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ABSTRACT
Chemical reaction systems often exhibit nonlinear

dynamic phenomena such as multiple steady states and
different types of nonlinear oscillations. Furthermore,
nonlinear dynamic models are essential for control and
input optimization of chemical reactors. Methods of bi=-
furcation theory are used for analysis of the nonlinear
behavior of chemical reaction systems and for chemiczl
reactor model discrimination and identification. The
latter objective is attained by forcing'tame" chemiczal
systems to bifurcete and provide vzluable informztion
about the nonlinesar system nature. Discrimination be-
tween rivel kinetic models is demonstrzted and a stra-
tegy for accurate parameter estimation is developed.
The problem of steady-state bifurcation to multiple steady

states in the event that the original model eguations
are not reducible to =z single algebrzic equation is at-
tecked using the simple geometrical method of Mewton
Polyhedrza. This method is particularly useful for znaly-
sis of feedback induced steady-stzte bifurcations.The
theory of normel forms is used to illustrate thet systems
when close to bifurcation exhibit even locelly their non-
linear characteristics. The most common types of bifur-

cation phenomena are discussed and the minimum number of



feedback (or system) parameters that must be varied to
attain the various bifurcational structures is aeter—
mined. Systems that are eacily reducible to normal forms
(simpler locally equivalent polynomial systems) are iden-
tified with distinctive advantages for the study of steady
state and eigenvalue structure close to bifurcation.
The analogy between some chemical systems and a particle's
motion in & potential field is exploited to gzin special
insights into the chemical systems' dynamics. Chemical

t

W

examples include nitrous oxide decomposition on NiC ¢

)

lyst, consecutive-competitive reaction systems in & C

%
3
Syl

parallel nonisothermel reactions of arbitrary ordcer in a

2
N

0S8STH, reaction

¥

D
O]

between adsorbed chemical species, cou-
pled oscillating autocztalytic CSTRs and a class of feed-

back regulated enzymatic resction systems,
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Chapter 1: Introduction

Hotivation and Background

Modeling chemical reaction systems is essential for process design, optimization
and control. The models that describe chemical systems are usually nonlinear
since they involve nonlinear rate expressions. The nonlinearities in the rate expres-
sions arise due either to making certain hypotheses (e.g. quasi-steady state or fast
equilibrium [1]), or simply because most elementary reaction step rates depend on
more than one chemical species concentration in a nonlinear fashion. The non-
linear nature of most reaction systems is responsible for different phenomena,
such as steady-state multiplicity as well as periodic and more complicated types of
oscillations [e.g. 2-10]. In order to model appropriately and to predict such

phenomena, one must develop nonlinear dynaric models.

Unsteady-state models are necessary both for control and optimization pur-
poses. Obtaining overall rate expressions from fitting steady-state data and using
them in dynamic models {which are subsequently linearized to be used for control)
is very often unjustified and may lead to very serious problems. In many catalytic
reaction systems the reaction steps that involve surface species may be slow
enough that quasi-steady state or fast equilibrium hypotheses are totally unreason-
able. In such circumstances one has to assume elementary reaction step mechan-
isms and obtain mass and possibly (in nonisothermal cases) energy balances for
each chemical species both in the gas phase and on the catalytic surface. Further-
more, one may not always safely linearize the obtained nonlinear dynamic models
and apply classical control schemnes for linear systems. Such a ‘procedure often
leads to a "runaway” from the desired operating conditions or an onsef of undesir-

able oscillations [e.g. 11]. Consequently, in order to evaluate the possibilities that



arise upon application of a classical control scheme to a chemical reaction system,

good nonlinear dynamic models should be obtained.

Nonlinear dynamic models are also essential in order to perform transient input
optimizations for chemical reactors. It has been demonstrated repeatedly that
unsteady inputs may enhance the overall yields or selectivities of chemical reactors
[eg. 12-16]. It has also been demonstrated that such an improvement of the
overall reactor performance is due entirely to the nonlinear nature of the che'mical

systems [17].

The three reasons that were just outlined above indicate the significance of
obtaining nonlinear dynamic models of chemical reaction systems. Making
different assumptions regarding the elementary reaction step mechanisms of cata-
Iytic chemical reactions, different nonlinear dynamic models are obtained. The
task then is to discriminate between the rival kinetic models and verify the validity
of different assumptions. It should be emphasized that it is desirable to be able to
determine the best kinetic model based only on gas phase concentration measure-
ments since surface concentration measurements are not always easy or accessi-
ble. The idea is to use appropriate inputs to excite the slow modes of the system
that are due to surface reactions and infer conclusions about these reactions
indirectly. Finally, it is desirable to be able to predict, based on the obtained
models, the observed dynamic behaviors and to evaluate the physical factors that

are responsible for such dynamics.

OBJECTIVES AND THESIS OUTLINE

It has been suggested in the past that the presence of exotic dynamics, such as
steady-state multiplicities and self-sustained oscillations, may be used for rival

kinetic model discrimination [7]. However, most chemical systems are “tame” in
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the sense that they possess a unique stable steady state for all inputs and do not
exhibit "exotic” dynamics. In such circumstances one has to excite the system,
forcing it to bifurcate by artificially introducing multivariable feedback control.
Traditionally, feedback is used to control a chemical reaction system at a certain

operating steady state (set point).

The suggestion here is to use multivariable feedback control to destabilize the
system steady state, and draw conclusions about its nonlinear nature by observing
the induced dynamic behavior. In a feedback scheme the input to a chemical reac-
tor will be manipulated continuously ‘\according to concentration (or other output
characteristic) measurements at the effluent. Although the approach is sufficiently
general to be used for any physical system, this work will be concentrated on

lumped chemical reaction systems. The dynamics of such systems are described by

% = f{zubk)
(1

where x is a state vector of species concentrations, u is the reactor input, b is a vec-
tor of feedback parameters, and k is a vector of system parameters such as rate

constants.

Nonlinear systems of form (1) with freely adjustable parameters are best
analyzed using the methods of modern bifurcation theory. Bifurcation is under-
stood as the loss of stability of a steady state of system (1) with appearance of new
gtable attracting states, either steady or oscillatory. as & system parameter is
varied. Since nondegenerate linear systerns’ trajectories generally go either to the
single stationary point (steady state) or to infinity (if the steady state is unstable),
bifurcation to other stable attracting states is a nonlinear system characteristic.
The major objective of this thesis is to use results of bifurcation theory to organize
an analysis of the possible dynamics of lumped chemical systems of the form of

Eqn. (1). The application of multivariable control feedback to force chemical sys-



tems to bifurcate will be explored in detail, in order to develop a general method for
model discrimination and parameter estimation. In parallel, for the cases in which
nonlinear dynamic behavior is observed in chemical reaction models for systems
with steady inputs, bifurcation analysis will provide an insight inte how "exotic”
dynamics are created as well as which physical parameters (or combinations
thereof) are responsible for these nonlinear dynamics. Also, the values of parame-

ter combinations which provide exotic dynamics are characterized.

In Chapter 2, discrimination between rival kinetic models using multivariable
control feedback is investigated. The problem of finding a general strategy for

accurate determination of unknown model parameters (k) is considered.

Chapter 3 deals with the problem of steady-state bifurcation which is the most
common type of bifurcation and is usually brought about by variation of a single
feedback parameter. Steady-state bifurcation for systems that are reduced easily
to a single algebraic equation has been analyzed elsewhere [18]. In this chapter the
problem is considered for systems that are reducible to a few nonlinear algebraic

equations, with further reduction being impossible or impractical.

In Chapter 4 the different possible dynamic phenomena that arise via bifurcation
from a steady state are examined. Methods to determine the number of feedback
(or physical) parameters to induce different types of bifurcational structures are
developed. The possibility of using the theory of normal forms (locally equivalent
much simpler forms) to gain some insight into why a system's nonlinearity is best
manifested close to bifurcation and to predict possible dynaric behaviors is

explored.

In general, reduction of a system to normal form is very difficult. In Chapter S a
general class of systems that are reducible to a special type of normal form via a

simple affine transformation that retains steady state and eigenvalue structure is



identified. The normal form parameters are then given explicitly as functions of
the original system parameters, and the analysis of the more complicated original

systems is performed easily by considering the dynamics of much simpler systems.
Finally, in Chapter 8, analysis of certain chemical systems' dynamics is pursued

by considering a mechanical analog of particle motion in a potential field. Global

stability characteristics and special insights that arise from this analogy are

explored.
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CEAPTZR 2 : DISCRIMINATIOK AKD IDERTIFICATION
OF LDYNAMIC CATALYTIC REAZCTION NMODELS
VIA INTRODUCTION OF FEEDBACK



INTRODUCTION

it is well known that catalytlic reaction systems may be modeled in
s;veral different ways all of which are consistent with laboratory steady-
state measurements [1]. On many occasions some of the models may be excluded
based upon spectroscopic data. There are cases, however, {n which current
chemical methods alone sre unable to discriminate between rival models. In
such instances dynamic studies provide & useful tool. Furthermore, numerous
recent experimental studies have shown that trensients in fluid-catalyst
interactions, involving slow steps on or near the catalyst surface, cen sig-
nificantly influence the overall dynamics of catalytic reactors. Determina-
tion of models for these phenomena necessitate dynamic experiments. Because
of the potential importance of monlinear transient phenomena for reasctor de-
sign, optimization, and control, it is desirable that these dynamic experiments
and the models deduced from them encompass the major nonlinear characteristics
of the catalytic resction.

Such motivations have Inspired many researchers to base their modeling on
transient experiments. Reviews by Bennett [1] and Kobayashi and Kobayashi [2]
summarize the so-called "transient response’ method. In this method, tren-
sient responses of catalytic reactions to step-up/step-down perturbations in
feed concentrations are used to discriminate between alternstive models and
Identify parameters such as kinetic constants. However, such transient dats
eay agree closely for several candidate models making discrimination impossible.
In & recent study by M. Kobayashi of CO oxidation on @ slilver catalyst,
several different parameters sets were found to give the same fit to transient

date [3]. Also, such step experiments do not Impose the most sensitive and
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rigorous test of nonlinear transient kinetic models. {t Is the purpose of
this paper to introduce an alternative method of model discrimination, veri~
fication and identification.

As Andronov and Chaikin point out [4], the most fundamental dynamic
property of a nonlinear system is the existence (or absence) of stable
oscillatory behavior. Some chemical reaction systems are known to exhibitg
self-sustained oscillations [e.g., 5-15]. Usually an autocatalytic step is
required. Several different model forms have been suggested in the liter-
ature in the effort to illuminate the mechanisms that lead to such self-
sustained oscillations [16-20].

However, most reaction systems are sufficiently tame that they do not
exhibit self-oscillations. On such occasions the system can be forced or
modified such that monlinear oscillations ocecur. One way to achieve this
is introduction of & periodic feed. This approach is the basis of the so-called
“DC-shift technique' for identifying the modes of the system [21].

An alternative ldentification method, first introduced here for chemical
systems and in [22] for general dynamic systems, is to introduce feedback
based on concentraiion measurements. Positive feedback has been suggested
before @as a means of creating stable autonomous oscillations in & closed-loop
reactor-controller system for the purpose of improving time-average reactor
performance [23]. The emphasis here is utilization of feedback-induced os-
cillations for model discrimination and identification.

The major advantage of this method Is that very Iimportant nonlinear infor-
mation is accessible only when the system ls close to bifurcation. Systems
aot close to bifurcation are termed “hyperbolie’, and for such systems there
exists a nonlinear transformation converting them to equivaient Iinear systems,

much nonlinear information thus being lost or *‘hidden' [24]. in the next



11 -

section the mathematical background used in this work is introduced. WNext,
the theory is spplied to an example reaction system, the decomposition of
nitrous oxide on nickel oxide catalyst. Finally the results are discussed

and some general conclusions are suggested.

HMATHEMATICAL BACKGROUND

Hopf Bifurcation Theory

Hopf bifurcation theory provides powerful mathematical methods for
enalysis of the asppearance of & certain class of nonlinear oscillations [25].
The utility of this theory for chemical reactor analysis has been clearly
illustrated in several previous studies of isothermal [e.g., 26-28] and
nonisothermal [e.g., 29] reactors. A brief summary of certain parts of this
theory Is necessary here to introduce certain terms and results which are
central to this work and which have not appeared previously in the chemical
engineering literature.

Consider a dynamical system of the form
dx
BT = f(l.V) (1)

where Vv is a system parameter called the "bifurcation parameter''. In the

above equation x is an n-dimensional vector end F is & vector-valued function:

FiE" x B! — €7 . (2)
it Is assumed that the system of Eqn. (1) has an Isolated stationary point
x (V) and that F is analytic In x and v in some neighborhood of (xg,ve) in
E"xE‘. Here vc. is the eritical velue of the bifurcation parameter, to be
defined next. If (i) the Jacobian matriz of F evaluated at the stationary
point has @ complex conjugate pair of eigenvalues A and 1, chh that

AlV) = alv) <+ TwlV) (3.1)
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where

alv) =0 ; a'lv)e o ; wlv)lgys>o . (3.2)

and (ii) the remaining n-2 eigenvalues of the Jacobian have negative real parts,
then system (1) has & family of periodic solutions. Eqns. (3.1) and (3.2) de-
fine Vi it is & value of v for which a pair of complex efgenvalues of the
system Jacoblan c¢rosses the imaginary exls.

If conditions (1) and (ii) are satisfied, It also follows that there
exisfs a scalar g, and an analytic function

B
u"(c)- i_2:21.:?e'¢vc i O<cecgy (&)

-

such that for each g In (D,EH) there exists a periodic solution Pc(t) occurring

for v = u"(;). The period T"(c) of Pc(t) fs an snalytic function which may be

wrigten
&2
T"(e)--zl[!*' zr’.‘c;] i Oceceg, - (s)
- %% i=2 !

Exactly two of the Floquet exponents approach 0 as € does. One is zero and

the other is an ana'ytic function.

8"(:) @ _Z,ZE'::‘
i®

Ocec g, - (6)
The periodic solution is orbitally asymptotically stable if B"(c)<’0.
Hassard, Kazarinoff and Wan [25] analyze the steps that must be followed
to evaluate the leading coefficients Ug. T, ond B, in the expansions (&), (5)
and (6), respectively. They also provide a numerical *bifurcation package"

that finds the eritical point, gives eigenvalues and eigenvectors &t (xs’vc)'

and provides values for the coefficlients Ug o Ty and 82. The procedure involves
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transformation of the original system of differential equations to the
Poincaré normal form (@ topologically equivalent system with as simple form
as possible) and subsequent reduction of the system to the central manifold
(& two~dimensional local patch of surface that contains &ll the relevant

information of the n-dimensional system near the bifurcation point) [25,30].

Steady State Multiplicity

The modification of a dynamic system by introduction of feedback may
result in addition of otherwise nonexistent steady-state multiplicity.
Steady-state multiplicity has repeatedly been observed and predicted inm
chemical reasctor systems [e.g., 31]. Bifurcation of steady-state equilibria
may be treated using some results from singularity theory [31,32].

Let the scalar-valued function G(q,n.) be defined on N in g2, Suppose also

that none of the following set of equations are satisfied at any point in Q:

{i) Grm = 0 (7)
(i) G = Gq = qu & quq s« 0 : end (8)
soe 2

(i) @ 6, = &, Ggm ~ Baqmn
- 3 2 2 3
quqv 4 BGQQHVQVﬂ + Ban“qun ¢ Gnnnvn s 0 (9.1)

for all (vq.vn) # 0 for which

2 2
* %
quvq 2G qu & vh e 0

Then at any point (qo.no) in 0 for which G(qo.no) = 0, the loca! nature of

. (5.2)

the bifurcation diagram {G = 0} is described by one of the eight singularities

in Table 1 [32].
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Decrement Diagrams

it will be necessary below to examine the influences of.changes in
multiple parameters on reactor system dynamics. Decrement diasgrams are
especially convenient for this analysis. Consider @& family A of linear
differential operators in @ Buclidean space En, depending smoothly on a
parameter vector ue M, where M is 8 given parameter space in EP.
Aw): £ = E" (10)
Definition [33]: The increment of the family A is defined as being
that function h of the parameters, the value of which at u is the

greatest res! part of all eigenvalues of the operator A(u):

h(u) = :z:-:-‘nlle“”)tll (11)

The function h is continuous but not necessarily differentiabie. The
family of level curves of hin B (M= Ez will be considered here) is called
the decre=ent dizzram. The whole parameter plane can be stratified as

follows:

CODIMENSION O REGIME: almost all points on the parameter space (up to

a set of measure zero) belong In this regime (two-dimensional regions
of space). There are two possibilities:
i) Stratum D,z the maximal real part belongs to a single rea!l
eigenvalue;
1i) Stratum Dz: the maximal real part belongs to & complex conjugate

eigenvalue palr.

CODIMENSION 1 REGIME: these are curves on the parameter plane. Three

possibilities exist:
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i) Stratum Fy: the maximal real part belongs to two coincidental

real eigenvalues which correspond to @ 2x2 Jordan block.

ii) Stratum Fzz the maximal real part belongs to three eigenvalues,

one real and @ complex conjugate pair.

iif) Stratum F,: the maximal real part belongs to two distinct comp lex

3

conjugate pairs.

CODIMENSION 2 REGIME: these are points on the parameter plame. Five

possibilities exist:

i) Stretum G‘: tge maximal real part belongs to three real eigenvalues
corresponding to @ 3x3 Jordan block.

ii) Stratum G,: the maximal real part belongs to four eigenvalues, two
coincident complex conjugate pairs corresponding to two identical
2x2 Jordan blocks.

iii) Stratum 53: the maximal real part belongs to four eigenvalues, two
of which are real and coincident and c0r;espond to @ 2x2 Jordan
block; the other two are complex comjugate.

iv) Stratum G“: the maximal real part belongs to five eigenvalues: one

real and two distinct complex econjugate pairs.

v) Stratum GS: the maximal real part belongs to three distinct complex

conjugate pairs.

Segments F1 and F2 divide M into D‘ and Dz regions. At the intersection of
F‘ and Fz there is always a Gt point. Other Gi points lie at the intersection
of Fi segments.

Kow the stability boundary can be described as the curve(s) In M along which
the maximal real part of the eigenvalues of A (here the Jacobian matrix corres-

ponding to nonlinear system (1)) is zero (zero increment). A change in
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parameter values which results in crossing of the stability boundary in
the Dl region means simple Toss of stability. All sysiem trajectories
'escape from the neighborhood of the stationary point X - Crossing of the
stability boundary in the D2 region means Hopf bifurcation. Loss of sta-
bility in en F' region results In & higher order bifurcation and Is possible
only at finite number of isolated points. Finally, loss of stability in a
Gi region Is improbable for & two-parameter system and not generic (a small
shift in any parameter eliminates it.)

It can be proven [35] that along the stability boundary in the D‘ region,
@ bifurcating branch of steady-states appears end exchange of stability is
observed. Thus & line of steady-state muitiplicity In Ez must coincide with
the stability boundary in the Dl region. As a result, the points at which
F type bifurcation occurs must lie on the lines along which steady-state

multiplicity appears.

REACTION MODEL DISCRIMINATION ViIA THE FEEDBACK APPRDACH

For isothermal, isobaric reactions in & catalytic CSTR, the transient

material balances have the form:

de |

r i i;'(cf-C) < rf(c,c‘) (12.1)
dts
— " 'g“"s) (12.2)

where ¢ and cg are g- and s-dimensional state vectors denoting the gas phase
end surface species concentrations, respectively, and Fgo r’ @re vector
functions of ¢ and €, denoting the net rates of formation of gas phase end
surface species, respectively. ;R is the reactor mean residence time. If
the feed concentration Is manipulated In response to the effluent concentra=

tions measurement according to:
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Cf(t) @ ?(C(t) sv)o (13)

v being some vector of feedback parameters, then the closed ioop dynamics are

described by:

g "y Flea)-d e rglee) (1.1)
dc'

s
:;;. 'g(c'cs) (14.2)

which is of the form (1). Since the sbove model is a result of an assumed ele-
mentary reaction step mechanism, the functions Te and rg are polynomials,
usually of degree less than or equal to three if mass action kinetics are
assumed. Thus, all the smoothness conditions required for the R.H.S. of
Equation (1) are met, and the theory summarized above applies.

Yang, Cutlip and Bennett [34] have studied the decomposition reaction of
nitrous oxide to oxygen and nitrogen over nickel oxide catalyst. The overall

reaction may be written as:

2N20 —-’ZNZ + O‘2 (15)

As indicated by Yang e? ai., two alternative elementary reaction sequences fo

this reaction have been suggested in the literature:

k

MECHANISM 1: N,0 + S-—i- N, + 0§
2 2 (16)

k3
205 = 0, + 25
k.2

ky
MECHANISM II: Ny0 + S —= Ny + 0

X (17)

2
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where $S and 0S5 denote the catalytic sites and the adsorbed oxygen species,
respectively.
Yang et al. essumed that the first mechanism is the correct one and that

mass action kinetics apply. Thus the first reaction rate may be expressed as:

r, o® kQCSO("e)CNZO (18)
znd the second reaction rate &8s
- 2 _ 2 /5 ar2
Ty kz(cSOB) k_2€go (1-8) coz (19)
where by sﬂzo. coz and C“Z are denoted the concentrations of NZO. 02 and NZ

3

in the reactor expressed in moles/cm®, respectively. ¢, stands for the

So
max imum possible concentration of edsorbed oxygen atoms (mo?e/cm3)‘and 8
stands for the partial surface coverage (08<=1). (n & catalytic CSTR with
residence time ER =16.8 sec. at 352°C the following values for the kinetic

parameters were determined from steady-state date and step-up/step-down

transient response measurements [34]:

3 3
] cm - 3 em
kl = 1.367 = 10 m"—se——c— kz 6.438 % 10 woTessec
(20.1)
6 - mole
kg = 9-451 x 10"t em eg, = 8.4k x 10 7 3
mole” sec em” of gas .

Under the assumption that the flow rate of the diluent gas (argon) is
very large compared to the flow rate of NZO in the feed and that the feed
does net contain N, nor 02. the governing equations for the dynamic behavior
of reactants and products may be written as follows:

=€

N,0 _ _‘uzo N
a <k g e, (1-8)

dt 17850750 t

dc
2O,f

(20.2)
R



chZ cNz
& k,cy aCc (1-6) = —= (20.3)
dt i NZO So T
R
de €
0 4]
2 2,2 2 2 2
= kyee 87 = k_ncc (1-8)7¢y - — (20.4)
dt 2 te
dlc. (1-8)]
So 2,2 2 2
—_—— “kycy ocSO(I-G) + 2koCe B zk_chO(l-e) <o (20.5)
dt 2 2
Defining dimensionless variables:
. N . N .o
X = - y © ) » z = ) ®
[ € (3
N,0.f N20.f N,O.f (20.6)
¢ €
- CS°(1 e) Nzo'f s t ) SO 9
w = 0 ° ¥y = 0 ® L = ft-‘- ® e = ¢ no ;
€ € R N0,
NZD.f Nzo,f 2
T . o] - o] - - 62 =
8 kICN o,fER R kch 0.f th o 8 k_ch O,ftR
2 2 2
the eguations become:
L = -FFa- (W (21.1)
dt
& . BR5-7 (21.2)
dt
£ . yE-D2-823% - 3 (21.3)
dt
L . FXTe2E-D? - 285% (21.4)
dt
Here ¢, " ¢ is @ reference feed (concentration) chosen here to be 10-7 moles .

em3

B

The parameters a,B,v.8, then, have the values:
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a = 8.4k , f = 0.0230 , y = 1.0816 , & = 0.1588
Assuming mass action kinetics, the reaction rates for mechanism II are

r' o= Kk "So' (1--6):,‘2u (22)

4 . - [] L] -
2 = "z'cuzoeso 8-k, cuzcochO (1-8) (23)

Then the dynamic equations for this model become

de

W0 .
2
= ek,'c.’ (1-8)¢ _kre, a8+ k e e, e ' (1-8)
dt 1 "So N20 2 Nzo So 2 “2 O2 So
(24.1)
e - ¢
) HZO Nzo.f
tr
gc
i k.'e, * (1-8) + k' 18-k fe e, e (1-8)
= c -ge €, A€ - “8) =
dt 1 “Se HZO 2 NZD So -2 Nz Dz So
(24.2)
¢
.2
R
de 4
._9.2_3 k.'e c'e-k'ccc'(!-e)-—o—z— {(24.3)
de 2 HZO $o -2 “2 02 So ;l
dfcsg(!-e)l
® ok ‘e, ‘(1-8)c, ~ * k,'c, nCc'8 =k ,'c, €. e’ (1-8). (24.4)
dt i 8o NZO 2 N20 So 2 Nz 02 $o

Befining dimensionless varisbles as before (see Nomenclature), Egqns. (24) may

be rewritten:

= =-8'¥a-yE(a'-T) ¢+ §'yzo- (X-%) (25.1)



Y o gESey R -0 -8FTE-F (25.2)
ét
_:5. e y'X{a'~-4d) - 6';;5 "; (25.3)
£ e g FTey'Tlat-B) - §'7ED (25.4)
dt

Yang ¢t al.[34] have shown that the Mechanism I model with the parameters
given above fits well steady-state and step-up/step~down transient experi~
-mental data: This model can therefore be used here &s a basis for testing
the consistency of the Mechanism I1 model with such data. Consequently, the
following question will be explored first: with appropriate choice of
Hechanism II model parameters, 0 what degree can this model reproduce the
steady-state and transient responses provided by the Hechanisv 17 After this,
with parameters so fixed in both models, the behavior of these different models
in the presence of linear and nonlinear feedback is analyzed and compared.

Using the model for Mechanism I, steady-state effluent concentration
values have been calculated for & whole range of feed concentrations d. Then
@ least squares algorithm has been used to calculate values of the parameters
of the second model to obtain the best fit to the steady-state values predicted
by model 1. For the parameter values

g' = B.b275s , B e 0.011§ , y' = 0.2255 , &' = 0.9719 ,
the correlation s found to be excellent. In Table 2, the calculated steady-
state values are presented for both models &8s a function of feed concentration.
The values of only one gas phase species concentration are ;!ven gince the
other concentrations are easily found by stoichiometry. Clearly, the two

models are indistinguishable In this comparison based on steady-state properties.
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Hext, the transfent responses are slmulated for each model. The
Initial conditlons are the steady-state concentrations corresponding to ue=1,
For € > 0, U Is fixed at the different value U = 1.5. The model equations have
been Integrated numerically using Runge-Kutta~Ei111 with Adams-Moulton predictor;
corrector (MODDEQ), and ®, y and £ have been p!btted as & functlion of § (.Fig. 1). it
fs clear that the transient response {s quite similar for both models, especial};
for X and y. Thus discrimination s difficult using this method for this example.

For both models with the parameters given above, all steady states are
focally asymptotically stable; In other words, @ll of the Jacobian eigenvalues
et all steady states have negative rea! parts. Simulations starting arbi-
trarily far from the steady state show monotonic return fo this steady state and
bence indicate absence of self-susteined oscillations for both models.

Consequently, the Influence of an external feedback Is considered. It will
be assumed that the concentration of nitrous oxide In the feed Is man?pulaied
according to contimuous measurements of gas phase concentrations In the effluent
so that

T o= T ¢ ?(i-is, ¥-¥g T-E) (26)

are the steady-state values corresponding to U= U ,

where £ _, Yy end zs s

$
Henceforth the values ©_, i’. 7‘ and 3, will be called the reference steady-

$
state values of thése dimensionless concentrations. The value of E’ will be
teaken here to be uaity.
introductlion of feedback may In general change the steady-state morpholiogy.
Clearly by requiring that F(0,0,0) = 0 In Eqn. (26), the reference steady state
is also & steady state of the closed loop system. However, additlional steady

states may appear In the closed-loop system. Also, es ment loned earlier,

feedback may change the dynamic behavior of the system significantly, possibly
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fntroducing bifurcations which change the qualitative dynamic structure of
the closed-loop system. After examining the effect of feedback on steady-

state multiplicity, the dynamic Implications of this modification of the

reactor will be considered.

Steady~State Multiplicity

Proportional feedback Is the simplest mathematical form and consequently
will be considered first. Thus, the Inlet feed concentration Is manipulated
according to:

U e G - b.l(x"xs) - bz(Y‘Y') (27)

For the Mechanism I model, setting the right-hand side of Egn. (21) equal to
zero and ellminating Z and & gives two equations In two unknowns X end ¥:
T, ) = By e 2y@l8%R2 ¢ 2yF0 - MGBYET - 870 = O (28)
F(R§.8) = X+7-T = 0 (29)
Substituting for U using Eqn. (27) and eliminating y from the resulting equa-

tions ylelds one equation Im X:

~ =2 o
& s («f°=§
(x) (-8 aBy) = T+5,

d el 2
. Ug +b X, ¢ by, = (14b,)X
1+by

' - - _ 3
e us4~b‘x34b2y’ (Hb')} o
1+by

fu. +b. X <+by = (1¢b,) X -
( $ i"s  "2's 1 . I*VSJIB}Z

(30)

it Is readily verified that positive solutions of Eqn. (30) near the reference
steady-state value Xg Imply positive values of Y. £, and w.

From this equatfon one ebtalns:



2 - -
-4 an =87 = E s = ap - el
G;(x) = .g...’:___ﬁg_l.).(u +b. X +bzys-2(1+b|)")*"70~252!

1 = bz $ 1"s
! (l+b2)2
35(1+b1) _ - _ N2
<% -(;—:-;—-;—3— us+b‘xs+b2ys L (7 +b])x) (31)
2
and
- 204b) B2 e 38, W(ep)?
Gz (%) = T+5 + @78 e ———
2 (!+b2)
66(1+b,)2 - _ - -
- m (us‘ b‘xs+ bes = {1 +b‘)x) (32)
Also
- 66(1+b‘)3
G--- @ ey (33)
xxx (1+b2)3

Evaluating Ex(is) and setting this equal to zero, a condition on the

parameter values b‘ and bz is obtained:

bz '-5-978313, - 6.9783 (34)
Evalustion of Ei‘i(;s) and substitution for b, using Eqn. (34) shows that
Eii(;s) Is 2ero whenever Ex(is) s zero; f.e., whenever Eqn. (34) applies.

Also, as is evident from Egn. (33), Eiii(;s) is nonzero. Similarly, it can

be shown that the remaining parts of conditions (7) to (3) ere satisfied.
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Evaluation of Ebz (i‘) shows that this partial derivative vanishes
‘while E!ﬁéi;) may be readily shown to be different than zero. Thus the
catastrophe depicted In Case (7) of Table 1 occurs along the Tine In the
(b‘.bz) parameter space defined by Eqn. (34). Plotting E'as a function of
x shows that 1f b, Is less than the RHS of Eqn. (34), there are three steady
states which collapse along the line of Eqn. (34). Similar treatment of the
steady state model! for Mechanism II shows that the locus for tramsition from

single to multiple steady states Is given by

b, = -s.sstqb,-s.ssn (35)

Thus the steady-state multiplicity picture is almost identical for the two
models. |

For reasons fhat will become apparent in Investigation of the dynamic
behavior of the closed-loop reactor system, & specific form of monlinear

feedback has been also considered, namely

i 3;{' - w502 z.n"[bz(v-vs)]} (36)
This form of nonlinear feedback was selected because (i) it is & simple
function which gives bounded u values (between zero and 23;), & physically
important and realistic property, and becsuse (i1) It Is analytic allowing
.epplication of the theory outiined above.

First, the éffect of this type of feedback on steady-state multiplicity

of the closed-loop system Is considered. Egqns. (28) and (29) in this case become:

FUART) = -BExTexnalilR e nTi-baByny-853 = 0 (0

AT S X B e (%) RN (U A) | FEEL
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Here y cannot be easily eliminated to obtaln one equation im X. Still

it is known that & necessary condition for steady-state multiplicicy 1s [35];

E.fl ® ?:3. @ —-—’ fz a
a“ & ™ gy L bd Rd
(A B (55 0v,) (X, .7, ’ = Xgo¥g) (39)

This condition provides the relationship that b‘ &nd bz must satify at the
point of multiplicity. Condition (39) gives:

b -
= -5.9783— - 6.9783 (40)

ulN?

for the Mechanism I model, and

b, b,
- = =-5.9847— - 6.9847 : (41)

for the Mechanism II model. Theonly difference between Egqns. (&4D),

(k1) and (34), (35), respectively, is the 1/n factor which Is Introduced to
normalize the inverse tangent functions. WNumerica! solution of the steady-
state Eqns. (37) and (38) show the existence of three steady states below

the curves defined by Eqns. (40} and (41) which collapse into one along those
curves. The resemblance of the behavior in the case of the Inverse tangent
feedbacks to that of the proportional feedbacks is not surprising since the
former function resembles the latter In the limit as their arguments go to

=
zero (tan =~ x as x —=0).

Periodic Solutions

When the feed concentration is manipulated according to Eqn. (27) for
iinear feedback or Eqn. (36) for monlinear feedback, values of the feedback
parasmeters b‘ and bz are sought such that bifurcation to perlodic solutions
occurs. The eigenvalues of the Jacobian for the case of linear feedback are
the same as for nonlinear feedback after taking Into account the normalizing

factor of 1/n for the latter case.
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Decrement diagrams have been constructed for the case of Iaverse
tangent feedback (Egn. (38)) for both reaction models (Figs. 2 and 3). in
each case, there are F‘ and Fz curves dividing the parameter space into D‘
and Dz regions. The stability boundary is also shown in this b,-b2 parameter
space for both models by a dashed line.

Mo periodic solutions are anticipated when @ single feedback is used
(b1 or b2 zero). This can also be verified using the Routh criterion [36].
For the Model I there s a G, point at (b, @ =7.5,b,= 22.k). Hopf bifurca-
tion is realized at loss of stability in the D2 region and is possible when
-7.5<b1<-6.88 R b2>22.lo . For b2<22.k loss of stability can occur in
the D; region. As mentioned earlier the stability line in the D‘ region
coincides with the steady-state multiplicity Tine. Hence exchange of stabilit
occurs in bifurcations to steady-state multipiicity in this region. To the
left of this line, the reference steady-state becomes unstable while the two
appearing steady-states are both stable.

There is one single point B at which the stability boundary crosses the
Fy line, and at this point F; bifurcation occurs (Fig. 2). Thus, at point B

there is @ double real zero eigenvalue and the Jordan block corresponding to

0

Point B also lies on the line along which steady-state multiplicity changes

it hes the form

from one to three.
The decrement diagram for Model! II Is significantly different from that
for Model I. For Model II, the G, point appears at (b, e <§.91 b, = 15.7)

and is located well in the steble region. For by < b there is always a
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value of b, at which stability is lost in the DZ region (Hopf bifurcation).
For by > =4, stability Is lost in the D, region, the stablility boundary
coinciding with the steady-state multiplicity line, ond again there Is a
point D at which stability Is lost along the F‘ curve. The steady-state
multiplicity line passes through point D as before, and at that point an F‘ N
bifurcation occurs. As s evident from the decrement diagram, no periodic
solutions are expected for @ single feedback as no bifurcations exist along
the b, = 0 or b2 = 0 lines.

When multiple steady states exist, closed-loop reactor dynamics are
expected to depend on the eigenvalue configgration at all steady states.
Accordingly, decrement diagrams have been prepared for the additional steady
states which appear following the bifurcations from one to three steady
states. The steady-state multiplicity lines in Figs. 2 and 3 are retained
for reference in Fig. &, which applies for inverse tangent feedback. The
dotted lines in Fig. 4 are the stability boundaries for the added steady

states; the F. locus for the added steady states is also shown (essentially

2
the same decrement diagram applies to both of the added steady states for
this exanple). For feedback parameters above the dotted line, the added
steady states are unstable. Regions of instability of the added steady state¢
are significantly different for the two models, suggesting the possibility of
mode! discrimination on this basis.

Although the decrement diagram suggests the regions of the parameter
space for which periodic solutions are expected, it contains no information
regarding the stability and form of these solutions. Based on the decrement
diagram above, one can only predict that, close to the Hopf bifurcation

curve, the oscillations (if stable) will be of the harmonic type whereas in

regions far from this curve oscillations are expected to be more asymmetric.
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Also, gain parameters In the neighborhood of the F1 bifurcation point may
yield oscillations differing significantly from harmonic form.

information about the stabillty of periodic solutions has been obtained
using the numerical bifurcation package outlined above. The parameter bl is
left free and fts critical value for fixed b2 is located by the bifurcation
program. For inverse tangent feedback, the leading coefficient 82 In the
asymptotic expansion of the Floquet exponent s found to be negative, indi-
cating stability of the bifurcated periodic solutions. Similar calculations
for linear feedback are somewhat ambiguous: calculated values of 82 are
positive, but the estimated error in the 82 calculation, while smaller in
absolute value than the 82 value, is of similar order of magnitude. Insta-
bility of Hopf bifurcations obtained with linear feedback is suggestied by these
results but not clearly demonstrated. Simulations for linear feedback parameter
very near the Hopf bifurcation locus did not produce any stable limit cycles,
& result consistent with the bifurcation package Indication.

Numerical simulations have been undertaken to explore the parametric
dependence of closed-loop periodic sclutions when an inverse tangent feedback
of the form of Eqn. (36) is applied. Fig. § summarizes some of the results
obtained for by = =10 and for three different values of bz for Model I. For
b2 = 29 a small pefturbation from the reference steady-state leads to one of
the two other steady states (which are both stable) depending on the direction
of perturbation. For bz = 30 relaxation-type oscillations are observed. Ac-
cording to the Model I decrement diagram for the added steady states (Fig. 4A),
these are still stable for bl a =10, bz e 30, Thus, depending on the Initial
state, the closed-loop reactor state can oscillate as shown in Fig. § or can
approach asymptotically one of the additional steady states. Such behavior
is illustrated in the projections 5f phase space dynamics onto the X =y plane

shown in Fig. 6.
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The added steady states become unstable for by, = 33, leaving & single
fimit eycle as the only evident stable structure In phase space (see Fig. 6).
For bz = 100, the three steady states have collapsed into the reference
gteady state, and psclilations areof higher frequency and smalier amplitude.
The temporal orofiles of the osclilations are harmonic In form. Osclillations
persist even at bz = 1000.

Numerical simulations of Model II give quite different resuits. Con-
sidering again b‘ fixed at =10, perturbation from the reference steady-state
feads to one of the two other steady-states for bz = 33. At bz = 34 strange
oscillations appear (Fig. 7). This behavior can possibly be attributed to
the nearby Fl bifurcation point for these feedback parameter values (see
Fig. 3). As larger values of bz gre considered, relaxation-type oscillation
is evident at bz = 45, Harmonic oscillations are observed at bz s 75, while
oscillations. disappear at bz s 100 as the reference steady state becomes
stable (Fig. B). This qualitative feature is markedly different from the

Fodel I behavior for Increasing bz.-

it should be noted that, for this particular example of N,0 decompos ftion,
discrimination betwéen the two.models.ls possible by steady-state experiments
with differing feed concentrations of iz. This Qxamp!e was used here because
of Its simplicity to lllustrate the properties and potential of the general

concept of feedback=Iinduced bifurcation as & tool for dynamic process modeling.

DISCUSSIONM

This work shows that Introduction of feedbeck can cause otherwise tame
catalytic reaction systems to exhibit steady-;tate multipllieity and stable
limit cycles. The form and the occurrence of these phenomena as & function
of feedback parameters may be used to verify an sssumed model or to discrim=
fnate between rival models, even In the case where steady-state and "trenslient
response'’ data ere In close agreemenf for some of the possible models.

The decrement diagram Is extremely useful In visuelizing and summarizing

the effects of changes In feedback {and elso reactor operating and kinetic)
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parameters on bifurcations to periodic solutions. The regions in the
parameter space where Hopf bifurcation is expected are easily located and
fnsight is gained Into the evolution of Hopf-bifurcated solutions with
parameter changes. Alse, higher order bifurcations of the F type are
predicted, and the nonharmonlec types of oscillations sometimes ob-
served can be qualitatively explained in view of these higher-order
bifurcation effects.

Once the form of the model has been selected, the feedback approach may
be successfully used for kinetic parameter estimation. The frequency of a
Hopf-bifurcated limit eycle may be found experimentally as & function of the
system and feedback parameters. While this limit ¢cycle may have Infinites-
imal amplitude in the neighborhood of the bifurcation point, the frequency
of this cycle will be evident inbfinite amplitude fluctuations following &
pulse disturbance of the closed-loop reactor system. In @ laboratory experi-
ment the exact point of bifurcation may of course not be found, but the
frequency of the periodic solutions is quite Insensitive to small perturba-
tions from the bifurcation point @s is clear by the asymptotic expansion of
the period of oscillations (Egn. (5)).

Then, assuming the form of the model is known, the characteristic equa-
tion of the Jacobian at the steady state may be expressed in terms of system
and feedback parameters. At the point of Hopf bifurcation it Is known that
the characteristic equation Is satisfied by A = 2lw, where w is the measured
frequency of the period solutions. Thus, for each bifurcation point, two
algebraic equations are obtained (one for the real part of the equation and
one for the imaginary). These algebraic equations may th?n be used in con=
junction with steady-state equations to estimate values of kinetic parameters

using @ least-squares procedure.
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Finally, It should be noted that in the above discussion and analysis,
measurement, computation and actuation time lags have been assumed negligible.
These lags may be significant In some cases, requiring modification in the

mathematical description and characterization of the closed-loop system.
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HOMENCLATURE
A linear differential operator
b‘.bz feedback parameters
€eo maximum concentrgtion for adsoirbed oxygen atoms for
Model I (mole/cm”)
cs; maximum concentragion for adsorbed oxygen atoms for
Model 11 (mole/em”)
‘NDO P reference feed concentration = 10-7 mc!e/cm3
z ®
€ gas species concentration vector (moie/:ms)
cg surface species concentration vector (mole/cmz)
€5 feed concentration vector (mole/cms)
EP Euclidean p-space
f'.;; functions defined in Eqns. (28) and (29)
;}:;;' functions defined in Eqns. (37) end (38)
3 function defined in Eqn. (2)
; function defined in Egn. (13)
] function defined in Eqns. (7-9)
& increment defined in Egqn. (11)
Dg,DZ.FI.FZ.F3.6‘°62,63,G“.G5 strata in parameter space
L]
kl'ki rate constants
# parameter gpace
P (2) periodic solution
q veriable In Eqns. (7-9)
g ]
Tyelgelyolys reaction rates defined In Egns. (18,19,22,23)
Ferfq rates of formation (mo?e/cm’-sec)

s catalytic site
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Tﬂ(c) period of periodic solutions (Egn. (5))

x system 2ate vector (Eqn. (1))

Re stationary point of vector =

3.:}7,2};.?; dimensionless variables defined in Egn. (20.6)

o reference steady-state values (G;-l)

reactor mean residence time (sec)

GREEK SYMBOLS

o real part of eigenvalue (Egqn. (3.1))
E.E,y.é dimensionless variables of Model I defined in text
]

2

o €s0’%x_0, f
2

; -

8 K1 . 0,¢%R
2

' L3

Y k2 n,0.FR
2
8 ' :
k-2°N,0,%R
BH(E) Floguet exponent (Egn. (6))
E.EH defined in Eqn. (&)
n bifurcation parameter (Egns. (7-9))
) partial surface coverage (0g6g1)
2,4 eigenvalues
U parameter vector
HH(E) function defined in Egqn. (&)
v bifurcation perameter In Egqn. (1)
critical value of bifurcation parameter

W imaginary part of eigenvalue (Eqn. (3.1))

defined in Eqn. (3.1)



[2]
(31

(4]

(s]
(6]
{71
(el
{9l

{i0]
[11]

[12]

[13]
[14]
{15]

[16]

(171
[18]

{19]
[20]
[21]

35

REFERENCES
{1] Bennett €. 0., Catalysis Reviews 1376 13 121.

Kobayashi M. and Kobayashi W., Catalysis Rev. Sci. Engng 1974 10 139.

Kobayashi H., Chem. Reactiom E‘ngi'r.eering - Bostom, ACS Symp. Series
1982 196 213.

Andronov A. A., Vitt A. A. and Chaikin S. E., 'Theory of Oscillations",
Pergamon Press, New York 1966.

Hugo P., Ber. Bunsewges. Phys. Chem. 1970 74 121.

Beusch H., Fieguth P. and Wicke E., Adv. Chem. Ser. 1972 109 615.
Beusch H., Fieguth P. and Wicke E., Chem.-Ing.-Tech. 1972 Li k45,
Hugo P. and Jakubith M., Chew.-Ing.-Tech. 1972 L4 383.

Horak J. and JiraZek F., 5th Buropean/fond Intermationcl Symposiur on
Chew. Peast. Engovg p. BB-1. Amsterdam, 1972.

Eckert E., Hlavacek V. and Marek M., Chew. Eng. Commm. 1973 1 89.

Belysev V. D., Siinko M. M., Slinko M. G. and Timoshenko V. f..
Dckl. AkaZ. Fau¥ S552 1974 21k 1298.

HMcCarthy E., Zahdranik J., Kuczynski G. €. and Carberry J. J.,
J. Catalysis 1975 39 28.

Sheintuch K., Ph.D. Thesis, University of illinois, 1977.
Zuniga J. E. and Luss D., . Catal. 1978 53 312.

Stocukides M., Seimanides S. and Vayenas C., Chem. React. Engng - Eostom,
ACS Symp. Series 1982 196 165.

fvanov E. A., Chumakov G. A., Slin'ko M. &., Brums D. B. and Luss D.,
Chew. Evz. Sci. 1980 35 795.

Eigenberger G., Chew. Evg. Sei. 1978 33 1263.

Schmitz R. A., Renola 6. T. and Zioudas A. P. in Dymamics and Modeling
of Reactive Systers p. 177. Academic Press, New York 1980.

Noyes R. H. and Field R. J., dcctes. of Cher. Res. 1977 10 273.
Slin'ko M. and Slin'ko M., Catalysis Reviewe 1978 17 1.

Kuszta B., Smith C. B. and Bailey J. E., Int. J. Comtrol. 1982 36 631.



[22]

[23]
[24]
[25]

(26]
[27]

[28]
[29]
[30]

{311

{32]
[33]
(341

(353

[36]

36
Kuszta B., Bailey J. E., JEET Trans. om Autom. Control. 1982 AC-27
22, .
Gaitonde N. Y. and Douglas J. M., ATCKhE J. 1969 15 902.
Guckenheimer J., Progress in Mathemctics 1980 8 115.

Hassard B. D., Kazarinoff N. D. and Wan Y. W., Theory of Apzlicatione o
Hop*® Bifrucatiow.. Cambridge University Press, Cambridge 1981.

Pikios C. A. and Luss, D., Chem. Fng. Sci. 1977 32 191.

Feinberg M., in Dunamics and Modelinz of Reaciive Sysiems p. 59.
Academic Press, New York 1980.

Takoudis €. 6., Schmidt L. D. and Aris R., Chem. Eng. Sci. 1982 37 69.
Uppal A., Ray W. H. and Poore A. B., Chem. Emg. Sei. 1976 31 205.

Carr J., Arplicaiions of Center Manifoid Theory. Springer-Verlag,

Mew York 1981.

Balakotaiah V. end Luss D., Chemical Recct. Engng. - Boston. ACLS
Symposium Series 1982 196 65.

Golubitsky M. and Keyfitz B. L., SIAM J. Math. Anzl. 1980 11 316.
Arnold V. 1., Bussia: Math. Surveys YMZ 1972 27 Sh.

Yang €., Cutlip M. B. and Bennett C. 0., in Catalveis v. 1
(J. W. Hightower, ed) p. 273. American Elsevier, New York 1973.

looss G. and Joseph D. D., Elementary Stability and Bifurcation Theory.
Springer-Verlag, New York 1980.

Coughanowr D. R. and Koppel L. B., Process Systems Analysis and Control
McGraw-Hill, New York 1965.



37

Table 1. Steady-state bifurcations [32]

Defining Conditions at (qo.no) Bifurcation Diagram

(1) 6E=0 ,6 ¢#0

n
(2) G-cq-o.cqq-srjo
‘(3) 6=G =G =0 det ¢%G ¥ 0
a8 - =a @
index dzﬁ = l#
(4) 2 °
6 =Gy =G,=0,G detd’c#0
index dzs # 1
(5) G-Gq-c__-det(dzc)-o
o (a3 *
qu {(¢°G)(v,v,v) ¢ O
(6) GeG =G =0 _I_
quq'Gn # 0
(7) 6=, =G, =G =0 G
6309 %ng ¥ ©
(8) 1} 9
G =6y =Cq=C,=0ng*” /\
Sqqq"%rm ¥ © _ =T
4 dZG denotes the Hessian of E.

& See condition (ii1) (Egn. 9).

¢ findex dzc a | means det(dzc) changes sign as bifurcationlpcint is crossed
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Table 2. Steady-state values as & function of feed concentration
for two different kinetic models of Nzo decomposition

MODEL I MODEL 11

3 % & " &

0.1 0.084229 8.14987 0.084519 “.7.97272
0.2 0.168826 8.03723 0.169185 7.97282
0.3 0.253650 7.95355 0.253992 7.88432
0.4 0.338653 7.88476 0.338934 7.84211
0.5 0.423805 7.8254k4 0.424006 7.80115
0.6 0.509088 | 7.77279 0.509202 | 7.76135
0.7 0.59LL88 7.72519 0.594517 7.72265
0.8 0.679993 7.68156 0.679948 7.68499
0.9 0.7655%6 7.6L117 0.765489 7.6L831
1.0 I 0.851290 7.60348 0.851138 7.61258
1.1 3 0.937068 7.56806 0.936890 7.57740
1.2 1.022920 7.53463 1.022740 7.54375
1.3 1.108860 7.50292 1.108690 7.51057
1.4 1.194860 7.47273 1.194730 7.47817
1.5 1.280930 7.b4390 1.280870 7.44651
1.6 1.367370 7.41628 1.367709 7.41555
1.7 1.453270 7.38977 1.453388 7.38528
1.8 1.539520 7.36425 1.539776 7.35565
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CAPTIONS TO FIGURES

Figure 1.

Figure 2.

Figure 3.

Figure &.

Figure 5.

Figure 6.

*Transient response’ comparison for both models of NZO
decomposition in & catalytic CSTR following @ step change

in feed NZO concentration.

Decrement diagram for Mode! I with inverse tangent feedback.
The reference steady-state s unstable for the closed-loop
system for feedback gains in the region left of the dashed
line. The heavy solid line divides the parameter plane into
regions with one and three steady states. The D2 region is

stippled while the D1 region is clear.

Decrement diagram for Model II with inverse tangent feedback

{notation a&s in Fig. 2).

Decrement diagrams for the added steady states for Models I
and II with fnverse tangent feedback. These steady states
are unstable for feedback gains above the dotted line and below

the steady-state multiplicity line.

Periodic solutions for closed-loop operation with Hodel I end

arctan feedback for (b,.bz) = (10,30), . (-10,100),

== == (=10,1000), ¢ c o .

Projection of concentration trajectories onto the X -y plane
for Model I with inverse tangent feedback for different gain

parameters (A: b, = =10, by = 30; B: by = =10, b, = 33).
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Figure 7. Periodic solution of Model II in closed-loop operation with

arctan feedback; (b'.bz) = (=10,34).

Figure 8. Changes In the closed-loop response of Model II with arctan

feedback and (b,.b,) = (-10,45), 3 (<10,78), = = = - .
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STEADY-STATE MULTIPLICITY AND
BIFURCATICON ANALYSIS VIA THE

NEWTON POLYH=DRON APPROACH
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INTRODUCTI0O¥

Steady-state multiplicity has been observed and theoretically predicted
on many occasions in chemical reactor theory and is & property of paramount
Importance when studylng the operating characteristics of any chemical reac-
tion system. This phenomenon, first popularized by Van Heerden in 1953 [1],
has since drawn the attention of many workers [2-11]. Heinemann et gql. [12]
applied the Keller method [13] for finding solutlion branches computationally
in the parameter region of Interest for 34combustion probiem. Balakotaiah
and Luss [14] applied Golubitsky's bifurcation theory [15] to identify parameter
values at steady-state bifurcation and the local solution surface near the bi-
furcation point.

in almost all problems considered previously It has been possible to
reduce the model steady-state equations to @ single scalar nonlinear equation
in one unknown. This reduction Is not possible for many other systems of in-
terest. Using Keller's linear algebraic approach for multiple nonlinear equa-
tions, one requires that @ necessary condition for bifurcation be satisfied:
the determinant of the Jacobian must vanish. Supplementary Bifurcation condi-
tions involving the derivatives of the algebraic equations with respect to the
bifurcation parameter must also be satisfled to ensure bifurcation. In this
approach choosing the bifurcation parameter Is an essential and critical step.
Further, one must compute the derivatives appearing in the bifurcation con-
ditions [13].

The objective of this work is to introduce and illustrate an extremely
powerful mathematical tool, the Newton polyhedron method, for determining bifur-
cation points of steady-state solutions. This method can be applied when the

steady-state equations cannot be reduced to @ single equation or where pro-
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hibitive algebraic effort and complexity would arise in such a reduction. One
major advantage of the Newton polyhedron method is simultaneous consideration
of all system parameters In the algebraic conditions that must be satisfied
a8t bifurcation. One does not need to choose @ single, particular bifurcation
parameter. Furthermore, In the case where ihe mode] steady-state equations
are of polynomial form, no evaluation of partial derivatives Is required.

The method is applied here to two chemical reaction engineering problems.
The first is isothermal reaction between two adsorbed species in a catalytic
€STR, @ system for which the steady-state material balances have polynomial
form. The method is used to examine the steady-state multiplicity produced
when feedback manipulation of input concentration is added to the reactor, a
strategy suggested previously for catalytic reaction model discrimination [16].
The second problem considers two and three parallel reactions of arbitrary
order taking place in @ nonisothermal CSTR. Here reduction to one steady-
state equation is in general Impossible. Criteria are obtained for absence
of bifurcation to multiple steady-states from a basic solution branch, and, for
@ specific problem of one second order and one third order reaction, the point

in parameter space at which steady-state bifurcation occurs is found.

THEORETICAL BACKGROUND

Consider the system of k-algebraic equations in k unknowns E1*”°’§k:
f](El!""Ek) = o
fz(z‘,...,zk) = 0 (1)

fk(e,i"°!€k) = o
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Suppose that & = (EIO’ ...,Eko) is a solution of system (1). (Only

real solutions are considered throughout this work. The Milnor

nwumber uf(go) is defined as the multiplicity of the solution £y- By multi-
plicity here is understood the number of solutions of (1) when one or
more parameters of system (1) are slightly perturbed from their original value:
for which ED is a solution. Usually perturbation in one direction produces
uf(go) solutions, whereas perturbation in the opposite direction retains the
same solution configuration.

The definition of multiplicity used here, which refers to bifurcation and
local appearance of additional steady-state solutions, should not be
confused with the use of the term steady-state multiplicity elsewhere in chemi
cal engineering. Often, in other works on steady-state multiplicity, one is
concerned with multiple roots of Eqn. (1) which may be widely separated. To
illustrate the difference between thé multiplicity of a soZutﬁon and the multi
plicity of the solutions to a system of equations, consider the single equatic
W ~ bw = 0. For b = 0, the solution w = 0 has multiplicity three (uf(o) = 3)
perturbing the parameter b to some positive value, three solutions to the
equation exist. Notice, however, that for b > 0, each of the three solutions
has multiplicity unity. Near each, there is only a single solution branch.

Sufficiently small perturbations in b about any positive value do not alter th

number of solutions.
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As will be stated precisely in the main theorem below, the multiplicity
of the solution §° is often equal to and is never less than an integer called
the Newton mumber v. The Newton number depénds only on the Functional form of
the system of‘equations and can be evaluated directly after identification and
characterization of the dominant features of the equations. The concepts re-
quired for calculation of the Newton number are summarized next.

Suppose for the present that each of the functions f, in Eqn. (1) is a
polynomial (generalization to other smooth nonlinear functions follows below).

Defining deviation variables X, = £, - &p each function fi may be written

as follows:

- a2 (2)
f;(x,,-oa,xk) Zk ani_x_
nel

n
where 5; = X4 ,...xkk s @ monomial in variables RyoeoosRy o Thus, each

h= (n‘,...,nk)ezk. Consider for example the system:

&
f,(x,,xz)-25x1+x2 - 3x3 = 0

3 2
(3)
]
- . .3 L] 5
fz(x‘,xz) Xy = Xy -02x2 + xS = 0o .
Clearly, (0,0) is a solution of system {3). System (3) can be written in
the form of Eqn. (2):
5 n fn
f1 =a 5.‘ 4+ a 5?2 4+ @a 23
i ny nax
. @ o w (%)
] b= ld ;]
foeB x @ +8 +8 x3 ~4
2 my= m, msl‘- +8ml’5
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where

= (1,00 , n,=1(20 , ng = (0,3)

mo=(1,0) , m= (0,3 , my = (0,4) , m = (5,0)
and

-

The supports of f. are defined as the numbers neZk such that ¢ # 0
T - ng
The set of all supports Suppfi is consequently given by

suppfi = (Eglk : u"i # O} . (5)

The Newtonian principal pait of the polynomial f. is defined to be the

following polynomial:

- = ul 6
in z: unigi . (6)
For the polynomials of Eqn. (3), the Newtonian principal parts are:

oo 3

2%, = 3x
10 1 2
(7)
-y _ .3
fao = % "% -
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For the system of Eqn. (3), the supports are
]
suppf, = {(1,00 , (2,00 , (0,3)}
L]
suppf, = {(1,00, (0,3) , (0,4) , (5,0)} .
The FNewton diagram of fi {s simply @ graph in k-space of the members of suppf‘.

] ]
The Newton diagrams for functions Fi and fz of the example are
illustrated by the dots in parts (A) and (B), respectively, of Figure 1.

The polynomial f, -vz:k.n .5?-35 called proper [17] if, for all j from 1 to
nel |

k, @ monomial xjnj (nj > 1) appears In f‘ with 2 nonzero coefficient. Both
polynomials in the example of Eqns. (3) are proper. The corresponding Newton
diagram is proper if all positive coordinate axes contain at least one point of
the diagram.
Let
i'(fi) = {convex envelope with respect tc the origin®

of the set suppfi nR*k}
where R:‘ denotes the nonnegative orthant of Rk. The shaded regions in Figure

e & s 8 .
1A and 18 illustrate I(fi) and E(fz)i respectively, for the functions in
Eqn. (3). The Newton fromtier is defined as the following polyhedron:

defined as the following polyhedron:

r (f‘) = {the set of all closed faces of the
polyhedron I:_ (fi)} .

Again, Figure 1 shows clearly the Newton frontiers for fJ and fz of Eqn. (2).

G ST

%
Let P be any (k-1) dimensional plane which separates the origin from all
e!ements of the set SCR® and let P* denote the closed half-space on the
side of P which includes S. The convex envelope of the set S with respect
to the origin is the intersection of all such half-spaces P*,
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Let V denote the volume of the subdomain of the nonnegative orthant in
gk lying below the Newton frontier ;(fi)’ ¥j denote the (k-1)-dimensional
volume under the Hewton frontier on the jth coordinate hyperplane, ij
denote the (k-2)-dimensional volume on the coordinate plane orthogonal to
the jth and &th basis vector, and so forth. Then the Fewtom muwmber v(r) of T

is defined as:

Wr) = K- (kDT Vo4 k) T V-es (D5 L (8)
j=l,k 4 j=1,k\ 2
221,k
(j.<z‘)

§ .
Consider for example the polynomial fl in Eqn. (3). In this case k=2, and

Eqn. (8) becomes:

v(?f;) - 2zv-u(v,+v2)+1 . (9)

Now V is just the area under the Newton frontlier and is equal to
V= -;-xle = -3-; V‘ = 1 while \l2 = 3, Substituting these values in Egn. (9)
gives:

virg') = 0 . (10)
1
Similar]y for f;

v(rg') = 21(-;--1-3)-1!(“3)4-! = 0 (11)
2

The Newton number is defined somewhat differently for the system of
Eqns. (1). For such a k-dimensional system, the mixed Minkowski volume U
is defined as [18]:

- k=1 _qyk=2 < :
U= (DT v (s) 4 (-1) P V(S8 + oo+ v (54 45,)

i=i,k i=l,k

g=1,k N
i<q (12



57

Here Vk(S') is the Euclidean volume under the Newton frontier (fi)' To
find Si4-Sq, one simply multiplles the polynomial§ f! and fq and considers the

Newton frontier of the resulting polynomial. Similarly, to find S‘+...+Sk,
the Newton diagram of the product fl.fz."'fk fs considered. Then, the Newton
number for the system (1) is v = U.
Now that the required concepts have been Iintroduced, a central theorem
can be stated:
Theorem [Bernshtein, 18]: The Milnor number uf(EO) is
greater than or equal to the Néwton number u(r(f)). The
Hilnor and Newton nuébers are equal apart from a measure
zero set of parameter values of the polynomials f; through

fk (a degenerate case). In @ degenerate case, the Milnor

number Is greater than the Newton number.

As an example consider the system given by Eqn. (3). Equation (12) in this

case is:

U = =V,(s,) - Vy(S,) + v,(5,+8,) . (13)
Clearly

V() = 3e1+3 -3 ’
and

V,(s,) = 213 = .

Finally to find S‘i-Sz one needs:

2 3 6 7

ot 6 7
f‘-fz = 2x1 + % + Zx‘ + Xy 3x2 - 6x2
(14)
-Sx]xz3 + 2x|2x2h % hx,x:- x‘z x23- 31‘]5 x23 .

The Newton diagram of this polynomial is also presented in Fig. 1, from which

1
VZ(S‘+52) = E'Z' 6 =6 a (‘5)
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Then Eqn. (13) becomes:

! @ = -2 -.3-. =
U v ) 2+6 3 ® (‘6)

According to the Bernshtein Theorem, this implies that, unless the
system Is degenerate, the multipiicity of the zero solution of system (2)
is three.

in many problems of interest In chemical engineering, the Newton aumber
is unity. Then, according to the BernshteinTheorem, steady-state bifurcation
{s not possible unless a degenerate case occurs. Because of this Importance

of degenerate situations, useful degeneracy conditions are next presented.

Degeneracy Condition

The Newtonian principle part of a polynomial f‘ Is nondegenerate If and

only if for each closed face 4 of the Hewton frontier the Laurent polynomials

afi af'
X3 -5;— 9 eoe g xks';;
8 4

do not vanish simultanecusly. If the dimension of A (dim(4)) is s and the number
of points of the set suppf' on A is equal to s+i, then the Newtonisn principal par
nondegenerate on A for any nonzero values of the coefficients of fi[17]‘ The
nondegeneracy condition for the case dim(A) ® $ and with $+2 points of the set
suppfi on A will be expiicitly developed next.

Without loss of generality one can admit that dim(4) =s = k~1. Then the

restriction of f‘ on the face of the Newton frontier, denoted flA' can bewritten as

@ )
=0 -
@ 1
f!A GgX ¥ ...+ X (17)
& h
where Bos ccop M, € Z". There exists & set (do' voey dk) of integer numbers

with no common divisor, unique up to a sign, which satisfy the system of k

equations Im kel variables:



dgMg*+ -co*dm, = 0 . (18)
m M .
Let Z, = =0, ..., Z, = x = and define the Lagrange function
d0 dk

L(Z,2) = agZy + *cc + o7, + A(1-2, ol ) . (19)
The function fiA Is degenerate on A If and only if the system

oL oL

3% 37 - 0 (20)
has a solution [17].

Writing explicitly the system of Egns. (20), one obtains

GOZO = ldo

"""" : . (21)

aka = Xdk

zdoo o0 ozdk a 1
0 k :

This system has no solution if at least one of the numbers di is zero. However,

for nonzero d.,system (21) has a solution if and only if [17]:

d d
:Q)o. .:E)k -1 22
@ o

This procedure may be generalized for the case in which there are more than
$+2 points on the face 4.

When considering the system of Eqns. (1), one should check for degeneracy
not only on each individual Newton frontier of f‘, f= 1, ..o, k but also on
the Newton frontier of si + Sq. cens Sl + Sz L JERRIR sk . Uﬁless the poly-
nomial coefficients satisfy the degeneracy condition on at least one of these
frontiers, the Bernshtein Theorem [18] guarantees that'the multiplicity of the

solution to the system of equations is equal to the Newton number.
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For the example system (3) (see Fig. 1), one can easily see that k=2
and s=1 and that there are only s+ 1 = 2 supports on the faces of the Newton
frontier for f; and for f;. Consequently, degeneracy ls possible only on
the frontier face of the f;-f; Newton diagram. The monomials that can give
rise to degeneracy in this case have supports with Mg» Mys and m, gliven by
(2,0}, (1,3) and (0,6), respectively. Using these in Eqn. (18) gives do = 1,

d; ==2, and d, = 1 so that the degeneracy condition (22) in this case becomes:

2

2
haja, - e = 0 . (23)

The coefficients of the Newtonian principal part in Eqn. (14) (uo- ZG,u‘-'-Zé -3

02'=3) do not satisfy Egn. (23) unless 6.= 3/2. Consequently, unless & = 3/2,

the system is nondegenerate, and the multiplicity is éindeed three (equa! to the

Newton number (Eqn. 16)). For & = 3/2, the multiplicity exceeds three.
Although the theory has been presented for fl’ ecep ané fk polynomial

functions, all the results apply for any function that can be represented near
the solution ;10, ceey EkO by @ Taylor expansion {or even a Laurent expansion)
[20]. This extension is justified by the "filtering out' of all supports
above the Newton frontier: these do not influence the multiplicity of the
solution [21]. Thus suppose the number of steady-state equations is reduced
to two.

9;(xpoxp) = 0

(24)
9 (xpsxy) = 0
where 94 and g, are not polynomials. Taylor expanding one obtains:
G, ,%x,) @8 == o x. 4+ =] ¢ x, +0(x") = 0
171772 ax, 0 1 3x, 0 2
) 29, 25, - (25)
52 (xpexg) = "‘1*‘a'x'2'°"‘2*°(") =0 .
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If none of the first partial derivatives vanishes, there is a possibility

of degeneracy. This degeneracy occurs in the Newton polygon of §1-§2 when

LN Y TR )2
ax X X 9%
1lo 2 g 24p Tlo
- Egl 392 . 391 o agz (26)
ax1 ax1 0 3x2 0 axz 0
3g 3g 3g ag, | 2
= ——l o-—-g- -——l -——3— o
ax! axz 0 axz o ax, 0
or
¥, 82 _| 2 0 (27)
ax} 0 axz 0 ax2 0 axi 0

which indicates that the determinant of the Jacobian is zero, a necessary

condition for bifurcation according to [13].

Two=-Dimensional Case

The Newton polyhedron approach becomes particularly simple in the case of
only two algebraic equations. For this reason this situation deserves special
consideration. Consider the system:

fl(xl,xz) = 0

(28)
fz(x],xz) = 0

It is assumed that transfer of origin has already been made so that the system

has the solution Xy =x, = 0. In this case k = 2. Writing each fi in the forn

of Eqn. (2) gives:
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2 1
Z
Ly (29)
f, = 2: @ L
2 N,
2922 2

Construction of the Newton frontier will first be explained for a proper
Newton diagram (monomials x? and xg appear In the polynomial). Simply place
a ruler along the xz-axis. Then rotate the ruler counterclockwise, centered
at the support corresponding to the lowest power monomial of the form xg,
until another support Is hit. Continue the rotation In the same sense with the
new support as a center this time. Repeat this change of center and rotation
step until the ruler hits a support on the x1-axis. S is the shaded region

beneath the Newton frontier. Application of formula (8) yields:

v(Tl) = 251 -ay - 81 + 1

(30)

v(ri) = 25, -a, = B8, + 1

where By Gy and 81, Bz are the integer powers of the supports on the axes.

The Newton number for the system (28) is given by (from Eqn. (12)):
ve U = S(ff,) - s(f) - s(f,) . (31)

Thus all that is needed is the area under the Newton frontier of f1,fz and
fl-fz. Arnold [19] has proven that the Newton number Iin the two-dimensional
case may be calculated immediately using the formula:

v = min(alsz,azﬁl) | (32)
Thus, for system (3),

v = min(3-1,1:3) = 3 .

Before any conclusion about the multiplicity of the so!qtlon Is reached,

the system must be examined for degeneracy. Each face of each Newton diagram
must be checked for degeneracy. Consider any face 4 of the Newton diagram in

Fig. 2. The dimension of the frontier Is clearly k=1 = 1. Thus If on a face
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of the Newton frontier there are only two supports, degeneracy is not possible.
If there are three supports, the conditions summarized In the previous section
are applied.

Finally, for generality, the case of improper Newton Diagrams should be
considered. Arnold [19] has suggested that In this case oﬁe can '‘close’ the
Newton diagram by artificially adding monomials xlp' and/or xzp2 where needed,
taking Py and Py sufficiently large. As an illustration consider the

polynomial
glu,v) = u3 + uzv + uv2 . . (33)

The corresponding Newton diagram with three supports is portrayed on Eig. 3.
The Newton diagram is clearly Improper (there Is no monomial fnvolving v only).

Thus consider

glu,v) = u3 + uzv + uvz + v6 (3L)
where § is sufficiently large. The Newton number of this polynomial is:
vig) = 255 -8 -3+ 1
§-2
2(T+2+2)"5'3+1-‘0 (35)

independent of §. Then v(g) = v(g) = &.

APPLICATION 1: REACTION BETWEEN TWO ADSORBED SPECIES

Consider the reaction sequence:
ky
A+ 8" =—= AS!®

B+ §' =—=B8S® (36)

AS' + BS® —= AB + 2§'
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taking place in an isothermal, fsobaric CSTR of residence time <. Assuming
mass action kinetics and introducing the dimensionless variables and parameters

defined In the Nomenclature, the steady-state balances are

- ;‘i‘(l -;3';51) + 3233 = (xg=y)) = 0 (37.1)
3% (1-%;-%,) + &%, - (2~ uy)) = 0 (37.2)
Gy%, (1= %y = %y) = 3,%; - §%;%, = 0 (37.3)
8y%, (1= %y =Xg) = &%, - 8%3%, = 0 (37.4)

The first two equations may be solved In terms of il and iz to obtain

U
n; - ‘ - 2 3.. - . (38)
!+a‘(1-x3-x,‘)

' u, + a;x
R, = LA : (39)
l+c3(i°x3°xb)

Substituting these formulae in the last two steady-state equations (37.3 and
37.4) and defining deviation variables from a solution (i3o'iho) of these two

equations

Y' = x3 - x3o

'2 =® ;h - ;bo ®
one obtains
hy(9,,9,) « h ¥ ¢ h ¥ +h 0¥ +h v2en ,v2¢ h, v 2%
ALTELY A IRV LT AL S T A IR A S L ITA P
) (40.1
h‘77‘?2 e @
ho(9,,9.) ® h,,¥ 4 h, ¥ ¢h B ?24 h, 924 h,. ¥, 2y
AT 2171 ¥ Pog¥y ¢ hog¥ ¥y ¥ Rog¥y & hoy ¥y ¢ hye?, Ty
) (40.2
hay¥1% .

where the h;j are defined In the Appendix.
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The shpports of the Newton diagrams for h1 and hz are gliven In Fig. &
for the case In which none of the hU are zero. Depending on the values of
the parameters u,,. u,, EI, 62, 53, Eh' and 55, some of the coefficients of the
supports may vanish. Then, formula (32) can be used to determine the Newton
number of the steady-state solution in each case. The multiplicity of the
steady-state (§30, ;ho) will then be greater than or equal to the Newton
number. The multiplicity will be greater than the Newton number only in the
case of degeneracy.

Table 1 summarizes all the possibilities. In each case the Newton diagrams

of hl' h, and h‘°h2 are presented and the corresponding degeneracy conditions

2 i
are given. [f, for example, the system parameters are such that case H in

Table 1 is observed, the multiplicity is 2 unless

€D bh = 0 (&1)

2
23"24 = hys
[+

2 2
(1) hyglhyhyghog+hyy hyg #hythyy) = 0 (k2)

are satisfied. Conditlion (41) Is obtained If the Newton diagram for h2 is
degenerate while condition (42) is obtained If the Newton dlagram for h‘°h2 is
degenerate. If either Eqn. (41) or (42) is satisfied, multiplicity of the
steady state s greater than two.

As a part'lcular example, consider Uy -uz-l and parameter values &'l, Q. ,
&3, E“, and ES such that the steady-state solution Is §30';k0-°"' This

impiies that the parameters 5' must satisfy the equations:
0.8a‘ = 0.102 - 0.0las - 0.0083‘55 = 0 (43.1)

and

0.83; - 0.13, - 0.01G; - 0.0083;3; = 0 . (43.2)
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The coefficients h,, take on specific values by substituting X30 = X0 = 0.1

1
in the equations for hU in the Appendix. Since all the ﬁi must be positive,

13 Mzs Payo hzz are all different from zero for all admis-

sible a, (>0). Then the Newton number is 1 (case A in Table 1). The degen-

h h

one can see that h

eracy condition In this case is:

h = 0 (kb)

hy2 Moy

hygohyg =

or
a,'(u1+o.o7ala5+o.1as) + (u2+0.01cxlus) (03+0.07a3a5+0.1c:5+ah) (45)

which s not possible for positive E'. Thus the mu]tipl!clty of the steady

state is definitely one, meaning that bifurcation from the steady state

<

830

= X0 = 0.1 Is not observed for any poslitive E‘.

Multiplicity with Feedback Control

Steady-state multiplicity may be obtained in a chemical reacticn system
as a result of the introduction of a feedback controller (e.g., Ref. 16).
The Newton diagram approach s particularly useful for determining the feed-
back parameter values at which multiplicity (bifurcation) of steady states is

observed.
Returning to the particular case considered in Eqns. (43) above, assume no
that the feed concentration of A is manlpulated according to the measurement of

the concentrations of A and B in the reactor effluent according to

Uy = gyt b‘(x‘ -xm) % bz(x2°xzo) . (46)
The steady-state equations become
- 8% (1-%; = %,) + §%; - (&) -uyq by (&) = %yg) = by (Ry=Ryg)) = 0 (47.1)

- 53:2(1 "’3"‘&’ + 8R, - (xz-uz) =0 (47.2)
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R (1 =Ry Ry) = G %,y = 5 %%, = 0 (47.3)
B3Ry (1-%3=R,) = &%, - §:%3%, =0 . (47.4)

Defining deviation variables
b= FymEg o = ERy Xy 0 43 RytERy o 4 TR oR, (48)
and solving Eqns. (47.1) and (47.2) for ¢ and ¢, in terms of ¢3 and ¢, ylelds

BaXon (824 ¢,) + G b
o 03%20'%37 9 4% (43.1)

2 n E—
1+¢3(: -x3°-xa°-o3-o,‘)

Bikyoleg* o) + 14a3(1 =30 =%,0 =65 =¢,)
4 = — . (49.2)
) I bi ﬂ‘ (1 - 130 - x‘.o - ‘3 - “’)

Assume now Ujp = Yz © &i = &2 = 53 = Eb = 1 and &5 = 350/9. Eqns. (43) are then
satisfied for %30 = %yo ® .1 whereas %10® Xyg = 11/18. Next, ¢ &nd ¢, are
found from Eqns. (49) im terms of only bl and'bz. and substitution of these

formulae in the last two steady-state equations gives
hy(65,0,) = [-2337.32413120, +8.8b,1¢,
+[-226.16+ 145.8b, +23.2b,19,
2
+[1873.4 - 729b, - nsz¢3
2
+[171.6 - 81b, --zsbzij%i | (50.1)

+[-258.2 + b50b, - h0b 1054,

3
3

+[1102 - 700b{]¢30“2 = 7004,

- 92%’3;& [1750-700b‘]¢§ 1
3

= 740¢

4 7000503 = ©
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and

- 2 2
hy(63,6,) = <13743 - 1554, +704," +708," + 41430,

2 2 (50.2)
+ 700¢3¢,’ +700¢3 by = 0 .

The Newton diagram of 52(¢3'¢b) has supports at (¢3,¢“) = (0,1) and
(¢3’¢h) = (1,0). Consequently, in order to have multiplicity different from 1,

it is necessary that the coefficients of ¢3 and ¢y in h1(¢3‘¢h) vanish.* That is,
- 2337.32 + 1312b, + 8.8b2 = 0 (51.1)
- 224,16 + IAS.Bb‘ + 23.2b2 = 0 . (51.2)

These equations are solved to find b] = 1.7922; b2 = -1,6312 For these values

of b, and b2 the function h1(¢3’¢b) becomes

£ 2 2 . 2 _ 2
hy(05,6,) =584.49993" +72.867 ¢, +612.338430, - 7h0¢;" - 924,
2 2 3 3 (52)
+495.460057¢), = 152.540656, - 700¢37¢, - 700459,

-~ - -

The Newton diagrams for EI’ h2 and h1-h2 arepresented in Fig. 5. It is

clear that the Newton number is

v = min(12,2:1) = 2 . (53)
Degeneracy is possible due to F] and 5]-52. The degeneracy conditions here
are: ,
(1) (612.338)% - 4(534.499) (72.867) =0 for h, (54.1)
and

(ii) (80,076.36)(104,895.17) ~ (11,298.39)(174,487.651) = q
. (54.2)

for hl‘hZ

Since neither of Eqns. (54) is satisfied, degeneracy Is not possible, and the
multiplicity of the steady-state solution is two for b1 = 1,7922 and b2 = _1.6012
Thus, it is seen in this example that feedback may produce bifurcation of the

steady-state solution.

= Multiplicity due to degeneracy is also possible along the line by, = 101.072

b1 - 182.746.
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APPLICATION 2:  STEADY-STATE MULTIPLICITY FOR TWO AND THREE
PARALLEL IRREVERSIBLE REACTIONS OF ARBITRARY ORDER IN A CSTR

f. Two Reactions

Consider the reactionsg

(55)
B' - D
taking plece In an adiabatic CSTR. Assume the first reaction is of n-th order
and the second is of m-th order. .The mass and energy balances for the CSTR

system may be written in dimensionless form as

f
T =ug = Dajeug X, = 0 | (56.1)
1 - u, - Da -us’-x - 0 (56.2)
B 2B "2 , )
1 - +g.ua-uﬁx +a-Da-uﬁX & § (56.3)
Y T BRtPRy U Ry T BgtPe2%Yg 2 .

Definitions of all dimensionless quantities are given in the Nomenclature.
Multiplying Eqn. (56.1) by 8, Ean. (56.2) by By, @dding to Eqn. (56.3),
and solving for y yields

y=8,(1-u,) + Ba(““s) +1 (57)

Substituting for y in Egqn. (56) gives two nonlinear equations for up and ug*

!
- o'l -
1-u, -Daule’ ( T+ea(1-up) +ggl0 ‘”BT)- 0 (s8.1)

1
- {1 - :
1y, - Dazu:eyz( T+8,(1-uy) +8gli-up) )- o . (58.2)
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Assume now (UAS' uBS) is a solution to Eqns. (58). Taylor expanding the

exponential terms around (uAS' uBS) and introducing deviation variables

n] = UA = uAS H nz = UB - uBs ® (59)

Eqns. (58) may be rewritten In the form

e [] Il | 2
h, (“1’“2) = hyyny + hy,on, ¢ 0(n®) (60.1)

- w @ g . 2
hp(nyany) = hyy ny + hy, n, + 0(n%) (60.2)
where R;j are given In the Apéendix.

From the Bernshtein Theorem and Newton polyhedra for this system, since

@ § @ f

hIZ . hZI cannot be zero (this requires Upg OF Ugs = 1 which is not possible

for nonzero rate constants), Steady-state bifurcation is possible only because
] - §

of degeneracy. If hii and/or h22 are zero, (1,1) Is & support and, since the

Newton diagram of F‘-Ez consists of two faces each having two supports, degen=-
) ] )

eracy is not possible. Thus degeneracy is possible only when 511 '522 # 0.

In this case, degeneracy occurs only If

LI - - ¢

“hioeh., = 0 (61)

=g
*h 12 ° Mgy

Py ° hap
which is the same as the condition that the determinant of the Jacobian be zero
Employing the expressions for ;;j in the Appendix, Eqn. (61) may be
written
- - - - - ¢
- < - < -5 '
- - 2
¢ [ten(l- uAs)][l +m(1~ uBS)][l +5A(1 - uAS) + gB(l - UBS)] =0 .
This equation together with the steady-state equations (58) may be solved simul

taneously for Upgs Ugs and one parameter chosen as the bifurcation parameter.
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1f, for example, one sets n = 2, m = 3, Da; = Da, = 0.1, v, = 20, v,' = 10,
By = 1, leaving Bg free, numerical solution of Eqns. (50) and (63) for Upg
Ugs and BB gives

uyg = 0.8622 ugg = 0.9006 , Bg = -1.066 . (63)
Consequently for the reaction system with the given parameter values
steady-state bifurcation occurs for 8g = -1.066. Numerical simulations show
that the steady-state is unique for 88>‘-1.066, whereas for BB'<-1.O66, there
are three steady states. Thus, the multiplicity of the steady state (UAS' uBS)

= (0.8622, 0.3006) is 3 which is greater than the Newton number of unity be-

cause of degeneracy.

2. Three Reactions

Consider now the case of three parallel reactions of arbitrary order:

&

ky

A e €

k

8! —2-p (64)
k

EY —'-'3"F'

in this case, after eliminating y as above, the steady-state equations are

given by

: )
- $L] -
-y, - nh( 148, (1~u)+8 . (1=u)+ B (1=-u.)
1 up DaluA e A A B B E E° 0 (65.1"

1
- ] = ,
- - m Y ( 1+8,(1-u,)+8,(1-u,) ¢ 8(1-u))
1= ug = Dayug'e'2 A A’ ¥ "B 8 E B ., (65.2)
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]
- ] (‘ - )
1 - UE - Dasu: 373 ie BA(' bad UA) % BB(, -« UB) + GE(‘ b UE) @ o (65.3)
Expanding the exponential terms and introducing deviation variables as before

(n3 = uE""Es)’ Eqns. (65) become

F". (n‘onznﬂs) = B;I h, < F‘;z '\2 + 5;3 “3 + O(nz) (65.‘)
- B @ @ § - §

hy (nysng.ng) = hz', ng + hyy ny + hyy mg ¢ 6(n?) (66.2)
- ® - g = 3 =g 3

hy (mysngeng) = hyy my ¢ by my + Ry mg ¢ 0(n7) . (66.3)

where again the 5;1 are explicitly evaluated in the Appendix.

-
if 21l the hij are not zero then a sufficient condition for absence of
bifurcation at the reference steady state may be obtained. Fig. 7 summarizes

the Newton diagrams In this casse. Equation (12) in this case becomes
ve U= v3(s‘) +v3(sz) +v3(53) -v3(s'+sz) -v3(s‘ +s3) -v3(sz+53)

+ "3(51"52*53)'4 , (67.1)

4 "lo e L) -1
"3(51) = va(sz) = v3(s3) “3°3 1«1 c1=g

1,1 8
v3(s, *52) - vs(s‘+53) = v3(sz+s3) “5°3° 2:2 2«7 (67.2)

1.1.3.3 .12
V3(§y45,4S;) = g-5-3-3 3= .

Substituting in Eqn. (67.1) glives

1 1.1 8 8 8 27 6
*st*s*v- g er*eTcg ' -

Thus the Kewton number Is 1, and, unless degeneracy occurs, the multiplicity of
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the root (UAS’ Ugss uES) is 1. Bifurcation to multiple steady states from thi:
steady state does not occur, therefore, without degeneracy.
Next, conditions for degeneracy are considered. From Flg. 78 It s eviden:
that there are six supports at positions (2,0,0), (0,2,0), (0,0,2), (1,1,0),

(1,0,1) and (0,1,1). The degeneracy condition (22) for ;f ;) in this case

(co)dl)(a‘ )dl a, d2 (u3)d3 (uh)dk (us)ds (68)
VLAY (2 (2 (2) [(2) =, 6
%/ \% <"2) 4/ \%/) \%

h Y
where @, are the coefficients of the supports on the Newton diagrams, and

becomes:

do,..‘.,dS satisfy
2d2 * d3 + db s (

3+d5 = 0 (69)

2do + db + ds = 0

Zd, + d

and are [ntegers prime to each other. The obvious choice fs do = d‘ = d2 =

d3 a ds = d5 8 =f
Therefore Eqn. (68) becomes:
3938, *+ agaac = 0 (70
or

® § @ § @ § « § ®§ e § =@ ® § @ § -I-I\

h” th h“ hj! "zz h}z % (h” hj3 % h;3 h‘“)(hi2 hj3 + h33 hjz}
@ § @ § @ B @ §

-(h” hjz+h,2 hj,) = 0; (1,j)= (1,2),(1,3),(2,3) . (

Thus we obtain three degeneracy conditions. (f any of these Is satisfied, th

steady state Is not unigque.
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Considering next possible degeneracy of ;1-;2';3. there are 10 supports
in Fig. 7¢: (3,0,0), (0,3,0), (0,0,3), (2,1,0;, (2,0,1), (¥,0,2),
(1,2,0), (0,1,2), (0,2,1) and (1,1,1). Condition (22) becomes:

9 a; dl
feg * |
where
"9"’3%*2‘3"‘2"&""5"‘*6“0
49 +3d, + 2dg + 2dg + dg + d7 = 0 ‘(73)
d9 % 3d2 % 2d5 & 2d7 + dh + d8 s 0

which are satisfied by the prime Integers 63 = d~ = ds = d6 = d7 = da =

do = d' = dz ® =] ds = =3. Substituting these values In Egn. (72) gives the

degeneracy condition

27a30,353¢0,9g = coc‘czas? = 0 R (74)
with
: ag = Thiy hyp hig

@ § - § = §

- § - @ = 8
ay = hyg hyy Py ag = Thi3 Py3 Pa
- § w @ @ ® @ § = § g
ap = Py3 ha3 P33 5 Thyy by b (75)
I N og =5 =8
%3 * Zhll hjl P2 ag = Zhl3 hj3 by
o i o et o8 =8
Ck @ thz hjz hk! . ag @ Zhii hjz hij

where the Indicated sums are over all possible triplets (1,j,k);-0,J,k = 1,2,3.
Hence, unless one of the Conditions (71) or (74) s satisfied, the solu-
tion (“AS’ Ugg s uES) is unique when all of the R}j are nonzero. If, on the

other hand, one of Eqns. (71) and (7&) ls satisfied for some parameter values,
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then steady-state bifurcation Is guaranteed for these parameter values. |f
L]

some of the hlj vanish, the Newton diagrams must be constructed for the case

involved, and degeneracy conditions must be obtained on every face of the

Hewton frontier.

CONCLUS I ONS

The Newton polygon approach Is a very powerful method of determining
the points in the parameter space at which steady-state bifurcation occurs. |t
is an extremely simple method in the case of two algebraic equations, since
only a simple geometrical construction is required. The method as presented
is general and applies for any aumber of steady-state equations. [f the syster
cannot be reduced to less than four algebraic equations, there are practical
limitations since it is hard to visualize & Newton polyhedron in four or higher

dimensions. Still, In such a case, methods of algebraic geometry may be used.

Keller's approach [13]is likely the method of choice for such problems.

For systems that can be reduced to two or three equations, the Newton
diagram analysis has another major adiantage; Steady-state multiplicity
depends only on the supports on the Newton frontier, that is, on certain
leading order monomials in the steady-state equations. Unless degeneracy
occurs, the coefficients of the supports do not matter: only the structure
of the equations, as represented by the Newton frontier supports, influence
multiplicity. All systems that possess the same Newton frontiers have the
same underlying structure. Differences In "higher order terms' (l.e., in
monomials corresponding to supports not in the Newton frontier) do not alter
the multiplicity properties of the singularity under study. * Thus the Newton

frontiers provide a normal form for a general class of algebraic systems.
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in the Newton polygon approach, one does not needvto choose a priori a
bifurcation parameter since the conditions for bifurcation are written in
terms of all system parameters, thus defining a hyperplane In the parameter
space along which the bifurcation occurs. One can then easily see which indi-
vidual parameter is a convenient choice for @ bifurcation parameter for
computational studies or other analyses. This property is particularly importa:
for purposes of design as in the case of a system with feedback. The method

should contribute significantly to analysis of steady-state multiplicity in

chemical engineering systems.



NOMENCLATURE

Gl

A,B,AB
A',B',C,D,E*,F

b],b
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coefficient of monomials In Egqn. (2)

chemical species in Application 1

chemical species in Application 2

feedback parameters In Eqn. (46)

concentration of species | in Application I (mole/cmB)

maximum possible concentration of adsorbed species in
Application 1 (mole/cm3)
concentration of species | In Application 2 (mole/cm3)

specific heat capacity in Application 2'(_ cal >
mole-cm3

sequence defined in Egn. (18)
: Damkchler numbers.in Application 2

activation energies in Application 2 (cal/mole)
functions defined in Eqn. (1)

defined in Eqn. (17)

defined in Egn. (33)

defined in Egqn. (34)
defined in Eqn. (25)

defined in Egqn. (24) U

enthalpy (cal/mole) in Application 2; H = —

pc
s

defined in Eqns. (40)

defined in the Appendix
defined in Eqns. (50)

defined in Egns. (60)
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Bij defined In the Appendix
k dimension of system (1)
K, rate constants In Application 1 (appropriate units)
ii rate constants in Application 2 (appropriate units)
1,m,n orders of reaction In Application 2
L Lagrange function defined in Eqn. (19)
m, defined in Eqn. (17)
P; powers of mpnomials
q flow rate in Application 2 (mole/sec)
3 k‘ch(cO. CAS. -CBS') - kZCAS. (Appli. 1)
ry k3c8(c°-cAs' = Cgg' ) = kyChd'  (Appl. 1)
r3 kSCAg °a§ (Appl. 1)
R" n-dimensional space of real numbers
s, defined in Eqn. (12)
s dimension (A)
s areas under Newton polygon
s! catalytic site In Appl. 1
t  time (sec)
T temperature in Appl. 2 (0¢)
Ta-l»HTc
T =T reference temperature in appl. 2 (9¢C)
U | mixed Minkowski volume defined in Eqn. (12)
Upslg,up = %%3- dimensionless concentrations in Appl. 2
UpssUgs Ygs steady-state dimensionless concentrations In Appl. 2

feed concentrations (dimensionless)
u

InApp‘. i; U 8--A- . uz-—i

1 Co 0

YysYasYyg



Greek Symbols

¢ _,l'
73(‘ v)

a,a,,8,

G]‘ [+

e L 1

[« ]
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heat transfer coefficient in Application 2 (cal/mole 0¢c)
volume of subdomaln of positive orthant
defined in Eqn. (8)
defined in Eqn. (8)
reactor volume in Application 2 (cm3)
monomial in Eqn. (2)

deviation variables in Egn. (2)

o
dimensionless concentrations in Appl. 1: ;i = El

0
; dimensionless rate constants in Appl. 2

dimensionless temperature In Appl. 2

k dimensional set of Integers

monomials In Egqn. (19)

powers of monomials X,

dimensionless rate constants in Appl. 1: &' =k Cor
a, = sz ° 33 = k3C°t s @ = kbr R a5 = kscor
powers of monomials %,

(-AHi)Cio

dimensionless heats of reaction in Appi. 2: B8, =
i pcme!l+r

dimensionless activation energies im Appl. 2; Y, = i

convex envelope defined in text
Newton frontier

parameter in Illustrative example (Egn. 3)
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~ face of Newton frontier

heats of reaction in Appl. 2 (cal/mole)

deviation variablies in Appl. 2

dimensionliess time in Appl. 1
Lagrange multiplier

Hilnor number

Newton number

variables in Egn. (1)
density in Appl. 2 (mole/cm3)

reactor residence time in Appl. 1 (sec)

deviation variables in Appl. 1
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APPENDIX

1
12
13
hig
15
16
17
21
22
23
hay
25
h26

27

The hij in Eqn. (kO) are:

& ~u.3, = G,0:.Xa ¥ 26,0 ;'2 - G, = G.X
171 15740 15 40 2 5740

e lD - BB R 4 28 ERanRy * B R - ok
18y © 8395%3g ¥ 2040gX3g% ¥ 3395%30 T 35¥3g
u.' usx‘.o

%1%5%30

= =040 + 201a5x3°'+ 2u]a5xho - as-

- - - e - - - = T | - =
= -u2u3 - G3GSX“O + 2“3“5“30“&0 + QBstho - anhO
- =2

= -uy8, - 038K, ¢ O30:Xqg + 203?5’30;k0 - Ek - 05230
= aja5X,4
= 93%5%30

- e @ @

= -3385 + 25355§30 + 23305%,4 = ag
8335
*3%5
The R"j in Eqns. (60) are given by:

PRl U ¥18a(1 - Yps)
Uas &

7185 (1 = ups)

62
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Y28, (1 - ugg)

& 8

B =
21 52
; ] - -y - m(' - UBS) YiBB“ - uBS)
22 G * Z
BS 8

where § = 1 + BA(l '"AS) & BB(I -uas) .

The h;j in Eqns. (66) are given by:

fe g M) 8 (1 -
2

i @
12 Je

w § Y;BE(‘ °uAs)
13 JZ

8 -
- 2280t
21 52
‘ m(1 - uge) 585 (1 - uge)

hoy = =1 = +
Ugs J2

23 2

S0 V380 ugg)
31 7z

32 ;2

hy3 = -1 - + 3
Ygs J

where y = 1 + BA“ '"AS) % 88(1 -uas) + BE(I '-uEs) .
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TABLE CAPTION

Table 1: MNewton diagrams* and Newton numbers v for Application 1.

Footnote to Table 1:

% Only the supports of the Newton frontier are given.



Table 1

Coeticents of Suppores

22!
By. B2, Bz P2z § O

B2 % O By, by hyp 4O

gy 204 By, g hap 10

g ¢ O iy, ha kpp 40

0. Mg hy Ry $0

by 2 b2 20, M2, hy 40

i =Py 0, By, Rop 40

bs2

“a'”a'gé "ﬂs";zfg

Bpt g 0i by by 0

we

sr’— s

TT YT

e

(-]

ol ol o

.

O

‘-

©

7= 7

[+

y s thme\" oy Condiion (y » )
] ‘.\
& Byhpz-Rghag = 0
z
lt&
]
f&‘
0125
2
]
Q)
]
o2
2
§
T2
2
§
X
Bopypag- i <0
@&
25 (yhighs ¢ A 123 + Py hag)*O

BgPaq- Puhz ° 0
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Table 1 (continued)

By s By 20y By, py 1O

i
Row « Bah =0
oh}‘»zu hghap - Piahas

hef - Oy e 0

7
f——ef—g(?‘—

$ ?\ : @
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Two-dimensional Improper Newton diagram.
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CHAPTER 4 : VERSAL MATRIX FAMILIES ', NORMAL
FORMS AND HIGHER ORDER BIFURCATIONS
IN DYNAMIC CHEMICAL SYSTEMS
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INTRODUCTION

Numerous experimental observations of autonomous oscillations in chemical reac-
tion processes [e.g. 1-5] have motivated significant recent interest in the appropriate
eorrespdnding mathematical models. Major objectives of research in this connection
are the form of kinetic description and the particular parameter values required to
obtain & certain type of nonlinear dynamic behavior. It has been suggested that study
of this problem may provide useful insight inte the underlying mechanism which is
manifested by nonlinear oscillations and more complex dynamic phenomena [e.g.1].
Recently, intentional destabilization of steady-state process operation by application of
feedback control and observation of the resulting dynamic phenomena has been pro-
posed ag a strategy for identifying and evaluating nonlinear process models [6,7]. In
this paper classification, reslization and locel description ef monlinear dynamie
behavior near a destabilized steady-state will be considered. The results have impor-
tant implications for process and control systems analysis and nonlinear dynamie

model development and application.

A large class of dynamic chernical process systeme can be described by a set of ordi-

nary differential equations of the form

kel W
where % ig a vector of state variables and v is a vector of system parameters. Despite
the large variety of nonlinear models of form (1), £ is interesting and important to
note thet their observable bebavior is limited and can be categorized into a few
different poupﬁ. Examples of different observed cﬁarnct.eristle: include multiple
steady-state behavior [e.g. 2,7-13], existence of stable and unstable peﬁodic oscille-
tions [e.g. 1,7.11.12], relaxation-type oscillations surrounding multiple steady-states

[e.g- 7.11.12], complex oscillations [e.g. 14]. and chaotic oscillations le.g. 15,16].
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In many circumstances significant understanding of such nonlinear phenomena can
be gained by considering the eigenvalue structure of the Jacobian matrix evaluated at
some steady-states of System (1) and “he dependence of this eigenvalue structure on
gystermn parameters. Although study of steady-state eigenvalue structure leads only to
conclusions about the local stability properties which derive from linearized model
behavior, analysis of the bifurcations that arise as some system parameters are varied
can lead to conclusions about the nonlinear structure of the system. At bifurcation,
even locally, nonlinear terms cannot be neglected in the process dynamic model. This
fact will be explicitly shown in the next section in connection with the theory of normal

forms.

Bifurcation imi:lies a change in the local dynamics brought about by variation of
parameters. A central concern of this study is the number of parameters which must
be varied in order to obtain different types of bifurcations. Subsequently, it is impor-
tant to investigate stratification of the parameter space with respect to eigenvalue
structure [7]. Knowledge of the bifurcation boundaries defines parameter sets for

which the qualitative structure of the system dynamics is locally unchanged.

One can use these mathematical tools for two purposes. The first is to understand
the sensitivity of different dynamic phenomena to the physical parameters and func-
tional forms used in the model. This is using bifurcation theory as an analytic tool.
The second is to design experiments to achieve bifurcation for the purpose of dynamic

model development [7]. This is using bifurcation theory as a constructive tool.

In the next section it is seen how a system model can be transformed into a local
normal form when the system is close to bifurcation. This provides insight to the ques-
tion of the minimum dimensionality of a nonlinear model which is necessary to
describe adequately the local nonlinear system dynamics. The procedure for obtaining
the normal form of a dyhamic system is outlined together with the difficulties and

advantages of the method.
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Next, the important issue of obtaining and translating a certain eigenvalue struc-
ture for the system Jacobian is considered. The characteristic equation of the Jaco-
bian matrix and a different approach based on a general representation of the
parametric dependence of the corresponding Jordan form are used to investigate the
minimum number of system parameters which must be varied in different cases. The
characteristic equation approach is then used in an example of a consecutive-
competitive isothermal CSTR system with artificial feedback manipulation of the feed
concentration. Finally, the dynamics that arise on coupling two oscillating autocata-

* lytic CSTR's in parallel are considered.

BIFURCATION PHENOMENA

The different bifurcation phenomena that are summarized in Table I are based on
the structure of the Jordan form of the Jacobian matrix at a particular reference
steady-state of the system. Here, the term bifurcation means the appearance locally of
new dynamic features when a steady-state becomes unstable as some Jacobian eigen-
values enter the right-hand plane. As mentioned earlier, one can associate different
possible dynamic phenomena with particular Jordan form structures. In the sequel,

the current state of knowledge along these grounds will be presented [see 17,18].

Here it is convenient to focus on eigenvalue structure rather than Jordan form
structure; the two differ only with respect to the question of geometric multiplicity
corresponding to repeated eigenvalues. This is a matter of nontrivial importance.
However, since the geometric multiplicity is most often unity, one can assume for the
sake of preliminary analysis that a particular eigenvalue structure is usually associ-
ated with a corresponding particular Jordan form structure. After identifying bifurca-
tion conditions of interest for a particular system, the corresponding Jordan form

structure should be evaluated to verify this assumption.
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A D, bifurcation occurs when, on varying some parameter, a single ;eal eigenvalue
becomes positive. The steady-state becomes unstable and trajectories lead far from it
in a monotonic fashion. This bifurcation phenomenon also may involve (and usually it
will) steady-state bifurcation. Thus, as the steady state becomes unstable, other
steady states usually appear, and exchange of stability occurs. Typically, trajectories
lead to one of the new stable steady states. Exchange of stability under such condi-

tions is implied by index theory [18].

A Dg bifurcation occurs when a complex conjugate pair of Jacobian eigenvalues
crosses the imaginary axis as some parameter is changed. The steady state becomes
unstable, and p“eriodic solutions, which may be stable or unstable, appear. In the
former case, trajectories lead to nearly harmonic periodic solutions which are the only
stable structures in the neighborhood of the reference steady state. This is the classi-
cal case of supercritical Hopf bifurcation. It is also possible that on varying the
parameters the structure changes from a stable steady state surrounded by an
unstable limit cycle to an unstable steady state. This is the less common case of sub-

critical Hopf bifurcation.

Next, in the hierarchy of bifurcation categories (often called strata) is the case of F;
bifurcation. Close to an F; bifurcation point one can expect steady-state multiplicity
and periodic solutions of the relaxation type as well as of harmonic form. Depending
on the initial state near the reference steady state, trajectories can lead to different
steady states or to a limit cycle [7,17,20]. Notice that D, bifurcation can be observed
by a model of any dimensionality. D; and F; bifurcations, however, require at least a

two-dimensional model.

Fg bifurcation involves three eigenvalues crossing the imaginary axis. In addition to
the previous dynamic phenomena, one can anticipate that, close to an Fz bifurcation,

toroidal oscillations may occur. Fp bifurcation usually also involves steady-state bifur-
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cation. Such systems have been studied by Ruelle and Takens [21], Langford [22] and

others [see also 23].

Fs bifurcation involving two conjugate imaginary pairs of Jacobian eigenvalues can
produce complicated multipeak oscillations. Fg3 bifurcation does not involve steady-
state bifurcation. Finally, with G, bifurcation, depending on the type of manifold [24],

it is possible that chaotic oscillations arise.

It must be emphasized that the local dynamic features mentioned above in connec-
tion with different eigenvalue structures at bifurcation are the most complex that are
expected; simpler behavior is also possible. For example, a system exhibiting F, bifur-
cation may exhibit relaxation oscillations, harmonic oscillations, or escape from the
reference steady-state neighborhood near bifurcation. A G; bifurcation may produce
anything ranging from chaos to escape from the steady-state. Thus, a higher order
bifurcation increases the possibilities of local dynamic phenomena, but it does not
guarantee any particular type of dynamic phenomena. The Venn diagram in Figure 1
summarizes this point and the possible dynamic features near each bifurcation stra-

tum in pictorial form.

Consequently, in order to obtain toroidal or chaotic oscillations in the neighborhood
of the reference steady-state, the model dimensionality must be at least three. The
same conclusion also follows from the fact that trajectories in the phase plane for a

two-dimensional system cannot intersect except at singular points [e.g. 26].

The summary above shows how one can associate different possible local dynamic
behavior with the eigenvalue structure at bifurcation. Since such configurations can
be obtained with models of order three or four, it is clear that all different qualitative
characteristics like multiplicity of steady-state and different types of oscillations can
be produced by models of low dimensionality, Higher dimensionality is responsible for

fine tuning of system behavior which may not be observable due to measurement limi-
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tations and noise. The theory of normal forms very nicely explains why a model of high
dimensionality has an observable behavior similar to that of a low-dimensional model,
with only a few of the system modes playing an important role. The basic theory of

normal forms is outlined in the next section.

It should be emphasized that the conditions presented here for appearance of
different dynamic features refer only to local phenomena —in the state space near the
reference steady state and in the parameter space near the values of bifurcation.
Complex nonlinear features can also arise in other ways such as bifurcation from a

limit cycle leading to period doubling and eventually chaotic oscillations.

<

NORMAL FORMS

Given a system of the form (1), there is always a smooth transformation of variables
such that all trajectories close to a steady state are transformed to those of a simpler
system. The simplest form of a system that retains all characteristic (topological) non-
linear local features of the original system (1) is called the normal form of the system

(1) [17,26]. The normal form is generally a lower order nonlinear system such as

v =&y
()

where y(t)€E™ and m < n. The function g(y) typically has a simpler (polynomial) form
than the function f(x). The price that one pays for such a simplification is usually a

complicated nonlinear transformation of the form

y=p(x)
(3)

from the original state variables x to the "artificial” state variables y of the new system
in normal form. The parameters of the new system are in general nonlinear combina-

tions of the original system parameters.
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Suppose that the eigenvalues } of the Jacobian matrix § of system (1) ere divided
into two sets, K = {3 |Re()) = 0], and K" = {\;|Re(A) # 0]. Denote by m the number of
eigenvalues with zero real parts; L.e., the number of members of the set K. Then there
exists a linear transformation of system (1) such that the Jacobian ¥ of the new sys-

tem has the structure:

-[28
(9
where B is an mxm Jordan canonical matrix with eigenvalues A;,... Ay €K, Dis an (n -
m)x(n - m) matrix with eigenvalues Agsy....Aq €K", 0 is an mx(n - m) zero matrix and €

is an (n - m)xm matrix. Then, system (1) becomes

¥ =Br + X(x.2")
{5.1)

(5.2)
i the set K~ of eigenvalues is nonresonant,” the last system by formal change of

¥=0Cr +Dx" +X'(x.x)

variables

X =y +h(y)
(6.1)
=5 +b'(¥y)
(6.2)
can be reduced to the normal form on an invariant m-dimensional surface [28]
¥y =By +T(y.0).
(7

the invariant surface being given by " = 0.

¥ the set of all system eigenvalues is nonresonant (which requires that the system is
pot at bifurcation), the original system may be transformed by Eqn. (8) to a linear sys-
termm. I the set of system eigenvalues is resonant but the gystem s not at bifurcation,

T The ptu Tbe rtuple € = (x,.52,_K;) of eigenvalues is said to be resonant if & relationship of
ollowing form ex;ste among these eaxﬁenvalues {28]. = (1. £) Here, &, is any
exgenvalue in the p-tuple, I = (l Lo _lp). elements of 1 are non-negauve integers

and ), {, > 2 Clearly, bifurcation is a special case of resonance.
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transformation (8) does not exist, but the dynamics near the reference steady-state
may still be characterized by the linearized model. A certain model can, therefore, be
safely linearized when far from bifurcation, and its trajectories behave close to those
of the linearized system. Close to bifurcation, however, the walidity of the linear
approximation i restricted te smaller and smaller radius about the steady-state.
Exactly at bifurcation. the system model cannot be linearized, its trajectories being
equivalent only to those of & nonlinear model (Eqn. (7). the normal form) even for
infinitesimal radius (perturbation). The functions k' and h” in Eqns. (8) are found by
golving a so-called homological equation [28,27].

The theory of normal forms provides a formal method of model reduction retaining
the essential local nonlinear structm;e of a dynamic system. It is clear that only the
modes of the system close to the imaginary axis are important in determining the non-
linear nature of the system. As a result, by forcing a system to bifurcation, one can

find out much about ite nonlinear structure.

The major limitation of normal forms is the noninvertibility of transformation (8).
Thus, there are many systems of the form (1) that after transformation have the same
normal form. This fact limits the use of the theory of normal forms as a constructive
tool. However, forcing & given system model to bifurcation and knowing its normal
form gives insight to the possible qualitative dynamic characteristics of the system

when it is perturbed from the bifurcation point.

ATTAINMENT OF BIFURCATION STRUCTURE USING THE CHARACTERISTIC EQUATION

Any model of the form (1) that has eigenvalues of the steady-state Jacobian on the
imaginary axis is structurally unstable. That is, & small change in one or more param-
eter values changes the eigenvalue configuration, possibly the Jordan form block strue-
ture, and the topology of the local dynamics. In a “typical” gituation, the Jacobian has
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Do eigenvalues on the imaginary axis, but study of the effect of parameter perturbe-
tions from “etypical”, structurally unstable situations provides kmowledge of the
different structurally stable systems that can arise. The minimum number of parame-
fers that must be varied independently Lo obtain different structurally unstable forms
is considered in what follows using the characteristic equation of the Jacobian at the
steady state. As mentioned before, achievement of a particular eigenvalue
configuration does not guarantee a particular bifurcation stratum; that depends on
realizing & particular structure in the Jordan form of the system Jacobian. Conse-
gquently, parametric requirements for obtaining different Jordan block structures are
eonsidered in the Appendizx. It is shown there that if a pafticular Jordan block strue-
ture can be obtained, the number of parameters required is the same u the number of

parameters required to realize the corresponding eigenvalue configuration.

Consider the system (1). This system has a characteristic equation for the Jacobian

of the form

2+ &+ Fps® 2 - ¢T84+, =0. ®)

The coefficients &, of this polynomial of degree & are in general functions of the sys-
tem parameters v. Since bifurcations of different types imply vanishing of the real
part of one or more eigenvalues, different algebraic conditions involving the &, may be

derived that must be satisfied to obtain a certain eigenvalue structure. These are sum-

marized below.
L D, bifurcation
& =0.
(8)
One algebraic condition that may be satisfied by varying one system parameter.

ii. Dy bifurcation (Hopf)
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(i0)® ¢ (1) + F(iw)* 2 ¢ - o- + T y(i0) + 2 =0. o)

Separating real and imaginary parts, one obtains two equations. Eliminating e®, o
gingle equation should be satisfied by the coefficients &. Furthermore since ¢
must be positive, one obtains in addition an inequality condition. Variation of one
parameter can force the eguality condition to be salisfied, but this does mot
guarantee thet the inequality will also be satisfled Thus, in general, one needs to
consider variation of (at least) two parameters. It is presumed here that the sys-
tem parametlers varied infiuence the two conditions involved such that the condi-
tions can be satisfled !br some admissible parameter values. This will not neces-
garily be true for any two system parameters. More than two system parameters
may be required, and it may happen, if the system does not possess appropriate
structure, that no choice of parameters may satisfy the requisite conditions. Thus
the number of parameters mentioned here iz in some sense (see Discussion) &

minimurn value. Similar comments apply to all other cases in this list.

ifi. F; bifurcation

G=8u1=0.
' (11)
Two parameters are needed to satisfy these equations.
fv. Fp bifurcation
& =0

(12.1)

12)28 & Bl e --- ¢ =0.
ey ' (12.2)

As in the Hopf case, elimination of «® between the two equations which result
from separation of real and imaginary parts of Eqn. (12.2) gives eventually two
equalities and e single inequality, implying that, in general, it may take three
parameters to satisly the required conditions.
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¥. Fg bifurcation

In this case it is easy to see that two equalities and two inequalities should be

satisfied which would reguire two Lo four parameters.
vi. G; bifurcation

=Ty =% =0.
(13)

At least three parameters must be adjusted to satisfy these three equations.
R iz not difficuit to show that the number of parameters required to move a given
eigenvalue configuration from zero real part to real part equal to +¢ is the same as the
pumber of parameters used to cbtain the original arrangement on the xmagmary axis.
Thus, the parameter numbers determined above to obtain a certain eigenvalue
configuration at bifurcation are the same number of parameters needed to stabilize

that eigenvalue structure and to transiate it into the right-bailf plane.

EXAMPLE I: FEEDBACK PARAMETERS NEEDED TO BRING A CONSECUTIVE-COMPETITIVE
KEACTION SYSTEX IN A CSTR TO BIFURCATIOR

To illustrate how the different bifurcation conditions can be satisfied by variation of

parameters, consider the following reaction sequence taking place in a CSTR:

BJEEJ

Berkep.y
(19)

Assuming mass action kinetics, the transient species balances become
&E] . _g,[B)0A] - K] - LK) - [RP)

alE] _ 1
4B - £.0BA - LB - (B
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4T . g - KlENA] - L0e).

(15)
Introducing dimensionless quantities (see Nomenclature), Eqns. (15) become
= ¥y - - (¥ -w)
%‘= -a,%y - §F - up)
V4
—z= q,F-a¥7~-%.

The steady state equations are feduced to a gingle equation in X which is a polyno-

mial of degree three:

a;aex° + (2a;a0up + @) + @p ~ Use @)X" + (1 4 @yup — @)Uy —aeuy) = 0. an

For ug = &; = &g = 1, the steady-state for uy = 1 iz easily seen to be unique, and it is:

¥, = 0.532088, ¥, = 0.8652704, ¥, = 0.226882 8
18

with eigenvalues

=1.971782 « 10.382386 and -1.000000 . (19)
i8

Now consider introduction of feedback in which the feed concentration of A is varied
according to

Uy =1 = by(x - 0.532088) — be(y — 0.852704) ~ by(z — 0.226682) . (20

The characteristic equation of the Jacobian evaluated at the reference steady-state

is:
&® + (4.9256 + b,)s® + (7.9262 + 3.0482b,; — 0.8527b; + 0.4280bs)s

4 (4.0006 + 2.3198b; — 0.9841bg + 0.3074bg} =0 . @1)
i

The question then is what are the conditions for the different bifurcation phenomena.

Since the dimensionality of the system is three, the only possible bifurcation
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phenomena are: Dy, Dg, ¥y, Fz and G;. Lat

C; = 4.9256 + b,

Cs = 7.8262 ¢+ 3.0482b; — 0.6527bg ¢+ 0.4260bg

Cg = €.0006 + 2.3186b, — 0.9941by + 0.3074bg

Then Eqn. (21) reads

and Eqns. (8-13) in this case become:

L D; bifurcation:

{i. Dg bifurcation (Hopf):

fii. F; bifurcation:

fo. Fp bifurcation:

v. G; bifurcation:

£+CfeCes+Cy=0,

C,=G=0G=0.

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Substituting Eqn. (22) into the above conditions shows how feedback gain values

must be adjusted to obtain different types of bifurcation for the closed-loop system.

Conducting this analysis shows that, with manipulation of only one feedback parame-
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ter, only D, bifurcation is observed for this system. With two [eedback parameters
avallable, Dy, D; and F; are observed. Ths decrement diagram [7] for this case Is shown
in Figure 2 For other lymm; in which the inequality constraints mentioned above for
Dp and ¥y bifurcation are satisfled, it may be possible to obtain D and F3 bifurcations
by varying one- and two-system perameters, respectively. The present example does
not possess these properties. With three feedbacks, all of Dy, Dy (Hopf), F;. Fz and G,
may be obtained for this systemn. Higher order bifurcations cannot be obtained regard-
less of the number of feedback parameters because of the system dimensionality. As
mentioned earlier, the bifurcations obtained in closed-loop operation are expected to
provide sensitive information on the local nonlinear properties of the reactor.

EXAMPLE [Il: AUTOCATALYTIC REACTION IN COUPLED CSTRs

Consider the autocatalytic reaction

i<B

-8
(e8.2)
taking place in two {sothermal stirred tank reactors coupled in parallel. The coupling
may be effected by a membrane separating the two reactors which allows all species te

(28.1)

diffuse from one reactor to the other or as an external feedback control. Kumar et al.
[28] assumed an exponential dependence of the rate of reaction (28.1) en the concen-
tration of B. They found that if the reeclors are both In en oscillating regime but at
different operating conditions, the behavior of the system depends on the coupling
constant. Por large values of the coupling parameter, the reaclors synchronize,
whereas for small values of the coupling constant, each reactor oscillates with a
different frequency giving rise to a combined output of complicated waveform. They
found that the interaction caused no effect on the gualitative waveform of the concen-
tration oscillations in each individual reactor. The stiffness of the system model with
the assumed exponential nonlinearity did net allow for a thorough parametric study of
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possible dynamic behavior. Gray and Scott [28] assumed different mass action kinetics
to describe the autocatalytic reaction and found that if the reaction is assumed to

proceed according to
i.8%sg

pkee
(30)

oscillations occur in a gingle CSTR for some parameter values. The dynamics of a cou-
pled isothermnl reactor system in which reactions (30) occur are analyzed next.

The dynamic system is described by the following material balances

4B - o ey o BEZBE o i -

(81.1)
Bk o .- (Bl - [8h _ (B
=e= BALBY + - Bs[B] + &((Bh - (B (512
dik _ .- [A}g - (Al -
—5 =~k [AR(BI + A a,([A} ~ (Al 5139
ABh g apey+ PE-1Bh oo 4 a8l -[0h).
dt ta (31.4)

Assuming [A}f = [A}f end [B)f = [B]f and introducing dimensionless variables (see

Nomenclature), one obtains

& _ G -

‘a‘t—e "&5292 $1=2¢1, (2 g) (32‘1)
L =829t - aag Y ¢ 1 -9 + (@ -F) 522

a@ _ g =~

-d_t—- -6129' +1-2¢ o) (! n (323)

a® _ - - -
T g 20 -8 PR +1 -0+ 5:(9-9). 24)
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Simulations were performed for &; = 1.8, 83 = 0.45,8; = 1.0, % =0375 and g = 15
parameter values for which each reactor osciliates at different frequencies. The rate
constants for reactor 1 are Jarger than those in reactor 2, a situation which might be
realized by operating reactor 1 et higher temperature.

Varying the coupling constants f;, and fg, different behavior was found. Referring to
the f; —fs parameter space fllustrated in Figure 8, four distinct regions exist. In
regions 1 and I, there iz a single unstable steady state for the coupled reactor system.
In regions Il and IV there are three steady states. The two additional ones arfse from a
lirnit point bifurcation which occurs along the line (a). One is unstable and the other is
gtable, such that all trajectories for f; and fp in regions Il and IV lead to the single
stable steady state. This steady-state corresponds te high 8 concentrations in the
“cooler” reactor (reactor 2) and low B concentrations in the “warmer” reactor (reactor
1). One can easily see the practical significance of this resuit. Coupling two oscillating
reactors, stable steady-state behavior is obtained for some range of values of the cou-

pling gains; the oscillations have been quenched.

The line that separates regions ] and III from regions Il and IV represents the locus
elong which the eigenvalue structure for the unstable steady state éhanges from that
of two complex conjugate pairs with positive real part to that of a gingle complex pair
with positive real part as a pair of eigenvalues crosses the imaginary axis along line (b).
This explains why for large values of f; and fz the two reactors synchronize. When {,
and fp are in region II, the coupled reactor system oscillates with a frequency near the
imaginary part of the single complex conjugate pair with positive real part.

In region I, oscillations of interesting form arise as the system now has two basic
frequencies influencing its dynamics. In Figures 4-8. the form of oscillations for three
eets of values of f, and fp In region 1 are shown. The steady-state values and eigen-
values for each of these parameter sets are shown on Table Il. For (f,.fg) = (0.01.0.01)
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{Figure 4) the “hot” reactor oscillations are single-peak regular oscillations while the
“eool” reactor osciliations are of different frequency, multipeak and of different form.
There is a period of about 12.2 time units evident. For (f;£5) = (0.01.0.1}) (Figure 5), the
eeciliations of both reactors are modulated, but again the effect is more dramatic for
the "cool” reactor. For (f;.0g) = (D.l.b.di) (Figure 6). the “hot" reactor is agc:ln only
slightly modulated with a dramatic influence in the form of oscillations of the “cool”

reactor.

The eigenvalue structure of the steady state in region 1 suggests that the system
may be viewed as resulting from an Fy bifurcation. Fixing (f;.fg) = (0.01.0.1) and vary-
ing only two parameters. &; and §;, the steady state changes as well as its eigenvglue
structure. An Fg bifurcation point is found at {(&; = 1.7488, &, = 1.1841). The steady
state at these values is

2 =0.154, §,=1.768. & =0.180, €,=2.003.
with eigenvalues:
Mg = 26.0323111L, Rg, = £5.0001481 .
For larger values of a; and &;, the reference steady state is stable. The l;;'; bifurcational
structure was achieved here by varying only two parameiers because the system

already had the necessary underlying structure. Other systems may require up to four
parameters o obtain an Fg bifurcation.

CONCLUSIONS AND DiSCUSSIOR

It bas been seen how a certain dynamic system can be brought to bifurcation by
introducing feedback. The theory of normal forms provides insight into why & system
at bifurcation manifests distinctive nonlinear features. This supports previously pro-
posed strategies for gystem model identification and validation based on experiments

pear bifurcation conditions. Also, normal form theory allied with bifurcation theory
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ghows that low-order models suffice in general to describe a broad class of nonlinear
phenomenea. Bringing a system to its normal form involves a complicated transforma-
tion, which makes this procedure not very tractable in general. Furthermore, gince
this transformation is not invertible, it is impossible to use the normal form of a sys-
tem as & constructive engineering tool, for example, to establish a control law or per-

form an optimization.

However, transforming a given model to normal form, or simply studying the general
normal {orm corresponding to the bifurcetion Jordan block structure of & given mc;del.
provides a convenient, locally topologically équjvalent. low-order nonlinear mociel which
can be used o explore possible dynamic phenomena of the original model. This
approach will be illustrated in future papers on feedback control loops in enzyme-
catalyzed reaction sequences and periodically forced chemical reactors.

In the above discussion, the number of parameters in the characteristic equation
which must be adjusted to achieve different eigenvalue configurations was addressed;
the Appendix gives a similar analysis based on manipulation of entries in the Jordan
form of the system Jacobian at the reference steady state. As noted earlier, the
number of parameters involved for each bifurcation stratum is the same from either
the characteristic equation or the Jordan block perspective. There are, however,
several subleties which should be mentioned now concerning the question of the

required number of parameters.

First, consider the case whers one of the required constraints is an inequality con-
glraint. This implies that it is satisfactory, from the point of view of obtaining & given
elgenvalue or Jordan block structure, thet a certain parameter simply be positive or
pegative. This is not an especially demanding condition and it may be met for many
systems. Then the inequality constraint is not active, and one can obtain the desired
elgenvelue configuration without regard to the inequality constraint and with conse-
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quently one fewer manipulated parameter. For example, the Dy (or Hopb bifurcation
case In general requires two parameters. However, since one of the constraints
involved iz an inequality, Hopf bifurcations have been observed on varying a single
parameter for many reactor models. This analysis shows that {n some cases, by vary~
ing & second parameter, a system which does not exhibit a Dy bifurcation with ene
parameter can be made to Hop! bifurcate. This was the case for the first example dis-
cussed above. The second example, on the other hand, shows a case where, the two
inequality constraints being automatically satisfled, variation of only two parameters

guffices to obtain an Fg bifurcation.

Types of bifurcation of higher order than Dp usually require precise manipulation of
more than one parameter. Achieving an F; bifurcation requires that two parameters
be adjusted to precise values to satisly two equality constraints. This means that
dynarmic behavior characteristic of an F; bifurcation will generally not be observed
upon varying a single parameter. To find such behavior with cne parameter varying
requires substantial luck. To see that it is possible, however, consider two parameters
Py and pp and suppose that the values of these parameters which give the F, dﬁenvnlue
configuration are p; and ps. If by chance the value of the parameter pg is chosen near
the value of ps and p, is varied, when p, is near p;, eigenvalue configurations near the
F; configuration will arise. The eccompanying dynamic behavior may resemble that fer
an F; bifurcation. However, variation of p, above will not necessarily produce all possi-

ble different dynamic behaviors typical of an F,; bifurcation (Figure 1).

Another point that should be made {8 that although the distinctions between
different kinds of bifurcations described above are presented as sharp and clesr, this is
often not the case in practice. When some of the Jacobian eigenvalues are found in the
right-half plane, their predecessors are not uniquely defined. Depending on the param-
eters that one ellows to vary, one may find that arriving at this eigenvalue structure

may be viewed as the consequence of different types of bifurcations.
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Although this detracis in some degree from the practical utility of the bifurcation
theory discussed above in analyzing nonlinear gystem dynamics, it does not render the
above conclusions useless or trivial. While developing mathematical models for chemi-
cal reaction networks eand chemical reactors which exhibit oecillations has become
fncreasingly successful, the same cannot be said for models which generate more com-
plicated kinds of monlinear oscillations. The discussion above explains in part why
finding more complex cecillations from the model is more difficult than finding e sim-
ple Hopf bifurcation.

The framework mmﬁzd also provides guidance on how to identify candidates
for models and corresponding parameters which do, possibly, give different types of
complex dynamics. To obtain the apparently irregular types of oscillations charac-
teristic of molion on & torus, one should look for the ¥y Jordan block structure, 67,
more practically, the corresponding eigenvalue structure of the Jacobian. To manipu-
late the eigenvalues to the necessary configuration requires the coordinated manipula-
tion of at least two system parameters to a precise combination of values. Conse-
quently, the chance of finding the right combination of parameters is much smaller for
the more complex eigenvalue configurations corresponding to higher order bifurc;-
tions and more complicated nonlinear dynamics than it is for Hopf bifurcation which
often results from manipulating only one parameter. Using the concepts presented
above, one can generalize substantially the important contribution made by Schein-
tuch end Schmitz [1] some years ago. They pointed out that, in searching for models
of catalytic reaction systems that exhibit oscillations, one should look for model struc-
tures and parameter values which admit Hopf bifurcation. Using the models outlined
ebove, one can now look directly for model structures and corresponding parameter
values which give the local structure corresponding to certain types of more complex

dynarics.
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Another difficulty awaits here which bas also an analog in the simple Hopt case. In
the case of subcritical Hopf bifurcation, as the steady state becomes unstable, the
resulting limit cycle is unstable. Whether a Hopf bifurcation is supercritical or suberit-
fcal may be found using Floquet theory [18]. Similar difficulties arise for higher order
bifurcations as for example G; bifurcation. Close to G; chaos is possible, but there is
no guarantee that chaotic oscillations will occur. Unfortunately, unlike the Hopf case,
the theory for G; bifurcation is not yst devsloped to the point where sufficient condi-
tions are known for appearance of chaotic dynamics. Hopefully, the point is clear that
the methods described here are intended as useful engineering guidelines and not as a

Figid and strict mathematical structure.

Another point that was mentioned before in passing Is also emphasized here. The
discussion above is couched in terms of characteristic equation or Jordan block
parameters, not system parameters. There is no guarantee in general that manipula-
tion of a certain number of system parameters will influence a like number of Jordan
block parameters in independent ways. Thus, for a given model, it may take manipula-
ton of three parameters to achieve an eigenvalue structure which can be obtained by
manipulation of only two coefficients in the characteristic equation. In some gystems
which do not possess appropriate structure, it will not be possible to obtain certain
eigenvalue configurations for any choice of any number of system parameters within
the domains prescribed by physical limitations (e.g. non-negative rate constants). The
guestion of the mapping from system parameters to coefficients of the characteristic
equation is one that is amenable to direct and exact analysis for each particular model
and which will not be addressed further here.
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HNOMENCLATURE

A B.CB.27: chemical species in Ex. 1 (Eqn. 14).
[AP.B]: Inlet concentration in Ex. 1.

ABC Species in Ex. 2.

A4 .C.B° X Matrices in Appendiz (Eqn. A.1).
BCD: Hatrices defined in Eqn. (4).

by be.by:  Feedback parameters in Ex. 1, defined by Eqn. (20).

Be: Defined in Appendix.

8 k. [Blfts

&; ke (Bt (Al

C: Space of complex numbers.
dy.de: Coupling constants in Ex. 2.

DGy Types of bifurcation (Table I}

) P-dimensional Euclidean space.
f: Function in Eqn. (1).

£ dtg.

fa: deia

& Function defined in Eqn. (2).
8" [alf/[BYf = [A}8/[BN.

b'h™ Functions defined in Eqns. (8).

I ldentity matrix.
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Jacobian defined in Eqn. (4).

Sets of eigenvalues defined in text
Rate constants in Ex 1.

Rate constants in Ex. 2, reactor L
Rate constants in Ex. 2, reactor I
Vector of integers.

Integers.

Parameter space in Appendix.
Dimension of space H.

Dimension of y.

Dimension of vector =.

Defined in Appendix.

Dimensionality of Jordan blocks in the Appendix.

Jordan upper triangular matrix in Appendixz.

Parameters in discussion section.
Real numbers.

Defined in Eqn. (8).

Time.

Reactor residence time in Ex. 2.
i.

[BrsiAr.
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& [Bh/[BH.

= State variable vector in Eqn. (1).

& o Variable vectors defined in Eqn. (5).
) B o Functions defined in Eqns. (5).

¥: [AV (AP

%52 Steady state values for Ex. (1).

R0.9:2:,%; Steady state values in Ex. (2).

3 (Ab/ [R):

z°y" Real and imaginary parts of eigenvalue in Appendix.
¥ Transformed variables vector in Eqn. (2).

vy Variables vector defined in Eqns (6).

Y Function defined in Eqn. (7).

¥: (Bl [AP.

§: (Bl [BY.

5 [CVIAP.

3 [Ak/[AW.

Subscripts ] and I in Example 2 refer to reactors 1 and 2, respectively.
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GREEK SYMBOLS

Coefficients of characteristic Eqn. (8).
&, AKpe.

Ker{P.

£ [Blra.

e[ Birtas [l

Eigenvalues in Appendix.

Vector of parameters in Appendix.
Defined in Appendisx.

Eigenvalue,

Eigenvalue at resonance.
Eigenvalues.

Complex parameters in Appendix.
Parameter space in Appendix.
Parameter vector in Appendix.

Parameter in Eqn. (1).

Real and imaginary parts of complex parameters )’ in Appendix.

Reactor residence time in Ex. 1.

Transformation function defined in Eqn. (8).

Happing defined in Appendix.

Imaginary part of eigenvalue [see Eqn. (10)].
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APPENDIC
HEIFURCATION JORDAN BLOCK STRUCTURE: ARNOLD'S VERSAL FAMTLIES

The central concern in this section is the number of parameters that must be mani-
pulated to achieve a particular Jordan block structure of the gystem Jacobian. Of
course, the structures of interest are the somewhat atypical Jordan forms which
correspond to the different bifurcation strata. Central to this discussion is a general

parametric representation of matrices due to Arnold [26].

The analysis begins with the assumption that a particular system bifurcates in a
particular stratum for some choice of system parameters and corresponding reference
steady state. Specification of the presumed bifurcation stratum specifies simuitane-
ously the Jordan form structure of the Jacobian at bifurcation. Arnold's theory is then
applied to formulate a general representation of the Jordan matrix structure in the
neighborhood (with respect to system parameter changes) of the Jordan matrix at
bifurcation. Finally, assuming that system parameters are near the values which give
bifurcation, the general parametric structure of the Jacobian Jordan form is examined
to determine the number of parameters which must be adjusted to particular values or

signs to obtain the Jordan matrix at bifurcation.

First the subject of miniversal deformation of matrices must be presented. Con-
gider a family of matrices A(f), complex in general, depending on & vector of complex
parameters SeACC!. For @ close to f§,. the matrices A(f) are called deformations of

gome particular matrix A(S,) gb.. A deformation A'(f) of the matrix A, iz said to be

equivalent to a deformation A(f) if @ nonsingular matrix C(f) exists such that

&) =cEamcum]™.
(A1)

Let ¢°: A~ ¥ be a mapping (¥ c C=and Ac C*).
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The fnmﬂy induced from A{f) by the mapping p° is the family A(p°(§)). A deforma-
tion A(f) of a matrix &, is sald to be versal if any deformation A"(i) of the matrix 4, is
equivalent to a deformation induced from A(f). A versal deformation is said to be
miniversal if the dimension of the parameter space A (i.e. [) is the smallest possible for

& versal deformation.

Denote by & the eigenvalues of the matrix A and let n;(a) = ng{a;) 2 - - - be the
dimensions, in decreasing erder, of the Jordan blocks corresponding to a;. The smal-

lest number of parameters for a miniversal deformation of the matrix A, is [26]

PULNCHE 3ng(e,) + Snglay) ¢ ---].
' (a2)

A miniversal deformation of the matrix P,, the Jordan upper triangular matrix of 4, is

P, + B°(f8). A3)

where B°(§) is & block-diagonal matrix whose blocks correspond to the eigenvalues of
A,. Each block B’ corresponding to & has all zero entries except in the positions indi-
cated in Figure Al.

In chemical engineering one usually deals with real matrices. Versal deformations
for real matrices have been constructed by Galin [30]. Assume that a real matrix has a
complex conjugate pair of eigenvalues x° £iy°, with Jordan blocks of dimension
Di2ng> -+ with Y ny=n, The part of the Jordan matrix that corresponds to the

eigenvalues x° ¢ iy” may be writtten as:

._|x ‘1]
B i"'-} (A4)

where X° is the upper triangular real Jordan matrix with eigenvalue x° and blocks of
dimensions n; 2 ng », - - - and ] is the identity matrix of order n,. It is true that the
miniversal deformation of the decomplexified meatrizx is the same as the

decomplexification of the miniversal deformation of the complex metrix [26]. This
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aflows determination of the miniversal deformation of the decomplexified (real) matrix
using Arnold's theory for complex matrices. These facts are used next to determine
the minimum number of parameters to realize different bifurcational Jordan matrix

gtructures.
L D; Bifurcation
Since a zero eigenvalue corresponds to a simple, one-dimensional Jordan block,
it is clear that variation of one parameter is sufficient.
ii. Dp Bifurcation (Hopf)

In complex form we seek to obtain the Jordan block for iw. It takes one complex
parameter f§; = g, + i7; to do that. In real form one seeks to realize the structure

{recall Eqn. (A.4)]

2] s

This has the following miniversal deformation:

[2 7]

Ti & | ° (A8)
Thus opne needs two real parameters. To ensure zero real part, p; is required.

However, the other parameter 7; can be anything positive. Thus, variation of & gin-

gle real parameter may produce Hopf bifurcation if it so happens that v, > 0. It

might also take in other cases veriation of two parameters. p; and 7;, to assure

Hopf bifurcation.

iii. F; Bifurcation

In this case, one seeks to obtain the structure:

33} o
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As in the D; case, a miniversal deformation is the same for the complex and the
real cases. Rt is here
eo ecl @
’l ’l (A.,B)
where §, and §; are real parameters. Thus, manipulation of two real parameters is

required to obtain this structure.
{v. Fp Bifurcation

The structure to be achieved in this case is

o 00

D-QD}
000

(a.8)

which has miniversal deformation given by

p:-—r;o]
Ty £ O’.

0 0 & (A-10)

Similarly to the Dy case, it takes at least two real parameters (p; and gz); & third

parameter may be required to ensure @ > 0.

¥. Fg Bifurcation

The structure to be obtained is
0 -, 0 0
ARE:
8 © “? (A11)
with the miniversal deformation
Pr=Tv g ©
R
q
00 (A12)

Thus at least two real parameters p, and p; are required. In some cases up o four
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{o; £e.75 and 7g) may be needed to ensure &; > 0, e > 0.
wl G; Bifurcation

One seeks to realize the gtructure

E

As in the D; and F; cases, the compléx and real miniversal deformations coin-

SO
=1l =)

l ) (A13)

eide. The miniversal deformation is

600 : 8;. Bg. B real .

[0 [V I ]
By B2 BS (A14)

Thus, it takes three real parameters, at least, to obtain the G, bifurcation struc-

ture.

R is clear that the results obtained via the method of characteristic equations is
totally consistent with the theory of versal families of matrices. The latter approach is
more complete in that it considers Jordan block structures characteristic of different
bifurcation strata. Obtaining corresponding eigenvalue configurations via analysis of
the characteristic equation is @ necessary but not sufficient condition for achieving
particular Jordan matrix structure. Degenerate cases in which the desired eigenvalue
structure does not yield the desired Jordan block structure are sufficiently unusual,
however, so that the simpler approach based on the characteristic equation is usually

adequate for locating various bifurcation strata.
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TABLE CAPTIONS

Summary of the properties of the system Jacobian at the reference steady-
state for different bifurcation types (strata). Eigenvalues in left-hand plane
and corresponding Jordan blocks are not shown. For Jordan block struc-
ture for the cases Gy — Gy see Ref. [7.26]. Right column indicates when

steady-state bifurcation is possible.

Steady-state and eigenvalue structure as e function of coupling parameters

for Exarmple II.
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Table I
JACOBIAN JACOBIAN POSSIBLE
BIFURCATION  ;0R0AN BLOCK EIGENVALUE STEADY STATE
TYPE STRUCTURE STRUCTURE BIFURCATION
g [0] * YES
T,
0 - ¢
D2 (W O] ] NO
0 1] ¢
E YES
1 0 0
0 w O]
F> w oo YES
0 00
0w 00
W, .00
F3 00 0w NO
0 0 wyO
0 1 0
G 001 YES
000
5 - 2 N
G4 = % YES
Gg - % NO
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Table &
Steady-state and eﬁenvalue structure as & function of coupling parameters for Example II

F Steady State Eigenvalues

po— T
0.01 | 0.01 | x = 0.250168 | 1.232053 & 3.808084i
y = 1.580007 | 0.407089 & 4377235i
g = 0210119
w = 1.939946
0.01 | 0.1 | ==0248421 | 1.158653 & 3.992018i
y = 1.687432 | 0.387768  4.407187i
2 =0.211338

w = 1.932228
0.1 | 001 | x=0251668 | 1.198648 & 3.797853; -
y = 1.569634 | 0.346962 = 4.351923i
g =0.208914 "
1.951186
237587 | 0.B41447  4.190754i
833455 | -0.289672 + 5.074837i
270524
882123

61} 10

[« XV NG

4 ug 8 |q

b




Figure 1:

Figure 2

Figure 3:

Figure 4:

Figure S:

Figure 8:

Flgure Al:
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FiGURE CAPTIONS

Venn diagram showing relationships between bifurcation etrata and local
system dynamic features near bifurcation. The indicated strata correspond

to Jacobian matrices at the reference steady state with up to three eigen-

values on the irnaginary axis.
Decrement diagram for Example L

Regions of the coupling parameter space corresponding to different classes

of systern behavior (Example 1I).

Dimensionless concentration trajectories for coupled CSTRs with autocata-

Iytic reactions (Example II; coupling parameters: f; = 0.01, f = 0.01).

System dynamics for autocatalytic reactions in coupled CSTRs (Example I;

eoupling parameters: f; = 0.01, fg = 0.1).

Dynamic behavior of coupled CSTRs with isothermal autocatalytic reactions
(Example II; eoupling parameters: f; = 0.1, fg = 0.01).

Form of the matrix B in the miniversal deformation of Eqn. (A.3). Different
parameters appear at the positions indicated in each bleck B correspond-
ing to the eigenvalue @ Alternative forms for the B matrix are presented
by Arnold [28].
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CHAPTER 5 : NOCRMAL FORMS FOR CHEMICAL REACTION
SYSTEMS VIA THE AFFINE TRANSFORMATION
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INTRODUCTIOR

In a previous publication [1], the notion of normal forms of dynamic systems was
reviewed. The normal forw is & simpler form of the system model equations that
retains all relevant information regarding dynamic behavior in the neighborhood of a
system steady state. Substantial effort has been invested by mathematicians to find
the normal form of dynamic systems after perturbation from a point of bifurcation
[eg. 2.3]. When at bifurcation, a system's dynamic behavior is absolutely nonlinear
even locally. The advantage of studying a system close to bifurcation is the opportun-
vity to identify the qualitative nature of its nonlinear dynamic characteristics by local

analysis.

In general, converting a dynarmic system to its normal form is a very complicated
and practically untenable procedure, at least until a general computer code is
developed for this purpose. In this work a different type of normal form is introduced,
and the class of problems that are reducible to this normal form via a simple transfor-
mation is identified. A specific algorithm for converting such systems to this normal
form is given. After transformation to the normal form following the given algorithm,
one can identify which parameters can be varied independently to affect the system's

dynamic behavior and which groupings of parameters appear in the normal form.

Next, it is observed that this normal form coincides in the cases of F; and G, bifur-
cation [1] with the classical normal form. A certain notion of codimension is defined
and the effect of perturbing a system from the F, bifurcational structure is studied. A
chemical example due to Ei,genbergef [4] is treated as a perturbed F, system. An
enzyme-catalyzed reaction sequence with feedback regulation of the initial reaction,

first considered by Walter [5], is also investigated using the methods developed herein.
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THE AFFINE TRANSFORMATION: REDUCTION TO THE COMPANION NORMAL FORE

Consider a dynamic system of the form:

%—f—:hi-Sf(x)‘Pa "
1
where
0106---0
a=10 0106--0
8% G @)
b=[0 - 01T @
g=[0-. o0Qdf @
The Jacobian for this system has the following form:
O 10 0
I= 1] 616 0
. R . 5)
{014' axl] {Cn"' axn]
and the steady states are
Hpg S Hgg= ' =X, =0 (®)
with x,, given by
8(x,600, -+ O) +Ex, s +d=0. -
7
The characteristic equation of the Jacobian then is [6]
8t ] { 5f )
- B bty . v e "1._..._.‘. iz oo -
P = [oat 2 (a0, - 0) ]sn [ 0 @) =0

Balakotaiah and Luss [7] have used Golubitsky's theory [8] to study bifurcations of
steady states when reduction to a single algbraic equation is possible. Different bifur-

cation diagrams are obtainable depending om the “order of contact” of the one
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dimensional function at the bifurcation point. In this procedure of reducing the
dirmensionality, care must be taken that no new steady states which are not steady
states of the original system are introduced. For systems that can be reduced to the
form of Eqn. (1), this possible pitfall is definitely avoided. Another convenient property
of systems of the form (1) is that the characteristic equation is trivially obtained in the
form of Eqn (B). In general, finding the characteristic equation of a large dimensional

system involves considerable algebraic effort.

In addition to obtaining a single equation for studying the steady states of the sys-
tem, one can identify easily conditions for different bifurcation phenomena [3]. Which
system parameters can be varied independently to produce certain steady-state multi-
plicity and eigenvalue structure are revealed explicitly. For low-dimensional systems it
is easy to reach conclusions about the effect of system parameters in realizing certain
bifurcations. In addition, analysis of Eqn. (1) shows directly how changing a parameter
perturbs the system to a certain “structurally stable” Jacobian -eigenvalue
configuration. These attributes of models of form (1) will be illustrated in the exam-

ples which follow.

The opportunities for analysis of system models of form (1), which is called the com-
panion normal form, motivate a search for the class of systems that are reducible to
this form. The transformation should not introduce additional steady states and

should retain the system's eigenvalue configuration. One such transformation is

y=Sx+g .
(=)}
A&y
Such a change of variables, an affine transformation, transfers the origin and rotates
and expands {contracts) the system coordinates, but it does not affect the steady-state

multiplicity and the eigenvalue structure.

Solving for x in Eqn. (9) and substituting into Eqn. (1),
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g{—=sas-!y+s$f[s-l(y=g)} + 5S¢ - SASg.
(10)
Thus a system reducible to the form of Eqn. (1) by the affine transformation Eqn. (9)

must have the form:

dy - Ky + Ah(y) +m
dt (11)

where h(y) is a function from R® to R. Accordingly, the system must have a single non-
linearity, possibly appearing in more than one of the state equations. One then

identifies similar coefficients in Eqns. (10) and (11), which gives the following relation-

ships:
K=SAS '« A=S"'KS
(12.1)
A=SbesS!A=b
(12.2)
m=3Sc—-Kg.
(12.3)

An algorithm for transforming system (11) to the companion normal form (1) is

given next: form the matrix S™! as follows,

¥
Tx
St= .
. (13)
i
where Tis any row vector that makes S™! nonsingular. Then
SA=b
(14)
is a linear equation in ?1.' -+ I, that must be satisfied. This uniquely determines the
vector f = (f). - - - ) and hence the matrix S~'. Then, from Eqn. (12.3)
g=K"'Sé -m].
(15)

Since
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Sin
Se=d| - |=dA (6
: i6
Spa
one can choose:
g=K'[dA-m]
(17)
for any d and hence for d=0 in particular. Thus it is sufficient to set:
g=-K'm.
(18)
Then the transformation:
x=S1y+ SK'm
(19)

will transform system (11) to the form of Eqn. (1) with d=0.

EXAMPLE: ENZYHATIC REACTION SEQUENCE WITH FEEDBACK
ALLOSTERIC REGULATION

Walter used Liapounov’'s direct method to obtain stability criteria for a generalized
negative-feedback enzyme-catalyzed reaction sequence of the Yates-Pardee type [5].

The dynamic equations for this system are:
X, = kEq = (b + k)%
S = 5 Xy ~HES; + hX ~ §S, + iy
% =HES -(y+&)% i=12.- -

Snﬂ = Xy = PHp1EeSEsy + pha 1 Xae1 = Jos1Sner + J<men (20)
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Xae1 = Hos1EoSEe1 = Baei¥oes
0=E + % +Xan

where S; are substrates. S;,; is produced from S; under the catalysis of enzyme E; via

the enzyme-substrate complex X; fori = 0.1,...n.

The S; (i = 0.1....n + 1) may exchange with the "exterior”, but E; and X (i = 0.1.....n)
are confined to the "interior” system. The parameters j4 and j; are the rate constants
for the exchange of S; to and from the "exterior"”, respectively. H; (i = 0,1.....n) is the
birnolecular rate constant for combination of S; and E; b and &; are the unimolecular
rate constants for dissociation of X% to S; and E;, and to S;,; and E;, respectively. It is
assumed that E, is inhibited cooperatively by p molecules of S;,;: the "rate constant”
for formation of the inhibited form of the enzyme X;4; is Sp4; and the "rate constant”
for dissociation of X, to Sp4y and E, is hp.y. S, is maintained constant by a large

external reservoir and & = H,S,.
Making the following set of assumptions:
L%=0 (i=01,.n+1)
ii. §;<<Kg, (i=0,1....0)
iii. Terms beyond (Sp,,) in the expansion of Bos (1 + aSg,,). where a = Hy4;/ hasy, can
be neglected,
the model described above can be simplified to the following form:
$; = = abo(Sae1)? = (s + B1)S; +j1 + be
(21)
8§ =BiiSi = (s + BYS + ) (1 =2....0+1)

where
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mn=e ,vm s
b, = 0_12'_4.? b, = K (i=1,2,...n)

and where

W = GE(0) : K = h’}:" :

E(0)=X+E (i=12..n),
Eo(0) =X + Eg + Xauy -
Setting
Y1=501.¥2=Sa. " Yan =5
b =bynez) -y &= —Jjmezy g i = 1...ntl
& =iqpeg - i=lenicun =g +5, . d=ab,
d=g-b:i=1i.n+1,
the system may be written in the form of system (11) with

d, b2
dg by (o}

+1

h(y) = y¢
m=[ejep - cgealT.

Forming S™! according to Eqn. (13) begins with calculation of

(22)

(23)

(24)
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Then

f,di
Tiba(d; + do)¥! + Todd N
Tibabs(d, + dg + ds)'™® + Tgbs(de + dg)*! + Ted}

&

(28)

& ° - - - - - o

?n+l-!bn+2—l " bpyy ¥ "'Tnbuﬂ(dn + dpyq)*? +Tn+1d:’1+1

Substitution of Eqns. (3), (26.1) and (28) into Eqn. (14) and sclving for the unk-

g
nowns f; gives

?nﬂ:?n: =~2=0.
(29)
Ti=- 1 .
' dbgby - ban
The matrix S™ can be written explicitly using (13),
i
S S
s dbg - - bges
i
d; be o - - o 0
af ba(d, + dg) babs 0
df ba(d; + dg)® bpbg(d; +dy+dg) bgbgbg - . - g
(30)
T - : o
df be(d; + dg)®! bobg(d; + dg + dg)®® - bebs - - - baus
é

The inverse of K may be evaluated analytically. Multiplying the result by m from
Eqn. {28.3) gives
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© _becy  bebses . yobebs t - baucan
dy dldz+dxdzda+ (P didg -+ dan
_Cz__Eg;o_s_‘_ el 4 (=1)°7'bg - bneiCan
de deds deds *** daes
K"lmg :::::::::::........-o.............
€ BonCan (31)
dp  dpdper
Cnseg
daer J

It will be convenient later to denote the first element of this vector by the (scalar) e.

The required transformation to the companion normal form is now given by Eqn.
(18) where S™! is given by Eqn. (30) .and K 'm by Eqn. (31). The matrix A may be
evaluated by Eqn. (12.1). However, the complicated algebra implied there can be
avoided. The first n rows of the (n+1)x{n+1) matrix A are known by the definition of
the companion normal form, see Eqn. (2); only the last row need be evaluated. Equa-
tion (8) indicates that the entries of the last row of A are combinations of its eigen-
values. Since A and K are similar matrices [see Eqn. (12.1)], they have the same eigen-
values. By inspection of Eqn. (25), the eigenvalues of K an upper triangular matrix,
are simply its diagonal elements d,.d;, - - - .d;,;. Combining these facts, the coefficient
matrix of the companion normal form is given by Eqn. (2) with

G = (-1)=¢! ﬁ dy

i=i
[i.j = fl-;l.n +1 l (32)

Writing out the companion normal form in detail gives
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& +1
Sors = (~dbaby ++ buty =6F + (1P [] dixy ¢ -+ + 3] dita o
=g =

The steady states are determined by:

g(x,) = (—dbgby - - beyx; —6)° + (-1)“113 dxy

(34)
and the corresponding Jacobian is:
810 -+ -v0 o0
ce e 0
°0! 0
J= . :
) i (35)
+ ¥ g
(=1)=! ﬁ d; - (dbz -+ bpsp)(—dbz - - bpx —8P - S ]
=1

One can see that the steady-state solutions and their eigenvalue configurations do
not depend on all model parameters oy, b; and ¢; (3n + 8 variables) independently. The
whole system dynamics depend on (n + 4) combinations of the system parameters
which have been explicitly identified; i.e. on p, ©, d,,- - - .dy,; and dbs - - - by,;. The
transformation method described here has enabled reformulation of the original com-
plicated system to the much simpler form of system (33), and it has been shown which
combinations of the original system parameters independently influence its dynamics.
Next are summarized analyses of the properties of the steady-state solution set and

the dynamics of the regulated enzyme-catalyzed reaction sequence.
Consider first the steady-state problem. Letting

2 A —dbgby - - byyx; — @
(38)

and
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(-2 11 g,
- i=1
% = Qbzby - by 37)

the steady-state Eqn. (34) may be rewritten

PraZt+ae=0.
(38)

From this equation is is clear that the number of steady-states depends only on the
parameter p and on two combinations of the otiéinal system parameters, &, and &. It
is very easy to see that for p even, the system can have zero, one or a maximum of two
steady-states, whereas for odd p, one, two or a maximum of three steady-states are

possible.

Next, the value of lmowing the mapping from original system parameters to normal
form parameters will be explored. In particular, the three-dimensional case {n=2) will

be examined for p=2. The steady states in this case are

Xy| =L D18, ;- \/(d,d,d5/ db,bg)? + 46 d,d;d5/ dbgby )
; 39

Introducing new variables which translate the normal form variables so that zero is a

steady state,
=X - qu
Zg = Xg
(40)
Zg3 = X3 .

[ %6 , denotes the steady state taking the minus sign in Eqn. (39)]. system (33)
becomes:

=2

23 =29
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g = d?bfbJ2f — V(d,deds)® + 4@ d,dpdsdbgbs 2y ~ (dyda + djds + dads)ze + (d, + dp + (d;sga .

From Eqn. (41) it is very easy to find, for example, conditions to be satisfled for the
system to Hopf bifurcate to periodic solutions. Making use of Eqn. (8), the characteris-

tic equation is

g’ - (d’ +dz + d3)52 + (dxdz +d;dg + dgds)s + \[(d;dzds)z + 48 d,;dpdsdbybe = 0. ( )
42

Using then the approach suggested in [1], the following explicit conditions in terms of

the system parameters for Hopf bifurcation are obtained:

didp +d;dg +dadg > 0
: (43.1)

V(d,;deds)® + 48 dydadadbebs = = (d; + dp + dg)(d,dp + d,ds + dpds) . (43.2)

Similarly, one can also identify conditions for higher order bifurcations [1].

Normsal forms may be extremely useful {or establishing relationships between
diflerent models which, although apparently different in their original formulation,
- have identical normal forms. For example, the companion normal form for the model
considered here [Eqn. (41)] is identical in structure to another model which is known
to display complicated nonlinear oscillations. This model was presented previously [9]

in the form
p=-q-r

4=p

(44)

t=%(q-q® -ér .
The solutions of these equations, for certain values of the parameters y and 6. exhibit
toroidal oscillations [9] which arise from an Fp bifurcation involving a zero eigenvalue
and a conjugate imaginary pair of eigenvalues. Bifurcation occurs for y > 0 and § =

0, and toroidal oscillations are evident for, e.g. ¥ = 0.375 and § = 0.23. System (42)
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may be converted to the companion normal form by affine transformation to obtain

dg _
L-g

g _

dt =F

(45)
dr -
=7 -(y+0p-q-0F .

This equation has identical form to Eqn. (4¢1). Equating coefficients of correspond-

ing terms in the final equations in both sets gives the following relationships among the
parameters of the two models:
d®bZbf = y
(d1dzds)® + 46d,dpdsdbebs = 7 + &
(46)
dydp + dydg + dpdg =1
d+dg+dg=~—4§

or

dideds =F2V7 0 + Vare? — (7 + 8)

djdp +djdg + dedg = 1
(47)
d; +dg+dg=~§ .

For certain values of ¥ and 6, system (47) has a solution for the d;'s if and only if for

some value of & the polynormial

s’+6se+s+(3;2\/;ei\/4;—ez—(7+d)=0

has three real roots. The condition that this be true is [10]:

(48)

ia 289 & ‘/—7_62__—_——2
4[1 3]4-{ 27+3¢2\/§et 4 (y+6)] <0.

(49)
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Interestingly, this condition is not satisfied for ¥ = 0.375 and § = 0.23, values for
which model (44) is known to exhibit toroidal oscillations. This means that, although
system (44) is of the same functional form as (41), the two systems are not equivalent
for all values of their system parameters. Establishment of the correspondence
between system and normal form parameters allows this conclusion to be made. Fory

and & values satisfying condition (49), the two different models are totally equivalent.

NORMAL FORMS OF F; AND G; BIFURCATIONS: COINCIDENCE WITH
COMPANION NORMAL FORMS FOR TWO- AND THREE-DIMENSIONAL SYSTEMS

Consider an n-dimensional dynamic system of the form:

w = H{wy) (50)

In a previous publication {1] it was seen that variation of two system parameters can
realize an F, bifurcational structure. That is, the Jacobian of system (50), when con-

verted to its Jordan normal form, has a Jordan block of the form

85
(51)
The normal form in this case is [11]
@
at
T = (e ea) + a(R)%e
(52)

Bogdanov [11] and others have examined in detail such normal forms. These stu-
dies reveal that 32 different phase portraits involving two or three steady states can
arise as the parameters g; and ¢; are varied. Letting more parameters vary, one can
obtain higher order bifurcational structures. For three-parameter variation, the
highest order bifurcation that can arise is Gy and the corresponding normal form is

(12]:
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&

rank
a% _
Fak
S 2 1®) + 1% + 15(%, % 8% (53)

It is immediately apparent that Eqns. (52) and (53) are in the companion normal
form. Consequently, the classical normal form obtained from considerations of the
Jordan block structure for F,; and G, bifurcations coincides with the companion nor-
mal form for two- and three-dimensional systems, respectively. As a result, reducing
two- and three-dimensional systems by affine transformation to the companion nor-
mal form also gives the classical normal form. Two- and three-dimensional systems so
transformable to the companion normal form may therefore be considered as F, and
G; systems, respectively, and the body of theory and experience developed for those

cases may be applied.

The highest order bifurcational structure that can be stabilized for a two-
dimensional system is the F; bifurcation. The codimension of a certain structure
(steady state and eigenvalue) is defined as the minimum number of independent
parameters needed to realize this structure. Consider a two-dimensional system which
is reduced via affine transformation to the form of Eqn. (52). The Jacobian at a steady

state (R,5.%2,) is given by

as IO AW 11_ ¢
I'1{R40) 12(%1) (54)
and the steady states are solutions of the equation

(%, =0 .
(55)

Necessary conditions for an F; bifurcation are that, at the steady state %,,, the fol-

lowing are true:
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£1(R1) = £'1(Rys) = F2(R1) = 0.
(58)

These three equations have as unknowns %;, and system parameters. Typically, two

gystem parameters will require adjustment to specific values to satisfy conditions (56).

If, however, the conditions

£,"(Ria) = 1Ry = - 1,O(Ry0) =0, 1, 0(R,,) # 0,
(57)

are enforced in addition, a higher codimension F, bifurcation is effected. The function

£,(%y) is then contact equivalent to the germ [7.8]

u?ﬂ -
(58)
with unfolding:
¥l _.a?_lu?—i_a?_zu?“g- cer =gua=-A=0. (59)

It is evident that to achieve this higher order contact at the F, point. one usually needs

to adjust ¥ + 1 parameters. Then this is F, bifurcation of co-dimension (¥ + 1).

Consider the codimension-2 F, bifurcation case (only Eqns. (58) are satisfied ). The

function f;(x) in this case is contact equivalent to the germ u®. This system is

equivalent to
dg,
dt %o
gt -af —a LA
£2(0,0,0) = 0
(60)
The steady states of system (60) are:
R0 = 8; +vay + 4ap
ia =
2 (81)

and are zero, one or two in number depending on &, and az. The eigenvalues of the

Jacobian are then
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_ 2(Re25032) £ \/faz(ilsfahaz) + 4Vaf + 4ag
2 (82)

S,

In the case of two steady states, one is easily seen to be a saddle. The other steady
state, depending on the value of f;, can have any of the eigenvalue configurations

sketched in Fig. 1.

If in addition the condition f,"(%,9 = O is enforced, codimension three F, bifurcation

results. Three steady states are involved, and, according to Eqn. (59}, the unfolding is

u® - azu - ag
(83)

involving two parameters. The eigen;;'alue structure, however, depends on one addi-

tional parameter and for this reason the unfolding that must be considered is

v = a,u% - a,u ~ag ,

(64)
giving rise to an equivalent system of the form
d%; _
a - %
dg ~ ‘
"a':" =8 - ;%] ~ a;%; — a5 + 1x(%2a,.82.835)%e
(85)

Again, the steady states may be found as functions of the parameters a,;, a; and ag and

the eigenvalues of the Jacobian may be computed.

In the case of feedback-induced bifurcation [16], there is a reference steady state

which is unaffected by control gain parameters. As a result the system is equivalent to

d®; _
& %
B = (%)%, -~ ER)%
(86a)

with steady states (0.0) and others that correspond to h(&,) = 0. In this case the sim-

plest possibility is that system is equivalent to
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d®, _

dt

%“' = 21e - 2,%; —22(R;.8;.82) Ra

(66b)
In addition to (0,0) there is a steady state (a;,0). Again, on perturbation, one steady
state is a saddle, and the other has one of the four possible eigenvalue configurations

shown in Fig. 1. Higher order contacts may be treated similarly.

A CHEMICAL TWO-DIMENSIONAL F; SYSTEM

Consider the catalytic reaction

2A+B-2C

(67)
and assumne that it proceeds via the following elementary steps:

A+X e AX

(68.1)
B +2X « BX

(68.2)

B+X e« BX
(68.3)

2AX + BX; - 2C + 4X

(68.4)

Making the assumptions that B reacts via a chemisorbed BX; which is available only at
very low concentration, that mass action kinetics apply, ahd that the gas species con-
centrations [A] and [B] are fixed, Eigenberger [4] arrived at the following mathematical
model:

@ ' 1] [ ? + v 1

T = %Ay -91) - Ba¥y ~ BB Gy T oo

T o lBIG ~F1) + Pall )

(89.2)
where ¥," = [AX], ¥»' = 1 - [BX], and the mass balance [AX] + [BX] + [X] = 1 has been

invoked. System (89) for different values of the system parameters gives rise to
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steady-state multiplicity, relaxation oscillations involviqg three steady states, and har-
monic oscillations [4]. All these phenomena are typical of an F; system [3] and hence
in what follows system (69) is treated as such. Introducing dimensionless quantities
the system model may be reduced to the form of system (11) with

K= ~(@, + Gp) Aal _
~(3s +8,)

A=[-1 oF'. b =¥{(3 ~F)°

and
m=[0 & .
(70)
From Eqn. (13)
~(8; + Bo)f, + 8sfz &, fy —(As + A2 |~ (71)
Further from Eqgn. (14)
sta=b=>|. , 2 __o|=[9]
[(an*' ) - fz] [1 (72)
From this, one obtains
2 3 1
g = 0; fg T am mmm
&s (73
Using Eqns. (73), (71) becomes
i
0 =
Si= - &3. .
g Bt (74
8s
Now,
Kt —(&s ;" &) -Gy _ i



(75)
Consequently,

(@, + &z2)84
B3B8 + Bl + G184)
e (786)

-

Q9

S'K'm =

and, as a result, the required affine transformation to bring the system to the compan-

ion normal form is the following

¥ (&, + 82)8,
Ry=- T
By  83(Ba83 + By + &;84)
,, Bat 8y, B4
Xe=-T'+ Vo' = —
as = {77}
One can then compute
A=s'ks=| ... O oL
{ (8,84 + Go8s + B3By) —(8; + 8z + 83 + 84) (78)
and
I :
() =94 -%) = [ Qg+ )X, o+ ——————— ]
Dalg + Qz0y + 00
- R 2
&
x[—aﬁl—wz— e I
Gy + Xaq + &1y (79)

After some manipulation, the transformed system becomes

dx,

Fiake

dy . - ~ - - <
dtz = { hy(Bs.Be)xf + hip(@)xT + hys(8)xf + hie(@)x, + his(8) §

+ Xo § hg(@s.84)x{ + hea(&)x} + heg(@)x; + hes(&) §



162

+ %% { hey(@s.80)xT + hae(@)x; + has(&) J+ X § ey (85.8)%: + hao(B) § + X2 . (80)

All of the hij with the exception of the h;, are functioné of all system parameters &; to
8-
System (BO) has the same steady-state and eigenvalue structure as the system

dX, _

S
E—

dt

d
e L A LT

From the form of Eqn. (B1), one can see that the system has a maximum of four steady
states. Indeed, four steady states were observed for some parameter values by Eigen-

berger, one of which was not in the positive orthant.

Varying different pararmeters, this system may be brought to F, bifurcation of

different codimensions. Conditions for different cases are listed next:

i. Codimension-2 F,; Bifurcaticn:
Necessary conditions are:
hy X + ho¥} +hys¥F +hy ¥ +hys=0
4h,, %} + 3h,,%2 + 2h,s¥; + b, =0
he X} + heoXT + hos®; + heg =0 (82)

Clearly, variation of two system parameters may realize this structure. On per-
turbing from the F, bifurcation point there are two nearby steady states.
ii. Codimension-3 F; Bifurcation:
All of conditions (B2) must be satisfied and in addition:
8h,,% + 3h,,¥, + h;s=0

(83)
Solving Eqn. (83) for ¥; and substituting in Eqn. (82), one obtains three equations



163

to be satisfied by parameters &; to &, Thus, adjustment of three parameters is

required.

iii. Codimension~¢ F; Bifurcation:

In addition to conditions (B2) and {83), the following equation must be satisfied:

4h;%; + hiz2 =0

(84)
Solving Eqn. (4) for ¥; and substituting in Eqns. (82) and (B3), one obtains:
256h{hys —hi =
16h hu - hxz had

(85)
Bh;;hys = 3hfk =0 .

_ hzihib . heehfz  heshis

+ =0
64h 13[ 1 Shlzl 4‘hl 1 he‘

which must all be satisfied by &; through & for this highest possible codimension
Fy bifurcation for this system. At this point in the four-dimensional parameter
space, the function h;;¥{ +...+ h,s is contact equivalent to the germ ¥{ — A. A small
perturbation in the proper direction may give rise to four steady states, whereas at
exactly the codimension-4 F, bifurcation point all four steady states coincide. As a
consequence, by studying the local properties of the systemn on perturbing from
this highest order bifurcation point, one can discover all the possible steady-state

and eigenvalue configurations.

RICT "S!Qm

B Gt

The normal form of a dynamic system is a much simpler set of equations that
retains all of the important local dynamic features of the original system. In gen-
eral it is very hard to transform a system to the corresponding normal form and te

deduce from that possible dynamic behavior. Systems with a single nonlinearity
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are shown here to be reducible by affine transformation to the so-called companion
normal form that has distinct advantages. One can deduce what steady-state bifur-
cations and eigenvalue structures are possible. In the cases of two- and three-
dimensional systems, the companion normal form coincides with the classical F;

and G; bifurcation normal forms, respectively, that are based on Jordan block

structure.

For a generalized enzymatic feedback system, the transformation to the com-
panion normal form has been executed, and the much simpler system reveals
which groupings of original system parameters can be varied independently to
influence the system steady-state and dynamic properties. Different codimension
F; bifurcations were identified for {wo-dimensional systems. A chemical example
was shown to exhibit a codimension-4¢ F; bifurcation as its highest order bifurca-

tional structure.
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Nomendature

AB.C Chermical species in second example.

AX,BX,BXz: Chernical species in second example.

ay Parameters in Eqn. (58).
¥ \ Matrix in Eqn. (1).

be Vectors in Eqn. (1).

b: Vector, see Eqn. (23).

by.o.dg Eqn. (24).

a: Constant in Eqn. (4).

4 ab,.

E;: Enzyme concentrations.

E(0): See Eqn. (23).

£: Function in Eqn. (1).

T Vector in Eqn. (13).

T Function in Eqn. (50).

.5 See Eqn. (71).

£3.00.09: Functions in normal forms (52), (53).
[ Constant vector in Eqn. (8).

h: Function defined in (28.2).

H;: Bimolecular rate constants.

by Unimolecular rate constant for dissociation of X to S; and E;.
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p.qQr:

par

4
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Function of & in Eqn. (80).

Rate constants for exchange of substraies S5
Jacobian matrix in Eqn. (54).

Matrix defined in Eqn. (12).

Constants in Eqn. (89).

Defined in Eqn. (23).

Vector in Eqn. (12).

Dimensionality of system (1).

Variables in Eqn. (44).

Variables in Eqn. (45).

Power in Eqn. (57).

Variable in Eqn. (B).

Matrix in Eqn. (9).

Entries of matrix S.

Substrates’ concentrations.

Unfolding variable, see Eqn. (59).

Defined in Eqn. (23).

Variables in system (23).

Enzyme-substrate complexes concentration.
Surface site in second example.

State vector in normal forms (52) and (53).



Kig:

y;
T
Ve':
Yu.¥e:

e

.,.-,Yn+!:

le7

Defined in Eqn. (77).

State vector in system (1).

Steady-state values of x;.

State vector in Eqn. (9).

See Eqn. (24).

[AX].

1-[BX].

Dimensionless concentrations in second example.
Introduced in Eqn. (38).

State vector introduced in Eqn. (40).
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GREEK SYHBOULS

Defined in Eqn. (37).

Hps1/ bass-

Defined in Eqn. (24).
Dimensionless rate constants in second example.
Parameters in systern (44).
Parameters in normal form (52).
Defined after Eqn. (31).

HeSe-

Rate constants in first example.
See Eqn. (58).

Vector defined in Eqn. (12)

Exponent in Eqn. (20).
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Figure Captions

Figure 1: Sketch of different possible eigenvalue configurations at the
second steady state for codimension-2 F; bifurcation and

feedback-induced F; bifurcation of a two-dimensional system.



171

Ims
4
o= Re §
Ims
|
& == Re s

Ims
)
@
— e §
@
Ims
4
& S Re s

FIGURE 1




172

CHAPTER 6 : BIFURCATIONS FROM THE PCTENTIAL FIELD
ANALOG OF SOME CHEMICAL REACTION SYSTEES
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INTRODUCTION

In a previous publication [1], the value of normal forms in describing the
different possible dynamic properties of lumped chemical systems was demon-
strated. In general, a nonlinear transformation is involved in bringing a
dynamic system to its normal form [1,2]. Although, in principle, finding the
required nonlinear transformation is a mathematically involved process, a cer-
tain class of systems may be reduced by an affine transformation to the so-
called companion normal form which clearly retains the steady state and
dynamic characteristics of the original system [3]. Having this form it is easy to
obtain the dependence of the steady-state and eigenvalue structure on the origi-

nal system parameters.

For the cases of two- and three-dimensional systems, which are reducible to
this form, the companion normal form coincides with the normal forms of F;
and G; bifurcation, respectively [3]. These types of bifurcation consist of two
and three real eigenvalues crossing simultaneously the imaginary axis and are
the highest order bifurcations possible for two- and three-dimensional systems,
respectively.

The normal form of a system close to a G; bifurcation has the structure [4]:

=y

y=1
(1)

2 = £,(x) + fa(x)y + t5(x.y.2)z
If it happens that the function fs(x.y,z) is a negative constant, system (1) has a
constant negative divergence. The concept of a potential function may then be
introduced to gain special insights into the system dynamics and to derive con-
clusions regarding global stability characteristics of the system in question.
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In the subsequent section the theory for systems of constant negative diver-
gence reducible to the form of system (1) is developed. The results are then

applied to a class of enzymatic reaction systems.

BIFURCATIORS FROM THE PUTENTIAL WELL

Consider a system which is reducible by an affine transformation of the form

y=Azx +g
(2)
to a system
X=y
y=2
z = f(x) + a(x)y — bz
(3)
System (3) may be written in the form
g=3
(4)

2 =f(x) + a{x)x — bz .

It will be shown next that as b - e, system (4) essentially reduces to a two-
dimensional system that may be viewed as describing the motion of a particle in
a potential well. This analogy provides special insight and easy analysis of the
dynamics of (3) even for b > 0, but finite since results regarding local stability

are obtained in this case.
Rearranging the second equation of system (4) gives
z + bz = f(x) + a(x)x .

Writing the analytical solution for z in Eqn. (5) and noting that

J * a(x(7))x(7)e"dr = Alx(t))e® — A(x,) = f bA(x(7))e* dr
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(8)
where
A9 & [ a(s)as,
® (7
there resuits
2=z, + A(x - Alx)e™ + [ * [E(x(t — 7)) - bA(x(t - 7))]e*"dT. -

The integral in the RHS of Eqn (B) belongs to a class of integrals called
laplace integrals [5,6]. In the limit as b + +=, Watson's lemma [5,8] provides the
full asymptotic expansion of the integral. Expanding the function in the

integral in & Taylor series, one obtains the leading terms
f(x(t ~ 7)) ~ bA(x(t - 7))] = [f(x(t)) — bA(x(t))]

= [f(x(t)) — bA'(x(t))Jk(t)T + O(r®) . ®)

Application of Watson's lemma and using the first two terms of the RHS of Eqn.

(8) gives immediately

J * [2(x(t = 7)) — bA(x(t — 7))Je>drn LX) DAG) _ [£(x) = bAGOTE
) ° b (10)

Substituting this result in Eqn. (8) and noticing that for large t the terms

Ze** and A{x,)e ™™ can be neglected, one obtains

_ix)  P(x) —bA(x) .
z==y o2 Xx. an

Recalling Eqn. (7). Eqn. {11) becomes

z= f(;t) _ f'(x) ;ba(x) £

(12)
Finally, using Eqn. (12) in Eqn. (4), it is established that for sufficiently large b,

System 2 is equivalent to
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f(x) ~balx) . _f(x) _
&+ - =0.
¥ b (13)

Equation (13) may be viewed as describing the motion of a particle in a one-

dimensional potential field, u(x), given by

du(x) _ _ f(x)
ult

dx (14)

The function u(x) has turning points at the zeros of the function f{x), as is obvi-
ous from Eqn. (14). Letting x® denote a zero of (x), x® gives a maximum in the
potential function if F'(x®) > 0. When {'(x®) < 0, x® is a minimum of u(x). When
f'(x®) = 0, one must check the higher order derivatives to arrive at any conclu-
sion regarding the nature of the turning point. If f'(x®), or a higher even order
derivative is different from zero, the turning point is a point of inflection (zero

curvature).

The first derivative term in Eqn. (13) is equivalent to the "friction” or "damp-
ing” of the system. In general, the friction [f'(x) - ba(x)]/b® is a function of x
and acts to decelerate (if >0; positive friction) or accelerate (if <0; negative fric-
tion) the particle. If the friction vanishes for all values of x, the system is non-
dissipative. In this case one expects, in general the particle to oscillate
indefinitely in a "valley” of the potential well or to go to infinity. Its exact
behavior will depend on the initial conditions. Similarly, it is easy to predict the
fate of the particle in the event that friction is constant. For example, for posi-
tive friction, starting at rest close to a minimum in a "valley” , the particle will

eventually attain this minimum.

¥ the "friction” term is a function of x, it is much harder, in general, to
predict the motion of the particle. In some instances, however, the conditions of
a theorem due to Lie'nard [7] are met which permits conclusions regarding the

existence and uniqueness of stable periodic solutions. Equation (13) is of the
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form of a general class of equations called the Lienard equations, which have the

following form:

g+ T(x)k +g(x) =0 .
(16)

The following theorem holds.
Thaorem [7): Equation (15) has a unique stable periodic solution if T
and g are continuous, and

i Ff(x) = f f(a)da is an odd function.

ii. f(x) is zero onlyat x = 0, x = 8 and x = - & for some & 2 0.
iii. f(x) + = as x -+ = monotonically for x > a.

fv. §(x) is an odd function and g(x)} > G for x> 0.

It should be emphasized that the conditions of the theorem are sufficient
only. A system may possess stable periodic solutions even if these conditions
are not met. If the conditions of the preceding theorem are not met, one can
still clearly see the different possibilities only by considering the shape of the
potential function. This provides a special intuition which one could not possi-
bly have for the original system (3). All that is required is plotting u(x). Then it
is clear that the "particle” will go to a minimum, oscillate in a "basin”, perform

an oscillatory motion in more than one “basin” (if applicable), or go to infinity.

Although the equivalence of systems (3) and (13) is clear for b - =, the
behavior of the dynamic system (13) may be shown also to be similar to that of
system (3) locally; that is, close to a steady state for any b > 0. This will be

demonstrated next.

As noted earlier, the steady states for both systems (3) and {13) are given by
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#(x")=0 .
(18)

Equivalence of local dynamics near x° is examined by comparing the eigenvalue
structure of the two model Jacobians evaluated at x®. The eigenvalues of the

two-dimensional system (13) are given by

=L ba(x'l =1(x") | b (x‘)—f'(X‘L 4f( %)
Y Ee s K

(17)

It is easy to reach certain conclusions regarding the stability of the dynamic
system based on Eqn. (17). First, consider the case of a maximum. At a max:
imum where f'(x¥) > 0, clearly the two eigenvalues are real and have opposite

signs. As a result, maxima of the potential function are unstable saddle points.

When '(x®) > 0, the steady state x* of system (3) is unstable. The charac-
teristic equation of the Jacobian of this system evaluated at the steady-state x®
is

g +bs? —a(x®)s -'(x®) =0.
(18)

Using the Descartes rule of signs [8], one finds that Eqn. (18) always has a posi-
tive real root for f'(x®) > 0. This is so for any b > 0. Consequently, a steady
state of system (3) corresponding to a maximum of the potential function u(x)

is always unstable. This is, of course, in accordance with intuition.

Consider next the stability of a steady state corresponding to a minimum of
the potential function. At a minimum where f'(x®) < 0, examination of Eqn. (17)

shows that two eigenvalues have the same sign. The minimum will be stable if

(x®) - ba(x®) >0
(18.1)
and unstable if

f{x*) - ba(x*) <0
(19.2)
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This is again in accordance with intuition, since condition (19.1) implies positive
"friction” whereas Eqn. (19.2) corresponds to negative "friction”. When "fric-
tion" vanishes the two system eigenvalues are imaginary conjugate. For nega-
tive "friction”, the minimum becomes unstable (Hopf bifurcates), and stable or

unstable periodic solutions appear.

The conditions for Hopf bifurcation of system (3) are found according to Ref.

[1]to be

a(x®) <0 ,
(20.1)

f'(x®) -ba(x®) =0
(20.2)

The first condition is met automatically for a minimum and, consequently, is
redundant. At the Hopf bifurcation point the eigenvalues of system (3) are
i \f:a-(_xi)_ and -b. The first two are identical to those of system (13) while the
other is negative for any b > 0. Consequently, the fate of the trajectories of sys-
tem (3) is locally the same as are those of system (13). As a result it suffices to
meet condition (20.2) for Hopf bifurcation at a steady state corresponding to a
minimum of the potential function; this has the mechanical analog of the "fric-

tion"” becoming negative.

The stability of the Hopf-induced limit cycles is determined by calculating the
characteristic exponent of the transition matrix right after bifurcation [9].
Hassard et al. [9] have developed formulas for the leading term of an asymptotic
expansion of the characteristic exponent treating the deviation from the critical
bifurcation point as the perturbation parameter. If this leading term is nega-
tive, the induced limit cycle is stable; otherwise it is unstable. Following their
suggestions, the leading term for the characteristic exponent for system (13) is

found, after some tedious calculations, to be
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gy = (b0 —C NG | bar(ef) =17
8b%a®(x") Bb® ‘ (21)

For systems of the form (3), one may use explicitly Eqn. (21) to determine the

stability of the Hopf-induced limit cycles.

Having analyzed completely the case of Hopf bifurcation, the other possible
types of bifurcation are considered next. D, bifurcation occurs when a single
real eigenvalue crosses the imaginary axis and is accompanied usually by
steady-state bifurcation. From Eqn. (1B) it is easy to see that D, bifurcation for

system (3) occurs when

f(x®) =0
(22.1)

and

a(x®) <0
(22.2)

The second condition guarantees that the remaining two nonzerc eigenvalues
are negative. The conditions where D; bifurcation occurs are the same for sys-
term (13). Condition (22.1) may imply that the potential function possesses an
inflection point at D; bifurcation. As noted earlier, this will be true if £"(x*) # 0

or, in general, if the first nonvanishing derivative of { is an even order derivative.

The highest order bifurcation for two-dimensional systems is F; [1]. In this

case there is a double zero eigenvalue with the Jordan block
18 8]
00 -

From (18) it follows that at an F; bifurcation the conditions

(22)

r(x®) =a(x®) =0
(23)

must be met for system (3). The third eigenvalue is -b.

Conditions (23) should be met also for system (13) at an F, bifurcation point.
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The mechanical interpretation in this case is having no friction at the point at
which F'(x®) = 0 (which may be an inflection point). Close to an F; bifurcation,

one expects steady-state multiplicity and relaxation oscillations [1].

It has been shown earlier that system (3) is equivalent to system (13) as b
- =, The preceding analyses demonstrate local equivalence between the two sys-
tems for b > 0. All of the qualitative aspects of the original system (3) local

dynamics are preserved in the reduction to Eqn. (13).

Finally, it should be noted that higher order bifurcations of system (3) involw
ing three eigenvalues [1] imply b = 0. Close to such biturcations; system (3) is
not locally equivalent to Eqn. (13). The original system has zerc divergence for b
= @; it is termed Hamiltonian and has constant energy [e.g. 10]. For b small, one
may treat the system as a perturbed Hamiltonian system. For b negative, the
system has everywhere constant positive divergence and trajectories will
definitely diverge to infinity.

DYNAMICS OF AN ENZYHATIC REACTION SYSTERM

In {3]. the dynamic system describing the evolution of an enzymatic reaction
system with feedback allosteric regulation [11] was shown to be reducible by an
affine transformation to the following companion normal form in the three-
dimensional case

£=9
9=1
2 = (—dbgbs? — 6)° + (ddeds)2 — (d,de + dydg + dads)§ + (d, + dg + dg)Z .

(24)
Let
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&y = d;dzds,ez = d,de + d;ds + dods, 23 =d, + dp + ds.

. (25)
Since all the d; must be real, g;, gz and &g can vary arbitrarily as long as the
polynomial
P tregd—e, =0
(28)
has three real roots. The condition that this is true is [8]:
] 2
DI & P B D & I
System (24) is of the form of system (3) with
T(2) = (—dbybsk — 8 + £,2
&(R) = -5
(28)
b=-e.
Consequently, as gg -+ —e, the system is reduced to
—pdbabs{—dbzbs® — 8P + g; — 2285 (—dbzbs® — &) + &,%
R+ £+ =0 .
e Es (29)
Quadratic Case (p = 2)
In this case the system becomes:
"N 2d%b5biR + 2dbybse + £, — g2 P d®bfbfx® + 2dbybgef + 67 + £,8 _ 0
e &s (30.1)
with
1(2) = d®bfbie® + 2dbybsek + &F + 2,8 .
(30.2)

The steady state are the zeros of the last term. Solving for the steady states

yields



183

2,05 = ~2edbgbg ~ &; + Ver + 4edbgbse;
1.8 2d%b3bd . (31)

Clearly, the condition that the system possesses two steady states is

A =2l + 46dbsbse, > 0.

(32)
Making use of Eqn. (14), the potential function is
ﬂ(g) = dtbgbgi’ & (Zdbzbae + cl)ga % ﬁ .
3eg ) 2eg gg (33)

This potential function is sketched in Fig. 1 in the case A > 0. There are turning
points at ®;; and ®,. The first is a minimum since G"(%;,) > 0 whereas the
second is a maximum as 3"(%,) < 0, as can be seen easily from Eqns. {31) and

(33).

Consider first the case of D; bifurcation. This will occur for A =0, g3 > 0. At
this point there is a single steady state which corresponds to an inflection point
of the potential function as ' = 0 and 7" # 0. D, bifurcation may or may not be

sccompanied by steady-state bifurcation.

To analyze the @ # 0 case, assume without loss of generality that e, is treated
as the bifurcation parameter. For & # 0, D, bifurcation will occur for g; = 0 and
for g; = ~46dbzbg (A = 0). The condition that the bifurcation is a “limit point”
bifurcation [12] is that 8f/3e, (®) # 0 at the critical value of the bifurcation
parameter [12]. This is seen easily to be true for both e; = 0 and &; = ~4edb;bs.
For g; between 0 and -48dbgby, there are no steady states. For g; outside this

interval, there are two steady states (see Fig 2).

In the case @ = 0, the steady states are 0 and -£;/d%$b§. D, bifurcation
occurs for ¢, = 0, and, in this case, &/ de; (%) = 0 at g; = 0. This implies steady-
state bifurcation with exchange of stabilities. For g; € 0, the zero steady state is

stable and the other steady state is unstable. For g; > 0, the situation is
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reversed (see Fig. 2). Consequently, the parameter 6 is causing imperfect bifur-

cation [13] or, as is commonly said, “breaks” bifurcation.

The structure of the potential function close to D; bifurcation is portrayed in
Fig. 3for & = 0 and for ® # 0. It is clear that D; bifurcation is reflected by a
change in the structure of the potential function. The imaginary “particle” in
each case will go either to the minimum of the potential function (if one exists),
oscillate cloge to it, or go to infinity. It is possible from the structure of the
potential well that the final fate of the system trajectories depends upon the ini-

tial point and velocity.

In order to examine the possibility of periodic behavior close to a steady
state, we must consider Hopf bifurcation. In each case no Hopf bifurcation is
possible from the maximum Reg. As the "friction” vanishes at the minimum,
however, Hopf bifurcation occurs at the steady state which corresponds to the

minimum (8,;). The conditions for Hopf bifurcation for the systern at hand are

gg >0
(34.1)

and

2d%bgb3R,; + 2dbybse + &, — 2925 =0 .
(34.2)

Making use of Eqn. (21), the leading term in the asymptotic expansion for the
characteristic exponent is found to be
4

Be= dz;i? <o. (35)

gince gg < 0. This implies that the Hopf-induced limit cycles are stable. If the

initial energy of the "particle” is not very large and it lies initially inside the

“bagin” around the minimum, stable oscillations are expected. If, however, the

initial energy exceeds that which iz required to bring the “particle” past the
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maximum 8., one expects the particle to go to infinity. Consequently, stable
oscillations are expected for the original system as long as the initial point is
sufficiently close to the steady-state £,). Finally, the conditions for an F, bifur-

cation are
eg=A=0.
(38)
As in the D, case, F; bifurcation will be accompanied by steady-state bifurcation

onlyif & # 0.

Cubic Case (p = 3, @ =0)

For simplicity, only the case @ = 0 is considered. In this case the system

becomes
%4+ —Sd’bingfg £ —eaty o
+ tlg _dﬂbgbgga =0 .
ts (37)
Here,

(%) = 2,2 — d®bFbieS .

(37.1)
If ;dbybg > 0, the system possesses three steady states:

- - _ 4 - g
=0 %=\ d’bébi'g"‘ ) d”bébi' (38)

Otherwise, zero is the only steady state. The potential function in this case is

e dboget
- 283 €g : (39)

a(g)

Evaluating the second derivative of the potential function, it follows that
nonzero steady states correspond to minima of the potential function if £, > 0

and maxima if €, < 0. All possible shapes of the potential function are shown in
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Fig. 4 together with the cases of I; bifurcation. Again the shape of the potential
function changes as D, bifurcation occurs. However, since {"(%;) = 0, the turning

point at D; bifurcation is not an inflection point in this case.

Hopf bifurcations to periodic solutions are possible at the minima of the

potential function in each case. The conditions for Hopf bifurcation are:

gg >0
(40.1)

~3d%Fbix® + £, — e85 =0 .
(40.2)

Consider each case in turn:
Case 1 (dbgbg > 0, g; < 0):

Hopf bifurcation is possible at the minimum % = 0. Using Eqn. (21),

5 _ 8d%bf
pg-—-a-—b-a—-—>u . (41)

Consequently in this case no stable periodic solutions are expected.
Case 2 (dbgby > 0, g, > 0):

Hopf bifurcation is possible only at the minima %5z and %4 In this

case,

= _ 38,d°fb§ = 6d%biby
be = Bzjal? Bef (42)

For £ <0, the following inequality must hold:
Be; + 252§ > 0.
(43)
Exactly at the Hopf bifurcation point,
—2g; —ggtg = 0
(44)
Consequently, from Eqns. (43) and (44), if gz > 3 then £ > 0, and the
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periodic solutions are unstable. If gg < 3, it follows that f; < 0 and the

periodic solutions are stable.
Case 3 (dbgbg < 0, &; < 0):

Hopf bifurcation is possible only at the minimum %,; = 0. Here
d%b
32 3 L_é?i_ < 0 .
4f (45)
Clearly in this case stable periodic solutions are expected to appear as

Hopf bifurcation occurs.
Case 4 (dbzbs < 0, 2; > 0):

No Hopf bifurcation is possible since there are no minima.

Summarizing, stable periodic solutions are possible close to a minimum if

f. dbgbs >0, 2; >0,0< g <3,~2g; ~ e85 <0
(46.1)

or

fi. dbgbg <0, g; <0, gy — £289<0 .
(46.2)

In each case, the possibilities for global behavior may be discerned by exam
Jning the shape of the potential well. Thus in Case 1, the particle will go either
to the minimum or to infinity. If the minimum is unstable then the "friction” is
everywhere negative so that the "particle” will gain energy as it moves and will

go to infinity.

In Case 2 the situation is even more interesting. If the two minima are stable,
depending on the starting point, the particle will go to one. If the minima are
unstable, the particle can oscillate about one of them, move from basin to basin

in an oscillatory fashion or go to infinity. In Case 3, depending on the starting
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point, the particle will go either to the minimurmn if it is stable or go to infinity. If
the minimum is unstable, the particle will perform either stable oscillations
close to the minimum or again go to infinity. Finally, in Case 4, the particle will
definitely go to infinity.

For this problem, although conditions (i) and (ii) of the theory for existence
and stability are met in all four cases, condition (iii) is violated in Cases 3 and 4,

whereas condition (iv) is violated in Cases 1 and 2.
The conditions for F; bifurcation for this problem are

g =egg=0.
(47)

On perturbing parameters ¢; and gz from zero, all the different possibﬂitieé por-
trayed in Fig. 4 are locally obtained, with the minima being stable or unstable.
This situation is summarized in Fig. 5. In regions I and II, zero is the only steady
state. In region 1. the steady state is stable whereas in region 1I it is unstable
with unstable periodic solutions appearing to the left of line (a). In regions III
and [V, there are three steady states. In region IlI the two nonzero steady states
are stable whereas in region IV all three steady states are unstable and stable

periodic solutions exist close to the nonzero steady states.

CONCLUSIONS AND DISCUSSION

The theory for particles moving in a potential well has been used successfully
to obtain important information and insight of the nonlinear dynamics for
chemical systems of dimensionality three that are reducible by affine transfor-
mation to the companion normal form and have constant negative divergence.
After the definition of a potential function, a full analogy between the motion of
a particle in a potential well and the three-dimensional system of 0.D.E's v;as

observed. Steady states correspond to turning points of the potential function,
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D; and F, bifurcations are reflected by a change in the structure of the potential

function as the turning point becomes an inflection point.

Hopt bifurcation can be effected without changing the structure of the poten-
tial well and corresponds to vanishing of the "friction” at a minimum of the
potential function. Using the theory of Hassard et al [9], an explicit formula for
the characteristic exponent was obtained, thus enabling easy determination of
the stability of the Hopf-induced limit cycles. In special cases, a theorem due to
Lienard may be useful to establish the existence of globally stable periodic solu-~
tions.

This treatise, however, indicates another important point. A system which is
three-dimensional is seen by a limiting process to behave essentially as a two-
dimensional system. This process of reducing the system dimensionality retains
all the local leatures of the original system. Thus the approximatlion of the
three-dimensional system by a two-dimensional system is valid locally even for
smaller positive b. For infinitesimal positive b, the system is a perturbed Hamil-
tonian system and may then behave as three-dimensional. Consequently, the

'domain of validity of the two-dimensional approximation depends on the value
of the divergence b. The same procedure of reducing the system dimensionality
may be generalized for systems of any dimensionality if they are reducible to

the companion normal form and possess constant negative divergence.

Using the developed theory, the dynamics of an enzymatic reaction systern
were analyzed completely. In each case, five parameter combinations, i.e. 8,
dbsbg, £;, £z and g3, influence the dynamics. The conditions to be satisfied by
gsystern parameters for different dynamic behaviors were obtained explicitly.
The different possibilities of global dynamic behavior were easily visualized

exploiting the "particle” motion analog in an easily obtained one-dimensional
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potential field.
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Homendature
A Matrix in system 2.
 A(x): Function defined by Eqn. (7).
b: Positive constant in system (3).
b: -Eg.
be.bs: Parameters in system (24).
dy: Parameters in system (_24).

D.Fi Gy Types of bifurcation.
£(x): Function in system (3).
F(x) f(x),g(x): Functions in Eqn. (15):

£;.£2.05: Functions in systems (1) and (3).

f: Functions in Eqn. (28).

a Function in system {2).

Sy Eigenvalues given in Eqn. (17).

8 Variable in characteristic Eqn. (18).

5 Variable in Eqn. (26).

u(x): Potential function defined in Eqn. (14).

a(g): Potential function given by Eqn. (33) for the quadratic case and

Egn. (39) for the cubic case.
zy.Z Variables in systems (1) and (3).

R9.2 \Tariables in system (24).
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-3 Steady-state value of system (29).
x* Steady-state value of x (system 13).

b 4 4 Vectors in system (2).
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GREEK SYHBOLS
a(x): Function in system (3).
&(x): Function in Eqn. (29).
Be: See Eqn. (21).
Bz See Eqn. (35) for the quadratic case and Eqns. (41, (42) and (45) for
_ the cubic case.
b: See Eqn. (32).
g Parameters defined by Eqns. (25).
e Parameter in sttem (24).
o Power in system (24).
™ Dummy variables in Eqn. (8).
Subsecript

o: Initial value.
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APPENDDC: DERIVATION OF A FORMULA FOR THE CHARACTERISTIC EXPONENT

The algorithm for determining the leading term in the asymptotic expansion for
the characteristic exponent is given by Hassard et al. (Hassard R. D., Kazarinoff N.
D. and Wan Y. H.. "Theory and Applications of Hopf Bifurcation”, Cambridge Univer-
sity Press, 1981). For two-dimensional systems, this algorithm is the following:

1. Select the bifurcation parameter v. Let

g=f(xv) (z€RY

(1)
2. Locate x"(v), the stationary point of interest. Calculate the eigenvalues of the

Jacobian matrix
8t N e
A(v) =[ EXL(i(V):w (iLj= 1-2)}
! (2)
3. Find a value v, such that Re(A;) = 0. If (a) A, and A, are a conjugate pair for vin
an open interval including v,, (b) Re A;'(v,) # 0 and (c) Im A;{v,) # 0, then a

Hopf bifucation sccurs.
4. If A(v,) is in the form

0 —o.]

we O (3)

where we = ImA;(v,) > 0, let P = I the identity matrix and go to step 5. Other-
wise, form matrix P as follows. Let P = (Rev,, -Imv;)} where v, is the eigenvector
of A(ve) correspending to A (ve) = iw,. Normalize v; so that its first nonvanish-
ing component is 1.

5. Perform the change of variables

: x=2(v;) + Py “

and let ¥ = F(y) denote the system for y. The Jacobian matrix 8F'/ 8y, (0) (ij =
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1,2) will have the canonical form

oF LA [o —o,]

(5)
8. Calculate the following quantities, all to be evaluated at v = vy, y=0
. =_1_[a=w A - azrz]
. ayf = oyf | oyf  oyE (8.1)

F1 aew gre_ [ eore _ g7

+2 ead
? By.0% | oyf oy 5}’133'2” (8.2)

L
4

#'M

+1

of “Pavawe | oF " oE TP wviwe

[a=
[azw gr L, & [P _ P , o°F ”
(8.3)

#Ft &5r! 372 &5F¢
&r=7p [ 3ys | dyioyf & dyioys & oy3

8F2 ., &F¢__ &F =8’F‘]]

oyl | oyioyl oyfoy: oyl | (8.4)
7. Let
Ci(0) = i [eogns —2len|® - & [goal®] + 224
20. 3 2 (7)
Then
B2 = 2ReC,(0) .
(8)
System (13) of Chapter 6 may be written as:
X = Xg
(8.1)
ba(x;) - f(x f(x
- bale) orx) ,, Hx)
b (9.2)
Select b as the bifurcation parameter. At Hopf bifurcation,
£(z) - ba(xf) =0
(10)

The Jacobian of system (9) is
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o 1
f(xi) O (11)
b

with eigenvalues A; 3 = + iw, where w, = -a(x;’). Then

v, = [u‘,] (12)
Consequently,
P = {é a(?d')] (13)
let
i = X3 = xF(b.) (14.1)
Yo = 3—(351%::)—)— (14.2)

where b, is the critical value of the bifurcation pararneter b for which condition

(10) holds. The change of variables gives the new system

)"1 = a(xf(be)))'z

(15.1)
§g = axi(be) +y1) _ Flxibe) +v) | f(xi(be) + 1)
y b b? 7 balxi(be)) T (15.2)
Then
8F(0) _
By
_ ) a(x;(be))
ba'(x,(be)) = £7(x;(be))ya . '(x:(be))  ba(xy(be)) = F(xi(bc)) | (18)
be ba(x;(be)) bf

Evaluating the g; at zero, one gets
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if"(x1(be))
ba(xl(be)) (17.1)
_ 11 ba(xi(bg)) —f"(xi(be)) . £(xi(bc))
B = { 2 b® ¥ ba(x;{be)) (17.2)

-1 ba (xl(bc)) f"(xl(bc» +i (%1 (b))

T4 b2 ba(x;(be)) (17.3)

= 1| ba"(xi(be)) = 1"(xi(b)) . £"(xi(be))
b® ba(x;(be)) (17.4)

Substituting in the expression for C;(0) (Eqn. 7),

e -ty bar-t] [ 5 £ ba-f £
C‘(O)"{ 16b%at 1662 | |48 b%® ' 24t ' 16ba | (1

where the arguments of f, « and their derivatives have been omitted for simpli-

city. Consequently,

) _ (ba’ =" , ba” =t
Ba = 2Re(Ci(0)) = 53 8b? (19)
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Figure Captions

Figure 1.

Figure 2:

Figure 3:
Figure 4:
Figure 5:

Potential function for the feedback-regulated enzyme reaction
sequence. Here 28dbgbs + 2; < 0. If the opposite is true, both turning

points are negative.

Steady states in the quadratic case (p = 2) as a function of £, (6édbzbg
< 0).

Functions in the quadratic case (p = 2).
Potential function in the cubic case (p = 3, @ = 0).

Regions for different steady-state and dynamic behavior of the enzy-

matic reaction system close to an F, bifurcation (g5 < 0).
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Figure 3

€9%apgp-< 1>

.../)

nnmnvmwvn u_w

Eotapgy- >'550

Ong.w 0 V_U

0<'

\L

\

0/ 6

(uouoainpq ') 0='»

\
5

0=8

(x)n

0>h

L& 4
L~

(x)n




203

¥ 3SV0 € IS
Sy
1S ISy -
¢ 3SVI | ASVI
_m« _mx

(o 0:=" o>b

0>%a%p

0< €q%ep

Figure 4



(a)

N

// )

€
)

(b)

\\\\\\\
AR

NN




205

CONCLUSIONS

Methods of bifurcation theory and nonlinear dynamics have been used to develop
a general strategy for senmsitive modeling and analysis of nonlinear chemical

processes.

Modification of the dynamics of chemical reaction systems by multivariable feed-
back control schemes has been demonstrated to be an invaluable tool for obtaining
nonlinear dynamic models of global validity. When steady-state and transient
response measurements are unable to discriminate between rival kinetic models,
the feedback method provides a clear means of distinction. A general meodel
parameter identification scheme was developed. Complete stratification of the
feedback parameter space (decrement diagram) was developed, organizing the
study of the possible bifurcations. Feedback produces different types of bifurca-
tions, the most common being D; bifurcation usually accompanied by steady-state

bifurcation and D (Hopf) giving rise to oscillatory behavior.

The method of Newton Polyhedra proved particularly useful in analyzing
feedback-induced steady-state bifurcations when reduction to a single algebraic
equation is impossible or impractical. Furthermore, it provides much simpler poly-

nomial forms that are locally equivalent to the original complicated systems.

The number of feedback parameters required to force a system to a certain
bifurcational structure was determined using two methods, one based on the
characteristic equation of the Jacobian and one based on Arnold's theory of versal
families of matrices. The theory of normal forms was used to demonstrate that
systems at bifurcation are even locally nonlinear as far as dynamic behavior is con-
cerned. The possible types of dynamic behavior close to a bifurcation are given by

the much simpler normal form of the original system.
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The reduction of an arbitrary nonlinear system to normal form being particu-
larly difficult, a general class of dynamic systems (those involving a single non-
linearity) was identified that is reducible by an affine transformation to the com-
panion normal form with distinctive advantages for the study of the steady-state
and eigenvalue structures. This normal form in the two- and three-dimensional
cases is shown to be equivalent to the classical F, and G, normal forms, respec-

tively.

Systems reducible by affine transformation to the G; normal form with constant
negative divergence are shown to have a mechanical analog of particle motion in a
potential field. This analogy provides special insights into the system dynarmics,

and conclusions regarding possible global dynamic behavior are drawn.

Using the methods that were developed, important conclusions were drawn
regarding the dynamic and steady-state characteristics of numerous chemical reac-
tion systems such as isothermal catalytic nitrous oxide decomposition in a CSTR,
isothermal reaction between two adsorbed species in a catalytic CSTR, parallel reac-
tions of arbitrary order in a nonisothermal CSTR, consecutive-competitive reactions’
in a CSTR, coupling of two isothermal oscillating autocatalytic CSTR's enzymatic
feedback reaction systems and another catalytic reaction system. The methods
and approaches that were developed should be extremely useful in analyzing the
ponlinear dynamics of chemical reactor systems and in obtaining good nonlinear

dynamic models for control and optimization.



