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ABSTRACT

Shock wave experiments were conducted in the GALCIT*
seventeen-inch low density shock tube to measure the inter-
action potential of the following nonradioactive noble gases:
neon, argon, krypton, and xenon. The experimental shock
profiles obtained by employing the electron beam densito-
meter technique were compared to the Monte Carlo numerical
simulation of the shock wave structure. The comparison
determined the intermolecular potential for these gases,

a potential assumed to be of the form ¢§ = const/rS . The
values resulting for the free parameter s in the inverse
repulsive power law were 9, 10, 11, and 12 for xenon,
krypton, argon, and neon, respectively.

In a second phase of the experiments, the feasibility
of a modified electron beam densitometer technique was
investigated for measuring the shock wave structure in a
binary mixture of helium and argon. It was desired to
obtain both the argon and helium density profiles through
the shock wave by varying the electron beam energy in two
experiments of identical shock conditions (gas concentra-
tions, Mach number, initial pressure, etc.). Theoretical
calculations of the collision cross—section indicated only

a slight possibility of separating the density profiles of

*Graduate Aeronautical Laboratories California Institute
of Technology.
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the two species with the range of electron energy possible
in the experimental apparatus (7000 to 15000 volts).
Experiments conducted with initial gas concentrations of
10%, 20%, 50%, and 80% argon in shock waves with a Mach
number of approximately four confirmed these suspicions
but permitted qualitative conclusions in agreement with

other similar investigations.
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I. DETERMINATION OF THE INTERACTION POTENTIAL OF THE

NOBLE GASES FROM SHOCK WAVE STRUCTURE EXPERIMENTS

1.1 Introduction

Studies of the structure of a normal shock wave have
long been undertaken by a number of investigators. The
shock wave suits the purpose of so many investigators
because it is the simplest flow in which large departures
from equilibrium occur. It is one dimensicnal, boundary
effects are absent, and the nonequilibrium processes occur
within a narrow region in space bordered on both sides by
areas of uniform flow. Hence the shock wave problem has
often served as the test case for new theories and experi-
mental techniques which have the solution of more complex
problems as their ultimate goal. Today, many in the area
of fluid mechanics concern themselves not with the shock
wave itself but rather the far-reaching consequences that
can be realized from a more complete understanding of the
processes involved. One such field of endeavor is the
subject of this investigation, namely the measurement of
‘the interaction potential of the noble gas atoms.

The actual processes which occur within a shock wave
involve a transfer of both energy and momentum. An attempt
to describe these phenomena in order to develop a theory
for the structure (density profile) of a normal shock wave

has lead to two distinct points of view (Ref. 1). The
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most fundamental approach describes the transfer processes
in terms of atomic collisions, hence leads to a formulation
based on the kinetic theory. The other approach treats the
gas as a continuum with stresses and heat transfer proper-
ties governed by laws which describe the relationship
between these properties and the gradients of velocity and
temperature. Because of the difficulty in solving the
Boltzmann equation (necessary to the general kinetic theory
solution), the Navier-Stokes approach, continuum theory
(Ref. 2), received much of the early attention. This method
is sufficient for weak shocks but its validity is doubtful
for shocks of arbitrary strengths.

The kinetic theory approach has been complicated by
the approximations necessary to solve the Boltzmann equation.
The net result is a variety of schemes, the most notable
of which are the Chapman-Enskog (Ref. 3), Grad thirteen-
‘moment (Ref. 4), BGK (Ref. 5), and Mott-Smith (Ref. 6)
techniques. Recently, a superior method, the Monte Carlo
direct simulation (Ref. 7), has been developed which models
a gas as a representative sample of particles and calculates
the shock wave structure from collision dynamics. Arguments
concerning these various approximations have lead to
numerous experiments in an attempt to select the most
appropriate theory since "the sole test of the validity of

an idea is experiment".*

*R.P. Feynman et al., The Feynman Lectures on Physics, v.1,
chap. 2, p. 7.
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The experiments can be arranged in three groups accord-
ing to the specific technique employed. The earliest method
measures the optical reflectivity of the shock front. This
technique developed by Hornig, et al. around 1950 (Refs. 8 -
12) has been used primarily for shock thickness measurements,
hence is inconclusive in establishing the best theory for
the shock structure. The second method is a hot wire tech-
nique initiated by Sherman in wind tunnel experiments of
the shock wave (Refs. 13, 14). This approach requires
stationary shocks and has been used only for weak shocks in
which deviations from the Navier-Stokes theory are small.
In addition, all theoretical approximations seem to agree
in this region. Finally, there are the electron beam
investigations. The earliest experiments in the mid 1950's
(Refs. 15, 16, 17) measured the transmission of an electron
beam through the shock wave to determine its thickness.,
Camac (Ref. 18) has measured large angle scattering with a
100 kv electron beam to infer the shock thickness. The
use of the technique in the present investigation stems
from the experiments of Russell (Ref. 19), Schultz-Grunow
and Frohn (Ref. 20), and Schmidt {Refs. 21, 22}. These
latter two investigations report accurate shock wave density
profiles for strengths up to M, = 10 . Conclusions based
on these experiments recognize the Monte Carloc technique
as the most adequate theoretical approach to the shock wave

structure problem. In addition, the experiments have
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demonstrated the inconclusiveness of shock thickness
measurements. Thus, the latest electron beam densitometer
technique (with only minor changes in the data reduction
procedure) has been chosen in conjunction with the Monte
Carlo technique to investigate the interaction potential
which accounts for the density profile of the shock wave.

The connection between atomic forces and shock wave
structure may not be immediately apparent, but the essential
link involves the collisional nature of the shock wave. As
a shock propagates, it conveys its presence to the undis-
turbed gas via collisions, during which "information” is
exchanged between the molecules. Since the interaction
potential explains the nature of the influence one atom
exerts on its environment, it is the basic building block
for the shock wave structure.

The present investigation links the two phenomena by
experimentally measuring the structure (density profile) of
a shock wave in the noble gases (neon, argon, and krypton)
and comparing the results with theoretical profiles obtained
by a Monte Carlc direct simulation technique developed by
G.A. Bird (Ref. 7). 1In the latter theory the only adjust-
able parameter is the interaction potential for the gas
atoms in the shock wave. However, the analytical expres-
sions used to represent the true potential of the atom, in
order to reduce the complications (the collision integrals)

involved in computing the scattering process, are not valid
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over the full range of intermolecular separations, but
rather, can be regarded as approximating the potential,
§(r) . over a finite range of separation, r . The many
attempts to model this potential have resulted in varying
degrees of success and complexity. For the present inves-
tigation, one of the simpler models, namely the inverse
power law of repulsion (& = c/r®) , is chosen with the
hope of being able to determine the exponent s for the
repulsive potential of the gases tested. This is only one
analytical model for the atomic potential, a potential known
to include both an attractive and repulsive field, but in
the energy range of shock structure measurements it is
assumed that the attractive forces would be negligikle.

Once the structure of the shock wave has been obtained
by experimental measurement and by numerical computations
using different power laws for the interaction potential,
the resulting profiles can be compared. The similarity
between these profiles determines the value of s which
best describes the interaction potential of the noble gases
considered. These measurements are compared to more con-
ventional determinations of the potential in order to
conclude the applicability of the inverse repulsive power
law to describe the interaction potential of the noble
gases.

As secondary goals these experiments have attempted to

evaluate a new data reduction technique which is employed
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for greater accuracy, to facilitate data manipulation, and
to determine the parameters affecting the shock profile of
the monatomic gases. This is done by conducting experiments
at various Mach numbers, initial pressures, and test gases.
In this connection experiments previously conducted at
GALCIT* by Schmidt (Ref. 22) in argon and Xenon were re-
processed by the new method and used in the interaction
potential calculations. Inclusion of this information
completes the list of nonradioactive noble gases except for
helium, which presented difficulties in the production of
accurate shock profiles at high Mach numbers in the GALCIT
facility.

Further significance is attached to the problem
because the virial coefficients of the equation of state
and the transport properties such as viscosity, thermal
conductivity, etc. of a gas at high temperatures depend on
the repulsive portion of this intermolecular potential
(Ref. 29). These properties are fundamentally important
to many areas of science and engineering, yet accurate de-
termination of their values is exceedingly difficult and
often impossible to measure directly. Conventional
measurements of the interaction potential involve the
relationship between & and the physical properties of a

gas, (Refs. 23 - 28), e.g., by measuring the viscosity of

*Graduate Aeronautical Laboratories California Institute
of Technology
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a gas the interaction potential can be inferred. Another
method determines the potential by measuring the total
collision cross—-section of a gas from the scattering of
high energy molecular beams (Refs. 29 - 35 ). Therefore,
determination of the interaction potential by shock wave
structure measurements assumes a more noteworthy role.

The investigation was a joint effort by Eric Steinhilper
and the author. It is difficult to completely separate the
contributions of each individual, but in this report details
of the area in which the author expended most of his effort
are presented, leaving all but a brief description (for
completeness) of the remainder to the future dissertation

of Mr. Steinhilper.
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1.2 Experimental and Numerical Techniques

The method employed in this investigation matches the
results from an experimental measurement of the shock wave
structure to the numerical calculations of the Monte Carlo
simulation of the shock wave. This section provides a
brief resum& of the fundamentals of these two processes.

By structure of a shock wave one refers to the density
variation from the upstream equilibrium state of the undis-
turbed gas (region 1) to the downstream equilibrium state
of the shocked gas (region 2). The measurement of this
profile is achieved through the use of an electron beam
(Ref. 21). The flow of electrons is directed across the
shock tube enabling the beam to encounter the atoms of the
test gas. Electron-atom collisions attenuate the source
beam proportionately to the density of the gas. The
increase in density resulting from the shock wave further
decreases the electron beam intensity. Therefore an
accurate time history of the attenuated electron current
affords the profile desired.

The Monte Carlo direct simulation technique (Ref. 7)
models (by a computer) a gas so that it consists of a few
thousand discrete particles which obey the laws of kinetic
theory. These particles represent the billions of molecules
in a real gas. The simulated flow field is divided into
numerous cells which are sufficiently small to permit the

assumption of constant flow properties within a cell.
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In each cell collisions are computed from randomly
selected particles (in pairs) with a probability propor-
tional to their relative velocities. After a collision
new velocity vectors are assigned in accordance with the
kinetics of collisions and a time counter is advanced.
Repetition of this procedure continues until the time
counter has reached a fraction, Atm , of the mean time
between collisions. The particles are then moved to new
positions calculated from the latest velocity components
and the time interval Atm .

In the shock structure problem the particles are
initially uniformly distributed in space with a Maxwellian
velocity distribution. The gas is set in motion at time
t = 0 by a specularly reflecting plane piston to which is
imparted an instantaneous velocity equal to the fluid
velocity downstream of a normal shock wave (u2) having
the desired Mach number. The transient effects due to
the instantaneous motion of the piston decay, and a steady
shock wave appears in the flow.

Clearly the heart of the Monte Carlo calculation is
the collision process which is governed by the interaction
potential. Hence, different potentials lead to different
shock wave profiles. In the present work the exponent s
of the inverse power law of repulsion is the parameter which
governs the shock structure. The constant ¢ can be cal-

culated from room temperature viscosity data (see section



10

1.58) leaving s as the only free parameter. Therefore,
a number of shock wave density profiles have been calculated
each with a different value of s , and the results compared

with the experimental profiles.
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1.3 Apparatus
1.3a Shock Tube

The experiments are performed in the GALCIT 17-inch
diameter shock tube (see reference 39 for details) which
has a conventional high pressure driver section 12% feet
long and a 70-foot test section of stainless steel (Figs.
1,2). Shock waves are produced in research grade neon,
argon and krypton (purchased from Matheson Co.) by the
bursting of an aluminum diaphragm caused by pressurization
of the driver section with helium, nitrogen or a combina-
tion of both. The velocity of the wave is determined with
an electronic microsecond counter (Hewlett Packard 5233L)
which times the passage of the shock front across two thin
film heat transfer gauges (described in reference 40),
located 50 cm apart near the end of the tube. The Mach
number is calculated from the ratio of the shock velocity
to the speed of sound of the test gas in the undisturbed
region ahead of the shock wave. The initial pressure is
measured in a small cylinder {(1/1000 the volume of the
shock tube) with a 0 to 50 mm Wallace and Tiernan absolute
pressuré gauge. This cylinder (control volume) provides an
easier measurement of the test pressure by increasing the

3

pressure from microns (10 ~ mm) to mm of Hg (c.f. Boyle's

Law, P; = P, vz/vl)°
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1.3b Electron Beam

The electron beam densitometer (described in reference
21) is located 48.5 diameters from the diaphragm and 20 cm
from the end wall. The beam, produced by a commercial
television gun (Superior Electronics S-110E) with a variable
acceleration voltage of approximately 5000 to 20,000 volts,
enters the shock tube through an injector needle with a
diameter of 0.5 mm and is collected on the opposite side by
a Faraday cage 2.8 mm in diameter (Fig. 3). The gap between
the needle and cage is maintained at 4-5/8 inches and the
electron energy is fixed at 15,000 volts for all experiments.
Figure 4 shows the circuit diagram of the beam power supply
and the cage and needle amplifiers.

1.3c Electronics

The electronics in the experiments, apart from those
of the shock wave timing and electron beam devices, involve
triggering, monitoring and pulsing of the cage and needle
signals. These currents are monitored on three Tektronix
oscilloscopes (a dual beam type 555, type 532, and type
647A) which are triggered by an end-wall thin film heat
transfer gauge located approximately 6 cm upstream of the
electron beam (Fig. 1). After the shock wave passes the
measuring station a -40 volt pulse, generated by a Tektronix
Pulse Generator (type 161), is applied to the deflector
plates of the electron gun thereby causing the entire beam

to fall upon the needle. The result is a zero current
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reference for the cage signal (see figure 6). 1In addition,
a Tektronix Time Mark Generator (type 180A) concurrently
supplies time dots to the latter two oscilloscopes for use
as timing references. Figure 5 shows a schematic of the

electronics and figure 6 presents typical oscillogram traces

(see section 1.5).
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1.4 Procedure

l1.4a Mach Number and Initial Pressure

Although the major emphasis is an investigation of the
intermolecular potential of the noble gases, secondary goals,
including the evaluation of a new data reduction procedure,
warrant the study of the test gases at various initial
pressures and Mach numbers. For neon this includes 0.010,
0.025, and 0.050 torr initial pressures at Mach numbers of
approximately 3, 4, 6, and 7; for krypton 0.015, 0.025, and
0.050 torr are used but at Mach numbers of 4, 6, and 8;
finally, for argon, primarily for comparison with Schmidt’'s
data (Ref. 22), pressures of 0.025 and 0.950 torr are com-
bined with Mach numbers of 4 and 6. The Mach numbers are
nominal values with root-mean-square deviations of ¥0.2
from the values quoted; whereas the initial pressures are
exact numerical values. The established method for deter-
mining these quantities has been described in section 1.3a.

1.4b Shock Tube Operation

For the various combinations of the above initial con-
ditions, the operational procedure remains unchanged. The

shock tube is evacuated to less than 0.05 microns Hg

(1 micron = 10—3 torr) as measured by a discharge vacuum
gauge (Consolidated Electronics Type GPH 100) before
releasing the test gas from the control volume, where the
initial pressure is determined, into the driven section

(see figure 1l). A three minute delay time is employed to
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insure pressure equilibrium before the manifold valve is
closed and the firing sequence initiated. Meanwhile the
oscilloscope sensitivity and sweep rates are set and the
electron beam filament activated. After the requisite
interval, the beam is aligned for maximum cage current out-
put at an acceleration voltage of 15,000 volts and a cathode
current of approximately 100 pa . The diaphragm is
ruptured by the high pressure driver gas (usually helium
or nitrogen) and the resulting shock wave triggers the
oscilloscope sweeps upon contact with an end-wall thin
film heat transfer gauge mounted just upstream of the
measuring station. Simultaneously, two 20-volt gate pulses
from the 555 oscilloscope disengage the electron beam
(after a predetermined delay) and close a ball valve,
thereby preventing the high pressures of the shock wave
from harming the sensitive elements of the electron gun.
Meanwhile, the three oscillograms are photographically
recorded on polaroid film and other pertinent beam and
shock wave information noted. The venting of the tube and

a diaphragm change completes the cycle.
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1.5 Data Reduction

Each of the oscillograms displayed in figure 6 contains
information necessary for conversion of the current history
of the Faraday cage into a shock wave density profile.
Figure 6a is a typical recording from the dual beam oscillo-
scope. The upper trace exhibits the current output from the
Faraday cage from 15 to 40 microseconds before the arrival
of the shock wave until approximately 20 microseconds after
its passage. The lower trace contains the needle current
output over that same time interval (the two traces are
shifted one cm to avoid confusion). If a spurious signal
has developed long before the shock arrival and caused
erroneous data to be collected, a glance at these signals
will indicate the trouble. In addition, the source current

I can be computed from the needle signal since the deflec-

o
tion seen corresponds to the total current emitted through
the needle injector.

The 532 oscillogram (Fig. 6b) is a more detailed
picture of the cage output and its sole function is the
establishment of the zero reference from which all currents
(in particular, those of oscillogram c) are measured.

Shortly after the passage of the shock wave, the entire
electron beam is deflected onto the needle thereby "chopping"
the cage signal and recording the zero current level.
Finally, the third picture (Fig. 6c) is a close-up of

the shock structure because it depicts the fine detail which
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is converted into the shock wave density profile.

1.5a Digitization

Processing begins with the digitization of the cur-
rent data (Fig. 6¢c). A new technique has been devised for
this purpose which replaces an older method of reading the
magnitude of the current at various intervals along the
horizontal or time axis with a millimeter scale and magnify-
ing glass. Obviously, this technique has inherent errors,
not the least of which is due to eye fatigue, whereas the
new scheme is quite accurate yet compatible with existing
equipment.

The ideal process would be fully automatic with both
the x and y coordinates of various points along the
oscillogram trace being electronically recorded. Such a
system is quite possible but expensive. Therefore a simpler
but somewhat less satisfactory device has been employed
which uses an x-y plotter (Hewlett Packard Mosely Recorder,
model 7004B) "in reverse”. Two potentiometers provide a
continuous input voltage of 0 to 9 volts (an arbitrary range
selected for convenience) to the x and y terminals of
the device. By the proper selection of these voltages, the
recorder pen can be positioned at any desired location.
Accuracy in placement is achieved by removal of the standard
pen and insertion of a cross hair arrangement constructed
exclusively for this purpose. Thus, the oscillogram trace

can be followed easily with the cross hairs and recordings
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made of the x and y voltages, i.e., the x and vy
coordinates of various points across the picture. The
actual recording unit is a multiplexer-voltmeter-printer
combination* which alternately switches the voltages on the
x and y inputs toc a Hewlett Packard Multifunction Meter
#3450A, that measures the voltages which are then printed
by a Hewlett Packard Digital Recorder #5050B.

Any point on the oscillogram can be read to 10.01 volts
(corresponding approximately to a time of 10.02 microsecond
or a distance of X0.03mm and an electron beam deflection of
+0.13% of Il-Iz) as has been verified many times by re-
checking the coordinates of each time mark on figure 6c.
Therefore the accuracy of digitizing the center of the
current traces is better than 0.2% of full scale. This
accuracy is achieved only in reading the picture and does
not account for oscilloscope nonlinearity or errors in the
measuring (electron beam) apparatus.

In addition to the electron beam deflection, the time
marks concurrently generated on oscillograms b and c
facilitate establishment of the absolute current level for
the digital information. After the primary picture (Fig. 6¢)
has been digitized with approximately 40 points, special
attention being given to the time dots, i.e., checking
these points twice, a similar procedure is applied to the

second oscillogram. In this instance however, only the

*Designed and constructed at GALCIT by Dr. G.L. Brown and
Mr, P.E. Dimotakis.
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y coordinate relative to the zero current line of each time
mark is necessary, since the time dot interval determines
the X coordinate. Coupling similar data points from the
two oscillograms in such a manner that all possible pairs
are compared, special weight being given to those farthest
apart, produces the scaling or magnification factor with
which the digital information of the third trace can be
referred to the zero current. The determination of the
scaling along with the remainder of the data reduction
process is programmed for an IBM 360/75 computer.

1.5b Selection of I, and I

1 2
After all the data have been referred to the absolute

current level, the currents at the two equilibrium states

of the shock wave (I, and IZ) are determined. The first

1
of these presents no difficulty since the signal is always
well stabilized before the shock wave arrives at the beam.
Hence Il is chosen as the magnitude of the upper plateau
on figure 6b as indicated.

The second equilibrium state is not so easily identi-
fied (Fig. 6), due to the density rise behind the shock
(believed to be caused primarily, by a boundary layer effect
described in reference 19). Again a new technique is
applied to this critical step in the processing. Experience
has shown that scatter is reduced if a straight line is
drawn through the rear portion of the shock wave and I

2
is labeled as the point at which this line deviates from
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the actual trace (Ref. 21). This is, however, something of a
subjective decision. Therefore a technique has been devised
to allow an impartial judge, the computer, to select I2 .
The method attempts to determine the first significant
deviation of the current trace from the assumed linear
behavior at the rear of the shock wave. This is accomplished
by least-squared curve fitting a straight line to the last
few data points obtained from figure 6c, and arbitrarily
selecting a region outside of which is considered to be a
significant departure from the line. The intersection of
the actual current trace and this bandwidth is taken as
I, .
In the program the last four data points of figure 6c¢c
are used in a least-squared curve fit to a straight line.
To these original points earlier data are added until the
deviation of a new point is larger than the sum of the
maximum deviation of the curve {(the distance to the farth-
est point from this line) and one third of a trace width.
The program computes other first degree polynomials with
each new data point and permits one of the original data
points to be discarded from the computation for each two
new points added. This provision allows greater flexibility
in determining the best straight line by preventing any one
of the original four points which may have a large deviation

from impairing the calculations. From various combinations

of the old and new data points numerous straight lines are



21

calculated and one is selected on the basis of smallest
standard error (rms deviation) and maximum number of points.
Around this curve a bandwidth equal to the rms deviation or
one third of a trace width, whichever is largest, is pro-
jected. I, is then chosen as the point where the actual
trace crosses the bandwidth of the fitted curve. Through
many trials this method has been found to best represent

the correct value of I, based on comparison with previous
data.

1.5c Determination of Density Profiles

Once Il and 12

current data are converted to density p using the atten-

have been determined, the digital

uation law
I = Ioexp(—Kp) (1.5-1)

where K , a coefficient which depends on test gas, electron
energy, etc. can be considered a constant for the present
application.

Combining the above equation with the knowledge of
Iy and I, and the result (pz/pl) from the Rankine-
Hugoniot relations for the density jump across a shock wave
yields after some rearranging

p - p in(1/1,)
5= 1 - 1 ) (1.5-2)
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Finally, the x voltages in the digital array are
converted to physical times by interpolating between the
time marks (Fig. 6c¢) which are a known time interval apart
(generally 5 microseconds), and extrapolating to points
outside the first and last time dcts. A Galilean trans-
formation using the shock wave velocity is applied to
establish the distance axis (x = Ut), which is then
normalized with the mean free path* A\ of the test gas in
the undisturbed region ahead of the shock wave, i.e.,
region 1. For convenience this scale is arbitrarily shifted
so x/xl = 0 corresponds to (p - pl)/(P2 - pq) = .5 .

1.5d Determination of the Constant and Exponent in the

Inverse Power Law

In the Monte Carlo direct simulation of the shock wave
structure the only free parameter is the interaction poten-
tial, & = ¢/r° . The explicit parameter s is a measure
of the hardness or softness of the atoms and is adjustable,
whereas ¢ , an implicit parameter, does not appear in the
calculations because of an energy normalization. The net
result is a numerical solution which is independent of all
gas properties except s (and the ratio of specific heats

Y which has the monatomic gas value of 5/3).

* \ = 16/5 /Y/27 u/pa
where u , a , and Yy are the viscosity, speed of sound,
and specific heat ratio of the test gas respectively.
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In the experimental shock wave structure data reduction
procedure, distances are normalized with the upstream mean
free path of the gas under investigation. This transport
distance is a function of ¢ and s . Therefore once s
is determined, ¢ 1is fixed.

The comparison of the experimental and numerical
results determines the value of s . Then <¢ <c¢an be eval-
uated using the equation (Ref. 24) for the viscosity of a
pure gas, in which the atoms are considered point centers

of repulsion, i.e.,

5 m(ké (%*%) 2\ ,2
w=3 (L) ¢ /T (4-2)a%s) (1.5-3)

where pu = viscosity (gm/cm/sec)
m = mass of the atom (gm)
k = Boltzmann constant (ergs/oK)
T = temperature (OK)
T = the Gamma function

A(s) = a dimensionless quantity

The above equation can be rewritten in terms of the constant

¢ and evaluated using room temperature viscosity data
{(Ref. 41).

l.5e Calculation of Closest Approach

The evaluation of the constant ¢ in the point centers
of repulsion model for the atomic interaction potential

determines one point, the intercept, on a log log plot of
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§ versus r . A determination of the exponent s (from
matching the numerical and experimental results) yields
the slope of such a curve but does not give an indication
of the range of validity, i.e., the values of & which
correspond to the energy range found in the shock wave.
The most obvious choice is obtained from the temperature

jump across the shock wave, i.e., 3/2 kT, < ¢ < 3/2 kT

1 2 -
Since & = %(r) , an alternate estimate can be made on the
basis of the range of values of r which occur in a shock
wave. The distance of closest approach of two atoms in a
collision is taken as a characteristic value of r since
the true values for each collision extend from - to +=
Thus a distribution of values of closest approach is, in
essence, an energy distribution for the shock wave.

The elimination of time from the equations of motion
is the first step in obtaining the point of closest approach
r since the resultant equation is an analytical expression
for the rate of change of r with respect to 6 , the angle
between the two approaching atoms. The conservation laws of

a two body collision for a center of mass coordinate system

(see schematic below) can be written as

%m*fz + %m*fzéz + &{r} = constant = %m*vi (Energy)
(1.5-4)
m*rzé = constant = m*bvr {Angular

Momentum)
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where m* = reduced mass
V. = relative velocity
b = impact parameter
T = d/dt.

Combining these equations yields (taking the negative square

root)
dr _ r r2 §(r) ‘b 2
8 bmeyy T

and thus the solution of dr/d6 = 0 gives the desired

result, r_ .
m

Dynamics of Elastic Collision

center of mass
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In the Monte Carlo calculations the values of Ve
b, m* , and ¢ are known for a given collision, hence
a record of the point of closest approach can be obtained
for all collisions. Due to the large difference in mean
collision energy of the gas atoms before and after the
passage of the shock wave, two segments of the shock profile
are arbitrarily selected, one near the front and one near
the rear, to give a statistical distribution of the number
of collisions which resulted in a given roo- The resultant
distributions (Fig. 7) contained maxima, presenting two
possibilities for the range of validity of the inverse
repulsive power law. One is the values of r between the
two maxima (solid line in figures 22 - 25); whereas the other
is the values between the half-width of each distribution

curve (dashed line in figures 22 - 25).
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1.6 Results

Before discussing the final results, it is worth estab-
lishing the trends and accuracy of the experimental shock
structures for the four noble gases considered. 1In all cases
the curves shown are averages of a number of runs conducted
under identical conditions, and the indicated bandwidth,
which represents scatter, is the rms (root-mean-square)
deviation.

l.6a Pressure Effects

The influence of initial pressure is illustrated in
figures 8, 9, and 10. On the low density side of the shock
wave there are no discernible trends and all curves fall
within experimental accuracy. However, a relationship
between pressure and the density profile on the downstream
side of the shock is evident. As the initial pressure
increases, the density approaches a uniform asymptotic state
in agreement with the assumption of an ideal normal shock.
Since the selection of condition 2 (section l.5b) is more
accurate when the density profile approaches a constant
value, a high initial pressure yields results with less
scatter.

It is believed that this density rise is due to a
boundary layer affect which results in a curved shock front
({Ref. 19). Unfortunately, calculations based on this
principle do not account for the total observed effect but

do predict the above-mentioned dependence on pressure (Ref.42).



28

1.6b Experimental Scatter

Typical examples of the scatter of experimental results
in neon, argon, and krypton are shown in figures 11, 12 and
13 respectively. The significant feature of these curves is
the relationship between scatter and the length of the down-
stream tail of the shock wave (figure 11). The density
profile of the Mach 3 shock wave extends five mean free
paths downstream of x/)xl = 0 and has a larger scatter band
than the Mach 6 shock wave structure, which extends well
beyond x/)\l = 8 . In order to select an accurate value
for the downstream equilibrium state, the computer must
fit a first degree polynomial to this rear portion of the
shock wave (section 1l.5b). If the length of this region is
too short, i.e. the electron beam is deflected too soon
after shock passage, the value selected is generally lower
than would otherwise be the case. Thus, erroneous deter-

mination of for such runs results in somewhat increased

P2
scatter.

This result is further illustrated in figures 12 and
13. The scatter shown is the rms deviation for 9 and 6
experiments, respectively, conducted at a fixed Mach number

but various initial pressures.

1.6c Mach Number Effect

Previous theoretical models have investigated the
effect of Mach number on the structure of a shock wave by

studying the normalized inverse shock thickness (Xl/ﬁs) o
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The Navier-Stokes, BGK, and Mott-Smith models all indicate
a maximum in xl/as between M, = 3 and M_ =5 (Ref. 21).

In the present experiments the Mach number trends for
neon, argon and krypton are shown in figures 14, 15 and 16
respectively. The effects are small and in some cases less
than the experimental scatter (especially near the down-
stream tail of the shock wave). Unlike the figures showing
the effect of initial pressure, these results show a def-
inite trend on the low density side of the shock wave; in
all cases the shock seems to exhibit minimum thickness at
approximately Ms = 4 ., However Xl/6s values scatter
wildly between 0.25 and 0.35, the same range as other
experiments (Refs. 9 -~ 21), for Mach numbers between 3 and
8, demonstrating the inability to arrive at definite con-
clusions on the evidence of shock thickness measurements
alone.

1.6d Comparison of Numerical and Experimental Shock Profiles

The experimental shock wave structure curves for neon,
argon, krypton, and xenon (both argon and xenon data were
obtained from reference 22) are compared with the Monte
Carlo numerical simulation of a Mach number 8 shock wave
with values of 8 and 11 for the inverse repulsive potential
exponent s (Figs. 17 - 20). The experimental shock pro-
files are the averages of numerous results from Mach 8
shock waves of varying initial pressures for all cases

except neon. For neon the data shown (Fig 17) display the
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average results for both Mach 6 and Mach 7 shock waves.
Since the Mach number effect is only slight, the M, = 7

curve 1is consid ered close enough to the desired Mach number

]

to be used. 1In addition, the MS 6 profile provides a
reference for extrapolating to the Mach 8 shock wave
structure and affords an intuitive feeling for the accuracy
of the conclusions drawn from the Ms = 7 curve.

The relative positions for the experimental and
theoretical curves are set such that the areas between them,
to the right and left of their intersection (usually occur-
ring near x/Xl = 0) are approximately equal. There is
no strict procedure for assigning the position; rather, the
method is somewhat intuitive. From these superimposed
curves the experimental value of s is determined with the
accuracy indicated in the table; the accuracy is estimated

from the similarity between the experimental and numerical

curves and the resulting ease in positioning the curves.

Gas (Mol. Wt.) s Accuracy Viscosity*
neon (20.14) 12 +1 W~ T0.67
argon (39.95) 11 +1 w ~ m0-68
krypton (83.80) 10 + o~ 070
xenon  (131.30) 9 +1 W~ 072

*The temperature dependence of viscosity is calculated
from equation 1.5-3 and the value of s .
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Comparison of the shock structure curves for the four
noble gases is shown in figure 21. All but neon are for
Mach = 8 shock waves and the Ms = 7 shock for neon is
again close enough for illustrative purposes. Variance of
the thickness with atomic number results from the relative
hardness or softness (i.e., s ) of their interaction
potentials, since the mean free path dependence has been
removed through normalization. The trend of this thickness
is in accord with the principle that hard sphere molecules
(s = ; u ~ T%) have the thinnest structure, whereas
Maxwellian molecules (s = 4; u ~ T) are the opposite
limit. Hence the noble gas results fall between these two
limits according to their potential exponent s .

l.6e Interaction Potential

Finally, figures 22, 23, 24, and 25 present plots of
the interaction potential & versus the interatomic
separation r for the four noble gases. In addition,
these figures include the previous work of other investi-
gators (Refs. 23 - 38); the high potential results are
generally from high energy molecular beams, whereas the
lower curves result from viscosity and other low temperature
data. The present results fall in an energy range between
those of the previous investigations and thus serve as a
basis for interpolation between the high and low potential

data.
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l.7 Discussion

l.7a Experimental

In Section 1.5a it is stated that the digitization
process, i.e., the "reading" of the oscillograms, is
accurate to 0.2% of full scale, a claim based on the ability
to repeatably measure a given deflection of the current
trace. This accuracy eliminates "picture reading” as a
major source of error, but obviously does nothing to
alleviate other experimental errors.

Schmidt claims (Ref. 21) that assignment of p, to
the point at which the curved trace merges into a linear
increase at the rear of the shock wave reduces scatter.

The present method of data reduction employs the same idea,
but uses an IBM 360 computer to select the point of merging.
The small experimental scatter observed in figures 12 and 13
serves as substantial evidence for this claim, despite the
noticeable variation of scatter with the length of the
measured downstream tail of the shock profile, initial
pressure, and test gas. The effects of variations in
initial pressure and the length of this tail are discussed
in sections l.6a and b respectively; any further comments
will be limited to the effect of varying the test gas and
its relation to initial pressure.

The choice of test gas has some effect on error because
of differing electron-~atom scattering cross-sections. The

signal to noise ratio is low in the case of small electron
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scattering by light gases such as neon. Experimental
scatter in argon and krypton are comparable. Fortunately,
an increase in initial pressure or Mach number can be used
to compensate for decreased scattering in neon by producing
a denser sample and, consequently, more beam attenuation.
On the other hand, if the collision cross-section is too
large, multiple scattering complicates the calibration
procedure. However, the lack of dependence on initial
pressure is reason to believe that this does not occur to
any significant degree and, in fact, conditions are main-
tained such that total attenuation of the beam is generally
a small percentage of the current emitted from the needle.

Ionization due to the high temperatures present in
some strong shock waves must also be avoided since it would
lead to a spurious collector (Faraday Cage) current, and
thereby invalidate the assumed attenuation law. This effect
is relatively small in most gases if the Mach numbers are
less than 8. In krypton, however, it is noticeable even
when MS = 8 and the initial pressure is 0.050 torr or
greater. Therefore, this condition has been excluded from
the final results.

Attention should also be directed to the value of K
in the attenuation law I = Ioexp(-Kp) . It has been
assumed that this parameter is independent of all shock
wave variables except test gas. (A full discussion of K

is found in references 21 and 43. To test this hypothesis
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the calibration constant is evaluated in two ways, statical-
ly and dynamically. The static calibration is performed
in the test section of the shock tube by measuring the beam
attenuation at various densities. Such tests have been
conducted in helium, neon, argon, and krypton (Fig. 26).
The helium and neon calibrations demonstrate K to be a
constant; whereas the argon calibration shows K to be
double-valued. The krypton calibration has a similar
behavior but the change of slope occurs at a higher pressure,
above approximately 190 p Hg (not shown in figure 26).
More static calibrations are necessary to establish the
exact pressure at which the slope changes for krypton.
Admittedly the "knee" in the curves is puzzling and believed
attributable to a high pressure effect (Ref. 21) but the
lack of dependence of shock wave structure on initial pres-
sure is reason to believe the discrepancy is unimportant.
The second method of obtaining the constant comes from
using the values of I, and I, at the two equilibrium

states o and p with the attenuation law equation, i.e.,
1 2

I
- 1 L
Kpyn. = Py = Py 1n (I ) (1.7-1)

Although the density normalization (Egn. 1.5-2) eliminates
the calibration constant from the calculations, it assumes
that the value of K is a constant. A comparison of the

static and dynamic calibration constants provides another
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check on this hypothesis.

All experiments included in the final results are
those in which the downstream tail of the shock wave is of
sufficient length to produce a reasonable value of Py -
The initial pressure, Mach number, and test gas combinations
are chosen to eliminate erroneous electron beam signals
caused by ionization and multiple scattering; and all runs
have been discarded which possess a large difference
(approximately 25%) in the static and dynamic calibration
constant.

1l.7b Numerical Simulation

A few comments will be made concerning the Monte
Carlo calculations, but a general discussion may be found
in reference 7. When the steady shock wave has formed (see
section 1.2), the density profile is obtained by sampling
the number density in the various cells, i.e., at different
locations. The error in this profile is the statistical
uncertainty (dn/n = dp/p) which is proportional to *1//N
where N is the number of sampled particles; Increased
accuracy is achieved by averaging such profiles at subse-
quent time intervals. Since each calculation requires a
large amount of computer time, the operational cost becomes
one limit on the accuracy of the structure.

Error bars included on figures 17 through 20 represent
the error in density near the front and rear of the shock

wave. The significant feature is the increase in error
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near the high density region of the shock wave. This
occurs because the normalization multiplies the error in
density (dp/p) Dby p/(p2 - pl) . Hence for p near p;
the error is approximately 1/3 the statistical uncertainty,

whereas near the error is 4/3 this uncertainty.

P2

1l.7c Interaction Potential

The ultimate goal of this work is a first attempt to
measure the characteristics of the interaction potential of
the noble gases using the shock wave structure. The inverse
repulsive power law as a model for the interaction potential
has limited applicability, but it is a successful first
approximation for the noble gases within a molecular
separation distance of approximately 2.0 A - 3.9 A as
illustrated in figures 22, 23, 24, and 25. None of the
potentials for these gases is valid for the full range;
rather neon is valid from 2.0 A to 2.6 A, argon from 2.6 A
to 3.2 A, krypton from 2.5 A to 3.2 A, and xenon from 2.8 A
to 3.9 A. This is not the range of validity discussed in
section l.5e but is instead that which agrees with previous
investigations. However, the range of validity based on
the maxima of the closest approach distributions (see
section l.5e and figure 7) is generally included in these
ranges. Krypton is an exception as seen in figure 24.

The present results for neon agree best with previous
results; agreement becomes somewhat worse with increasing

atomic number. The reason for this is simple. The inverse
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repulsive power law neglects all attractive forces. It is
known that the potential well exhibited by all atoms
increases with atomic number; hence the shallow well of
neon indicates dominance of the repulsive forces and the
best experimental result. It is also clear from comparison
with other investigations that the linear (on a log log
scale) inverse power law cannot explain the potential
exactly.

In the final analysis it is interesting to note that
the shock structure measurements fall into the range of
energy difficult to obtain from more conventional measure-
ments. This allows greater accuracy in interpolating
between the previous low energy data and the high energy

molecular beam data.
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1.8 Conclusion

This investigation has been undertaken with two
primary aims; to establish the validity of a new data
reduction technique for measuring the shock structure of
the noble gases and to determine the inverse power law
best describing the interaction potentials of these gases.
While attaining the former goal, experiments were conducted
at various Mach numbers and initial pressures. The results
show the shock structure to be independent of 1 in the
pressure range between 0.010 torr and 0.050 torr. There is
a slight Mach number effect with the thinnest shock wave
occurring at approximately MS = 4. In general the root-
mean-square deviation of a number of profiles conducted at
a fixed Mach number in the same test gas is 10.07 mean free
path or equivalently *2% of the shock thickness.

The inverse repulsive power law has been shown
adequate as a first approximation toc the true interaction
potential of the noble gases in the approximate energy
range of 0.04 ev to 1.0 ev. The exponents of this power
law which best describe the interaction potential of xenon,
krypton, argon, and neon as determined from the shock
structure measurements are 9, 10, 11, and 12, respectively.
The neon results agree best with previous results; agree-

ment becomes somewhat worse with increasing atomic number.
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II. Feasibility of a Modified Electron Beam Densitometer

Technique to Measure Diffusive Separation in Shock

Waves in Helium-Argon Mixtures

2.1 Introduction

The basic aspects of the structure of a shock wave of
moderate strength in the noble gases are for all practical
purposes fully understood. These are, as can be expected,
the least complicated shock waves imaginable because of
the relative inertness, reluctance toward ionization, and
monatomic nature of the fluid. In an attempt to expand
upon this knowledge, researchers are seeking a similar
understanding of the problem of a shock wave propagating
into a binary mixture of gases.

The fascinating possibility that a shock could occur
for each mixture component was probably a driving force in
the early investigations. Although this was not to be,
the theoretical work of Cowling (Ref. 44) in 1941 predicted
that diffusion would be as important as the other dissipa-
tive forces in a shock wave provided the two gases had a
large difference in molecular weight. Diffusion occurs in
a shock wave because of the large pressure gradients
present. The lighter molecules diffuse down this pressure
gradient, and therefore concentrate near the front (upstream
region) of the wave, creating a difference in composition
throughout the shock. Although the large temperature

gradients are attempting to negate this effect, thermal
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diffusion is known to be much smaller than baro-diffusion.
In 1959 Sherman (Ref. 45) demonstrated the slight diffusive
separation of the two components in a helium~argon shock
wave by numerically solving the equations of motion assuming
a Navier-Stokes approximation. The solution substantiates
the argument that the baro-diffusion forces create the
separation; hence, in a helium~argon mixture the helium
density profile is ahead of the argon one. 1In addition, the
numerical solution indicates a velocity overshoot of the
heavy molecules at low heavy gas initial concentrations.
This anomaly, which Sherman himself doubted on the basis of
plausibility, becaﬁe the center of attention for the next
few years.

After more detailed analyses using a kinetic theory
approach, namely, the Mott-Smith (Ref. 46), Chapman-Enskog
(Ref. 47), BGK (Ref. 48), two-fluid (Ref. 49), and velocity
moment (Ref. 50) techniques, in addition to the Monte Carlo
(Ref. 51) method, produced no velocity overshoot, the
experimentalists attacked the problem. The early experi-
ments of Rothe (Ref. 52) in 1966 using an underexpanded
free jet were inconclusive due to lack of one-dimensionality,
but those of Center (Ref. 53) in 1967 employing the flow
near the exit of a Mach 2 nozzle seemed to favor the kinetic
theory viewpoint (i.e. no overshoot was observed). In both

cases the electron beam fluorescence method was used as the
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diagnostic tool in a helium-argon mixture. Harnett (Ref.
54) in 1969 introduced an electron beam spectroscopic
technique for measuring simple moments of the velocity dis-
tribution functions of an excited helium-argon mixture in
flows at the exit of a Mach 1.5 nozzle. 1In all cases the
diffusive separation was observed with the helium molecules
leading the argon, but there was no evidence of a velocity
overshoot. Finally, Beylich (Ref. 49) in 1968 attempted to
use the fluorescence technique in a shock tube with a
hydrogen-nitrogen mixture. Because of the long sampling
time inherent in the method, Beylich was forced to run
twenty duplicate experiments to obtain his data. 1In
addition, the weak signals required the use of an easily
excited gas such as nitrogen and hence only the structure
of the heavier component in the HZ-N2 mixture could be
observed.

The present investigation has been undertaken to
determine the feasibility of a new technique in measuring
the separation phenomena. Its main advantage over the
other methods is its simplicity and adaptability to high
Mach number experiments (however, for the sake of comparison
only low Mach number experiments are conducted) which can
be performed in shock tubes. As mentioned above the only
previous shock tube experiments have had only limited

success so a new method is definitely warranted. A modified
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version of the electron beam densitometer is the basis for

the method because of the proven accuracy of this technique.
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2.2 Modified Electron Beam Densitometer Technique

The principle of the electron beam densitometer is the
scattering of a beam of electrons by collision with gas
molecules. Clearly, as the density of the gas increases,
more electrons are scattered from the original beam; hence,
by monitoring the electron current through a gas sample
the density of this sample can be determined as a function
of time. 1In addition, the scattering process is a function
of the electron energy since the collision cross-section of
the gas molecules depends upon that energy. This becomes
the basis for the modification necessary to obtain the
structure of a shock wave in a binary mixture.

Consider the effects on an electron beam in a mixture
composed of helium and argon molecules. Both types of
particles scatter electrons in a proportion determined by
the concentration and collision cross-section of each
species. However, the concentration of a given gas is
influenced only by the shock wave, whereas the cross~section
is governed by the electron beam energy. If two beams of
different energies are passed through the same shock wave,
a difference in attenuation will result from the change in
the cross-sections.‘ It should therefore be possible to
recombine these two signals in such a manner that the

density profiles of the individual species can be separated.
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The interesting cases, according to gas dynamic theory,
occur when a mixture is composed of two gases which vary
greatly in molecular weight. The above technique requires
gases that have large cross-sectional variations with
electron energy. These requirements plus the previous
work done on the helium-argon system lead to its selection

in the experiments which follow.
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2.3 Theoretical Considerations

The basis of the modified electron beam densitometer
technique is the variation of atomic cross-section with
electron energy; therefore an understanding of cross-sections
is essential to the utilization of the technique. 1In
addition, the investigation of other parameters which might
be important in converting the experimental data, the two
attenuated electron beam signals (collector currents), to
helium and argon density profiles is desirable.

The steps in the theoretical investigation are the
derivation of the equations necessary to separate the
density profiles of the individual species from the col-
lector currents, calculation of the cross-sections for the
energy range available with the experimental apparatus,
and correlation of the cross-section data with the structure
of a shock wave in a given helium-argon mixture (obtained
from other investigations) to predict theoretically the
differences in the collector currents. This procedure
serves the two-fold purpose of determining "a priori" the
feasibility of the electron beam densitometer technique in
separating the helium and argon density profiles as well as
presenting guides for analyzing the final experimental
results.

2.3a Equations for the Helium and Argon Density Profiles

Following a derivation similar to that for a single

gas (section 1l.5c), the attenuation of an electron beam by
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a mixture of helium and argon atoms is written

I 1o°%P ( Kie ®he Kar pAr) (
where I = collector current
Io = gsource current
K = calibration constant
p = density.
The calibration constants, KHe and KAr , are related to

the collision cross-sections of the atoms (see section 2.3¢c).
Writing equation 2.3-1 for the two electron beam energies
(denoted by ' and ") and coupling these equations with
conditions in the upstream equilibrium region of the shock

wave yields, after some rearranging,

In (1/17) " = K5, (p=py) g, — Kp(P-p)p,
(2.3-2)
In (I/I;)" = -K5 (p-p;)He - Ky (p=-py),,

This set of equations can be solved for the unknowns

- - : i the
(p pl)He and (p pl)Ar provided the determinant of
coefficients is non-zero. A second system of equations
using the downstream equilibrium values Py and 12 in
place of p and I can also be solved for the normaliza-

i - - mbined
tion parameters (p2 pl)He and (pz pl)Ar . The co

expression for the normalized density of argon in terms of
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the electron beam currents becomes

[ P=p; ) KI'_'Ieln(I/Il)' - KHeln(I/Il) (2.3-3)
Py=pq |AT KHeln(Iz/Il) - KHeln(IZ/Il) .
Defining
_ ln(I/Il)
p = (2.3-4)
ln(127Il)
and 1
Ky = = TN In(1,/1,) . (2.3-5)

relations used in the shock structure of a single gas

(section 1.5c), the normalized argon density is expressed

as
p-p - Y L |
_1 =5 4+ L K,,P < (2.3-6a)
P2=P1]ar L - —He 1
- KI K"
He "1
and similarly for helium
p=p - ' P e |
[ _1] =5+ —L K“P = - (2.3-6b)
P2~ P1lHe L - —Ar f1
- Kl K"
Ar "1

The quantities p‘' and p" are the normalized densities
which would be obtained if the mixture were considered to
be a single gas with mean properties; hence these quantities

are the analytical expressions for the composite density
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profiles. Similarly Kj and Ki are the composite
dynamic calibration cdnstants (see section l1l.7a). Since
the calibration constant of a single gas is a function of
the test gas, the subscript 1 is used to refer to the
mixture in the upstream equilibrium region of the shock
wave where the concentrations of the individual species
are known, thus continuing the single gas analogy.

It is convenient to combine the calibration constants
or, equivalently, the cross-sections, into a single para-
meter ¥ termed the magnification or scaling factor.

Hence,

] '1 m
CE )

Then the argon and helium density profiles are expressed as

(2.3-7)

Xhe, Ar
Ar, He

) ‘pi- _ s
- = 0" + X p
_p2 pl_Ar Ar
and _ (2.3-8)
p "pl- -, -
- - He

where Ap = p"-p' .

" This derivation is subject to the restriction that the
determinant of the coefficients in the set of equations
2.3-2 is non-zero, i.e.,

K/ X!
KHe 94 Ar . (2.3-9)

1" "
He KAr
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The functional dependence of the cross-sections with
electron energy cannot be the same for the two gases. The
magnification factor ¥ is a manifestation of this re-
striction (equation 2.3-7) and can be thought of as the
"degree" to which equation 2.3-9 is violated.

2.3b Scattering Cross-section

An electron which is incident on a target atom inter-
acts both elastically with the nuclear field screened by
the orbital electron cloud and inelastically with the
orbital electrons (Ref. 55). The relative importance of
these two effects depends on the momentum transferred in a
collision. This momentum is related to the electron energy

and scattering angle and is expressed as (Ref. 56)

g = 2BEsin %0 (2.3-10)
where g = the momentum transferred in units of m ¢
m_= electron rest mass

¢ = velocity of light

B = v/c
v = velocity of incoming electron
E = the energy of the incoming electron in

units of moc2

8 = the scattering angle.

For small scattering angles within the orbital electron

cloud the inelastic scattering cross-section dominates;
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whereas at large scattering angles the inelastic cross-
section approaches 1/Z2 of the elastic cross-section

(Ref. 55) where 2 1is the atomic number of the target atom.
Thus the differential cross~section may be conveniently

expressed in the form (see Appendix A for complete details)

& (0) = (ao/an), [-r(e))? sy(0) + EL2]

(2.3-11)

4ergE2/q4, the Rutherford

where (dc/dQ)R

point nucleus differential cross-—

section
r = e’/m c? = 2.82 x 10713 cm, the
classical electron radius
¢ = electron charge

F(0) = atomic form factor

G(6) = contribution due to inelastic
scattering

SE(G) = l-(q/2E)2, electron spin effect*.

*Sp(8) is obtained from a comparison between the Rutherford
differential cross-section for non-relativistic electrons
and the Mott-Born cross-~section (Ref. 56) for relativistic
electrons. Although ¢q/2E makes a negligible contribution
to the total cross-section for the experimental energy

range of this investigation, the term has been included

for completeness.
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In principle, if the atomic structure (electron
distribution) of the atom is known, the various form factors
can be calculated. Because of the complex nature of most
atoms, however, the electron distribution is difficult if
not impossible to obtain. Therefore various models have
been employed in an attempt to account for the screening
which the atomic electrons produce as they shield the
nucleus from the incoming electron. As the energy of the
incoming electron increases, a point will be reached where
the electron is able to penetrate the atomic electron cloud
and render the screening ineffective. 1In this energy region
F(06) must go to zero and at still higher energies the
electron will be close enough to the nucleus for the
nuclear structure and magnetic moment to become signifi-
cant. Hence F(8) is only important in the energy range
where the momentum transfer is small, e.g., g < 1.

There are three models commonly used to account for
the screening phenomena. The simplest and least accurate
is that of exponential screening (Ref. 56). In this model
the scattering potential of the atom is assumed to be
exponential in nature with the power of the exponential
dependent on the atomic number. The second method incor-
porates the Thomas-Fermi statistical model (Refs. 57, 58) of
the atom in which the electrons are assumed to have a
smooth charge distribution. Moliére (Ref. 59) approximated

the screening function of the Thomas-Fermi model with a
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series and obtained an analytical expression for F(6)
which is relatively easy to evaluate but is accurate only
for intermediate values of g . It is particularly poor
at large distances, where the scattering angle and g are
small, and at very small distances, where the scattering
angle and q are large (Ref. 56). Finally, there is the
Hartree-Fock independent particle model (Ref. 60). As the
name implies, this method attempts to account for the effects
of the individual atomic electrons by supposing that each
electron is in the field of the nucleus plus an average
field of the other electrons. The atomic wave functions
and potentials obtained for this system must be calculated
from Hartree's self-consistent field equations; hence,
this method is the most complex to evaluate, often requiring
numerical integrations. However, it is the most accurate,
and, fortunately, Ibers (Ref. 61) has tabulated the atomic
form factors for various values of momentum transfer up to
g = 0.058.

Since the Hartree-Fock model is the most accurate it
is employed wherever feasible. In the case of helium, the
wave function obtained from the Hartree field equations is
simple enough so that the atomic form factor can be obtained
in closed form. However, the same treatment is not possible
for argon; thus, the tabulated values of Ibers are used up
to g = 0.058 and thereafter the Thomas-Fermi model with

the Molidre modification is used. Since the highest value
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of momentum transfer is less than one, the Thomas-Fermi
method is used in the region 0.058<qg<l which, fortuitously,
is in the domain in which this method is most accurate.

The inelastic contribution to the scattering is some-
what more difficult to calculate. Assuming the differential
inelastic cross-section is the sum of the individual
excitation cross-sections, considering excitations from the
ground state only, Morse (Ref. 62) has shown that G(8) is
related to the transition probabilities associated with tran-
sitions by atomic electrons to higher energy levels (see
Appendix A). Since the wave function for helium is simple
enough to allow the required integrations, an analytical
expression for the inelastic scattering factor can be
obtained. The argon wave function does not lend itself
readily to the above integration. However, Lenz (Ref. 63)
treated small angle inelastic scattering of argon using
exponential screening and obtained an expression which
compared favorably with scattering experiments (Ref. 64);
therefore this expression is used for argon.

A complete discussion of the calculations for the
elastic and inelastic cross—sections is given in Appendix A.
The results for helium and argon are presented as a func-
tion of the scattering angle in figures 27 and 28 for 7 kv,
10 kv, and 15 kv electrons.

Inelastic scattering involves a gain of energy by the

target atom and is governed by the energy levels of this
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atom; thus, inelasfic scattering is expected to have a more
complex dependence on electron energy than elastic scat-
tering. The importance of inelastic scattering demonstrated
in figures 27 and 28 gives some confidence to the belief
that the energy dependence of the helium and argon cross-
sections are not identical.

2.3c Theoretical Collector Current

Consider a beam of electrons whose flux is N (particles/
cm2/sec) incident on a scattering volume with ndz
particles/cm2 in a length dz. The attenuation of the beam

by single scattering is represented by

dN(z) = - N{z) o0 (2) ndz
or
dN — -
3z + no N=0 (2.3-12)
‘¢ do . .
where g = \g 55r31n g d9 d¢ , total cross-section.

Solving the differential equation yields
A
N(£4) = N(0) exp (-S n o{z) d4z) (2.3-13)
o

for the beam flux at a distance 4 from its source. The

relationship between particle flux and current gives

I= IOexp(~nQ) (2.3-14)
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where I = current
Io = source current
n = number density
')
Q = x 0(z) dz, the cross-section
o

moment.
The total cross-section is obtained by integrating
the differential cross-section over the solid angle
exclusive of the collector. The integration is complicated
by the increase in the excluded solid angle as the collisions

occur closer to the collector. Referring to the schematic

below,
o L 21T
o(z) = & S (-g%) sin 6 48 ds (2.3-15)
8_(z) “YO
m
_ -1 R
where Gm(z) = tan (T:E>

R = radius of the collector.

collector
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The results for the helium and argon total cross-
sections (see Appendix A for details) are shown as a
function of distance from the source (needle) in figure 29.
The calculations assume that all collisions occur along the
center line, the electron beam is homogeneous, and the
scattering centers are fixed in space. These latter two
assumptions are reasonable when considering the relative
speeds of the incoming electrons and the atoms. However,
the first assumption becomes less valid as the collisions
occur closer to the collector. Fortunately, the assumption
is poor only in a region of low scattering, i.e., the
region in which few collisions direct an electron away from
the collector. .

The cross-section moment, defined as Q = S o(z) dz ,
is computed for helium and argon using the totalocross-
section expressions for these gases. Using Simpson's rule,
the integrations are performed on a computer. These values
are plotted versus O in figure 30 along with the effective

Q defined by
Q=0aQ + (1-a) Qe {2.3-16)

where o = npr/n . the argon concentration.
The significant feature in this figure is the large helium

concentration necessary to cause the effective Q to

deviate from the cross-section moment of argon, a condition

caused by the small helium cross-section.
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With the value of Q determined in the above manner,
the theoretical collector current I can be calculated
for any given shock structure n(x) from equation 2.3-14.
To obtain the best density profile of a shock wave in a
helium-argon mixture, data from Center's experiments (Ref.
53) are used. Variations through the shock wave of concen-
tration o and ratio of cross-section moment Q'/Q" are
computed as well as the collector current I for 7 kv
and 15 kv electrons. These results are presented in figures
31 and 32 for 2.2% argon (initial concentration) and in
figures 33 and 34 for 48% argon. The results exhibited by
these figures demonstrate the extremely small differences
in collector currents which would be found experimentally
under the given conditions (Mach number, initial concen-
tration, and electron beam energy).

2.3d Results of Theory

The theoretical calculations cast doubt on the ability
to achieve quantitative data from the experiments with a
helium-argon mixture and the electron beam energy range
available with the experimental apparatus. However, the
only restriction imposed by the theory, the variation of
cross-section with electron energy can not be the same for
both gases, is not violated with a helium-argon mixture.
Hence, qualitative data should be attainable. The small
helium cross-section causes additional concern since the

conversion of the experimental data to individual density
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profiles is complicated by a large magnification factor ¥
(see equation 2.3-8) when the effective cross-section of
the mixture very nearly equals the cross-section of one of
the component gases. Figure 30 presents results showing
deviations of effective cross-section from the argon cross-
section for argon concentrations of less than 70%, but a
10% or greater deviation occurs only for argon concentra-

tions less than 20%.
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2.4 Apparatus
The GALCIT 17-inch shock tube and support equipment

described in the measurement of the shock structure of a
single gas (see section 1.3 and figure 1) is also utilized
in the mixture experiments with the addition of an extra
oscilloscope necessary for a timing reference. At first
one might argue that two electron beams are required since
this is the basis of the new technique to separate the
density profiles of the individual species. This is
obviously a desirable situation but not mandatory. One
electron beam is sufficient if use is made of the repeat-
ability of the shock tube. That is, two identical runs
can be executed at different electron beam energies, thereby
simulating the conditions of one run with two beams. Since
these experiments are an attempt to examine the feasibility
of a new technique in measuring the structure of the
individual species in a mixture shock wavé, it is only
natural that the second method has been chosen for its
simplicity and immediate availability. ©One obvious improve-
ment can be made by averaging many duplicate experiments,
thereby obtaining the density profiles of the species from
these averaged shock profiles rather than from individual
runs.

The disadvantage of the present method is the necessity

for an absolute distance scale and the reliance on the
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reproducibility of the shock tube. The latter problem is
minor since previous work (section 1.6b) has shown experi-
mental scatter to be much less than the expected diffusive
separation. However, the attainment of an absolute distance
scale or its equivalent, an absolute time scale, is a
difficult problem which can produce errors of the same

order as the separation. Surmounting this obstacle is one
of the important aspects of these experiments and is

described in section 2.6a.
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2.5 Procedure

2.5a Selection of Mach Number and Initial Pressure

In all the mixture experiments the Mach number is held
approximately constantat 4 (3.84 to 4.08) primarily due to
the difficulty in obtaining a higher Mach number in mixtures
of high helium concentrations. A second parameter Py is
also held constant at 0.050 torr. The reasoning is based
on the experience that shock waves with this relatively
high initial pressure (for the GALCIT 17-inch shock tube)
are less sensitive to the effects which cause the density
to rise in the region behind the shock rather than reach
the constant equilibrium value Py - In addition, past
experiments show no change in the shock structure of the
noble gases when the initial pressure is varied from 0.010
torr to 0.050 torr (section l.6a) and only slight changes
are observed when the Mach number range is 3 to 8 (section
l.6¢c).

2.5b Determination of Mixture Concentrations

The first major problem encountered is the attainment
of the correct mixture concentrations for consecutive runs.
In most instances these mixtures are produced in the control
volume of figure 1 just prior to a run by filling the
volume until the desired partial pressures have been
obtained. For example, a 20% argon mixture is produced by
filling the control volume to 10 torr with argon and then

adding helium until the final pressure is 50 torr.
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This pressure is measured by a 0 to 50mm Wallace and
Tiernan absolute pressure gauge (FA-160) with a reported
accuracy of }0.33% of full scale and a sensitivity of 0.2%
of full scale.

It is believed that most of the mixing takes place
when the turbulent jet of helium is released into the
control volume containing the argon. The low pressure in
this volume aids the diffusion process, but extra pre-
caution has been taken by allowing the gases to stand in
this container for five minutes. A rough calculation shows
that molecular diffusion should produce homogeneity in
approximately this time. Further proof of complete mixing
is not available until the shock structures of a mixture
of 10.8% argon in helium obtained from the above method of
mixing and from a certified bottled mixture (purchased from
the Matheson Company) are compared; experiments conducted
with the purchased bottle are identical in structure and
Mach number.

To investigate the influence of initial concentration
on the diffusive separation, experiments are conducted with
test mixtures of 10%, 20%, 50%, and 80% argon concentration.
Difficulties in producing small partial pressures in the
control volume limit the test mixture to concentrations

greater than 10% of one component.
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2.5¢c Creation of the Shock Wave

After a mixture concentration is selected, the driven
section is evacuated to 0.0l p Hg (1 p Hg = 10_3 torr) as
measured by a liquid nitrogen trapped McLeod manometer.
The tube is then flushed with the test mixture to 0.050
torr and again pumped down to below 0.0l p Hg. During the
five minute period in which the mixture is allowed to
homogenize, the vacuum pump values are closed and the
diaphragm checked for leaks by filling the driver to 6 psia
with the high pressure gas (typically helium or nitrogen)
and watching the test section pressure for sudden changes.
This done, the mixture is released into the shock tube
along a path of many turns, expansions, and contractions
which again aids the mixing process.

The mixture is allowed to stand for another three
minutes to permit the pressure to reach equilibrium
throughout the tube. Meanwhile the oscilloscopes are pre-
set with the desired sensitivity and sweep rates and the
electron beam heater filament is turned on in a warm-up
procedure for 1% minutes. With all valves to the shock
tube closed and the electron beam activated and aligned
for maximum collector current, the shot is fired and
recorded on polaroid film. A notation is made of the
temperature, time required for the shock to travel 50 cm

{(as determined by two thin film heat gauges mounted in the
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side of the shock tube), and various electron beam data
such as energy, cathode current, etc. A diaphragm change
completes the cycle. A typical time from closure of the
vacuum valves to bursting of the diaphragm is fifteen

minutes.
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2.6 Data Reduction

In mixture experiments four oscillograms are needed
(Fig. 35). The first three are identical to those in the
noble gas experiments, and a description of their proces-
sing is given in sections l.5a and 1.5b. The fourth trace
provides a history of the triggering signal and is used to
establish the absolute distance scale required in the
mixture runs.

2.6a Absolute Distance Scale

In the shock structure measurements of a single mon-
atomic gas it is unnecessary to obtain an absolute distance
scale since all profiles can be plotted relative to a given
point, like the 0.5 point, on a normalized density profile
and distances measured from this point in units of mean
free paths. However, in seeking shifts between two such
profiles obtained at different electron beam energies, it
is necessary to refer all distances to an absolute scale.
This is not a trivial matter because the differences
caused by the electron energy changes are less than a mean
free path.

The absolute distance scale is obtained by using the
end-wall triggering signal to define a "zero" time since
this signal is independent of electron energy and dependent
only on the shock wave. Ideally, the reference time might
be any easily identifiable point on the signal; however,

slight variations in amplitude between runs would cause
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unacceptable error. Fortunately, there is one point that
does not change with amplification, and that is the position
of maximum slope. Due to difficulty in defining this point,
the triggering signal is differentiated (electrically) and
displayed on the lower beam of the dual-beam oscilloscope
(Fig.35d). The peak of this signal represents the maximum
slope and is used as the standard point from which all

times are calculated.

The digitized shock structure data obtained from
oscillogram ¢ (Fig. 35) are converted to relative time
by interpolation between time marks (see section 1.5a)
and then readjusted so that the maximum slope of the trig-
gering signal is zero time. This is done by measuring the
time, TO , from the maximum slope to the dot on the
triggering signal which corresponds to the first time mark
on oscillogram ¢ (see figure 35). These times are then
converted to distances by a Galilean transformation
employing the shock wave velocity (x = Ut) . For conven-
ience the distance scale is shifted to make zero occur
near the center of the shock wave and normalized with a
length roughly equivalent to the mean free path of the
mixture in the undisturbed region ahead of the shock wave.

The length used to normalize the distance scale can
be thought of as a mean free path since it is obtained by

considering the mixture molecules as hard spheres and
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calculating the mean free path of this model using the

actual mixture viscosity, molecular weight, etc. Hence,

=16 [X g -
M T B o T EN (2.6-1)

where Xl = normalization length

Y = specific heat ratio

Py = density of the mixture ahead of the shock
L = viscosity of the mixture

a; = sonic speed of the mixture.

The sources of error in the above procedure can only
come from inaccuracies in the Tektronix Time Mark Generator
(#180A) used to generate the time dots on the oscillograms
and in measuring the maximum slope point. This latter
restriction is by far the most severe since the peak
voltage can only be measured to within 0.1 microsecond due
to the poor resolution of the differentiated signal (lower
trace on oscillogram d ); whereas the time mark generator
has a quoted accuracy of 0.0001%.

2.6b Determination of Calibration Constants

In the mixture experiments there are six calibration

. V §? ¥ ] "
constants (see section 2.3a), Kl’ Kl' X KHe’ and KHe

of which only four are independent. This allows a certain

. Ki

degree of flexibility in their evaluation. K, is determined

in each run from the Rankine—-Hugoniot relations for the



68

density jump across a shock wave and the known values of

the current in these regions (see equation 2.3-5). 1In
addition, an average value is obtained from all experiments
conducted at fixed conditions. The argon and helium con-
stants, KAr and KHe . can be calculated either from
static calibrations in which the electron beam attenuation
is measured at various densities of the test gas for a
particular beam energy (Fig. 36), or from shock wave experi-
ments conducted with the pure gas (see section 1.7a). These
two methods are referred to as static and dynamic calibra-
tions, respectively. The two methods produce similar
results for the argon calibration constant, hence either

method is acceptable. However for helium, which has such

a small calibration constant, it is better to use the

relation
Kge = Kpr + (Ky = Kpp) / (1 - 8y)
(2.6-2)
where B, =0, / 0)q
since Ky and K, are more accurately known. This

equation is derived from the attenuation law considering
the mixture as both a composite gas and as two individual

gases, i.e€.,

= I exp (- K Pe. ~ Kar Par ) (2.6-3)

He 1 1
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and I, = Ioexp (-Kl Pl) . (2.6-4)
The subscript 1 refers to the upstream equilibrium region

of the shock wave.

2.6c Experimental Density Profiles

The digitized data are converted to composite density
profiles using equation 2.3~4. The absolute time scale
provides a means of comparing two such profiles. The
individual helium and argon shock structures are then
obtained from the differences in the composite profiles
and the values of the calibration constants discussed in
section 2.6b (see equation 2.3-8). All of these computa-

tions are programmed for an IBM 360/75 computer.
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2.7 Results

The goal of these experiments has been to discover the
feasibility of a modified electron beam densitometer tech-
nique to measure the diffusive separation in shock waves in
a helium-argon mixture. In theory the method is practical
provided the ratio of the cross—sections (equivalently,
ratio of the calibration constants) at two electron energies
is not the same for the gases involved. In addition, it
has been shown that the separation of the structure of the
species is related to the difference in the normalized
density profiles of the mixture at the two beam energies
when the mixture is considered to be a composite gas with
mean properties.

The accuracy to which the two composite density
profiles can be separated is dependent on the experimental
scatter. A typical example of this scatter (rms deviation)
is shown in figure 37 for the case of 80% argon. The Mach
number is fixed at approximately 4 and the total initial
pressure is .050 torr. For reference, the width of this
scatter band is approximately % microsecond.

The composite profiles for 10%, 20%, 50% and 80% argon
are given in figures 38, 39, 40, and 41 respectively. Each
of these structures is an average of a number of experiments
ranging from a minimum of 2 to a maximum of 5. The error

bars indicated on these figures represent the rms deviation.
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Under certain conditions the rms deviation is less than the
line width; hence the bars have been omitted. In most
cases the averaged profile at one energy is outside the
scatter band of the second profile. The 10% argon case is
a noticeable exception. However, there are many instances
in which the two scatter bands overlap. The average separa-
tion of these profiles, in terms of the normalized length

I is approximately 0.1, 0.25, 0.15, and 0.2 for the four

1
mixture concentrations, respectively.

The difference in the composite shock structure allows
profiles of the individual species to be separated. These
results are illustrated in figures 42, 43, 44, and 45. Two
effects are immediately obvious. First, there is large
scatter in all helium profiles and in the argon structure
at the lowest argon concentration. Second, most of the
helium profiles do not normalize to 1. This latter effect
is due to the increase in density beyond the equilibrium

value Since the composite shock structures exhibit a

oy -
difference in density past this point the structures of the
individual species reflect this difference. 1In addition,
uncertainties in the static calibrations, Kar and KHe
may cause the profiles to be normalized inaccurately.
Qualitatively, the density profiles of the individual
species are correct. The helium atoms concentrate in the

front of the shock wave ahead of the argon atoms. In

addition, the separation {(approximately 20% of the shock
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thickness) is of the same order as that found by Center
(see reference 53 and figure 31). Quantitatively, little
can be inferred from the results and the large scatter

prohibits comment on the velocity anomaly.
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2.8 Discussion

The theory of the modified electron beam densitometer
technique has indicated a number of areas of concern.
These areas are manifested in the scaling factors Y
associated with separating the composite profiles into
profiles of the individual species. The results demonstrate
the full significance of the difficulties, and this section
attempts to discuss the important aspects of the problem.

2.8a Experimental Scatter

The use of a single electron beam in the present
investigation has required an absolute time scale to which
all experiments can be related. This is done by establish-
ing a reference time on the triggering signal (section
2.6a). The accuracy with which this has been accomplished
is demonstrated in the results (Fig. 37). The scatter is
approximately % a normalized length (kl) which is equiva-
lent to measuring the reference time to 0.5 microsecond.
Although this is a reasonable rms deviation under the
circumstances, it is still a factor of three worse than
the scatter obtained from the shock structure measurements
of the noble gases (section 1.6b). Unfortunately, the
magnification of the scatter when converting to the struc-
ture of the individual species makes even this error
intolerable.

The problem of determining the value of the downstream

equilibrium density is again evident from the results.
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Uncertainty in the value of this density causes improper
normalization of the final structure of the individual
species and is more appropriately discussed in section
2.8b.

2.8b Composite Shock Structure

The composite profiles (Figs. 38 - 41) show a very
small separation at the two electron beam energies used
and, although the 10% argon mixture has the smallest
separation, there seems to be no logical progression with
increasing concentration. The difference in the composite
structures at a fixed gas concentration reflects the vari-
ation of the cross-section of the gas atoms with electron
beam energy. Therefore the larger the energy range the
greater the difference will be. 1In these experiments the
electron energies are 7 kv and 15 kv. The electron-atom
collision cross-section exhibits a rapid change with energy
in this range; therefore each additional kv increment in
electron energy aids the ability to separate the profiles.
Calculations give a maximum limit of 30 kv to 50 kv after
which further increases in energy add little to the total
cross—sections.

A more severe problem stems from the density rise
beyond the equilibrium state. The data reduction scheme
is based on the downstream density reaching a constant
value (p2) - Under these conditions the profiles of the

individual species will normalize properly to 1 since
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pP" - p' will remain zero after both composite profiles

have attained the downstream equilibrium state of the shock

wave (p' = p" 1) . However, the now infamous density

increase causes p" - p' to be non-zero everywhere (except
for minor coincidences). The problem is further compli-
cated by uncertainty in the selection of state 2. The
result is improper normalization of the density profiles
of the individual species (Figs. 42 - 45). Perhaps the
composite profiles should be forced to remain constant
once the density has reached the equilibrium value Py v
i.e., neglect the density variation of the downstream tail
of the shock; then the upper limit of the structure of the
individual species would be 1. This idea has prompted the
representation of the profiles as terminating at

(p = pl)/(p2 - pl) = 1 regardless of the direction indi-
cated by the data. It remains for the reader to smooth

the curve into the dashed line if desired (Figs. 42 - 45).

2.8c Density Profiles of the Individual Species

The theoretical results of section 2.3 warn of the
difficulties in separating the density profiles of the
individual species in a helium-~argon mixture with the
limited electron beam energy range available (7 kv - 15 kv).
However, the experiments have been conducted to confirm
these suspicions and to salvage at least qualitative data

from the new technique. This has been accomplished with
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an extra bonus of now understanding the full significance
of the theoretical predictions.

The results of figures 42 - 45 exhibit many interesting
features. First, the scatter in the argon structure
increases with decreasing argon concentration and a large
degradation is noticeable between the 20% and 10% argon
mixture. Second, there is large scatter in all helium
profiles. Third, most of the helium structures do not
normalize to 1 (see section 2.8b). Fourth, the 20% argon
mixture gives the best overall results based on separation
and smoothness of the profiles. The central point to the
understanding of these features is the small collision
cross—section of the helium atoms.

In theory the individual density profiles are calcu-
lated from the difference in the two composite shock
structures multiplied by a constant ¥ (appropriately
termed a magnification factor) which represents the degree
of similarity between the ratios of the cross-sections of
the gases at the two beam energies. If these ratios are
identical, then <Y is infinite; whereas if there is a
large dissimilarity in the ratios, then <X approaches 1.
Clearly, ¥ = « implies that the structure of the indi-
vidual species can not be separated and ¥ = 1 means that
the errors incurred in establishing the composite profiles
are not magnified when constructing the individual profiles.

Equivalently, these ratios can be compared to the ratio of
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the effective cross-section at the two beam energies, i.e.,
treating the mixture as a composite gas. This results in
, which are so arranged that

two constants, and

*He XAr
Xge is the degree of similarity between the ratios of the
effective cross-sections and the argon cross-sections and
vice versa.

In most circumstances the effective cross~section is
approximately equal to the argon cross-section. This is
because helium has a very small cross section which is
almost completely negligible in determining the effective
cross-section. As the argon concentration increases, the
importance of the helium atoms becomes even smaller. Since
the profiles of the individual species can be thought of as
reflecting the amount of scattering or beam attenuation of
the atoms, increasing the argon concentration produces a
poorer helium structure. Analytically this fact is rep-
resented by an increase in the helium magnification factor

Xge and a decrease in For argon concentrations

Xar ©
above 50%, the ratio of the effective cross-sections at the
two beam energies is very nearly equal to the ratio of the
argon cross-sections (see figure 30). This means that
helium is ineffective in the scattering process; conse-
quently the helium structure will exhibit large errors
(XHe is very large, 10 toc 20). This fact is especially

noticeable near the downstream tail of the shock wave

{(p pz) where the density uncertainty is the largest,
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as explained in section 2.8b. The argon profiles in the
progression of increasing argon concentrations improve
rapidly, obviously due to the dominance of the argon atoms

in determining the effective cross-section is only

Xar
2 or 3).

The above reasoning is not true for high helium
concentrations, e.g., 10% argon. Under this condition
both the helium and argon atoms contribute a finite amount
to the effective cross-section. However, this means that
the effective value is small, otherwise the helium portion
would be negligible. The net result is large errors in
the composite shock structures due to the very poor signal
to noise ratio caused by small beam attenuation. Such a
situation causes difficulty in separating the composite
profiles as is obvious in figure 38. Therefore, both
structures in figure 42 have large scatter.

The 20% argon case (Fig. 43) appears to be the perfect
balance between the two above-mentioned effects which ac-
tually occur because of the same problem, the small helium
cross—-section. For small argon percentages the effective
cross section is so small that it is difficult to obtain
the correct composite shock profiles. On the other hand,
for large argon concentrations the two electron beam signals
are complefely dominated by the argon atoms; therefore

very little information about the helium structure is

obtained. However, in the 20% argon case there is enough
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argon present to produce correct composite profiles and,
at the same time, there is enough helium present to obtain
information about the helium structure. This appears to be
a coincidence in the present investigation but it does dem-
onstrate the soundness of the technique and shows what can

be expected under favorable conditions.
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2.9 Conclusion

The purpose of this work is to test the feasibility
of the modified electron beam densitometer for measuring
the diffusive separation in a helium-argon shock wave.
Qualitatively the technique has been verified. For all
mixture concentrations tested, the helium atoms diffuse
upstream and the resulting separation is of the order of
20% of the total shock thickness.

Quantitatively the method is disappointing. Large
scatter prevents comments on the velocity anomaly and the
other interesting phenomena, e.g., the relationship between
initial concentration and the diffusive separation.

It is believed that the qualitative results may be
substantiated by quantitative data if a few adjustments
are made. The most important is a more favorable mixture,
i.e., one in which both atoms contribute to the effective
cross~-section at all concentrations (except for the case
of minute percentages of one component). Such a combination
might be xenon-argon or even xenon-neon. Another beneficial
change would be an increase in the electron beam energy
range. This would result in larger differences in the
cbmposite density profiles. An upper limit to this
increase is approximately 50 kv based on calculations of
the collision cross-sections for helium and argon. Finally,

the use of two electron beams would be very effective in
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reducing scatter. Such a scheme would eliminate the need

for an absolute time scale and make every run self-contained.
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APPENDIX A

SCATTERING CROSS-SECTIONS

The general problem involves the scattering of an
electron incident on a target atom which has both an
atomic and a nuclear structure. This electron interacts
elastically with the screened nuclear field as well as
inelastically with the orbital electrons. Under the assump-
tion of central potentials with spherically symmetric charge
and magnetic moment distributions, calculations based on
the Born approximation for point charges and point magnetic
moments can be corrected for an atom of finite structure.
This is done by multiplying the point potential formulas by

appropriate scaling or form factors (Ref. 56). Hence,

2
Loy = %} {leg(®)-F(&)1% sy(0) +ﬂﬂ} 5 [—Gf]
(a-1)
where gg) = Rutherford point nucleus cross-section
GE,F = the nuclear and atomic form factors,
respectively
SE = electron spin effects
G = the contribution to inelastic scattering
(g%) = scattering cross-section due to a point
" magnetic moment
G = magnetic moment form factor
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i = magnetic moment of the nucleus

Z = atomic number.
The contribution from inelastic scattering is written as
G/Z Dbecause for large scattering angles the inelastic
cross-section rapidly approaches 1/Z of the elastic cross-
section (Ref. 55). However, the nuclear form factors are
only important for extremely high electron energies in
which large amounts of momentum are transferred in the
collision. For small momentum transfer the scattering due
to the magnetic moment is negligible and the nucleus can be

considered a point charge with Gp = 1 (Ref. 56). Thus

S =(§)_ {1 - re1? sy + gLl . (a-2)

In principle, if the atomic and nuclear structure of the
atom is known, then the various form factors can be cal-

culated as will be seen in the next two sections.
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A.l Elastic Scattering

To calculate the elastic scattering of a beam of non-
relativistic electrons by a spherically symmetric potential

V(r), one must solve the Schrddinger wave equation,

v2y + (k% - u(r)ly = 0 (A-3)
where k = 2%?2 . the wave number
m = mass of the electron
v = velocity of the electron
h = Planck'’s constant

U(r) = 81%mv(r)/n’
and { , the wave function, has the asymptotic form
ikr

¢~eﬂm_¥er £(6) . (a-4)

In this form exp(ikz) is the incoming plane wave
(traveling in the =z direction) representing the incoming
electrons and f£f(6) is the scattering amplitude of the
outgoing spherical wave, f(8) exp(ikr)/r , representing
the scattered electrons. From a consideration of the
incoming and scattered particle fluxes, the differential
cross-section is given by ‘f(e)\z .

The general solution to eduation A-3 (Ref. 65) with

the required asymptotic form (A-4) is
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. ikr - -
ikz _ e 1 -ikn.r' =, -, '
§~e — .o S e U(Z') §(2') dr (A-5)
where dTt' = volume element of the coordinate space of the
atomic electrons
n = unit vector in the direction of T .

Assuming the Born approximation, i.e., the wave function
is undisturbed by the scattering center, w(;') in equation
A-5 can be replaced by exp(ikz') and the integral evaluated

for £(8) wusing spherical polar coordinates. The result is

2 o
f(e) = - .g_nz—r.n S .§_J.:n_.l_(_£ V(r) r2 dr (A—6)
Kr
h (o}
where K = 4mmvsin¥6/h
8 = scattering angle.

It is sometimes convenient to express the atomic field
V(r) as the potential due to the nuclear charge -Ze¢ plus
the potential due to the charge density Zep(r) of the

atomic electrons. Thus,

2

( 1 i
v(r) = - B4 o2 | Zelel) dr (a-7)
|z - r'|
where Z = atomic number
€ = charge on the electron
|¥ - ¥'| = the distance to the atomic electrons

from the incoming electron.
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Substituting V(r) into equation A-~-6 vyields

_ 8Tr2mZe2

h2 K2

£(9) (1 - F(o)] (A-8)

D

sin Kr _2
4t SO p(r) K r® dr .

where F(98)

Therefore, if the charge distribution of the atom is known,
the atomic form factor can be calculated.

As the energy of the incoming electron increases, the
electron will penetrate the atomic electron cloud and render
the screening ineffective. 1In this region F(8) goes to
zero and (do/dQ) reduces to the Rutherford differential

cross-section (do/dQ)R .

$=le@)® - (S - (=) - (), oo

q2
where E = electron energy in units of moc2
m, = electron rest mass
c = velocity of light
r, = 62/m002 , the classical electron radius
a = 2mv/moc sin %0 , the momentum transferred

in a collision in units of moc R

The electron-spin effect (see equation A-2) is obtained
by comparing the Rutherford cross-section for nonrelativistic
electrons and the Mott-Born cross-section for relativistic

electrons (Ref. 56). The difference in these two cross-
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sections is

1 - (g/28)2 . (A-10)

SE
Although q/2E is generally negligible for the present
energy range, this term has been included for completeness.
Therefore, the differential elastic scattering cross-section

(Egqn. A-2) can be expressed as

2
2Zr E 2
do\ _ o 2 _ QﬁL) -
@ -GS -r) . [i- @] eew
E q
Equation A-1l is subject to the following approximations
(Ref. 56):
1) First Born 7
—— << 1 0.06 - 0.8*
. . 1378
approximation
2) Point-charge R, BRE 0.02 - 0.06
A << 1
2nr :
nucleus 1%
3) Infinitely heav m _
! Y 25(52) << 1 < 1074
nucleus o’
4) Nucleus with . 2 ,m_ 2
| 8 @ < <207
negligible spin effects o’

where R radius of nucleus (Ref. 56)

A

M

o rest mass of atomic nucleus (Ref. 56).

*The maximum and minimum values of the parameters listed in
column 2 for the present investigation.
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Because of the complex nature of the electron distri-
butions of most atoms, p(r) is not known exactly.
Therefore, various models have been developed to facilitate
the calculation of the form factor F(g) . The simplest
and least accurate is the exponential model of the atom

(Ref. 56) in which

Ze2
V(r) = - — exp (-Ar) (A-12)

r
where A , the screening parameter, is a function of the
atomic number. As the electron energy increases, penetra-
tion becomes greater ( r decreases) and the screened
potential exponentially increases to a point nuclear field.
Therefore, the model affords only qualitative results
unless A is empirically chosen from experiments for a
particular gas and electron energy.

The Thomas-Fermi statistical model gives a smooth
charge distribution of the atom (Refs. 57, 58). The model

is described by the potential

Z€2
vir) =22 s (A-13)

where ¢ , the screening function, is given as the dependent
variable of a second order differential equation with x
the independent variable. In addition, x 1is a known

function of % and r . Since exact values of @& are
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known only from numerical tabulations, Moliere (Ref. 59)

has given an analytical approximation for the Thomas-Fermi

potential.
2 3
v(r)=-2& Ea, exp (-b, £ ) (A-14)
r 1 1 Rop
i=1
where a; = 0.10, a, = 0.55, a3 = 0.35

bl = 6.00, b2 = 1.20, b3 = 0.30

R__ = 0.885 a Z—1/3 radius of the Thomas-

TF : o] ’

Fermi atom
aj = h2/4n2m062, Bohr radius of the hydrogen

The sum in equation A-14 represents the screening effect of
the atomic electrons. The screening increases rapidly away
from the origin (the nucleus): for r = RTF ., the potential
due to the nuclear charge is reduced by 60%. The inherent
limitation of the Thomas-Fermi statistical model is the
averaging of the effects of the atomic shell structure.

Substituting the Moliere potential (A-14) into

equation A-6 yields

3
a.
1-F(q =q° ) —i— (A-15)



_ o
where Ai = >R bi
TF
A= _h_ the Compton wavelength.
© mc !

The parameter A is a measure of the screening. For large
A (equivalently, large Z ), a high incoming electron
energy 1is necessary to penetrate the electron cloud and to
render the screening ineffective. When A2 is much less
than q2 ; the right hand side of equation A-15 approaches
one and F(gq) approaches zero. This Moliere approximation
has a sharper drop in the electron distribution at the
edge of the atom and is expected to give a more accurate
result than the Thomas-Fermi model (Ref. 56). Since the
model does not account for the atomic shell structure, it
is only valid for intermediate values of q (equivalently,
intermediate values of the impact parameter).

The Hartree-Fock independent-particle model of the
atom (Ref. 60) is the most accurate description of the
charge distribution since the atomic potential for this
model assumes that each atomic electron is in a'nuclear
field plus an average field due to the other electrons.

The potential V(r) for this model is given by

Z

V(r) = —;62 X (% -z ﬁ) \wo(—f‘l,...zz)lzd’rl...d’t‘z
n=1 n

(A-16)
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where Wo ., the wave function of the atom, is obtained

from Hartree's self-consistent field equations. The first
term in this expression is the potential at a distance r ,
due to the nuclear charge. This field is diminished by the
potential due to the charge distribution of the atomic
electrons, a distribution which is based on the probability,
\wo\sz , of finding an electron in a differential volume
dt . Each electron is accounted for by integrating over the
individual atomic electron coordinate space. In general,
the method requires numerical calculations which, fortunate-
ly. have been performed by Ibers (Ref. 61) for a limited

range of g (0 < g < 0.058).

A.la Argon

Since the Hartree~Fock method is the most accurate, it
is used wherever feasible. Hence, for argon, the values
tabulated by Ibers are used for g < 0.058 and thereafter,
the form factor obtained from the Thomas~Fermi model with

the Moliere modification is used. Thus (see equations A-1l1l

and A-15),
(a) g% = g2 fz(q) for 0 < g s 0.058 (A-17a)
E

where Tf(g) is tabulated by Ibers

and (q/ZE)z << 1 in this range.
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2%r E 2 3 a, 2 2
(b) Q%% e ( q2O ) - | Z; 2 i 2 '[- - <§%> ]
=1 M

(A=17Db)
for g > 0.058.

A.lb Helium
The solution of the Hartree=Fock field equations for

the helium wave function can be represented as (Ref. 65)

by £y, ry) = 2(ry) @(r,) (A-18)

a

-1/3 2. r 2z. ¢
= 3 1 1
where &(r) = N(nao) i}xp (- E;_> + ¢ exp (— S )]

0-6,

Z

1
N

1.4558, c

0.53x10™8

cm (Bohr radius).

1.48423, a,

Substitution wo {(A-18) intoc equation A-16 and performing

the integration yields

3 : .
. z (i+l)z,r
2 + 1 1 1
v(r) = - Be® ) Jo, F\'l"z'—) e ;] exp [‘ —r‘—]
i=1 - © °
(A-19)
where a; = 1/8, a, = 2c/217, a, = c2/64
3

4

_ 128 N
H= _© E;“i .
1 i=1

Substituting this potential into equation A-6 gives f(9),
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and, finally
2

3 2 2
2y, + q 2

do - 2 2 i q
dO)E (2r, E H) “ T, 2 [1 - (2}3 ]

i=1 (v; +a)

(A-20)
where i (i + 1) zl/137 .

The similarity between equation A-20 and A-17b is
noticeable. If H is normalized such that EJ ai =1,
then H becomes 2, the atomic number for helium, as expected.
The sum in equation A-20 is therefore the effect of the
screening and for g >> Yi the differential cross-section
reduces to the Rutherford cross-section.

In addition, the similarity between equation A-14 and
A-19 is obvious. Factoring a 1/r from the summation terms
leaves the coefficient of the exponentials as a function of
r . This, in essence, reflects the shell structure of the

atom.
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A.2 Inelastic Scattering

The inelastic contribution to scattering is somewhat
more difficult to calculate. However, assuming the dif-
ferential inelastic cross~section is the sum of the
individual excitation cross~sections, considering excita-
tions from the ground state only, Morse (Ref. 62) has shown

that if 9>>Ek/4E where E_ is an average excitation

energy¥*

Gla) = 1 -z F(q) + %—S Lo (Fpeee B |
. (a-21)

. E:exp [(i2ﬂq/xo) . (rzcos ez - r, cos ek)]dTl"°de
k5#4

it

where F(q)

Yo

atomic form factor

atomic wave function.

Taking E, to be one-half the ionization energy, then the

restriction on the scattering angle implies 8 >> 3 x 10-4

radians for helium and 6 >> 9 x 10—4 radians for argon
when the electron energy is 7 kv. In the experimental appa-
ratus the minimum scattering angle is 0.0l radians.

The integral in this expression can be thought of as
the transition probability associated with an electron
transition from the ground state to a higher energy level.
*The restriction is based on the idea that only energetical-
ly allowed transitions are possible (Ref. 65). Therefore,

the energy of the incoming electron must be greater than the
excited state energy level.
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The first term (1) is the evaluation of the integral for
k =4 . As the scattering angle increases ( g increases)
G rapidly approaches one and the inelastic cross-section
becomes 1/Z2 of the Rutherford cross-section (Eqn. A-2).

The complexity of the wave function for most atoms
prevents the general use of this equation. Instead, an
empirical determination of the inelastic scattering factor
is obtained from experimental data. Such methods are
obviously restricted to specific cases.
A.2a Argon

The argon wave function is too complex to use in
equation A-21l. However, Lenz (Ref. 63) treats small angle
scattering of argon using exponential screening and obtains

the expression

-2
2
G(8) = 1 - [1 + (Zﬂf’b) ] (A-22)
where b=2.75 x 1002
N
mv

The screening parameter b is chosen from an empirical
fit to the most available small angle scattering experi-
ments for argon (Ref. 64). Using this expression in

equation A-2 vyields



96

-2
(%%)_ fEf%——E— 1 - [1 + (zifb)z] . (A-23)
1

The significant feature of equation A-23 is the variation
of the inelastic cross-section with scattering angle. The
inelastic scattering rapidly approaches 1/Z of Rutherford

scattering with increasing 6 .

A.2b Helium

Using the Hartree-Fock wave function for the helium
atom {equation A-18) in equation A-21, the expression for
the inelastic scattering factor can be obtained in closed

form, i.e.,

3 y 4 2
G(g) = 1 - 2 F2(q) + & E}a. i . (a-24)
i=1

Z i
2 2
(v;" +q7)

The inelastic differential cross-section then becomes

2
2 2 3 4
4 Z r~ E Y.
do _ "o - 2 HIY —_
dQ)i ST A L-zF (@ +35 ()0 S 5.2
i=1  (y;+q")
(A-25)
3 2 2
2 (2vS + q7)
where F(gq) =1 - 925 E;ai L 5 -
=1 (v;2 + q°)

i
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A.3 Total Cross-Section

The total cross-sections are obtained by integrating
the differential cross-sections over the solid angle exclu-
sive of the collector (see schematic, section 2.3c). The
integration is complicated by the increase in solid angle
as collisions occur closer to the collector. Defining
em as the minimum scattering angle necessary to direct an

electron away from the collector, the total cross-section

can be expressed as

m 2n
o(z) = Se - SO (g-%) sin 8 d0 dé (a-26)
m

where @ _(z) tan_l(R/z—z)

R radius of the collector

distance from the collector.

L=z

It is often convenient to transform to the momentum
variable g . 8Since g = 2 (mv/moc) sin %6 , equation

A-26 becomes

2BE

o(z) =2T2rz§

do
—) gq dq (A-27)
8°E° Yq_(2) )

where qa, = 2BE sin %Bm .
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A.3a Argon

Because the elastic differential cross-section for
argon is given as numerical data in the range g < 0.058
instead of an analytical expression, it is necessary to
fit polynomials to the numerical data before equation A-27
can be integrated. The best empirical expression is
obtained by fitting two polynomials to the data. One
function is valid in the range 0 < g < 0.0l and the other
in the range 0.01 = g < 0.058. WwWith these modifications

equation A-27 is used (together with equation A-17) to

give
0.01 0.058
o_(z) = Zil £f7 g dg + f2 g dg
E 2 1 2
B” [a,(2) 0.01
(A-28)
2BE 2 . 3 A, 2
+ g <1 - 9—5 (22 ro) E:——§5~——2 q dgq
0.058 4F LA+ g
i=1 i
where £, = 4.7 - 97.4 q - 7774.5 q°
'y
£, = 12.4 - 136.8 g7 + 441.8 q - 1456.8 q° .

The expression for the inelastic scattering factor
G(8) (Egn. A-22) is simplified by making the assumption
sin /2 ~ 8/2 . This is a valid assumption since G(#9)
rapidly approaches 1 for increasing 6 (G = 0.999 for

8 = 0.3 radian). Thus
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-2
2
G(8) ~ 1 - [ 1+ (2%99> ] = G(q) - (A-29)
(o}

Substituting (do/d%). (Eqgn. A-23), with the above expres-

sion for G(g) , in equation A-27, gives
8an 2 a
0,(z) = —> 2nb> S 3
B a2 [ 2
<2ﬂb> ta
2BE
+ S 4 gq - . (A-30)

q(Z)kmm> +<f]2

The integrals in equations A-28 and A-30 can be
evaluated in closed form to obtain o, and Op as
functions of 2z , the distance from the origin of the

electron beam (see schematic in section 2.3c).

A.3b Helium
Substituting the expression for the differential
elastic cross-section for helium {(equation A-20) in equa-

tion A-~-27 yields

2Y. + q2

- L
qm(z) i=_ a; (Y . q > (l 4E2> q dqg.

2BE

!\/lw

(A-31)
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Although the evaluation of this integral is a long and
tedious process, each of the twelve terms can be integrated
in closed form. Therefore, o is obtained as a function

E
of the distance from the needle injector.

Similarly, the integration of the inelastic cross-
section presents no difficulty except that it is longer.

Using equations A-25 and A-27,

8rzr .2BE 2BE 2
N o d - H
o (2) = — S [_QJ 7 S 1 -94

3 Z
B a,(z)|a q,(z)
2 2
3 2 2 3 2 2
, ‘4
. 2Yl + q a . H - 2BE V.a 2Yl q dq

t L i 5 2)2 q3 Z S ‘LJ i 2 222 q3 .
i=1 v; +4a qH{Z) i=1 Y; a7/
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