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ABSTRACT 

Chemical reaction systems often exhibit nonlinear 

dynamic phenomena such as multiple steady states and 

different types of nonlinear oscillations. Furthermore, 

nonlinear dynamic models are essential for control and 

input optimization of chemical reactors. Methods of bi­

furcation theory are used for analysis of the nonlinear 

behavior of chemical reaction systems and for chemical 

reactor model discrimination and identification. The 

latter objective is attained by forcing"tame" chemic2l 

systems to bifurcate and provide valuable inform2,tion 

about the nonlinear system nature. Discrimination be­

tv;een ri vs.l kinetic models is demons tr:::. ted. and & s trC:;,­

t egy for accurate parameter estimation is developed. 

The problem of ste~dy-state bifurcation to multiple steady 

states in the event that the original model equations 

are not red~cible to a single algebraic equation is at­

tacked using the simple geometrical method of Newton 

Polyhedra. This method is particularly useful for analy­

sis of feedback induced steady-state bifurca~ions.~he 

theory of normal forms is used to illustrate that systems 

when close to bifurcation exhibit even locally their non­

linear characteristics. The most common types of bifur­

cation phenomena are discussed and the minimum: number of 
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feedback (or system) parameters that must be varied to 

attain the various bifurcational structures is deter­

mined. Systems that are easily reducible to normal forms 

(simpler locally equivalent polynomial systems) are iden­

tified with distinctive advantages for the study of steady 

state and eigenvalue structure close to bifurchtion. 

The analogy between some chemical systems and a particle's 

motion in a potential field is exploited to gain special 

insights into the chemical systems' dynamics. Chemical 

examples include nitrous oxide decomposition on NiO cata­

lyst, consecutive-competitive reaction systems in a CSTR, 

parGllel nonisother~&l reactions of arbitr&ry order in a 

CST~, reactions between adsorbed chemical species, cou-

pled oscillating autocatalytic CSTRs and a class of feed­

back regulated enzymatic reaction systems. 
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Cb.apter 1: Intl'oduction 

Jlotivation and Background 

Modeling chemical reaction systems is essential for process design. optimization 

and control. The models that describe chemical systems are usually nonlinear 

since they involve nonlinear rate expressions. The nonlinearities in the rate expres­

sions arise due either to making certain hypotheses (e.g. quasi-steady state or fast 

equilibrium [1]), or simply because most elementary reaction step rates depend on 

more than one chemical species concentration in a nonlinear fashion. The non­

linear nature of most reaction systems is responsible for different phenomena, 

such as steady-state multiplicity as well as periodic and more complicated types of 

oscillations [e.g. 2-10]. In order to model appropriately and to predict such 

phenomena, one must develop nonlinear dynamic models. 

Unsteady-state models are necessary both tor control and optimization pur­

poses. Obtaining overall rate expressions from fitting steady-state data and using 

them in dynamic models (which are subsequently linearized to be used for control) 

is very often unjustified and may lead to very serious problems. In many catalytic 

:reaction systems the :reaction steps that involve surface species may be slow 

enough that quasi-steady state or fast equilibrium hypotheses are totally unreason­

able. In such circumstances one has to assume elementary :reaction step mechan­

isms and obtain mass and possibly (in nonisothermal cases) energy balances for 

each chemical species both in the gas phase and on the catalytic surface. Further­

more, one may not always safely linearize the obtained nonlinear dynamic models 

and apply classical control schemes for linear systems. Such a :procedure often 

leads to a "runaway" from the desired operating conditions or an onset of undesir­

able oscillations [e.g. 11]. Consequently, in order to evaluate the possibilities that 
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arise upon application of a classical control scheme to a chemical reaction system, 

good nonlinear dynamic models should be obtained. 

Nonlinear dynamic models are also essential in order to perform transient input 

optimizations for chemical reactors. It has been demonstrated. repeatedly that 

unsteady inputs may enhance the overall yields or selectivities of chemical reactors 

[e.g. 12-16]. It has also been demonstrated that such an improvement of the 

overall reactor performance is due entirely to the nonlinear nature of the chemical 

systems [17]. 

The three, reasons that were just outlined above indicate the significance of 

obtaining nonlinear dynamic models of chemical reaction systems. Making 

different assumptions regarding the elementary reaction step mechanisms of cata­

lytic chemical reactions, different nonlinear dynamic models are obtained. The 

task then is to discriminate between the rival kinetic models and verify the validity 

of di.fferent assumptions. It should be emphasized that it is desirable to be able to 

determine the best kinetic model based only on gas phase concentration measure­

ments since surf ace concentration measurements are not always easy or accessi­

ble. The idea is to use appropriate inputs to excite the slow modes of the system 

that are due to surf ace reactions and inf er conclusions about these reactions 

indirectly. Finally. it is desirable to be able to predict. based on the obtained 

models, the observed dynamic behaviors and to evaluate the physical factors that 

are responsible for such dynamics. 

It has been suggested in the past that the presence of exotic dynamics, such as 

steady-state multiplicities and selt'-sustained oscillations, may be used tor rival 

kinetic model discrimination [7]. However, most chemical systems are "tame" in 



the sense that they possess a unique stable steady state for all inputs ~d do not 

exhibit "exotic" dynamics. In such circumstances one has to excite the system, 

forcing it to bifurcate by art.i.ticially introducing multivariable feedback control. 

Traditionally, feedback is used to control a chemical reaction system at a certain 

operating steady state (set point). 

The suggestion here is to use multivariable feedback control to destabilize the 

system steady state, and draw conclusions about its nonlinear nature by observing 

the induced dynamic behavior. In a feedback scheme the input to a chemical reac­

tor will be manipulated continuously according to concentration (or other output 

characteristic) measurements at the emuent. Although the appro~ch is sufficiently 

general to be used for any physical system, this work will be concentrated on 

lumped chemical reaction systems. The dynamics of such systems a.re described by 

](::: f(%,U,b,k) 
(1) 

where % is a state vector of species concentrations, u. is the reactor input, b is a vec-

tor of feedback parameters, and k is a vector of system parameters such as rate 

constants. 

Nonlinear systems of form (1) with freely adjustable parameters are best 

analyzed using the methods of modern bifurcation theory. Bifurcation is under­

stood as the loss of stability of a steady state of system (1) with appearance of new 

stable attracting states, either steady o:r oscillatory, as a system parameter is 

Wried. Since non.degenerate linear systems' trajectories generally go eitb.e:r to the 

single stationary point (steady state) or to indnity (if tb.e steady state is unstable), 

bifurcation to other stable attracting states is a nonlinear system characteristic. 

The major objective of this thesis is to use results of bifurcation theory to organize 

an anal.ysis of the possible dynamics of lumped chemical systems of tb.e form or 

Eqn. (1). The application of multivari.able control feedback to force chemical sys-



terns to bifurcate will be explored in detail, in order to develop a general method for 

model discrimination and parameter estimation. In parallel, for the cases in which 

nonlinear dynamic behavior is observed in chemical reaction models for systems 

with steady inputs, bifurcation analysis will provide an insight into how "exotic" 

dynamics are created as well as which physical parameters (or combinations 

thereof) are responsible for these nonlinear dynamics. Also, the values of parame­

ter combinations which provide exotic dynamics are characterized. 

In Chapter 2, discrimination between rival kinetic models using multivariable 

control feedback is investigated. The problem of finding a general strategy for 

accurate determination of unknown model parameters (k) is considered. 

Chapter 3 deals with the problem of steady-state bifurcation which is the most 

common type of bifurcation and is usually brought about by variation of a single 

feedback parameter. Steady-state bifurcation for systems that are reduced easily 

to a single algebraic equation has been analyzed elsewhere [lB]. In this chapter the 

problem is considered for systems that a.re reducible to a few nonlinear algebraic 

equations, with further reduction being impossible or impractical. 

In Chapter 4 the different possible dynamic phenomena that arise via bifurcation 

from a steady state a.re examined. Methods to determine the number ot feedback 

(or physical) parameters to induce different types or bifu.rcational structures are 

developed. The possibility of using the theory of normal forms (locally equivalent 

much simpler forms) to gain some insight into why a system's nonlinearity is best 

manifested close to bifurcation and to predict possible dynamic behaviors is 

explored. 

In general, reduction of a system to normal form is very difficult:. In Chapter 5 a 

general class of systems that are reducible to a special type of normal form via a 

simple aft"l.ne transformation that retains steady state and eigenvalue structure is 
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identified. The normal form parameters are then given explicitly as functions of 

the original system parameters, and the analysis of the more complicated original 

systems is performed easily by considering the dynamics of much simpler systems. 

Flluilly. in Chapter e. analysis of certain chemical systems' dynamics is pursued 

by considering a mechanical analog of particle motion in a potential field. Global 

stability characteristics and special insights that arise from this analogy are 

explored. 
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DI SGRilv:JKJ._TIOl\ Al\D IDENTIFICATION 

OF DYNhMIC CATALYTIC REACTION ~ODELS 

VIA INTRODUCTION OF FEEDBACK 



INTRODUCTION 

It is we11 knOWI'\ that catalytic reection systeras l'IWIY be l'l'IOdeled In 

several different ways a11 of which are consistent with laboratory 1teedy-

1t1te measurements [1J. On m.1ny occasions some of the models fl'.illy be excluded 

based upon spectroscopic data. There are cases. however, in which current 

chemical methods alone are unable to discrimin•te between rival models. Un 

such instances dynamic studies provide• useful tool. Furthermore, numerous 

recen_t experimenu1 studies have shown thH tnns i enu in flui d·caulyu 

inter•ctions, involving slow steps on or ne1r the catalyst surface, can sig­

nificantly Influence the overall dynamics of catalytic reactors. Deten11ina­

tion of models for these phenof':'leMI necessitate dynamic experiments. Because 

of the potential importance of nonlinear transient phenc:iimena for reactor de· 

sign. optimization, •nd control, it Is desirable that these dynamic experiments 

and the models deduced from them encompass the llW!jor nonlinear characteristics 

of the catalytic reaction. 

Such motivations have Inspired m1ny researchers to base their 11110deling on 

transient experiments. ltevfews by Sennett [1J and Kobayashi and Kobayashi [2J 

1ur1wri.uize the so-cal led "transient response" 11ethod. In this method. tran-

1 ient responses of catalytic reactions to 1tep·up/step·down perturbations In 

feed concentrations are used to discriminate between alternative models and 

Identify parameters such as ktnetic constants. ~ver, such transient data 

lllNY Agree closely for several c•ndidate models ll!WDklng di1criaination impossible. 

In • recent study by M. 9Cob1y1shi of CO cxtdatton on a 1ilver catalyst, 

sever11 different para~ters sets were found to gfve the 1ame flt to transient 

dat1 [)]. Also. su~h step experi~eMts do not i~pose the rmost sensitfve and 
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rigor01Js test of nonlinear transient kinetit models. It Is the purpose of 

this paper to introduce an alternative method of model discrimination, veri­

fication and identification. 

As Andronov and Chaikin point out [~]. the most fundamental dyn.amic 

property of a nonlinear system is the existence (or absence) of stable 

osci1tatory behavior. SQl'l'le chemical reaction systems are known to exhibit 

self-sustained oscillations (e.g .• S-1SJ. Usually an autocatalytit step is 

required. Several different model forms have been suggested in the liter­

ature in the effort to illuminate the mechanisms tn1t !ead to such self• 

sustained osci11atrons [16-20]. 

However. most reaction systems are sufficiently tame that they do not 

exhibit se1f•oscillations. On such occasions the system c•n be forced or 

modified such that nonlinear osc:.itl1tions occur. One way to achieve this 

is introduction of a periodic feed. This approach is the basis of the so-called 

"DC-shift tec:.hnique" for identifying the modes of the system [21J. 

An alternative identification method. first introduced here for chemical 

systems and in (22] for general dynamic systems, is to introduce feedback 

based on concentration measurements. Positive feedback has been suggested 

before as a means of creating stable autonOfflOus oscillations fn a e1osed·1oop 

re1ctor-controlier system for the purpose of Improving time-average reactor 

performance [23). The emphasis here Is utilization of feedback-induced os· 

eill•tions for model discrimination and identification. 

The major adv1ntage of this method Is that very important nc:M"llinear infer· 

iNttion is accessible only when the system Is close to bifur~tton. Systems 

not dose to bifurcation are termed "hyperbolic", 11nd for such systems there 

exists a nonllne1r transforf!'loiltion converting them to equiv•1ent linear systems. 

much nonlinear information thus being Yost or 18hidden•• [21f]. In the next 
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section the mathematical background used in this work is introduced. Next. 

the theory fs i»pplied to an example reaction system. the decomposition of 

nitrous o~ide on nickel oxide c&talyst. Finally the results are discussed 

MATHEMATICAL BACKGROUND 

Hopf Bifurcation Theory 

Hopf bifurcation theory provides powerful mathematical methods for 

analysis of the appearance of a certain class of nonlinear oscillations (25]. 

The utility of this theory for chemical reactor analysis has been clearly 

illustrated in several previous studies of isothermal [e.g .• 26-28] and 

nonisothermal [e.g., 29) reactors. A brief SUIMlary of certain parts of this 

theory is necessary here to introduce cert&in terms and results which are 

engineering literature. 

Consider a dynamical system of the fol"'ll'I 

(1) 

where v h a system parameter cal led the "bifurcation parameter". In the 

above equation x is an n·dimensiona1 vector and r is a vector-valued function: 

(2) 

It Is assumed that the system of Eqn. (1) has an isolated stationary point 

•
1

(v) and that F is analytic in x •nd v in some neighborhood of (x1 ,vc) in 

£"' ~ E1
• Here "'c h the critii;al n1ue of the bifurcatton ~rarneter, to be 

defined next. If (i) the Jacobian matri~ of F evaluated et the stationary 

point has e complex conjugate pair of eigenvalues l and i. 1uch that 

l. (v) 111a m(v) + iw(v) (3.1) 
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e. 

and (ii) the remaining n-2 eigenvalues of the Jacobian have negative real P•rts. 

then system (1) has a family of periodic solutions. [qns. (].1) and (3.2) de· 

fine vc; it is a value of v for which • pair of complex eigenvalues of the 

system Jatobian crosses the im.1ginary •~Is. 

If conditions (i) •nd (ii) are satisfied, it also follows that there 

exi5fs a scalar ~ and an analytic function 

(4) 

such that for each c 

H 
ll Cc). The 

in (0,cH) there exists a periodic solution Pc(t) occurring 

period TH(&) of Pc(t) rs an analytic function which may be 

wri uen 

H 2~ [ ~ H i] T (t) • - 1 + .t- T.C ; 
"'o i•2 • 

(S) 

Ex~ctly two of the Floquet exponents approach 0 as c does. One is zero and 

the other is an ana~ytic function. 

(6) 

The periodic solution is orbiulty asymptotically 1uble if s94
(t) < O. 

Hassard, Kazarinoff t1nd Wean [25] analyze the U.eps that must be fol lowed 

to ev•luate the leading coefficients ~2 • T2 •nd 82 in the expansions {~). (5) 

and (6). respectively. They 11ho provide a numerical "bifurc.uion p•c:kage" 

th•t finds the critical point, gives eigenvalues and eigenvector1 at c~,.vt). 

and provides v~lues for the coefficfents ~2 • T2 and 92• The proc:edure involves 
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transformation of the original system of differential equ1tions to the 

Poincare normal form (a topologically equivalent system with as simple .form 

IS possible) and subsequent reduction of the system to the central manifold 

(a two·dimension1t loc1l patch of surface th•t contains all the relevant 

information of the n-dimensiona1 system near the bifurc1tion point) [25,30). 

Steady State Multiplicity 

The modification of a dynamic system by introduction of feedback may 

result in addition of ot~erwise nonexistent steady-state multiplicity. 

Steady-state multiplicity has repeatedly been observed and predicted in 

chemical reactor systems [e.g .• 31). Bifurcation of steady-state equi1ibri~ 

may be treated using some results from singul~rity theory [31.32]. 

let the scalar-valued function G(q,·d be defined on Q in £2 • Suppose aYso 

that none of the fol lowing set of equations are satisfied •t any point 

(i) 
'n'I"\ 

1111 0 

(ii) G • G • Gqq • Gqqq • 0 . and • q 

(ii i) G 1111 Gq 1111 G 11111 G 2 - G G n q?} qq 'l"\!l 

Gqqq 
3 2 2 v'J • v + 3G v v + 3G v v + G 

qqri q 'I"\ Ci1"1"1 q n 'l'lf'l'l"l 'I'\ 

for all (v ,v) p 0 for wtlich 
q n 

G v
2 + 2G v v + c ...... v! = 0 

QQ Q q'f'j q 'i'j 'l'I 'I 

• 0 

in n: 

(7) 

(8) 

(9.1) 

(9.2) 

Then at any point (q
0

.'l"\
0

) inn for which G{q0 .n0) • o. the local nature of 

fn Tab1e 1 (32]. 
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especially convenient for this analy,sls. Consider• family A of linear 

differenti•1 operators in a Euclidean space£", depending smoothly on• 
p 

parameter vector i& t M, where M is a given parameter space in £ • 

Definition [33l: The increment of the family A is defined as being 

that function h of the parameters, the value of which et ~ is the 

greatest real part of a11 eigenvalues of the operator A(~): 

h {lJ) 

(10) 

{11) 

The function h is continuous but not necessarily differentiable. The 

family of level curves of h in M (M: £2 wilt be considered here) is called 

fol lows: 

COOIMENSION 0 REGIME: almost all points on the parameter space (up to 

a set of measure zero) belong in this regime (two-dimensional regions 

of space). There are two possibilities: 

i) s ft tratum ..,
1

: the ~ximai1 re~1 p~rt belongs to a single real 

eigenvalue; 

Ii) Stratum o2: the 1M1xima1 real part belongs to a complex conjugate 

eigenv•lbte paf r. 

COOIMENSION 1 REGIME: these are eurves on the parameter plane. Three 

possibilities exist: 
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i) Stratum F~: the maximal real part belongs to two c:oineidental 

real eigenvalues which eorrespond to a 2x2 Jordan block. 

ii) Stratum F2 : the maximal real part belongs to three eigenvalues. 

one real •nd a complex conjugate pair. 

the maximal real part belongs to two distinct complex 

tODIMENSION 2 REGIME: these are points on the parameter plane. Five 

possibilities exist: 

i) Stratum G1: the maximal real part belongs to three real eigenvalues 

corresponding to a 3x3 Jordan block. 

ii) Stratum G2 : the maximal real part belongs to four eigenvalues, two 

coincident complex conjugate pairs corresponding to two identical 

2x2 Jordan blocks. 

iii) s ,.. tratum ..,3: the maximal real part belongs to four eigenvalues. two 

of which are real and coincident and correspond to a 2x2 Jordan 

block; the other two are complex conjugate. 

iv) Stratum G~: the maximal real part belongs to five eigenvalues: one 

real and two distinct complex conjugate pairs. 

v) Stratum G
5

: the maximal real part belongs to three distinct complex 

conjugate pairs. 

F1 and F2 there is always a G1 point. 

of F. segmenu. e 

Other G. points lie at the intersection • 

Now the stability boundary can be described as the cur~e(s) In M along which 

the maximal real part of the eigenvalues of A {here the Jacobian matrix corres· 

ponding to nonlinear system (1)) is zero (zero increment). A change in 
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parameter values wtiich results tn crossing of the stability boundary in 

the D1 region means simple loss of stability. A11 system trajectories 

escape frOfl'l the neighborhood of the stationary point x
5

• Crossing of the 

stability boundary in the o2 region means Hopf bifurcation. Loss of sta• 

bility in an F1 region results in a higher order bifurcation and Is possible 

on1y at finite number of isolated points. Finally, loss of stability in a 

G8 region is improbable for a two-parameter system and not generic (a small 

shift in any parameter eliminates it.) 

It can be proven [35) that along the stabi1ity boundary in the o1 region. 

•bifurcating branch of steady-states appears and exch~nge of stability is 

observed. Thus a line of steady-state multiplicity in E2 must coincide with 

the stability boundary in the D1 region. As a result, the points at which 

F type bifurcation occurs must 1ie on the lines along which ste1dy•state 

multiplicity 1ppe1rs. 

REACTION MODEL DISCRIMINATION VIA THE FEEDBACK APPROACH 

For isothermal. isobaric reactions in a catalytic CSTR, the transient 

material balances have the form: 

de 1 
+ rf (c,c

5
) ~ • -=-- (cf-c) 

tR 
(12.1) 

de s r
9

(c.c
5

) ~ -dt 
(12.2) 

where c and c
5 

are q- and s·dimensional state vectors denoting the gas phase 

and surface species concentrations. respectively. and r 1• r
1 

are vector 

functions of c and c
1 

denoting the net rates of fofl'flCltfon of·gas phase and 

surface species. respectively. i 1 ts the re~ctor me•n residence tlme. If 

the feed coneentration ts m.tnipulated Tn response to the effluent eoncentra-
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( 13) 

v being some vector of feedback parameters. then the closed loop dynamics are 

described by: 

(14.1) 

(14.2) 

which is of the form (1). Since the above model is a result of an assumed ele-

mentary reaction step mechanism. the functions rf and r
9 

are polynomials, 

usually of degree 1ess than or equal to three if mass action kinetics are 

assumed. Thus, all the smoothness conditions required for the R.H.S. of 

Equation (1) are met. and the theory sul'Mlarized above applies. 

Yang. Cutlip and Bennett [34] have studied the decomposition reaction of 

nitrous oxide to oxygen and nitrogen over nickel oxide catalyst. The overall 

reaction may be written as: 

(15) 

As indicated by Yang e~ aZ •• two alternative elementary reaction sequences fo 

this rea:tion have been suggested in the literature: 

MECHANISM l: 
kl 

N20 + S - N2 + OS 
( t 6) 

k2 
20S ;::::: o2 + 2S 

k ... 2 

MECHANISM II: 
(11) 
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where S and OS denote the t1t11ytit 1ites and the adsorbed oxygen species. 

respectively. 

~ass action kinetics apply. Thus the first reaction rite may be expressed as: 

Ct 8) 

(19} 

where by 'N~o. c0 and cN are denoted the concentrations of N2o, o2 and N2 
4L 2 2 

in the reactor expressed in mo1es/c:m3. respectively. cSo stands for the 

maximum possible concentration of adsorbed oxygen atoms (mole/c:m3) •nd e 
stands for the partial surface coverage (Oses1). In a catalytic csn. with 

residence time tR •16.B sec. at 352~C the following values for the kinetic 

parameters were det~rmined from steady-state data and step-up/step·down 

transient response measurements [34): 

3 
k1 • 1 367 .. ,,..4 -~ 

• ~ v mole•sec 
(20.1) 

c llB 
So 

_
7 

ll'IOle 
8.44 x 10 3 

em of ;as 

Under the assumption that the flow rate of the diluent gas (argon) is 

very large compared to the flow rate of w2o in the feed and that the feed 

does not eontain N2 nor o
2

• the governing equations for the dyn.wnic behavior 

of reactants and products may be written ~s follows: 

(20.2) 



-· dt 

19 

CN 
2 ... _ .. 

Defining dimensionless variables: 

CN 0 CN - 2 - 2 x ... 0 y "" 0 c N20,f c: N20.f 

cSo (1-&) 
c . - - N20,f 

w 11111 u ... 
c 0 c 0 
N20, f N20,f 

- 0 0 e 11111 klcN 0 f'fR y llllll k2cN
2
0,f 2 • 

the equations become: 

... 
ax --............ ... ... - s )I( w - (x. u) .... 
dt 

-dt 

..1,":';: 
u- --- (- -)'!I -'!I - • -6 x w + 2-y a - w .11. .. 26 w '% ... 
dt 

(20. 3) 

(20.At) 

(20.5) 

co - 2 z ... 
0 c N20.f 

(20. 6) 

cSo - t -t Oill ~. a • c 0 tR N20,f 

- 0 2 -
tR 6 • k_2cN 0 f tR 

2 • 

(21. 1) 

(21.2) 

(21. 3) 

(21 . 4) 
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i iiiil 0.0230 j B 1.0816 I 111111 O. 1588 

,. u 
1 (22) 

,. . 
2 (23) 

Then the dynamic equations for this model become 

dt 

(24. 1) 

- . 
dt 

(24.2) 

(24. 3) 
dt 

(2'4.4) 
dt 

-GA ... - - .... ) --- 1- -) - a •SI JIC W • Y • )it {Q O .. l.,J + ~I "f J: W "' \Jt • ill 

dt 
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·-~ Giil S I X W + 'YI ;- (cg t - i:;) "" 6 t -; r ;.; "' Y 
dt 

(2S.2) 

.-
oz - ( .... ) .It --- -• y':ic a'-&J - g•yzw .. z 
dt (25.3) 

- (25.4) 
dt 

-mental data; This model can therefore be used here as • basis for testing 

the consistency of the Mechanism II model with such data. Consequently, the 

following question wi11 be explored first: with appropriate choice of 

steady-state and transient responses provided by the Hechanisffl 11 After this, 
• 

with parameters so fixed in both models, the behavior of these different models 

in the presence of linear and nonlinear feedback is analyzed and compared. 

Using the model for Mechanism I, steady-state effluent concentration 

values have been calculated for a whole range of feed concentrations u. Then 

a least squares algorithm has been used to c1Tcul1te values of the parameters 

8.At27S B' 1111 o.ous 1111 0.2255 

The values of only one gas phase species concentration are glYen since the 

other eoncentrations are easily found by stoichiometry. Clearly, the two 

models are indistinguishable in this comparison based on steady-state properties 



22 
NeJtt 9 the transfent responses •re sfmulated for e•ch model. The 

Initial conditions are the steady-state concentrations corresponding to u•1. 
For t > 0, ~ Is fixed At the dif~erent value u • 1.5. The model equations have 

been integrated numerically 11Sin9 Runge·Kutta-liiH \!11th Mams·Houhon predic:tor­

correc:tor (MODDEQ.) • and i. y and i have been plotted He funetton of t (Fig. 1). It 

is clear that the transient response 11 quite 1fmilar for both models. especially 

for i and y. Thus discrfmination J1 difficult using thts method for this example. 

at a11 steady states have negative re11 parts. Simulations starting arbi· 

trarily far frOftl the steady state show fflOnOtonic return io thfs steady state and 

hence indicate absence of self-sustained oscillations for both models. 

(26) 

where x
5

, is and i
5 

&re the steady-state v•lues corresponding to u • u
5

• 

Henceforth the values u
1

• i
1

• y
1 

and i
5 

wt11 be catted the reference steady­

state values of these dimensionless concentrations. The v1lue of ul ~111 be 

taken here to be unity. 

introduction of feedback ml!Ay tn general ch1nge the ste1dy•1t1te morphology. 

c1 .. r1y by requiring that F(O.O,O) • 0 In [qn. {26), the reference steady state 

ts also a steady 1t•te of the closed Joop system. However. additional steady 

states may appear in the closed-loop system. Also. as llientioned earl Ser, 

feedback may change the dyn&J"Dic behavior of the system sfgnificant1y. possibly 



introducing btfurc:ations which change the qualitative dyn"11!ft structure of 

the closed-loop system. After examining the effect of feedback en steady• 

state multiplicity. the dynamic Implications of this modification of the 

reactor will be c.onsidered. 

Steady-State Multlpltc:tty 

Proportional feedback ts the simplest math~tical form and consequently 

wi11 be considered first. Thus. the Inlet feed concentration fs manipulated 

according to: 

U7) 

for the Kec:hanism I model, setting the right·hand side of £qn. (21) equal to 

-, c- •) z2-- ~ -2~2-2 ~ ~2 L~~ -- R-3 ft 

1 x,y • -~ xy +,ya~ A v •wr • ~~yxy • uy • v (28) 

12cx.y,u} • i + i - u • o (29) 

Substituting for u using Eqn. (27) and eliminating y frCll'l'I the resulting equa-

tions yields one equation tn i: 

(30) 

It Is readily verified that po1ttfve 1olutfcns of Eqn. (30) ~ear the reference 

steady-state value i 1 Imply posltfve values cf Ye i. end w. 
FrO!l'l'I t.hJs equation one obtains: 
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... <-s2 
- i.5.rv> ( ) 2-2 6i<i> • 1 ... bz us+ b1xs + b2ys ... 2<1 + b1)i + lry& a i 

.. 
G---- • 

JIUl(X 

(u +bi +b Y - (1+b1>x) 
... .lty(J + b ) _,!__1_s __ 2_s_..,,.. ___ _ 

1 (1 + b2)2 

315 ( 1 + bl) 2 
+ 3 (u + t> 1x ... b.,y ... o + b, >x) 

(l+b) S S .r.S I 

2 

6cS ( 1 + b1) 
2 

(1 + b2)3 

6cS (1 +bl) 3 

(1+b:z) 3 

()1) 

(32) 

(33) 

Evaluating G (x ) and setting this equal to zero, a condition on the 
x 5 

Evaluation of G--Ci ) and substitution for 1:12 using Eqn. (34) shows that xx 5 

(34) 

G--Ci) Is zero whenever G (i) is zero; i.e., whenever Eqn. (34) applies. xx i x s 

Also. as is evident from Eqn. (33). Gixx(i
5

) is nonzero. similarly, it can 

be shown that the remaining parts of conditions (7) to (9)_are satisfied. 
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Evaluation of Gb
2 

(x
5

) shows that this partial dertvati~e vanishes 

while GxttJx
1

) m.ly be readily shown to be different than zero. Thus the 

catastrophe depicted In Case (7) of Table 1 occurs along the line in the 

-(b1 ,b2) parameter space defined by [qn. (34). Plotting Gas a function of 

x shows that lf b2 Is less than the RHS of Eqn. (3~), there are three steady 

states which collapse along the line of Eqn. (3~). Similar treatment of the 

steady state model for Mechanism 11 shows that the locus for transition from 

single to multiple steady states ls given by 

(35) 

Thus the steady-state multiplicity picture is almost identical for the two 

For reasons that will become apparent in Investigation of the dynamic 

behavior of the closed-Toop reactor system, a specific form of nonlinear 

feedback has been also considered. n~ly 

(36} 

This form of nonlinear feedback was selected because (i) it fs a simple 

function which gives bounded u values (between zero •nd 2u
5
). a physically 

import1nt and realistic property. and because (ii) It is 1na1ytic allowing 

applic1tion of the theory outiined •bove. 

First. the effect ~f this type of feedback on 1teady·st1te multiplicity 

of the closed-loop system is considered. Eqns. (28) •nd (29) in this c•se become: 

lllll 0 (37) 

(38) 
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Still 

h h known that • necesury condition for ste1dy-sute multipHchy h D5l: 

This condition provides the relationship that b1 and b2 must satify at the 

point of multiplicity. Condition (39) gives: 

( 40) 

(41) 

for the Hethanism II model. The only difference between tqns. (leO), 

(41) and (34). (35), respectively, is the 1/w factor 'llllhtch ls Introduced to 

state Eqns. (37) and (38) show the existence of three steady states below 

the curves defined by Eqns. (40) and (41) which collapse into one along those 

curves. The resemblance of the behavior in the case of the tnverse tangent 

feedbacks to that of the proportional feedbacks is not surprising since the 

former function resembles the tatter in the limit as their arguments go to 

zero (tan • 1a .... x as x -o). 

Periodic Solution! 

When the feed concentration is m.1nipul1ted according to [qn. (27) for 

linear feedback or [qn. (36) for nonlinear feedback. values of the feedback 

parameters b1 .,,d b2 are sought such that bifurc.ation to periodic solutions 

occurs. The eigenvalues of the Jacobian for the tase of 1ine.ar feedback are 

the Sdlll'l'le as for nonlinear feedb~ek after taking Into account the norrn.ili:ing 

f•ttor of 1/w for the latter case. 
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Decrement diagrams have been constructed for the case o.f Inverse 

t•ngent feedback (Eqn. (38}) for both re•ction models (Figs. 2 and )). In 

each case, there •re F1 and F2 curves dividing the parameter space into o
1 

•nd D2 region,s. The stability boundary ls also shown in this b1-b2 parameter 

space for both models by a dashed line. 

No periodic solutions are anticipated when • single feedback is used 

(b1 or b2 zero). This can also be verified using the Routh criterion [36]. 

For the Model I there is a G1 point at (b1 • -1.S , b2 • 22.~). Hopf bifurca­

tion is realized at loss of stability in the o2 region and is possible when 

-7.5<b1 <-6.88 • b
2

>22.R@ For b2 <22.4 Ion of stability c:.an occur in 

the D1 region. As mentioned earlier the stability line in the o1 region 

coincides with the steady-state multiplicity 1ine. Hence exchange of stabi1it 

occurs in bifurcations to steady-state multipiicity in this region. To the 

left of this line, the reference steady-state becomes unstable while the two 

appearing steady-states are both stable. 

There is one single point 8 at which the stability boundary crosses the 

r 1 line, and at this point F1 bifurcation occurs (Fig. 2). Thus. at point 8 

there is a double real zero eigenvalue and the Jordan block corresponding to 

it has the form 

Point B a1so lies on the line along which steady-state multiplicity changes 

from one to three. 

The decrement diagram for Model II Is significantly different from that 

for Model I. For Kode1 II. the G1 point appears at (b1 • -4.91 • b2 • 15.7) 

and is located well in the stable region. For b1 < -~ there is always a 
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value of b2 at which stability is lost in the D2 region (Hopf bifurcation). 

For b1 > -~. stability ts lost In the o1 region, the stability boundary 

coinciding with the steady-state multiplicity 1ine, and •gain there is a 

point D at which stability is lost along the F1 curve. The steady-state 

multiplicity line passes through point Das before. and at that point an F1 -

bifurcation occurs. As is evident from the decrement diagram, no periodic 

solutions are expected for a single feedback as no bifurcations exist along 

the b1 • 0 or b2 • 0 lines. 

When multiple steady states exist. closed-loop reactor dynamics are 

expected to depend on the eigenvalue configuration at all steady states. 

Accordingly, decrement diagrams have been prepared for the additional steady 

states which appear following the bifurcations from one to three steady 

states. The steady-state multiplicity lines In Figs. 2 and 3 are retained 

for reference in Fig. 4, which applies for inverse tangent feedback. The 

dotted lines in Fig. ~are the stability boundaries for the added steady 

states; the F2 locus for the added steady states is ~tso shown (essentia11y 

the same decrement diagram applies to both of the added steady states for 

this exanple). For feedback parameters above the dotted line. the added 

steady states are unstable. Regions of instability of the added steady state! 

are significantly different for the two models, suggesting the possibility of 

mode1 discrimination on this basis. 

regarding the stability and form of these solutions. Based on the decrement 

diagram above. one can only predict tl'wit. close to the Hopf bifurcation 

curve, the oscillations (if stable) wi11 be of the harmonic type whereas in 
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Also. gain parameters in the neighborhood of the F1 bifurcation point may 

yield oscillations differing significantly from harmonic folf'llll~ 

Information about the stability of periodic solutions has been obtained 

using the numerical bifurcation ~ckage outlined above. The parameter b
1 

is 

left free and Its critical value for fixed b2 is located by the bifurcation 

program. For inverse tangent feedback. the leading coefficient s
2 

in the 

asymptotic expansion of the F1oquet exponent ls found to be negative. indi­

cating stability of the bifurcated periodic solutions. Similar calculations 

fer linear feedback are somewhat ambiguous: calculated values of s
2 

are 

positive, but the estimated error in the e2 calculation. while smaller 1n 

absolute value than the s2 value, is of similar order of magnitude. lnsta-

bi J ity of Hopf bifurcations obtained with linear feedback is suggested by these 

results but net clearly demonstrated. Simulations for linear feedback parameter 

very near the Hopf bifurcation locus did not produce any stable 1imit cycles, 

a result consistent with the bifurcation package indication. 

Numerical simulations have been undertaken to explore the parametric 

dependence of closed-loop periodic solutions when an inverse tangent feedback 

of the fonn of [qn. (36) is applied. Fig. 5 sumnwirizes some of the results 

obtained for b1 • -10 and fer three different values of b2 for ~de1 I. For 

b2 • 29 a small perturbation from the reference steady-state leads to one of 

the two other steady states (which •re both stable) depending on the direction 

of perturbation. For b2 • 30 reY1x1tion·type oscillations ire observed. Ac· 

cording to the Model 1 decrement diagram for the added ste.1dy states (rig. 4A), 

these are still stable for b1 • -10. b2 • JO. Thus, depending on the initial 

state, the closed-loop reactor state can osc111ate •s shown tn Fig. 5 or can 

approach asymptotically one of the additional steady states. Such behavior 

is illustrated in the projections of phase space dynamics onto the x·y plane 

shown In Fig. 6. 
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The added steady states become unst•ble for b2 • 33. leaving a single 

limit cycle •s the only evident stable structure In ph•se sp~ce (see Fig. 6). 

For b2 = 100. the three steady states have collapsed Into the reference 

steady state, and oscillations areof higher frequency end s~11er iDftlp1itude. 

The temporal oroftles of the osclllations are h•rmonic Bn for111t. Osc111ations 

persist even at b2 • 1000. 

Numerical stmulations of Kodel II give quite different results. ton• 

siderfng again b1 fE~ed at •10, perturbation from the reference steady-state 

leads to one of the t\liO other steady-states for b2 • 33. At b2 • 34 strange 

oscl11ations appear (Fig. 7). This behavior can possibly be attributed to 

the nearby FJ bifurcation point for these feedback p411rameter values (see 

Fig. 3). As larger values of b2 are considered, relaxation-type oscillation 

is evident at b2 • 45. Harmonic oscillations are observed at b2 • 75, while 

oscillations.disappear et b2 • 100 as the reference ste•dy state becomes 

stable (Ft;. 8). This qualitative feature Is miirked1y different from the 

l'!ode1 I behavior for Increasing b
2

• 

It should be .noted that, for this ~rticuiar example of N20 de~posttfon, 

discrimination between the two models ts possible by steady-state experiments 

wf th differing feed concentrations of "2· Th"i1 example ~~s used here because 

of its simp1l~tty to 111ustrate the properties and potential of the general 

concept of feedback-induced bifurc:.ati~ es a tool for dynamle protess modeling. 

DISCUSSION 

This work shows thcit introduction of feedt:Mtck can cause otherwise tame 

cataiytrc reaetfon systems to exhibit ste1dy·state MU1ttp11elty and stable 

ll•it cycles. The form and the occurrence of these phenomena as a function 

of feedback parameters may be used to verify an assl.ll'fled aodel ·or to df scrim­

in1te between rfv11 models, even Jn the case where steady-state and "transJent 

response•• d1ta are ln close agreement for some of the possible lil0de1s. 

The de~rement diagram 1s e~tranely useful In visualizing and Sumndlrizing 

the effects of changes tn feedback (and also reactor operating and k1netic) 
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parameters on bifurcations to periodic solutions. The regions In the 

parameter space where Hopf bifurcation is expected are easily located and 

Insight is gained into the evolution of Hopf-bifurcated solutions with 

parameter changes. Also, higher order bifurcations of the F type are 

predicted. and the nonharmonfc types of oscillations sometimes ob­

served can be qualitatively explained in view of these higher-order 

bifurcation effects. 

Once the form of the model has been selected. the feedback approach may 

be successfully used for kinetic parameter estimation. The frequency of a 

Hopf-bifurcated limit cycle may be found e~perimenta11y as a function of the 

system and feedback parameters. While this limit cycle may have infinites­

imal amplitude in the neighborhood of the bifurcation point. the frequency 

of this cycle wi11 be evident in finite amplitude fluctuations following a 

pulse disturbance of the closed-loop reactor system. In ~ laboratory experi­

ment the exact point of bifurcation l'MIY of course not be found, but the 

frequency of the periodic solutions is quite insensitive to small perturba· 

tions from the bifurcation point as is clear by the asymptotic expansion of 

the period of oscillations (Eqn. (5)). 

Then. assuming the form of the model is known. the characteristic equa· 

tion of the Jacobian at the steady state may be expressed in terms of system 

and feedback parameters. At the point of Hopf bifurcation it ts known that 

the characteristic equation Is satisfied by l •ti~. where~ is the measured 

frequency of the period solutions. Thus 0 for e~ch bifurcation point. tW'IO 

algebraic equations are obtained (one for the real part of the equation and 

one for the imaginary). These algebraic equations flWDY then be used in con· 

junction with steady-state equat~ons to estimate values of kinetic parameters 

using a te~st·squares procedure. 
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fina11y, ft should be noted th~t in the above dlscussion and analysis. 

measurement. computation and •ctuation time lags have been assumed negligible. 

These lags may be significant in some cases. requiring modtfrcation in the 

m.1thematical description and characterization of the closed-loop system. 
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NOMENCLATURE 

linear differential operator 

~ximum concentrttion for adsorbed oxygen atoms for 
'4ode1 I (mole/em3) 

l'n.lllximum contentration for •dsorbed oxygen atOl'fls for 
Model II (mole/c:ml) 

reference feed '°ncentration • 10-7 mole/c:m3 

surface species cbneentration vector (mole/c:m3) 

feed concentration vector (mo1e/cm3) 

Euclidean p-space 

functions defined i l"I Eqns. (28) and (29) 

functions defined in Eqns. (37) and (38) 

function defined an Eqn. (2) 

funetion def'i ned in Eqn. (13) 

function defined in Eqns. (7-9) 

increment defined in Eqn. (11) 



t'(c) 

..,., ............. -
u,.1e.y 0 ;.: 0 w.t. 

GREEK SYMBOLS 

B 

y 
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period of periodic solutions (Eqn. (S)) 

system £ate vector (Eqn. (1)) 

stationai"y point of vector x 

dimensionless variables defined in Eqn. (20.6) 

reactor mean residence time (sec) 

real part of eigenvalue (Eqn. (3.1)) 

dimensionless variables of 11ode1 I defined in text 

., 0 
cso c.., 0 f 

"2 • 

@ -

k2cN
2
0.ftR 

I 2 -
k_2cN

2
o.ftR 

FJoquet exponent (Eqn. (6)) 

defined in Eqn. (4) 

bifurcation parameter (Eqns. (7-9)) 

parameter vector 

function defined in Eqn. (~) 

bifurcation parameter fn Eqn. (1) 

critical value of bifurcation parameter 

imaginary part of eigenvalue (Eqn. (3.1)) 

defined in Eqn. (3.1) 
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Table 1. Steady-state bifurcations [32] 

(1) G • 0 , G'l'l ~ 0 

(2) 

(3) 

(5} 

(6) 

(7) 

(8) 

2 .&. 

G • G • G 11111 0 • G •det d G V. 0 q .. • qq 

index ct2G • 19' 

G • G • G • 0 G det•d2G ~ 0 q 'I"\ 9 qq 

index d2G ~ 

G • G • G • detCd2G) Q .... 

G •(d3G)(v,v,v) 
qq 

G•G •G •0 
Q QC! 

GqQQ •Gn ~ 0 

G • Gq • Gqq • 6n • 0 

Gqqq •G'l'lq rj. 0 

... 0 

G • G • G • G • G • 0 
Q qq ~ 'l'IQ 

G •G ti 0 
qqq r::i 

* See condition (iit) (Eqn. 9). 

Bifurcation Diagra~ 

c 

>< 
• 

> 

q 

~ Index d2G • 1 means det(d2G) ch~nges sign •s bifurc.1tion point is crossed 
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Table 2. Steady-state v~lues as a function of feed concentr~tion 
for two different kinetic models of H20 decomposition 

li10DH I '°'ODEL II 

... - w - w u x "' 
0.1 0.084229 8. 14987 0.084519 7.97272 

0.2 o. 168826 8.03723 o. 169185 7.97282 

0.3 0.253650 7.95355 0.253992 7.88432 

0.4 0.338653 7.88476 0.33893'4 7.8!i211 

o.s 0.423805 7.82544 0.424006 7 .8011 s 
0.6 0.509088 7.77279 0.509202 7.76135 

0.7 0.594488 7.72519 0.594517 7. 72265 

o.S 0.679993 7.68156 0.679948 7.68499 

0.9 0.765596 7.64117 0.765489 7.64831 

1. 0 0. 851290 7.60348 o. 851138 7.61258 

1. 1 0.937068 7.56806 0.936890 1.sni.o 

1.2 1.022920 7.53463 1.022740 7.54375 

1. 3 1.108860 7.50292 1.108690 7.51057 

1.4 1. 194860 7. if7273 1.194730 7.47817 

1.5 1.280930 7.44390 1.280870 7.'44651 

1.6 1.367070 7.'61628 1. 367709 7.lf15S.5 

1.7 1.453270 1. 38971 1.'453388 7.38528 

1.8 1.539520 7.36"25 1.539776 7.35565 
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CAPTIONS TD FIGURES 

Figure 1. 

Figure 2. 

Figure 4. 

Figure 5. 

Figure 6. 

"Transient response11 compar hon for both modeh of N2o 

decomposition in• c•t•lytic CSTR following ~ step change 

In feed N2o concentration. 

Decrement diagram for Model I with inverse tangent feedback. 

The reference steady-state is unstable for the c1osed-1ocp 

system for feedback gains en the region left of the dashed 

line. The heavy solid 1ine divides the parameter plane into 

regions with one and three steady states. The o2 region is 

stippled while the o1 region is clear. 

Decrement diagram for Model 11 with inverse tangent feedback 

(notation as In Fig. 2). 

Decrement diagrams for the added steady states for Models I 

•nd II with inverse tangent feedback. These steady states 

are unstable for feedback gains above the dotted 1ine and below 

the steady-state multiplicity 1ine. 

Periodic solutions for closed-loop operation with Model I and 

uctan feedback for (b1 .b2) • (10,)0). --­

- • - - ; (•10,1000). 9 0 0 G e 

(-10, 100). 

Projection of concentration trajectodes onto the i .. y plane 

for Model I with inverse tangent feedback for different gain 

parameters (A: b1 • .. u>. b2 
1111 JO; I: b1 • •10, b2 • 33 ) ... 



Figure 7. 

Figure 8. 
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Periodic solution of Kode1 11 ln closed-ioop oper~tion with 

•rctan feedb•ck; (b8.b2) • (•10.3~). 

Changes In the closed-loop response of Kode1 11 wlth •rctan 

feedback and (b1,b2) • (-10.~S). ; (-10,75). - - - - • 
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STEADY-STATE Tv".ULTIPLICITY AND 

BIF1JRCATIO.N ANALYSIS VIA THE 

NEWTON POLYHbDRON APPROACH 
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INTRODUCTION 

Steady-state multiplicity has been observed and theoretically predicted 

on l'IW!lny occasions In chemical reactor theory and is a property of paramount 

tmportance when studying the operating characteristics of any chemical reac­

tion system. This phenomenon, first popularized by Van Heerden in 1953 [1], 

has since drawn the attention of many workers [2-11]. Heinemann et aZ. [12] 

applied the Keller method [13] for finding so1utton branches computationally 

tn the parameter regfon of interest for a combustion problem. Balakotaiah 

and Luss [1~] app.1ied Golubitsky's bifurcation theory [15] to.identify parameter 

values at steady-state bifurcation and the local solution surface near the bi· 

furcation point. 

In almost a11 problems considered previously It has been possible to 

reduce the model steady-state equations to a stngle scalar nonlinear equation 

in one unknown. This reduction is not possible for many other systems of in­

terest. Using Keller's 11near algebraic approach for multiple nonlinear equa­

tions, one requires that a necessary condition for bifurcation be satisfied: 

the determinant of the Jacobian must vantsh. Supplementary bifurcation condi­

tions involving the derivatives of the algebraic equatfons with respect to the 

bifurcation parameter must also be satisfied to ensure bifurcation. In this 

approach choosing the bifurcation parameter ls an essential and critical step. 

further, one must compute the derivatives appearing tn the bifurcation con­

ditions [13). 

The objective of this work is to introduce and 111ustrate an extremely 

powerful mathematical tool, the Newton polyhedron method, for determining bifur· 

cation points of steady-state solutrons. This method can be applfed when the 

steady-state equations cannot be reduced to a single equation or where pro-
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hibit.ive algebraic effort and complexity would arise in such a reduction. One 

major advantage of the Newton polyhedron method ts simultaneous consideration 

of a11 system parameters In the algebraic conditions that must be satisfied 

~t bifurcation. One does not need to choose a single, particular bifurcation 

parameter. Furthermore, tn the case where the model steady-state equations 

are of polynomial form. no evaluation of partial derivatives is required. 

The method Is applied here to two chemical reaction engineering problems. 

The first is isothermal reaction between two adsorbed species in a catalytic 

CSTR. a system for which the steady-state material balances have polynomial 

form. The method is used to examine the steady-state multiplicity produced 

when feedback manipulation of input concentration is added to the reactor. a 

strategy suggested previously for catalytic reaction model discrimination [16]. 

The second problem considers twio and three para11e1 reactions of arbitrary 

order taking place in a nonisotherma1 CSTR. Here reduction to one steady­

state equation is in general impossible. Criteria are obtained for absence 

of bifurcation to multiple steady-states from a basic solution branch, and, for 

a specific problem of one second order and one third order reaction. the point 

in parameter space at which steady-state bifurcation occurs is found. 

THEORETICAL BACKGROUND 

Consider the system of k·algebraic equations ink unknowns t 1, ••.• tk: 

f1<t1·····tk) • 0 

'2<t1·····t~) • 0 (1) 

fk('i·····tk) - 0 
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Suppose that So• (~ 10 ••••• ~kO) is a solution of system (1). (Only 

real solutions are considered throughout this work. The Mitn.or 

number µf(£.o) is defined as the multiplicity of the solution _fa· By multi-

plicity here is understood the number of solutions of (1) when one or 

more parameters of system (1) are slightly perturbed from their original value: 

for which Ea is a solution. Usually perturbation in one direction produces 

µf(~0 ) solutions, whereas perturbation in the opposite direction retains the 

same solution configuration. 

The definition of multiplicity used here, which refers to bifurcation and 

local appearance of additional steady-state solutions, should not be 

confused with the use of the term steady-state multiplicity elsewhere in chemi 

cal engineering. Often, in other works on steady-state multiplicity, one is 

concerned with multiple roots of Eqn. (1) which may be widely separated. To 

illustrate the difference between the multiplicity of a soZut-::on. and the multi 

plicity of the soZution8 to a system of equations, consider the single e~uatic 

w3 - bw • 0. For b a 0, the solution w = 0 has multiplicity three (J.if(O) a 3} 

perturbing the parameter b to some positive value, three solutions to the 

equation exist. Notice, however, that for b ~ 0, each of the three solutions 

has multiplfcity unity. Near each, there is only a single solution branch. 

Sufficiently small perturbations in b about any positive value do not alter tr 

number of solutions. 



As will be stated precisely in the main theorem below~ t~ multiplicity 

of the solution ~Oh often equal to and is never less than an integer called 

the Neu>tcm nwribe~ v. The Newton number depends only on the functional form of 

the system of equations and can be evaluated directly after identification and 

characterization of the dominant features of the equations. The concepts re-

quired for calculation of the Newton ~umber are summarized next. 

Suppose for the present that each of the functions f. in Eqn. (1) is a 
I 

polynomial (generalization to other smooth nonlinear functions follows below). 

Defining deviation variables x. • t. - t. 0 • each function f. may be written 
I I I I 

as fo11ows: 

n n1 "k 
where x--: x1 ••• xk is a monomial in variables x1 ••.• ,xk. Thus, each 

k n • (n1 •••• ,nk)&Z • Consider for example the system: 

(3) 

Clearly, (O,O) ts a solution of system {3). System (3) can be written in 

the form of Eqn. (2): 

(4) 
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where 

n 1111 ( 1. 0) 
~- (2.0) !!.3 ... (0,3) -1 , • 

1'111 11111 (1.0) • ~- (0.3) , !!!3 ... (0,4) • ~ "" (5,0) 

and 

Cl 11111 2S • Cll • 1 a ... -3 
"1 "2 "3 

em lllll 1 B '"' ·1 em ... 2 a "" 1 
1 m2 3 m4 

The suppo~ts of f. are defined as the numbers k 
ne:Z such that a "' 0. 1. nj 

The set of a11 supports suppf i is consequently gh·en by 

suppf r ... { !!_E:Zk a ~ o} (5) 
"i 

The Newtonian. principal pa.rt of the polynomial f 1 is defined to be the 

following polynomial: 

For the polynomials of Eqn. (3). the Newtonian principal parts are: 

i' '"" 2x - 3x 3 
10 1 2 

(6) 

(7) 



For the system of Eqn. (3), the supports are 

I 

suppf 1 ... 

• 
suppf 2 • 

(2,0) 

{O .o) • (0.3) co.Rt) • cs.a>} • 

The Net,Jt;on diagram of f 1 h simply a graph in k-space of the members of suppf 
1 

• 

• I 

The Newton diagrams for functions f 1 and f 2 of the example are 

illustrated by the dots in parts (A) and (B), respectively, of Figure L 

The polynomial f 1 •Ek a .xn is called proper [17] if, for a11jfrom1 to 
ncZ n1 -n 

k, a monomial xj j (nj ~ 1) appears in f i with a nonzero coefficient. Both 

polynomials in the example of Eqns. (3) are proper. The corresponding Newton 

diagram is proper if a11 positive coordinate axes contain at least one point of 

the diagram. 

let 

t (f 1) •{convex envelope with respect to the origin* 

of the set suppf i n R+k } 

k k where R+ denotes the nonnegative orthant of R • The shaded regions in Figure 

- I - . 
lA and 18 illustrate r<t 1) and [Cf2). respectively, for the functions in 

Eqn. (3). The NBlJton f:rontier is defined as the following polyhedron: 

defined as the following po1yhedron: 

r (f i) • {the set of all closed faces of the 

poiyhedron r_ (f 1)} • 

Again, Figure J shows dearly the Newton frontiers for fl and fl of Eqn. (Z}. 

* let P be any (k-1) dimensional plane which separates the origin from all 
elements of the set SCRk and let p+ denote the closed hatf~space on the 
side of P which tnc.1udes S. The convex envelope of the set S with respect 
to the origin is the intersection of aJJ such half-spaces p+. 
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let V denote the volume of the subdomain of the nonnegative orthant in 

Rk lying below the Newton frontier r(f 1). VJ denote the (k-1)-dimensional 

volume under the Newton frontier on the jth coordinate hyperplane, Vjt 

denote the (k-2)-dimensional volume on the coordinat~ plane orthogonal to 

the jth and 1th basis vector, and so forth. Then the Nez.Jtcm. number v(r) of r 

is defined as: 

v(r) • ldV - (k-1} l I: 
j•l ,k 

v. + (k-2)! I: "·1- ••• + (-1)k 

J (j•1 ,k~ J 

• (8) 

1•1,k 
j <I. 

• Consider for example the polynomial f 1 in Eqn. (3). In this case k•2, and 

Eqn. (8) becomes: 

v(r,'> ... 21v-1Hv1 +v2}+1 
1 

Now V is just the area under the Newton frontier and J~ equal to 

(9) 

V • ~ x 1x3 • ~; v1 "'" 1 while v2 ... 3. Substituting these values in Eqn. (9) 

gives: 

( 1 O) 

• Similarly for f 2 

(11) 

The Newton number ts defined somewhat differently for the trystem of 

Eqns. (1). For such a k-dimensiona1 system, the mixed Hinkowski volume U 

is defined as [18): 

( 12: 
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Here Vk(S 1) is the Euclidean volume under the Newton frontier (f 1). To 

find s1 +Sq• one simply mu1tip1tes the po1ynomiah f 1 and fq _and considers the 

Newton frontier of the resulting po1ynomia1. Similarly. to find s
1
+ ••• +sk. 

the Newton diagram of the product f 1·f2 ••••fk ts considered. Then, the Newton 

number for the system (1) Is v • u. 

Now that the required concepts have been introduced, a central theorem 

ean be stated: 

Theorem [Bernshtein, 18): The Milnor number µf(~0) ts 

greater than or equal to the Newton number v(r(f)). The 
f 

Milnor and Newton numbers are equal apart from a measure 

zero set of parameter values of the polynomials f 1 through 

fk (a degenerate case). In a degenerate case, the Milnor 

number is greater than the Newton number. 

As an example consider the system given by Eqn. (3). Equation (12) in this 

case is: 

u • (13) 

Clearly 

v2 cs1> 1 • 1 llil - • J. 3 ,, 
2 2 

and 

v2<s2> 1 3 ... -·1· 3 ... 2 2 

Fina11y to find sl + s2 one needs: 

i I 2 + x 3 6 7 6 7 
f •f • 2x1 

+ 2x1 
+ x1 + 3x2 

.. 6x2 1 2 1 
( 1 '4) 

-Sx x 3 + 2 ~ 4 2 3 3x 5 x 3 
1 2 ix1 x2 + 4x1x2 - x1 x2 - 1 2 . 

The Newton diagram of this polynomial is also presented In Fig. 1. from which 

( 15) 



Then Eqn. (13) becomes: 

u• 
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3 3 ··---+6. J 2 2 

According to the Bernshtein Theorem. thh fmpl ies that. unless the 

system ts degenerate, the mu1tip1tcity of the zero solution of system (2) 

is three. 

(t6) 

In many problems of Interest In chemical engineering. the Newton number 

is unity. Then. according to the BernshteinTheorem, steady-state bifurcation 

ls not possible unless a degenerate case occurs. Because of this importance 

of degenerate situations, useful degeneracy conditions are next presented. 

Degeneracy Condition 

The Newtonian principle part of a polynomial ~I ls nondegenerate tf and 

only if for each closed face t of the Newton frontier the Laurent polynomials 

do not vanish simultaneously. If the dimension of A (dim(A}) is s and the number 

of points of the set suppf1 on a is equal to s+1, then the Newtonian principal par 

nondegenerate pn A for any nonzero values of the coefficients off 1 [17). The 

nondegeneracy condition for the case dim(A) 1111 s and with s+2 points of the set 

suppf. on A wi11 be explicitly developed next • 
• 
Without loss of generality CY.le can admit that dim(A) .... s • k•1. Then the 

restrictionoff1onthefaceof the Newton frontier. denoted fJA' unbe"'rittenas 

~ ~ 
f U 1111 Go!, + +Cl~ (17) 

where !o• ...• ~ t zk. There exists a set (d
0

, ••• , dk) of integer numbers 

with no co!1T.'IOn divisor, unique up to a s_tgn, which satisfy the system of k 

equations ln k+1 variabtes: 
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(18) 

m "'k 
Let z

0 
... !r" 0 , ••• , Zk • ~- and def'i ne the lag range fl.Inc: t l on 

do dk 
l(Z,).) "" CIOZO + ... + akzk + 1(1 - Zo ..... zk ) {19) 

The function f 1
4 

Is degenerate on 4 if and only if the system 

dl - -dA 
(20) 

has a solution [17]. 

Writing explicitly the system of Eqns. (20), one obtains 

(21) 

1 

This system has no solution if at least one of the numbers d. is zero. However, 
I 

for nonzero d.,system (21) has a so1ution if and only if [17]: 
I 

... 1 (22) 

This procedure may be generalized for the case in which there are more than 

s + 2 poi nu on the face /:;,. 

When considering the system of Eqns. (1), one should check for degeneracy 

not only on each individual Newton frontier of f 1, t • 1, ••• , k but a1so on 

+ Sk • Unless the poly-

nomia1 coefficients satisfy the degeneracy condition on at least one of these 

frontiers, the Bernshtein Theorem [18] guarantees that'·the multiplicity of the 

solution to the sy.stero of equations is equal to the Newton number. 
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For the example system (3) (see Fig. 1). one can easily see that k=2 

and s ... 1 and that there are only s+ 1 '"'2 supports on the faces of the Newton 

• • 
frontier for f 1 and for f 2. Consequently, degeneracy ts possible only on 

i • 

the frontier face of the f 1·f2 Newton diagram. The monomials that can give 

rise to degeneracy in this case have supports with ~o· ~ 1 • and ~2 grven by 

(2,0), (1.3) and {0,6), respectively. Using these in Eqn. (18)gives d0 • 1, 

d1 •-2, and d2 • 1 so that the degeneracy condition (22) in this case becomes: 

(23) 

The coefficients of the Newtonian principal part in Eqn. (14) (a0• 2o,a1 ... -26 .. 3 

a2 • 3) do not satisfy Eqn. (23) unless 6.• 3/2. Consequently, unless 6 ... 3/2, 

the system is nondegenerate, and the multiplicity 4s ~ndeed three (equal to the 

Newton number (Eqn. 16)). For o • 3/2, the multiplicity exceeds three. 

Although the theory has been presented for f 1, •••• and fk polynomial 

functions, a11 the results apply for any function that can be represented near 

the solution t 10 •••• , tkO by a Taylor expansion (or even a Laurent expansion) 

[20]. This extension is justified by the 11fi1tering out" of e11ll supports 

above the Newton frontier: these do not influence the multiplicity of the 

solution [21]. Thus suppose the number of steady-state equations is reduced 

to two. 

91 (xl ,x2) -: } 
92 (xl ,x2) ... 

(24) 

where g1 and g2 aFe not po 1 ynom i a h . Taylor expanding one obtains: 

91 {x1 ,x2) 
391 ag1 2 ..,_ 

• xl +--- • x2 + O(x ) ... 0 ax1 0 ax2 0 

92 (xPx2) 
392 392 2 0 -- .. xl +- • x2 + O(x ) ... 
a.K1 

0 a.Kl 0 

(25) 
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If none of the first partial derivatives vanishes, there is a possibility 

of degeneracy. This degeneracy occurs in the Newton polygon of 91·9
2 

when 

(~ 392 391 3g2 J . -- +-3x1 0 
3x2 o 3x2 0 

3x1 

(391 3g2 ag1 392 J (26) - '4 -
dXl 

.. 
ax2 ax2 ax1 0 0 0 

(~ 3g2 391 ag2 J ... ·- - ax
2 

• ax
1 

... 0 ax1 
0 

ax2 
0 0 

or 

ag1 ag2 ag, 392 
0 (27) 

ax1 --- . -- ... 
0 

ox2 0 
ax2 0 

ax 1 0 

which indicates that the determinant of the Jacobian is zero, a necessary 

condition for bifurcation according to (13). 

Two-Dimensional Case 

The Newton polyhedron approach becomes particularly simple in the case of 

only two algebraic equations. For this reason this situation deserves special 

consideration. Consider the system: 

(28) 

It is assumed that transfer of origin has already been made so that the system 

has the solution x 1 • x2 • 0. 

of Eqn. (2) gives: 

In this case k • 2. Writing each f. in the forrr 
I 
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Cl x­

n -1 

n 
Cl x­

n -2 
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(29) 

Construction of the Newton frontier will first be explained for a proper 

Newton diagram (monomials x~ and x~ appear in the polynomial). Simply place 

a ruler along the x2-axis. Then rotate the ruler counterclockwise, centered 

at the support corresponding to the lowest power monomial of the form x~. 

until another support is hit. Continue the rotation in the same sense with the 

new support as a center this time. Repeat this change of center and rotation 

step unti1 the ruler hits.a support on the x1-axis. S is the shaded region 

beneath the Newton frontier. Application of formula (8) yields: 

(30) 

where a 1 , a
2 

and s1 , s
2 

are the integer powers of the supports on the axes. 

The Newton number for the system (28) is given by {from Eqn. (12)): 

(31) 

Thus a11 that is needed is the area under the Newton frontier of f
1
,f

2 
and 

f 1·f2• Arnold [19] has proven that the Newton number in the two-dimensional 

case may be calculated immediately using the formula: 

(32) 

Thus, for system (3). 

v • mln(3·1.1•3) • 3 

Before any conclusion about the multiplicity of the solution fs reached, 

the system must be examined for degeneracy. Each face of each Newton diagram 

must be checked for degeneracy. Consider any face A of the Newton diagram in 

Fig. 2. The dimension of the frontier is clearly k-1 • 1. Thus If on a face 
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of the Newton frontier there are only two supports. degeneracy is not possible. 

If there are three supports, the conditions su11VT1arized in the· previous section 

are applied. 

finally, for generality, the case of improper Newton Diagrams should be 

considered. Arnold [19] has suggested that In this ease one can 11close11 the 

• P1 P2 
Newton diagram by artificially adding monor111als x1 and/or x2 where needed, 

taking p
1 

and p
2 

sufficiently large. As an illustration consider the 

polynomial 

g (u, v) 3 2 2 
• U + U V + UV (33) 

The corresponding Newton diagram with three supports is portrayed on ~ig. 3. 

The Newton diagram is clearly improper (there ts no monomial involving Y only). 

Thus consider 

g(u,v) 3 2 2 4 
• U + U V + UV + Y 

where ~ is sufficiently large. The Newton number of this polynomial is: 

\I (g) ... 2s9 .. ~ - 3 + 1 

- 2(~-2 + 2 + 2) - a - 3 + 1 • 4 
2 

independent of 6. Then \l{g) • \l(g) • 4. 

APPLICATION 1: REACTION BETWEEN TWO ADSORBED SPECIES 

Consider the react ion sequence: 

kl 
A+ S' ;;;:::::::::!" AS 1 

k2 

kl 
B + S 1 .:;;::::::- BS ' 

k4 

AS 1 + BS' 
k5 
-AB + 2s 1 

(35) 

(.36) 
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taking place In an isotherm.alp isobaric tSTR of residence time T. Assuming 

mass action kinetics •nd introducing the dimensionless varia~les and parameters 

defined ln the Nomenclature, the steady-state balances are 

... ; i (t - i ... i4) 1 1 ) + ;2i3 - {i1 -u1) • 0 C:H .1) 

- ; i (1-i ·iAt) 3 2 3 + a4x,. .. (i2• Uz) 11111 0 (37.2) 

i 1i 1 (1 ... x3 - x4l - ;2;c3 .. ;~·i·4 1111 0 tH.3) 

(37.l+) 

The first two equations may be solved tn terms of i 1 and i 2 to obtain 

'li • 
1 

• 

(38) 

(39) 

Substituting these formulae ln the last two steady-state equations (37.3 and 

37.~) and defining deviation variables from a solution {x30 .x40) of these two 

equations 

one obtains 

2 2 2 
h1<'1·'2> • h11'1 + h12'2 • h1s'1'2 + h13'1 + h14'2 + h16'1 '2 

+ h17'1'22 m 0 
(40.1 

(40.2 
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The supports of the Newton diagrams for h1 and h2 are gfven tn Fig. 4 

for the case in which none of the hij are zero. Depending on the values of 

the parameters u1 , u2 , a1 ,, 5a• m3, C4 1 amd QS' some of the coe·fficients of the 

supports may vanish. Then, formula (32) can be used to determine the Newton 

number of the steady-state solution In each case. The mu1tip11ctty of the 

steady-state Ci
30

, i 40) wi11 then be greater than or equal to the Newton 

number. The muittp1tctty wt11 be greater than the Newton number only In the 

case of degeneracy. 

Table 1 sull'mClrizes a11 the possibilities. In each ease the Newton diagrams 

of hp h2 and h~· h2 are presented and the eorrespol'\ding de·generacy conditions 

are given. If. for example, the system parameters are such that case H in 

Table 1 is observed, the multiplicity ts 2 unless 

(I) (41) 

or 

(Ii) (42) 

are satisfied. Condition (41) fs obtained If the Newton dfagram for h2 Is 

degenerate while condition (42) ts obtained tf the Newton diagram for h1•h2 Is 

degenerate. If either Eqn. (41) or (42) is satisfied, multiplicity of the 

steady state f s greater than two. 

As a particular example, consider u1 •u2 •1 and parameter values &1, a2 , 

a3. a,.. and as such that the steady-state solut.ion h i3o•i40""0.1. This 

Implies that the parameters a
1 

must satisfy the equatrons: 

(43.1) 

and 
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The coefficients hij take on specific values by substituting x30 • x40 • 0.1 

in the equations for hlj in the Appendix. Since a11 the a1 must be positive, 

one can see that h11 » h12• h21 , h22 are a11 different from zero for all admis­

sible a 1 (>O). Then the Newton number ts 1 (case A tn Table 1). The degen­

eracy condition In this case Is: 

(44) 

or 

which Is not possible for positive a1• Thus the multiplicity of the steady 

state Is defintte1y one, meaning that bifurcation from the steady state 

X30 - X40 m 0.1 Is not obs~rved for any positive a,. 

Multiplicity with Feedback Control 

Steady-state multiplicity may be obtained in a chemical reaction system 

as a result of the introduction of a feedback controller (e.g., Ref. 16). 

The Newton diagram approach ts partlcu1ar1y useful for determining the feed­

back parameter values at ...tlich multiplicity (bifurcation) of steady states is 

observed. 

Returning to the particular case considered fn Eqns. (43) above, assume n<>' 

that the feed concentration of A ts IM!nlpulated according to the measurement of 

the concentrations of A and B in the reactor effluent according to 

(46) 

The steady-state equations become 

- «1x1 (1 - i3 - x4l + ii:i'l - (i1 - "10 .. .,1 (i1 ... i1ol - b2 Ci2 .. i1ol) • o (47. 0 

- a3J 2 (1-i
3

-ll4) + a4Jtlt- (l2 -u2) • o (47.2) 



67 

aliJ (1 - il - ilt) ... a2il - C5X3X4 1111 0 

ii3x2 (1 - ll - !4) ... a4~4 - 1!5x3"1e • o • 

Defining deviation variables 

•1 • i1 ·i10 • •2 • i2 ... i20 ., +3 • i3 ·i30 • •a.• i4 ·xi.o (48) 

and solving Eqns. (47.1) and (47.2) for +1 and +2 in terms of +3 and +4 yields 

c3i20 <•3 + +4) + ii4+i. 
• 11111 ------------------

2 1 •&3<1 ·i3o·ii.0·•3-•Jt> 

Assume now u10 • u2 • a1 • &2 • ;
3 

• a4 • 1 and a5 • 350/9. Eqns. (43) •re then 

satisfied for x
30 

• ; 40 • 0.1 whereas x10 • i 20 • 11/18. Next, +1 and •i are 

found from Eqns. (49) in terms of only b1 and·b2 , and substitution of these 

formulae in the last two steady-state equations gives 

ti1Ct3,+4) • [-2337.32+1312b1 +B.Bb2J•3 

+ (· 224. 16 + 1'45. Bb1 +23.2b2J+4 

+ [1873.4 - 7291:11 ... 11b2J•3
2 

2 
+ [171.6- 81b1 - 29b2]•1t 

+ [-258. 2 + 450b1 ... liOb2lt3+4 

-11+o+f .. 92•( + (1750 -1001:> 1J+; •1t 

+ [1102 -1001:>;]+3~: .. 700+/+11, -100+3•!· 1111 0 

(50.1) 
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fi2<•3·•4) ... -137•3-155•4+70•/+10.,/+41•3•4 

+ 700•3t4
2 

+ 700•/•4 ... 0 
(50.2) 

The Newton diagram of h2 (•3.!4) has supports at <•3,,4) • (0,1} and 

<•3 •• 4) • (1,0). Consequently, in order to have multiplicity different from 1, 

it is necessary that the coefficients of t 3 and t 4 in h1 C•3 •• 4) vanish.* That is, 

- 2337.32 + 1312b1 + 8.8b2 • 0 (51. 1) 

- 224.16 + 145.Bb1 + 23.2b2 • O (51. 2) 

These equations are solved to find b1 .., 1. 7922; b2 ... -1.6~12 For these values 

of b1 and b2 the function h1(•
3 

•• 4) becomes 

h1 (•3·•4) •584.49~/ +72.867 •4
2 

+612.338•3t114 - 740•./ - 92•/ 

+495.46~/,4 -1s2.s4M3•/ - 100•/•4 - 100•3• 4
3 

The Newton diagrams for n1, h2 and h1• h2 are presented in Fig. 5. 

clear that the Newton number is 

(52) 

It is 

v ... min(l •2,2•1) • 2 (53) 

Degeneracy is possible due to h1 and h1·h2. The degeneracy conditions here 

are: 

(i) (612.338} 2 - 4(504.499)(72.867) -... 0 for h1 (54.1) 

and 

(ii} (80,076.36)(104,095.17) - lll,298.39)(174,487.651) = 0 

(54.2) 

Since neither of Eqns. {54) is satisfied, degeneracy is not possible, and the 

multiplicity of the steady-state solution is two for b1 
1111 J.7922 and b2 '"'-1.6012 

Thus, it is seen in this example that feedback may produce bifurcation of the 

steady-state solution. 

* Mult1pi1c1ty due to degeneracy is also possible along the line b
2 

= 101.072 
bl - 182. 746. 
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APPLICATION 2: STEADY-STATE MULTIPLICITY FOR TWO AND THREE 

PARALLEL IRREVERSIBLE REACTIONS OF ARBITRARY ORDER IN A CSTR 

1. Two Reactions 

Consider the reactions 

... 
,.,. kl c -

.. ,. "2 
-0 

(SS) 

taking place ln an adiabatic CSTR. Assume the first reaction is of n-th order 

and the second is of in-th order. The mass and energy balances for the CSTR 

system may be written in dimensionless form as 

(56.1) 

(56.2) 

(56.3) 

Definitions of a11 dimensionless quantities are given tn the Nomenclature. 

Multiplying Eqn. (56.1) by SA. Eqn. (56.2) by s8• adding to Eqn. (56.J), 

and solving for y yields 

(57) 

Substituting for y in Eqn. (56) gives two nonlinear equations for uA and u8: 

1 
.. •• .. ,._ n Yi { 1 

.. 1 +BA (1 - u:) + s
8 

{1 .. u1) ) • O 
""A .... 1uA e . (58.1) 

(58.2) 
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Assume now (uAS, u85) is a solution to Eqns. (58). Taylor expanding the 

exponential terms around (uAS, u8S) and introducing deviation variables 

Eqns. (58) may be rewritten in the form 

-· where hij are given in the Appendix. 

(59) 

(60.1) 

(60.2) 

From the Bernshtein Theorem and Newton polyhedra for this system. since 

-· -· n12 • h21 cannot be zero (this requires uAS or u8S • 1 which is not possible 

for nonzero rate constants). steady-state bifurcation is possible only because 
.., • Gil) 8 

of degeneracy. If n11 and/or n22 are zero, (1,1) fs a support and. since the 

Newton diagram of h1·h2 
consists of two faces each having two supports, degen-

eracy is not possible. -· ... f Thus degeneracy is possible on1y when h11 • n22 ~ 0. 

In this case, degeneracy occurs only if 

-· -· -· -· h11 • ,,22 - hu .. h21 • 0 (61) 

which is the same as the condition that the determinant of the Jacobian be zero 
.... 

Employing the expressions for hij in the Appendix. Eqn. (61) may be 

written 

IJBS[ -uAS .. ;; (l - UAS) )[ <1 .. U9sh21 Se] 

+ uAS[-uBS .. m(1 .. uBS)][(1 .. uAsh1' BA] {62) 

+ (1 + n(1 .. uAS)][1 + m(1 - u85)](1 +SA (1 .. uAS) + s1 (1 - u85 >J2 
• 0 

This equation together with the steady-state equations (58} may be solved simu1 

taneously for uAS' u85 and one parameter chosen as the bifurcation parameter. 
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If, for example. one sets n • 2, m • 3, Dal• Da2 • 0.1, y 1
1 

• 20, Y2 • 10, 

SA• 1, leaving s8 free, numerical solution of Eqns. (50) and (63) for uAS' 

u85 and Ba gives 

UAS Ill& 0.8622 t (63) 

Consequent1y for the reaction system with the given parameter values 

steady-state bifurcation occurs for s8 • -1.066. Numerical simulations show 

that the steady-state ts unique for Ba> -1.066, whereas for s8 < -1.066, there 

are three steady states. Thus, the multiplicity of the steady state (uAS' u85 ) 

• (0.8622, 0.9006) is 3 which is greater than the Newton number of unity be-

cause of degeneracy. 

2. Three Reactions 

Consider now the case of three parallel reactions of arbitrary order: 

(64) 
.. 
k 

E' _.L F' 

In this case, after eliminating y as above, the steady-state equations are 

given by 

(65.2) 
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(65.3) 

Expanding the exponential terms and introducing deviation variables as before 

.... 
'"' I - • - • 2 

h1 (T1pf'l2·1'l3) 1111 h11 "1 + h12 ~2 + h13 "3 + O(n ) 

.... -· -· -· ( 2 h2 (1"11 ·"2·"3> • h21 "1 + h22 1'12 + h23 1'13 + 0 n ) 

-. -· - ' - .. 3 h3 fopT12,1'13) 11111 h31 "1 + h32 "2 + h:n "3 + oCri >. 

where again the h;. are exp1ictt1y evaluated in the Appendix. 
,J 

-· 

(66.1) 

(66.2) 

(66. 3) 

If a11 the hiJ are not zero then~ sufficient condition for absence of 

bifurcation at the reference steady state may be obtained. Fig. 1 summarizes 

the Newton diagrams tn this case. Equation (12) in this case becomes 

.., • u 1111 Y3(s1> +v3<s2> +V3{S3) -v;<s1+S2) .. y3(S1 +S3) .. y3(S2•S3) 

+ v
3

(s
1
+s

2
+s

3
) •. 

1 1 1 v3 cs 1> ... v3cs 2) • v3cs
3

> • 3 -2 . 1•1 °1 •I 

v3 (s1 + s2 ) • v3 (s1 + s3) • V) (S2 + s3) • J "!" 2" 2 • 2 1111 ! 
1 1 27 

V3(S1•S2+S3) •1•y•3•J •3•T 

Substituting Jn Eqn. {67.1) gives 

1 1 1 8 8 8 27 6 •i+"+"-, ... , .. ,.,., • 1 

(67. 1) 

(67.2) 

Thus the Newton number is 1. and, unless degener~cy occurs, the multiplicity of 
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the root (uAS" u85 , uES) is 1. Bifurcation to multiple steady states from thi! 

steady state does not occur. therefore, without degeneracy. 

Next, conditions for degeneracy are considered. Frmn Fig. 1B rt rs eviden' 

that there are six supports at positions (2,0,0). (0,2,0), (0,0 0 2), (1,t,O). . .. ... 
(1,0,1) and (0,1,1). The degeneracy condltton (22) for h5• hj fn thfs case 

becomes: 

. ' 
where~. are the coefficients of the supports on the Newton diagrams, and 

I 

2d1 + d3 + d5 lill 0 

2d0 + d4 + c1
5 

• o 

(68) 

(69) 

and are Integers prime to each other. The obvious choice is d0 • d1 • d2 • 1 

d3 • c15 • d5 • -1 

or 

Therefore Eqn. (68) becomes: 

(70 

hill hj.3 h;1 hj.1 hil2 hj.2 + {t;lll .,j.3 .• hill hj•i)( hJ~ hj~ + hi.3 hj~) 

.. (h1•1 t.J'2+h1•2 t.1•1) • o ; O.J) • (1.2).(1.3),U.:U « 

Thus we obtain three degeneracy condttlons. If any of these Is satfsffed, th• 

steady state ts not unique. 
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Considering next possible degeneracy of h1·h2·h3 , there are 10 supports 

tn Fig. 7C: (3.0,0). (0,3.0)p (O,O,J). (2,1,0), (2,0,1), (1·,o,2), 

Condition (22) becomes: 

d' + Jd0 + 2d3 + 2d4 + ds + d6 
11111 o 

d9 + 3d1 + 2d6 + 2d8 + d3 + d7 • o 

d' + 3d2 + 2d5 + 2d7 + d~ + d9 • 0 

(72) 

(73) 

d • d • d • -1 
0 1 2 

, d
9 

• -3. Substituting these values in Eqn. (72) gives the 

degeneracy condition 

(74) 

with 
• • .. @ - • 

cao 11111 h11 h21 h31 
.. . -· -. 

C!l5. Lhi2 hJ2 hk3 -. -. .. . 
Gl6 m Lh13 hn hk2 

-. ... . -· 
°7 Lh 11 ... J ! h1c.2 (75) 

.. Ill -· - • 
CIB liill :r: h 13 h j 3 hk 1 

-· -· -· mg• i)'111 hj2 hit] 

where the indicated sums are over a11 poss ib1e triplets (1,j 0 k) ;·I .j, k • 1,2,3. 

Hence, unless one of the Conditions (71) or (7%) fs satisfied, the solu-_,. 
tion (uAS' u15 • uES) Is untque when a11 of the h1j are nonzero. If, on the 

other hand. one of Eqns. (71) •nd (7~) Is satisfied for some ~rameter values, 
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then steady-state bifurcation is guaranteed for these parameter values. If 

• 
some of the hlj vanish, the Newton diagrams must be constructed for the case 

involved, and degeneracy conditions must be obtained on every face of the 

Newton frontier. 

CONCLUSIONS 

The Newton polygon approach is a very powerful method of determining 

the points in the parameter space at which steady-state bifurcation occurs. It 

is an extremely simple method in the case of two algebraic equations, since 

on1)' a simple geometrical construction h required. The method as presented 

Is general and applies for any number of steady-state equations. If the systerr 

cannot be reduced to less than four algebraic equations, there are practical 

limitations since it is hard to visualize a Newton polyhedron in four or higher 

dimensions. Still, In such a case, methods of algebraic geometry may be used. 

Keller's approach[J3] is 1ike1y the method of choice for suc:h problems. 

For systems that can be reduc:ed to two or three equations, the Newton 

diagram analysis has another major advantage. Steady-state multiplicity 

depends only on the supports on the Newton frontier, that is, on certain 

1eading order monomials in the steady-state equations. Unless degeneracy 

occurs, the coefficients of the supports do not matter: only the structure 

of the equations, as represented by the Newton frontier supports, influence 

multipiicity. A11 systems that possess the same Newton frontiers have the 

same underlying structure. Differences ht 11higher order terms .. (I.e., in 

monomials corresponding to supports not in the Newton frontier) do not alter 

the multiplicity properties of the singularity under study. ·Thus the Newton 

frontiers provide a normal form for a general class of algebraic systems. 
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In the Newton polygon approach, one does not need to choose a priori a 

bifurcation parameter since the conditions for bifurcation are written in 

terms of all system parameters, thus defining a hyperplane in the parameter 

space along which the bifurcation occurs. One can then easily see which indi­

vidual parameter is a convenient choice for a bifurcation parameter for 

computational studies or other analyses. This property is particularly importar 

for purposes of design as in the case of a system with feedback. The method 

should contribute significantly to analysis of steady-state multiplicity in 

chemical engineering systems. 



NOMENCLATURE 

A,B,AB 

E . 
• 

f. 
I 

-9 

11 

coefficient of monomials In Eqn. (2) 

chemical species in Application 1 

chemical species In Application 2 

feedback parameters in Eqn. (46) 

concentration of species l in Application 1 (mole/cm3) 

maximum possible concentration of adsorbed species in 
Application 1 (mo1e/cm3) 

concentration of species i In Application 2 (mo1e/cm3) 

specific heat capacity in Application 2 '( ca 1 ) 
mo1e•cm3 

sequence defined in Eqn. (18) 

[)c)mkohler numbers .in Application 2 

activation energies in Application 2 (cal/mole) 

functions defined in Eqn. (J} 

defined in Eqn. (17) 

defined in Eqn. (33} 

defined in Eqn. (.34) 

defined in Eqn. (25) 

def lned in Eqn. (24) 
u 

enthalpy (ca1/mo1e} in Application 2; a 
H ... -.. -

qPc 
p 

defined in Eqns. (40) 

defined in the Appendix 

defined in Eqns. (50) 

defined in Eqns. (60) 



l 

ml 

pi 

q 

r, 
r2 

r3 

Rn 

s. 
I 

s 

s 

S' 

t 

T 

T • 
TO+ HTc:: 

m 1+H 
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defined in the Appendix 

dimension of system (1) 

rate constants Jn Appiic::ation 1 (appropriate units) 

rate constants in Application 2 (appropriate units) 

orders of reaction tn Application 2 

Lagrange function defined in Eqn. (19) 

defined in Eqn. {17) 

powers of monomia1s 

flow rate in App1ication 2 (mole/sec) 

kl CA <to· cA.s1 
- ces' ) - k2tAs

1 

k3CB «=o - CAS
8 

- Css' ) - k4CAS
1 

k5CAS CBS (Appl. 1) 

(App 1. 1) 

(Appl. 1) 

n-dimensiona1 space of real numbers 

defined in Eqn. (12) 

dimension (a) 

areas under Newton polygon 

catalytic site In Appl. 1 

time (sec) 

temperature in Appl. 2 (Oc) 

reference temperature in app1. 2 (Oc) 

mixed Hinkowski volume defined in Eqn. (12) 

dimensionless concentrations in Appl. 2 

steady-state dimensionless concentrations tn Appl. 2 

feed concentrations (dimensionless) 

tn Appl. 1; "A "'B 
U1 • tQ » U2 '"' t() 



k. (T) 
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heat transfer coefficient in Application 2 (cal/mole Oc) 

volume of subdomain of positive orthant 

defined tn Eqn. (8) 

defined in Eqn. (8) 

reactor volume in Application 2 (cm3) 

monomial In Eqn. (2) 

deviation variables in Eqn. (2) 

-dimensionless concentrations in Appl. 1; xi 

1 
I (1 - -) 

x. ""-·-- Y· y 
a e I dimensionless rate constants in Appl. 2 

0 

zk 

z. 
I 

k. (T ) 
I m 

Greek Symbols 

a,a1 .s2 

eA.aB.BE 

-r_ 
-r 

dimensionless temperature in Appl. 2 

k dimensionai set of integers 

monomials in Eqn. (19) 

-dimensionless rate constants In Appl. 1: a1 • k1C0T 

powers of monomials xk 
(-t1H.)C. 0 I I dimensionless heats of reaction in Appl. 2: s1 ""pc T (l +r 

pm 

dimensionless activation energies In Appl. 2; 

convex envelope defined In text 

Newton frontier 

parameter in Illustrative example (Eqn. 3) 



t e·­,. 

t. 
I 
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face of Newton frontier 

heats of reaction in Appl. 2 (cal/mole) 

deviation variables in Appl. 2 

dimensionless time in Appl. 1 

Lagrange multiplier 

Mil nor number 

Newton number 

variables in Eqn. (1) 

density in Appl. 2 (mo1e/cm3) 

reactor residence time in Appl. 1 (sec) 

deviation variables in Appl. 1 
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APPENDIX 

.. 
11111 -u a -1 1 

h2z. 11111 a3a5><30 

h2s • -a3as • 2a3asi30 + 2a3asi4o - as 

• I 

The hgj in Eqns. (60) are given by: 

- m 
n(1 - uAS) y;s,.o - uAs> 

h11 ... -1 - + el· UAS 



I 
The htj tn Eqns. (66) are given by: 

.. . 
-1 .. 

n(1 - uAS) y l SA ( 1 .. u AS) 

"'n lilli + 
uAS J2 

.. D Y1 8e (1 .. "'As> 
h . lilli 

12 J2 

.. D ylSE(1 - "'AS) 
h13 • 

J2 

.. I Yi SA (1 - uss> 
h21 • 

J2 

.. 8 m(1 .. ues> Yi 6e<1 - "'es) 
h22 11111 -1 - + 

J2 UBS 

h23 
Y2Be: (1 .. "'as> ... 

J2 

.. I ylSA (1 - uES) 
h31 Ill! 

J2 
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TABLE CAPTION 

Table 1: Newton diagrams* and Newton numbers v for Appl i"c:at ion 1. 

Footnote to Table 1: 

*Only the supports of the Newton frontier are given. 
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Table l 

Cceffic- ctN ~ ~ ~ ~ ~ai:y Ca0!10n <t:t • g.) 
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G "12 • "2i •Cl, "ii· "22 4 0 i-- ·~ ~ 
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~"24"~2·0 

lllJI 

IN "!2 • "21 • o, "ci."izlO ~ li'l!ll~"z, + tte2trz3+ 11u2~l•O 

I. ~. "z2 <(); Ila· "21 • 0 L L L Bia "24 • lt14 llz1 • 0 
01 01 012 
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Table 1 (continued) 
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Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 
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FIGURE CAPTIONS 

8 

Newton diagrams for functions (A) f 1 

for example of Eqn. (3). 

General bio-dimensiona1 proper Newton diagram. The shaded area S 

Is the area beneath the Newton polygon. 

Two-dtmensiona1 Improper Newton diagram. 

Supports of both functions h1 and h2 ln App1ic::.1tion 1 when all 

the polynomial coefficients are nonzero. 

Figure 5: Application 1: Newton diagrams in the case of two-parameter feedback 

Figure 6: 

Figure 7: Three reactions of arbitrary order in Application 2. Newton 
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FORMS AND HIGHER ORDER BIFURCATIONS 

IN DYNAMIC CHEMICAL SYSTEMS 
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lfw:nerows experimental observaUom of autonomous 01clllatioW11 bl chemical reac­

tion proce11es [e.g. 1-5] have motivated ~cant recent interest bl the appropriate 

corresponding mathematical model.I. JlaJor object.iv• ol. re11earch bl tbi1 connection 

ani the form of kinetic description and the particular pua.meter nlue1 required t.o 

obla.in a cert.am type of noDl.inear dynamic behavior. Jt bu been 1uuened that study 

of tbi1 problem may provide useful iWlli&ht blto the Wlderlying mechan.ism which ii 

manifested by noDl.ineu Olclllatiom and more compta dynamic phenomena [e.g.1]. 

RecmUy, mtentic:n::w deirtabili..zation of Bteady-nate process operation by application of 

feedback control and ob1ervation of the rewltm& dynamic phenomena ha1 been pro­

po1ed u a Btratea for identifyi.n& and evaluatm& noDl.ineu proceH model.I [S.7]. In 

um paper chU111iftcation. !l'Mlization imd local description of nonlinear dynamic 

beha:rior near a destabilized lteady"'ltate will be eomidered. The ruulbil have impor­

tant implicatiom for proce11 and control 1ymem1 anal)"lhl and noDl.ineu dynamic 

model development and application. 

A lar&e clu111 of dynamic chem.ical process 1Y111lem1 cim be described by a tet. of ordi­

DM'Y differential equatioWll of the form 

(1) 

wb.en lll hi a vector of It.a.le nrlables and " la a vector of l)'ltem para.meleni. Despite 

the large vmety of nonllnear modell of form (1). a bl mt.er.Ung imd important t.o 

note that their ob1H~rva'ble behavior 111 limited and ce.n be cat91omed mto a f11nr 

dllferent lf'OUp!i. J:xamplB of d.Ufenmt obsernd characteriltle& fndude multiple 

uad.J'1late beha'rior [ e.1. l.1· 13]. exi.stence of Btable and umtable periodic 08Cilla­

tiom [•·I· 1."P.11.12]. relaxation-type oscill.atiom wrroundin& multiple lllleady-states 

[•·I· 7.11.12]. compln: oscillatiom re.1. 14]. and chaotic 01eillations [e.g. 15,US]. 
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In many circumstances significant understanding of such nonlinear phenomena can 

be gained by considering the eigenvalue structure of the Jacobian matrix evaluated at 

some steady-states of System (1) and ·.he dependence of this eigenvalue structure on 

system parameters. Although study of steady-state eigenvalue structure leads only to 

conclusions about the local stability properties which derive from linearized model 

behavior, analysis of the bifurcations that arise as some system parameters are varied 

can lead to conclusions about the nonlinear structure of the system. At bifurcation, 

even locally. nonlinear terms cannot be neglected in the process dynamic model. This 

fact will be explicitly shown in the next section in connection with the theory of normal 

forms. 

Bifurcation implies a change in the local dynamics brought about by variation of 

parameters. A central concern of this study is the number of parameters which must 

be varied in order to obtain different types of bifurcations. Subsequently, it is impor­

tant to investigate stratification of the parameter space with respect to eigenvalue 

structure [7]. Knowledge of the bifurcation boundaries defines parameter sets for 

which the qualitative structure of the system dynamics is locally unchanged. 

One can use these mathematical tools for two purposes. The first is to understand 

the sensitivity of different dynamic phenomena to the physical parameters and func­

tional forms used in the model. This is using bifurcation theory as an analytic tool. 

The second is to design experiments to achieve bifurcation fo:r the purpose of dynamic 

model development [7]. This is using bifurcation theory as a constructive tool. 

In the next section it is seen how a system model can be transformed into a local 

normal form when the system is close to bifurcation. This provides insight to the ques­

tion of the minimum dimensionality of a nonlinear model which is necessary to 

describe adequately the local nonlinear system dynamics. The procedure for obtaining 

the normal form of a dynamic system is outlined together with the difficulties and 

advantages of the method. 
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Next, the important issue of obtaining and translating a certain eigenvalue struc­

ture for the system Jacobian is considered. The characteristic equation of the Jaco­

bian matrix and a different approach based on a general representation of the 

parametric dependence of the corresponding Jordan form are used to investigate the 

minimum number of system parameters which must be varied in different cases. The 

characteristic equation approach is then used in an example of a consecutive­

competitive isothermal CSTR system with artificial feedback manipulation of the feed 

concentration. Finally, the dynamics that arise on coupling two oscillating autocata-

. lytic CSTR's in parallel are considered. 

BWURCATION PHENOMENA 

The different bifurcation phenomena that are summarized in Table I are based on 

the structure of the Jordan form of the Jacobian matrix at a particular reference 

steady-state of the system. Here, the term bifurcation means the appearance locally of 

new dynamic features when a steady-state becomes unstable as some Jacobian eigen­

values enter the right-hand plane. As mentioned earlier, one can associate different 

possible dynamic phenomena with particular Jordan form structures. In the sequel. 

the current state of knowledge along these grounds will be presented [see 17,18]. 

Here it is convenient to focus on eigenvalue structure rather than Jordan form 

structure; the two differ only with respect to the question of geometric multiplicity 

corresponding to repeated eigenvalues. This is a matter of nontrivial importance. 

However, since the geometric multiplicity is most often unity, one can assume for the 

sake of preliminary analysis that a particular eigenvalue structure is usually associ­

ated with a corresponding particular Jordan form structure. After identifying bifurca­

tion conditions of interest for a particular system, the corresponding Jordan form 

structure should be evaluated to verify this assumption. 
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A D1 bifurcation occurs when, on varying some parameter. a single real eigenvalue 

becomes positive. The steady-state becomes unstable and trajectories lead far from it 

in a monotonic fashion. This bifurcation phenomenon also may involve (and usually it 

will) steady-state bifurcation. Thus, as the steady state becomes unstable, other 

steady states usually appear, and exchange of stability occurs. Typically, trajectories 

lead to one of the new stable steady states. Exchange of stability under such condi­

tions is implied by index theory [ 19]. 

A D2 bifurcation occurs when a complex conjugate pair of Jacobian eigenvalues 

crosses the imaginary axis as some parameter is changed. The steady state becomes 

unstable, and P,eriodic solutions, which may be stable or unstable, appear. In the 

former case, trajectories lead to nearly harmonic periodic solutions which are the only 

stable structures in the neighborhood of the reference steady state. This is the classi­

cal case of supercritical Hopf bifurcation. It is also possible that on varying the 

parameters the structure changes from a stable steady state surrounded by an 

unstable limit cycle to an unstable steady state. This is the less common case of sub­

critical Hopf bifurcation. 

Next, in the hierarchy of bifurcation categories (often called strata) is the case of F1 

bifurcation. Close to an F1 bifurcation point one can expect steady-state multiplicity 

and periodic solutions of the relaxation type as well as of harmonic form. Depending 

on the initial state near the reference steady state, trajectories can lead to different 

steady states or to a limit cycle [7,17,20]. Notice that D1 bifurcation can be observed 

by a model of any dimensionality. ~ and F1 bifurcations, however, require at least a 

two-dimensional model. 

F2 bifurcation involves three eigenvalues crossing the imaginary axis. In addition to 

the previous dynamic phenomena, one can anticipate that, close to an F2 bifurcation, 

toroidal oscillations may occur. F2 bifurcation usually also involves steady-state bifur-
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cation. Such systems have been studied by Ruelle and Takens [21], Langford [22] and 

others [see also 23]. 

F5 bifurcation involVing two conjugate imaginary pairs of Jacobian eigenvalues can 

produce complicated multipeak oscillations. F5 bifurcation does not involve steady­

state bifurcation. Finally, with G1 bifurcation, depending on the type of manifold [24], 

it is possible that chaotic oscillations arise. 

It must be emphasized that the local dynamic features mentioned above in connec­

tion with different eigenvalue structures at bifurcation are the most .complex that are 

expected; simpler behavior is also possible. For example, a system exhibiting F 1 bifur­

cation may exhibit relaxation oscillations, harmonic oscillations, or escape from the 

reference steady-state neighborhood near bifurcation. A G1 bifurcation may produce 

anything ranging from chaos to escape from the steady-state. Thus, a higher order 

bifurcation increases the possibilities of local dynamic phenomena, but it does not 

guarantee any particular type of dynamic phenomena. The Venn diagram in Figure 1 

summarizes this point and the possible dynamic features near each bifurcation stra­

tum in pictorial form. 

Consequently, in order to obtain toroidal or chaotic oscillations in the neighborhood 

of the reference steady-state, the model dimensionality must be at least three. The 

same conclusion also follows from the fact that trajectories in the phase plane for a 

two-dimensional system cannot intersect except at singular points [e.g. 26]. 

The summary above shows how one can associate different possible local dynamic 

behavior with the eigenvalue structure at bifurcation. Since such configurations can 

be obtained with models of order three or four, it is clear that all different qualitative 

characteristics like multiplicity of steady-state and different types of oscillations can 

be produced by models of low dimensionality. Higher dimensionality is responsible for 

fine tuning of system behavior which may not be observable due to measurement limi-
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tations and noise. The theory of normal forms very nicely explains why a model of high 

dimensionality has an observable behavior similar to that of a low-dimensional model. 

with only a few of the system modes playing an important role. The basic theory of 

norm.al forms is outlined in the next section. 

It should be emphasized that the conditions presented here for appearance of 

difierent dynamic features refer only to local phenomena -in the state space near the 

reference steady state and in the parameter space near the values of bifurcation. 

Complex nonlinear features can also arise in other ways such as bifurcation from a 

limit cycle leading to period doubling and eventually chaotic oscillations. 

NO.RKAL FORMS 

Given a system of the form (1), there is always a smooth transformation of variables 

such that all trajectories close to a steady state are transformed to those of a simpler 

system. The simplest form of a system that retains all characteristic (topological) non­

linear local features of the original system ( 1) is called the normal form of the system 

(1) [17,26]. The normal form is generally a lower order nonlinear system such as 

t= g(y) 
(2) 

where y(t)E:Em and m ~ n. The function g(y) typically has a simpler (polynomial) form 

than the function f(x). The price that one pays for such a simplification is usually a 

complicated nonlinear transformation of the form 

y= ~(x) 
(3) 

from the original state variables x to the "artificial" state variables y of the new system 

in normal form. The parameters of the new system are in general nonlinear combina-

tions of the original system parameters. 
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Suppose that the ei£ennlue1 A. of the lacobian matri.% I of 111,.tem (1) are divided 

mto two Ht.Ill, I.' :::: i~ jRe(~ :::: OJ, and I.'' = l~ )Re(~ ff OJ. Denote by m the nw:nber of 

ef&enVBlues with zero real pe.m; l.e .• the number of. membe!"I of the Mt r. Then there 

mst.111 a linear lran111forme.tion of 1Y5tem (1) such that the Jacobian l' of the new 11,.­

tem has the structure: 

(4) 

where B is an mxm Jordan canonical matrix with ei&envalues A1, ... ~ e:X', D ii an (n -

m)x(n - m) matrix ~t.h ei.&envalues >...+i ... ·~ E:K"', 0 ii an mx(n • m) zero matrix and C 

bl an (n - m)xm matrix. Then, system (1) becomes 

(fU.) 

(15.2) 

Jf the set K" of eJ.&envalues ii nonresonant, 111 the last system by formal cha.Die of 

ftl'ia'bles 

z' = J' + h'(t) 

&" =,,. + h"(J') 

f = BJ' + T(J',O} • 

the invvi.ant 11urlace bei.n& given by J": C. . 

(8.1) 

(8.2) 

(7) 

If the set of &ll system eigeo:nlues ll nonnsonant (which requirn that the IYJ1,em bl 

not at bifurcation), the original 111,rstem may be tranlllformed by Eqn. (8) lo a linear 111,.­

tem. If the Ht of system •i.&enftlues ii resonant but the tyl!Jt.em ii not at 'bifurcation, 

• The p-tuple 111: = (K1 .~ ....• ~) of eigenvalues ii said to )?e resonant if a relationship of 
the followin& form exists amo~ these eii,en~alues l26l ~ = (l . .1:) Here. "-is any 
eigenvalue m the p-tuple. i = (l a.l1.,_l,). an elemeots orl are non-ne&ative wtegen; 
and t «1 :> 2. Clearly. bi.ru.reetioc i• a special case of nscnuce. 
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tr&Mf on:r:uation (8) does not exist, but the d)'Ilamics ne.v the reference 1rteady-state 

may lrtlll be chuac:::terized by the linearized model A certain model can, therefore, be 

a.fay linearized when far from bifurcation. and tu traJectories behave close to thoH 

cf the linearized 111tem. CioH to bifurcation, however, the ftlidity of the Ii.near 

approximation a restricted to muiller and 11maller radiwi about. the 1teady1tate. 

kacUy at bifurcation. the system model cannot be li.neuiud, it. lraJectories beitl.i 

equivalent only to those of a. nonllneu model (Eqn. (7), the normal form) ew:n f cr 

m.finitesimal ndiu1 {perturbation). The functions b' and b" m Eqn1. (S) are found by 

IOlviJl& a so-called homological equation [26,27]. 

The theory of normal forms provides a formal method of model reduction reteinin1 

the essential local nonlinear art.ructure of a dynamic system. It hi clMr that only the 

modes of the system close to the ima&inary Dis are important. m determinin.g the non­

lineu nature of the l)"!llem. As a result. by forci.n& a 1ystem to bifurcation, one can 

find out much about ill nonlinear 1tructure. 

The major limitation of normal forms U:a the noninvetiibility of tramformation (8). 

Thus, there are many systems of the form (1) that after transformation have the ume 

normal form. 1"hia fact limits the wie of the theory of normal forms as a con1tnu::tive 

tool. However, fol!"'Cin.g a given 1yst.em model to bifurcation and knowi.D& lb normal 

form &ives imight to the possible qualitative dynamic ch.aracterutics of the 1ystem 

when it is perturbed from the bifurcation point. 

Any model of the form (1) that bu ei£envalues of the art.eadrmte lacobian on the 

lma&i.nuy ms U:a llructw-&!Iy unstable. That ls, a mi.all cl:ulll&e m one or more param­

«er values cb.Jmges the eigen'nlue con.t'i&uraUon, possibly the Jordan form block 1111true­

ture, and the topolo&Y of the local dynamics. 1n a "1.ypic&l" lituation. the Jacobian hu 



105 

no m&eo:nluH on the lma&inaey axi.s, but st.udy of the effect of parameter pertu.rba­

Uom from .. atypical... 1t.ructw-a.lly W11table sit'Wltiom provides kncnrled£e of the 

ditrenmt st.ru.ctura.lly stable i)'Btems that can ari.le. The minimum number of parame-­

ten that must be varied independently lo obtain difrerent 111lructurally w:urtable fon:m 

bl considered in what follows ulllin& the chara.cteristic equation of the Jacobian at the 

llleady st.ate. Aa mentioned before. achievement of a puticul!U' eijenvalue 

confi&urat.ion does not IUIU'ant.ee 11. puticular bifurcation lrtratum: that depei:uh on 

nalizin& a particular mucture m the Jordan form of the system Jacobian. Come-­

quently. p&.ramelric requirements for obtain.in& different Jordan block ltructurea are 

considered m the Appendix. Jt is ab.own there that if a puticulv .Jordan block 1truc­

ture can be obtained. the number of pvameten :required is the same u the number of 

pU"amelen required lo :realize the oorrespondin& e{&envalue co~uraUon. 

Consider the system (1). T'hi.s 1Y11lem hu a cbuacteriltic equation for the Jacobian 

of the form 

(B) 

The eoem.cienll ~ of um polynomial of devee ! IU'e in general fw::action.1 of the 1y.­

tem para.met.er; v. Since bifurcation1 of ditf erent types imply ft.nisb..ing of the real 

p!U't. of one or more eijenvalues, ditfe:rent algebraic condition.111 invol'rill& the ~ may be 

derived that mu.st be satisfied to obtain ll certain e{&envalue stru.ctu..re. These ve m.m­

mui.ied below. 

(9) 

ii. D.t bifurcaUon (Hopf) 
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(10) 
Sepuatm& rut and~ paJ"'tll, one obll.il:ull two equatiom. Eiiminatm& Ji. a 

~e equation 1houid be 1atimfted b1 the codclents IQ. J'Urlherm.ore lin~ Ji 

must be positive, one obta.in.I In addition an mequallt1 condition. Vuiation of one 

parameter can f o~ the equality condition. to be sat.istled, but this does not 

cuarantee that the inequality will also be n.tistled. Thus. m general, one needs to 

consider 'Qri&Uon of (at teut) two pe.rameten. Jt is prawned here that the 1.11'" 

tem para.met.en -vaned mfh1•u1ce the two conditions involved 111uch that the condi­

Uom can be 1atistied for 1eme admi11ible pe.rameler ftlua. Thi.I will not nec.­

u.rily be true for any two sy111tem pvamelen. 'Hore than two ~m puameters 

may be required, and lt may happen. If the 11Y111lem does not poHess appropriate 

lllructure. that no choice of pare.met.en may 111.tilfy the requisite conditiom. Tbws 

the number of puameten mentioned b.ve is m 1ome nnae (;ee Discussion) a 

minimum ftlue. Simila.r comment.a apply to all other eases in th.ii liat. 

(U) 

(12.1) 

(12.2) 

Am m the Hopf cue, elimi.nation of Ji between the two equation. 'Wbich nsult 

from uepe.raticn of !'Ml and 1.ma&ina.ry pam d Eqn. (12.2) giva 1rnnt~1 two 

equalities end a ldn&le mequallty. lmplyin.& that. m ame~. a may take thr• 

para.met.en to utisfy the required condJticm. 
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ID thil case it bl easy to IH that two equalities and two mequalitin mould be 

N.tilified which would require two lo four par1Uneler11. 

(15) 

ft. ill not diftkult to show that the number of parameters required to move a given 

ei£envalue contiiuration from zero real pa.rt to real pa.rt equal to +r ill the 1ame u the 

number of pan.met.en med to obtain the o~ arn.n&ement on the im&&iJ:lary oil. 

Thu.s, the parameter numbers determmed above to obtain a certain eigenvalue 

conftguration at bifurcal.ion are the same number of para.met.en needed lo 1tabilize 

that ei£eovalue wuctw-e and to translate it into the ri&ht·half plane. 

EXA1lPLE I: nz:DBACK P~ NEEDm TO BRING A CONSEC1.JTJVE-COM:PmTIVI: 

REACTION SYSiEll IN A CSTR TO BD"URCAnON 

To illustrate how the diti'erent 'bifurcation conditiom can 'be 111atisfted by 'Hriation of 

parameters, con1ider the followin& reaction 1equence tak:i.ng pl&ce in a CSTR: 

(14) 
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(15) 

(US) 

The 1teady ill.le equatiom an reduced to a lW:l.ile equation in x which ii a polyno­

mial of degree three: 

(17) 

~ ::::::: 0.532089, '· ::::::: 0.652704, ~ = 0.226882 
(18) 

-1.971782 ± i0.392386 and -1.000000 . 
(19) 

Now consider introduction of feedback in which the feed concentration of A ii ftried 

YA= 1 - b 1(x - 0.532089) - ba(y - 0.852704) - ba(z - 0.226682) . 
(20) 

+ (4.0006 + 2.3198b1 -D.9941ba+0.3074b:s) = 0. 
(21) 

The question then hi what an the condition111 for the different 'b!fW"Cation phenomena. 

Since the di.mensionallty of .. the ;ystem hi three, the only possible 'bi.furcation 
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(22) 

Then Eqn. (21) reads 

(23) 

(24) 

U. Di bifurcation (Hopf): 

(25) 

W. F 1 bifurcation: 

(28) 

(27) 

(28) 

SubnitutiJl.I Eqn. (22) mto the above condition.I mows how feedback gain ftlues 

must be adjusted t.o obtain dll!erent. types of bifurcation for t.he dosed-loop l)"!tem.. 

Conduetin& this analy!is 1hon that, with manipulation of only one feedback pan.me-
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'-· onl,r Da bUw-eation iir obG«Ved few- thit ~em. 1'Uh two feedbacll: puamet_.. 

aw.Dable, na. Da and ,., .,.. ob~ nw decrement dfagam ['1] for thit Ca.te 11 lhown 

bl FiiW"• 2. 1br olhw ~ml m wh!ch the l.rleqwilit7 constralnll mentioned abon far 

Da ed F1 bll'u.rc&Uon ue MtWied. lt ml!1 be po11i'ble to obtain Da and Fa blfurcaUomi 

bJ ~ one- and two-qstem pvametan. respecUv.17. The present. u:amp!e 4~ 

mt pc>He!I thae properties. lfith three f eedbaeb, an of na. Dz (Hopf), Fa. Fa ed Ga 

may be obtained for thit l)"irtem. Hi&hv order bifurcaUon1 eam::1.ot be obtained n1vd­

len of the number of feedback para.met.an 'becaUH of the l,)"!lem dimensioruillt7. j/j 

mentioned Mrliv. the b4fw'cat1oru1 obtained m closed-loop operation i.re upected to 

provide HtuliU•e mtormation on the local nonlinear propertle1 of the ractor. 

(21.1) 

(29.2) 

hkina piece m two isotherm.al IU.rred tank react.on coupled m parallel The coupJ.m& 

m&.f be effected 'by a membrane tepara.Un& the two r.eton which e.llo'W! all ~i• to 

df.tfuse from one ractor to the othar or u an exlarnal feedback control Xwna.r et ia1. 

[28] a11umed an exponential dependence of the rate cl reaction (29.1) on th411 concur 

tr'at.ion of I. They found that it the react.on i.re both m im 0111dllaf.m& regime but at. 

ditfennt opera.tin& cond1Uon1, the 'behavior of the l)"irtem depench OD the coupJ.m& 

eon.ltant. For Iara• ·nhu111 or the couplin& parameter. the raet.on syn~. 

~na1 for amall 'Qlua or the coupllil& conatADt. •ch nactw OidlJ.ata with a 

ditfennt fnqucC'J' &iW:>.& riH to a COIIl.'bmed output of complicated waveform. 'ftl~ 

found that the mtet"action caused no erect. on the qwillt.&Uve wawf orm of the concen­

tnUoa. csclllalioru1 m each md.Mdual reactor. 'ftle IW'fneu ol. the 1.)l'ltem model with 

the assumed e>..-ponent.ial nonlinurity did not allow for • thorough para.metric ltudy of 
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pouible dywlmic behavior. Gray and Scott [29] usu.med different man action kinetiC1 

to dncribe the aut.ocatalylic reaction and found that if the reaction ls usu.med to 

proceed accord.ml to 

(90) 

oscillatiom occur In a m.ngte CSTR for 11ome parameter 'ftlue1. The dynamics of a cou­

pled i.lolhwmal ructor 111tem m which reactiom (30) occur are. analyzed nm. 

~~ = ~a[AJi[D]f + [l]f r: rt:& + daCrilu - [lJs} 

~~Jr = ,,[iJx[Dlf + [!]f ~ [fth - ta[!Ja + da((!]n - [IJU 

d~ = -i,·[i]n[fi]! + [l]f ~ [l]u + .t,([1Ja - [1Jn> 

d~lu = ~,·[l]u[D]f + [t3]1 ~ [l]u - ~·[Ill + dat([l]a - [Ill) . 

(51.1) 

(31.2) 

(51.3) 

(31.4) 

.Asunmlin& [i]f = [i]I and [l]f = [I}! and mtroducm& dimemionleH ~ariable1 (He 

Nomenclature). one obt.IWla 

(32.1) 

(52.2) 

(32.3) 

(32.4) 
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Smulatiom were performed for 1 1 = i.2, a_ = 0.45, ! 1 = 1.0. !n = 0.375 imd I s 15 

puam.eter ftlue1 for Which each reactor ollldllate1111 at dil!'erent frequenct•. The rate 

co~ts for reactor 1 an Jar1er th!m. tb~H m !"MCtor 2. a 1111t.uaUon Which Dli&ht. be 

nalized bf operatin& reactor 1 at hi&her temperature. 

Varyin& the couplln& consteh f 1 and fa, dift'erent behavior wu fow:ul. Referrin& to 

the f 1 - f1 parameter space must.rated m ~ 3. four difiinct. recfons exillllt.. ID 

ngiom 1 and D. there la a lrin&le 'Wll!t.able steady It.ate for the coupled reactor syirt.em. 

ID rectom m ed JV there are th.ree steady It.at•. The two additional ones arise from a 

Um.it point b!fw-caUon 'Which occun alon& the line (a). One la 'Umtable and the other la 

8ta.ble, Web that ail trajectoriel for f 1 and fa in re£ioM m and JV led to the linile 

lllJt&ble steady state. ni.t. llteady'"11'ta.te correspond11r to b.i&h I concentratiom m the 

.. cooler• reactor (ru.ctor 2) ed low D concentraUotl.lli in the "warm.er'' reactor (reactor 

1). One can easily aee the practical ~ca.nee of t.i-.!1 result. Couplln& two 01cillatm, 

!"MCtol"I, stable lllt.eady-stat.e behavior la obtained for 10me ran&e of ftlues of the cou­

Plln& gaim; the oscillations have been quenched.. 

The line th.at 1eparates reaiom 1 and m from re£iom D and JV representJI the locWB 

&Iona which the fllli.&ennlue stnu:::ture for the Wl.table steady srtat.e chall£el from that 

of two complex conjugate pair1 with positive real pa.rt to that of a liri&le complex pm 

with politive real part u a pair of e1&envalue111 crosses the imftiinvy a.xii along line (b). 

"Ibis uplaim why for large w~ues of fa and f1 the two reactol"I 1ynchronize. lf'hen f1 

ud f1 u-e in n&ion D. the coupled reactor 1y.1tem osclllate1 with a frequency near the 

lma&inaey put. of the 1111n&le complex conJuiate pair with politiw real pvt. 

ID region t Meille.Uom or mteresUn& form ui.H u the ~tem DOW hu two buic 

frequencies lntluencin& lb dynamict1. Jn ~ .fr-8. the form of oscllh.Uom for three 

uet.1 of ftlues of f i and f1 m r•ion J are mown. The llri.eady-1tate 'Rlufn1 and ef&en­

ftlues for Heb of these parameter sets 11.n'J 1hown on Table D. ror (faJal = (0.01.D.01) 
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(ncunll 4) U:ut '"hot .. reactor oeemaUOCJB llU"e fllWl&le-peak recuiu 09cllle.U.o111 while the 

•coot .. react.or M1cillatio111 llU"e of di.frerct frequeDCJ", multipeak uut of di.frerenl form. 

There a. a period of about 12.2 time Wlit.11 mdent. For (f1.fa) = (0.01.0.1) ~ts}, the 

oscillation1 cf both react.on an modulated.. but acam the effect ill more dramatic for 
.. 

~ ""cool .. reactor. For (fa.fa) a (D.1,0.01) (Fi&un 6), the ""hot .. rHctor a. acam only 

IJili&htly modulaled with & dramatic mftuence m the form. of osclllatiollll of the .. cool .. 

reactor. 

The eigenftlue structure of the uteady state m nlfon J wueru that the fllYSll!ml 

may be viewed u n.uttm& from an Fi bifurcation.. 1b.m.& (f1.fa) = (0.01,0.1) uid QJ'J"" 

ma only two pa.ram.et.en, t111 md !,. the uteady It.ate chances u well u ib ef&erJ:n.lue 

lltructunll. An Fa bi..furcation point a. found at (a1 • 1.1489, 81 a: 1.1341). The .t.eady 

mte at. these ftlua ill 

I.= IU54, , 111 =1.189, I.= C.180, 9 111 : 2.003. 

For larger ftlues of A1 and e,. the reference i't.eady utate ill .t.able. The Fa 'bifureational 

muctu.re wu achieved here by ~ only two para.met.en because the ~em 

already had the necessary underlyin.& lb'ucture. Other 111term may require up to four 

p&rl!mlelen to obtain m F1 Wu.rcation. 

Jt bu been seen how a cert.am dynamic fl18lem ~ be brought to bifw'calk>n by 

blb'od1.u::q feedback. The theory of normal fonm pro'fides lnlldibt. into why & l)'Vtem 

at bifu.rcat.ion manifests disUnetift noDlinffl" featura. Tb.is Npportl previously pro­

posed ruategies for .ystem model identification md ftlidation based on expertmenb 

near bi.f ureation conditiom. Also, no~ form theory .rued with bifurcation theory 
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ahcnn1 that lcv-order mod.et. wtace in 1eneral to de1cri'be a broad cla1111 of nonlinear 

phenomena. Briniinc a 111)'111lem to Its normal form involves a complicated t.rauunf orma­

Uoc.. which makn UWa procedun not wry tn.ctable in general. Fwi.hermore, mnm 

UWa t.rax:udormation 111 not. mv.Ubte, lt 111 impossible to me the normal form of a IYlt" 

tem u & const.rucUve eJliin•rb::li tool. for na.mpte, to el'labli.lh a control law or per­

form 1.n oplimizaUou. 

Howner, t.ramf ormin& a liven model to normal form. or limply studyirl& the a en era! 

normal form correspondin.I to the bifu.n:et.ioo Jordan block l'lruclW"t! of a liven model. 

pl"O'fi.dn a c1i:u1venimt, locally tcpoloefcally equivalent, low-order nonlinear model which 

Clim be med to u:pfore possible dynamic phenomena of the ori&in&l model. 'r1m 

approach will be illustrated m future paperu on feedback control loops in m.zyme­

cat&lyzed. reaction sequences and periodically f orc::ed chemical nact.ora. 

ID the above discuHion., the number of pe.rameteMI in the clluacteristic equation. 

which must be adjUBted to achieve di.trermt eijenvalue cocfl&urations wu addressed; 

the Appendix liVU ll limilllr 1.n&l.)'!lil based OD manipulation of entries in the Jordan 

form of the 111)'111lem .racobian at the nf ermce steady state. All noted urller, the 

number of pa.re.met.en involved. for •ch bifw-c&tion ltratum LI the auune from either 

the characteristic equation or the Zordan block peMipecUve. Then u-e, howner, 

IN'Vera.1 11ubletin which mould be meE1lh:uled new eoncerW.n& the question of the 

required number of pe.ra.meteru. 

Pint. ei:>wri.der the cue lri:aef'8 one of the required conltri.inu LI 1.n Inequality con­

.tramt.. 'rim implies that. lt m utilfact.ory, from the point of Yiew of obtalnin1 a given 

tll&env&lue or Jordan block l'lrw:tun, that a mri.&Wl parameter &imply be poeitJ.ve er 

n.eaauw. 'Tb.is 111 not an •specially demandm& condition. uid it may be met for man.r 

systems. Then the inequality comtramt ls not active, and one can obtain the desired 

tll&emr&lue eo~a.Uon Without :reaa.rd t.o the meqwility ~mtramt. uid with conse-
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quenUy one fewer m.an!pulated parameter. For uample. the~ (or Hopf) bifurcation 

cue m aeneral req'l.lirel two pvameten. However. llrince one of the conllrambi 

involved ii an inequality, Hopf biturc&tiom han been observed on •a.r:Yini a ~e 

parameter for ma.ny reactor mod.elm. '!'his analysi.1 11:u:rww that in 1e>me cases, by va.eyi­

q 1. Hcond parameter, a 111tem which does not exhibit a ~ bifurcation vith me 

parameter can be made to Hopf bifurcate. This vu the cue for the first example di.­

cussed above. The 111econd example, on the other hand, 1hon a case where, the two 

inequality constraint.Ill ~ automatically nti!died. ftriation of only two puametm"I 

INt'fkes to obt!Wl m 1'$ bifurca.Uon. 

Types of bifurcation of hi&her order than ~ 'lml.ally requ.i.re precise manipulation of 

more tb1U>. one parameter . .AehieviJl& an F1 bifurcation requi.r'el!I that two puametm"I 

be adjusted to precise values to satisfy t.wo equality con1t..rainu. Thi1 meao.111 that 

dynamic behavior chan.cteristic of en F1 bU'urcation will aenerl.lly not be observed 

upon varyi..ng 1. lf.n&le parameter. To find wch behavior lfith one par1uiu!!ler v~ 

requires 1ubstantial luck. To aee tbAt it ii possible, however, consider two parametm"I 

Pi and Pz and wppose that. the values of these par.met.en which s;ive the F1 ei£envalue 

m~u.ratic>1l an p; a.nd Pi- lf by cb1U>.ce the value of the parameter Pl is choten near 

the value of Pi and p1 is varied, when p 1 ii near p:. efienvl'l.lue confiiu.rations near the 

1'1 confiiu.ration -.ill mse. The accompanying dynamic behavior may resemble that for 

a.n F1 bifurcation. However, YU"ia.tion of p1 above will not necesNJ"'ily produce all poni­

We ditferent dynamic behaviors typical of a.n f 1 bifu..rcation cnaure 1). 

Another point that llhould be made 18 ~t &lthou.gb the distinctions bet.ween 

dttrerent kinc.h of bif'urca.U.om described abon are presented u lb.up and clear, thD is 

often not the cue in practice. lt'bm 1e>me of the Jacobian eigenvalues are found in the 

ri&hl·balf plane. their predece!son are not uniquely detlned. Depending on the param­

eters that one allo~ to 'ftl"Y, one may find that vrivinc at this ei£envalue structure 

may be viewed as the con.sequence of d.ltf erent. types of bi!urcatiom. 



116 

.AlU:tc>tJih uu.. detract.a m ~me de&ree from the practical utility of the bifurcation 

theory &cussed above in analyziJ:l& nonlinear 111tem dyntt.mics, lt does not render the 

Abo•e conclW11iom usele1111 or trivial. While developtn& mathematical models r or chemi­

cal reaction networb and chemical react.on wb.1.ch a:hlbU. e1clllatiom bu become 

incnu1.n&ly 1.ucceHfW., the sa.me can.not be said f cr models which 1enerate more com­

plicated kinds of noc.li.lleu oscillatiom. The di.sc:Wllsion above explain.I in put. why 

dndin& more complex e1cillation1 from the n;aodel ii more dimcu.lt than ftndi.n& a lli.m­

ple Hopf bif w-cation. 

The framework wmmarized all!lo proVides &Wdance on how to identify caodidat.ea 

for models and corresponding pa.ram.et.en which do, possibly, ;in dJtrenmt _type1 of 

complex dynamics. To obt.ai..D the apparently ln'e&ular types of osclllatiom ohan.c­

teristic of motion on a t.on.u1, one should look for the Fa Jordan block lt.ructure, or, 

more practically, the co~spondi.ng eigenvalue 1111tructure of the Zacobilm. To manipu­

late the el£envalue1 to the necessary configuration requires the coordiru!ted manipula­

tion of at leut. two 1Y9tem parameter111 to a precise combination of ftlues. Con.H­

quenUy, the chance of dnding the ri.£ht combination of para.met.en is much 1maller for 

the men complex ei&;envalue conficuration.1 cornspondin& to hi&her order bifurca­

tiom and more complicated noDlinea.r dynamle1 t.hAn lt. is for Hopf bifurcation which 

often result.I from manipulatin& only one parameter. Usie& the concepll presented 

above, one can 1eneraliu 1Ubst.antially the important contribution made by Scbem­

tuch and Schmit: [ 1] Beme yean ago. They pointed out that. in 1ea.rchin& for models 

of catalytic r•ction qstem1 that exhibit 01cill&tiona, one 1hoW.d look for model 1truc­

tw-e1 and para.meter ftlues which admit Hopf bifurcation. U8fng the models outlined 

&bove, one can now look direcU1 for model atruetu.rm and correspoDdin.a parameter 

'n.lues which give the local struetw-e corrnpo:cuilnc to certam types of more complex 

dynamics. 
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Another d.i..mcwty await.a hen which bu also an analog in the simple Hopf cue. Jn 

the cue of wbcrit.iw Hopf bifW'Cation. u the 111teady lllltab become111 w1sb.ble, the 

ruwting limit. cycle w ~table. 'lb.ether a Hopf bU'un::ation I.II 1upercrit.ical or wbcrit­

ical may be found Ullin& noq_uet. theory [19). Similar ditfkult.il!lll aJ"iJBe for higher order 

bifurcations u for aample G1 bifurcation. Cose to Ga chao1 la possible, but then w 
no ,uan.ntee that chaotic oeclllations wW. occur. Unfortunately, unlike the Hopf cue, 

the theory for Ga bifu.roet.ion bl not 19t developed to the point where irumcient condi­

tions are known for appearance of chaotic dynamics. Hopefully, the point I.II clear that 

the methods described hen are int.ended u usefw eniineering guidelines and not u a. 

rigid and it.rid mathematical it.ruct:ure. 

Another point that vu mentioned before in passing bl &110 emphasized here. '!he 

discussion above I.II couched in term.1 of characteristic equation or Jordan block 

parameters. not 1ystem parameters. Then bl no gUMa.ntee in 1enerti that manipula­

tion of a certain number of system parameten will inthJence a like number of Jordan 

'block para.met.en in independent W&.)"11. Thm, for a given model, it may take manipula­

ton of three parameten1 to achieve an ef&envalue 1tructun which can be obt.a.i.lled by 

manipulation of only two coefficient.I in the cba.ract.erutic equation. In 10me l)'Stem.1 

which do not po1Ses1 appropriate 1tructun, it will not be possible to obtain certa.m 

ei&envalue configurations for any choice of any number of system parameten1 with.in 

the domain! prescribed by physical limitations (e.1. non-ne1ative rate constant.I). '!he 

question of the m.appmg from. ~lem pvm.iele!'ll t.o coeftidenll of the characteristic 

equation lll! one that ii amenable to direct and exact analysis for ncb. particulu model 

ed which will not be addressed further h.-.. 
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lnlet concentration In EK. 1. 

-~· A..1::11,C: Species In Ex. 2. 

B.C.D: Kat.rices deftned In Eqn. (4). 

~: Defined m Appendix. 

t,: ~ ... [A]ft.. 

~: '8··[Dl!-ta/[1]1. 

C: Space of complex nwnben. 

f: Function m F.qn. (1 ). 

a: Fw:u:tion deftned In Eqn. (2). 

J: identity mat.m. 
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~: 
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Jacobian defined m Eqn. (4). 

Seu or. ttijenvalues denned m text. 

Rate con.Noll m h 1. 

Rate constant.I m Ex. 2, react.or I. 

Rate constant.I m Ex. 2. react.or D. 

Vector of mteaen11. 

l:nte&l!nll· 

Par&meter space m Appendix. 

Dimension of space H. 

Dimeru1ion of 7. 

Dimension of vector 1 

Dedned in Appendiz. 

Dimemionality of Jordan blocks m the Appendix. 

Jordan upper lriAD«War matrix m Appendix. 

Pe.r&meten m diSCUHion MCtion. 

Rul numben. 

Dedned m Eqn. (8). 

Time. 

Reactor residence time m h !. 
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.. [ih/[l]I. 

E St.ate ftriable vector m Eqn. (1). 

'It ,JI(': Variable vect.on defined in Eqn. (5). 

](' ;r: Funct.iom def'lned in Eqn.1. (S). 

I: [iy [i:r'. 

r.r •. t.: Steady lrtate n.Iue1 for Ex. (1). 

1..1111.!..f'a= Steady irtate values in Ex. (2). 

I: [i]i1 [i.]f: 

:
1113•: Real and imaginary parts of eigenvalue in Appendix. 

y. Transformed ftliables vector in Eqn. (2). 

'J',"f': Variables vector detlned in Eqm (8). 

T: Function detlned in Eqn. (7). 

J: c111[ir. 

t. [l]V'[l]f. 

I: ['e]/ [ir. 

I: [i]n.1[i.Ja. 

Subscript.I I and II in Example 2 refer to react.en 1and2. respecmel7. 
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&,: Coefficient.I of cbuact.eristic Eqn. (8). 

all: ~1Tfl'.r. 

ae: ~,;:Ir. 

11: IC1[iJ]tt.. 

la: . '-[iJ]ft./ [A]r. 

a;1': Eigenvalue1 in Append!%. 

It Vector of parameters in Append!%. 

I"': Defined in Appendix 

~: Ei£envalue. 

~ Eigenvalue at resonance. 

~: Ei£envalue1. 

~·: ComplH parameters in Append.Ur. 

k Parameter 1pece in Append.Ur. 

p.: Pua.meter vector in Append.Ur. 

v. Para.met.er in Eqn. (1). 

PJ."ra: Real w:ad im~ary puts of complex pa.rameter1 ~"'in Append.Ur. 

r. Reactor residence time in Ex. 1. 

ti': Tramf ormaUon function deftned in Eqn. (S). 

p"': liappin& defined in Append.bl:. 

u: h:n~'lM)' part of el.&envalue !see Eqn. (10)]. 
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APP.DWIX: 

BD"URCA.TIOM .JORDAN BI..OCX STRUCTURE.: ARNOLD'S VERSAL FAHD.D!S 

The central concern m th.ii section ii the number of pare.met.en that must be m&m­

pulat.ed to achieve a particular Jordan block llructure of the ;ystem. .Jacobian. Of 

COW"le, the 1t.ructu.ra of interest are the aomewb.a.t atypical .Jordan forms which 

correspond to the di.trerent bifurcation mat.a. Central to th.is discussioll I.I a general 

parametric representation of matrices due to Anlold [26]. 

The analysis begins With the usumption that a particular 1Y9tem bifurcates m a 

particular 1tratum for aome choice of 1Y9tem parameters and correspondmi reference 

steady state. Sp~itieation of the presumed bifurcation It.rat.um 111pecifles lllimult&ne-

0U111ly the Jordan form 1t.ructure of the .Jacobian at bifurcation . .Arnold's theory I.I then 

applied to formulate a aeneral representation of the Jordan matrix llru.eture m the 

nei&hborhood. (with respect to l)"Stem parameter changes) of the Jordan matrix at 

bifurcation. FiMlly, assuming that l)'ltem puameten are near the values which pe 

bifurcation, the general parametric 1t.rucl.ure of the Jacobian lord.an form I.I e:u.m.ined 

to determine the number of para.met.en wb!ch must be ad.justed to particular w.lu.es or 

llfiD.1 to obtain the .Jordan matrix at bifurcation. 

nrst the 111ubject of mi.nivenal deformation of matrice1 mu.st be presented. Con­

mder a family of matrices IJJ/), complei: m general. dependm& on a vector of complex 

puameten11 ,c.Ar:::.f!-. For , dote to '•· the matrices AfJI) are called deformations of 

eome particular matrix N.lo) ~A.. A deformation J:(I) of the mat.ml: A. is Aid to be 

equiQJ.ent to a deformation IJJ/) 1f a nonsingular matrix C'(I) exilt..I such that 

(A.1) 
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The family induced from~ by the mappfn& ill the family N., 0 00). A deform.a­

t.ion Al.I) of a mat.riJ[ "9 is 1Hlid to be wnd If 1UJ.1 deformation &••(J.I.) of lhe matriJ[ "9 is 

equivalent to a def ormaUon mduced from IJJf). A versa.I deformation hi 111aid to be 

min-Wenal If the dimeMion of the parameter 1pace A (t.e. I) bl the smallest possible for 

a venal deformation. 

Denote by a." the eigenvalue111 of the matrix "9 and let n1(~ j ~ ~(a1i ~ · · · be the 

dimensions. m decresin& order. of the lord.an blocks correspondinc to~·. The smal­

lat number of para.met.en for a minivenal deformation of the mat.rix Au 11 [28] 

(A.2) 

Po + JJ/'(IJ) • 
(A.3) 

where 111'"(1) i111 a block-dia.gonal matrix whose block! correspond to the ei&enve.lues of 

4.- F.acb. block Bi" oorrespondin& to ~· hu all zero entries except in lhe positions indi-

eated in Fijure A.1. 

In chem.ical @Ul&ineerin& one usually deals with real matrice111. Vm-sal deformatiom 

for real matrices have been constructed by Galin [30]. A.Hu.me that a real matrix bu a 

complex conJuaate pail' of ef&envalues 11.
0 

:t iJ". with Jordan 'blocu of dimension 

Da ~ Dai > · · · wilh I: na = nc. The part of the Jordan mat.:ri:x that corresponds to the 

ef&envalu.es x" :t iy" may be mt.tlen u: 

(A..4) 

where r Uil the upper tri~ real lord.an matriJ[ with •i&envalue '!Z." and 'blocb of 

dimensions n1 lii1! n; > • · · · and J hi the identity matrix of order ~ Jt a true that the 

min.iversal deformation d the decomplex:ified matri.x m the 1ame u the 

dec:omplexiticatio!l of the miciversal deform.aUon cf the complex m•tri.x [26]. This 
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allon determ.i.n.ation of the m.iniverHl deformation of the decomplexifled (real) m.atm 

WI~ Amold'1 theory for complex mat.ricm. Tbe111e fact.I a.re uHd next. to determme 

the minimum number of para.met.en to realize d.itferent bifw-cational Jordan mat.rbt 

muctures. 

Smee a zero ei£envalue corresponds to a simple. one-dimensional Jordan block. 

It 18 clear that ftl'iation of one para.met.er 18 wft1cimt. 

Jn complex form we 1eek to obtai.n the Jordan block for w. It take1 one complex . 
parameter p;:: p,, + 11"1 to do that. Jn real form one seeks to realize the ltructure 

[recall Eqn. (A..4)] 

('!,"1] 
(A.l5) 

(AB) 

TbWI one needs two reel para.met.en. To ensure zero real part, Pa is required. 

However, the other parameter T1 can be anythm& positive. Thus. 'f'&riat.ion of a o­

gle real parameter may produce Hopf bifurcation U' lt. 10 b.appeW!I that Ta > 0. Jt 

might. Ill.so take in other cues vmat.ion of two parameters, Pa and ,.,, to uwn 

Hopf bifurcation. 

(g A} . 
(A.7) 
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kl. m the Di cue, a minivenal deformation m the Ame for the complex md the 

real cases. It w here 

(A.8) 

where 1: and 1; are real para.met.en. TbWll, manipulation of two real para.met.en m 

nquired to obt.e.ill t.bi1 1tructw-e. 

(0-GJO} 
'1 0 0 • 
0 0 0 

IPt -ra 0 1 
f'a Pa 0 J · 
0 0 Pl 

(A.9) 

(A.10) 

Similarly to the Di cue, it takes 1.t least two real para.met.en (p1 and Pt); a third 

parameter may be required. to emw-e GJ > 0. 

(A.11) 

(A.12) 
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[
O 1 OJ 0 0 1 . 
0 0 0 (A.13) 

As m the D1 and F1 cases, the complex ud real miniversal deformaUons coin­

cide. The m.iniversal deformation ia 

(A.14) 

ture. 

It Is clear that the re1Ult1 obtained u the method of characteristic equatioM ii 

totally consistent with the theory of venal families of matnce1. The latter approach ii 

more complete m that lt consider1 Jordan block structu.re1 characteristic of d.U!erent 

bi.fW"Cation st.rat.a. Obtain.in& correspondm& ef&ennlue coD!lgw'atiOWll via malysil of 

the characteristic equation UI a necessary but not 1111u.flkient condition for achievm, 

pe.rticular Jordan matrix ltructu.re. De£enerat.e casH m which the dHired ei.£envalue 

ldructure does not yield the desired Jordan block wu.cture an N.mcienUy unusual. 

however, 11110 that the simpler approach bued on the cl:laract.eristlc equation 11111 ul!IW!illy 

adequate for locatin£ vanou.1111 'bifurcation wat.a. 
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Table I: Sw:n.mary al the properties of the 111~em lacobhm at the reference lrtead,­

state for ditfermt bifurcation types (strata). Ef&envalue1 in left-band plane 

and correspondin& Jordan blocks are not 1howu. For lord.an block 1rtruc­

ture for the cues Cai -C. see Ref. ['1,26]. Ri&ht column indicates when 

llrt.ead71tate bifurcation is po11ible. 

Table D: Sleady-llrt.ate and ei£eovalue ltructure u a function of couplln& parameter11 

for Example n. 
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BIFURCATION 
JAC061AN JACOBIAN POSSIBLE 

JORDAN BLOCK EIGENVALI.£ STEADY STATE 
TYPE STRUCTURE STRUCT\.ff: BIFURCATION 

°' 
[o] f YES 

~ [~ ;] t N) 

F1 [8 6] + YES 

~ow~ + Fz w 0 0 YES 
0 0 0 

[°~' 0 OJ I 

"'10.0 0 I 

F3 NO o o o~ I 

0 0 "'20 I 

[0 I ~ -t-G1 0 0 YES 
0 0 

$ 
G3 * 

YES 

G4 

' 
YES 

Gs + NO 



131 

f 1 
,. Steady State E!&mnluu 

ruu 0.01 x = 0.250168 1.232053 ± 3.898084i 
1= 1.580007 0.407069 ± 43772351. 
I:= 0.210119 
1f = 1.939946 

0.01 0.1 := 0.248421 1.159653 ± 3.9920Hn 
1 = 1.1587432 0.387768 ± 4.407l8?i 
B: 0.211338 
"'= 1.932228 

0.1 0.01 ll = 0.251888 1.198648 % 3.?97853i. 
1= 1.569634 0.346962 ± 4.351923i 
• = 0.2089-14 
"'= 1.951186 

0.1 1.0 :E = 0.237587 0.8414:47 :t 4.190754-i 
1= 1.633455 -0.269672 ± 5.0748371 
iii= 0.270524 
w = 1.882123 



FigW"e 1: Venn diavam 1holf'ill& relatiomhips between bi.fw-calim:i. mat.a and lccal 

system dynamic: features near bl!urcation. The indicated It.rat.a correspond 

to Jacobian matrices at the reference lt.eady it.ate With up to three ef.len­

ftlues on the imaainru"Y uis. 

:n,u.n 2: Decrement. diagram for Example l 

~u.n 3: Regiom of the coupling parameter 1pe.ce correspond.in& to ditrerent classes 

of system behavior (Example U). 

Figure 4: DimeosionleH co11c:entration traject.ori.e111 for coupled CS'I'Rs with autocat.a­

lytic reactions (Example D; coupling pa.rameter1: f 1 = 0.01. fa = 0.01). 

n,ure 5; System dyn.am.ic:111 for aut.oc:aWyt.ic: reactions in coupled CS'TR! (E:u.mple D; 

eouptina parameters: f 1 = 0.01, f1 = CU). 

f'1&ure 8: Dynamic: behavior of coupled CSTRs with isothermal aut.ocaWytic: reactiom 

(Example D; coupling para.met.en: f 1 = 0.1. f 111 = 0.01). 

Fl&u.n A.1: Form of the matnx Bin the minivers&l deform.at.ion of Eqn. (A..3). I>itferent 

parameters appear at the po111ition1 indicated In each block Bt correspond­

q to the ei£env&lue o.t Alternative forms for the B matrix are presented 

by Arnold [26]. 
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NORMAL FORMS FOR CHEMICAL REACTION 

SYSTEMS VIA THE AFFI11E TRANSFORMATIOJIT 



In a previous publication [1]. the notion of normal forms of dynamic systems was 

reviewed. The nmmal /arm is a simpler form of the system model equations th.at 

retains all relevant information regarding dynamic behavior in the neighborhood of a 

system steady state. Substantial effort has been invested by mathematicians to find 

the normal form of dynamic systems after perturbation from a point of bi..furcation 

[e.g. 2,3]. When at bifurcation, a system's dynamic behavior is absolutely nonlinear 

even locally. The advantage of studying a system close to bifurcation is the opportun­

ity to identity the qualitative nature of its nonlinear dynamic characteristics by local 

analysis. 

In general, converting a dynamic system to its normal form is a very complicated 

and practically untenable procedure, at least until a general computer code is 

developed for this purpose. In this work a different type of normal form is introduced, 

and the class of problems that are reducible to this normal form via a simple transfor­

mation is identified. A specific algorithm tor converting such systems to this norm.al 

form is given. After transformation to the normal form following the given algorithm, 

one can identity which parameters can be varied independently to affect the system's 

dynamic behavior and which groupings of parameters appear in the normal form. 

Next, it is observed that this normal form coincides in. the cases of F1 and G1 bifur­

cation [1] with the classical normal form. A certain. notion of codimension is defined 

and the effect of perturbing a system from the F 1 bi.furcational structure is studied. A 

chemical example due to Eigenberger [4] is treated as a perturbed F1 system. An 

enzyme-catalyzed reaction sequence with feedback regulation of the initial reaction, 

first considered by Walter [5], is also investigated using the methods developed herein. 
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THE AFFINE TRANSFORMATION: REDUCTION TO THE COMPANION NOIDlAL FORK 

Consider a dynamic system ol the form: 

where 

d:x = All + bf (x) + '& 
dt 

I 
0 1 0 ... 0 

A=??~?::? 
c1 'S2 · · · · Cn 

6= (0 

c= (0 

Olf 

oar 
The Jacobian for this system has the following form: 

J= 

and the steady states are 

0 
0 

0 
0 . . . . 

[ cn1·····r Ml S1 + 8x1 en + Bx111 

x28 =xs.= · · · =.xu=O 

The characteristic equation of the Jacobian then is [6] 

l 
,0) j:::: CL 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(B) 

Balakotaiah and Luss [7] have used Golubitsky's theory (B] to study bifurcations of 

steady states when reduction to a single algbraic equation is possible. Merent bifur­

cation diagrams are obtainable depending on the "order of contact" of the one-
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dimensional function at the bifurcation point. In this procedure of reducing the 

dimensionality, care must be taken that no new steady states which are not steady 

states of the original system are Introduced. For systems that can be reduced to the 

form of Eqn. (1), this possible pitfall is definitely avoided. Another convenient property 

of systems of the form (1) is that the characteristic equation is trtVially obtained in the 

form of Eqn (8). In general, finding the characteristic equation of a large dimensional 

system involves considerable algebraic effort. 

In addition to obtaining a single equation for studying the steady states of the sys­

tem, one can identify easily conditions for different bifurcation phenomena [3]. Which 

system parameters can be varied independently to produce certain steady-state multi­

plicity and eigenvalue structure are revealed explicitly. For low-dimensional systems it 

is easy to reach conclusions about· the effect of system parameters in realizing certain 

bifurcations. In addition, analysis of Eqn. (1) shows directly how changing a parameter 

perturbs the system to a certain "structurally stable" Jacobian eigenvalue 

configuration. These attributes of models of form (1) will be illustrated in the exam­

ples which follow. 

The opportunities for analysis of system models of form (1). which is called the com.­

pa.man 1lm"'n'l.4l form, motivate a search for the class of systems that are reducible to 

this form. The transformation should not introduce additional steady states and 

should retain the system's eigenvalue con.figuration. One such transformation is 

y=Sx+g. 
(9) 

Such a change of variables, an a.f!ine tra:ns/orm.atian, transters the origin and rotates 

and expands (contracts) the system coordinates, but it does not affect the steady-state 

multiplicity and the eigenvalue structure. 

SolVin.g for I in Eqn. (9) and substituting into Eqn. (1), 
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(10) 

Thus a system reducible to the form of Eqn. (1) by the affine transformation Eqn. (9) 

must have the form: 

*=Ky+ Ah(y) + m 
(11) 

where h(y) is a function from R21 to R. Accordingly, the system must have a single non-

linearity, possibly appearing in more than one of the state equations. One then 

identifies similar coet!icients in Eqns. ( 10) and ( 11), which gives the following relation­

ships: 

(12.1) 

(12.2) 

(12.3) 

An algorithm for transforming system ( 11) to the companion normal form ( 1) is 

given next: form the matrix S-1 as follows, 

s-1 = 
(13) 

f'xn-1 

where 1 is any row vector that makes S-1 nonsingular. Then 

(14) 

is a linear equation in 71, · · · .7111 that must be satisfied. This uniquely determines the 

vector 7::::: a •.... . 7n) and hence the matrix S-1• Then, from Eqn. (12.3) 

(15) 

Since 
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one can choose: 

I= X-1[dA - m] 

for any d and hence for d=O In particular. Thus it is suffl.cient to set: 

1= -r-1m. 

Then the transformation: 

x = s-iy + s-1r-1m 

will transform system (11) to the form of Eqn. (1) with d=O. 

EXAMYLE: ENZTii.ATIC REACTION SEQUENCE WITH FEEDBACK 

ALLOSTERIC REGULATION 

(16) 

(17) 

(18) 

(19) 

Walter used Llapounov's direct method to obtain stability criteria for a generalized 

negative-feedback enzyme-catalyzed reaction sequence of the Yates-Pardee type [5]. 

The dynamic equations for this system are: 

~ = "1-1X't-1 - Hi!:t~ + ~JG - ,h~ + j-4 

~ = H1Et~ - (ht + G)Xt i = 1.2. · · · .n 

(20) 
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~H = HnHEoSCH - hn+i'XnH 

0 = to + Xe + Xa+1 

0 = !:. + X. i = 1.2. · · · ,n 

where St are substrates. St+1 is produced from St under the catalysis of enzyme Et via 

the enzyme-substrate complex~ fo.r i = 0.1 ..... n. 

The St (i = 0.1 ..... n + 1) may exchange with the "exterior", but Et and~ (i = 0,1, .... n) 

are confined to the "interior" system. The parameters j-1 and j1 are the rate constants 

for the exchange of St to and from the "exterior", respectively. H1 (i = 0,1 ..... n) is the 

bimolecular rate constant fo:r combination of St and Et; ~ and G are the unimolecular 

rate constants for dissociation of ~ to St and Et. and to St+i and Et. respectively. It is 

assumed that Eo is inhibited cooperatively by p molecules of Sn+-i; the "rate constant" 

for formation of the inhibited form of the enzyme Xn+i is Sn+i and the "rate constant" 

for dissociation of ~H to Sn+n and Eo is hnH· S0 is maintained constant by a large 

external reservoir and " = HoS.,. 

Making the following set of assumptions: 

i. it= 0, (i = 0,1, ... ,n + 1) 

ii. St << iKm_, (i = C).1, .•. ,n) 

ill. Terms beyond (Sn+1Y in the expansion of bJ(l + a~H), where a= H11+ilhn+i· can 

be neglected, 

the model described above can be simpl.itled to the followin& form: 

where 

Si = - Otbo(Sn .. Y - 01 + b1)S1 + J-1 + bo 

Ss = ~-1St-1 - (ji +~)Sa+ J-1 (i = 2, ... ,n+l) 

(21) 
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~ t.ry"mSo t"" 'Ym . ) 
D0 = 0 Km, +So , D1:::: 1Km. ; (1:::: 1,2, .... n 

(22) 

and where 

tor _ r..E (0) . iv _ ht + Ki • 
·vm - --i i • nm - & ' 

Et(O) = ~ + Et (i = 1,2, ... ,n) , 

Eo(O) = Xo + Ee + Xn+i · 
(23) 

Setting 

Y1 = 5n+1 · Yi = Sn • · · · • Yn+i = S1 

(24) 
.... -ct = l-{(n + 111) - i)• i = 1, ...• n ; Cn+i = J-1 + be • d = ab0 

~ = a.1 - b1 ; i = 1 ..... n + 1 , 

the system may be written in the form of system (11) With 

JC= 
0 (25) 

A= [O .......... 0 -df 
(26.1) 

h(y):::: yf 
(26.2) 

(26.3) 

Forming S-1 according to Eqn. (13) begins With calculation of 
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Then 

f1dl 
1'1b2Cd1 + daY-1 + 12aa 
f1b2bs(d1 +dz + ds)i-f + f2bs(dz + ~)1-1 + tcIA 

(28) 

Substitution of Eqns. (3), (26.1) and (28) into Eqn. (14) and solving for the u.nk-

nown.s 't gives 

(29) 

The matrix S-1 can be written explicitly using (13), 

1 0 0 0 0 
di hie 0 0 0 
df b2(d1 + da) bells 0 0 

df ~(d1 + da)2 bzbs(d1 +dz+ ds) bzbsb. . . 0 

(30) 

The inverse of K may be evaluated analytically. Multiplying the result by m from 

Eqn. (26.3) gives 
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Cu. bn +1 Cu. +l 
(31) 

On - dndn+t . 

5!!:1-
0n+i 

It will be convenient later to denote the first element of this vector by the (scalar) e. 

The required transformation to the companion normal form is now given by Eqn. 

(16) where S-1 is given by Eqn. (30) oand X:-1m by Eqn. (31). The matrix A may be 

evaluated by Eqn. (12.1). However, the complicated algebra implied there can be 

avoided. The first n rows of the (n+l)x(n+l) matrix A a.re known by the definition of 

th'e companion normal form, see Eqn. (2); only the last row need be evaluated. Equa­

tion (8) indicates that the entries of the last row of A a.re combinations of its eigen­

values. Since A and Ka.re similar matrices [see Eqn. (12.1}]. they have the same eigen­

values. By inspection of Eqn. (25), the eigenvalues of K an upper triangular matrix. 

are simply its diagonal elements d1.~. • • · ,dnH· Combining these facts, the coefficient 

matrix of the companion normal form is given by Eqn. (2) with 

(32) 

Writi..ng out the companion normal form in detail gives 
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Xn+i = (-d.babs · · · °bn+1X1 - e~ + (-1)n it dtX1 + 
i•l 

The steady states are determined by: 

and the corresponding Jacobian is: 

0 1 0 ........... . 
0 0 1 ........... . 

J= 

0 
0 

(33) 

(34) 

(35) 

One can see that the steady-state solutions and their eigenvalue configurations do 

not depend on all model parameters a.. b1 and Ct (3n + 6 variables) independently. The 

whole system dynamics depend on (n + 4) combinations of the system parameters 

which have been explicitly identified; i.e. on p, e, d1, • · · .dn+i and db2 · · · bn+i · The 

transformation method described here has enabled reformulation of the original com-

plicated system to the much simpler form of system (33), and it has been shown which 

combinations of the original system parameters independently intluence its dynamics. 

Next are summarized analyses of the properties of the steady-state solution set and 

the dynamics of the regulated enzyme-catalyzed reaction sequence. 

Consider first the steady-state problem. Letting 

(36) 

and 
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(37) 

the steady-state Eqn. (34) may be rewritten 

(38) 

From this equation is is clear that the number or steady-states depends only on the 
-

parameter p and on two combinations or the original system parameters, l'lc and &. It 

is very easy to see that for p even, the system can have zero, one or a maximum of two 

steady-states, whereas for odd p, one, two or a maximum of three steady-states are 

possible. 

Next, the value of knowi.11..g the mapping from original system parameters to normal 

form parameters will be explored. In particular. the three-dimensional case (n=2) will 

be examined for p=2. The steady states in this case are 

(39) 

Introducing new variables which translate the normal form variables so that zero is a 

steady state, 

(40) 

[x1111l2 
denotes the steady state taking the minus sign in Eqn. (39)]. system (33) 

becomes: 
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:is= d2blblzf -v'(d1~ds)2 + 4& d1~dadb2bs z1 - (d1dz +did:,+ ~ds)z2 +(di + ~ + ds)z3. 
(41) 

From Eqn. {41) it is very easy to find. for example, conditions to be satisfied for tb.e 

system to Hopf bifurcate to periodic solutions. Making use of Eqn. (8), the characteris-

tic equation is 

(42) 

Using then the approach suggested in [ 1 ], the following explicit conditions in terms of 

the system parameters for Hopf bifurcation are obtained: 

(43.1) 

(43.2) 

Similarly, one can also identify conditions fo:r higher order bifurcations [1]. 

Normal forms may be extremely useful for establishing relationships between 

difierent models which. although apparenUy different in their original formulation, 

. have identical normal forms. For example. the companion normal form for the model 

considered here [Eqn. (41)] is identical in structure to another model which is known 

to display complicated nonlinear oscillations. This model was presented previously [9] 

in the form 

q=p 
{44) 

The solutions of these equations, for certain values of the parameters 7 and 6. exhibit 

toroidal oscillations [9] which arise from an F2 bifurcation involvi.Dg a zero eigenvalue 

and a conjugate imaginary pair of eigenvalues. Bifurcation occurs for 1 > 0 and 6 = 

0, and toroidal oscillations are evident for, e.g. "1 = 0.375 and cf = 0.23. System (42) 
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may be converted to the companion normal fo:rm by affine transformation to obtain 

dg -
dt. -f 

(45) 

This equation has identical form to Eqn. (41). Equating coefficients of correspond­

ing terms in the final equations in both sets gives the following relationships among the 

parameters of the two models: 

(46) 

o:r 

(47) 

For certain values of 7 and IS, system (47) has a solution for the di's if and only i1 for 

some value or e the polynomial 

(48) 
has three real roots. The condition that this be true is [ 10]: 

(49) 
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Interestingly, this condition is not satisfied for 7 = 0.375 and 6 = 0.23, values for 

which model (44) is known to exhibit toroidal oscillations. Tb.is means that, although 

system (44) is of the same functional form as (41), the two systems are not equivalent 

for all values of their system parameters. Establishment of the correspondence 

between system and normal form parameters allows this conclusion to be made. For 7 

and 15 values satisfying condition (49), the two different models are totally equivalent. 

NORM.AL FOR.HS OF F1 AND G1 BIFURCATIONS: COINCIDENCE 1f1TH 

COHPANION NORM.AL FORKS FOR nm- AND THREE-DIMENSIONAL SYSl'EHS 

Consider an n-dimensional dynamic system of the form: 

w = i(w,v) 
(50) 

In a previous publication [1] it was seen that variation ot two system parameters can 

realize an F1 bifurcational structure. That is, the Jacobian of system (50). wb.en con­

verted to its Jordan normal form. has a Jordan block of the form 

[ g A] 
(51) 

The normal form in this case is [ 11] 

(52) 

Bogdanov [11] and others have examined in detail such normal forms. These stu-

dies reveal that 32 dmerent phase portraits involvmg two or three steady states can 

arise as the parameters e1 and t 2 are varied.. Letting more parameters vary, one can 

obtain higher order bifurcational structures. For three-para.meter variation, the 

~hest order bifurcation that can arise is G1 and the corresponding normal form is 

(12]: 
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(53) 

It is immediately apparent that Eqns. (52) and (53) a.re in the companion normal 

form. Consequently, the classical normal form obtained from considerations of the 

Jordan block structure for F1 and G1 bifurcations coincides with the companion nor-

mal form tor two- and three-dimensional systems, respectively. As a result, reducing 

two- and three-dimensional systems by affine transformation to the companion nor-

mal form also gives the classical normal form. Two- and three-dimensional systems so 

transformable to the companion normal form may therefore be considered as F 1 and 

G1 systems, respectively, and the body of theory and experience developed for those 

cases may be applied. 

The highest order bif urcational structure that can be stabilized for a two-

dimensional system is the F1 bifurcation. The codimension of a certain structure 

(steady state and eigenvalue) is defined as the minimum number of independent 

parameters needed to realize this structure. Consider a two-dimensional system which 

is reduced via atfine transformation to the form of Eqn. (52). The Jacobian at a steady 

state (5?18,xaa} is given by 

L. ,<! , • ,1 , ] . l I 1 \AtmJ !z\ll.1111 (54) 

and the steady states a.re solutions of the equation 

(55) 

Necessary conditions for an F1 bifurcation a.re that, at the steady state 218, the fol-

lowing a.re true: 
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(56) 

These three equations have as unknowns 21111 and system parameters. Typically, two 

system parameters will req\lire adjustment to specific values to satisfy conditions (56). 

If, however, the conditions 

(57) 

are enforced in addition, a higher codimension F 1 bifurcation is effected. The function 

f 1(x1) is then contact equivalent to the germ [7,8] 

(58) 

wi. th unfolding: 

(59) 

It is evident that to achieve this higher order contact at the F1 point, one usually needs 

to adjust'?'+ 1 parameters. Then this is F\ bifurcation of co-dimension (?' + 1). 

Con.sider the codimension-2 F1 bifurcation case (only Eqns. (56) are satisfied). The 

function f 1(x) in this case is contact equivalent to the germ u2 . This system i.s 

equivalent to 

(60) 

The steady states of system (60) are: 

(EH) 

and are zero, one or two in number depending on a1 and 82· The eigenvalues of the 

Jacobian are then 



158 

(62) 

In the case of two steady states, one is easily seen to be a saddle. The other steady 

state, depending on the value of f2 , can have any of the eigenvalue configurations 

sketched in Fig. 1. 

If in addition the condition f1"(i1J = 0 is enforced, codimension three F1 bifurcation 

results. Three steady states are involved, and, according to Eqn. (59), the unfolding is 

(63) 

involving two parameters. The eigenvalue structure, however, depends on one addi­

tional parameter and for this reason the unfolding that must be considered is 

(64) 

giving rise to an equivalent system of the form 

(65) 

Again, the steady states may be found as functions of the parameters a1• ~ and as and 

the eigenvalues of the Jacobian may be computed. 

In the case of feedback-induced bifurcation [HS], there is a reference steady state 

which is unaffected by control gain parameters. As a result the system is equivalent to 

d.SC1 -=!.e dt 

(66a) 

with steady states (0,0) and others that correspond to h(SC1) = 0. In this case the run-

plest possibility is that system is equivalent to 
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(86b) 

In addition to (0,0) there is a steady state (a1,0). Again, on perturbation, one steady 

state is a saddle, and the other has one of the four possible eigenvalue configurations 

shown in Fig. 1. Higher order contacts may be treated similarly. 

A. CHEllICAL TllfO-DlllENSIONAL F 1 SYSTEJ1 

Consider the catalytic reaction 

2A + B ... 2C 
(67) 

and assume that it proceeds via the following elementary steps: 

(68.1) 

(68.2) 

B+x~mc 
(68.3) 

2AX + ~ ... 2C + 4X 
(68.4) 

Making the assumptions that B reacts via a chemi.sorbed ~ which is available only at 

very low concentration, that mass action kinetics apply, and that the gas species con­

centrations [A] and [B] are fixed, Eigenberger [ 4] arrived at the following mathematical 

model: 

(69.1) 

(69.2} 

where Ya' = [AX]. Yz' = 1 - [BX]. and the mass balance [AX] + [BX] + [X] = 1 has been 

invoked. System (69) tor different values of the system parameters gives rise to 



steady-state multiplicity. relaxation oscillations involving three steady states, and har­

monic oscillations (4]. All these phenomena are typical of an F1 system [3] and hence 

in what follows system (69) is treated as such. Introducing dimensionless quantities 

the system model may be reduced to the form of system (11) with 

and 

m=[O ~f. 
(70) 

From Eqn. ( 13) 

(71) 

Further from Eqn. (14) 

(72) 

From this, one obt.ains 

Using Eqns. (73), (71) becomes 

(74 

Now, 



Consequently, 

5s(0.2iis + az~ + a1~) 
-a. 
as 

(75) 

(76) 

and, as a result, the required affine transformation to bring the system to the compan-

ion normal form is the followin.g 

One can then compute 

and 

After some manipulation. the transformed system becomes 

dXa 
-=Sl2 dt 

{77) 

(78) 

(79) 
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(BO) 

All of the htj with the exception of the hu are functions of all system parameters a1 to 

~. 

System (BO) has the same steady-state and eigenvalue structure as the system 

(Bl) 

From the form of Eqn. (Bl), one can see that the system has a maximum of four steady 

1tates. Indeed, four steady states were observed for some parameter values by Eigen-

berger, one of which was not in the positive ortbant. 

Varying different parameters, this system may be brought to F1 bifurcation of 

di.fi'erent codimensions. Conditions fo:r dit!erent cases are listed next: 

Necessary conditions are: 

(82) 

Clearly, variation of two system parameters may realize this structure. On per-

turbing from the F 1 bifurcation point there are two nearby steady states. 

All of conditions (82) must be satisfied and in addition: 

(83) 

Solving Eqn. (83) for lf1 and substituting in Eqn. (82), one obtains three equations 
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to be satisfied by parameters al to ~. Tb.us, adjustment of three parameters is 

required. 

In addition to conditions (82) and (83), the folloWing equation must be satisfied: 

(64) 

Solvin&; Eqn. (4) for x1 and substituting in Eqns. (62) and (83), one obtains: 

(B5) 

which must all be satisfied by a1 through ~ for this highest possible codimension 

F1 bifurcation for this system. At this point in the four-dimensional parameter 

space, the function h 11xt + ... + b.15 is contact equivalent to the germ 'if - )\. A small 

perturbation in the proper direction may give rise to four steady st.ates, whereas at 

exactly the codimension-4 F1 bifurcation point all tour steady states coincide. A:& a 

consequence, by studying the local properties of the system on pertu:rbin&; from 

lb.is highest order bifurcation point, one can discover all the possible steady-state 

and eigenvalue configurations. 

CONCLUSIONS 

The normal form ot a dynamic system is a much simpler set of equations th.at 

retains all of the important local dynamic features or the original system. In gen­

eral it is very hard to transform a system to the corresponding normal form and to 

deduce from that possible dynamic behavior. Systems with a single nonlinearity 
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are shown here to be reducible by afl'ine transformation to the so-called companion 

normal form that has distinct advantages. One can deduce what steady-state bifur­

cations and eigenvalue structures are possible. In the cases of two- and three­

dimensional systems, the companion normal form coincides with the classical F 1 

and G1 bifurcation norm.al forms, respectively, that are based on Jordan block 

structure. 

For a generalized enzymatic feedback system, the transformation to the com­

panion normal form has been executed, and the much simpler system reveals 

which groupings of original system parameters can be varied independently to 

intluence the system steady-state and dynamic properties. Difi'erent codimension 

F1 bifurcations were idenW'ied for two-dimensional systems. A chemical example 

was shown to exhibit a codimen.sion-4 F1 bifurcation as its highest order bifurca­

tional structure. 
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Nomenclature 

A.B.C: Chemical species in second example. 

AX.BX.BXa: Chemical species in second example. 

Parameters in Eqn. (58). 

Matrix in Eqn. (1) • 
.... _ 
b,c: Vectors in Eqn. (1). 

.... 
b: Vector. see Eqn. (23). 

Eqn. (24). 

d: Constant in Eqn. ( 4). 

d.: 

E,i: Enzyme concentrations. 

E,i(O): See Eqn. (23). 

f: Function in Eqn. (1). 

... 
f: Vector in Eqn. (13). 

Function in Eqn. (50). 

See Eqn. (71). 

Functions in normal forms (52). (53). 

Constant vector in Eqn. (9). 

Function defined in (26.2). 

Bimolecular rate constants. 

ti.: Uni.molecular rate constant for dissociation of X. to St and Et. 
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~: Function of a in Eqn. (BO). 

,h.J-1: Rate constants for exchange of substrates St. 

I: Jacobian matrix in Eqn. (54). 

JC: Matrix defined in Eqn. (12). 

i: Constants in Eqn. (69). 

iKm: Defined in Eqn. (23). 

m.: Vector in Eqn. (12). 

n: Dimensionality of system (1). 

p,q,.r: Variables in Eqn. (44). 

p,q.r: Variables in Eqn. (45). 

?': Power in Eqn. (57). 

s: Variable in Eqn. (8). 

S: Matrix in Eqn. (9). 

st,i: Entries of matrix S. 

Si: Substrates' concentrations. 

u: Unfoldini variable. see Eqn. (59). 

tv'm: Defined in Eqn. (23). 

w: Variables in system (23). 

~: Enzyme-substrate complexes concentration. 

X: Surface site in second example. 

i: State vector in normal forms (52) and (53). 
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Defined in Eqn. (7'7). 

State vector in system (1). 

Steady-state values of Xi· 

State vector in Eqn. (9). 

Yi·····YnH: See Eqn. (24). 

'::¥ •• 
.11 • [AX]. 

1 - [BX]. 

Dimensionless concentrations in second example. 

'!: Introduced in Eqn. (36). 

State vector introduced in Eqn. (40). 



a: 

II':;. ..... 

7,6: 

e: 

lej: 

h: 

p: 
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Defined in Eqn. (37). 

Defined in Eqn. (24). 

Dimensionless rate constants in second example . 

Parameters in system (44). 

Parameters in normal form (52). 

Defined after Eqn. (31). 

Rate constants in first example. 

See Eqn. (58). 

Vector defined in Eqn. (12) 

Exponent in Eqn. (20}. 
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Figure 1: Sketch of ditferent possible eigenvalue con.figurations at the 

second steady state for cod.im.ension-2 F 1 b.ilurcation and 

feedback-induced F1 b.ilurcation of a two-dimensional system. 
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BIFURCATIONS FROM THE POTENTIAL FI3LD 

ANALOG OF SOME CHEMICAL REACTION SYSTEES 
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INTRODUCTION 

In a previoWI publication [1], the value of normal forms in describing the 

different possible dynamic properties of lumped chemical systems was demon­

strated. In general, a nonlinear transforma.U..on is involved in bringing a 

dynamic system to its norm81 form (1,2]. Although, in principle, finding the 

required nonlinear transformation is a ma.thematically involved process, a cer­

tain class of systems may be reduced by an affine transformation to the so­

called companion norm.al form which clearly retaim the steady state and 

dynamic characteristics of the original system [3]. Ha.vi.cg this ~orm it is easy to 

obtain the dependence of the steady-state and eigenvalue structure on the origi­

nal. system parameters. 

For the cases of two- and three-dimensional systems, which are reducible to 

th.is form, the companion normal. form coincides with the normal forms of F 1 

and G1 bifurcation, :respectively [3]. These types of bifurcation consist of two 

and three real eigenvalues crossing simultaneously the imaginary axis and are 

the highest order bifurcations possible for two- and three-dimensional. systems, 

:respectively. 

The normal form of a system close to a G1 bifurcation has the structure [ 4 ]: 

i=y 

y=z 
(1) 

z = f 1(x) + f1(x)y + f:ii(x,y,z)z 

lf it happem that the function f3(x,y,z) is a negative constant, system (1) has a 

constant negative divergence. The concept of a potential function may then be 

introduced to gain special insights into the system dynamics and to derive con­

clusions regarding global stability characteristics of the system in question. 
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In. the subsequent section the theory for systems of constant negative diver­

gence reducible to the form of system (1) is developed The results are then 

applied to a class of enzymatic reaction systems. 

Consider a system which llll reducible by an amne transformation of the form 

(2) 

to a system 

i: = 1 

y=z 

z = f (x) + a(x)y - bz 
(3) 

System (3) may be written in the form 

i=z 
(4) 

z = f (x) + a(x)i - bz 

It will be shown next that as b ... "°• system ( 4) essenti.ally reduces to a two-

dimensional system that may be viewed as describing the motion of a particle in 

a potential well. This analogy provides special insight and easy analysis of the 

dynamics of (3) even for b > O. but finite since results regarding local stability 

are obtained in tb.llll case. 

Rearranging the second equation of system ( 4) gives 

z + bz ::: f(x) + a(x)i . 
(5) 

Writing the analytical solution for z in Eqn. (5) and noting that 

\ \ J a(x(r})i:(r)e'twd'T = A(x(t))e'Dt. -A(:iro} - J bA(x(r))e'twd'T 
0 0 
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(8) 

lilt 

A(x) A J a(s)<U • 
• (7) 

there results 

t 
z = z.,e-ilt + Af;z. -A(x:o)e-ilt + J [f(x(t -T)) - bA(x(t -T))]e--iwd,-. 

G (8) 

The integral in the RHS of Eqn. (B) belongs to a cl.ass of integrals called 

Laplace integrals [5,13]. In the limit as b ._. +=, Watson's lemma [5,6] provides the 

full asymptotic expansion of the integral. Expanding the function in the 

intearal in a Taylor series, one obtains the leading terms 

f(x(t - -r)) - bA(x(t - T))] Ill! [f(x(t)) - bA(x(t))] 

- [f'(x(t)) - bA'(x(t))]i:(t)T + O(-rl} . 
(9) 

Application of Watson's lemma and using the first two terms of the RHS of Eqn. 

(9) gives immediately 

.{t [f(x(t -1")) _ bA(x(t _ r))]e--b'rd;~ f(x) -;, bA(x) _ [f'(x) ~~A'(x)]x 
(10) 

Substituting this result in Eqn. (8) and noticing that for large t the tern:lii 

7.q,e-ilt and A(x:o)e-41& can be neglected, one obtaim 

.. = !{& _ f'(x) - bA'(x) .;,,. 
"' b bl ,,.., 

(11) 

Recalling Eqn. (7), Eqn. (11} becomes 

.. - !{& _ r(x) - ba(x) .;,,. 

... - b b2 ..... 
(12) 

Finally, using Eqn. (12) in Eqn. (4), it is established that for sutncienUy large b, 

System 2 is equivalent to 
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j; + r(x) - ba(x) :i: - !W.. = 0 
b8 b (13) 

Equation (13) may be viewed as describing the motion of a particle in a one-­

dimensional potential field, u(x). given by 

(14) 

The function u(x) bu twni.ng points at the zeros of the function f(x). as is obvi­

owi from Eqn. (14). Letting rs denote a zero ot f(x). X111 gives a maximum in the 

potential function if r(x8) > a. When f'(x111) < o. x• is a minimum of u(x). When 

f'(:x•) = 0, one mWlt check the higher order derivatives to arrive at any conclu­

sion regarding the nature of the turni.ng point. If r'(ri1), or a hlgher even order 

derivative is different from zero, the turning point is a point of indection (zero 

curvature). 

The tlrst derivative term in Eqn. (13) is equivalent to the "friction" or "damp­

ing" of the system. In general, the friction [r(x) - ba(x)]/b2 is a function of x 

and acts to decelerate (if >O; positive friction) or accelerate (if <0; negative fric­

tion) the particle. U the friction vanishes for all values of x, the system is non­

dil!lsipative. In this case one expects, in general. the particle to oscillate 

indetlnitely in a "valley" of the potential well or to go to indnity. Its exact 

behavior will depend on the initial conditions. Similarly, it is easy to predict the 

fate of the particle in the event that friction is constant. For example, tor posi­

tive friction, starting at rest close to a minimum in a ''valley" , the particle will 

Ir the "friction" term is a function of x. it is much harder, in aeneral, to 

predict the motion of the particle. In some instances. however, the conditions of 

a theorem due to Li.e'nard [7] are met which permits conclusions regarding the 

existence and uniqueness of stable periodic solutions. Equation (13) is of the 
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form of a general class of equations called the Li.enard equations, which have the 

i + f(x)i + i(x) = 0 . 
(15) 

The following theorem holds. 

ThsUl"em [7]: Equation (15) has a unique st.able periodic solution if 1 

and g are continuous, and 

i. f(:x:) = / 7Ca)da is an odd function. 
1111 

u. rcx) is zero only at x = o. % = i and x = - i for some a ~ 0. 

ill. f(x) -+ ..., as x ... = monotonically for x > a.. 

iv. i(x) is an odd function and g(x) > 0 for x > 0. 

It should be emphasized that the conditions of the theorem are sufflcient 

only. A system may possess stable periodic solutions even if these conditions 

are not met. If the conditions of the preceding theorem are not met, one can 

still clearly see the different possibilities only by considering the shape of the 

potential ftmctio.n. This provides a special intuition which one could not possi-

bly have for the origi..nal system (3). All that is required is plotting u(x). Then it 

ii clear that the "particle" will go to a minimum. oscillate in a ''basin", perform 

an osci.lla.tory motion in more than one ''basin" (if applicable), or go to i.n1ini.ty. 

Although. the equivalence of systems (3) and (13) is clear for b -. =. the 

behavior of the dynamic system (13) may be shown a.lso to be similar to that of 

system (3) locally: that is, close to a steady state for any b > 0. This will be 

demonstrated next. 

As noted earlier, the steady states for both systems (3) and ( 13) are given by 
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f(r') = 0 . 
(16) 

Equivalence of local dynamics near -ra is examined by comparing the eigenvalue 

l!ltructure of the two model J acobians evaluated at r'. The eigenvalues of the 

two-dimensional system (13) are given by 

(17) 

It is easy to reach certain conclusions rega.rding the stability of the dynamic 

system based on Eqn. (17). First, consider the case of a maxim.um. At a mu..; 

im.um where f'(xlll) > 0, clearly the two eigenvalues are real and have opposite 

sigrul. As a result, maxim.a of the potential function are unstable saddle points. 

When f'(x11
) > 0, the steady state x• of system (3) is unstable. The charac-

t.eristic equation of the Jacobian of this system evaluated at the steady-state x111 

.,/J + bsl - a(r'}s - f'(;xlli} = O . 
(16) 

Using the Descartes rule of signs [8], one finds that Eqn. (18) always has a posi-

tive real root for f'(x2) > 0. This is so for any b > 0. Consequently, a steady 

state of system (3} corresponding to a maximum of the potential function u(x) 

is always unstable. This is, of course, in accordance with intuition. 

Consider next the stability of a steady state corresponding to a minimum of 

the potential function. At a mir1imum where f'(r') < 0, examination or Eqn. (17} 

shows that two eigenvalues have the sam.e sign. The minim.um will be stable if 

f'(ri') - ba(xlll) > 0 
(HU) 

and unstable if 

r(ri') - ba(xlll) < 0 
(19.2) 
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This is again in accordance with intuition, since condition (19.1) implies positive 

"friction" whereas Eqn. (19.2) corresponds to negative "friction". When "fric­

tion" vanishes the two system eigenvalues are imaginary conjugate. For nega­

tive "friction", the minimum becomes unstable (Hopf bifurcates), and stable or 

unstable periodic solutions appear. 

The conditions for Hopf bifurcation of system (3) are found according to Ref. 

[1] to be 

(20.1) 

f'(xB') - ba(x111
) = 0 

(20.2) 

The first condition is met automatically for a minimum and, consequently. is 

redundant. At the Hopf bifurcation point the eigenvalues of system (3) are 

:l:i .../-o.(x1111
) and -b. The first two are identical to those of system ( 13) while the 

other is negative for any b > 0. Consequently, the fate of the trajectories of sys­

tem (3) is locally the same as are those of system (13). As a result it suffices to 

meet condition (20.2) for Hopf bifurcation at a steady state corresponding to a 

minimum of the potential function; this has the mechanical analog of the "fric­

tion" becoming negative. 

The stability of the Hopf-induced limit cycles is determined by calculating the 

characteristic exponent of the transition matrix right after bifurcation [9]. 

Hassard et al. [9] have developed formulas for the leading term of an asymptotic 

expansion of the characteristic exponent treating the deviation from the critical 

bifurcation point as tb.e perturbation parameter. If this leading term is nega­

tive, the induced limit cycle is stable; otherwise it is unstable. Following their 

suggestions, the leading term for the characteristic exponent for system ( 13) is 

found, after some tedious calculations, to be 
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(21) 

For systems of the form (3), one may use explicitly Eqn. (21) to determine the 

stability of the Hopf-induced limit cycles. 

Havi.nc analyzed completely the case of Hopf bi!uroation, the other possible 

types of bifurcation are considered next. D1 bi!uroation occurs when a single 

real eigenvalue crosses the imaginary axis and is accompanied usually by 

steady-state bifurcation. From Eqn. (18) it is easy to see that D1 bifurcation for 

system (3) occurs when 

r(x5) = o 
(22.1) 

and 

(22.2) 

The second condition guarantees that the remaining two nonzero eigenvalues 

are negati've. 'Ib.e conditions where D1 bi!urcation occun are the same for sys-

tem (13). Condition (22.1) may imply that the potential function possesses an 

i.ntlection point at D1 bifurcation. As noted earlier, this will be true it f"(xlll) ~ 0 

or, in general. if the first nonvanishing derivative of f is an even order derivative. 

The highest order bifurcation for two-dimensional systems is F1 [1]. In Um 

case there is a double zero eigenvalue with the Jordan block 

[ g A] . 
(22) 

From (18) it follows that at an F1 bi!uroation the conditiom 

(23) 

must be met for system (3). The third eigenvalue is -b. 

Conditions (23) should be met also for system (13) at an F1 bi!uroation point. 
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The mechanical interpretation in this case is having no friction at the point at. 

which f'(r') = 0 (which may be an int'iection point). Close to an 1"1 bifurcation, 

one expects steady-state multiplicity and relaxation oscillations [1]. 

It has been shown earlier that system (3) iB equivalent to system (13) as b 

,.. •. The preceding analyses demonstrate local equivalence between the two sys­

tems for b > 0. All of the qualitative aspects of the original system (3) local 

dynamics are preserved in the reduction to Eqn. ( 13). 

Finally, it should be noted that higher order bifurcations of system (3) involV"­

ing three eigenvalues [ 1] imply b = 0. Close to such bifurcations, system (3) is 

not locally equivalent to Eqn. (13). The original system has zero divergence for b 

= O: it is termed Hamiltonian and has constant energy [e.g. 10]. Fo:r b small, one 

may treat the system as a perturbed Hamiltonian system. For b negative, the 

system has everywhere constant positive divergence and trajectories will 

dednitely diverge to infinity. 

In [3], the dynamic system describing the evolution of an enzymatic reaction 

system with feedback allosteric regulation [ 11] was shown to be reducible by an 

atnne transformation to the following companion normal form in the three­

dim.ensional case 

'.t=J 

t=t 

t = (-d~bsi -e'f' + (d1~d:s)i -(d1da + d1~ + ~d:s)Y +(di+ da + ~)! . 
(24) 
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{25) 

Since all the ~ must be real, i 1, z-111 and es can vary arbitrarily u long as the 

polynomial 

(26) 

b.as three real roots. The condition that this is true is [8]: 

(27) 

System (24) is of the form of system (3) with 

(26) 

Consequently, as &3 .,. -. the system is reduced to 

In this case the system becomes: 

(30.2) 

The steady state are the zeros of the last term. Solving for the steady states 
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(31) 

Clearly, the condition that the system possesses two steady states il!I 

(32) 

Making use of Eqn. (14), the potential function is 

(33) 

Tb.il!I potential function is sketched in. Fi&· 1 in the case A > 0. There are turning 

points at f.1 and ~. The first is a mhiimum since (i"(~1) > 0 whereas the 

second is a maximum ui Cl"(sr.) < 0, u can be seen easily from Eqns. (31) and 

(33). 

Consider first the case of D1 bifurcation. This will occur for A = 0, e1 > 0. At 

thil!I point there il!I a single steady state which corresponds to an inftection point 

of the potential function u 'f• = 0 and f" # 0. D1 bifurcation may or may not be 

accompanied by steady-state bifurcation. 

To analyze the e ;iit 0 cue, assume without loss of generality that e1 il!I treated 

as the bifurcation parameter. For & ~ 0, D1 bifurcation will occur for e1 = 0 and 

for e1 = -4ed.bgb:! (A = 0). The condition that the bifurcation il!I a "limit point" 

bifurcation [ 12] is that ffl/ 1Je1 (iJ ~ 0 at the critical value of the bifurcation 

parameter [12]. 'I'bis il!I seen easily to be true for both ~1 = 0 and e1 = -4ed.bgbs. 

For ~1 between 0 wid -4edbgbs, there a..""e no !teady !tat.es. For ~1 outside this 

interval. there are two steady mates (see Fig. 2). 

In the cue & = 0, the steady states are 0 and -r;1/d~. D1 bifurcation 

occurs for r:1 = 0, and. in this case, df/ 81:1 (iJ = 0 at 1:1 = 0. Thil!I implies steadj'" 

state bifurcation with exchange of stabilities. For ~1 < 0, the zero !teady state is 

stable and the other !teady state il!I unstable. For e1 > 0, the mtuation is 
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reversed (see Fig. 2). ConsequenUy, the parameter e is causing imperfect bifur­

cation [13] or, as is commonly said, ''brew" bifurcation. 

Tb.e structure of the potential function close to D1 bifurcation is portrayed in 

Fig. 3 for e = 0 and for e .,, 0. It is clear that D1 bifurcation is reflected by a 

change in the structure of the potential function. The imaginary "particle" in 

each case will go either to the minimum of the potential function (if one exists), 

oscillate close to it. or go to infinity. lt. is possible from the structure of the 

potential well that the drutl fate of the system trajectories depends upon the ini-

tial point and velocity. 

In order to examine the possibility of periodic behavior close to a steady 

state, we must consider Hopf bifurcation. In each case no Hopf bifurcation is 

possible from the maximum ~. As the "friction" vanishes at the minimum, 

however, Hopf bifurcation oc:cw-s at the steady state which corresponds to the 

minimum (i.1). The conditions for Hopf bifurcation for the system at hand are 

(34.1) 

(34.2) 

Making use of Eqn. (21}. the leading term in the asymptotic expansion for the 

characteristic exponent is found to be 

(35) 

since ts < 0. This implies that the Hopf-induced limit cycles are stable. If the 

initial energy of the "particle" is not very large and it lie111 initially inside the 

''basin" around the minimum, stable oscillations are expected. If. however, the 

initial energy exceeds that which is required to bring the "particle" past the 



J..85 

maxi.mum ~. one expects the particle to go to infinity. ConsequenUy, stable 

OSO"Hlatiom are expected for the original system as long as the initial point is 

suificienUy close to the steady-state i.1. Finally, the conditiom for an F1 bi.fur-

cation are 

~111 =A= O. 
(36) 

As in the D1 case, F1 bifurcation will be accompanied by steady-state bifurcation 

only if & .,_ 0. 

Cubic Cue (p = s. e = 0) 

For simplicity, only the case e = 0 is considered. In this case the system 

becomes 

(37) 

Here, 

(37.1) 

(38) 

Otherwise, zero is the only steady state. The potential function in this case is 

(39) 

Evaluating the second derivative of the potential function, it follon that 

nonzero steady states correspond to minima of the potential function it t 1 > 0 

and maxima i1 t 1 < 0. All possible shapes of the potential function are shown in 



186 

Fig. 4 together with the cases of D1 bifurcation. Again the shape of the potential 

function changes as D1 bifurcation occurs. However, since f"(is) = 0, the turning 

point at D1 bifurcation is not an intlection point in this case. 

Hopf bifurcations to periodic solutions are possible at the minima of the 

potential function in each case. The conditions for Hopf bifurcation are: 

(40.1) 

(40.2) 

Consider each case in tum: 

Cue 1(d~bs>0, e1 <0): 

Hopf bifurcation is possible at the minim.um ~1 = 0. Using Eqn. (21), 

(41) 

Consequently in this case no stable periodic solutions are expected. 

Case 2 (db2b:, > 0, E1 > 0): 

Hopf bifurcation is possible only at the minima ~ and ~· In this 

cue, 

~2 = 36tid
9bibl + 6d

9bibl 
BEia2 Btl (42) 

For /11 < 0, the following inequality must hold: 

(43) 

Exactly at the Hopf bifurcation point. 

(44) 

Consequently, from Eqns. ( 43) and ( 44), if e2 > 3 then fl2 > O, and the 
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periodic solutions are unstable. If e1 < 3, it follows that {J2 < 0 and the 

periodic solutions are stable. 

Case 3 (db2b, < 0, ~1 < 0): 

Hopf bifurcation is possible only at the minimum i.1 = 0. Here 

(45) 

Clearly in this case stable periodic solutions are expected to appear as 

Hopf bifurcation OCCW"9. 

No Hopf bifurcation is possible since there are no minima. 

Summarizing, stable periodic solutions are possible close to a minimum if 

(46.1) 

(46.2) 

In each case, the possibilities for global behavior may be discerned by exa-l'r! 

ln.ing the shape of the potential well. Thus in Case 1, the particle will go either 

to the minimum or to infinity. If the minimum is unstable then the "friction" is 

everywhere negative so th.at the "particle" will gain energy as it moves and will 

go to infinity. 

In Case 2 the situation is even more interesting. If the two minima are stable, 

depending on the starting point, the particle will go to one. If the mi'nima are 

unstable, the particle can oscillate about one of them. move from basin to basin 

in an oscillatory f ash.ion or go to i.nilnity. In Case 3, depending on the starting 



188 

point, the particle will go either to the minimum it it is stable or go to i.n1'1nity. ll 

the mh1imum. is unstable, the particle will perform either stable oscillations 

close to the minimum or again go to infinity. Finally, in Case 4, the particle will 

dednitely go to infinity. 

For this problem, although conditions (i) and (ii) of the theory for existence 

and stability are met in all four cases, condition (ill) is violated in Cases 3 and 4, 

whereas condition (iv) is violated in Cases 1 and 2. 

The conditions for F1 bifurcation for this problem are 

~1=tt=0. 
(47) 

On perturbing parameters e1 and ~2 from zero, all the different possibilities por-

trayed in Fig. 4 are locally obtained, with the minim.a being stable or unstable. 

This situation is summarized in Fig. 5. In regions I and II, zero is the only steady 

1tate. In region I. the steady state is stable whereas in region II it is unstable 

with unstable periodic solutions appearing to the left of line (a). In regions m 

and IV, there are three steady states. In region m the two nonzero steady states 

are stable whereas in region IV all three steady states are unstable and stable 

periodic solutions exist close to the nonzero steady states. 

CONCLUSIONS AND Dl~ON 

The theory for particles moving in a potential well has been used successfully 

to obtain important information and insight of the nonlinear dynamics for 

chemical systems of dimensionality three that are reducible by af!ine transfor­

mation to the companion normal form and have constant negative divergence. 

After the deftnition of a potential function. a full analogy between the motion of 

a particle in a potential well and the three-dimensional system of O.D.E's was 

observed. Steady states correspond to turning points of the potential function, 
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D1 and F1 bifurcations are reflected by a change in the structure of the potential 

function as the turning point becomes an inftection point. 

Hopf bifurcation can be effected without changing the structure of the poten­

tial well and corresponds to vanishing of the "friction" at a minimum of the 

potential function. Using the theory of Hassard et aL [9], an explicit formula for 

the characteristic exponent was obtained, thus enabling easy determination of 

the stability of the Hopf-induced limit cycles. In special cases, a theorem due to 

lii:lnard may be useful to establish the existence of globally stable periodic solu­

tions. 

This treatise, however, indicates another important point. A system which is 

three-dimensional is seen by a limiting process to behave essentially as a two­

dimensional system. Th.is process of reducing the system dimensionality retains 

all the local features of the original s,;-stem. Thus the approximation of the 

three-dimensional system by a two-dimensional system is valid locally even for 

smaller positive b. For infinitesimal positive b, the system is a perturbed Hamil­

tonian system and may then behave as three-dimensional. Consequently, the 

·domain of validity of the two-dimensional approximation depends on the value 

of the divergence b. The same procedure of reducing the system dimensionality 

may be generalized for systems or any dimensionality if they are reducible to 

the companion normal form and possess constant negative divergence. 

Using the developed theory, the dynamics ot an enzymatic reaction system 

were analyzed completely. In each case, five parameter combinations, i.e. e. 

db2bs. t 1, e2 and ts. inftuence the dynamics. The conditions to be satisfied by 

system parameters for different dynamic behaviors were obtained explicitly. 

The different possibilities of global dynamic behavior were easily visualized 

exploiting the "particle" motion analog in an easily obtained one-dimensional 
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potential field. 
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A; Matrix in system 2. 

. A(x): Function defined by Eqn. (7) . 

b: Positive constant in system (3). 

6: -es. 

ba.bs: Parameters in system (24). 

cit: Parameters in system (24). 

:Di.Fi.Gt: Types of bifurcation. 

f(x): Function in system (3). 

F(x).1(x),g(x): Functions in Eqn. (15): 

... 
f: 

g: 

m: 

W: 

u(x): 

Q(i): 

Functions in systems (1) and (3) . 

Functions in Eqn. (28). 

Function in system (2). 

Eigenvalues given in Eqn. ( 17). 

Variable in characteristic Eqn. ( 18). 

Variable in Eqn. (26). 

PotentiaI function defined in Eqn. (14). 

Potential function given by Eqn. (33) for the quadratic case and 

Eqn. (39) for the cubic case. 

z:,y,z: Variables in systems (1) and (3). 

2,j>,!: Variables in system (24). 
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~ Steady-state value of system (29). 

"JI!': Steady-state value of x (system 13). 

'J!tY. Vectors in system (2). 



a(x): Function in system (3). 

a(x): Function in Eqn. (29). 

fJ2: See Eqn. (21). 

;11: See Eqn. (35) tor the quadratic case and Eqm. (41, (42) and (45) for 

the cubic cue. 

&, See Eqn. (32). 

~: Parameters detmed. by Eqns. (25). 

e: Parameter in system (24). 

f1'. Power in system (24). 

r. Dummy variables in Eqn. (8). 

o: Initial value. 
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The algorithm for determining the leading term in the asymptotic expansion for 

the characteristic exponent is given by Hassard et al. (Hassard R. D .• Kazarinotf N. 

D. and Wan Y. H., "Theory and Applications or Hopf Bifurcation", Cambridge Univer­

sity Press, 1981). For two-dimensional systems, this algorithm is the following: 

1. Select the bifurcation para.meter v. Let 

(1) 

2. Locate ~(11), the stationary point of interest. Calculate the eigenvalues of the 

Jacobian matrix 

{ 
(jft } A(v) = axJ (x(11);11) (i.j = 1.2) 

(2) 

3. Find a value Ve such that Re(>..J = 0. If (a) A.1 and >.2 are a conjugate pair for v in 

an open interval including lie• (b) Re A1'(vc) ;II! 0 and (c) Im A1(vc) #- 0, then a 

Hopf bilucation occ:W"s. 

4. If A(vJ is in the form 

(S) 

where CJ0 = ImJ..1(vc:) > 0, let P = I the identity matrix and go to step 5. Other­

Wise, form matrix Pas follows. Let P = (Rff1• -Imv1) where 11'1 is the eigenvector 

of A(vJ corresponding to 11.1(vJ = i.c.>1111• Normalize v1 so that its tint nonvanish-

in& component is 1. 

~. Perform the change of variables 

(4) 

and let.,.= P'(y) denote the system for y. The Jacobian matrix ar; Oyj (0) (ij :::: 
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1,2) will have the canonical form 

(5) 

6. Calculate the following quantities, all to be evaluated at v :::::: v0 , y=O 

= l. [ &!F• + &!F• + . ( B2F2 + t12F2 ) j 
iu 4 ayf 811 1 ayf "Yl (B.1) 

(6.3) 

(B.4) 

7. Let 

(7) 

Tb.en 

{Jz::: 2ReC1(0) . 
(B) 

System ( 13) of Chapter 6 may be written as: 

(9.1) 

(9.2) 

Select b as the bifurcation parameter. At Hopf bifurcation. 

(10) 

The Jacobian of system (9) is 
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(11) 

(12) 

Consequently, 

(13) 

Let 

(14.1) 

(14.2) 

where be is the critical value of the bifurcation parameter b for which condition 

(10) holds. The change of variables gives the new system 

Yi = a(x;(bc)).Y111 
(15.1) 

. - la(x:(bc) +Yi) _ f'(x;(bc) +Yi) I + f(x;(bi:) +Yi) 
1111 - b b2 Yi ba(x:Cbc)) (15.2) 

= 
ba'(xW>c)) - t"(x;(bc))yz f'(x:(be)) ba(x:CDc:)) - rcx:(bc)) c1a) 

b2 + ba(x:Cbc)) b" 

Evaluating the it.I at zero. one gets 
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(17.1) 

(17.2) 

(17.3) 

(17.4) 

Substitutin.g in the expression for C1(0) (Eqn. 7), 

{ 
(ba' - f")f" ba" - f'" } . { 5 f" ba' - f" f'" } 

Ci(C>) = 16b3a.11: + 16b2 + 1 46 b2a 5 + 24b4 + 16ba (18) 

where the arguments of f, a and their derivatives have been omitted for simpli-

city. Consequently, 

(19) 
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ngure 1: Potential function for the feedback-regulated enzyme reaction 

sequence. Here 29db:a~ + e1 < 0. It the opposite is true, both turning 

points a.re negative. 

Figure 2: Steady states in the quadratic case (p = 2) as a function of ~ 1 (&db2bs 

< 0). 

Figure 3: Functions in the quadratic case (p = 2). 

Figure 4: Potential function in the cubic case (p = 3, e = 0). 

Figure 5: Regions fo:r different steady-state and dynamic behavior of the enzy­

matic reaction system close to an F1 bifurcation (~a < O). 
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CONCLUSIONS 

Methods of bifurcation theory and nonlinear dynamics have been used to develop 

a general strategy for sensitive modeling and analysis of nonlinear chemical 

processes. 

Modification of the dynamics of chemical reaction systems by multivariable feed­

back control schemes has been demonstrated to be an invaluable tool for obtaining 

nonlinear dynamic models of global validity. When steady-state and transient 

response measurements are unable to discriminate between rival kinetic models, 

the feedback method provides a clear means of distinction. A general model 

parameter identification scheme was developed. Complete stratification of the 

feedback parameter space (decrement diagram) was developed, organizing the 

study of the possible bifurcations. Feedback produces di.flerent types of bifurca­

tions, the most common being D1 bifurcation usually accompanied by steady-state 

bifurcation and D2 (Hopf) giving rise to oscillatory behavior. 

The method of Newton Polyhedra proved particularly useful in analyzing 

feedback-induced steady-state bifurcations when reduction to a single algebraic 

equation is impossible or impractical. Furthermore, it provides much simpler poly­

nomial forms that are locally equivalent to the origin.al complicated systems. 

The number of feedback parameters required to force a system to a certain 

bil'urcational structure was determined using two methods, one based on the 

characteristic equation of the Jacobian and one based on Arnold's theory of versal 

families or matrices. The theory of normal forms was used to demonstrate that 

systems at bifurcation are even locally nonlinear as far as dynamic behavior is con­

cerned. The possible types of dynamic behavior close to a bifurcation are given by 

the much simpler normal form of the original system. 
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The reduction of an arbitrary nonlinear system to normal form being particu­

larly di.t!ku.lt, a general class of dynamic systems (those involvi:D.g a single non­

linearity) wu identified that is reducible by an aff'ine transformation to the com­

panion normal form with distinctive adw..ntages for the study of the steady-state 

and eigenvalue structures. This normal form in the two- and three-dimensional 

cases is shown to be equivalent to the classical F1 and G1 normal forms, respec­

tively. 

Sys_tems reducible by aMne transformation to the G1 normal form with constant 

negative divergence are shown to have a mechanical analog of particle motion i..o a 

potential deld. This analogy provides special insights into the system dynamics, 

and coi:u::lusions regarding possible global dyncun.ic behavior are drawn. 

Using the methods that were developed. important conclusions were drawn 

regarding the dynamic and steady-state characteristics of numerous chemical reac­

tion systems such as isothermal catalytic nitrous oxide decomposition in a CSTR, 

isothermal reaction between two adsorbed species in a catalytic CS'TR, parallel reac­

tions or arbitrary order in a nonisothermal CSTR, consecutive-competitive reactions· 

in a CSTR. coupling or two isothermal oscillating autocatalytic CSTR's enzymatic 

feedback reaction systems and another catalytic reaction system. The methods 

and approaches that were developed should be extremely useful in analyzing the 

nonlinear dynamics of chemical reactor systems and in obtaining good nonlinear 

dynamic models for control and opt.imization. 


