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ABSTRACT

The motion of a thin disc in a slightly viscous incompressible
rotating ﬂﬁid is studied. The axis of rotation is termed the vertical
axis and the fluid and disc are in a container which is bounded by
horizontal planes. Nonlinear inertia terms and unsteady effects are
assumed small relative to the Coriolis acceleration and hence neg-
lected.. Of most importance is the fact that the disc is inclined to
the container walls at an angle, a, which is not necessarily small.
The angle is assumed to be large enough so that there are no closed
geostrophic contours between the disc and the walls.

Since the equations of motion are linear, the motions in the
six degrees of freedom are considered independently. In all cases,
a Taylor column is present although, in all but one case, there is
fluid flowing across the boundary of the column. The detailed struc-
ture of the shear column is examined for infinitesimal angle of
incidence. It is shown that it is possible to solve for the geostrophic
flow without actually doing the detailed solution for the shear column
séructure.

A static stability study is done and the disc is found to be
unstable to small disturbances. /

The motion of an elliptical plate at finite angle of attack' for
which the Taylor column is circular is studied. Using the techniques
developed for infinitesimal a, an equation relating the geostrophic
flow inside and outside the Taylor column is proposed. This equatioh

is general enough to be used for arbitrary motion of any thin plate.
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However, only the solution for horizontal translation in a specific

direction of the elliptical plate is done.
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1. INTRODUCTION

A container filled with a viscous incompressible fluid rotates
at angular velocity, §2, about what shall be termed its vertical axis.
The container is bounded above and below by horizontal walls. Be-
tween the walls there is a "thin'" disc of radius, a, inclined at an
angle, a, to the horizontal walls. By "thin' is meant the thickness
of the disc is small compared to the thickness of the Ekman Layers
which are present on the surface of the disc.

The aim of this thesis is to examine the flow caused by "slow'
motion of the disc in the limit of a '"slightly" viscous or '"rapidly"
rotating fluid of kinematic viscosity, v. The terminology, '"slow"

motion, means that the Rossby number, Ro, defined by
Ro = U/Qa

where U is the speed characteristic of the motion of the disc, is very
small. '"Slightly'" viscous or '""rapidly" rotating means that the Ekman

number, E, defined by
E= v/fla,2

is small,

The first restriction permits linearization of the equations of
motion as it is a measure of the ratio of the nonlinear inertia terms
to the Coriolis acceleration. This means each of the six motions
corresponding to the six degrees of freedom can be studied indepen-
dently and the results superposed. The second restriction permits

the use of boundary layer techniques, i.e., singular perturbation



theory.

In general, when a body moves slowly in a rapidly rotating
fluid it carries a column of fluid along. Such a column of fluid is
named a Taylor column after G. 1. Taylor. (1) As shown by Moore

(2,3) it is not always true that the fluid in the Taylor

and Saffman,
column moves with the velocity of the body. In all but one of the
cases considered here the velocity of the fluid inside the Taylor col-
umn is not the same as the velocity of the disc.

The notion ensuing from both vertical and horizontal transla-
tion of the disc with zero a has been studied by Moore and Saff-

an. (2, 3) For the former motion, the geostrophic flow is determined

m
uniquely by the Ekman compatibility relation (or Ekman condition for
short). The shear column is inserted to make the solution analytic
across the boundary of the Taylor column and to complete the circu-
lation of the fluid between the disc and the walls. Hence, the shear
column can be said to be '"passive''. For the latter motion, the
Ekman condition is not sufficient to determine the geostrophic flow.
Appeal to the dynamics of the shear column is made to remove the
indeterminateness of the geostrophic flow. In this case, the shear
column can be said to be "active'. |

For the problems at hand, the geostrophic flow is again found
to be indeterminate and thershear column active. However, an extra
complication arises over what was encountered for Moore and Saff-
man's horizontal translation. When a is zero, the Ekman condition

shows the geostrophic flow to be irrotational both inside and outside

the Taylor column. This is no longer true when



IS

tana >> E-

Y
7 and later

However, the techniques first suggested by Stewartson(4
exploited by Moore and Saffman for analyzing the shear column are
still applicable. Their implementation is more subtle here than in
previous problems.

The physical meaning of this lower bound on a is the following.

The Ekman layer thickness, 6E’ is in 6rder of magnitude,

At a fixed radial distance, R, from the center of the disc, as we move
around in the circumferential direction, the elevation of the disc

changes by an amount A, where

A = Rtana
Hence,
A R tarlla tana _J 1
6 a = 1
E E2 E2

An important fact becomes obvious from this observation. Namely,
there are no closed geostrophic contours. The meaning of this state-
ment is that for geostropy to exist, there must be closed contours of
constant total height which is an immediate consequence of the Taylor-
Proudman theorem. This condition is clearly violated here. The
physical implication is clarified by first noting that the geostrophic
motion must not stretch theé rigid body rotation vortex lines (Green-

(5),.

span Such stretching can only occur in the Ekman layers and the
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shear column. Any relative motion of fluid from one elevation to
another is hence prohibited as it would carry a vortex line whose
length would have to experience a change of order A.

In Chapter 2, the detailed structure of the shear column for
horizontal translation is developed for infinitesimal a. As a increases
from zero the shear column structure evolves as follows:

(a) a = 0: The x and y translations are identical by symmetry

in this case. Moore and Saffman(3) have solved this problem.

There is a flow through the Taylor column of constant \'relocity

which is deflected at an angle 18. 4° to the free stream direc-

tion;

1 ‘
(b) a << E2?: To leading order, the solution will simply be

the motion for vanishing a;

(c) a~ E%: This is a transition range between the problem
solved by Moore and Saffman where closed geostrophic con-
tours exist and where they cease to exist. Closed geostrophic
contours are still present so that the solution should still be
essentially the solution for zero a;

1 1 ‘
(d) E2<< a << E*%: The lower bound on a shows that closed

geostrophic contours are not present. The upper bound
insures the usual Stewartson sandwich structure of the shear
column. It consists of an inner layer whose thickness is pro-

1
portional to E? sandwiched by a fatter layer with thickness of

1
order E*. These layers are referred to as the 1-layer and
the 1 -layer respectively. It turns out that yet another,

thicker, layer is required on the inside edge of the shear
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column to complete the solution. 'The thickness of this layer
is proportional to E%cota and is referred to as the Ga-layer;
(e) a~ E%: The triple layer structure of (d) collapses to a
double layer structure as the Ga-layer and i -layer merge.
The solution bears some similarity to the solution in both

case (d) and case (f) which is discussed next;

1
(f) E*<< a << E1/6: A new layer appears in place of the

+-layer at the inner edge of the shear column. It is thinner
than a 1 -layer having thickn‘ess (Ecota)% and is referred to
“as an a-layer. Unlike the §-layer, this layer is"aware' of
the fact that the disc is tilted., The 3-layer still sees the disc
as being at zero angle of attack. A {-layer is still present

at the outer edge of the shear column;

(g) a~ E]'/6 and E1/6<< a << 1: The a-layer, %-layer, %-1ayer

structure of (f) is maintained. However, for these ranges,

the 3-layer begins to feel the effect of the disc inclination.

This discussion indicates that little is to be learned from
consideration,of (b) while (a) has been done already. (c) might yield
interesting results pertaining to the transition from the range where
closed geostrophic contours exist to the range where they do not
exist. However, sinqe the aim of this; thesis is to study flows in
which closed geostrophic contour.f: are absent, case (c) will not be
considered.

The detailed solution for case (d) is given in section 2. 4

including the solution for the shear column structure. The shear

column structure for case (e) is sketched in section 2.5 but only the
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geostrophic flow is determined. Cases (f) and (g) are done in detail
in 2. 3.

It is found that the solution for the geostrophic flow is the
same for all cases considered. Thus, in section 2,6, an equation
applicable in all cases is derived in a form general enough to be
applied to motions other than horizontal. It is argued, of course,
that the shear column structure is essentially the same for all mo-
tions of the disc to justify the use of this equation. Further justi-
fication is given in section 3, 3.

The rising'disc is considered in Chapte‘r 3, utilizing the
equation derived in Chapter 2 to determine the geostrophic flow
without repeating the detailed shear column analysis.

Chapter 4 deals with the three rotations.

In all cases the force and moment on the disc are evaluated.
These results are used in Chapter 5 to perform a static stability
study. Motion of the disc is found to be unstable to small disturb-
ances. If, however, the disc is free to translate but not rotate under
the action of its own buoyancy and the centrifugal force, it is shown
that the buoyancy force causes the disc to move horizontally! On
the other hand, the céntrifugal force causes the disc to rise!

Chapter 6 reveals some of the difficulties encountered in con-
structing a solution when a is finite. An equation relating the
geostrophic flows inside and outside the Taylor column is proposed.
This equation is utilized to solve for horizontal translation of an

elliptical plate in a specified direction.
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2. HORIZONTAL TRANSLATION FOR

INFINITESIMAL ANGLE OF ATTACK

2.1 Statement of the Problem

The upper wall of the container is located at

by

Z

and the lower wall is located at

where z is the vertical coordinate. The center of the disc is the
origin of a rectangular cartesian coordinate system as shown in

Figure 1. The equation of the disc is
z = - xtana (1)
with
2 2 2

x +y <a

Fpr convenience, let

h = hT + hB
z : -
zZ = hT
2 > x (y into page)

;z = —hB

Figure 1. Basic Geometry of the Container and the Disc.
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The full equations of motion written in a rotating coordinate

frame are, for an incompressible fluid,

du 2
Veu=20 ‘ (3)

where p is the reduced pressure defined by

P 12 .2

p=G-30r (4)

p being the physical pressure and r the radial distance from the

origin in a horizontal plane. 1 Also,
2-2k

k is a unit vector in the vertical direction.
The problem is to determine the motion of the fluid due to the
steady translation of the disc in a horizontal direction. If the speed

of the disc is U, then

Ie

« Vul

U _
| Q—a'-RO

}o}

X u

Assuming that
Ro << 1 (5)

and noting that the motion is steady, the first two terms in (2) can be

1yt is assumed in (4) that the disc is at the center of the container. If
this is not true, r must be altered accordingly. Since the disc is for-
mally regarded as being of zero thickness, the calculation of forces
on the disc is not affected by this term.



dropped so that
2
22xu=-Vp+ vV-u (6)

Since (6) is linear, horizontal translation in any direction can
be studied by first studying translation in the x and y directions inde-
pendently and then superposing the results, It is instructive to let
the disc remain at rest and move the walls and the fluid at infinity

with velocity

v, = UL (7)

for the x-translation and

v, =Vi | (8)

for the y-translation. i and j are unit vectors aligned with the x
and y-axes respectively. Once the solution is obtained for these
motions, a simple Galilean transformation will yieid the solution
for the disc advancing into an ambient fluid with the walls at rest.

2.2 The Geostrophic Flow

In the geostrophic regions, the viscous term in (6) is negli-

gible so that in component form (3) and (6) reduce to

.’-ZQV;-_% (9)
29u=-§§ (10)
0=.2 (11)

u, v w_
oy Tz 0 (12)
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where &, V and ¥ are the velocity components in the x, y and z

directions respectively. It is obvious from (9)-(12) that

culo:
Nl

=0

which is the Taylor-Proudman theorem. The Ekman condition shows

that on the walls (Greenspan(s))

Ji=

2
w ='%(S_‘;) k- curl (u;-u_ ) on z=hg (13)
% .
w = %I(f‘;) k* curl (u, -u, ) on z=-hg (14)

For an inclined surface with unit normal n, the Ekman condition is

1
IR el

n- curl (u, - u ) (15)

(--G Ew) G

where + corresponds to being above the surface and - to being below

the surface. From (1) it follows that on the disc

n =isina+ kcosa (16)

Hence, (15) becomes

1 L
w + utana:i%(%z)z [%-%] on z =0 (17)

where it has been noted that the velocity of the disc is zero and a is
very small as compared to unity.

Introduce cylindrical polar coordinates (r, 0, z) with the
velocity components becoming (u,v,w). For r greater than a, (13)

and (14) coupled with the Taylor-Proudman theorem show that
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k+ curl (EG-EW) =k curlp_G=0

However,

2

Ve =28k - curl

G G
So, the pressure satisfies Laplace's equation and the general solution

for PG is
pG(r, 0) = Ao + Boe + Cologr + Doelogr

a0 - -
+ Zl{[An (_E)n + Bn(g) n] cosn@+ [Cn(-;-)n+Dn(-§-) n] sinnB}
n=
(18)

To have a single-valued pressure, necessarily

The constant Ao can be absorbed in Pg with no loss of generality and
can hence be taken to be zero.

The asymptotic behavior of pG(r, 0) as r +~ 0 is

-282 Ursinb for x-translation
P (s 0)~ (19)

2QVrcosh for y-translation

The radial flux of fluid in the Ekman layers on the top and
bottom walls can be shown (Greenspan(s)) to be
: C

_ e Yo
Qr—-(ﬁ) >0

This must be balanced by the radial flux of fluid in the geostrophic
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interior, QG' However, it is easily demonstrated that

Q

an
x

27
=h [ u~(r,0)rde =0
6 A §

1
which is valid to O(E?). Hence, continuity will be violated unless

Then, (18) reduces to
(0.0} a n
pG(r,B) = pm(r,e) +nzl [Bncosne + Dnsinne] (;) (20)

For r less than a, the boundary conditions (13) and (14) read

vi g %%
wg:-%(ﬁ)z[ax - oy ] on z = h (21)
Lok 8V ou
wg = z65)? [ axg - Byg ] on z = -hg (22)

Appealing to (21) and (22) for the scaling on &, (there is no loss of
generality in taking & and V to be of the same order of magnitude)

there follows

1
w ~E2U
g g

Since by hypothesis

1
E2<< tana

necessarily

W << U tana
g g

and similarly the right hand side of (17) is negligible. So, to leading

order,
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From (12) there results

Vg(x) for z>0

vV =
g B
Vg (x) for z<0
and hence
pgT(x) for z> 0
Pg = B
pg (x) for z< 0
where
I
dp_ (x)
—f— = zmr;(x) for 1=T,B

V:(x) and V?(x) are arbitrary functions of x. Thus, Pg is constant
along lines of constant x so that at the inner edge of the shear column

the pressure is an even function of 6. See Figure 2.

¥
p=p(a’,0)

W <2

line of constant x

p=p(a’,-0)

Figure 2. Geometrical Demonstration
that the Pressure is an Even Function of 0.
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Experience has shown, as will be verified a posteriori, that
in vertical shear columns it is true that to leading order the radial

momentum equation is

zm:%’ﬂ
r

Hence, if the thickness of the shear column is § where

6§ a
then the jumps in p and v are related in order of magnitude by
Ap ~ g Av << Av

where A( ) denotes the jump in ( ) across the shear column. Since
p and v are of the same orders of magnitude in the geostrophic
regions this means that p is continuous to leading order across the

shear column. Finally, noting that in the geostrophic regions

=_1l9
ZQu-—rae

necessarily u is also continuous across the shear column.

At this point the order of magnitude of the geostrpphic flow
inside the Taylor column can be determined. If the flow is of order
much larger than unity, then requiring continuity of the pressure
across the shear column forces p(a, 8) to vanish. This is a conse-
quence of the fact that the order of the flow outside the Taylor column

is fixed at unity by conditions at infinity. But this means

p:gr(X) =p§(x) =0
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so that
vix)=vBx) =0
B B

to all orders greater than one. Hence, the geostrophic flow inside
the Taylor column is also of order unity. Furthermore, since p is

independent of z outside the Taylor column, necessarily
T, ,_.B -
Py (x) =p, (x) = Py (x)
and
T B
A\ =V =V
g ) g (x) g (x)

Proceeding to next order, clearly, from (21) and (22)

3 dV (x)
Y g tor 220

w =
g 1
5 dV_(x)
2
%(;’—2) ——d;ig-——— for z< 0

Inserting this expression into (17) there follows

3 av_(x)
ug =_-I;(-5) cotajd;{-g—— for z2 0

Then, integrating to find the pressure there follows finally

vz AV, (x)
ug = tfg) cota o ‘ (23)
1 8 a®v_(x)
- 2 df " (x) +
Vg = Vg(x) + (S—;) cota [—'—a}—{—}-{— + Y—ﬁ—-] (24)
=yt V) |
wg = + E(ﬁ) dx (25)

(26)

1 T dv_(x)
Py = pg(X) + 29(%)é cota [fB(x):F y——Exg——]
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where

dp, (x)
8 . 22V (x) (27)

p
and fT(x), fB(x) are arbitrary functions of x. The superscripts T and
B correspond to values above and below the disc respectively. When
ambiguity in sign occurs in (23)-(26) the top sign corresponds to posi-
tive z and the bottom sign to negative z.

Finally, (20) can be simplified further by using the fact that

the geostrophic pressure must be an even function of 6. The results

are
’ r a x a ‘
Pg(r. 8) = -20aU[Z - 2] sine +nz=;1 B ) cosné (28)
a 2 i a ntl
uG(r,O) =U[l- (;) ] cose + mnﬂ an(—;) sinn® (29)
a 2 1 R a n+l _
vg(T,0) = -U[1 + (3) ] sind - 5 nZ;lan(;) “cosn® (30)
valid for x-translation. Similarly,
ool g
Pg(r, 6) = 22Vrcose + ), B (Z) cosn® (31)
n=1 ‘
1 X a n+l
uG(r, 0) = Vsino + 35 an(—r—) sinn@ (32)
n=
1 R a nt+l
VG(l‘, 0) = Vcoso - vIv™y Zl an(;) cosnb (33)
n=

valid for y-translation.

Before going on to consideration of the dynamics of the shear
column it is worthwhile to pause and discuss the implications of the
results to date. Equations (23), (24) and (25) show that to leading

order the flow is possibly rotational. Furthermore, since the rigid
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body rotation vortex lines cannot be stretched in the geostrophic
regions there can be no flow to leading order in the x-direction which
is borne out by (23). ‘However, the vortex lines are permitted to
translate across the disc in the y-direction as no stretching occurs
with such motion.
As a final note, define the velocity components for the geo-

strophic flow outside the Taylor column evaluated at r = a to be
U(8) = ui(a, 6) (34)
V(8) = v(a,0) (35)

1
2.3 Shear Column Structure for E4<< g << 1

To determine the function Vg (x) and the Fourier coefficients
Bn, it is necessary to examine the dynamics of the shear column.
Since there are two small parameters (a and E) in this problem it
turns out that several distinct ranges must be considered as is usually
the case in such problems. The order in which the ranges will be
studied is:

(a) E% <K a<<l;

(b) E% << a << E%;

1
(c) a~E*

The reason this order is chosen is because (a) is the most physically
interesting range. Also, a new boundary layer appears which has not.
been studied in great detail to date. In (b) a new layer also appears,
but the range is not physically relevant. (c) is a transition regime

and adds very little new information.
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2.3.1 The Shear Column Equations

If the equations of motion are written in boundary layer coor-
dinates as shown in Figure 3, the shear column appears to be locally

plane and the approximate equations of motion become

-28v = - % + v 6_121 (36)
ox
2
2u=-18. , 2 (37)
ox
2
0=-% +va__;’ (38)
ax
im0 (39)
ax
a0
x
0
Figure 3. Boundary Layer Coordinates
where
X = r-a (40)

It has been assumed that

9 K
— 6’ Bz

ox

>>1 0

o

to arrive at these equations.

Now, from (39), if the thickness of the shear column is &, then

&
U~ —=v
a
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so that
v azu
a§2 - E <z < 1
QV ~ (6/3) LN s
provided
6§>> Ea (41)

Assuming (41) to be valid, (36) reduces to

_2Qv =- 22 (42)

ax
Checking a posteriori shows that indeed (41) is satisfied. Equations

(37), (38), (39) and (42) can be combined to yield the shear column

equations?
3
ow _ v v
9z~ T 28 o3 (43)
3
ov _ v 0
P -2 3 (44)

The Stewartson sandwich layer structure consists of an inner

layer of thickness

Wafe

61 ~ E

W=

called a 3-layer, and a thicker surrounding layer of thickness

1

6, ~E*

al=

called a %-layer. Both of these layers are fat as compared to an

Ekman layer so that the Ekman condition still applies in the shear
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column. That is, the Ekman layer appears as a sheet of zero thick-
ness on the 3-layer and i _layer scaling, In boundary layer coordi-

nates, (13), (14) and (15) become:

1
2 9v

1,V

W:-E(—) — onz =h (45)
Q2 o T

1 +

w = (vsin@ - ucos®)tana + %(-Q‘f) QE onz=0 (46)
. ox
2

w = %(—5) -QE on z = -hB (47)

ox

2.3.2 Thei-Layer

On the outer edge of the shear column, there is a standard

4 -layer. The scaling on the vertical velocity component, w%_, follows

from (45) and (47) which is

So, (43) and (44) reduce to
3

owy ovy
T Tt =i (48)
Ox
BVL
z _
52 = 0 (49)

irh.-h ov
v 2 [ T B Z l:I :
W = (= PR e Y 3 50
3 (Q) 2h h (50)
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and the equation for v, is thus

83V1 40 % aV1

—
n
st

-

Wik

— 4
ox vh x
The solution is

v, = A(0)e"P% +B(o) (52)
ry

where

p? =2/ah, & =%/E (53)

This layer is commonly referred to as being quasi-geo-~
strophic as u; and v; are independent of z just as in the geostrophic
4 4
region. However, w; is a linear function of z which is not true in
4

the geostrophic interior.

2.3.3 The a-Layer

It is not possible to have a §-layer on the inner edge of the
shear column as the first term on the right hand side of (46) is much
larger than the second. So, if we appeal to this fact to establish the

scaling for w then
w ~ vtana

To determine the thickness of the layer use (43) to conclude that the

thickness § is

Wi

& ~ (Ecota)

This layer is fat as compared to a i-layer and thin as
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compared to a §-layer. In summary the relevant equations are

ow _ 83v‘_ '

) 5z 3 (54)

Bva

<= =0 (55)
subject to:

w, =0 on z = -hB,hT (56)

w, = (v sin8-U(0)cosb)tana on z = 0% (57)

This layer will be referred to as the a-layer and quantities in this
layer bear the subscript a. In (57), account has been taken of the

fact that to first order,
ua(x, 0) = U(9)

The change in elevation of the disc across this layer is

i 1 i 2
Aa~E3u, 3¢ =E3a?3
so that
Ao. a 2
E? E

Hence, the a-layer is ""aware' of the fact that the disc is tilted.
Pedlosky and Greenspan(6) find an a-layer in their work on
the sliced cylinder problem.

Proceeding to the a-layer solution
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(v

e 4

sin6-U(0)cosB)tana[l - Bz_] ; x< 0, z>0
T

(vDsin6-U(6)cosb)tana[l + 2] ; %<0, z<0 (58)
a hB
Hence, the equations for vaI become
83VT
—2 = vaa}’l‘“sme (vE-U(0)cos0) for z >0 (59)
ox T @
83VB :
—2 - 391-3%95’-1-”-‘?- (v2-U(8)coto) for z <0 (60)
ox B ¢
The solution for A is:
1
(sin@)"’E’,’f
(aT(B)e fore>0, z>0
1 x
%l sin6l 38 1
2 T \B . 3 ¥
e ‘ [bT(O)cos > | sin@] Er

+ ¢ (6)sin \Cg——l sing 3 s;]

va(§, 0)=U(0)coto + { fore<0, z>0

e

e
z(sin@P & 1
= B [bB(e)cos ‘[—;1 (sin9)3§;

+ g (0)sin ‘/_73— (sine)%’g";]

1 x
Is'mel3§B

where

for9>0, z< 0

\aB(e)e : for <0, z< 0

(61)
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% _ th 1
SI =X/61 and 61 = (m)3 for I = T,B (62)

It is necessary to consider the dynamics of the 3-layer to
determine the relations between the functions A(0), B(9), aI(O),

bI(G) and c (0). Since the 3-layer appears as a sheet of zero thick-

1
ness on the 3 -layer and a-layer scaling, the relations will be termed

jump relations.

2.3.4 The 1-Layer and the Jump Relations

For a %-layer, equations (43) and (44) suffer no further

approximation. The scaling in this layer is

[N
W

Hence, the boundary conditions (45) and (47) show that on the walls

- O(El/é)

w

W

while (46) shdws that on the disc

w = max [0(EY®),0(a)]

The ambiguity in the latter case is a consequence of the fact that the

change in elevation of the disc across the 3-layer is given by

1
3

Ai ~ E’a

1
3
which means

1
Ny L
3
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If a << E1/6, the %—layer structure is unaffected by the disc's incli-

6

nation. However, when a~ El/6 or a >> El/ the %-layer becomes
"aware' of the fact that the disc is tilted and special care must be
taken in constructing the solution.

It is not necessary to soive the 3-layer equations to determine
the unknown functions defined in (52) and (61) which in turn lead to the
solution in the geostrophic regions from matching. Rather, jump
relations across the -layer can be obtained by exploiting the tech-

(4) and extended by Moore and Saff-

niques first tried by Stewartson
man. (2,3) It will become necessary to extend the techniques a bit
further to determine the solution.

To set up the method, define

W

n=x/E (63)

Matching requires that

lim .
v * lim
g*0" Vo8 ’95 z) = n—-c0 Vi(n,0,2)
and
11m+ VL(‘S!G’ Z) = lim Vi (1’],9, Z)
E -0 4 n->+o 3

Now, comparison of (53), (62) and (63) shows

i1 * $ 3
e =EY24  and g% = 29 (tana)in
ahI

and hence
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1
[U(®)coto+a.(0)] +(—2—2 tanasing)®a(0)n+. .. . n-, 80, 250

n*-00,0<0, z>0

1
vi~ ¢ [U(0)cotera(0)] + 3 (—2— tanasine)’ (b (BT e (@) + ...

3
hBa.
n—+-00,0>0, z< 0
2 1
[U(G)cot9+aB(6)] + I > tanasin® I3 aB(B)n +...n~00,0<0, 2<0
h_a
B ! ‘
B(o) + A©)1 - EYZpn +.....] n —+0o (64)
\
.Equation (64) suggests that the structure of the solution of the i-layer
is
v%=vo+v1+v2+....... - (65)
where
n
vo~n as Inl-> o , (66)

Alsb, writing

wWiz=w +wW, +tw,+ ...
o 2

1

1

3

where
W= O(vn)

there results the following hierarchy of problems:
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8wn v 8vn

5z " 3 ) | (67)
for n=0,1, 2, .....

v a3wn

Dz ~ 2% o 3 (68)

with

s

wo=0 on z=hT,0,-hB (69)

Boundary conditions on higher order problems cannot be established
until the order of the vy has been established.

The n = 0 problem has been solved by Moore and Saffman. (2)
The solution involves use of the Weiner-Hopf technique. There are
an infinite number of solutions all of which are singular near the edge
of the disc except for one. If the nature of the singularity in v, were
known, the unique solution could be chosen. However, to do this, it
would be neces sary to consider the flow in a thin "collar" around the
edge of the disc of dimensions E% x E:I’-_ where the }-layer and Ekman
layer merge. This problem is extremely difficult and has not yet
been solved. To circumvent this difficulty, Moore and Saffman have
advanced an "hypothesis of minimum singularity" which turns out to
be analogous to the Kutta condition of airfoil theory. The hypothesis
is that the "radial pressure gradient be not larger inside the i-layer
than it is just outside. "

The conseciuencé of invoking this hypothesis is that the n = 0

problem is not singular. The only solution to the n = 0 problem

which is nonsingular is the solution:



-28-

w =0 and v_=v_(0)
o o o

. Hence, matching to the %—layer and a-layer solutions it must be the

case that
aT(G) = bB(B) = A(0) + B(6) - U(0)cotd for 6> 0 (70)
aB(G) =bT(9) = A(B)+ B(©®) - U(@)cotd for 6< 0 (71)

This is equivalent to saying that the circumferential velocity is con-

tinuous across the %-layer, i. e.,
v2(0,0) = vo(0,0) = v (0,0) | - (72)
For the n =1 problem, it is clear that
wy = 0 on Z, = -hB,hT (73)
because the asymptotic form of V% as n —+o0o shows that at least
v, = o®Y 12 55 o(!/#)
Furthermore, at worst,
wy = (vosine-U(e)cose)ta.na on z = O-+— (74)
Hence, taking account of (73) and (74),
h
f:l‘
-hB

for both n positive and negative. Using (63) and (67), equation (75)

dw, 07 ow, hTawl
= dz=£ —5z—dz+{+—az-dz=o (75)
)

reduces to
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83 hT

—_— f vldz =0

on h

B
Thus,

hT Bvl

[ 5=dz =a(®) + be)n (76)
“h n

B

and (66) shows that
b(6) =0 (77)

So, combining (64), (76) and (77) leads to the second jump relation,
namely
1/12

( )
A6 b 3 Qh? A(8)
By (tana)/3  (sing)¥/3

v

[1+%A2]aT(B)+€AZ @) = -

for 6> 0 (78)
v \1/12
2 3 1/6  h 152 A(6)
3+ 2%7ag(0) + 5= ¢ ,(8) = - 27/° ()
L3 ! B ¢ T h.. (tana)1/3 |sin9l1/3
for < 0 (79)
where
h. 1
B 3
A= GE—) (80)
hT

and (70) and (71) have been used to eliminate bB(G) and bT(e). This
condition has been referred to as the "continuity of total tangential
shear stress" by Moore and Saffman. (2) It is easily shown to be the

equivalent of
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0" ovD h. ov. h. vy (0,0)
[ v 000at [Fu— 0,0z - [ Tp—t——ds=0
-hgy  &x ot “hg ox

(81)

The physical meaning of (81) is that angular momentum is conserved

@),

in the }-layer. (Moore and Saffman
Equations (78) and (79) fix the scaling on aI(e), bI(e) and

CI(G). First, note that matching to the geostrophic flow for r > a,

f v (E, ) = V(o) (82)

and using (52) this means
B(0) =V(0) (83)
Therefore, B(8) = O(1) and certainly this is also true for A(0). So,

a;(6), by(8), c,(0) = oEY 1243

)
and the flow in the a-layer will be given by

v~ U(0)coto + O(El/lza-%) (84)

the correction term being small compared to the order one term.

So, (70) and (71) simplify to the single equation
U(6)cotd = V(0) + A(0) = vy (0, 0) (85)
)

Going back to (74), this result shows that v and w, are

o(E12) ana

w, =0 on z =0~ (86)
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The solution to the n =1 problem is again obtained by solving a
Weiner-Hopf problem. The minimum singularity hypothesis permits
v, to be singular and the nature of the singuiari‘ty is discussed thor-
oughly by Moore and Saffman. (2) The most important point, however,
is that the n =1 problem here is identical to the n = 1 problem
encountered for motion with zero a which firmly establishes the
validity of (81).

The solution of the n = 2 problem is much more complicated
as it involves a delta function singularity in Vo Physically, one
observes that there is a radial flux of fluid of order E% from the
Ekman layers on the solid surfaces into the %—-layer given by Green-

span(s) to be:

[

Q') = -4’ [ul0, 0) + vL(0, 0)] ®7)

As argued in section 2. 2, the radial velocity is continuous across
the shear column and in particular across the 1-layer. Also, (72)
shows that the circumferential velocity is continuous across the
$-layer. Hence, the Ekman fluxes on the walls balance.

» However, the Ekman flux from the disc must either enter

the 3-layer or circulate around the disc in the collar mentioned

o

earlier. Conservation of mass would require velocity of order E~
which entails viscous dissipation of order unity. However, there
is no mechanism to balance this dissipation so that the possibility
of a collar is ruled out.

To escape from the Ekman layers on the disc, the fluid

erupts as a vertical jet into the $-layer. Using (87), the net radial
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flux of fluid into the i-layer is
1
Q. (8) = -z (5)%[2U(0) + v Ti0,0)+ v, B0,0)] (88)

This must be balanced by the net flux of fluid in the direction normal
to the disc in the i-layer so that

Q0= Wi, 6, 0")-wf?&, 0, 0)] ax (89)
-0

where the integration is understood to be carried out on the scale of

n)

the 3-layer given by (63). wi is given by (for a<<1):
3

;n) =w% - (v%sine-U(G)cose)tana (90)

This is the way in which the i-layer expresses its "awareness'" of
the fact that the disc is tilted. It will be seen that the contribution
from the second term in the right hand side of (?O) is unimportant
for a<<E1/6. On the other hand, it is quite relevant for a ~E1/6 and

a> >E1/6. Integrating (43),

+ v hT 33Vl
wl(h )-W1(0)=-—f —3_ dz

where w; (T) is shorthand for WL(E, 0,7).
3 3

Similarly,
) , 0 8%vy
- - T - —_—3
w1(07) - wy(-hg) Zﬂfh —3 d=

Then, using (45) and (47),

[vi(bpHva(-hy)]l+ 55

<

hy 52
+ -

w1(0")-wy(07) = -1¢Z)7 (v 27

3 3 ox ox -hB
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Hence, integrating and matching to the § -layer and a-layer solutions

there follows:

[0 0]

1
[ [wyt0® )-wy (07 )]dx =1 &)z (v, B)+VB(O 8)-2v, (0, 0)]
Yo 3 2 a :
) }‘T[ 8%y, azfl
T —4 (0, 0)- (0,0)] d=z
pIy) —2 p—
hy o ox

(1)

By virtue of (72) the first term on the right hand side of (91) vanishes.

Therefore,

hT 8 v1 BZVI
f wy (07)-wy(07)] f
3

Inserting (90) into (89) and noting that

_1 %
V_% = ZQ a}_{_
| then
00 [0 0}
J et woT)1ax = [ [w(0h)-wy(07)] dx
-00 3 3 oo 3 3
tanasm Q0 1 98 —_
== —— (Ap1) dx
L = 5 OP

where the notation A( ) means the difference between { ) evaluated
atz=0+ and z = 0.

Hence
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00
[ wi™oh)-wio™) dx = f [w (0%)-wy (07)] &
w3 e

- 2225000 [Apy /e, 0)-Apy (-00, 0)

« (93)
However, from matching
Apy(-00,8) =Ap(0,6) (94)
and
Ap_;_(oo,e) =Ap%(0,e) =0 (95)

where the second equality in (95) follows from the fact that P1 is
4

independent of z. Using (93)-(95) in (89),

0 + - — . APQ(O: e)
Qe,(e) =-foo [W%(O )-w%(o )] dx + tanasin® g

which, when combined with (88) and (92) reduces to

o=

_%(.x‘.;.) [2U(e)+vZ(0, e)+vc]?(0, 8)]

, bp a v (o 8) azvfl
=—Q'f - —3 (0,0)] dz
h ox
Ap, (0, 8)
+ tanasin® g (96)

With the obvious changes in notation, this reduces to the result given
by Moore and Saffman(z’ 3) when a vanishes.
It is now possible to simplify the right hand side of (96) by

integrating across the £ -layer and the a-layer. From (51), there
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follows after integration
Bzv_l_ o 49 —la- i
—$ | =) [vi(®,0)- vy (0,0)]
ox 0 vh 4 +
so that
2
v 0 Vi

< 1 v

(97)
noting (82) plus the fact that

2

0 V_1~ - _
—% (x,0)—0
ox

as x —™ oo

Since v, is independent of z, (97) can be integrated directly to yield
4
h 2

v T o Vi v 1
2z [ —=% 0,00z = &)?[v (0,0)-V(0) ] (98)
-h, ox 4
B
Similarly, integrating (59) and (60):
v 82Vcrf sinBtana 9 T —
20 —2 (0, 0) =——h——- f [va-U(G)cote] dx (99)
ox T -00
2T
2 2 (0,0) = - S1n0tana [ [vB-U(e)cote] ax (100)
A g hy -0 °
Then, integrating (99) and (100) over z:
h 2.1
T 8 . 0
55 [ —£ (0,0)dz = sinbtana [ [vi-vD]dx (101)
-hB ox ' lo ¢ @
However,
L %
VO. - 29 a}—(
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so that (101) becomes (after matching to the geostrophic flow):

by 92,1 [AP4(0,0) Ap_(a,0)]
'ZLQ [ za (0,8)dz = sinutanaL gﬂ - 59 | (02)
hy o

It is necessary at this point to pause and determine the orders

of magnitude of the various terms in (96). Reference to (84) and (101)

show that
h 2 1
T 0°v 1
% [ —2 (0,0)dz = 0®>/12,%)
-h
B
while (98) shows that
hT 82V1 . H

26 | ——% (0,0)dz = O(E?)
‘hy &%

1
The left hand side of (96) is clearly of order E2 also. Then, since

5/12 % 3
Bt =&
EZ E*

equation (96) reduces to:

) hr. 32V(11 Ap,(0,0) 1
35 { —7 (0, 0)dz = tanasing — 3= + O(E?) (103)
-hg ox

so that using (102) there results finally

1
Apg(a, 8) = O(E2cota) (104)

Furthermore, (103) can be simplified by noting that (72) is valid to
L1/12 -1
O(E a *). So,
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_.T B _ 1/12 -4
Ava—va(O,e)-va(O,e)—o(E a )

which means that

2
Ap_(0,0) = o(&5/124- %)

(105)
Therefore, to leading order, (103) (and hence (96)) reduces to
v hT Bzvi
=5 { — (0,8)dz = 0
-hg o
Using (61), this adds the equations
V3 _
[1-32] ap(8) + Y5 A cg(6) =0 for 0>0 (106)
V3 |
[z -2]ag(®) - V5 cp(e) =0 for 8<0 (107)

where (70) and (71) have again been used to eliminate bB (6) and bT(e)
with A given by equation (80).

The physical meaning of this constraint can be seen by noting
that

Ap (0,6) Ap (a,0) 0
a g _ T B, ~—
pI9) - 20 = _foo [vg - vg ] dx

so that

0
1 d d T B -
50 9o AP, (0, 8)- Apg(a, 0)] =a§_fm [

v-v
0‘udx

5/12 -2
Now, to order E a ®, u, and p, are related by
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which is also true in the geostrophic region. Hence,

0} -
£u
gla

0
Au_(a,8) -Au (0,8) = f [VT-VEJ dx
© e -00

or

[ug (2, 0)-ug (0,8)]- [12(a, 0) - u(0,0)]=
0

1 d
)
-

{[VE-U(G)cotO] - [VS-U('G)cotG]}d;
By virtue of (104) and (105) the left hand side vanishes so thé,(:
d 0 T — d 0 B —
35 | [vg-Uecote] dx === [ [v. -U(8)cote |dx
- 00 - Q0
Of course, (104) and (105) also show that
T B
u ,9)=u_(0,0
g (a, 9) o (0, 0)
and

T _ B
u_(0,0) = u_(0,6)

Hence, it follows that (106) and (107) come from the requirement that

4

0
55 J [v,-U(®)cote] ax (108)

1
ug(a,e) - ua(O,e) —';
-0

independent of z. This merely insures that mass is conserved in the.

a-layer. To see this, define

M

0 .
3)= [ [v_ -U(6)cote] dx © {109)

Qo

This is the excess flux of fluid swirling around the a-layer. It is
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present because of the oscillatory nature of v, across the layer.

Consider an infinitesimal volume element of unit height as shown

in Figure 4.

p[T(0)+ 33 o]

e e e
pug(a, 0)ado pua(O, 90)ade

/93(9)

Figure 4., Volume Element and Fluxes of Fluid
into and out of the Element.

Conservation of mass demands that

, 4
pu,(a,0)add + pJ(0) - pu,(0,0)ade - p[T(0) + T3 0] =0

or, simplifying

u,(,0) - u (0,0) =-:: -‘1fl—g3—) (110)

Noting (109), it is clear that (108) and (110) are identical.

It is possible to obtain another equation from (96) by going to

next order. This is equivalent to writing

2
3

aI(B) = El/lz(cota)% a%o)(e) + E1/6(cota.) a?)(e) S PP



-40-
and similarly for bI(e) and cI(O). Then, equations (106) and (107)

result for a{o)(e), etc. The problem of having to determine ail)(e),

"f' T
e

.
« 15 Ciy

cumvented by integrating across the a-layer to eliminate

82v
Q

(0,9)
o 2

in favor of Apg (a, 8) which is known from equation (26). Inserting

(98) and (102) into (96) yields the final and most important jump

relation:

[2v, (0,8) - 2V(8) + 2U(6) + v (0,8) + v (0, 6]

1 AP (a’ e)
+ 2%)3 tanu-———%ﬁ-—— 8in@ =

and using (72) this reduces to:

Ap_(a, 0)

' 1
24, (0,0) + U(9)-V(@) = - ({3)2 tana —E=—— sine (111)

Finally, (61) shows that

vg(a, 0) = U(0)cotd

(112)
and from (85) this means
v (a,0) =wv1 (0,0)
g % :
wherefore (111) becomes
1 Ap _(a,0)
ng(a,e) + U@®) - V(@) = - @)"‘ tana—-——%—h—— s5in6 (113)

It is clear at this point how the second term on the right hand

side of (90) influences the solution. Had it been neglected, the term



involving Apa(O, 0) would appear

1
E2cota. But,

1
12 cot 1/6
—_— Cftg = E/ “cota
E3
1/6

so that if a << E ,
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in (113) and it would be of order

1
Apa(o, 0) =Ap; (0,0) + o(E2cota)
4

or

1
Apa(O,e) = o(E2cota)

On the other hand, for a~ El/6 or a >> E1/6, Apa(Q, 0) will not, in

Ry
fact, vanish to order EZ2cota.

To evaluate Apg(a., 9) note that on the inner edge of the shear

column
x =acosH

so that

g
dx ~ asin®

[« N

0

Hence,

dv_(x) dv _(0)
- g .58

Y™ax ~ " "de

where Vg(e) is shorthand for Vg(acose). Using the same shorthand

for pg(x) and fI(x) there follows from equation (26)
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" - v 2 T o (B v, )
Apg =P8(a'9'0 )-pg(a,0,0 )=22() cota[f~ (0)-f (0)+2 55 ]
(114)
But,
= i 5
ug(a,e) Vg(e)sme (115)
and
vg(a, 0) = Vg(e)cose | (116)

Combining equations (112), (114) and (116) and rearranging terms, (113)

reduces to

du(e)

Zde

+U@) - V(©) =- [fL(8) - £5(0)] sin6 (117)

It is appropriate to mention here the result for the case when
the upper surface is free. If the surface tension is large enough to
keep the surface plane to within (‘)(E%), the free surface cannot sus-
tain an Ekman layer. This is true because the geostrophic flow
s'atisfies the condition that the tangential stress vanishes on a free

surface. Hence, (13) must be replaced by
w=20 on z = hT (13a)

The geostrophic flow is unaffected to order one so that (23)-(33) still
hold to leading order. However, (114) must be replaced by
1 dv_(o)
=20&)2 Te)-£B 3_g =
Apg(a, 0) = 2 (Q) cota[ £~ (0)-f"(0) + 536 ] (114a)

Integrating across the shear column, it is found that (113) must be
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replaced by

3 v 1 AP (a’ 9)

7vg(a, )+ U(®) - V(©) = - ﬁ)a tana —S5 sin@ (113a)
so that (117) must be replaced by

3 4U0) 4 ye) - V(@) = - [T (8) - £(9)] sine (117a)

Equations (70), (71), (78), (79), (80), (85), (106) and (107) are
sufficient to determine all of the unknown quantities in (61) as func-

tions of A(0). Omitting the algebra for brevity, the results are:

A(B)

aq(0) =byp(6) =-S5 m ' | (118)
A(0) :
=b = -
aB(e) T(e) S I—s;a%— (119)
cgle) = 22 5 £0), (120)
NERDY (sin@) 3
_ 2x-1 A(0)
c(0) = S : (121)
T V3 | sin0 |3 :
wher
° 1/6 n 3, v M2
207 >)
S = T &h 122)

b 2
(tana)3 (1 =N+ A7)

So, once A(0) is known, the a-layer structure (and, of course, the

1 -layer structure) is known. But, from (85),
A(©) = U(®)coto - V(0) (123)

so that once the geostrophic flow is known, the shear column struc-

ture is known.
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It will be demonstrated in the next two sections that equation
(117) is sufficient to determine the solution in the geostrophic regions.

2.3.5 x-Translation Solution

Equation (117) has a very important property. Since fT(B) and
fB (6) are both even functions of 6, the right hand side of (117) must be
an odd function of 8. Using equations (29) and (30) in equations (34)

and (35) respectively there follows:

(0.0]
UE®) =52 Zl nB_sinn@ (124)
n=

oo
V(0) = -2Usin@ - —Zsll_a_, nZ;.lancosnO | (125)
Thus, (117) simplifies to:

1 R 1 X .
2Usinb + 593 nz—ll n(Zn+1)Bncosn9 + mnz—l ansmne

= - [£L(0) - £2(0)] sin® (126)

Observing that the right hand side of (126) is odd in 6, necessarily

only terms in sinn® can appear on the left hand side. Therefore

B = 0 for all n>=1 | | (127)
It follows immediately that

tT(0) - (o) = -2U
and hence

fl(x) - P(x) = -2U (128)
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Also,
__U(e) _
Vg(e) =26 - 0
Therefore,
Vg(x) =0 (129)

This shows that to order one there is no flow relative to the
disc inside the Taylor column. The flow outside the Taylor column

is potential flow of a uniform stream past a circular cylinder given by
0) = U[1 | 2)2 0 | 130)
U, (r, 0) = [1 - G ] cos | (
v (r,0) = -U[1+ &)°] sino (131)
G’ r

The structure of the shear column around an axisymmetric
fat body was studied by Jacobs. (7) The fluid inside the Taylor column
was found to be stagnant just as in this problem. Hence, when the
disc moves in the x-direction it behaves as though it were a " fat"
body.

To calculate the force and moment on the disc when the disc
is moving at uniform speed, U, in the negative x-direction, it is

necessary to perform a Galilean transformation. So, defining

I

=u- Ui

then
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with

P =p+ 22Uy

The physical pressure follows from (4).

P = pp+ 2pRUy + 1p0% 1?2 132)
Inserting equations (26), (128) and (129) info (132) there results:
. v L
ApP(x,y) = -4pQ U(ﬁ )2 cota (133)

where
APGE, y)=P (x,y,07) =P (x,v,07)

The viscous stress on the disc is shown by Greenspan(s) to be

(noting that a< < 1)

82

B [y - 8,0 tkx (8,-8)] foraz 0

Nj=

o~

‘r:lH

Therefore,

L
AT(x,y) =200 kx (@_-4_)

(134)

]
|
g

with

AT, y)=T(x,y,0 ) - T(x,y,07)

However, for this flow,

d -4 = ofl
8,-%, o(l)

so that



-47-
1
AT = o(E?)

So, only the pressure term is relevant in the calculation of the force

and moment. Integrating (133) over the disc

F=-[ [ APnaxdy

disc

and therefore
2., V.3 .
F = 4rpfta”U(g)%cota [i tana + k ] (135)

The moment on the disc is

M=- [[ AP rxndxdy
: isc
or
VaZ. 2
. a a =X
M % 4pQUE)? cota [ [iy - jx + kytana ]dydx
-a

-\ /aZ_XZ

and each term in the integrand is odd in either x or y so that the
integral vanishes to leading order. Therefore

1
M = o(E2cota) (136)

, 1
In summary, there is no net moment on the disc to O(E?cota).

1
There is a vertical force (lift) on the disc of order E2cota. The disc
1
suffers a horizontal force (drag) of order E2.

The a-layer and }-layer solutions can now be determined. In

‘light of (127), equations (124) and (125) become
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Uu®e) =0 (137)

V(0) = -2Usin® | | (138)
Thus, (83) and (123) show that

A(9) = 2Usin® (139)
a.nd.

B(0) = -2Usin® © (40)

Inserting (139) into (118)-(121) completes the a-layer solution.

Conservation of mass in the a-layer indicated earlier that

there is a flux of fluid of order ES/12 a” 2/3 swirling around in the

layer. Doing the integration in (109),

1/6 1 2
30) = -y 2B (B3 (V512 gp0)5 _AM0), (141)
C(1-A+2T) T Qh | sinB|3
where
1 for 6> 0
y = 142)

-72-(1+zx) for ©<0

Hence, J(0) will be continuous across 0 = 0 and 0 = 7 while J'(0) has

a singularity of order

J'(O)”Es/lza"z/39-2/3 as 0 -0

and a similar singularity as 0> 7. In fact, Ve will be continuous

across 6 = 0 and 0 = 7 while avu/ae goes to infinity like
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ov
o 1/12
36 ~F

1

11
"39"3 as0-—-0

a

and similarly for 6 - 7. To resolve this problem, further layers in
which derivatives with respect to 8 become important must be in-
serted. These layers are again passive and their detailed structure
will not be given. The appropriate equations are given in the Appen-
dix.

As a final note, if the upper surface is free, (117a) shows
that the geostrophic flow is unchanged.

2.3.6 y-Translation Solution

Combining equations (34) and (35) with equations (32)-and (33)

there follows:

(00] : ’
U(6) = Vsin® + 5 nzl nB_sinn (143)
1 R '
V(0) = Vcos9 - >ia nzz‘ll ancosnG (144)

Proceeding as in 2. 3. 5, (117) becomes

fo.0)
Vcos0 + V;ine + —2%2-5 nz_;ln(ZnH)Bncosne

1 f . T .
+* 5o n=1ansmn9 =-[f (9)-fB(9)]sm9
so that necessarily
B, = -2Qav, B =0foralln>2 (145)

Hence,
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fl(x) - 2(x) = -2V (146)
V. (x) = v (147)

This means that there is a uniform flow in the y-direction
inside the Taylor column. The uniform flow at infinity has suffered
a deceleration from V to 2V in transit through the Taylor column.

The potential flow outside the Taylor column is:
a2 .
u(r,8) = V[1 - 3(2)°] sine | (148)
vg(r,0) = V[1+ %(%)2] cos® | (149)

 and the streamlines are plotted in Figure 5.
Performing a Galilean transformation to make the disc move

into an ambient fluid with the container walls at rest, it must be true

that
G=u-Vj]
" and
P =p - 2QVx
so that
P=pp-209vx + tp0%? (150)

Therefore, from (26), (146) and (147):

4 v L ‘
APx,y) = - 5 pPRV(g)*cota (151)
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Figure 5. Geostrophic Flow for y-Translation.
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Therefore, using (134),

4 v
A7 =- gpQV(-Q-)

[N

i (152)

The force on the disc is

F=- [ [AP ndxdy+ [ [Ar dxdy

or

F:éﬂpﬂa V—')%cota[itana+ k|- fL-'lrpﬂaz'\’l)%i
253 = - 3 (Q -

F= 2022V cota k - (153)
1
Hence, to leading order (O(E?)) there is no drag on the disc!
Just as in the x-translation solution, it is clear that the net
moment on the disc involves integration of odd functions of x and y

over the surface of the disc. Therefore,

_M = o(E%cotu) (154)

To complete the shear column structure note that:

U(®) = 4VsinG (155)
and

V(9) =—§-VC059 (156)

So, (123) reduces to:



A(9) = -5 Vcos8 (157)

B(0) = 3 Vcos® (158)
From (141) and (157) it is seen that this motion involves an

even stronger singularity. Here,

2 _2
70) ~E3/12 o% g°3

Also,

i 1
va”El/12 a 3203 as -0

so that the velocity is also singular. The analysis in the Appendix is

applicable for resolving the apparent singular behavior of these func-

tions.
For a free surface on z = hT, (146) and (147) must be replaced
by ; .
Tix) - Pa) = - v (146a)
V (x) =2v 147a)
g x) =z ( a

and the force on the disc becomes

‘ 1
F=37p2a°v)? cotak | (153a)

1
The moment is still o(E?cota).
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2.3.7 Summary
For x-translation, there is no flow inside the Taylor column

to order one and the flow outside is simpl

stream past a circular cylinder. There is no net torque on the disc
to O(E%coto.) while there is a lift (vertical force) to this order. The
drag (horizontal force) is O(E%).

For y-translation, there is a uniform flow in the y-direction
inside the Taylor column. The speed of this flow is two thirds the
value of the speed of the uniform flow at infinity. There is again no

1
net moment to O(E2cota) while there is a lift to this order. However,

the plate suffers no drag to order E%
The shear column structure differs from the standard Stew-

artson sandwich layer structure. It is not possible to have a 1. layer
on the inner edge of the shear column. A new layer on the inner
edge of the shear column appears. The thickness of the layer is
proportional to (Ecota)% and it is referred to as the a-layer. The
velocity behaves like an exponentially damped sinusoid across the
5/12

2
layer giving rise to an excess flux of fluid of order E a” 3 swirling

around circumferentially. There is a 1-layer on the outer edge of
the shear column. Rather than solving the 3-layer equations directly,
the equations are integrated across the layer to determine jump
conditions, The jump conditions across the 1_layer are used to re-
late the a-layer and the -layer. There are four jump conditions
which are:

(a) the circumferential velocity is continuous;

(b) the total tangential shear stress is continuous;
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(c) mass is conserved in the a-layer;
(d) mass is conserved in the I-layer.
As a final note, it must be pointed out that this analysis de-
pends upon the radius of the disc being much larger than the thickness

of the a-layer. This leads to the restriction

e

a
<< =
E

Requiring the distance from the walls to the disc to be small compared

to the thickness of the Ekman layers on the disc and walls means

i
>> B2

ol

Also, for the Ekman layer and shear column structure to be

unaffected by the nonlinear inertia terms it is necessary to require

that

i4 1
Ro << E?'(%P

1 1
2.4 Shear Column Structure for E2 << a << E*

This range will be studied to complete the study of the entire
range of a for which no closed geostrophic contours exist inside the
Taylor column.

2.4.1 The%-Layers

For this range of a, the first term on the right hand side of
(46) is negligible. So, the usual Stewartson sandwich layer structure
holds, i.e., there is a {-layer sandwiched by i -layers both on the

inside and outside edges of the shear column. Hence,
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The solution is
poé
AT(O)e +BT(9)
3 »
v%'_ = AB(G)e +BB(9)
A(9)e +B(0)
where

pI2 = Z/ahI, pZ = 2/ah,

2. 4.2 The Jump Relations

the 4-layer.

notation. Therefore

7211
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x<0,z2>0

x<0, z<0

AT(G) + BT(G) = AB(G) + BB(G) = A(9) + B(9)

The second jump relation follows from continuity of total tan-

gential shear stress, i.e., from (81). Using (160),

1 1
2 2
hT AT(G) +h

Ry
B AB(G) = - h2A(0)

(159)

(160)

(161)

The first jump relation follows from continuity of v across

That is, (72) is valid here with the obvious change in

(162)

(163)
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The third jump relation is derived by requiring the radial

Ekman flux on the disc to erupt as a vertical jet in the }-layer.

However, in this range

1
E2cota
=.coa

E3?

= El/6 cota << 1

so that

1
Api (07,98) = Apy (0+, 0) + o(E2cota)
p >

which implies

1
AplI (07,08) = o(E2cota)
P

‘Consequently, (89) can be replaced by
o] + _ _
Q) = -fm[w%(o ) - w(0T)] dx

Proceeding as in subsection 2. 3. 4 there follows

1
-1@)Z [2U(8) + v, (0,08) + vy (0, 0)]
4 4 )

L PpogPy, o%vi
= 2 ['ja}'_:z'i (0, 0) - _j (0, 9)] dz
“hy %

Integrating (159) for x <0,

2 1

d vi 1
—£ (0.0) - 29z [ v1 (0, 0)-vi (-c0, 0)]

th

so -that

; (164)
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h 1
—"Q-j;l —4 (0,0)dz - (Q)a[vg(o,e)wf(o, 9)-v'_§(-oo, 6)-v§'(-oo, e)]
(165)
and the corresponding result for x> 0 is still given by (98). So,
inserting (98) and (165) into (164), grouping terms and using (72) leads

to the third jump relation:
T B
u(e) - v(e) + vy (-00,0) + vy (-00,6) =0 (166)
, 4 4 .

Equations (162), (163) and (166) are the reqﬁired jump rela- |
tions. It is not yet possible to proceed to the solution as considera-
tion of yet another layer is required. The reason for this is
explained in the next section.

2. 4.3 The Ga-Layer

Up to this point, the shear ‘column structure is identical to
the structure for zero angle of attack. However, if the inner %-layer
velocity is matched to the geostrophi;: velocity a contradiction arises.
Equation (166) possesses no solution! To understand this apparent
inconsistency, consider the following argument. Since the jump in v

across the 4 -layer is of order one, the jump in the pressure must be

1
Apl ~E4
4
"However,
1 1
2
= CiOtﬂ = t:f:a >>1
B4

i
Thus, p must be continuous to O(E2cota) across the } -layer (and of

course it is also continuous across the i-layer to th1s order). To
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this order, Apg(a, 6) is given by (114). So, under the assumption tﬁat
the standard Stewartson layer structure connects the geostrophic
regions, necessarily Apg must vanish. This is true because p must
match to the geostrophic pressure outside the Taylor column and
outside the Taylor column p is independent of z. However, fB(G) and
fT(O) are even in 0 as is vg(e), so that i;-’e—g (0) is odd in 8. The only

way for Apg to vanish is to have

£ (9) = £2(0)
and
dVv_(e)
g -
—q5 =0

Then Vg(e) (and hence Vg(x)) is constant so that, to leading order, the
flow inside the Taylor column is irrotational. But, disregarding the
extra knowledge that & vanishes inside the Taylor column, this prob-
lem is identical to the problem solved by Moore and Saffman. (3)

The solution to that problem shows the free stream to suffer a deflec-
tion of 18. 4° in which case ¥ is not zero.

It must be concluded that an additional layer is required con-
necting the geostrophic flow inside the Taylor column to the 1 -layer.
Furthermore, this layer must be such that a jump in p of order

1

E2cota can be accomplished. Anticipating a jump in v of order one

across this layer then the thickness must be
v.i
6~ (5_2)'2 cota

Referring to the boundary conditions (45), (46) and (47) it is clear that
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Ga _

5. = 0 (167)
ov

Ga _

5o = 0 . (168)

where the subscript Ga refers to quantities in this layer. The layer
will be referred to as the Ga-layer. The boundary conditions (45),

(46) and (47) are correct as they stand with the understanding that
U‘Ga(x’e) = U(0)

This layer, like the a-layer, appears in the sliced cylinder problem

(Beardsley(s)).

Noting (167) and (168), it follows immediately that the relevant

+

equations of motion are

i)vG‘1

1 ‘
%)Zcota + (vGasihO-U(e)cose') =0 for z20 (169)

The solution to (169) is:

v'cl;a(e)H(-e)e'"5*Sine . 2>0

VGa U(0)cotd +
Vga(G)H(e)eE *sinf , z<0 170)

where H(0) is the Heaviside stepfunction and

E* = > —X (171)
(-s—z)zcota

(170) shows that
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- * oo
YGa U(9)coto ag & o0

which checks with (112),

Integrating (169) across the Ga-layer, there follows:
T T QL o 0 T _ —
Vo (05 9)-ch (-00,0) = - (-;)atanasine:fw [vGa(x, B)—U(O)cote]dx (172) |
and
B 0 o B ot 0. _ = '
VG (05 8)-V 5o (-0, 8) = ()7 tanasin® _fm [vGa®: 8)-Ute)cote] dx  (173)
From matching to the -layer,
vi (0,8) = vi(-00, 0) 174)
Ga'™’ 1 ! »
and similarly, matching to the geostrophic flow
T B '
VGU.(-CD’ 9) = vGﬂ.(-m’ e) = Vg(a, B) : (175)
Adding equations (172) and (173) leaves
1

v; (-c0,8) + v; ( ®,8) = 2v,(a,0)- (—) tanasme[vG ' Ga]dx (176)

Finally, from (42) and matc’hing: :‘

O[VT B 1 d% =25 [Apy (-0, 0)-Ap_(a, 8)
‘-foo Ga ~ VGal =ZLAPRL ',@" r"' ;Pg ’ ]

where
Ap(, 8) =p,8,0")-pi,0,07)

Then, since
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1
Ap; (-0, 0) = o(E2 cota)
Y

equation (176) becomes

B T q  Bp,(2,0)
vi(-00,0)+vi(-00,0) = 2v _(a,0) + ) tana —& ~—— sin@
L 3 g v 252

a77)

Inserting (177) into (166) leads to (113) which in turn reduces to (117).
Similarly, it is easy to demonstrate that (117a) holds if the top surface
is free.

This means that the same geostrophic flow prevails in this

range as in the range
1
E*<<ax<<1

The shear column structure will be worked out in the next two sub-
sections.

2.4.4 X_Translation Solution

For brevity, detailed calculation of the Ga-layer and 1 -layer
solutions will not be given. Only important results are shown,

Equation (174) can be rewritten as
T
BT(G) = U(0)cotd + VGQ(G)H(-G) (178)
B (0) = U(6)coto + Vga“’ JH(0) 179)
Also, (166) means

BB(O) + BT(O) = V(8) - U(0) (180)



-63-
The system of equations (83), (137), (138), (162), (163), (178), (179)

and (180) can be solved to yield

vE (0)= Vg (0) = -2Using (181)
BL(8) = -2Usin0H(®) (182)
B.(0) = -2Usin0H(-6) (183)
B(®) = -2Usin® (184)

= LI (hZ + h?)H(-0+hZH(@)} 2Usino 185
A () =xfn %BH( 0)- (h2 + h?)H(O)} 2Usin® (186)

1 1
A(9) ='K{ 2 H(- e)+h«2 H(0)} 2Usin6 - : (187)
where
TR

K =hZ +hZ +h (188)

2.4.5 y-Translation Solution

Equations (137) and (138) are replaced by (155) and (156). The

other equations used in 2. 4. 4 are still valid so that the solution be-

comes:
Ve, (0) = VS (0) = - $Vsing (189)
B5(0) =%V [cos6-sin0H(0)] (190)
Bp(68) =35V[ cose-sin6H(-8)] (191)
B(0) ==Vcosé (192)

3
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2V 1 1 i 1 .
% g {n%cose + [-hZ H(-0)+ (h2.+h?)H(0)] sine}  (193)

Ag(®) =
2V oL L1 1 .

Ap(8) =%g {h?cose+[(hZ+h®)H(-6)-hZ H()] sine} (194)
LV 1 1 1 1 ]

A(0) = -%3 {(hZ+hZ)cos6 + [hZH(-0*h3H(0)] sin6}  (195)

with K defined in (188).

2.4.6 Summary

The flows in the geostrophic regions are the same as in the
range E% << a << 1, This is, of course, true for both x and y-
translation.

The shear column structure is essentially identical for both
motions. There is a $-layer sandwiched by —}-layeré both on the
inner and outer edges of the shear column. It becomes necessary
to infer the existence of yet another, fatter, layer to complete the
solution. This layer is iocated on the inner edge of the shear column.
Its thickness is proportional to E%cota. It is referred to as the
Ga-layer. Just as for the case when a vanishes only three jump
conditions across the 3-layer evolve:

(a) the }-layer circumferential velocity is continuous;

(b) the total tangential shear stress is continuous;

(c) mass is conserved in the $-layer.

-1
2.5 Shear Column Structure For a~ E*

This section is included for two reasons. One is for the sake

of completeness in the study of the motion of the disc for

1
E2 << ax<<l
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The other is to add further clarification of the technique employed to
determine the geostrophic flow without formally solving the shear

column equations. That is, the intent is to further enunciate the im-

portance of (113).
1

When a is of the same order of magnitude as E*, the Ga-layer,
4-layer and a-layer merge. The equations for the i.layer in this
range are again (48) and (49). However, (46) is valid as it stands

1
since both terms are of order E4. Using the same notation as in 2. 4,

it will still be true that
w (x,0) = U(8)
P

Proceeding just as in section 2. 4, the equations for the 1 -layer at

the inner edge of the shear column become

83v'1r 1 3V;I‘
1 2 1
- (A2} = Zfeno (Toing_ue)coso) = 0 (196)
ox th ax T 4

3B 1. B
0 Vi 2 8V_1_

% - 492) 4 4 221308 (Dsing-U(B)cosd) =0 (197)
ox vhB 9x B 4

The 1 -layer at the outer edge of the shear column remains unchanged.

There is little to be learned from doing the complete solution
for the §-layer in this case. It is in most respects similar to the
solution when

1
E2 << a << E*

Ji=

It does however possess one feature which is not seen in a standard

1 _layer. Over a fixed range of 0, the circumferential velocity behaves
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like an exponentially damped sinusoid rather than strict exponential
decay. This feature is reminiscent of the behavior of the a-layer.

Ty
X1

]
[
(¢]
e ]
or

[¢]
e
1

contain additional unknown functions of 6. This, of course, requires
more equations to determine a solution. In these respects the formal
solution will more closely resemble the work of section 2. 3. To see

this, assume that
vi (%, 0) - U(@)cotd = F(0)e’™
4

Equations (196) and (197) show that

ot

'2' _ .
0’3 _ (492) o T Zﬂtil}'iagne =0
th I

There will be one real root and two conjugate imaginary roots if

( , )%
2
2 QhI

tan a

sin@ > (?7-) sinet‘

which is reminiscent of the a-layer structure. There will be three
real and unequal roots if the inequality is reversed. This is the
nature of a conventional ;-layer. Hence, the }-layer will appear
as in Figure 6.

It is still possible to obtain the solution for the geostrophic
' regions by using the techniques developed in 2. 4, Note first that
another consequence of the fact that |

1 1
E2cota ~ E*
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Figure 6. Schematic Representation of%;-Layer

1
Structure for a~ E*, (not to scale)

i
is that a jump in the pressure of order E2?cota can now be accom-

plished by a 4 -layer. Certainly vi will again be continuous to order
4
one across the 3-layer so that (164) is valid. Integrating (196) and

(197) across the 1 -layer leads to the expressions:
' 2. T

v Eﬁ_( ) = & % [ ) )]
ey — 0,0) = (=) V(OO-Vl(mae
29 axzv g) h, 1
+ 30 [p1 (0,0) - pi T (-0, 0)] sind (198)
2 B
v 2% 00y = g [vE(0,8) - v (-w,0)]
— , = (= — Vl - Vl 0o,
X 2 &) By,
- ;;n}c:B [p?(o,e) - pg(-m,e)] 5ind (199)
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so that

h 2.1

T 9o Vi 1
LN f —i dz = (i)ifv,Tm e\+V‘B(0 e\_x'r:I‘I=w 9‘—'\«'B’-m g1}
Yol i} VRN A T S 7 i > 7 _L \ ’ J _1-‘ N ’J
A Y1 :Ih a;;-‘ L2 Y + 1 1

B

ta .
S [Ap_} (0,8)-Apy (-0, 8)] sin6 (200)

1
Since p is continuous to O(E?cota) across the 1-layer, match-

ing to the 1 -layer on the outside edge of the shear column shows that

AP_L (0, 9) =0
4
since p is independent of z in that layer. Equation (98) still holds

and when used in conjunction with (164) and (200) there follows:

2U(012[v] (-, 8) + v (-00,8)-V(0)] = - B2%Ap, (-00,0)sing
2 % : 3

(201)
This is the analog of equation (166). The only difference is that (166)
is homogeneous. The fact that the right hand side of (201) is nonvan-
ishing is a result of the extra unknown functions in the §-layer solution

mentioned earlier. Matching to the geostrophic regions
V'_II_‘ (-(D, 9) = V?(¥OJ, 9) =V (a: 9)
p ry g
and
Ap; (-0, 0) =Ap _(a,0)
ry g

Clearly equation (113) and hence equation (117) follow immediately
from (201). This, of course, means that the results of subsections

2. 3.5 and 2. 3, 6 pertaining to the geostrophic regions are valid
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1
when a~ E*.
2.6 Discussion
The same geostrophic flow is valid for both x-translation and

y-translation for all a in the range
1
E2<ax1

The solutions are discussed thoroughly in subsections 2. 3. 5, 2. 3. 6
and 2. 3. 7.

The shear column structure varies according to the ratio of
a to E% Discussion of the detailed structure is given at the ends of
sections 2. 3 and 2. 4 and at the beginning of section 2.5. The results
will not be repeated here.

Rather, a more important fact is relevant. In all ranges of
a, equation (113) was shown to hold. Because of that, the geostrophic
flow is invariant throughout the range of a. The question naturally
arises as to whether or not (113) or an analog to (113) can be used to
determine the geostrophic flow for tlhe other four motions. If this
is true, the detailed structure of the shear column needn't be worked
out,

The answer to this question is in the affirmative. Justifica-
tion of this claim is very simple. Regardless of the type of motion,
the shear column equations will always be equations (43) and (44).
The boundary conditions (46) will be changed according to whether
or not the disc has a normal component of velocity. Also, if the curl
of the velocity of the disc or the walls has a normal component,

(45)-(47) must be altered accordingly. However_, this only affects
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the structure of the outer layers (a-layer, 1-layer, Ga-layer), It
will still be true from the minimum singularity hypothesis that v
experiences no jump across the 3-layer. This means (92) will always
be valid. Further simplification of (92) results from integrating
across the outer layers. The only way in which the outer layers
are influenced by the boundary conditions is in the asymptotic form
of vas |x| —o. This behavior is unimportant in determining the
jump condition relating the geostrophic flows inside and outside the
Taylor column, e.g. ,. see equation (101).

One change will be necessary. (88) is not completely general,
If the unit outer normal to a surface is n, and the surface velocity is

_1_1p, the excess flux in the Ekman layer will be given by

vz _ ]
re—s nx[(u-u)+nx (u-y)] (202)

g:

tuf=

where u is the fluid velocity outside the Ekman layer. In this prob-
lem n is given by (16). For a small, the radial component of (202)

becomes simply:
[u-u_ + v-v_]
P P

This means that (88) must be replaced by

Q_(8) = l(l)%[Zu(eH vE(0,014v>(0,0)-2u_-2 203
et/ T T 2lQ att PV —up-vp] (203)

As will be shown in the following sections, whenever the disc
has a nonvanishing vertical component of velocity, the geostrophic
flow will be of order cota rather than one. But this means that for

these motions,
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u, v <<u, v
p p a a

and hence (203) is identical to (88). Therefore, (113) will apply to
all motions of the disc.

To clarify this discussion, the equations for the Ga, 1 and
a-layers will be derived for the rising disc in Chapter 3. The equa-
tions will then be integrated to demonstrate that indeed (113) still

holds.
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3. VERTICAL TRANSLATION FOR INFINITESIMAL a

3.1 Statement of the Problem

All relevant notation used in Chapter 2 will again be used.

The disc will be assumed to move vertically with speed, W, so that

u =Wk " (204)
—dp

The walls and the fluid at infinity remain at rest.

Anticipating that the geostrophic motion inside the Taylor
column should be such that vortex lines are not stretched, one pre-
diction can be made. Ass‘ume that at time to the center of the disc

is located at z = 0. The equation of the disc is given by (1) so that
z(to) = -x(to)tana

At a time t:1 > to’ the disc will have moved vertically a distance
Az = W(tl-to)

so that the equation of the disc at this time is
z(tl) = -x(tl)tana + W(tl-to)

Certainly, a vortex line which is initially at a station x cannot remain

there as it will undergo a change in length Az. So requiring

z(tl) = z(to)

necessarily,

x(tl)-x(to)

n = Wcota

17 %
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Taking the limit tl — to, the velocity of the vortex line is hence
U = Wcota (205)

Since the vortex lines are carried with the fluid in the geostrophic
regions, necessarily (205) represents the x-component of the fluid
velocity.

Note finally that this argument yields no constraint on V .
This is because the vortex lines are free to translate across the
disc in the y-direction as no stretching occurs from such motion.

3.2 The Geostrophic Flow

Outside the Taylor column, equations (13) and (14) are appli-

cable. Since v, vanishes for this problem, necessarily

k- curlEG=0

so that there is again two-dimensional potential flow outside the

Taylor column. Since
_1_1G—>2 as r = 0o
the solution for the pressure is:

0
Pg(r.0) = nzzl [Bncosne + Dnsinne] (%)n (206)

Inside the Taylor column, (13) and (14) are still valid. How-

ever, (15) and (204) show that

1 OV au
V.5 +
wg+ ugtana=w+%_)2[__g.__a;g.]onz=0— (207)

Appealing to (13) and (14) for the scaling on wg’ there follows
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so that, to leading order, (207) reduces to
U = Wcota
g

as predicted in 3.1. The rest of the calculation goes through just as

for horizontal translation. The final results are:

v i 2 dvV _(x)
ug = Wcota + ('ﬁ) cot”a . (208)
v i fB(x) dZVg(x)
Vg = Vg(x)cota+ (ﬁ )2 cot u[ dxz ] (209)
— ‘é‘ dVv (x)
w‘g = +3§) cota T (210)

vl o &£ dv_(x)
Py = [Py (x)-22Wy ] cota + 22 )2 cot? [5 (x) Ty—E ]

where pg(x) and Vg(x) are again related by (27).
Requiring that the pressure be continuous to first order

across the shear column, there follows
D1 = ~-2QaWcota, Dn =0 for alln>2
So, outside the Taylor column, the flow simplifies to
a R a.n
PG(r, 8) = -20aWcota(Z)sine + Z Bn(?) cosn® (212)
G (T, 0) = Weota(@)? c080 + 5o E nB_&)™ sinne (213)
n=1

G(r 0) = Wcota(—-) 8ing - —1—- inB (-- cosnve (214)
fa n=]
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Before going on to the next section it is worthwhile to deter-
mine vg(a,e). From (208) and (209), the values of ug and Vg onr =a

are:
ug‘ = Wcota
V. =YV (6)cota
4 4
- so that
ug(a,» 8) = [Wcose '-F;Yg(e)‘si"ne],ciot_:al
v (@ 0) = [-Wsino + v, (8)cosp] cota
Howéver,
u _(a,0) = U(0)
g
which implies that

U(0)tana-Wcos9

»vg(a) = i (215)
and hence
_ U(9)cos6-Wcota
vg(a, 8) = =100 (216)

3.3 The Shear Column Equations

Although a formal solution for the shear column structure will
not be given, the equations for the Guo, § and a-layers will be derived.
As mentioned in 2.6, it is only necessary to show that (113) is still
applicable. In the shéar column, the boundary‘conditions on the disc

will be:
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1

)Z

|+

(217)

A<
9|

w =W + (vsin@-ucos@)tana + 3

and on the walls (45) and (47) still hold.

It is important to note that the last two terms in (203) are
O(l) while the other terms are O(cota). Hence, as hinted in section
2.6, (203) reduces to (88). Thus, it is only necessary to verify that
[ [ (0h)ewy 07)] &
00 3 3
can be evaluated in the same manner as in Chapter 2.
(a) Ga-layer

For this layer, equations (167) and (168) apply. Thus

vi aVGa
()? cota + [vGasine-(U(9)cosG-Wcota)] =0 forzZ O

where it has been noted that (218)
uGa(x,O) = U(9)
The asymptotic behavior of vda as x — -o0 is clearly
_lim — oo _ U(8)cos8-Wcota | |
X — -0 'Ga (x,0) = sin@ (219)
But, matching demands that
_lim v. (%,0) =v_(a,0)
X —=*-0 Ga’ g’
and (216) shows that (219) is correct. So, in fact, writing
v 1 3VG .
) cota —2 4 [v_ - vy(2,8)] sin® =0 for =z 20 (220)

ox
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then (169) and (218) are identical. Thus, it is obvious that integrating
(220) and performing the necessary matching, etc., the result will
be (177).

(b) %-Layer and a-Layer

1
To handle the entire range E? << a << 1, simply retain all

terms in (217) and then look at limiting cases to study the various

ranges independently. It will be true to first order that
u = U(9)

which means (217) can be rewritten as

_ . 1 V'lz' v _ ~+
w = [vsin®-(U(0)cos6-Wcota)] tana + g(ﬁ) — onz = 0—
ox
or, using (216),
. 1 1 ov +
w = [v-v_(a, 0)] sinftana + 3(5)? — onz = 0— (221)
g - o=
Hence, the ;-layer equations become
37T i T
0 V_1_ 2 8Vl._
__3:‘- - (422) —4 . Z%;ana (v}_‘-v (2,0)sin@ = 0 for z> 0
ox vhy, & T + B
(222)
3B 1 B
0 Vl 2 3vl
—x - ()" = BBy (a,0))sin0 = 0 for < 0
ox vhy  8x B + 8

(223)

1 1 |
In the range E2<< a << E#%, the last terms in (221) and (223)
drop out so that (159) results. Hence, integrating across the } -layer,
(166 ) follows. Matching to the Ga-layer (i. e., using (177)) clearly

leads to (113).
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In tﬁe range a ~E%, first replace vg(a, 0) by V%I (-o00, 6). Inte-
grating across the § -layer leads immediately to (200) which in turn
ieads to (113).

For E%'"<< a << 1, the central terms of (222) and (223) drop
out. Integrating over z shows that (101) is still valid. Hence, (113)
is verified in this case also.

3.4 Solution for the Geostrophic Flow

Having demonstrated the validity of (113), the problem of
finding the geostrophic flow is quite easy. vg(a, 0) is given by (216).

From (211) a short calculation reveals:

1 Ap_(a,0) dv _(e) :
&y tana —&——— = cota [ £7 (0)-£>(0) + 2 —E ] (224)

Insertion of (216) and (224) into (113) leaves:
U(8) - V(8) - 2Wcotasing + 2 cota S [Vg(®)sine]
= «cota [fT(e)-fB(e)] sin@
Using (215), there results finally
z%ﬁ—) + U(9)-V(0) = - cota [T (0)-£>(0) ] sine (225)

With the exception of the cota term on the right hand side (which
- could be removed by redefining U(0) and V(0) or fI(G)), .equation

(225) is identical to (117), Finally, from (213) and (214),
1 X
U(0) = Wcotacos8 + mnz_llnlansinne (226)

Q0
V(0) = Wcotasin® - 2—195 ), nB_cosne (227)
n=1
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Upon substitution of (226) and (227) into (225) and regrouping like

terms, there follows:

. 1 &
~-3Wcotasing+Wcotacos0 + mnz_;ln(Znﬂ)Bncosne

1 f i
+ >0a ans inno
n=1

= -cota[£ (6)-£>(0)] sin6

- As before, the right hand side of (228) is an odd function of 0.

forth,

B, = - %QaWcota, Bn =0 foralln=2

1
Inserting (229) in (228) and noting the definition of £(8),
1) - P = Dw

In a similar way, there results

v = - 1w
g(x) 3

(228)

Hence-

(229)

(230)

(231)

The geostrophic flow outside the Taylor column follows from substi-

tution of (229) into (213) and (214). Therefore,
u.(r,8) = Wcota [cosO - lsine] (-3)Z
G’ 3 r

- 2
VG(r, 0) = Wcota [sin6 + %cose] (%)

(232)

(233)

The geostrophic flow is shown in Figure 7. The magnitude

of the constant velocity inside the Taylor column is

@ Wcota
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and the flow is inclined to the x-axis at angle

1

~tan™% = - 18.4°

If the upper surface is free, the angle of inclination to the x-axis is
-1

~tan %s _21.8°

As in the case of y-translation there is fluid flowing across the

boundary of the Taylor column since
U(8) = Wcota [cos® - 3sin8] £ 0 (234)

The streamfunction for the geostrophic flow follows immedi-

ately from the relation
1
Y = - 55 p + constant (235)

and the streamlines outside the Taylor column are given by

(x - 2% + (y-K)° =1§Q K (236)
where K is an arbitrary constant such that
k| =} (237)

The physical pressure follows from (4) so that using (211),

(230) and (231) the result is

20 vi 2
=3~ pRW (5)?cota ' (238)

The viscous stress is given by (134) noting that here



Figure 7.
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o K

Geostrophic Flow for Vertical Translation
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a =}_1g =Wcota[_i_--_-l-,-j_]

-g
and
i =u =Wk
P P -
then
- V% 1 . :
AT = ZpQW(—Q) cota[3_1_+ J_] (239)

Hence, the force on the disc is given by:

1
F=-%r an,ZW (%)3 cotza[9tana_i_- 3tanaj+10k] (240)

1
The moment on the disc must be zero to order E?2 cotza as the differ-

ence in force acting on the top and bottom surfaces is independent of

position. Hence:
1 2
M = o(E?cot™a) (241)

One feature of this motion is worthy of additional comment.

In contrast to horizontal translation where the vertical force was of

1
order E2cota and hence small compared to one, vertical translation .

i
involves a vertical force component of order E2 cotza. For the range

1 1
E2<< a<<E*, this force is very much larger than order one. This
is not too surprising, however, as Moore and Saffman(z) demon-

strated that for vertical translation with zero a the vertical force

(Y

is order E 2,
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3.5 Summarx

The geostrophic flow is of order cota. There is no torque on

1 2 1
the disc to O(E2cot“a). The drag (vertical force) is of order EZ cot“a.

1
There is also a horizontal force of order E?cota inclined at an angle

—tan~11 2 .18, 4°

to the x-axis which is parallel to the direction of the uniform flow
inside the Taylor column.

For the Ekman layer and shear column structure to be inde-
pendent of Rossby number effects, a more rigid restriction than that

needed for horizontal translation must be invoked. The restriction is

1inpd
Ro << E3 (E)3tanu
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4. THE THREE ROTATIONS FOR INFINITESIMAL a

4.1 Statement of the Problems

The disc will be assumed to rotate about an axis not necessar-
ily parallel to the z-axis. To study this motion it is again convenient
to break the problem up into three components. Hence, x-rotation is

the name given to the motion corresponding to

u =rx(e Qi)= exﬂ[zj_- vk] (242)

Similarly, for y-rotation, the disc velocity is given by

[

EP =rx (eyﬂj_) = eyﬂ {-zi + xk] | (243)

In both cases, the disc is assumed to move while the walls and fluid
at infinity remain stationary. Note that in (242) and (243) the value
of z is given by (1). Hence, only the vertical component is relevant
in these equations as the other components are of higher order.

For z-rotation, it is convenient to let the disc remain at rest

and have the walls move with velocity

u_ = - ezﬂr e (244)

—wW 0

as well as the fluid at infinity. 2 is a unit vector in the circumfer-

ential direction related to i and j by:
&y = -isin® + jcos®

It must be true that

€, €., € <1
X'y =z
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to justify neglect of the nonlinear terms.

4, 2 The Geostrophic Flows

The basic technique is essentially the same as for the three
translations. A little care is required for z-rotation, but everything
else goes through without any change from the previous analysis.

(a) x-Rotation

The Ekman condition shows the geostrophic flow outside the
Taylor column to be a potential flow with no disturbance at infinity.
Hence, pG(r,e) is given by (206).

Inside the Taylor column, (15) and (242) lead to:
1
UIg +ugtano. = -exﬂyi %(— 2 [——5 —g- + 2¢ Qtanu] onz =0t (245)

while (13) and (14) still hold. Hence, the geostrophic flow inside the

Taylor column turns out to be:

2 dVv _(x)

“, =- € Qycota ¥ & 2 cot a[—qx&-— tef] (246)
2
d*V _(x)

1 2 .af -
v, = V (x)cota + &) cota[dE) 3y dxgz ] (247)
vl av_(x)
wg = ¥ 3(g)cota [-———g——d + exﬂ] : (248)

2 2 L1 i av_(x)
Pg =[Pg(x) + EXQ y ]coto. + Zﬂ(ﬁ)zcot u[fB(x)+y(._g___ te Q)]

(249)
with pg(x) and Vg(x) related by (27).

Hence, from continuity of p across the shear column,

Dn=0fora11n>1
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Thus,
Pg(r, 0) = Z B_()"cosne (250)
n=1

_ 1 a,n+l .

uG(r, 9) = Ga an(?) sinn® (251)
n=1

1 R n+l

vg(r, 8) = - 5= nz=lan(%) cosn® (252)

(b) y-Rotation

The flow outside the Taylor column is again specified by
writing the pressure in the form given by (206). The only difference

between this case and case (a) is that (245) is r,ep-laced by

1 oV ou
V.3 +
lllg + ug tana = eyﬂx + %(ﬁ)z [—ax—-ﬁ - —grg] on. z =0~ (253)

The geostrophic flow inside the Taylor column is hence given by:

v _g_ 2 dVv (X)

ug = eyﬂx cota + (5)? cot a——g———dx (254)

i _d V (x)
Vg = [Vg(x)-eyﬂy] cota + (% )"‘cotza [de(x) dx ] (255)
— v i av _(x)

wg = +%(§)"-cota—ag;{——-— (256)
2 1 5, B av_(x)

Py = [pg(x)-2€yﬂ xy] cota + Z,Q(-S‘i2 )2cot”a [fB(x)Iy——g——]

(257)
with pg (x) and Vg (x) related in the usual way.

Evaluating pg on the edge of the shear column, it is seen that:

Pg(2,0)-py(a, -0) = -2¢ @ 2a2cota sin20
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and therefore,

D1 =0, D2 =-€y

Thus, the geostrophic flow outside the Taylor column is

2,2 ta(—é}-)zsinze + OiB (i)ncosne
r Ly nr

pG(r,e) = -eyS? a“co

1

- a3
uG(r, 0) = eyﬂacota(—l—_) cos20 + >0

1

- a,3 .
vG(r, 0) = ey ﬂacota(—r-) 8in20 - >

(c) z-Rotation .

Since curl u, does not vanish here, (13) and (14) show that

[

-,V
W= +70g)

Hence, from the Taylor-Proudman theorem,

k- curl EG = '-Zezﬂ

outside the Taylor column. Then writing

22, ~
pPg(r,0) = -€,Q7r" + p(r, 0)

it follows that

v3 =0
So, the solution for pG(r,e) is:

PG(r’ 6) -

Qzazcota, Dn =0 for all n=3

a
nzlan (?)

[k - curlEG+ Zezﬂ] on z

= -€ 92r2+§:0 [B, cosn@+D_sinné] ém
z 4, Un n r

(258)

(259)

(260)

(261)
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Inside the Taylor column, the boundary

conditions become

cod i e Y ' 6
tUg = -305)2 | % "~ By + ZEZQJ onz =h_ (262)
L oV Bu
w_ + U tana =j—_%(%)3 [T&g'TyE] on z = 0% (263)
1, v 8y au
wg =1)? [_.__g.ax - _iay + zezﬂ] on z = -hB (264)
so that the geostrophic flow for r< a is:
! dVv _(x)
u, = tg)*cote [—5 + ¢,9] (265)
fg a%v_(x)
1 x ‘
- 2411 df " (x) +
Vg = Vg(x) + (g)*cota [ - + dxz ] | (266)
— V% dVv _(x)
L1 fg AV _(x)
pg = pg(x) + ZQ(TZ)Z coto.[ (x) + y(—-g——-dX +€zQ)] (268)

From (268), pg must be an even function of 8 on r = a so that

for all

D =0 nz=1l
n
Therefore
22 R a.n
PG (T, 0) = - @ +nz=an(;) cosné (269)
ug(r, 8) = 7155 i an(%)nﬂsinne (270)
n=1
[00)
Vo (r, 0) = - 0 - 5= Elan(%)nﬂcosne (271)
n=
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For both x and y-rotation the flow is seen to be of order cota
while for z-rotation it is order one. So, for the same reason as for
vertical translation, the Ekman flux on the disc is given by (88) for
x and y-rotation. Since the disc does not move for z-rotation, (88)
is immediately correct as it is identical to (203)., Hence, equation
(113) applies directly to all three rotations. |

4. 3 Solution for the Geostrophic Flows

The calculation of the geostrophic flows is routine and, hence,
only important results will be shown.
(a) x-Rotation

The quantities needed in equation (113) are:

1 R :
U(0) =55 ), nB_sinne (272)
n=1
1 R
V(0) = - 55z ), nB_cosn® (273)
n=]
vg(a, 0) = [Vg(O)cosB + exﬂasinze] cota (274)
ol Ap _(a, 0) dv (o)
(—)ztana ——g—— [f (0) - B (0) + 2 35 -2 eXQasinO] cota
(275)
U(e
Vg(e)cota =§-i(?1—92_ + exﬂacotacose (276)

Insertion of (272)-(276) into (113) leads to:

dge(e)+U(e) V(o) + Ze f2acotacos26 = -[f (0)-f (9)] cotasme

or
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‘ 1
Zex flacotacos2f + vy n:-_]‘n(Znﬂ-l)BncosnG)

1

ZQa. ansin.nG = - [fT('e)-fB(G)] cotasin®
n=l1

The solution of (277) is:
2 2 2
B, =0, B, =-= Qa cota, B =0foralln=3
1 2 5 n ‘

Henceforth,

T B,.,_4

f7(x) - £ (x) -—5-exﬂx
and

V(x)— eQx

Outside the Taylor column,

PG(T,Q) = ge Qzazcoto.(——) cos206
uG(r, 0) = - %exﬂacota(—:f):;sinze

vG(r, o) =-§e facota (—) cos20

Finally,

1x2
56

Pg(x: y) = GXQZaZ [(-g) ]cota

(277)

(278)

(279)

(280)

(281)

(282)

(283)

(284)

Noting (235), it is a simple matter to calculate the stream-

lines, and they are shown in Figure 8.

The jump in the physical pressure is given by:



-91-

‘Y

Figure 8. Geostrophic Flow for x-Rotation (Disc Moving)
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8 2vi -2

AP =% pe 027(g)cot a[x-3y ]

and the jump in the shear stress is:
2v i 1 . .

AT=-2pe Q (ﬁ)zcota[-s—x_J._+ vil

Thus, the force and moment on the disc are:
1 2

F = o(E%cot™a)

2 2 4vt 2 ..
M =gmpe 2"a"(g)?cot™a [3i +j - 3tanak ]

(b) y-Rotation

For this motion:

@
_ 1 .
U(e) = eyQacotacosZG + Y Zilansmne
1 R
v(e) = Eyﬂacota»smze - 35a nZ,__lancosnB

' vg(a,e) = [Vg(e)cose - eyﬂasinze] cota

1 Ap (a,0) dv_(e)
)% tana —E— =[t7(0) - (0 + 2—F —] cota

U(e)- eyﬂ acotacos20

sin@

Vg(e)cota =

Hence, (113) reduces to:

dU(e)

ZdB

+ U(e)-v(er Zeyﬂ acotasin20

= - [fT(B)-fB(G) ] cotasin®

(285)

(286)

(287)

(288)

(289)

(290)

(291)

(292)

(293)
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or

. 1 i
eyﬂacotu [cos26 -3sin20] + —Z—Q-a-n=1n(2n+1)Bncosne

1 i . T .
* 2 L, PByeinno = -[£ (e)-fB(e)] cotasing
Inspection of (294) shows that necessarily:

= %e ' S’Zzazcbta,ﬁf] B_ =0 :for" alln>3

B, =0, B
y

1°- 772 -

‘Therefore,

£ (x) - 2x) =-?§;§ yfx
and
v (<) =2 ox
g 57y
For '»r;"‘(g‘reater than a

2 2 . 1 a2 -
‘pG(r, 0) =“-eyﬂ a c‘ota;[smze - gcosle] (—i;) i

ug(r, ) = € Qacota [cos26 + % sin20] )’

- . 1 a3
vG(r, 0) = eyﬂacota [sin20 - —5-c0526] (-1—_)

The pressure inside the Taylor column ié given by:
_ 2 21 2 1
pg(x,y) = Zeyﬂ a [E (’é) - (’E‘)%) - TO_]COtO'

The streamlines are shown in Figure 9..

(294)

(295)

(296)

(297)

(298)

(299)

(300)

(301)

The jumps in the physical pressure and shear stress across

the disc are
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Figure 9. Geostrophic Flow for y-Rotation (Disc Moving)

<Y



8 2
AP =~5- peyﬂ

i
2

)
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cotza[7 x -y]

24 41 2 .
A1=2peyﬂ (ﬁ)acota[x_l--gxi]

The force and moment on the disc are therefore

1

F=o0 (Eicotzu)

M=
= y

(c) z-Rotation

10 7P€ Qza

1
4%)zcotza [4i + 28 j + tanak |

The relevant quantities for use in (113) are:

1 K
u(e) = >Ga Zlansinn(-)
n=

V(®) = -¢ Qa -

vg(a, 0) = U(B)coto

1 Ap,(a, 0)
éz)étana——-g— =£T(0) - ££(0) + 2 —E£-—-2¢ Qasing

U(®)

Ve(®) =Sine

Hence, using (113):
2 dU(B)

and therefore,

-€ §2acos20 +
z

L

202a

28 ‘:3|~
o)

%
= nB cosnd
28a £ n

dv (o)
de

+ U(0)-V(8)-2¢ Rasin®6 = - [£1(0)-£(6)] sino

f n(2n+1)B_cosn®
n
n=l1

nB ,5inne = -[f (9)- fB(e)]sme

(302)

(303)

(304)

(305)

(306)
(307)

(308)

(309)

(310)

(311)
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for which the solution is:

e 9%% B_=0foralln>3 (312)

-~ H

U =

B,=0, B, =

Thus,

fT(x) - £x) = - %ezﬂx (313)

and

2
V() =5 € 9x (314)

Hence, in a frame of reference fixed on the disc, the streamlines

- are simply lines of constant x.

Outside the Taylor column,

bt 0) = -¢,9°r% + 1 ¢ 9%a?@)%cos20 (315)
S | 3 .
us(r,0) = g ezﬂa(%) sin20 (316)
V.(r,0)=-€ Qr - 1 € ﬂa(i)3c0529 (317)
G7? Z 5 "z T

To transform to a frame in which the disc rotates and the

walls remain at rest define

4= u +  EZQ rey (318)
and

p=p+ ezﬂ 2r2 (319)
Then,

P = op+ L0+2c,) o2’
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so that
. ,
AP = - i pe QZ(—:—:)z cotaf[x + 7y] (320)
i 3 H zZ 94 [8 4
Also,
At =-2 e 02 x i (321)
L=-5P" g -

When (320) and (321) are integrated over the disc they integrate to
zero. Therefore
|

F = o(EZcota) (322)

The moment is

1

2_4,vi ..
M =§7rp'€ZQ a (S—;)Zcotu['?}; -j- 7tana£<_] (323)

To complete the study of this motion, note that in the frame

defined by (318), the geostrophic flow is:

ag = -ezﬂy , (324)
v =1e 0x (325)
g 57z
W 1 2.2 2 2 4
g =5 027 [10)7 + 5)%-6] (326)

inside the Taylor column, and

.~ 1 a,3 .

i, =3 ezﬂa(—l-;) s8in20 (327)
~ 1 a,3

Vo=-% ezﬂa(-;) cos2f (328)

- 1 2 2a.2
Pg =5 GZSZ a (?) cos2f (329)
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outside the Taylor column.

The streamlines are shown in Figure 10.
4.4 Summary

For x and y-rotation, the geostrophic flow is of order cota
while it is order one for z-rotation. In all three cases, the force on
the disc has been shown to vanish to leading order. The moment
about the vertical axis is much smaller than the moments about the
horizontal axes, the ratio being O(tana). Of course, the moments
are O(E%cotzo.) for x and y-rotation and O(E%cota) for z-rotation.

Finally, (288), (305) and (323) show that the moment is not aligned

(even to leading order) with the direction of rotation of the disc.
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AY

Figure 10. Geostrophic Flow for z-Rotation (Disc Moving).
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5. STATIC STABILITY AND FREE MOTION OF THE DISC

5.1 The Stability Criterion

For all of the motions studied in Chapters 3 and 4, not just
the nonlinear inertia term has been dropped. The unsteady term
83/8(: has also been neglected so that the solutions are not truly
steady state motions. Hence, it is not possible to perform the usual
type of stability analysis by introducing 8y ot into the equations and
checking to see how an initially small disturbance behaves as t — oo.
Rather than this approach, something different must be done to see

what happens to such a disturbance. This is the origin of the name
| "static stability, "

One quéstion which arises is that of what happens to the angle
of attack of the disc due to a small disturbance. The answer is seen
immediately from equation (305). The torque about the y-axis is in
the same direction as the rotation rather than opposing the motion.
Consequently, if a small disturbance is introduced which causes the
disc to rotate about the y-axis, it will generate a torque given by
(305). This torque will accelerate the change in angle of attack.
Hence, the motion will be termed unstable to small disturbances.

5.2 Free Motion of the Disc

If the disc is free to translate but constrained so that it will
not rotate about its center of gravity, it is acted on by three external

forces. One force is the buoyancy force given by

-
Fuoy = oy, - Vmik

where Pq and m are the density and mass of the disc respectively.
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If the disc is very much less dense than the fluid,

= —[;ng‘li (330)

E‘buoy Py
The other two forces are the centrifugal and Coriolis forces.

These forces arise by noting that for x-translation and y-translation

the physical pressure is given by (132) and (150) respectively.‘ In

calculating AP, it was assumed that the disc had zero thickness. As

a result of this assumption, it follows that

AP = pAp

and the centrifugal and Coriolis terms cancel identically. For a

disc with nonzero thickness the forces are easily shown to be

r ~£ mau (331)
cor py

F ~2 mar (332)
cen pg

if the disc is located at a radial distance R from the center of the
container. Both of these forces will lie in the horizontal plane. The

ratio of (331) to (332) is

F
cor

F
cen

~ Ro << 1

so that the Coriolis force need not be considered.
For the three translations, the ratio of the horizontal force
component on the disc to the vertical force component is of order

tana. Hence, F must be compared to lF |tanu. The ratio is
cen ~buoy
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F ‘ 2
cen QR (333)

| Ebuoy , tana

If it is true that

Q%R

<< tana - (334)

the centrifugal force can also be neglected.

Assuming the disc moves with velocity
u =Ui+ Vj+ Wtanak
—p — —

where U, V and W are of order one, (135), (153), (240) and (330)

show that the force on the disc is
F=F i+F j+Fk
where

2yv .t
-2mpRa(g)? [2U + 3W]

F =
x
F = 270222 W
y <P g
P = -dmp0a’®)icota [U+3V + 2W]+ L m
z p Q 3 3 Pq g

with the angle of attack positive. Then, taking
F=0
there follows immediately:
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mg

& — (336)
Pd rpRa®(g)?cota

V =

Bl

(335) and (336) show that under the action of the buoyancy force, the
disc will slip to the side rather than rise! There is a restriction on

the thickness, §, of the disc implied by (336). - Since
m ~ 1rpda26
(336) shows that

Ro vV _ vﬁlv--gtgna~
G 9°a

and since

1nai
Ro < <E3(’2')~3

necessarily
5 5/6 ., £°a hl
= << E cota—— (=)3 (337)
a g a
This result is not very interesting physically as it would be virtually
impossible to satisfy (334) and (337).
If the inequality in (334) is reversed so that only the centrifu-
gal force is relevant, the force in the y-direction becomes
2y o p 2o .
F_=27pQa (5—2-) W - m2 Rsin® (338)
y Pa
where 0 is the angle shown in Figure 11. The center of the container

is
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o X

Figure 1l. Reference Angle for Free Motion of the Disc

Requiring FY to vanish shows that

59- m2®Rsino
we 4 (339)
27p2a (-ﬁ)z

Therefore, under the action of the centrifugal force with buoyancy
negligible, the disc will rise! 'The restriction on 6 implied by (339)

is

1
8 a ..5/6 h,3
a<rET Q)

which is just as restrictive as (337). In any physical situation both

forces will have to be accounted for. These limiting cases do, how-

ever, reveal the gyroscopic nature of motion in a rapidly rotating

fluid.
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6. MOTION OF THE DISC FOR FINITE ANGLE OF ATTACK

6.1 Difficulties Associated with a Formal Solution

The fundamental difficulty associated with solving for the
motion of the fluid when a is of order one appears in the structure
of the shear column. The a-layer merges with the 1-layer whereas
the ; -layer on the outer edge of the shear column remains. Equa-

tions (43)-(47) become, on the -layer scaling:

3W_!_ v 83V_l

U H= -

0z ~ 22 -3 (340)

ox

aV_ v 33Wl .

—_— = 3

oz 292 &—3 4 (341)
subject to:

W% =0 on z = -hB, hT (342)
and

wi = (v1sin® - U(0)cosO)tana on z = -xtana (343)

3 3 ' R

where it has been noted that u is still continuous across the shear

column. Matching now requires that

1i 1i
nfﬁm V1 (n,8,2) = gf’&r vy (£, 0) (344)
%
n_tlflm VL M, 8,2) = vg(a,e) (345)

This problem requires the solution of a Weiner-Hopf problem
which is much more difficult than the ones considered by Moore and

Saffman. (2) The complication results from the nonhomogeneous
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boundary condition (343). A solution will not be attempted here.
However, one solution can be picked out by inspection,

namely
vi(n, 0, z) = U(8)cotb (346)
3
wi(n,0,2z) =0 (347)
3

This solution corresponds to the n = 0 problem considered in the
infinitesimal a analysis. The physical meaning is that v is contin-
uous across the %-layer. (345) and (346) are consistent since the
problem posed he;re is for horizontal translation.

Another-complical:io_n which arises is that for a disc, the
Taylor column will be elliptical rather than circular. The way in
which this affects the analysis will become clear in the following
sections.

6.2 The Geostrophic Flow for x-Translation

Rather than study the motion of a disc, an elliptical plate

will be considered.. The equation of the plate is

€ =0 | (348)
with
2 2 _ 2, 2
£°+ X)) <2a%/cos’a (349)
where
£ = xcosa - zsina (350)

¢ = xsina + zcosa (351)
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That is, (£, y, £) are coordinates in a rectangular cartesian goordinate
system fixed on the plate. The projection of (349) into the xy-plane
is a circle of radius a. This, of course, means the Taylor column
is a circular cylinder.

The walls and fluid at infinity will again be assumed to move
with the velocity given by (7).

Boundary conditions for the geostrophic flow inside the Taylor

column come from (13), (14) and (15) which can be written here as

vk ov ou
wg =—E(§)a E{-g— "-8—}7& on z =hT (352)
y AoV, & +
= 2 g _£g = 0— '
U/g + ugtana + 2(Q cosa) 7 - By on =0 (353)
LV 1 [oVv ou
=~ 1/Vy2 g__8 = -
wg =357 |5 By onz =-hg (354)

Calculation of the geostrophic flow goes through just as for infinitesi-

ma.l a and there follows:

v é dVv (x) ,
ug + 3 (1+g) (—) cota T (355)
T 2
1 B _ 4™V _(x)
v, =V )+ %)Zcota[dfdx(x) FHBy = ] (356)
el dv (x)
Wy =+ 3 G)? —gxg— (357)
dV (x)
Py =Py lx) + ZQ(Q)zcotu [fB(x)+ Py £ ] (358)
where
Y
B = (cosa) 2 (359)
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while pg(x) and Vg (x) are related by (27). Since the Taylor column
is circular, the geostrophic flow outside the column is still given by
(28)-(30).

6. 3 Equation Relating the Geostrophic Regions

It is possible to generate an equation relating the geostrophic
regions by proceeding as in the previous sections. Certainly mass
must be conserved in the 3-layer so that (89) must still hold. It
must be altered slightly te account for the inclination of the plate.
'Zf‘hat is, the integration must be performed-i.n a direction parallel to
the plate. Henceforth, (89) is replaced by |

o wi(0h)-wPho)

Q_(®) =_£o T YT dx (360)

with the understanding that

+ +
wi?07) = wi?x, y, -xtana+07) . - (361)
3 3

Now, win) is the velocity component normal to the plate and
3 .

is given by
(n) .
Wi /cosa = w1 - (v18in6-U(6)cosB)tana
3 3 3

so that

Awi n)

3 = -
<osa AW1 Av1 sinBtana

where A( ) means the difference between ( ) evaluated at ¢ =O+ and

£=0", Therefore,

aw) = aw; - 2 (‘—l—%)smetanu (362)

COSG.
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Insertion of (362) into (360) leaves

0o
Q (6) = [ Awidx x-[Apj (00, 8)-Apy (-0, 8)] sinBtana (363)
e ‘oo 3 3 3 7
Integrating (340) and using the full boundary conditions (45)
and (47) there follows:

T8 Vi

1
-V Edz- 4 v 8
% { dz 2(9) a}_z [ % h )+Vl(hT)]
which means
jo o) - v hT Bzv__ +oo v +o0
=Y. - Ly
[ awdx=pg [ —3| a2 ol [v-hp)tvithy)]
- 00 -hB ox~ l-oo -00
(364)

The implication of (344), (345) and (346) is that the last term in (364)

vanishes. Furthermore,

32
_lim __\;31‘_ = 0
X > -0 o

in light of (345), i.e., the 3-layer must match directly to the geo-

strophic flow inside the Taylor column. (364) thus reduces to

h
o) _ v T o' vy
[ awidx =55 [ —% (0,08)dz
! —
-~ 00 -h

OO _ v 1
-foko%dx = (g )? [vy(a,0) - V(e)) ] (365)

where it has been noted that here

v%(0,0) = vg(a,'_e)
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as a consequence of (346). Finally, matching shows that

Ap%(oo,e) =Ap% (0,6) =0 | (366)
while

Ap%(-oo,é) =4p, (2, 6) (367)

Using (365)-(367) in (363) yields
it Ap _(a, 0)
Q,(0) = ) [v,(2,0)-V(0)] +tanasine —E— (368)
All that remains to be done is to evaluate Qe(e). It is at this
point that geometrical difficulties become relevant. (202) yields the
excess flux of fluid in the Ekman layers on the platé. Qe(e) is the

component of QI entering the $-layer. Hence,

Q©=0"-n +Q% 1 (369)

€ -_— —e

where n, is a unit vector normal to the perimeter of the plate. (Equa-
tions (202), (368) and (369) are actually valid for any geometry pro-
vided v is interpreted as the velocity component parallel to the edge

of the Taylor column. )} For the geometry at hand,

In
-—e

\/.52 + yz/cos4o.
where t is a unit vector parallel to the plate given by

t =i cosa - k sina



-111.
Hence,

xcosat+tyj
= ' (370)

h
€ N Z . 2
x cos aty

Note finally that Q is evaluated by using the geostrophic

velocity inside the Taylor column.

6.4 x-Translation Solution

To leading order, (355)-(357) show that the flow inside the

Taylor column is

Bg = Vg1
wherefore
I v
Q' = -pP [V v @k] (37)

Also, on the edge of the Taylor column,

cosBcosat+ sinb j

n = (372)
—e 2 . 2
\[l—sin asin_ 0
Equations (369), (371) and (372) combine to yield:
1 .
Q (0) = "ﬁ('é)zv @) ‘s1n9+cosecoso.
€ g p) )
l-sin " as8in 6

But, since

u(e) = Vg(e)sine : (373)

vg(a, 9) = Vg(e)cose (374)
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further manipulation leads to

1 U{@Hv (a,0)cosa
Q (8) = -B(X)2 g (375)
~‘~e\ ’ QI 2 2 A 7
\,ll=sin asin ©
From (358) it is easily shown that
1 dv (9) :
4, (2, 0) = 22 ) cota [£¥ (0)-£° o)+ (14 p) —E— ] (376)
Inserting (373)-(376) into (368) and grouping like terms
d
(+p) S8 4 B u(e) - V(o)
l1-sin asinze
-BU(8)cot {1 - — 08¢ = -[tT(0)-2(0)] sine (377)

1-sin2asin29
For a—~0, (377) reduces to (117) so that at least consistency with a
limiting case is confirmed.
To solve (377), note that U(6) and V(0) are given by (124) and
(125). Since the right hand side of (377) is an odd function of 0, a

solution exists only if

a+p) ) _ [v(e) + 2Usin0 |

-BU(B)cotd ;1 - cosg s =0 (378)

1- sinzasinze

Substitution of (124) and (125) into (378) yields finally

f [(1+ﬁ)n+1]B cosn® = 331 _ cosa fcotei nB_sinng (379)

l-sm asmze n=l
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This equation is not nearly as pleasant as its counterpart for infini-
tesimal a. When a - 0, the right hand side vanishes so that all the

Bn must vanish., A little more progress can be made by expandving

o0
[1- £osa ]cote =), A_sinne (380)
Vl .2 .2 n=1 B
~-sin asin 0

The An are quite difficult to obtain and involve complefe elliptic
integrals. No recurrence relation is obvious and the details of their
calculation will not be given here.

Multiplication of the two Fourier series on the right hand side
of (379) shows that ’
o

Z n [ (1+B)n+1] B, cosn®

n=

It
NIH

k n+1 k[cos(Zk -n-1)8-cos(ntl)6] (381)

PR

Multiplying (381) by cos m8 for m =0,1,2,....., integrating over ©

n L\’JB

from 0 to 27 and doing a large amount of algebra (which won't be

reproduced here) the following set of equations emerges:

0
0 =n=1Aan (382)
(2+p)X; = ;pkz [Ap i1 X+ A X ] (383)

Jo.0] n-1
[a+p)nt1] X = %Bk; [A, 0% B X -1 5@1 A Xy

forn = 2 (384)

where

X, = kB, (385)
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(382)-(384) constitute an infinite number of equations for the infinite

number of unknown quantities, Xk' One solution to this system is
Xn=0fora11n>1
and therefore
Bn =0foralln=>1 | | (386)
This means that
Vg x)=0

so that there is no flow to order one inside the Taylor column.
6.5 Discussion

The analysis for the motion of a thin plate when a is finité is
far from complete. For motions other than x-translation it is no
longér possible to pick out a solution to the infinite set of equations
corresponding to (382)-(384). However, the mc‘)st important part of
this analysis is thé,t a jump condition relating the geostrophic regions
has been generated. This indicates that a solution for motion at

finite angle of attack is in principle possible without having to ana-

lyze the detailed structure of the shear column.
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APPENDIX

It has been shown that the shear column structure is such
that the circumferential velocity is not analytic near 8 =0 and 8 = 7,

For the range
1
E*<< a<<1
the jump in the a-layer swirl velocity is of order

El/lza'1/392/3 for x-translation

E1/120-1/3G-1/3 for y-translation

as 8 - 0 and similarly for 6 - 7. v is continuous across 0 = 0 for
x-translation. However, A\ is singular for y-translation so that
some explanation is required.

The principle of minimum singularity demands that v, not

exceed order one. Now,
| g2 1/3,-1/3 |
when
o~ E1/4u-1 | )

Hence, the a-layer solution must see 6 = 0 as given by (Al). It is

noteworthy that when (Al) is valid,

5 ~ /%
a

so that the a-layer has the same order thickness as a 1 -layer.
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All of this suggests yet another layer of dimensions

Py
6 ~ E*cota

This is shown in Figure 12.

Figure 12, Dimensions of the 6-layer.

This layer will be referred to as the 0-layer, The relevant

equations will be:

' 3
Bwe _ v 0 Vo (A2)
dz 282 &3
ave ‘

Also, continuity shows that

ugy = U@®) + o(l)

. as

9 ~E"%
o .
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whilst

9 1
—~ E *tana<<

1
a 08

0
ax
For y-translation,

U(8) = 4Vsino -
However, it is clear that

1
U(6) ~ E*cota

so that
1
W E*
and the boundary conditions on W become
1 Ov
=1 Yz 0 _
Wo "3(29) = on z -hT
v1 3v9
Wo = (vesine—uecose)tana i%(ﬁ)z - on z
ox
. (v )% v
W, =3 I on z
0 Q2 5
The equations for Vo hence become:
3 1
2 Vo LA 2 a"e 2Q tana .
— - | 2) — - =L (vesme-uecose)
ax th ox T
3 1 . .
v 3 ov ‘
2 - &y 2y Hlena (g ging_u
ox vhB ox B

These are precisely the equations that arise when

(A4)
ot (A5)
-hy (A6)
0 forz>0

(AT)

cosf) =0 for z<0

(A8)
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Q
l
B

in place of either the }-layer equations or the a-layer equations.

The jump in Vg 2cross the 6-layer can be determined as fol-

lows. From continuity,

lave::-aue- 8we . aue
a 39 a‘){‘ 0z a;
So,
5
Ave =Av_~ - a— uede
OxX  -co
or,
00 op azv
a 9 1 2] 0
ave~-za—J [-a55+v—2]ae
Ox -0 ox
3
0o Iv
”‘z‘lﬁ %APG'YZE.f —3e de
ox -00 Ox

and Ape =Ap9(6) to order one. Therefore,

oo 83v

va 0
AV~ - 5= —x do
° Mln &

For Vg = O(l) inside the 8-layer, this means that
1 1 1
Ava ~ E-ETZZ E*cota = E?cota

Hence, this would predict no jump in v, to order one which is not
consistent with what is known. This apparent contradiction is re-

solved by inserting a thinner layer of dimensions

1
E* x

1
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across which a jump in v, and hence \A is accomplished. (See Figure

0
13.) This layer will be referred to as the 0 -layer.
Py

0, -layer ——— E*
4 ,

-~
T

Figure 13. Sandwich Structure for 6 and 0; -Layers
4

The relevant equations and boundary conditions become:

ow 83y 83w, -
S c-uml|l———=tt—S5 —=| (A9)
8z |7 =3 T2 aezax.
ave}_
—_— '
5z -0 (A10)
and,
Lk 3Vel . auei]
Yo, =72l [jag""z-sg"“ » =By (ALl)
y
y % ave}_ . %)uel N
‘=4 = e —t . 4 = 00—
Vo, “t2(g) [ = ~a o ] o ==0 (Al2)
p
L % Bve—l_ . Buel
i o 2] e o
1 | |
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Combining (A9)-(Al3) there follows

83v,\ 83v,\ rov, ou, 1
1 1 YL 4 L R S | vL
__._Tﬁ_ + —_— 2 4 :( — )2 A o — _a_A_
o> a® sesx  vh® = > 9

However, to leading order the continuity equation is

ou ov
8 , 61
— 4 _..5_9.4_ = 0
ax

— — ¢ g
&2 Lox®  a® ee® ] vn% L e&° 20% .
| (A14)
Defining the two-dimensional Laplacian as
2o 85,1 9
==2 "2 .2
ox a~ 00
(Al4) can be rewritten as
0 v91 .
,vz —Zz_(‘lﬂz)ive']:() (Al15)
ox vh7 1

The fact that this equation is of fourth order rather than third order
as the a-layer, 1 -layer and 0-layer equations are means that further
boundary conditions must be specified. In particular, all of the jump
conditions across the 3-layer and matching to the geostrophic interior

are not sufficient to solve for v, wuniquely. Certainly the additional

0

e

boundary condition must be



-122-

vei (x, +o0) - Vo
4

x, -o) = Av (A16)

Al

So, without obtaining the precise solution to (Al5) subject to all the
matching conditions used previously with the addition of (Al6), it can
at least be concluded that this is a well-posed problem. Hence, a

jump in Ve of order one is possible.



