alignment of wild-type bacteriorhodopsin and WS-BR. 
The sequence of wild-type bacteriorhodopsin (blue) aligned with the designed water 
soluble variant, WS-BR (green). The 58 mutated positions are marked with an *. The 
gaps in the WS-BR sequence are due to lack of electron density in the solved X-ray 
structure; the wild-type sequence was used in these areas for purposes of gene 
construction.  
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Figure 5-4: SDS-PAGE of
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Figure 5-5: Far UV wavelength spectrum of WS-BR. 
Circular dichroism wavelength scan of WS-BR. Spectrum was obtained at 25 ºC in 50 
mM phosphate buffer, 1.5 M NaCl, pH 7.2. The average of three scans is shown. 
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Figure 5-6: Analytical gel filtration chromatography of WS-BR. 
The sample was not mono-dispersed as is evident by the various oligomeric states 
observed. Based on molecular weight standards (not shown), we estimated that the 
sample existed  predominantly in high order oligomeric states (MW >200,000 D) (1). We 
also observed small amounts of the sample at the predicted molecular weights of a dimer 
(2), and monomer (3). The sample was in 50 mM phosphate buffer, 1.5 NaCl, pH 7.2. 
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Figure 5-7: ANS binding experiment for WS-BR. 
ANS (1-anilino-napthalene-8-sulfonate) was used to assess the physical state of WS-BR. 
ANS is a common marker for identification of protein molten globule states. Lysozyme 
in 25% HFA (hexafluroacetone hydrate) was used as a positive control (not shown). ANS 
binding increases as the protein concentration is increased.  
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Figure 5-8: Temperature denaturations of WS-BR. 
Temperature denaturations of WS-BR in 50 mM phosphate, pH 7.2 in (A) 0.1 M NaCl, 
and (B) 1.5 M NaCl. The top panels show far UV wavelength scans as a function of 
temperature. The bottom panels show one slice (222 nm) from the top panels.  
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Figure 5-9: Hypothesized folding pathway of bacteriorhodopsin. 
Experimental evidence suggests retinal is loosely attached following the appearance of 
the IO intermediate state. Schiff base formation occurs after the IR state to form functional 
bacteriorhodopsin.  
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Figure 5-10: Membrane spanning region of a membrane protein. 
Surface representation of the bovine cytochrome bc1 complex (PDB code: 1bgy). The 
blue mesh represents the membrane spanning region of the protein. Only this portion of 
membrane proteins was used to analyze exposed nonpolar surface areas. This region was 
determined by analyzing the most hydrophobic 30 Å stretch of the protein structure.  
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Chapter 6  
 

NMR and Temperature Jump Measurements of De Novo Designed 
Proteins Demonstrate Rapid Folding in the Absence of Explicit 

Selection for Kinetics 
 
 
 
 
 
The text of this chapter has been adapted from a published manuscript that was 
co-authored with Professors Stephen L. Mayo and Kevin W. Plaxco, as well as Blake 
Gillespie, Dung M. Vu, Shannon A. Marshall, and R. Brian Dyer. 
 
Blake Gillespie, Dung M. Vu, Premal S. Shah, Shannon A. Marshall, R. Brian Dyer, 
Stephen L. Mayo, and Kevin W. Plaxco, J. Mol. Bio, 330, 813 (2003). 
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Abstract 

 We address the importance of natural selection in the origin and maintenance of 

the rapid folding of natural proteins by experimentally characterizing the folding kinetics 

of two de novo designed proteins, NC3-NCAP and ENH-FSM1. These 51-residue 

proteins, which adopt the helix-turn-helix homeodomain fold, share as few as 12 residues 

in common with their most closely related natural analog. Despite the replacement of up 

to 3/4 of their residues by a computer algorithm optimizing only thermodynamic 

properties, the designed proteins fold as fast or faster than the 35,000s-1 observed for this 

closest natural analog. Thus these de novo designed proteins, which were produced in the 

complete absence of selective pressures or design constraints explicitly aimed at ensuring 

rapid folding, are among the most rapidly folding proteins reported to date. 
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Introduction 

 Does natural selection play a direct role in defining and maintaining protein 

folding kinetics? Naturally occurring proteins fold far more rapidly than would be 

expected were the process a random search of conformational space,1 suggesting at one 

extreme that rapid folding may be rare in the absence of explicit selective optimization. 

At the other extreme, it is possible that the selective pressures that ensure a stable native 

state inevitably produce biologically relevant folding rates. 

 Current theories of protein folding provide little indication of where proteins lie 

on the spectrum between these extremes. The nucleation-condensation model,2 for 

example, suggests that selection for native state stability may be sufficient to ensure rapid 

folding, since the interactions that stabilize the native state also stabilize the transition 

state. In contrast, it is possible that stabilization of the native state may also lead to the 

stabilization of kinetic traps, slowing folding.3,4 Unfortunately, simulation-based theories 

provide little quantitative indication of how frequently thermodynamically stable folds 

also exhibit the unfrustrated energy landscapes,5 large energy gaps,6 cooperative collapse7 

or (more generally) the lack of kinetic traps8 that are associated with rapid kinetics. Some 

simulation studies have shown, however, that without explicit selective or design 

pressures aimed at ensuring a large energy gap, the majority of even thermodynamically 

stable heteropolymers fold extremely slowly (e.g., ref. 6). 

 Experimental investigations of evolution’s role in shaping folding kinetics 

similarly fail to resolve this issue. For example, the observed dependence of folding rates 

of simple proteins on native state topology9 may reflect a limited role of evolution in 

defining folding kinetics, since kinetics are defined indirectly when selective pressures 
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define topology. But, in contrast, this relationship could represent a folding ‘speed limit’ 

beyond which explicit kinetic selection cannot further optimize rates. Thus the topology-

dependence of folding rates in naturally-occurring proteins does not rule out the 

possibility that rapidly folding sequences are relatively rare among thermodynamically 

stable, but kinetically unoptimized, proteins. More generally, experimental studies 

couched in the context of naturally-occurring proteins, or close sequence analogs,10-12 

provide only limited insight into this issue since these proteins must fold rapidly in order 

to confer a selective advantage on the organism from which they were obtained. 

The study of de novo designed proteins provides a means of circumventing this 

problem by eliminating folding kinetics as a design or selective constraint. With this 

motivation we describe here the refolding kinetics of a pair of de novo designed structural 

analogs of the engrailed homeodomain (En-HD) designated NC3-NCAP and ENH-

FSM1. The proteins were designed using the ORBIT (optimization of rotamers by 

iterative techniques) suite of protein design algorithms to find compatible sequences for a 

target fold.13 The ORBIT potential functions, which model the physical forces governing 

a protein’s tertiary structure, were used in conjunction with optimization algorithms 

based on the dead-end elimination theorem (DEE)14 to identify low-energy sequences. A 

detailed description of potential functions, parameters, and optimization algorithms is 

available from previous work (e.g., refs. 15-17). Critical to the current study, ORBIT 

does not explicitly consider any aspect of folding kinetics.  

Because the designed proteins are thermodynamically stable, it is reasonable to 

assume a priori that they fold rapidly relative to the Levinthal time. However, the fastest 

folding naturally-occurring protein folds at least a billion times more rapidly than the 



 107

slowest (e.g. refs 18,19), suggesting that a broad range of rates are consistent with 

thermodynamic stability. The question is thus, do de novo designed and naturally 

occurring proteins sharing a common topology fold with closely similar rates, or do their 

kinetics differ by many orders of magnitude? Addressing this question will provide 

insight into the relative importance of direct and indirect selective pressures in shaping 

folding kinetics.  

 

Results 

Moderate and distant relationships to naturally-occurring proteins 

The designed proteins were built using residues 6-56 of the En-HD crystal 

structure as the template.20 The design of NC3-NCAP has been described previously.17 

The resulting sequence shares 55% identity with the template molecule. ENH-FSM1 is a 

full sequence design of En-HD; details of the design will be published elsewhere (Shah et 

al., manuscript in preparation). This molecule shares 25% sequence identity with the 

template and 37% identity with NC3-NCAP (Figure 6-1). A simple psi-BLAST search 

indicates that the sequence of the parent structure, En-HD from D. melanogaster, is the 

most closely related known sequence to NC3-NCAP. When sequence similarity rather 

than identity is considered, the homeodomain sequences of other organisms appear more 

closely related (67%). In contrast, a simple psi-BLAST search suggests that the fully 

redesigned ENH-FSM1 bears no statistically significant similarity to any known 

sequence when either identity or similarity are considered. 
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Well-folded, de novo designed proteins 

Both NC3-NCAP and ENH-FSM1 fold to a stable, well-packed native state. 

Chemical denaturations indicate the proteins fold via a cooperative two-state process with 

stabilities of 2.9 and 3.4 ±0.2 kcal·mol-1at 35°C, respectively (data not shown). While the 

structures of these proteins have not been determined, both exhibit the dispersed NMR 

and CD spectra characteristic of a folded protein (data not shown, see also ref. 17). 

 

Folding kinetics of NC3-NCAP 

NMR lineshape analysis indicates that NC3-NCAP folds extremely rapidly. The 

γ-methyl proton resonance of residue Leu11 undergoes a 550Hz chemical shift as the 

molecule unfolds. By monitoring the denaturant-dependent linebroadening of this 

resonance as a function of denaturant concentration (Figure 6-2), we have determined 

folding and unfolding rates across the unfolding transition (Figure 6-3). The measured 

folding rates decreased from 6,900s-1 and 2,200s-1 over the range 1.2 to 2.0M urea. 

Laser temperature-jump (T-jump) relaxation studies confirm the rapid folding 

kinetics of NC3-NCAP. Unfolding was induced at urea concentrations corresponding to 

those in the NMR experiment by rapid T-jump from 15 to 35°C. The observed relaxation 

dynamics are well-fitted as a double exponential decay (see e.g., Figure 6-4). The slower 

phase displays the significant denaturant dependence expected for an authentic unfolding 

phase. This phase was treated as a two-state, temperature-induced change in the 

equilibrium population of native and denatured states, and the refolding and unfolding 

rates extracted as kf = kobs/(1+KUN) and ku = (kobs·KUN)/(1+KUN). KUN was determined by 

CD-monitored equilibrium unfolding under identical conditions (data not shown). The 
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folding rates so derived are within experimental error of those predicted based on NMR 

lineshape analysis. Extrapolating the combined NMR/T-jump data to 0M urea, we 

estimate that NC3-NCAP folds and unfolds with rates of 29,000s-1 (lnkf = 10.3 ±0.2) and 

230s-1 (lnku = 5.4 ±0.2) in water, respectively (Figure 6-3). 

The faster of the two phases observed in the T-jump experiment exhibits a rate of 

~200,000s-1 (Figure 6-4) and is effectively independent of the denaturant concentration 

(data not shown). This rate is faster than any previously reported protein folding rate, but 

is similar to the rapid kinetics observed in T-jump studies of small helical peptides and 

some proteins (e.g., refs. 21,22). Fersht and coworkers have reported that En-HD 

populates an equilibrium intermediate with native-like helical structure (A. Fersht, 

personal communication). The rapid phase we observe may reflect the population or 

thermal denaturation of a similar intermediate, or thermal relaxation of the denatured 

state. Because this phase is approximately an order of magnitude faster than the slower 

phase described above, it contributes little to the line broadening observed in the NMR 

unfolding experiment. 

 

Folding kinetics of ENH-FSM1 

ENH-FSM1 folds more rapidly than NC3-NCAP. As with NC3-NCAP, a highly 

shifted leucine methyl proton resonance in the folded state spectrum of ENH-FSM1 

undergoes a 400Hz shift and line broadening as the molecule unfolds (Figure 6-2). 

Because lineshape-based rate determinations must be performed in the transition region, 

the kinetics of this molecule can only be determined at high denaturant concentrations. 

This necessitates long extrapolations to 0M urea. Nevertheless, analysis of the denaturant 
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dependence of this line broadening yields reasonably precise estimates of folding and 

unfolding rates in water of ~79,000s-1 (lnkf = 11.3 ±0.5) and 920s-1 (lnku = 6.8 ±0.5) 

(Figure 6-5). 

Both de novo designed proteins fold via poorly packed transition states. The 

relative solvent accessibility of the folding transition state of NC3-NCAP and ENH-

FSM1, mf/(mf – mu), are 0.52 and 0.39, respectively. This is consistent with the 

observation that helical proteins generally exhibit relatively expanded transition states,9 

but inconsistent with the extremely compact transition state (0.85) reported for En-HD 

(A. Fersht, personal communication and ref. 23). 

 

Comparison of kinetics and thermodynamics  

An assumption of two-state folding is built into the fit of the linebroadening data. 

If the model is valid, however, the stabilities derived from T-jump and NMR-derived 

folding and unfolding rates will agree with stabilities determined from CD measurements. 

Kinetic and CD ∆G’s for NC3-NCAP are 2.9 ±0.2 and 2.9 ±0.1 kcal-mol-1, respectively 

at. ∆G’s for ENH-FSM1 are 2.7 ±0.4 and 3.4 ±0.1 respectively. This difference does not 

represent a statistically significant discrepancy at the 95% confidence interval.  

 

Discussion 

 The folding rates of NC3-NCAP and ENH-FSM1 are within error of the 35,000s-1 

reported for the analogous, naturally-occurring molecule,23 placing them among the most 

rapidly folding proteins reported to date (e.g., refs. 23-26). Similarly, Hill et al. have 
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reported microsecond folding kinetics for the de novo designed, 35-residue dimeric α2D 

protein.27 It thus appears that proteins produced in the absence of explicit design criteria 

aimed at ensuring rapid folding can fold as fast as the most rapidly folding natural 

proteins, and thus that rapid folding may be readily achieved even in the absence of direct 

selective pressure. 

These observations are consistent with previous, albeit less direct, evidence that 

natural selection may play only a limited role in the determination of folding rates. For 

example, Baker and co-workers have used phage display selection techniques to generate 

12 variant protein L sequences, 6 of which fold more rapidly than the parent sequence.11 

Similarly, two variant SH3 sequences in which approximately 50% of the residues were 

replaced via phage display fold as fast or slightly faster than the wild-type sequence.10 

Lastly, Serrano and co-workers have replaced up to 9 residues in the core of src-SH3 and 

found that the folding rates of 3 of 13 variants are accelerated up to 12-fold.12 The ease 

with which folding kinetics are maintained or increased despite extensive mutations 

further supports the observation that folding kinetics are not the product of direct 

evolutionary optimization. 

In contrast to these experimental observations, a large body of theoretical 

literature suggests that rapid folding is necessarily the product of direct selective 

pressure. For example, lattice polymer-based studies find that rapidly folding sequences 

will be produced only rarely in the absence of specific design or selective constraints. 

This is clearly illustrated by simulations of 27-mer lattice polymers, which indicate that 

only 3% to 15% of randomly selected sequences fold rapidly,6,28,29 and the fraction of 

rapidly folding sequences may be yet smaller for 125-mer lattice systems.30 This 
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predicted paucity of rapidly folding sequences is further supported by studies suggesting 

that folding kinetics are the product of extensive evolutionary optimization (e.g., refs. 

31,32) and that neither evolution31,33 nor design34-36 are likely to produce rapid folding 

unless kinetics are an explicit selection or design criterion. In contrast, our results suggest 

that if a large energy gap, low Tg or cooperative collapse are necessary to ensure rapid 

folding, then these properties are readily achieved even in the absence of direct selective 

pressure. 

Why then do these proteins fold with biologically relevant rates? Several groups 

have studied the relationship between a protein’s topology and the smoothness of its 

energy landscape. They have found that, while most structures are the unique ground 

state of only a few sequences, a small subset of structures are encoded by a large number 

of sequences.37-40 Naturally-occurring protein folds are thought likely to represent such 

‘highly designable’ structures.37,40 Critically, these studies also suggest that highly 

designable structures almost invariably exhibit the smooth landscapes and unique ground 

states that theory associates with rapid folding.37,39,40 The designed molecules 

characterized here, which fold to a naturally-occurring topology, apparently also exhibit 

the putatively linked properties of rapid folding and designability. 

While the idea of designability predicts that proteins will fold on a biologically 

relevant timescale, it does not predict precisely where a protein’s folding rate will fall on 

the billion-fold range of rates observed in nature. More specifically, it does not predict 

the strikingly similar folding rates of NC3-NCAP, ENH-FSM1 and En-HD. In contrast, a 

recent theory of folding kinetics termed the topomer search model predicts that if the 

folding energy landscape is smooth, folding rates will vary according to the native state 



 113

topology.41 Our results are consistent with this suggestion, and show that the precise 

folding kinetics of designable proteins are determined indirectly by the selective 

pressures that define structure and thermodynamics. 

 

Methods 

Experimental Details 

 The designed proteins were expressed in E. coli and purified by HPLC as 

described.17 NC3-NCAP was characterized in 2H2O, 50mM potassium phosphate 

buffered at pD 4.5. ENH-FSM1 was characterized in the same buffer at pD 5.5. In 

comparison, Mayor, et al. determined the folding kinetics of En-HD at pH 5.8.23 Urea 

and guanidine HCl stocks were high purity grade (Pierce, USB), and were deuterated by 

dissolving in 2H2O and lyophilizing three times. 

 

Equilibrium Thermodynamics 

 Unfolding thermodynamics were determined via circular dichroism (CD) at 

222nm on an AVIV 202 Spectrometer (AVIV Instruments, Lakewood, NJ). Chemical 

denaturations with guanidine HCl were conducted using a Hamilton microlab 500 

automatic titrator (Hamilton Company, Reno, NV) coupled to the spectrometer. Protein 

concentration was 5µM, and samples were equilibrated for 120s at each denaturant 

concentration. Data were fitted to a two-state model for unfolding, and thermodynamic 

parameters were determined as described elsewhere.42 
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1H-NMR Data Collection and Analysis 

 1D-1H NMR spectra were collected at 35°C and analyzed on a 500MHz Bruker. 

Lyophilized protein was dissolved at 1mM in 2H2O or 2H urea solutions, buffered as 

described. 1,4-dioxane was employed as a temperature- and denaturant concentration-

independent chemical shift standard. Individual spectra were 4096 points, and consisted 

of 1024 scans.  

Both proteins display a significantly ring-current shifted resonance suitable for 

lineshape analysis of refolding kinetics. Specific labelling of NC3-NCAP demonstrated 

that this resonance is a γ-proton of Leu11; the resonance in ENH-FSM1 has not been 

conclusively determined, but model structures suggest it is also Leu11 (data not shown). 

These resonances were fit to a model of two-site chemical exchange to determine the 

molecules’ denaturant-dependent refolding and unfolding rates (kf and ku) at each urea 

concentration.24 

The determination of rates from lineshapes requires knowledge of the chemical 

shifts and linewidths of the folded and unfolded state resonances. Due to spectral overlap 

in the unfolded state, the random coil chemical shift and linewidth values for leucine γ-

proton were adopted from the literature.43 Given these four constants, the only fitted 

parameters in the analysis are the rates kf and ku. 

 

T-jump measurements 

 The relaxation dynamics of NC3-NCAP were monitored by Trp fluorescence 

following a laser-induced T-jump. A pump pulse corresponding to the peak of a weak 

2H2O near-IR absorption band (ε = 10.1cm-1 at 2µm) was used to maximize transmission 
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through the 100 µm path length cells, ensuring a nearly uniform temperature profile. 

Under these conditions, the diffusion of heat out of the interaction volume occurs in 

~20ms. To avoid complications arising from sample cooling, data were analyzed over the 

range 1-200µs. All data were well-fitted as a double exponential relaxation process.   

The T-jump spectrometer has been described previously.44 The magnitude of the 

jump was calibrated (±1°C) by comparing the pump pulse-induced fluorescence change 

in a Trp sample with the equilibrium temperature-dependence of Trp fluorescence. 

10,000 scans were collected and averaged for each sample. Samples were prepared as for 

the NMR experiments except that the protein concentrations were 80µM.  
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Figure 6-1: Sequence alignment of designed variants and wild type. 
Sequence alignment of the template, En-HD, and the de novo designed proteins NC3-
NCAP and ENH-FSM1. Identity with the template is highlighted in gray. In the design of 
NC3-NCAP surface residues were varied, helix-capping and helix dipole propensities 
were optimized, and the identity of core residues was held fixed.17 In contrast, all 
positions were allowed to vary in the design of ENH-FSM1. These sequences share 55 
and 25% identity with En-HD, respectively, and 37% with each other. Only 10 residues 
are common among the three proteins. 
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Figure 6-2: NMR data for designed variants. 
Stacked plots of 1H-NMR data for NC3-NCAP and ENH-FSM1 in the absence of 
denaturant and through their transition regions. As the molecules begin to unfold, ring 
shifted methyl resonances in both proteins shift and broaden until spectral overlap 
precludes further analysis. 
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Figure 6-3: Folding and unfolding rates of NC3-NCAP. 
Denaturant dependence of folding and unfolding rates for NC3-NCAP. Rates determined 
by both NMR lineshape (circles) and temperature-jump relaxation (squares), are 
effectively indistinguishable. The estimated folding and unfolding rates in water, 
determined by extrapolation to 0M urea, are 29,000s-1 and 230s-1, respectively. The single 
diamond indicates the folding rate of the template molecule under similar conditions.23 
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Figure 6-4: T-Jump experiments. 
Temperature-jump relaxation data collected at 2.5M urea. The data are well-fitted to a 
double exponential decay. The faster relaxation (~200,000s-1) exhibits little denaturant 
dependence and may represent either the thermal equilibration of the unfolded state after 
the T-jump or the population of a folding intermediate.23 The folding and unfolding rates 
derived from the slower relaxation (4800s-1) correspond well to the rates measured by 
NMR lineshape analysis (see Figure 2). 
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Figure 6-5: Folding and unfolding rates of ENH-FSM1. 
Denaturant dependent folding kinetics of ENH-FSM1. NMR lineshape analysis predicts 
folding and unfolding rates in water of 79,000s-1 and 920s-1, respectively. Because 
lineshape-based rate determinations must be performed in the transition region, the 
kinetics of this molecule can only be determined at high denaturant concentrations. This 
necessitates the long extrapolations to 0M urea. The single diamond indicates the folding 
rate of the template molecule under similar conditions.23 



 125

Appendix A 
 

Baseline Correction Energies Provide More Natural Surface Amino 
Acid Compositions for ORBIT Designs 
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 While performing surface designs of membrane proteins (Chapter 5), we observed 

that the distribution of allowable amino acids was often biased towards the longer amino 

acids that provide more favorable van der Waals contacts. Amino acids such as Lys, Arg, 

and Glu were selected at significantly higher frequencies than what was observed in 

nature’s proteins. Indeed, surface designs of 30 structures that were performed using 

ORBIT revealed that amino acid compositions of designed surfaces were significantly 

different from surface compositions observed in nature (Figure A-1).  

 Typical surface designs using ORBIT limit the selection of amino acids to Asn, 

Asp, Gln, Glu, His, Lys, Ser, Thr, Ala, Arg. We therefore only analyzed this set of amino 

acids when performing the survey. Based on our observations (Figure A-1), we either 

penalized or benefited an amino acid (and all rotamers therein) to obtain designs 

producing a more wild-type-like composition. The energies were applied to a rotamer’s 

rotamer-template energy and are listed in Table A-1.  

  After applying these energies, we performed designs on the same 30 structures 

above and compared the surface compositions to WT surface compositions (Figure A-2). 

We find a much higher correlation also (Figure 3, r2 = 0.85) when we include baseline 

correction energies in our designs.  

 Without the use of baseline correction energies, longer amino acids are preferred 

because of the favorable van der Waals contacts that are provided with increased number 

of atoms. So in essence, baseline correction energies are simply correcting for this 

observed effect. Perhaps a more accurate way of addressing this issue would be to 

normalize van der Waals energies based on the number of atoms in an amino acid. 

Professor Mayo has implemented this into ORBIT; however it has not been fully tested. 
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Table A-1: Baseline correction energies 
 

Amino Acid Energy 
(kcal/mol) 

Ala -4.000 
Asp -1.687 
Glu -0.928 
His -0.120 
Hspa -0.120 
Lys -1.460 
Asn -1.654 
Gln -0.909 
Arg 0.500 
Ser -3.500 
Thr -3.000 

    
    a Protonated form of histidine 
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Figure A-1: Comparison of surface amino acid compositions. 
Surface designs of 30 structures using standard ORBIT parameters revealed that there is a 
bias towards the selection of longer sidechains that provide favorable van der Waals 
contacts. This is significantly different from wild-type surfaces.  
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Figure A-2: Comparison of surface compositions with and without baseline 
correction energies. 
Surface designs of 30 structures were performed with and without baseline correction 
energies and compared to wild-type compositions. Use of baseline correction energies 
provides compositions that resemble wild-type surfaces. Baseline correction energies 
were applied to a rotamer’s rotamer-template energy. 
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Figure A-3: Correlations between ORBIT surface designs and wild-type surfaces. 
Once baseline correction energies are applied to our set of 30 structures, a much higher 
correlation is observed between ORBIT designed surfaces and wild-type surfaces. 
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Appendix B 
 

Chemical Shifts for FSM1_VF 
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Table B-1: Chemical shifts for FSM1_VF NMR structure sorted by residue. 
 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

1: MET Cα

Hα

Cβ

Hβ

Cγ 
Hγ

Cε

Hε

C 

54.783 
4.070 

32.800 
2.090 

30.730 
2.520 

16.720 
2.046 

172.249 
2: LYS N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Cδ

Hδ

Cε

Hε

C 

124.454 
8.690 

56.162 
4.069 

32.845 
1.330 
1.480 

24.624 
1.210 

29.070 
1.550 

41.964 
2.887 

176.083 
3: GLN N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Nε2 
Hε21 
Hε22 
C 

121.385 
8.034 

55.763 
4.193 

29.189 
1.750 
2.078 

33.909 
2.212 

111.767 
7.409 
6.662 

174.705 
 
 
 
 
 
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
Ppm 

4: TRP N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ1 
Hδ1 
Nε1 
Hε1 
Cζ2 
Hζ2 
Cη2 
Hη2 
Cζ3 
Hζ3 
Cε3 
Hε3 
C 

118.965 
7.499 

56.236 
4.774 

30.035 
3.125 
3.361 

127.221 
7.279 

130.794 
10.686 

114.643 
7.419 

123.940 
7.033 

121.894 
7.080 

120.447 
7.453 

175.314 
5: SER N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
C 

116.156 
8.318 

57.731 
4.401 

64.614 
3.918 
4.157 

174.822 
6: GLU N 

HN 
Ca 
Ha 
Cb 
Hb 
Cg 
Hg 
C 

122.252 
8.808 

58.685 
4.171 

29.381 
2.049 

36.250 
2.358 

177.898 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

7: ASN N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Nδ2 
Hδ21 
Hδ22 
C 

117.705 
8.446 

55.508 
4.506 

38.479 
2.751 
2.814 

113.057 
7.677 
7.009 

177.119 
8: VAL N 

HN 
Cα

Hα

Cβ

Hβ

Cγ2 
Hγ2 
Cγ1 
Hγ1 
C 

120.856 
7.725 

66.099 
3.518 

31.467 
2.095 

23.077 
0.948 

21.497 
0.638 

176.875 
9: GLU N 

HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ

C 

120.715 
8.267 

60.133 
3.632 

29.202 
2.260 

36.618 
2.296 

178.193 
10: GLU N 

HN 
Ca 
Ha 
Cb 
Hb 
Cg 
Hg 
C 

117.601 
8.112 

59.136 
3.998 

29.148 
2.121 

35.911 
2.390 

179.299 
 
 
 
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

11: LYS N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Cε

Hε

C 

119.484 
7.745 

59.084 
4.087 

32.279 
1.910 
1.940 

25.476 
1.490 
1.609 

29.204 
1.550 

42.189 
2.945 

180.140 
12: LEU N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Cδ1 
Hδ1 
Cδ2 
Hδ2 
C 

121.629 
8.266 

57.927 
4.003 

41.146 
1.016 
1.383 

26.400 
1.270 

23.407 
0.253 

24.445 
-0.041 

178.395 
13: LYS N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Cε

Hε

C 

118.621 
8.287 

60.458 
3.873 

32.396 
1.847 
1.963 

26.296 
1.370 
1.740 

29.839 
1.740 

42.060 
2.935 

179.394 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

14: GLU N 
HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ

C 

119.195 
8.026 

58.877 
4.028 

29.272 
2.110 

35.859 
2.337 

177.980 
15: PHE N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ1 
Hδ1 
Cε1 
Hε1 
Cζ

Hζ

Cε2 
Hε2 
Cδ2 
Hδ2 
C 

120.395 
7.992 

61.821 
4.103 

39.522 
3.075 
3.106 

131.295 
6.644 

130.486 
6.681 

128.847 
6.632 

130.486 
6.681 

131.295 
6.644 

178.967 
16: VAL N 

HN 
Cα

Hα

Cβ

Hβ

Cγ2 
Hγ2 
Cγ1 
Hγ1 
C 

118.358 
8.217 

65.813 
3.563 

31.660 
2.134 

22.886 
1.038 

21.554 
0.902 

177.758 
   
   
 
 
 
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

17: LYS N 
HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Cε

Hε

C 

119.329 
7.727 

58.726 
3.995 

32.484 
1.894 

25.282 
1.423 
1.554 

29.513 
1.670 

42.137 
2.940 

178.125 
18: ARG N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Nε

Hε

C 

114.952 
7.437 

56.205 
4.113 

30.574 
1.510 
1.610 

27.467 
1.510 
1.610 

43.193 
2.040 

84.988 
7.461 

175.673 
19: HIS N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ2 
Hδ2 
Cε1 
Hε1 
C 

118.364 
7.558 

55.012 
4.557 

28.431 
2.530 
2.945 

119.809 
6.872 

135.262 
8.169 

173.395 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

20: GLN N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Nε2 
Hε21 
Hε22 
C 

119.849 
8.357 

57.603 
4.182 

29.202 
1.954 
2.065 

34.219 
2.352 

112.964 
7.559 
6.849 

176.511 
21: ARG N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Nε

Hε

C 

118.830 
8.440 

55.332 
4.407 

29.700 
1.722 
1.879 

27.222 
1.530 
1.560 

42.249 
3.178 

84.645 
7.236 

175.494 
22: ILE N 

HN 
Ca 
Ha 
Cb 
Hb 
Cg1 
Hg12 
Hg11 
Cd1 
Hd1 
Cg2 
Hg2 
C 

122.192 
7.933 

60.398 
4.365 

39.709 
1.855 

28.041 
1.220 
1.508 

14.918 
0.679 

17.625 
0.843 

175.243 
   
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

23: THR N 
HN 
Cα

Hα

Cβ

Hβ

Cγ2 
Hγ21 
C 

116.544 
8.315 

60.311 
4.594 

71.371 
4.705 

21.799 
1.304 

175.346 
24: GLN N 

HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ

Nε2 
Hε21 
Hε22 
C 

121.425 
9.026 

59.327 
3.822 

27.928 
1.977 

33.887 
2.233 

112.231 
7.414 
6.816 

178.403 
25: GLU N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
C 

119.131 
8.779 

59.886 
4.071 

28.885 
1.929 
2.060 

36.372 
2.232 
2.349 

179.068 
26: GLU N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

C 

120.177 
7.757 

59.105 
4.011 

30.068 
1.927 
2.286 

36.873 
2.288 

179.745 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

27: LEU N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Cδ1 
Hδ11 
Cδ2 
Hδ21 
C 

121.600 
8.218 

58.090 
4.002 

41.532 
1.620 
1.840 

27.464 
1.600 

25.242 
0.798 

24.365 
0.870 

177.931 
28: HIS N 

HN 
Cα

Hα

Cβ

Hβ

Cδ2 
Hδ2 
Cε1 
Hε1 
C 

117.889 
8.702 

59.525 
4.081 

28.448 
3.400 

119.747 
7.171 

136.269 
8.502 

176.898 
29: GLN N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Nε2 
Hε21 
Hε22 
C 

117.611 
8.144 

58.731 
4.015 

28.341 
2.096 
2.177 

34.082 
2.364 
2.546 

111.984 
7.599 
6.846 

178.391 
   
 
 
 
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

30: TYR N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ1 
Hδ1 
Cε1 
Hε1 
Cε2 
Hε2 
Cδ2 
Hδ2 
C 

120.981 
7.936 

61.150 
3.992 

38.227 
2.432 
2.720 

132.028 
6.447 

117.657 
6.356 

117.657 
6.356 

132.028 
6.447 

176.952 
31: ALA N 

HN 
Cα

Hα

Cβ

Hβ

C 

119.500 
8.291 

55.110 
3.521 

18.037 
1.268 

179.382 
32: GLN N 

HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ2 
Hγ1 
Nε2 
Hε21 
Hε22 
C 

116.487 
8.001 

58.744 
4.030 

28.502 
2.004 

34.183 
2.201 
2.340 

111.803 
7.486 
6.789 

180.078 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

33: ARG N 
HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Nε

Hε

C 

121.286 
7.822 

58.733 
3.973 

29.583 
1.824 

27.596 
1.564 
1.730 

43.596 
3.105 

84.347 
7.234 

178.198 
34: LEU N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Cδ1 
Hδ1 
Cδ2 
Hδ2 
C 

117.225 
7.402 

54.828 
4.076 

42.063 
1.372 
1.487 

26.390 
1.214 

25.977 
0.401 

22.278 
0.553 

177.110 
35: GLY N 

HN 
Cα

Hα2 
Hα1 
C 

107.041 
7.688 

45.442 
3.702 
4.068 

174.465 
36: LEU N 

HN 
Ca 
Ha 
Cb 
Hb2 
Hb1 
Cg 
Hg 
Cd1 
Hd1 
Cd2 
Hd2 
C 

120.082 
7.362 

54.532 
4.408 

43.277 
1.242 
1.417 

27.850 
1.470 

25.356 
0.521 

23.538 
0.619 

176.067 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

37: ASN N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Nδ2 
Hδ21 
Hδ22 
C 

119.435 
8.323 

51.934 
4.633 

38.603 
2.917 
3.184 

112.374 
7.695 
6.964 

175.291 
38: GLU N 

HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ

C 

120.477 
8.741 

59.981 
3.800 

29.425 
2.056 

36.238 
2.362 

178.574 
39: GLU N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

C 

119.763 
8.423 

59.225 
4.099 

28.744 
1.992 
2.086 

36.222 
2.318 

178.419 
40: ALA N 

HN 
Cα

Hα

Cβ

Hβ

C 

122.659 
8.066 

54.785 
4.232 

18.820 
1.552 

180.221 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

41: ILE N 
HN 
Cα

Hα

Cβ

Hβ

Cγ1 
Hγ12 
Hγ11 
Cδ1 
Hδ1 
Cγ2 
Hγ2 
C 

118.192 
8.082 

65.450 
3.457 

37.585 
1.800 

29.473 
1.730 
1.830 

13.671 
0.530 

17.947 
0.650 

177.050 
42: ARG N 

HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ2 
Hγ1 
Cδ

Hδ

Nε

Hε

C 

119.922 
8.066 

59.922 
4.012 

29.670 
1.981 

27.437 
1.591 
1.778 

43.290 
3.240 

83.973 
7.685 

179.248 
43: GLN N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Nε2 
Hε21 
Hε22 
C 

118.073 
8.099 

58.959 
4.066 

28.186 
2.230 
2.270 

33.893 
2.403 
2.553 

112.032 
7.695 
6.777 

178.204 
   
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

44: PHE N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ1 
Hδ1 
Cε1 
Hε1 
Cζ

Hζ

Cε2 
Hε2 
Cδ2 
Hδ2 
C 

121.120 
8.364 

61.548 
4.054 

38.444 
2.787 
2.940 

131.791 
6.500 

130.731 
6.827 

129.925 
6.791 

130.731 
6.827 

131.791 
6.500 

177.659 
45: PHE N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ1 
Hδ1 
Cε1 
Hε1 
Cζ

Hζ

Cε2 
Hε2 
Cδ2 
Hδ2 
C 

117.646 
8.491 

61.053 
4.203 

38.306 
3.180 
3.297 

131.528 
7.363 

130.916 
7.175 

129.222 
7.089 

130.916 
7.175 

131.528 
7.363 

177.906 
46: GLU N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
C 

119.461 
8.172 

59.056 
4.080 

29.100 
2.100 
2.189 

35.800 
2.314 
2.498 

178.498 
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Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

47: GLU N 
HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ2 
Hγ1 
C 

118.056 
7.805 

58.033 
4.064 

29.440 
1.945 

35.988 
2.090 
2.333 

177.943 
48: PHE N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cδ1 
Hδ1 
Cε1 
Hε1 
Cζ

Hζ

Cε2 
Hε2 
Cδ2 
Hδ2 
C 

119.645 
8.036 

59.447 
4.196 

39.415 
2.620 
2.885 

131.690 
7.026 

131.159 
7.209 

129.599 
7.213 

131.159 
7.209 

131.690 
7.026 

176.816 
49: GLU N 

HN 
Cα

Hα

Cβ

Hβ

Cγ

Hγ

C 

119.113 
8.018 

56.652 
4.033 

29.668 
1.963 

35.922 
2.225 

176.626 
   
 
 
 
 
 
 
 
 
 
 

 
Residue 
Number:  
Type 

Atom 
Type 
 

Chemical 
Shift 
ppm 

50: GLN N 
HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ2 
Hγ1 
Nε2 
Hε21 
Hε22 
C 

118.828 
7.836 

55.960 
4.201 

28.961 
1.985 
2.107 

33.885 
2.350 
2.390 

112.590 
7.548 
6.844 

175.967 
51: ARG N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Cδ

Hδ

Nε

Hε

C 

121.744 
7.971 

56.094 
4.261 

30.390 
1.698 
1.808 

27.096 
1.588 

43.332 
3.088 

84.878 
7.232 

175.314 
52: LYS N 

HN 
Cα

Hα

Cβ

Hβ2 
Hβ1 
Cγ

Hγ

Cδ

Hδ

Cε

Hε

C 

127.865 
7.888 

57.578 
4.070 

33.470 
1.650 
1.746 

24.800 
1.333 

29.110 
1.620 

42.300 
2.929 

181.320 
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