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ABSTRACT

The behavior of switching converters under large-signal conditions
is modelled and analyzed. Two major problems are of interest:
the reduction of the distortion which occurs in switching amplifiers,
and the stabilization of switching regulators for all transients which
are expected to occur.

In Part 1, a large-signal model is described which predicts the
simple harmonic distortion generated inherently by switched-mode
ampiifiers. The causes of this distortion are identified, and
relatively simple design technigques for its reduction to an acceptable
level are presented., A particularly attractive feature of the method
is the ability to compute harmonic magnitude and phase using Tinear
circuit models and Bode plots.

The method is extended to account for intermodulation distortion.
Additional effects not described by the model are also discussed,
including crossover distortion and bandwidth limitations.

Although in its simplest form the buck converter is inherently
Tinear, considerable distortion may arise when it is preceded by
an input filter. This probiem is solved as an example of the
usefulness and circuit-oriented nature of the method.

In Part 2, a large-signal switching regulator model is derived,
and prominent features of the transient response are determined.

In particular, the various regions of operation are identified in the
state plane, analytical expressions are found for the equilibrium

points of the system, and computer-generated transient waveforms

are ohtained,



As an example, a boost regulator is investigated, and is found
to be stable for small signals but unstable for large transients.
Approximate analytical expressions are found for the waveforms and
salient features of the response, and a number of ways of obtaining
global stability are discussed.

Experimental evidence is presented to verify both the distortion

and stability analyses.
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PART 1

DISTORTION IN SWITCHING AMPLIFIERS



CHAPTER 1
INTRODUCTION

Switching converters are finding increasing application as motor
controllers, transducer drivers, servo amplifiers, uninterruptible
power supplies, and lTow-distortion (unity power factor) ac-to-dc power
supplies. In these applications, the converter must reproduce a control
signal at high power levels with reasonable accuracy and efficiency.
Because of their theoretical 100% efficiency, switching converters
would appear to be much better suited for these applications than
conventional class B amplifiers. However, the inherent nonlinearity
in these converters poses an obstacle to both their analysis and design.
In particular, it is possible for nonlinearities to cause the
appearance of large, previously unexpected and mysterious amounts of
low and mid-frequency distortion. The analysis of this distortion in a
design-oriented manner is the subject of the first part of this thesis.

The technology for the implementation of switching power supplies
is currently at a high level and continues to develop. Since both
switching power supplies and switching amplifiers fall into the general
category of "switched-mode power converters", it is natural to attempt
to adapt this technology to the realization of a power amplifier.
Indeed, in many instances this may be done with only a few major
modifications [9,10]. However, there is one fundamental difference

between the amplifier and the power supply: the amplifier must



reproduce continual large-signal variations of a control signai,
whereas the power supply need only regulate a dc output against the
occasional external perturbations which may occur. Consequentily,
additional requirements on the large-signal bandwidth and linearity of
a switching amplifier exist which must be satisfied before acceptable
performance can be attained.

It is of interest, therefore, to identify the various aspects
of the general switching amplifier which degrade its large-signal
performance. Chapter 6 contains a discussion of some of these
distortion processes, including slew-rate limiting, crossover
distortion, component nonidealities, and the generation of high
frequency switching ripple. These problems must all be resolved before
a linear switching amplifier is realized. However, the most
fundamental source of distortion arises from the switching process
itself. It is well-known that the dc characteristics of many of the
basic converter topologies are nonlinear. For example, the dc line-
to-output gain of the boost converter is 1/(1 - D) where D = duty ratio.
In these cases, one expects low-frequency harmonic distortion to be
generated even by the ideal converter stage. Furthermore, since
inductors and capacitors are intrinsic to the converter, one might
suspect that the nonlinearities depend on the freguency of excitation.
it is well-known that the small-signal response contains frequency-
dependent terms [1,2]; it follows that the large-signal response shouid
vary with the frequency of excitation also. It is shown here that the

harmonic distortion is indeed a function of frequency.
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Moreover, the peak level of distortion may occur not at dc, but rather
at some midband frequency. Two extreme examples of this are given in
Chapter 5, where the distortion generated by two types of buck
amplifier with input filter is analyzed. In these cases, the dc gain
curve is completely linear, vet harmonic distortion occurs when ac
excitation is present! Apparently a dc distortion analysis is not
sufficient; ac effects must be accounted for also.

The conclusion s that a large-signal ac model is required for
the design of a switching amplifier. From such a model, it should be
possible to calculate the various harmonics which appear at the output,

to determine their dependence on the various circuit element values,



and then if possible to design an amplifier which is sufficiently
linear for a given application. A large-signal model of this type is
derived in Chapter 3 which predicts simple harmonic distortion. The
outcome of the method is a series of Linear circuit models, one for
each component of the output. Hence, standard linear circuit analysis
technigues may be used to find the amplitude and phase of each
harmonic; no complicated nonlinear differential equations need be
solved by the engineer. The result is a useful design-oriented
procedure for the reduction of the distortion inherent in switching
amplifiers to an acceptable level.

The procedure is extended in Chapter 4 to the situation whare two
inputs are present. Intermodulation distortion may occur in this
case. Two different types of buck amplifier with input filter are
analyzed as design examples in Chapter 5. It is found that the
distortion in the configurations considered may be reduced to an
arbitrarily low level if the output impedance of the input filter is
sufficiently small. This illustrates the concrete, quantitative,
design-oriented nature of the method.

Experimental evidence is presented in Chapter 7. As might be
expected, it was necessary to augment the standard small-signal
measurement techniques used for switching power supplies with linear
amplifier distortion measurement methods. First, the result of the
design procedure in Chapter 5 is verified. Next, it is shown that the
method is capable of predicting the actual time-domain output
waveforms. Thus, the method is verified in two distinct ways. The

entire procedure is summarized in Chapter 8.
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CHAPTER 2
AN INTRODUCTION TO SWITCHING AMPLIFIERS

2.1 Introduction

This chapter contains a brief review of the basic principles of
switched-mode conversion and amplification and an introduction to the
nonlinear processes involved. In the first section, some typical
circuits are examined. First, the four basic converter topologies are
discussed, and a number of ways of modifying them to obtain four-
guadrant amplifiers are shown. This is followed by a review of some
of the ac applications of switching converters which have been recently
proposed. In the second section, the basic properties of the ideal
switching amplifier are described. In particular, it is found that the
ideal switching amplifier is inherently nonlinear. The distortion
processes are modelled, and a strategy is formulated for the analysis

and design of low-distortion amplifiers.

2.2 Review of Topologies and Applications

The basic dc-to-dc converter topologies, from which all amplifiers
discussed in this thesis are derived, are shown in Fig. 2.1. Each

configuration converts a dc input voltage V_ to some dc output voltage

g
V, supplying power to a load R. A switch repetitively connects
reactive elements between the input and output, first storing energy in

the reactor when the switch is in position 1, then discharging the
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energy to the output when the switch is in position 2. The output
voltage may be controlled by proper variation of the relative amounts
of time which the switch spends in the two positions; this suggests
the use of these converters as dc amplifiers. Furthermore, since no
dissipative components are required, the efficiency of these converters
may approach 100%. Consequently, they are well-suited for power
applications.

The conversion ratios M{D) = V/Vg for the basic converters are
given in Fig. 2.3. The buck converter steps the voltage down, and
the conversion ratio M(D) = D is a linear function of D. The boost
converter steps up the voltage. The conversion ratio for this
converter is M{D) = 1/(1 - D), a nonlinear function of D. The buck-
boost and fuk [2,14,15,16,17,18] converters both invert the voltage and
may either step up or step down. The conversion ratio for these
converters is M(D} = ~-D/{1 - D}, again a nonlinear function of D.
Tnese converters are only capable of producing output voltages and

currents of one polarity; hence, they find application where a d¢
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Fig. 2.3. Conversion natios M{D) gor the basic conveatens of Fig.
2.7: [a] M(D) = D fox the buck convertern; (b) M(D) = 1/{1-D)
fon the boost conventen; (e} M(D) = -D/(1-D) fon the
buck-boost and Cuk convernterns.

output is required, principally as regulated dc power supplies.

A number of configurations have been suggested [9,10,12,19] for
dc~to-ac applications. These circuits require a power input voltage of
positive polarity, but can produce output voltages and currents of
either polarity. As a result, they are useful in ac power amplifier
applications.

Three of the many possible switching amplifier configurations are

shown in Fig. 2.4 a, b, ¢, and a complete open-loop system is shown in
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Fig. 2.4. Typical swifching ampliflen configurations: (a) buck
ampfifien with input {iltens; (b] bridge amplifien with
dnput gilten; (e) Cuk amplifien; (d} the complete open-Loop
sdystem,

Fig. 2.4d., The first (Fig. 2.4a) is a buck-derived converter with the
load referred to ground. Both positive and negative power supplies
are required, and two input filters are needed to smooth the pulsating
input current which is generated. An alternative buck-derived
amplifier is based on the bridge configuration and is given in Fig.
2.4b. In this case, only one supply and input filter is reguired;
however, the load is no longer referenced to ground. The third
configuration consists of a paraliel connection of two two-gquadrant
amplifiers; a version based on the Cuk converter is shown in Fig. 2.4c
19,20]. It too requires only one power supply at the expense of a
floating load. The entire open-loop amplifier system is shown in

Fig. 2.4d. It consists of a comparator and clocked ramp which perform
the pulse-width modulation function, a driver which interfaces the

comparator to the power switches, and the power stage itself.
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VQ
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or velocity -
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Fig. 2.5, The application of a switching amplifien fo drive a de
moton dn a servo suysiem.

A number of authors have considered the use of switching converters
as seryo amplifiers. In [21], the idea of using a bridge amplifier
to drive a dc motor was introduced. Later papers considered the use of
regenerative braking in such a system [22], the design of the feedback
loop [23], and the effects of dead time on the linearity of the
amplifier [24]. Another paper contained a detailed description of the
design of the entire switching servo system [25]. In 1ight of the low
bandwidth requirements of most servo amplifiers, this is an application
for which switching amplifiers are well-suited since switching
transistors and diodes capable of operating at the kilowatt power

level and 20 kHz switching frequency are widely available today.
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Another application which has received some attention is as a
ringing-tone generator in telephone systems [26,27,28,29]. Here, it
is necessary to produce programmable low-frequenty sine waves at 100U
power levels.

Switching converters have been suggested for the variable speed
drive of induction motors [30,31,32]. Three-phase (or polyphase) sine
waves of adjustable freguency and magnitude wust be supplied to the
motor at high power levels. A one-horsepower system of the type
illustrated in Fig. 2.6 has been demonstrated [30]. One dc-to-dc
converter is used per phase to produce a properly phased sinusoid with
dc offset. This dc offset is cancelled by differential connection of
the motor across the three outputs. The same technique can be applied
to other areas, such as a unity power factor battery charger or

uninterruptible power supply [30].

f
dc-to-dc
converter
\_
[ 3-phose
dc-to-dc \ : .
‘.‘.}.‘.‘ coaverterJ induction
_I . motor
- [ de-~to-dc
converter
N

Fig. 2.6, The use of switching converters gon the variable-speed
drive of thhee phase induction motons [30]. One de-fo-de
conventen (s used pen phase.
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Yet another appiication is in the processing of 60 Hz power.
Switching converters have been proposed as active power bandpass
filters [33], solid-state transformers with adjustable turns ratios
{347, power frequency converters [35], and dc-to-ac inverters for solar
arrays 136,37,38,39]. Here, power is efficiently processed in ways
which were not practical previously.

The most demanding application is as a high fidelity audio
amplifier. Although its high efficiency makes the switching audio
amplifier attractive at power levels of hundreds of watts, the high
linearity and bandwidth required of such amplifiers makes their design
very difficult. The design and analysis of audio switching amplifiers
for dc and small signals is considered in [9,10].

It is apparent that many applications exist for switching
amplifiers. In each of these, some of the voltages and currents in the
converter must contain large-signal ac components. As a result, the
nonlinearities in the system become significant. In the next section,
the fundamental large-signal behavior of switching converters is

examined.

2.3  An Elementary Nonlinear Mode]

In this section, the basic properties of the ideal switching
amplifier are reviewed, and it is pointed out that this device is
inherently nonlinear. A number of examples are given which illustrate
the types of distortion that can occur. Experimentally obtained
waveforms are presented which verify the existence of this distortion,
and a strategy is formulated for the analysis and design of low-

distortion switching amplifier systems.
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Switching
. Amplifier :
Ig I
+ +
power power
vg(h) input output vit)
control
input
D(1)

Fig. 2.7.  The basdie switehing amplifien 48 a three-post device: it
contans a conthol dnput, a powen input, and a power oufput.

The basic switching amplifier is a three-port device, as shown in
Fig. 2.7. It contains a power input, a power output, and a control
input. The input power s processed as specified by the control input
and then it is output to the load. Ideally, these functions are
performed with 100% efficiency; therefore, if the jdeal amplifier

contains no storage elements, then the instantaneous input power and

output power are equal:

i o= v i (2.1)
Yg'g

In general, the voltage is tranformed by some conversion ratio M(D}:

v = M(D) vg (2.2}

Equations (2.1) and (2.2) suggest that the ideal switching amplifier

possesses the properties of an ideal "dc transformer” [1,2,7,17,40,41],

with "turns ratio" M(D), as shown in Fig. 2.8. Note that, even though
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Fig. 2.8.  The ideal switching amplifier possesses the properties of
a "de thans former” with controflable tuwns ratio M(D).

a real transformer cannot process dc power, the symbol in Fig. 2.8 can
nonetheless be defined to work at dc and hence correctly model the ideal
switching amplifier.

It is apparent that the ideal switching amplifier is inherently
a nonlinear device, for two reasons. First, the transformer ratio
M{D) may not be a linear function of D. Second, the transformer ratio
may be time-varying, causing the multiplication of two time-varying
signals, as described by Eq. (2.2). Examples of these two processes
are given below.

The transformer ratio of the boost converter is

M(B) = 1/(1 - D) {2.3)

Hence, M{D) is a nonlinear function of D. Consider the idealized boost

converter of Fig. 2.9. The output is given by
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vit) = vg M(D{t)) = Vg/(l - D{t)) (2.4)

Since Vg is constant in this example, the multipiication process does

not generate additional harmonics. In consequence, the harmonics which
appear can be ascribed to the nonlinearity of M(D). For example, with

sinusoidal control input

D(t) = DO + ¢ sin wt {2.5)

the power output is given by

v

vit) = d (2.6)
T - DO - £ sin wt
or,
v £ g 2 .7
v(t) = =2 (1 + E-sinwt + (&) sin wt +...) (2.7)
By Uy Bo

] H
where DO =1 - DO , valid for g < DO

which contains both even and odd harmonics.
ig [ : M(D) i
-

;
1 M{D}=z —
Vg = v(t) % R I-D

T

M(D)
L
D(t)

Fig. 2.9. Idealized boost conventen example. The conversdion ratic
M(D) is a nonlinear function of the control sdignal D(t).




19

In this example, the form of the nonlinearity is very simple: it
is a single-input, single-output block containing a nonlinear dc¢ gain,
Hence, this idealized system is easily analyzed. Unfortunately, real-
Tife boost converters are considerably more complicated. As shown by
example in the next chapter, the storage elements intrinsic to the
boost converter cause the distortion to vary with frequency; as a
result, the analysis above is only valid at dc.

The multiplication process generates a different type of
distortion. As an example, consider the idealized buck converter of

Fig. 2.10. Here the transformer ratio is a linear function of the

control input; as a result, no harmonics are generated by the M(D)
block. However, since both vg{t) and D(t) are time-varying, the

multiplication process does generate harmonics. For example, if

ig | - M(D) j |
P . . - " }
M(D)=D
() e M
_ 0<D =l
M(D)
B{t)

Fig. 2.10. ldeafized buck conventern exampfe. Although Lhe conversion
natio M(D) 48 a Linear functicn of the control signal D(t),
harmonics nonetheless appear at the output because the
powen input vg(t) and control inputs D{t) ase both time
varying.
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vg(t) = A sin wt (2.8)

D(t) = Dy e sin wt (2.9)

then the output v(t)} contains dc and second harmonic components:

v(t) = DA sin ut + 32- eh (1 + sin 2 wt) (2.10)

Although this multipiication process can be used to advantage in some
ac~-to-dc and ac-to-ac systems, in most cases it is a source of
undesired harmonics.

A more complicated system occurs when external circuit elements
are added. A typical dc¢-to-ac¢ application is shown in Fig. 2.11. The

presence of the inductor causes the input to the transformer, v , to

1,

vary even though Vg is constant. As a result, the multiplication

process generates distortion. Furthermore, since reactive elements

are present, nonlinear differential equations occur which can be very

L i(t) I: M(D)
'

Fig. 2.11. The addition of extewnal reactive elements nesults in
a nonfinean dynamical system.
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difficult to solve. For the example in Fig. 2.11, one obtains

d i{t) _
L _.%_1 = v - v(t)/M(D(t))

(2.11)
¢ X~ i eym(n()) - v(t)/R

1t is apparent that the output voltage v{t) is a nonlinear function of
the control input D{t), and that the level of distortion may vary with
the freguency of excitation. Hence, embedding an ideal switching
amplifier in a larger system can significantly complicate the distortion
problem.

A more concrete example is the bridge amplifier of Fig. 2.12. An
input filter is included to smooth the pulsating input current which
is generated. The ac large-signal model can be found; it is given by
Fig. 2.13. It can be seen that the presence of L. causes the input to
the transformer, Vs to vary even though Vg is constant. Hence, again,
the multiplication process generates distortion. The exact shape of
the distorted waveform depends on the interaction of the input filter,
transformer, and output filter; it should vary with frequency since the

filters contain reactive elements.

T

Rlé R
1 L

Vg = C, \_,.../555\__4 A e

Comm —‘-““‘_

Fig. 2.12. Bridge amplifien with input §i€ten which generates
distorntion,
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Fig. 2.13. Nonlinear medel fon the bridge amplifien with Ainput
silten example.

$

VWA

A bridge amplifier was constructed and excited sinusoidally:

D{t) = 0.5 + 0.25 sin wt (2.12)

The resulting output is shown in Fig. 2.14 for 100 Hz, 300 Hz, and

750 Hz excitations. A moderate amount of distortion occurs at 100 Hz,
the distortion is large at 300 Hz, but the distortion is relatively
small at 750 Hz. Obviously, the reTative magnitude of distortion and
the shape of the output waveform change with frequency. Furthermore,
the peak distortion level appears to occur in the vicinity of 300 Hz,
rather than at dc. In consequence, a dc distortion analysis is

insufficient; ac effects must be considered. This behavior is typical

of many switching amplifiers.



Fig. 2.14.
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(b}

¢ 10V

An example 04 the nonlinear response Ainhenent in switching
amplifiens: outpuf waveforms of an open-Locp bridge
amplifien with sdinusoidal excitation. {a} the output is
modenately distented at 100Hz. (b] the output L& very
distonted at 300Hz. (¢} the distortion L5 comparatively
small at 750Hz, The distontion 48 cbvicusly a function

o4 grequency.
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We have seen that the "ideal" switching ampiifier possesses the
properties of an idealized dc transformer, with turns ratio adjustabie
via a control signal. It is inherently a nonlinear device, and this
can cause distortion problems when large signals are present. Practical
switching amplifiers contain reactive components which can interact
with the nonlinear transformer element, causing frequency-dependent
distortion. The operating environment of the amplifier may contain
additional impedances which can also interact with the switching
amplifier. Thus, the ideal first-order properties of switching
amplifiers can lead to intricately distorted large-signal output
waveforms.

How should this problem be analyzed? A typical problem may contain
many reactive elements, and hence become quite complicated. In light
of this, it is apparent that if a result is to be useful, it should be
design-oriented. Hence, we would prefer to draw linear circuit
models, Bode plots, etc., which yield insight into the distortion
processes and provide an efficient procedure for the reduction of
distortion to an acceptable level. For example, one would like to draw
a Bode plot similar to Fig. 2.9 which describes the amplitude and phase
of each harmonic as a function of fregquency. It would then be a
straightforward matter to choose component values which meet the
specifications.

Unfortunately, the above techniques were developed for linear
systems, so it appears impossible to analyze nonlinear phenomena such
as distortion in this way. Apparently, one must resort to the solution
of the nonlinear differential equations which describe the system, a

hopeless task. The remainder of Part I describes a procedure which
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~t2dB/octove

~-244B /octave

Fig. 2.15. The goak of the distorntion analysis: magnitude vs,
grequency plots of the dominant components of the cutput
waveform. ALL salient featunes are Labelled, and the
dependence o4 the distontion on the varicus cireuit
elements L8 apparent.

avoids this problem. Rather than solving the nonlinear differential
equations in exact closed form, an approximate series solution is
sought. In most cases, the first few terms of this series yield an
accurate approximation of the output waveforms. The result of the
procedure, described in the next chapter, is a series of Lineax

circuit models, which may be solved using standard technigues, yielding
the approximate amplitude and phase of each harmonic. The objective of
a design-oriented method for the prediction and reduction of the

distortion inherent in switching amplifiers is then realized.
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CHAPTER 3
ANALYSIS — SIMPLE HARMONIC DISTORTION

3.1 Introduction

In this chapter, the model described in the previous section is
rigorously derived, and a step-by-step procedure is given for the
construction of this model for any switching amplifier. Only
yariations in duty ratio are considered here, although the same
techniques could be appiied to variations in other guantities such as
the line voltage Vg if desired. The method used is a generalization of
the small-signal continuous-mode state-space averaging technique [1,2]
to include large signals. The nonlinear averaged state equations which
describe the converter are defined and then solved by use of a series
expansion. An additional assumption is then made which allows the
neglect of the higher-order terms in the expansion for each harmonic.
One may then construct a series of Linear circudif models, one for each

harmonic, which may be solved to yield the approximate magnitude and

phase of every harmonic component in the output.

3.2 Series Expansion of State Vector

The first step is the formulation of the state-space descriptions
of the system during the two switched intervals. During each interval,

the system may be described by a set of linear differential equations:
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dx(t)

K = A1 x{t) + Blu during interval DT {3.1)
dt - - >
dx(t)

K = A x(t) + B,u during interval D'7 (3.2)

where D = duty ratio, D' A 1 - D.

TS = period of one complete switching cycle.

K is a matrix usually containing values of L and C.

x is a state vector, usually comprised of capacitance voitages

and inductance currents.

u is a vector of independent sources.

These equations may be solved exactly; however, the subsequent
analysis is greatly simplified if the usual state-space averaging
approximations [1,2] are made. Specifically, if the converter natural
frequencies are all well below the switching frequency, then Eqs. (3.1)
and (3.2) above have approximately linear solutions. This is indeed
the case in well-designed converters, in which the switching ripple
is small. An additional consequence of this condition is that one may
neglect the sampling process inherent in all pulse-width modulators.
In other words, the actual discrete-time system may be transformed
into a continuous-time system with negligible loss of accuracy in the
open-loop transfer functions of the power amplifier. This is an
impaortant step because it allows us to employ a frequency-domain

approach in our distortion analysis. Otherwise, we could not speak of
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a harmonic series at all.

The result of these approximations is the following nonlinear

state equation:

dx(t)
K

= [D(t)A, + D'(t)A,Jx(t) + ID(t)B, + D'(1)B,Ju  (3.3)
dt <

This equation is nonlinear because the input D(t) and the state
vector x(t) appear multiplied together. A general closed-form
solution is not known, and would probably be useless anyway.

The alternative is to find a series expansion of the solution.
To do so, one requires a parameter for expansion. The logical choice
when calculating simple harmonic distortion is the amplitude of the

input sine wave. Therefore, define

D(t) = DO + d{t) (3.4)
DO =1 - DO
d(t) = ac input to system

For the analysis of simple harmonic distortion, one assumes that the
input is a sine wave:
d(t) = e sin ot (3.5)
¢ = ampiitude of the sinusoidal input
Note that, since 0 < D(t) <1, ¢ < 1/2
It is convenient in the subsequent analysis to display the

dependence of don e explicitly; hence define
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e d (t) = d(t) (3.6)
Thus & (t) = sin wt
A suitable parameter for expansion, therefore, is €. We will perform
a "straightforward expansion” [3,4], writing the state vector as an
infinite series. The hope is that convergence will be rapid and only

the first few terms wiil be significant. Hence, let

x(t) = x5+ agi(t) + e2§2(t) + eaﬁa(t) + ... (3.7)

Substitution of Egs. (3.4) - (3.7) into Egq. (3.3) yields

[xy + ex, * efx, * ...1 =

=R w
o+

' - 2
H%}+aﬂ%-ﬁﬁ% edmg Qﬁ+s%‘+a52+..J

+ [(D, + ed)B, + (D - d)B,Ju (3.8)

The individual components of the state vector 5d(t} may now be

found by equating like powers of =:

to order £°
. d _ _ f i
K gt %g = 0= [DgA; + Dy Aydxy + [DB, + Dy ByJu
x. = - A 1By (3.9)
%, u )

where A = E}OAl + DG Az, B = D{}Bl + D 82
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X, is the quiescent (dc¢) operating point. It has the same values as
when calculated using the small-signal state-space éveraging method
[1,2].
to order ¢?
Kdox (t) = Ax, +cd (3.10)
dt =1 e I

where gmr(A1 - Azlgg + (B1 - B Ju

2
X, is the dominant linear component of the state vector. It is the ac
quantity calculated by the smali-signal state-space averaging method.
Note that cd is the linear forcing term.
to order g2
K %, (t) = Ax, + [A, - AJx, (£)d(t) (3.11)
This is the second order system. Note that it is a £ineax
differential equation. [Al- Azjgid'is the forcing term. If the order
¢! system has been solved, then the forcing term may be evaluated. The
Tinear differential equation (3.11) is then solved to find ﬁi{t).
to order ¢

(t) = Aﬁn + [Al - Azjx {t) alt), n > {3.12)

X
“n wy-1

3l

This is the nth order system. Again note that is is £Lineax.

Knowing x__. (t) and d(t), one may easily calculate the forcing term
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[Al - Azjgn"l(t) &(t). The solution of the linear differential
equation {3.12) then yields én(t).

Thus, one obtains a linear system at each order of €. The
solution of these systems is relatively straightforward since no
nonlinear differential equations need be solved. However, it remains
to put these equations in a form more accessible to the electrical
engineer. This may be done by reconstructing equivalent circuit models

for the state equations at each order of ¢, as in the next section.

3.3 Llinear (ircuit Models

In the above analysis a series of linear systems was derived which
describes the waveforms present at each state. No small-signal
assumption was made; hence, the method is valid for large signals and
predicts harmonic distortion. However, this series of Tinear systems
is so far merely a collection of equations, It is desirable to find
a more 1lluminating form for the design of a switching amplifier.
Namely, we would like to find some type of circuilt modef which describes
the harmonic distortion generated, yet retains the desirable Tinear
properties of the above mathematical representations. This can easily
be done; one merely reconstructs the linear circuits described by the
above state equations at each order of . This is done below for the

example of the boost converter in Fig. 3.1.
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R, L
W00 . '
o
I - +
Vo - c== v éﬁ'
* *

Fig. 3.1. Simple boost converter example,

to order ¢°

Upon evaluation of Eq. (3.9) for the boost example, one obtains

] -R£ -BO 10 1
- + 13
Vg (3.13)
0 0. Sl v 0
L | 0 R J L "0 ] [

The corresponding circuit is Fig. 3.2. After circuit manipulation,
one obtains Fig. 3.3. This is the usual dec model. It is also the
zero-order term in our large-signal expansion. One may solve for the
nominal quantities 10 and Vo taking into account parasitic elements

such as R, if desired.

£
Rl
VWA -

to
. -4
—— 1 3= 1
Vo -=- Dovel Z ? | Bo g v, EEF?
-4 '

Fig. 3.2.  Cincudt which models the de [gquiescent} conditficns in the
boost example.
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2
R, /D,

Vg /Dy = Yo %R

——

Fig. 3.3.  Simpligication of the de moded of Fig. 3.2.

to order £}

Evaluation of Egq. (3.10) yields

dt

0 C) vl L% '%”Lvl-. LR FAT
{3.14)

The corresponding circuit is given in Fig. 3.4. This is the usual

small signal model which accounts for duty ratio variations but not

variations in Vg or other independent sources.

— M [0 ' ,
I

voﬁ(‘f)Cﬁ) Dov, | t D.i, B0 = v %R

Fig. 3.4.  Cincuif which modefs the finst-ornden {fundamentat)
components in the boost example,
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It is also the first-order term in our large-signal expansion.

solve for first-order variations in state guantities {i.e., i

1

One may

and vi).

In general, these are all sinusoids at the fundamental frequency « but

with different amplitudes and phase offsets:

qlt) = sin wt
V.| v
B S DO O 1
vi(t) =7 sxn(%t zii; )
i i
1Y cind.. L
11(t) =7 s¢n(wt Qii; )
with
i, ()
x,{t) =
v, (t)

to order ¢?

Upon evaluation of Eq. (2.11), one obtains

L

The corresponding circuit is shown in Fig. 3.5.

result of the present analysis.

o] [i.7] T- 21T
'y Ry D
d_ -
dt -
! 1
C- 'Vzd _DO “-R*J -V

(3.15)

v
]

(3.16}

This is the first new

order model; only the independent generators differ.

Note the similarity with the first-

This system is

Linearn, yet it yields information about second-order nonfinearities



i+

-
w6(§> DoV f Doig W = v, gﬁ

Fig. 3.5. Cineult which models the second-order {de and second
harmondc) components in the boost example.

of the power amplifier. In particular, one may calculate the
approximate magnitude of the second harmonic using this model.

Note that, since the circuit elements are connected in the same
way, the poles of the second-order system will be the same as the poles
of the first-order system. However, the amplitudes and phasings of
the generators are not the same, so the zeroes will in general be
different. If the first-order model has been solved, then the

quantities vl(t)ait) and il(t)&(t) are known and are of the form

Vl V}-‘
Vl d= F sin (wt + a.*_) sin (wt)

iz ' 1'1
i, d= -l sin (mt + ar‘) sin (wt)

(3.17)

which involves the product of two sinusoids. The application of a

trigonometric identity yields

i, d=13,,+1 2(t) (3.18)
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where
Yio 7 7 %’ ;i“ sin (ngi. - %‘)
Vi, ® % ;—1— sm(%t*»lgl -%)
07 " %’ ;;' Si“([é;L -7 )
112 = %- ;;- sin (Zwt +£ii;i - %.)
Xy = the resulting dc component of éz(t)

522(t) = the resulting second harmonic component of 52(t).

Define
i () i (t)
x,0 =] o x = O (3.19)
Vi (t) V1ot
Note that

x,o(t) = = 5 x, (- 3) (3.20)
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- ‘f Do i iiglH) he cmm V2° ‘%R

—
Veo! Ve

Fig. 3.6. The finst step in the simplification of the second-onder
moded: split the nonlinean generatons inte thein do
components (Vyp and iy) and second hammonic components
(Vlz and 312).

Thus, the nonlinear generators in Fig. 3.5 may be resolved into

, and their second harmonic components

their dc components v, . and il

10 0

Vis and i1°’ as in Fig. 3.6. Furthermore, since the resulting

second-order system is linear, the principle of linear superposition
holds; in consequence, the dc and second harmonic components may be

solved separateiy as in Fig. 3.7.

{a) Ry

Vio (:) Do vao| = t 1o0iz Q) o V20 éﬂ

(b) R, L

v,ﬁﬂ(i) Dq'Vae

Fig. 3.7. The second step in the simplification of the second onder
moded: with the use of Einean superposition, calculate
the de components (a) and second hatmonic components
(b] separnately.

4+
R

l +
Dy'ige i (1) —[‘C Var %

R
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C
o-
-~
I+

el

Fig. 3.8,  Circudt which modefs the n-th onden (n > 2) components in

the boost example.

to order an‘

Evaluation of Eq. (3.12) yields

I (3.21)

-

b

v
11

b

-1

0

i

-

n~1

vt

The corresponding circuit model is given in Fig. 3.8. In general, the
n~th-order model is of the same form as the second-order model; only
the subscripts are changed. The amplitude and phase of v, and in

, 85 well as the

depend on the amplitude and phase of vn and én

-1 -1

circuit elements. The circuit topology and element values remain the

same, independent of n. The nth order circuit model yields information
about nth order nonlinearities of the system; in particular, one may
calculate the approximate magnitude and phase of the nth harmonic

using this model.



39

1 model, has been solved, then the guantities

If the order ™~
vn»l(t) gt} and iﬂml(t) d{t) are known. In general, vn“i(t) and

1n~l(t) contain even harmonics of frequencies 0, 2w, 4w, ... {n-1)u

for n odd, or odd harmonics of frequencies w, 3w, 5w, ... (n-1)w
for n even. Hence, the generators in the order e model contain terms

of the form

sin{{k-1)ut + ¢) sin{ut) = %—sin(kut + ¢ - %} - %*Sin((k~2)wt + 4 - %)

'O,Z,Q,U.n for n even
1, 3, 5, ... n forn odd (3.22)
In other words, the n-th order system contains even harmonics for n
eyen and odd harmonics for n odd, as summarized in Table 3.1.

The n~th order system may now be solved by the same procedure used
for the second-order system. The generators are first resolved into
their different frequency components, as in Fig. 3.9. Linear
superposition is then employed to calculate each component separately,
as in Fig. 3.10.

Thus, by adapting the small-signal state-space averaging method
to include large sigrals, one may analyze the simple harmonic
distortion generated by a switching amplifier. The method employs the
key state-space averaging approximations which require the converter
natural freguencies to be well below the switching frequency. However,
the small signal approximation is not used; instead, a series

expansion of the state vector is made. The result is a series of

Linean equations which may be solved consecutively, yielding the
amplitude and phase of any harmonic component of the output. Moreover,
a series of Linear circudit mededs may be reconstructed from these

equations which yield additional insight into the operation of the
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frequency order
component e el e? e? e* €s
ae X5 %20 %40
w 4 X33 %51
20 N -~ ™~ Vol
w %99 242
; N s ~
w X33 X53
\ N Pl
w 244
.
o Xzg

Table 3.1. Summary of the frequency components present in the order
¢™ model, and their dependence on the components present

in the order ™! model.
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in—lm{” =
R C:: 1% ®
1 ? DG in G) C‘) 3 ¥4 ne2
Va-1,n-2(t] o 'n-in-2 R
i

Fig. 3.9. The {iust step 4n the sdimplification of the n-th onden
moded: “nesolfve the nonbinear genenatons into their
varnious hawmonic components.

l +
Vn*f\n{” {‘ Doiin’u j“._"“(t} TC vﬁ,fi ER
+
L . -
s“n—l,m»z“'; 1 De'n‘n-a 'n~t,n~2“) TC Vo 6-2 %R

Fig. 3.10. The second sfep 4in the simplification of the n-th order
model: with the use of Linear superposition, caloulate
each hanmondic component separately.
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circuit. Standard linear circuit analysis techniques may then be
used.

The method as it stands to this point requires the solution
of the circuit model at each order in the series separately. For
example, to estimate the second harmonic, one must first evaluate
the zero-order circuit at dc. The solutions for Xq obtained are then
inserted into the first-order circuit model, and it is evaluated at the
fundamental frequency. These first-order solutions (51) are next
inserted into the second-order circuit model and it is solved at the

second-harmonic frequency, yielding the desired solution x Then,

Xye
to order ¢2, the total solution for x{t) given by Eq. (3.7} is
X, * Eéi(t) + azgi(t).

Needless to say, this procedure may become tedious for orders of
¢ larger than two or three. In the next section, we will see how to
translate the frequency of the nth-order model down to the fundamental,
thus allowing the evaluation of the entire series of circuit models to
pe done at the fundamental frequency. In addition, we will approximate
the series solution for each harmonic by its lowest-order term. The

series of models may then be combined into one large circuit model and

soived in one step.
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3.4 An Additional Simplification

As stated previously, the objective of this analysis is to obtain
expressions for the magnitude of the various harmonic distortion
components as a function of frequency. In particular, it is desired
to draw Bode plots for each harmonic, as in Fig. 2.15. Note that all
salient features of the response are labeled; in conseguence, the
dependence of each harmonic on the element values in the system is
apparent, and the result is design-oriented.

Since the result of the analysis in Sections 3.2 and 3.3 is a
series of linear circuit models, most of the useful techniques of linear
circuit theory may be applied, including the derivation of sinusoidal
transfer functions and the construction of Bode plots. However, there
is one complication which arises owing to the necessity of evaluating
each circuit mode]l at a different frequency: the resulting "transfer
functions" must be evaluated partially at the fundamental frequency,
partially at the second harmonic freguency, and so on. For example,
the order ¢® third-harmonic component of the output of the bridge
amplifier in Fig. 2.4b may be found by application of this method; the

result is

(3.23)

w
|
™o
" .
e
po
~—
v
it

where Zs(s), Zi(s), and H{s) are various impedances and transfer
functions in the amplifier. Note that Zi(s) is evaluated at the

fundamental frequency, Zs(s) at the second harmonic, and H(s) at the
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third harmonic. Thus, even though the intermediate models at each
order of ¢ are linear, the complete model is not entirely linear and
expressions for the harmonics such as Eq. {3.23) are not evaluated at
a single frequency. It is desirable to eliminate this remaining
nonlinearity from the model; 317 sinusoidal transfer functions would
then be evaluated completely at the fundamental frequency.

It is also desired to approximate each harmonic by its lowest-
order term. For example, the fundamental component of the state

vector is

£X

x, (t) + 53561(t) + e, (t) + ... (3.24)

=51

If this series converges rapidly enough, then it may be approximated
by its lowest-order term, Egi(t). A similar argument holds for all
other harmonics, with the result that the n-th harmonic is
approximated by s“gﬂn(t). This is summarized in Table 3.2. The
analysis is greatly simplified with this approximation.

It now becomes a straightforward matter to modify the model so
that it is evaluated entirely at the fundamental frequency: one merely
shifts the frequency of each higher-order model by an appropriate
amount. The mechanics of this frequency shift involve the substitution
of effective vectors gn for the n-th-order state vectors X defined
previously. These effective vectors gﬁ have the same magnitude as
their counterparts X s but are evaluated at the fundamental frequency
instead of at the n-th harmonic. One may thus solve the resulting

linear circuit models using standard techniques at the fundamental



frequency order

o]
™

component £ (2 e” [ [ €’

dc

<l‘_>><

2w %22
3 X
bu LI

Sus %55

Table 3.2. Summary of the frequency components present in the
approximate model. Each harmonic is approximated by its

lowest-order term.
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frequency, yet find the amplitude and phase of each harmonic.

The differential equations which describe x (t) and x,,(t) are

as follows:
0=A Xo * Bu (3.25a)
4o x (1) = A x (£) + ¢ at) (3.256)

H

Axyy(t) + IA - AT - x (1)

d
K T5 %,,(t)

_ i n
= A ﬁzz(t) + §v[A1 - Az] % (2t - ?5) (3.25¢)

This follows from Egs. {3.9-3.11) and (3.20). We now shift

the frequency of 522(t) by performing the substitution

”~

X, (t) = ex, (t)
%,(t) = e?x, (5t + 3) (3.26)

Eqs. (3.25 abc) then become

0= Ax, +Bu (3.27a)
K& 2, (1) = Ax (t) + ¢ d(t) (3.27b)
2K g X,(t) = A, (t) + 5 A - AT X (1) (3.27¢)
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Note that gz(t) now contains components only at the fundamental
frequency, but with the same amplitude as the second harmonic component
of ezgz(t). The phase is also the same, except it is shifted by -90°.
The approximate amplitude and phase of the fundamental are found by
evaluating Eq. (3.27b) at the fundamental frequency. The amplitude and
phase of the second harmonic are found by evaluating Eq. (3.27¢) at
the fundamental frequency also; at the end of the analysis we simply
note that the amplitude of the second harmonic is the same as the
magnitude of ge(t), and the phase differs by -9G°.

The result may easily be generalized to the higher order case:

X contains harmonics 1,3,5,...n for odd and 0,2,4,...n for n even.

All harmonics are usually negligible except for the nth, defined by

3 (1) = ey (Mt (0oL (3.28)

Again, this is usually a good approximation since the components we
neglect are of higher order than the dominant component which is kept.
If desired, an extension of this procedure may be used to calculate
the extra correction terms due to these additional harmonics.

Insertion of Eg. (3.28) into Eq. (3.12) yields

d - - R £ ~
nK gp £, (t) = A (t) + 5 (A - A X (1) (3.29)

gn has the same amplitude as the dominant component of the nth

harmonic. Its phase differs by -(n-1)90°.



The higher-order circuit model corresponding to Egs. (3.27bj),
(3.27¢), and {3.29) for our boost example now becomés Fig. 3.11. The
complete set of linear state equations which describes the dominant

component of each harmonic is given below:

0=A %y + Bu

d ~ _ -

Kap %y = A% + LA - A)xg + (B, - B,)ul d

KR sAx +E (A -A) %

T X ALt A - R X

R = ax +E (A -A)R

qt X3 T A%ty (A - A X

K% =Ax +E(A -A) X (3.30)
dt -n -n 2 1 27 -1 ’

Thus by considering only the element component of each harmonic
and by shifting the frequency of the harmonics (i.e., the higher-order
models) down to the fundamental frequency, a completely Linear set of
differential equations is derived which predicts the simple harmonic
distortion inherent in switching amplifiers. Linear circuit models
such as Fig. 3.11 may now be constructed and then solved using
standard phasor techniques, evaluated at the fundamental freguency.
Bode plots may be drawn for each harmonic, and design criteria found
for the reduction of this distortion to an acceptable level. An

example of this procedure is given in Chapter 5.
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Fig. 3.11. The nesult of the simplification process: {a} a senies of
Linean cineudt models, evafuated at the fundamental
$requency, which approximate the amplitude and phase of
the fundamental, second hawmonic, and n-th hammondic
components; (b} an equivalent neprnesentation, with the
dependent generatons replaced by ideal thansformenrns.
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3.5 Discussion

Upon inspection of Fig. 3.11, one observes the following
qualitative features. First, an extra set of states is added for each
higher order calculated. However, because of the structure of
Fg. {3.30) it is a simple matter to construct these higher-order models.
Thg topology of each model is the same, but the L's and C's are
multiplied by n. As a result, the natural frequencies {(poles) merely
shift down in frequency by a factor of n; the associated (-factors
remain the same., Thus, the poles may be drawn by inspection if the
first-order response is known. However, the zeroes change and may not
be drawn as easily.

These features may be explained as foliows: Combination of

Egs. {3.3) and (3.4) yields

dx(t)

Kt

= Ax(t) + By + c(B,-B,)ud(t) + (A -A )x(t)ed(t) (3.31)

g —_
et

nonlinear term

The nonlinear term has the form (Al - Az)ﬁjt)ath). If this term is
small in magnitude, then the differential equation is nearly lipear and
hence we expect distortion to be small. The converse also applies:
if the nonlinear term is large, we expect to have a large amount of
distortion.

One way to make the nonlinear term large is to make ed(t) large.
In other words, increasing the input ampiitude ¢ tends to increase the

amount of harmonics at the output: dc asymptotes increase.
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Another way to increase the nonlinear term i5s to incCrease
(A1 - Az)ﬁjt). Thus, a resonance which causes x{t) to be large will
probably result in increased harmonics. Likewise, the poles of the
first-order system should also appear in all higher-order systems.

Harmonics are also affected by the L-C filter. Hence, the poles
of the first-order system occur shifted down an octave in the second-
order system, down a factor of three in the third-order system, etc.
This accounts for the extra set of poles added at each higher-order
system.

The phasings and positions of the generators account for the
zeroes. Yor example, if the generators are scaled and phased just
right, a null could occur (i.e., resonant zeroes). So the zeroes of
the nigher-arder models are not as closely related to the first-order
model as are the poles.

As an example of the behavior predicted by the model, the functions
31/8, v,/d, and v,/d are plotted in Fig. 3.12 for the boost converter
example of Fig. 3.13. Also, the locations of the poles and zeroes for
this example are summarized in Table 3.3.

It can be seen that the fundamental response contains the familiar
two poles and one right-haif-plane zero of the small-signal transfer
function [1,2]. This is expected because all fundamental-frequency
terms of higher order have been neglected.

The "second harmonic response”, 62/8, contains four poles and twe
zeroes. Note that the peak second harmonic distortion occurs around

700 Hz rather than at dc. A dc distortion analysis would give
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Fig. 3.13.

Component values used in the theoreticad

Fig. 3.12.

predictions of
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Table 3.3.

b4

Poles

two poles at 1.17 kHz
with Q of 1.2

two poles at 1.17 kHz
with Q of 1.2

two poles at 586 Hz
with Q of 1.2

two poles at 1.17 kHz
with @ of 1.2

two poles at 586 Hz
with Q of 1.2

two poles at 391 Hz
with Q of 1.2

5

L

Salient features of .

o

>

2

- 9}

cl)l >
w

feroes

RHP zero at 4.1 kHz

RHP zero at 264 Hz

LHP zero at 1.25 kHz

RHP zeroc at 23.5 Hz

LHP zero at 600 Hz

RHP zero at 8.3 kHz
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predictions approximately 6 dB too low at 700 Hz.

The "third harmonic response”, 33/3, contains six poles ang three
zeroes. Note that the first zero occurs at 23.5 Hz, a factor of 30
Tower in frequency than the smail-signal system poles! Hence far this
example, a dc analysis correctly predicts the third harmonic
amplitude only for fundamental freguencies less than the 1/50 of the
small-signal poles. Furthermore, the peak occurs in the vicinity of
400 Hz at approximately 24 dB abave the dc value. It is clear from
this example that (1) a dc distortion analysis is not sufficient for
the prediction of peak simple harmonic distortion levels, and (2)
harmonic distortion components may change significantly in amplitude
over frequencies where the fundamental response is flat. Hence, it
is incorrect to assume that a dc distortion analysis is valid for all
frequencies where the small-signal response is at its dc asymptote.

For completeness, it should be noted that straightforward
expansions of the type used in Eq. {(3.7) may diverge, or may converge
so slowly that they are useless. This is a well-known phenomenon
[3,4,5] and indicates that a different type of approximation method
must be used. As an example of this behavior, the medel was evaluated
for a boost converter with two different sets of circuit element values
and duty ratio excitation.

The first circuit considered is the same boost converter used in
Fig. 3.13. A1l components to order ¢7 were calculated for a duty
ratio excitation of amplitude € = .15 and frequency 300 Hz. The

result is given in Table 3.4. It can be seen that the series converges
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Order Harmonic Amplitude(volts) Phase(degrees)
1 ] 3.23 -17 e = .15
2 2 .518 -154 f = 300 Hz
3 1 L0791 -1 Vg# 16 V
3 3 .126 -324 R = 64 o
4 2 0359 88 R,= 2.4 2
4 4 L0374 =171
L = 530 uyH
5 1 .00535 142
C =10 pF
5 3 L0163 ~-134
DO= .5
5 5 L0102 ~406
6 2 00351 ~87
6 4 00608 ~-383
6 6 L00240 -295
7 ] . 000505 -33
7 3 .00179 -354
7 5 .00183 -286
7 7 .000504 -552

Table 3.4. Boost example #1. Amplitude and phase of all components
of the output {(capacitor voltage) to order €7. Dc terms

are not included.
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Order Harmonic Amplitude(volts) Phase(degrees}
1 1 58.1 ~-108 £ = .3
2 2 14.3 -18 f = 2500 Hz
3 1 74.9 -29 Vg= 20 v
3 3 3.10 -288 2= 100
4 2 18.9 56 = .05 7
4 4 .669 -198
L = 300 uH
5 1 81.4 39
L =5 ufF
5 3 4,19 -218
DOZ .4
5 5 .146 ~469
6 2 23.2 -237
) 4 .824 -132
6 6 .0323 -37%
7 1 114 113
7 3 5.16 -15]
7 5 . 206 -405
7 7 .00722 -649
8 2 28.6 -163
8 4 1.14 -425
8 6 . 0465 -317
8 8 007163 -559

Table 3.5.
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Table 3.5 continued

Order Harmonic Amplitude(volts) Phase(degrees)

27 1 1090 101

27 3 50.4 -163
27 5 1.92 -417
a7 7 L0770 -678
27 ) . 00337 -572
27 11 .000139 -830

Table 3.5. Boost Example #2. Anplitude and phase of various
components of the gutput (capacitor voltage}, as predicted
by the straightforward expansion method. Dt ferms are

not included.
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rapidly, the system is well-behaved, and that the approximation of
the n-th harmonic by g" énn(t), as noted in Section 3.4, is valid.
The method gives very good results in this case.

The second circuit considered is also a boost converter, but
with different circuit element values and duty ratio excitation. The
values are chosen such that the system exhibits a resonant response
(the small-signal model predicts two complex poles at 2467 Hz with a
Q of 4.5), and the system is driven with hard excitation near
resonance. All components to order £27 were calculated and are
sumnarized in Table 3.5. The series diverges for this example! The
reason for this divergence is known as the "probiem of small divisors®
[4]. If desired, another technique such as the Krylov-Bogoliubov
method [4,5,44,45,46] may be used here in place of the straightforward
expansion. However, practical switching amplifiers normally must
exhibit a well-damped and reasonably linear response. The straight-
forward expansion converges rapidly for such systems and is preferred

because of the c¢ircuit-oriented nature of the result,

3.6 Step-by-Step Summary of the Procedure

For reference, the procedure for constructing circuit models of
the form in Fig. 3.11 is summarized here:
1. Using Kirchoff's laws, find the state equations of the
system, first during switching interval DTS then during
interval D‘TS. Write the state equations in the following

matrix form:
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dx(t)
K—g— = A x(t) + B,u during DT

dx (t) (3.32)
K T = A2 x(t) + Bzg_ during D TS
2. Evaluate the matrices A, B, and (A1 - Az), where
A= DOAI + DO AZ

(3.33)

B = 9081 + DO B2

3. HWrite out the zero-order, first-order, and nth-order set of
state equations which describe the dominant component of

each harmonic present, as follows:

0= Ax, +Bu

d ~ _ .~ i i ~
kST R = Axy + LA - Axy + (B - B)ul d (3.34)
k8% =A% +E(A -A)X N> 2

dt —n “n 2 1 27 Pp-l T &

4. Reconstruct circuit models which satisfy the loop and node
equations of Eq. (3.34). These circuit models may now be

manipulated as desired. %o js the nominal {dc) value of the

state vector. gi is the first-order (linear) component of the

state vector. gn is an effective vector, evaluated at the

fundamental freguency w, whose amplitude is the same as the
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dominant component of the nth harmonic (n > 2). The phase of gﬁ

differs from the phase of the nth harmmonic by -{n-1)30°. may be

%a
evaluated using Tinear techniques in the same way ithat il is

evaluated.
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CHAPTER 4
AN EXTENSION — INTERMODULATION DISTORTION

4.1 Introduction

The previous chapter considered the simple harmonic distortion
which occurs when the duty ratio is modulated by a single sine wave.
This is the most basic measure of the nonlinearity of a system and in
many applications such as a variable speed ac motor drive or
uninterruptible power supply, where the system is only intended to
produce a single sine wave, it is sufficient.

In general, however, the nonlinearity may produce other
objectionable forms of distortion when the input to the system is more
complicated, and a number of methods have been devised to measure the
distortion produced by an amplifier under more general conditions. The
most widely known of these is called intermodulation distortion, which
refers to the distortion produced when not one but two sine waves at
different frequencies are injected into the system simultaneously. In
general, these two sine waves may both be injected through the duty
ratio, or one may enter the system through the duty ratio and one from
an independent source such as the line voltage. Only the former case
will be considered here.

By generalization of the method of the previous chapter, one
obtains a series expansion for the state vector when two sine waves

are injected into the system. A completely linear set of state
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equations occurs at each order; hence, linear techniques may be used
to calculate each component of the intermodulation distortion. 1In
particular, Tinear circuit models may be drawn which result in a

design procedure more easily accessible to the engineer.

4.2 Mathematical Description

The basic nonlinear differential equation which describes the

system is given by Eq. (3.3), repeated here for conveniences:

dx{t)

<t = [D(0A, + D' (1)A,Ix(t) + [D(t), + D*(£)B,Ju  (4.1)

The duty ratio is now to be modulated by two independent sine

waves instead of one. Hence, define

D(t) = 0, + ai(t) + az(t) (4.2)

where D0 = nominal duty ratio

dl(t) = g,y Sinwlt
dz(t) = g, s1nw2t (4.3)
. = amplitude of the first sinusoidinal input

1

H

€ amplitude of the second sinuscidinal input

2

It is convenient in the subsequent analysis to display the dependence

of 31 and 32 on g, and e, explicitly, as follows:
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d () = e, q,(t)
d,(t) = ¢, & (t) (4.4)

Thus

d}(t) = S1nwlt

[E]

dé(t) Siﬂmzt (4.5)

Qur expansion will therefore involve two amplitude parameters,
€, and €,. As before, we will perform a "straightforward expansion",
writing the state vector x(t) as an infinite series. Since there are
now two parameters for expansion, we obtain an infinite series in each
parameter, corresponding to the simple harmonic distortion generated
separately by each input, plus cross multiplication terms

corresponding to the intermodulation distortion. Hence, let

X + g, X%

x(t) 1 TOEEy T E X, T EEX,

L]
>

+
4
»

<
]
>
o+
™

+ ezzx + alsx + elza X £

& 2
Ly, 211 212 T Bi1%2 R0

3
€, Xp0g oo (4.6)
Insertion of Egs. (4.2) and (4.6) into the basic state equations (4.1)

yields
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= + + + + +g ? +
K dt [xo *ex) e Xy v e ayy FeeX, v Xy, ]

= [({30 + €1d} + szd‘z)AI + (90 - 51d} - Ezaé)AQJ

+ + + ...
[50 “ 4 5252 ]

+ [(SO + Elaé + ezdé)Bl + (90 - alai - 5255)8213 (4.7)

The individual components of the state vector may now be found by
equating like powers of e and €,- The zero-order equation does not

differ from the simple harmonic case; it is given by Eq. {3.9).

to first order

d _

K Fr) (t) = Agi + gﬁi (4.8a)
d -

K 3{~§2(t) = AEQ + gdé (4.8b)

where ¢ = (Al - Az)ﬁo + (B1 - Bz)g
% and X, are the first-order linear components of the state vector

occurring at tne fundamental frequencies w

) and w, respectively.

to second order

a—,
r‘\-
e
¥

= Aéil + IAI - Azjgidl {4.9a)

Lo
po—
H

= Mg, H LA - AT 4 xd) ) (4.90)
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d -
K xzz(t) = Ax

at & %oy ¥ LA - AJxd, (4.9¢)

and x,., are the components of the state vector containing the

%1 22
second-order harmonics of di and &é respectively. These quantities may

be calculated separately using the simple harmonic distortion analysis

method of Chapter 3. However, L3P is the second-order cross

multipiication term and is the first new result of this section. It

contains components at the sum and difference frequencies w) + w, and

W, - W Again, note that Eqs. {4.9) are linear; if the first-order

1 2°
systems have been solved, then the forcing terms [A1 - A2]51a3 may be
evaluated. The Tinear differential equations above are then solved

using standard techniques to find the second-order terms.

to third order

K g‘fv?‘»uz(t) = Ay LA - A ) (4.10a)
K g?illz(t) = Ry LA - AT 8 4 ) (4.700)
K %{5122(” = Apgp LA - AJGGT F X D) (4.10¢)
K g’fﬁzzz(t) = Aopp * A - AK,d, (4.10d)

5111 and 5222 are the components of the state vector containing the

third-order harmonics of d1 and dé respectively, and may be calculated

separately using the simple harmonic distortion analysis method of

Chapter 3. X519 and Xy, 2Te the third-order cross multiplication
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terms containing components at Wy W Ewi + w,, and sz.i w Having

2° 2 1’
solved the second order systems, the forcing terms [Al - Azjgid3 may
be evaluated, and then the above linear equations may be solved.

The process may be continued ad nauseum. At each order of
approximation, linear differential equations are obtained describing
various components of the state vector. Two of these components are
always the simple harmonic distortion terms occurring at multiplies of
w; OF w,; the remainder are intermodulation distortion terms occurring
at the various sum and difference frequencies. Thus for the case when
the input consists of two independent sine waves, the original nonlinear
differential equation has been reduced to a series of linear equations
describing each component of the state vector x(t). To obtain further
insight into the distortion processes inherent in the system, we wili

next reconstruct linear circuit models which describe the

intermodulation distortion components that appear.

4.3 Linear {ircuit Models

As in Chapter 3.3, it is desirable to reconstruct linear circuit
models which describe the intermodulation terms that arise. This can
again be done; the result for the intermodulation terms is the same as
the result for simple harmonic distortion with the exception of the
generators in the model. Namely, the topology does not change, but
the nonlinear generators introduce signals at sum and difference
frequencies instead of at simple multiples of the fundamental. Thig is

done below for the same boost converter example in Fig. 3.1.
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The zero- and first-order models were found in Section 3.3; they are

given by Figs. 3.2 and 3.4.

to second order

Eq. (4.9b) describes the second-grder (order glez) intermodulation

distortion which arises. For the boost example, this equation becomes

L0 12 T P

d_ =

dt

]
0 C Vio D0 -1/R v12
- W e ) - -7 (4.11)
0 1 11&é + 1251
+

-1 0 vlaé + vzﬁ}

The circuit which corresponds to Eq. (4.11) is given in Fig. 4.1.
It is Linean, yet it describes the nonfinean order {e e )

intermodulation terms which arise. Having calculated Vir Vo i1, and

12 from the first-order model, one may evaluate the nonlinear

generators viaé, vzd&, 11dé, and 125;. These generators contain

components at freguencies w0y +w, and W oT Wy. One then solves the

Tinear circuit of Fig. 4.1, yielding vlz(t) and 1,,(t].
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Fig. 4.1. Cinoudt which modefs the ondex g€, intemodulation
components 4n The boost example.

to third order

Eqs. (4.10b) and (4.10c) describe the third-order (order 9;232 and
81522) intermodulation distortion which arises. For the boost example,

one obtains

L0 112 "Ry Dy
d_ -
dt
*0 CJ “\1’112.J mDG *1/Rd
- ~ . ' - (4.12)
¢ 1 ihdh v g
+
-t 0 ;_Vn‘fz v, |
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o~ - - - - N - -
L 0 i, Ry =By i
d =
dt
| 0 1 L Va2 uDo “WRd V122
, - . 7 {4.13)
0 1 12251 + 312&'2
+
| -1 0# Vo0t v
(a} R; {.

5 Do (D

(b} Ry L

4 105 CD ety irelh, %c ,,,; 3x

Fig. 4.2. Cirewits which moded the crden e1%e, (a) and onden g16,° (b)
intenmodubation components in the bocst example.
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The circuits which correspond are given in Fig. 4.2. They are linear,
yet describe the nonlinear order 51232 (Fig. 4.2a) and order ¢ e *
(Fig. 4.2b) intermodulation distortion which arises. Having

calculated i 12° and v22 from the second order

117 ‘120 Va2 V10 Y
systems, one may evaluate the nonlinear generator terms. These

generators contain components of frequencies w,, w,, Zw jumz, and

1 2? 1

2w, t w One then solves the linear circuits of Fig. 4.2, yielding

2 1’
foooy Gy V.., and v, .

112 122 i12 122

Thus, by a simple extension of the technique of Chapter 3,
intermodulation distortion may be modelled. In particular, one
considers the case where the duty ratio is modulated by two
independent sine waves. One expects the resulting circuit waveforms
to contain the harmonics of both sine waves, plus additional terms
resulting from interactions between the two which represent the
intermodulation distortion. Therefore, the state vector is expanded
in a more complicated form which includes these extra terms. The
result of the analysis is a series of linear circuit models which may
be solved using standard techniques, yielding the magnitude and phase
of each component of the output. The engineer may then gain insight

into the distortion processes and the means for Tinearization of his

amplifier.



CHAPTER 5
DESIGN EXAMPLES: DISTORTION IN BUCK AMPLIFIERS

5.1 Introduction

In this chapter the usefulness and design-oriented nature of the
modetling approach is demonstrated by two examples. First, a brédge~
configuration buck-type amplifier with input filter is analyzed. The
circuit models are given, and simple design criteria are found for the
reduction of the simple harmonic distortion to an acceptably Tow level.
In addition, it is shown that only odd harmonics appear at the output
of this configuration, while only eyen harmonics appear in the input
filter. Next, a simple buck converter with input filter is analyzed,
and is found to generate both even and odd harmonics at its output.
The operation of this converter is considerably more complicated than
the bridge; as a result, more sophisticated design techniques must be
used to avoid becoming inundated with algebra and losing all physical
insight into the operaticn of the circuit. A useful technigue is
described, which has general application to other configurations. The
result for this second example is a set of approximate design criteria
similar to the results for the first example; these criteria may be
used to reduce the simple harmonic distortion which appears to an

acceptably low level.



13

5.2 Existence of Distortion in Buck Ampiifiers

It may at first seem surprising that a buck-type configuration
would inherently produce any distortion at all. Indeed, the simple
ideal buck converter of Fig. 5.1 is completely linear if high-
frequency switching ripple is neglected. The large-signal gain is

given by Eq. (5.1).

-~

ws) oy u(s) (5.1)
d(s) & valid for large signals

where H{s) is the transfer function of the low-pass filter. Thus, the
only harmonics expected to appear at the output are those resulting
from nonidealities in the pulse-width modulator, switch, or other
components.

The addition of line source impedance, however, results in
the generation of distortion by the power stage itself, rather than by

switch or PWM nonidealities. For example, if the source impedance is

l N speciroily

pure oufpuwt
3R
™

“» 4

PWM

o>

LN

\l 7 sinuscidingl input

Fig. 5.1. Simple, ideal buck convernter which generates no Low-
prequency distontion.
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Fig. 5.2. The addition of hesdislive source {mpedance resufls Ln The
genenation of distontion in buck conventerns: la} schematic;
Ib] deviation of the resulting dec gain cuwwe (sclid Line)
grom the ideal case (dashed Line).

purely resistive as in Fig. 5.2a, then the dc¢ steady-state gain

characteristic becomes

Voo R
v = 0rFm 5.2)
B g
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This function is plotted in Fig. 5.2b. It is a nonlinear function of
D; therefore it is clear that distortion occurs at dc and probably also
at higher frequencies. Eq. {5.1) is not valid for this system with
large signals.

On tne other hand, suppose the source impedance of Vg is
non-dissipative? In particular, consider the addition of an L-C
input filter containing no resistive elements, as in Fig. 5.3a. Since
Lf and Cf are purely reactive components, they do not affect the dc

steady-state gain of the system. The dc transfer function of this

{a} L,
—
+
- -
(6]
V/VQA
1O
05
0p L 1 i 1 J kN 3 ] 4. .i
05 1.0 >0

Fig. 5.3. The addition of putely reactive source Lmpedance has no
effect on the de gain of buck conventers; nonetheless,
ac signats arne distorted: {a] schematic; (b) Linear de
gain characteristics.,
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system is therefore linear, as given below and plotted in Fig. 5.3b.

V=DV {5.3)

But is there distortion? At dc, 'Zgl = 0. However, for ac,

&zg‘ # 0 and as a result there is indeed distortion. The nonlinearity
inherent in the buck converter of Fig. 5.3a affects ac signals but not
the dc gain.

Thus, even a buck converter may generate harmonic distortion if
source impedance in series with Vg exists. In practice, this impedance
may arise in a number of ways. The addition of an L-C input filter
results in a circuit similar to Fig. 5.3, and the discussion above
holds. A similar case occurs when Vg is a switching power supply, and
the L-C filter is actually the equivalent output impedance of the
power supply. A third example is the inclusion of switch ON-state
resistances, as when MOSFETs are employed as the switching devices. An
equivalent circuit similar to Fig. 5.2 then occurs, and distortion is
again generated.

These sources of distortion can never be completely eliminated in
practice. The design problem is therefore to choose component values
in a way that the resulting distortion is acceptably small.

To accomplish this, one must first develop an understanding of how the
distortion depends on the various components. This involves finding
the circuit models described in Chapter 3 and drawing Bode plots of
the predicted distortion. One may then see the steps necessary for
the reduction of the harmonic distortion to an acceptable level. This

procedure is carried out in the following example.
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(a) L
Ri “_{: R :}h'
+ ) M
v, = Crom ¥ 00—t + v -
: ]

o

Dy= 0.5
V/Vg Fy

Fig. 5.4. Bridge amplifien with {nput §iLten example: (a) schematic;
' {b) Linear dc gain cunve.

5.3 Bridge-type Buck Amplifier with Input Filter

The first example is a bridge-configuration amplifier with a
single input filter, as shown in Fig. 5.4a. The dc gain, neglecting
the saturation drops of the switches, is given in Fig. 5.4b; it is
completely linear. HNonetheless, harmonic distortion appears across
the Toad when the system is excited by ac. To analyze this system, one

first constructs the corresponding circuit models following the
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step-by-step procedure of Section 3.6.

With the assumption of ideal switches and neglect of parasitics,
the vectors and matrices in the state-space description of the system
(i.e., the loop and node equations written in matrix form as defined

in Eq. (5.4)) are as follows:

e N
lf 1
i 0
X =fv, u = [V%] B=8,=10 {(5.4)
vy 0
v L O
Lf 0 0 0 0‘1
0 L 0 0 0
K = 0 0 Cf 0 0
0 0 0 Eb 0
L0 0 0 g c J
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-1/Rf

1/R

~§/Rf

1/R

/R

—T/Rf

/R

-T/Rf

o M
-1
0
0
~1/R
5 "
-1
g
0
~1/R
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Next, the matrices A, B, and (;ﬁ.l - Az) are evaluated:

0 0 -1 0 o
0 0 0 0 g
A = DOA1+D;AZ = 0 SR, YRS 0 at D, = 0.5
0 0 R, -UR. 0
L 0 1 0 0 “1/R
SN
0
8= DB 408, = | O (5.5)

-~ 0
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0 0 a ¢ 0N
0 e 2 0 0
A1 - A2 = 0 -2 4] 0 0
0 0 ¢ 0 0

- 0 o 0 0 0 J

Now the zero-, first-, and n-th-order set of state equations which
describe the dominant component of each harmonic may be written: The

dc {zero-order) equation is:

oYy (o 0 -1 0 0 Vi) (1))
0 0 0 0 0 -1 i 0
0 j={ 1 0 -1/Re /R, 0 Veol| *| 0 v,
0 0 0 /R, -1/R. 0 Voo 0
_0J Lo 1 0 0 -I/RJLv, ) LoD

e
1
I
é)(
+
o
je



g2

It R . lo
 {

Fig. 5.5 Do circuit model from which quiescent condifions are

calceufated.

The circuit model which corresponds to this equation is Fig. 5.5.

The solution is given by Eq. (5.7) below.

= v (5.7)

é}k




The first order equation is

bS]
J

e

fl

2V
g

1l

Q. >

[ I

g3

-IIRf

1/R

1/R

—T/Rf

~?/RJ

{5.8)
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i
i
+ Ry +

v 2V, c 5, 3w

L! CIT Vit +
- CbT bi

htd

Fig. 5.6. Circuit which models the finst-onden (fundamental] components
Ain the bridge amplifien.

Eq. (5.8) is the system of loop and node equations describing the
first-order (linear) circuit model. The circuit mode) may be
reconstructed from these equations; the result is Fig. 5.6. Note that
the states of the input filter are not excited in the first-order
model; the only generator in the system drives the output filter states
only. In consequence, no fundamental appears in the input filter.

The n-th-order (n > 2) equation describing the dominant component

of the n-th harmonic is given in Eq. (5.9).

CRERNt
n £ 1fn 1] 0 -1 0 0 1fn
n 0 0 0 0 -1 i
n n

an an = 0 —I/Rf 1/Rf 0 an
an Vbn ] ]/Rf *T/Rf 0 Vbn

k_nC v. J L ] 0 0 ~¥/RJ LY,
N A X
-1 -1
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+ -ei {5.9)

¥ 5 (A - Az)gnnz

This is the system of loop and node equations describing the
circuit model for the dominant component of the n-th harmonic. The
corresponding model may be reconstructed from these equations; the
result is shown in Fig. 5.7 for the second harmonic, the third
harmonic, and the n-th harmonic.

A number of features may be noted from Figs. 5.6 and 5.7. First,
the basic topologies of the first- and n-th-order models are the
same; the states are connected together the same way in each case.
However, the generators are not necessarily the same at each order of
n. Second, the values of the reactive components are multiplied by n.
These properties hold for the general converter and are a consequence
of the modelling method, as described in (hapter 3.5.

The nature of the distortion in the amplifier now becomes
apparent. In the first-order model, Fig. 5.6, the input filter states
are not excited. Therefore, no fundamental appears in the input filter,
s ; , and ; are zero. As a result, no second

1 "f1 bl
harmonic appears in the output filter or across the load, since the

and the quantities i
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2L 2¢,
A
3
+ R!
3L, 3c,_1_, Ves
B SCDT “'bs
nL
' ' 00
A In
tin
l + Rf +
nig nCy Y ) J“”'Q) €¥,., nC Vo éR
-I. T nC v
bT bn -
Fig. 5.7.  Cincult models which approximate the amplitude and phase

generator a;
the top of Fig. 5.7 is zero.
second-harmonic component owing to the presence of the e?l
in the second-order model.
inductor current il

In the third harmonic model,
not excited since ;

filter inductor current).

o4 the second, thind, and n-th hawmonic components in the
bridge amplifiex.

£1 exciting the output filter in the second-order mode] at

However, the input filter contains a

generator

The fundamental in the ocutput filter

~

excites a second harmonic in the input filter.
the input filter states again are
= 0 (no second harmonic is present in the output

2
However, the output filter contains a third
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harimonic component owing to the presence of the agfz generator in the
third harmonic model. The second harmonic across the input filter
capacitor ﬁf excites a third harmonic in the output filter and hence
across the load.

The process described above continues for all of the higher-order
models. Variations in the output filter inductor current ;ﬁ excite
harmonics in the input filter states, and variations in the input

filter capacitor voltage v_ excite harmonics in the output filter

fn
states and across the load. The result of the process is the presence
of even harmonics in the input filter and odd harmonics in the output
filter and load.

It is a fairly simple matter to calculate the magnitude and phase
of the harmonics predicted by the model. First, the circuit models of
Figs. 5.6 and 5.7 are simplified as in Fig. 5.8, eliminating the states
not excited. Second, the following definitions are made:

Zin(s) = input impedance of the output filter in the n-th order

model.

7 (s} = output impedance of the input filter in the n-th order

model.

H {s) = transfer function of the output filter in the n-th order

model.
The duty-ratio-to-n-th-order-output response may then easily be

evaluated. The result is,
/
g, n even

7.7 ...1

2c™ by 82 84 5=l 4 (s), nodd  (5.10)

\ g 7 Y B
11 Ti3 in-2
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The steps necessary for the reduction of the distribution to an

acceptable level are now apparent. By designing fZ {s)} << IZ, (s)}
Sﬂ"}'l in ’ s

the resulting distortion may be made as Tow as desired. This may
involve choosing larger, more expensive values of Lf, Cf and Cb however;
therefore, it is advantageous to design the smaliest input filter which
meets the distortion specifications. An efficient design procedure thus
inyalves the specification of reasonable distortion Vimits, followed

by the intelligent cheice of an+1(s) and Zin(s}.
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The quantities an(s), Zin(s)‘ and Hn(s) are each a function of
frequency, and it is of interest to examine typical frequency
dependencies to determine peak distortion levels and the frequency
ranges over which they occur. Bode plots of these guantities are
constructed in Fig. 5.9 for the case when Cb is large. From these
plots it is a straightforward matter to construct the fundamental and
third-harmonic responses, plotted in Fig. 5.10 for the case where
Note that the third harmonic response has a zero at dc.

W, < w < w
c

f 0’
Thus, as noted before there is indeed no third harmonic distortion at
dc. However, for ac a significant third harmonic response may exist.

One now proceeds to design the input filter such that }232} is
sufficiently lower than ‘zill’ thereby ensuring that the harmonic
response given by Eq. (5.70) is acceptably low. It can be seen from
Fig. 5.10 that the peak third harmonic response occurs at one-half of
the input filter resonant frequency for the case drawn. The magnitude
at this point is 2€2Vng/R. This peak may be lowered by proper input
filter design, generally involving increased damping of the input
filter {i.e., by decreasing the value of Rf). The problem of properly
designing an input filter under small-signal conditions has been
considered elsewhere [6,7,8], and many of the results are applicable
here. In particular, the corner frequencies wf/z and Wy should be well
separated in order to avoid excessive peaking in the third-harmonic
response. Next, the amount of damping necessary to reduce the third
harmonic to an acceptable level is determined. Optimal values of Rf
and C, may be calculated [7], thereby avoiding the use of excessively
large values of blocking capacitance for C,- The result is the
reduction of the transfer functions of the harmonics given by Eg. (5.10),

thereby producing a satisfactorily linear amplifier.
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Fig. 5.10. Typical frequency dependence of the fundamenzal response
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Thus, a bridge-configuration buck amplifier with input filter
produces odd harmonics across its output. This circuit may be
modelled, analyzed, and designed using the method of Chapter 3.
Application of this procedure may result in a set of Bode plots
describing the dependence of the various distortion components upon
each circuit element. The steps necessary to reduce this distortion
to an acceptable level then become apparent. For this example, it is
necessary to design iZSE} sufficiently smaller than lZiI!‘ This may
be done by proper choice of the various poles and Q-factors of the

system.
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Fig. 5.71. Simple buck amplifiern with input §ilter.

5.4 Single-Ended Buck Converter with Input Filter

As a second example, the simple buck converter with input filter
of Fig. 5.11 is analyzed. . The operation of this circuit differs
substantially from that of the previous example. Owing to the
increased interaction between the input filter and the output filter,
even harmonics appear at the output in addition to the odd harmonics
which occur in the bridge. As a result of this interaction, this
circuit is more difficult to analyze and design; the transfer
functions become very large and complicated. To obtain more lucid
results, some additional analytical techniques are useful. One such
technique is given here, which involves the solution of the difference
equation describing the states ;ﬁ(s) of the n-th order model in terms
of £n~1(s)' The result is a set of approximate design equations
similar to the bridge example. Again, it is necessary to design iZSQ}
sufficiently smaller than {Zii{, and this is done by the proper choice

of the various poles and Q-factors of the system.
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Again, the first step in the analysis of this system is the
construction of the corresponding circuit models, following the step-

by-step procedure of Section 3.6. The first-order state equations are

-~ ~ ™ a T f,\ 'T
Lf 151 0 0 ~1 1] O 1f1
I ii 0 0 D 0 -1 11
Q_. Cf Vfl - 1 -0 —1/Rf 1/Rf 0 Vfi
dt
Cb Vbl 0 g ¥/Rf ~}/Rf 0 Vbl
hc vl L0 } 0 0 -URJ v,
KXy ) A 4
(o
Veo
+ - d (5.11)
0
4]
. -
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Fig. 5.12. Cincuit which modets the finst-onder {fundamental)
compenents in the buck example.

The first-order circuit model which satisfies these loop and node
equations is given in Fig. 5.12. This is the usual smalli-signal model,
Note the presence of the Dgl and Dgfi generators; these lead to
first-order interactions between the input filter and the output filter
states. Consequently, all states of the system are excited to first
order, and fundamental appears in the input filter.

The n-th-order (n 3_2) equations describing the dominant

component of the n-th-harmonic are given in Eq. (5.12).

-~ -~ r 3 7
an 1fm 0 0 -1 0 Q fn
nL ? 0 0 D 0 -1 3
n I
d_ an an = 1 -0 -1}Rf }/Rf 0 vfn
dt
an Vbn 0 0 }/Rf -?/Rf 4] Vbn
hnC vn J ._G : 0 0 -E/RJ _vn ]
nK; = A ;
! -n
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The n-th-order circuit model which corresponds to Eq. (5.12).15 given
in Fig. 5.13. Again, owing to the presence of the Dgn and D;fn
generators, there is n-th-order interaction between the input and
output filters and hence both even and odd harmonics appear in each

state.

Y

A
an nC, ¥in + %n«i D'n thn nC n ER
[ =g L

Fig. 5.13. Circuit model which approximates the amplitude and phase
04 Lhe n-th hammonic components {n > 2) 4in the buck
example., -
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This interaction complicates the analysis and design of the
amplifier. As a result, the straightforward solution of the various
transfer functions is an almost hopeless task. An alternative is the
enplovment of the following artifices:

First, it is recognized that each model may be partitioned into
three sections: the input filter, the output filter, and the
generators. This is illustrated in Fig. 5.14 for the first-order

model, the second-order model, and the n-th-order model. The locp and

vm&
(]

s [ iod

-~ »
»

H
%:)
Y

L] € A
_Z'Vn*t
(D)
AN
-+ ’ﬂ
A €4 4 + A
Zen Ven 2 -t Di, ‘ ~ D%, Zin

Fig. 5.14. The analysis 48 simplified when the models are pantiticned
into three sections: the {nput §ilten impedance I1g, the
output fiLten impedance Zj, and the generatons, shoun
above {on the fundamental, second harmonic, and n-th
harmondic modeds.



node equations may

first~-order model,

-~

1 - ,
== + Di =~ 1.4d
Zsl 1 0
Dvey + 250 % Ved
Eq. (5.3@)
v, & ¢ nd
(12 D
where Yy, = sl
11y
v
& =| £1 n=
"

g/

now be rewritten in a more compact form.

may be expressed in matrix form:

In the

(5.13)

(5.14)

The n-th-order model (nlz 2} is similar; the loop and node equations

are given below.

Ven y €
—. ] = o e
i mn Z ‘n~l
sn
_van+2. Tn 2 an»l
in

(5.15)
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Egs. (5.15) may also be expressed in matrix form:
v £ =S5r1¢ (5.16)
n =n A | )
where
1/an D
\15 =
4]
-0 )
in
0 -1
]“ =
1 0
an
IS
i
s n e
Hence,
e =8y rg = (i)nwl(w"zr)(@"} T) () ot 4
I S N Y n n-1'7 o Y 12
(5.17)

Since Wﬁ is of dimension 2, its inverse is easily computed, and the

product ?glr is then found:
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One may now evaluate Eq. {5.18) to find analytical expressions

for [ and hence for v__ and i“. It is then a simple matter to compute

fn
other guantities such as the n-th-order component of the output,

-

Vo The result for the first-order system is

1 - 0%z VL
s (5.19)}

1
~= =V H (s)
d T+ D Zsl/zil

where Hl(s) is the transfer function of the first-order output filter:

1
Hl(s) = 5 {(5.20)
14+ sL/R + s57LC

This is the small-signal result discussed in [6,7]. Note that if the

inequalities

DZZ < < R
sl

2
D zsl < < Zil

are well satisfied, then Eq. (5.19) reduces to
!
_— = Vv H (S} (5.22)
d

This is the small-signal transfer function obtained for the buck

converter with no input filter. In other words, the input filter has
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negligible effect on the smali-signal duty-ratio-to-output transfer
function if the inequalities of Eq. (5.21) are satisfied.

The solution for the dominant component of the second harmonic

is
v,  -eDy z (4 + k) .
2. 2 H, (s) sl 1 (5.23)
d 2 2RO+ k) (04 k)
where 2 )
Z (1 - D°7 /R
(T +k =14 s2 sl
Zsl (1 + Ziilﬂ)
_ 2
(1 + kz) = (1+0D 251/211)
- 2
{1+ k3) = {1+0D Zszlziz)
- 1
Hz(s) =

+ 2sL/R + 4s°LC

i

This transfer function appears formidable, but it may be considerably
simplified if the inequalities (5.21) hold. In this case, the {1 + kz)
and (1 + k3) terms become nearly unity. The (1 + kl) term is of order
unity for a reasonably damped system, but may be as high as 3 or 4 in
magnitude at some frequencies. A reasonable procedure is 1o neglect
all three terms for the first design, and to make any necessary
corrections in later design iterations. Thus, if the inequalities of

Eq. {5.21) are well-satisfied, then the second harmonic is given
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approximately by

Az I
= - —FB f(s) = (5.24)
d

The steps necessary for the reduction of the second harmonic
distortion are now apparent. The second harmonic transfer function
may be made as small as desired by the choice of ‘ZSI' sufficiently
less than lZiJfR(. This may involve choosing larger, more expensive

values of Lf, €., and Cb however; therefore, it is advantageous to

£
design the smaillest input filter which meets the distortion and EMI
specifications. As in the case of the bridge amplifier, an efficient
design procedure involves the specification of reasonable distortion
Timits, followed by the intelligent choice of Zsl(s) and Zil(s).

It is of interest to examine typical frequency dependencies of
the quantities Hz(s), Zsl(s) and Zil(s) to determine peak distortion
levels and the frequency ranges over which they occur. Bode plots of
these quantities are constructed in Fig. 5.15. 7o satisfy Eq. (5.21),
}nzzs

is chosen much smaller than |7, and 1R!, as shown. A first
1 il

approximation for the second-harmonic response is thus Eq. {5.24}. It
is now a straightforward matter to construct the fundamental and
second-harmonic response, plotted in Fig. 5.16 for the case when

we < W, < Wy The second-harmonic response contains a zero at dc,
rises to a maximum at some intermediate frequency, then falls off,

eventually at a rate of 18 dB per octave.
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One now proceeds to design the input filter sufh that izsll is
sufficiently lower than izil;[R[, thereby ensuring that the
approximate second-harmonic response given by Eq. (5.24) is
acceptably low. It can be seen from Fig. 5.16 that the peak second
harmonic response occurs at the input filter resonant frequency b
for the case drawn. The magnitude at this point is EDVng/R. This
peak may be lowered by proper input filter design, generally involving
increased damping of the input filter (i.e., by decreasing the value
of Rf). Again, the problem of properly designing an input filter under
small-signal conditions has been discussed elsewhere, [6,7,8], and
many of the results are applicable here. In particular, the corner
frequencies we and W, should be well separated to avoid excessive
peaking in the second-harmonic response. Next, the amount of damping
necessary to reduce the second harmonic to an acceptable level is
determined. Optimal values of Rf and C,, may be calculated [7],
thereby avoiding the use of immoderate amounts of blocking capacitance

for Ch. The result is the reduction of the second harmonic transfer

function, thereby producing a satisfactorily linear amplifier.

The distortion modelling procedure has been demonstrated using
two types of buck-derived amplifier configurations. Although the ideal
buck converter in its simplest form is inherently linear, many
practical implementations will be nonlinear. Specifically, the
on-state resistance of the switches, the source impedance of the line,

or the addition of an input filter cause distortion. The bridge
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amplifier with input filter generates even harmonics in its input
filter and odd harmonics in its output filter. These harmonics may be
reduced to an arbitrarily Tow level by proper input filter design;

the criterion is that the output impedance of the input filter must

be suyfficiently smaller than the input impedance of the output filter.
A similar situation occurs for the simple buck converter with input
filter. In this case, both even and odd harmonics appear at the input
and output. Again, the second harmonic is reduced by proper input
filter design. These examples show how the nonlinear distortion
processes in switching amplifiers may be analyzed in a design-oriented

manner using linear circuit modeis and Bode plots.
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CHAPTER 6
OTHER SOURCES OF HARMONICS

6.1 Introduction

The previous chapters have considered only the noniinearities
present in the ideal switching amplifier system. However, the
degradation of the large-signal performance of a practical switching
ampiifier may occur in a number of other ways. Some of these problems
occur in all amplifiers, whether switched-mode or linear; others
arise from the peculiarities of the switching process itself. 1In
either event, it is useful to identify the various sources of
distortion and suggest possible remedies.

First, the open-loop bandwidth limits the maximum power
deliverable to the load at any given frequency; as a result, the
inductances and capacitances in the power circuit must be chosen with
special care if full output is to be obtained at high frequencies.
Second, the high-frequency ripple produced by the switching action is
a form of distortion but is normally considered separately since, in
most applications, the response of the load to excitations at the
switching frequency is negligible. Third, component nonidealities
such as long switching times or the nonlinearity of the ramp used in
the pulse-width-modulation process may cause additional distertion,
particularly when high switching frequencies are used. Finally, a

crossover distortion effect similar to the one found in class B
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amplifiers can occur and must be corrected for in those cases where

its effect is significant.

6.2 Bandwidin Limitations

One of the most basic measures of the performance of an amplifier
is its pandwidth. In power amplifiers, the bandwidinh must actually be
described in two ways. The first is the familiar small-signal
frequency response. A flat small-signal response ensures that Tow-
level signals of all frequencies within a given range are reproduced
uniformly. The second way is the "large-signal bandwidth® or
"maximum power frequency response'. It measures the maximum
undistorted sinusoidal power deliverable as a function of freguency.
An insufficient power bandwidth leads to the familiar "slew-rate
Timiting" effect, so-called because the maximum rate of change of the
output is Timited. Both definitions of frequency response are
important in any power amplifier; the analysis procedure for switching
amplifiers is outlined below.

The small-signal frequency response measures the gain of the
amplifier for sinusoidal inputs, assuming that all harmonics are
negligible. It is valid only when the input is small enough that any
nonlinearities have no effect. Specifications regarding the small-
signal frequency response are usually met by the use of negative
feedback. This requires the employment of a small-signal model for
the nonlinear switching power converter [1,2,11], followed by the

application of standard linear feedback techniques.
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For example, consider the bridge converter of Fig. 2.4b. Usually,
output voltage feedback is used, and the system is designed to provide

a uniform small-signal response. A closed-loop system with

compensation as in Fig. 6.1a is therefore designed, and the small-

signal state-space averaged model of Fig. 6.1b applies. The relevant
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Fig. 6.2. Typical power stage open-Loop gain |Gg{iw}|, and complete
amplifien closed-Loop small-signal gacn |[H(jw)|, fon the
system of Fig. 6.1.
frequency responses are diagrammed in Fig. 6.2. The open-loop duty-
ratio-to-output gain Gd(s) of the power stage contains poles at some
intermediate frequency Wy but the small-signal closed-ioop frequency
response of the entire amplifier H(s) is unaffected until, at some
high frequency Wy the loop gain becomes less than unity. Thus, the
dynamics of the power stage have no effect on the small-signal
frequency response at low and intermediate frequencies where the loop
gain is large. Very desirable, robust small-signal characteristics
can therefore be obtained.
The “maximum power frequency response™ is a different matter.
It is essentially unaffected by feedback, and oCcurs owing to the fact
that the linear operating ranges of all electrical components are
limited. OQutside these ranges, the devices saturate or cut off, and

the gain of the system is reduced. If the loop gain is reduced below
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unity, then the feedback loop no longer functioms, and the output is
no longer undistorted. Hence, there is some maximum amplitude which
the amplifier can produce, and this amplitude is a function of
frequency.

The exact device which limits the output power varies from one
design to another; however, this limit may often be expressed as a
maximum and minimum duty ratio. Clearly, the duty ratio can never be
outside the range [0,1]; often, the limit is more restrictive. In
this case, the maximum sinusoidal output is obtained when the duty
ratio is varied over this entire permissible range. Since the output
is given by Q(s) = Gd(s) 8(5) where Gd(s) is the oﬁen»idop duty-ratio-
to-output transfer function, the maximum-power frequency response is
given by Gd(jw) ;81 max. In other words, under the above assumptions,
the large-signal bandwidth is limited by the open-iocop frequency
response of the power stage and is unaffected by feedback. For the
bridge example, Gd(s) contains two poles at frequency w, ascribable
to the L-C output filter, as shown in Fig. 6.2. Hence, maximum

sinusoidal power is obtainable only at frequencies below w,; at

d
higher frequencies, the maximum power rolls off at a rate of 12 dB
per octave.

A complete set of performance specifications for any power
amplifier therefore includes the maximum power output obtainable at
all frequencies of interest. To meet this spec, the circuit designer
must place the open-loop poles in the power stage at a sufficiently
high frequency; negative feedback does not change the large-signal

bandwidth. Unfortunate}y,'another type of distortion now becomes

significant: the high-freqguency switching ripple increases in
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magnitude whenever the open-loop poles of the power stage are raised
in frequency. Thus, it is necessary to consider the effect of

increased switching ripple.

6.3 Switching Ripple and Component Nonidealities

Switching ripple is produced by aimost every type of switching
converter and resulis from the incomplete attenuation of the nigh
frequency components of the pulse-width modulated waveform by an L-C
network. This form of distortion differs from other types in that the
major component of distortion occurs at the switching frequency wy and
its multiples and sidebands, rather than at simple multiples of the
fundamental. In most applications, the load contains an inherent
Tow-pass characteristic and thus has a negligible response at the
switching frequency; consequently, a moderate amount of high-frequency
switching ripple is tolerable.

Excessive ripple can degrade the performance of a switching
amplifier in a number of ways. Electromagnetic interference may
pollute the operating environment of the amplifier. Component stresses
within the converter increase. These considerations often impose a
stronger limitation on the ripple amplitude than does the response of
the load to high-frequency distortion components.

The ripple magnitude may be reduced by designing a larger L-C
filter; however, this reduces the large-signal bandwidth as discussed
in the previous section. The alternative is to increase the switching
frequency. Hence, the specification of the large-signal bandwidth
inherently sets a lower bound on the switching frequency, and values

well in excess of 20 kHz may be required. Unfortunately, component
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nonidealities limit the maximum switching frequency; this is a major
constraint on the performance attainable by present switching
amplifiers. These nonidealitﬁes include long transistor and diode
switching times, the various parasitic inductances and capacitances in
the circuit, and nonlinearity of the clocked ramp waveform. These
problems may be corrected by proper circuit design techniques; however,
these techniques become expensive and difficult to apply at high
switching freguencies. Therefore, reasonable specifications regarding

the large-signal bandwidth and switching ripple amplitude are essential.

6.4 {rossover Distortien

It is well-known that class B amplifiers exhibit an effect known
as "crossover distortion". This troublesome problem occurs when the
output current passes through zero, and is a result of the dead zone
in the gain characteristic of the amplifier caused by the base-emitter
voltage drops of the output transistors.

Unfortunately, a similar effect occurs in switching amplifiers
which is caused by the nonzero forward voltage drop across the
transistors and diodes used to impiement the switching function. This
effect is most pronounced in low-volitage amplifiers using transistors
having large on-state voltage drops.

For example, consider the bridge-configuration amplifier (without
input filter) of Fig. 6.3. If the transistor and diode forward voltage

drops are neglected, the dc gain is given by

-

v (2D - 1) (6.7)
g



113

Dy %8 Qa:}“-

R
VWA

0.5 Q4 f—

o
n
i~
¥
)
Y
O

A bridge amplifien which generates crossover distortion
owing to the nonzeno fomwand voltage drops acnoss the
switching transdstons and diodes.

Vg —
Fig. 6.3.
\f/'Vb A '
1.0
05
o]
~0.5
-1.0
Fig. 6.4.

De gain of the bridge amplifier of Fig. 6.3., degraded
by crossoven distontion.
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This gain is a linear function of duty ratio D, as given by the dotted
line in Fig. 6.4, and no dc distortion is predicted. However, when the
transistor on-voltage VT and diode on-voltage VD are included, the gain
is degraded as indicated by the solid line in Fig. 6.4. The gain may
be divided into three regions of operation. First, for large positive
values of inductor current i, Ql and Q& operate during switched interval
DTS, and 02 and D3 operate during interval B'TS. The gain is given by

Eq' (6'2}“’

-ﬂ!w::
u

- (2D - 1) - Z(DVT/Vg + D'VD/Vg) (6.2)

Thus the dc gain of the amplifier depends on the ratios VT/Vg and
VD/Vg. For large negative values of inductor current, Dl and D&
operate during interval DTS, and 02 and Q3 operate during interval D'TS.

The dc gain is then given by Eq. (6.3).

V<I<:

- = {20 - 1) + 2(DVD/Vg + D'VTng) (6.3)

When the average inductor current is smaller than the peak current
ripple, then the actual inductor current is sometimes positive and
sometimes negative during each switching period. In this case, all
four transistors and all four diodes operate at some time during one
switching period. As a result, the gain lies somewhere between the
values given by Eqs. (6.2) and (6.3), and is additionally a function of

the current ripple.



Fig. 6.5, Additional voltage bias is applied to null out the crussoven
distontion.

In class B amplifiers, crossover distortion is corrected by
applying additional bias to counteract the effect of the base-emitter
voltage drops of the output transistors. A similar scheme may be used
for switching amplifiers. As shown in Fig. 6.5, one applies an
additional voltage bias to the diodes to cancel ocut the effect of VT
and VD. This bias must be adjusted to approximately VT + VD to null
out the crossover distertion.

A circuit similar to Fig. 6.5 was constructed using the values
Vg = 15V, VT = VD = 1V, and with a large-signal bandwidth of 1 kHz.
The open-loop response to a 100 Hz triangle wave and 100 Hz sine wave
is shown in Fig. 6.6, first without the additional voltage bias and

then with the bias included and properly adjusted. A substantial

improvement can be seen for both waveforms.
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Fig. 6.6.  Output wavegorms before and aften the application of
voliage bias Lo cornreet fon crossoven distontion. Tep:
response Lo trhiangle-wave excdtation. Botlfom: Aesponse
Lo sdne-wave excitation.

Thus, a crossover distortion effect caused by the forward voltage
drop of the transistors and diodes used as switching elements can occur
in switching amplifiers. It is particularly noticeable when the forward
drops are large and the line voltage is low. The effect may be
eliminated by the addition of voltage bias in series with the switching

diodes or transistors.



117

CHAPTER 7
EXPERIMENTAL VERIFICATION

7.1 Introduction

Two different types of switching amplifiers were constructed and
measured to provide gquantitative verification of the distortion
analysis method. First, the bridge-configuration buck ampiifier with
input filter analyzed in Section 5.3 was constructed, and the freguency
dependence of the third harmonic was measured and correlated with the
analytical predictions. The boost converter used as an example in
Chapter 3 was also constructed, and the actual time-domain output
waveforms are shown to coincide with the analytical series solution.

Thus, the modelling method is verified in two independent ways.

7.2 Bridge-Type Buck Amplifier with Input Filter

The schematic of the bridge amplifier is given in Fig. 7.1, and
a number of its features are of interest. First, the adjustable
voltage sources V1 and V2 are necessary to reduce crossover distortion,
as explained in Chapter 3. These voltage sources are actually small
flyback converters, as detailed in Fig. 7.2, which were adjusted to
provide approximately 2 volts output. The remaining third harmonic
attributable to crossover distortion is negligible compared to the
distortion arising from other sources. Second, the very large 25000 uF

capacitor placed across Vg is necessary to reduce the output impedance



118

Ry Ly
Qen
35mu % vl

¥ R
’_—1 -
+ 11
Vg—:;:- o D

R, -té 044CS
on SFFCS

250004F —— Ly

et OO0 Lt o
15V T " 4,6 825 yH 30uF
exr*Bmid
] .

4

% 5FFO5 c z

Co T

3304F = D45CS

Doz .5
Fig. 7.1.  Schematic of the bridge amplifien test clrcudit.
ol M IND8Z4
v RMS St .
563525 % ’ _L *
ramp bigs
generator -]— output
4 -
A . '
comparator baacs
1
L1 -
-
] W
\ % AN
*5VW
Fig. 7.2.

Simpligied diagham of the {Lyback convernten bias suppiies.



119

HPEZ2E 3R
Power Supply
lei tvl mY
¥
) ‘ l ;wr*"‘*
']
| ] l i - ; L . N
PR ty H 1, 3¢, £ 1 1, ¥ §
input Fifter I i
tnder Test "f HP 232 A g i
_____________ Distortion N i '
. - - Tekirgnix Anat
Switching Ampiifier 2 R AMS03 - N yz?r culput mpue_i,ounncoss &L
Under Test < oc *1 (nofch filter) 1 stage [ titer T vonmeter
© Current i |
8] i Probe HP35?04 Network Apalyzer
[
Pulse Wigih
Modutator

4

Krohn~kite 4000R
S:ine Wove Generolor
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nesponse [V3/d].
of the power supply and the connecting wires. This step ensures that
the input filter is the only source impedance seen by the bridge. The
distortion which remains is predominantly ascribable to the nonlinearity
inherent in the bridge converter with input filter.

The test setup is diagrammed in Fig. 7.3. To make measurements
of third harmonic distortion, it is necessary to use quite linear lab
equipment. Therefore, the oscillator used was chosen because of the
spectral purity of the sine wave it produces. Also, since the 11 @
load is not referenced to ground, a current probe is used to measure
the output current through the resistive load, thus avoiding the need
to sense the output voltage differentially. It is necessary to set
the probe to a high current scale to avoid the additional harmonics

which would otherwise be introduced by the current probe amplifier.
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Next, a distortion analyzer is used to null out the fundamental
component of the output. At the output terminals of the distortion
analyzer is a signal containing all of the harmonics generated by the
amplifier under test but no fundamental. The use of this device
greatly increases the accuracy of the measurements since the
sensitivity of the network analyzer may then be increased without
overioading its input stage with fundamental. Finally, the network
analyzer is a device which contains a narrow bandpass filter followed
by a voltmeter. This filter is tuned to the frequency of the desired
harmonic, thus eliminating the other components of distortion., A
reading is then made using the ac voltmeter.

Following the analysis of Section 5.3, Bode plots of the
relevant quantities Iziil’ izszi, and iH3! are constructed in Fig. 7.4
for the actual component values used. It can be seen that the

Tinearity criterion 'Z << lzill is not well satisfied in the range

le
100 Hz to 1 kHz. Consequently, substantial third harmonic is expected
to occur over this interval (this problem could be remedied by
increasing the value of Cf). Actually, as given by Eq. (5.70) the

dominant component of the third harmonic response is

fe2

Z

il

= ZEZVg iH3] (7.1)

] = >
[

The third harmonic has a nonzero amplitude at dc owing to the winding
resistance of Lf. Over the frequency range of 10 Hz - 300 Hz, the
third harmonic increases proportionaliy to the increase in 'Zszt

caused by L. Above 300 Hz, both kzsz] and iH } decrease.

3
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|Zi1], and |H3| fon the actual test circuit.

Additionally, above 1 khz lZill increases. As a result, a peak occurs
at 300 Hz, past which the amplitude of the third harmonic decreases.

The actual fundamental and third-harmonic measurements plotted
against the computer-drawn predicted response are given in Fig. 7.5 for
the input magnitude € = 0.2. Satisfactory agreement is obtained over
the entire range of freguencies measured, thus vindicating the

procedure.
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7.3 Boost Converter

The boost converter used as an example in Chapter 3 was also
constructed, and the time-domain output waveforms were measured. A
computer program was used to calculate each term in the series
expansion of the output, and then to reconstruct the predicted output

waveform by summing the series.

The power stage schematic is given in Fig. 7.6. This converter
operates with a dc bias, and hence crossover distortion is not a
problem for small enough ac signals. However, it is still possible
for the inductor current to pass near or through zero. For this
example, the inductor cyrrent ripple was approximately 10% of the
quiescent current. For R£ = 0.4 ¢, it was found that this occurred at
d = 0.03 sin(2r - 1 kHz)t. For this value of Ry» the small-signal
model predicts a resonance at 1.1 kHz with a Q of 8; hence, the gain is
large enough to cause the inductor current to pass through zero during

the cycle and generate c¢rossover distortion. This problem could be

corrected by the application of voltage bias in series with the diodes
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or transistors, similar to the bridge example. The actual measurements
were made with Rﬂ = 2.4 . The circuit is much better damped with this
value of R,, and no crossover problems occurred for |[d| < 0.2. As a

£
result, no voitage bias networks were necessary.
The pulse-width modulated signal for this and the previous
examples was generated by an SG3525 switching regulator chip, running

at 50 kHz. The internal amplifier was used at unity gain.

The switching transistors, D44H10 and D45HI0, were quite fast; the total
delay and storage time was less than 70 nsec. As a result, for a pure
sinusoidal input, the total second harmonic measured at the collector
of the D44H10 was 70 dB below the fundamental, or .03%. It is apparent
that the signal-processing and driver portions of the system are quite
linear.

The duty ratio was modulated by a spectrally pure sine wave:
p{t) = 0.5 + 0.15 sin(waOt) for the values fo = 100 Hz, 400 Hz, 1 kHz.
Scope photos of the output voltage (actually the current in the load
resistor R) are shown in Fig. 7.7. The computer-predicted waveforms
are also given. To obtain the predicted waveforms, the computer first
calculates the magnitude and phase of each term in the expansion to
order (¢"). The computer then reconstructs the predicted waveform
by summing the series.

It can be seen that the measured and predicted waveforms agree
quite well. Hence, the model correctly predicts both the magnitudes
and the phases of the various components of the output waveform. The

model has now been verified in twe independent ways.
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Fig. 7.7. Experimentally measuwred output wavefonms, Left, and
predicted wavedorms, right, {or the boost converter excited
sinusoidally with € = 0,15: (a} T00Hz; (b} 400#z; (c] ThHz.
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CHAPTER 8
CONCLUSIONS

A fundamental difference exists between the switching amplifier
and the switching power supply: the amplifier must reproduce continual
large-signal variations of a control signal, whereas the power supply
need only regulate a dc output against the occasional external
perturbations which may occur. Consequently, there is a need to
identify the features of the switching amplifier which limit its
large-signal performance, and to formulate a tractable procedure for
its large-signal analysis and design.

Switching amplifiers are in general nonlinear and usually generate
low-frequency harmonic distortion. Furthermore, the magnitude of this
distortion is a function of frequency which may attain a peak at some
intermediate frequency. Hence, a dc distortion analysis is not
sufficient; rather, it is necessary to construct ac models which
predict peak values and frequency ranges over which they occur.

A model which approximates the properties of interest is
described in Chapter 3. This model is especially well-suited for
amplifier design because it is Linean; as a result, many of the
standard, familiar techniques of linear circuit theory may be applied,
and insight is gained into the large-signal operation of the entire

system.
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The modelling procedure is extended in Chapter 4 for the case
when two independent sinuscidal inputs are present; in this situation,
intermodulation distortion occurs which is caused by the nonlinear
interaction of the two inputs. Additional linear circuit models may
be found which describe the intermodulation components of the output.
Again, these models may be easily evaluated by the use of well-known
linear techniques.

As an example of the procedure, two buck-type amplifiers with input
filters are analyzed in Chapter 5, and are found to generate harmonics
at their outputs. Bode plots of all relevant quantities are
constructed, revealing the dependence of the harmonic distortion on the
various element values in the circuit. For these examples, the
relative distortion may be reduced to an arbitrarily low level by the
design of {Zsz(s)‘ sufficiently smaller than ;Zil(s)‘. This involves
the proper choice of converter corner freguencies and assotiated
(-factors to avoid excessive peaking in the harmonic response. Thus,
the distortion properties of the amplifier are easily related to
familiar parameters of the system.

The above results are verified experimentaily in Chapter 7. First,
a bridge-type buck amplifier with input filter was measured to confirm
the predicted frequency dependence of the fundamental and third
harmonic components of the output. Next, a boost converter was measured
to confirm the ability of the method to predict the actual time-domain

waveforms present in the amplifier.
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Other sources of distortion exist, each of which must be
eliminated before sound large-signal performance isnobtained. A
crossover distortion effect similar to the one found in class B
amplifiers can occur, and may be corrected for by the addition of an
external voltage bias in series with the switching transistors or
diodes. Slew-rate limitations can occur in any type of amplifier;
however, this problem is particularly severe in high bandwidth switching
amplifiers. To extend the large-signal bandwidth of a switching
amplifier, one must tolerate either larger switching ripple or a
higher switching frequency. This tradeoff is a fundamental Timitation
on the performance obtainable from a practical switching amp1if3er;

The various Timitations on the large-signal performance of
switching amplifiers are thus expused, and some possible remedies have
been suggested. The models developed allow the informed large-signal

design of switched-mode amplifiers.
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PART 2

TRANSIENTS IN SWITCHING REGULATORS
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CHAPTER 9
INTRODUCTION

9.1 Introduction

Part 1 considered the effect of the switching converter
nonlinearity on the forced response of the converter. This problem
is of interest in large-signal ac applications such as in power
amplifiers. In Part 2, the effect of the noniinearity on the unforced
response is investigated. This finds application in the design of dc
regulators, where it is necessary to ensure that the closed-loop
system is stable and well-behaved for all possible transients and
external perturbations.

Because of the inherently nonlinear behavior of switching
converters, it is very difficult to design a stable feedback loop using
exact methods since the resylting differential equations cannot
generally be solved. Instead, small-signal methods are commonly used,
where one Tinearizes the regulator model about a quiescent operating
point. These models are very useful to the practicing engineer since
he may apply all of the relatively simple techniques of linear circuit
theory such as Bode plots, root locus, etc. The physical insight
gained then allows the engineer to intelligently design his feedback
loop and to specify important small-signal specifications such as audio

susceptibility and output impedance.
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Fig. 9.1. Hypothetical trajectonies of a switching regulator. Inducifor
cunrent iy 48 plotted vs. capacitor voliage V.. A smali-
signal model was used to design Lhe {eedback %oop; indeed,
transient sofutions within a radius r of the quiescent
operating point (lg,Vo) converge as desined. Howeven,
trhansient sofutions vutside this nange may be unstfable.

Unfortunately, because of the small-signal approximation, these
methods do not ensure the complete large-signal stability of the
guiescent operating point. One might conceive of a regulator which
behaves as illustrated in Fig. 9.1. For small perturbations, Jess
than some radius r from the guiescent operating point, the regulator
behaves as predicted by the small-signal model, and transients
converge as expected. However, for large perturbations, the nonlinear
terms become significant, and some solutions do not converge to the
desired quiescent point (i.e., some solutions are unstable}. Other
large transients do converge, but with a large, distorted waveform
which may be much larger than predicted by the smail-signal model and

hence unacceptable.
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A regulator which exhibits the hypothetical behavior illustrated
in Fig. 9.1 obviously is unreliable and unacceptable. The
investigation of the effects of switching regulator nonlinearities
and the exposition of some technigues for the avoidance of large-signal

instabilities are the subjects of Part 2.

9.2 The lLarge-Signal Stability Problem: An Example

Before embarking on a large-signal stability analysis, it is
necessary to determine whether the effect of the converter
noniinearity is significant. Is it possible to design a regulator
whose response to large perturbations deviates substantially from the
response predicted by the small-signal model? Even worse, is it

possible for the response to be reasonably stable for small signals
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Fig. 9.7. Three-state boost negulaton example.
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put diverge for large transients? An example is given in this
section which demonstrates that the answer to the above questions is
yes; large-signal phenomena exist which can seriocusly degrade the
performance of a switching regulator, and these phenomena are not
predicted by small-signal models.

Consider the boost regulator shown in Fig. 9.2. The dc gain and
efficiency curves are shown in Fig. 9.3. This regulator was designed
to operate at a nominal duty ratio of .6 with an efficiency of 70.5%.
The state-space-averaged small-signal model [1,11], is shown in Fig.
S.4. To stabilize the system in the presence of the right-half-plane
zero which appears in the duty-ratio-to-output transfer function, the
inductor current is fed back in addition to the output voltage. The
integral of the output voltage is also fed back to improve regulation.
For the values chosen, the closed-loop small-signal response contains
one real pole and two complex poles with a G of .6; thus, the system
appears to be quite stable and well-damped. A computer program,
detailed in Fig. 12.3 later in this thesis, was used to jnvestigate
the large-signal response of this regulator. The computer-predicted
response to a small step change in inductor current and capacitor
voltage is diagrammed in Fig., 9.5. It is indeed well-behaved; the
waveforms appear linear, and a very small amount of overshoot occurs
in the control (8) waveform. The small-signal model is an excellent

approximation in this case.

The response to a step change of intermediate proportions is
shown in Fig. 9.6. The solid line is the nonlinear response, and the
dotted line is the response predicted by the small-signal model.

Aithough this response is stable, it is decidedly nonlinear. The peak
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De analysis of the bocst example: (a] equilibrium gain
M= VO/Vg; {b] equilibrium efgiciency n.
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inductor current is larger than the amount predicted by the small-signal
model, and the control (a} waveform overshoots its nominal value much
more than expected. The small-signal approximation is unjustified in
this case.

The response to a yet larger step change in inductor current and
capacitor voltage is shown in Fig. 9.7. The system is unstable in this
case! The voltages and currents in the system become large, and the
control signal saturates at its maximum value. Obvicusly, this design
is unreliable.

In this example, the small-signal approximation is unjustified
for moderate or large perturbations. Hence, even though the small-
signal model predicts that the system response is well-damped, the
effect of the nonlinearity can be of significance, causing larger

overshoots than expected and possibly even instabilities.

9.3 (utline of Discussiaon

From the above example, it is apparent that small-signal switching
regulator models do not necessarily include all features of importance.
It is of interest, therefore, to model these additional large-signal
effects. In Chapter 10, the basic tools necessary for the nonlinear

analysis of Part 2 are reviewed. In Chapter 11, a nonlinear model 1is

derived which predicts the behavior described in the boost example
above. Two versions of this model are described. First, a
discrete-time model is derived which is well-suited for computer
simutations. Second, a continucus-time model is found which is
sometimes more convenient for analytical calculations. Next, the

saturation of the pulse-width modulator is accounted for. This
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phenomenon has a significant effect on the large-signal response of
the regulator, and hence cannot be ignored. Models are derived which
describe the response of the regulator in the saturated regions.
Other modes of operation may occur, including current limiting modes
and transieﬁt discontinuous mode. The switching regulator is usually
rendered stable for large transients by the addition of extra modes
of operation which improve the large-signal response. It is
necessary to model each of these modes in order to understand the
operation of the regulator and to obtain a well-behaved system. The
transient discontinuous conduction mode is modelled in Section 11.4
and the effect of a current limiting mode is discussed in Section 13.9.
In Chapter 12, the implications of these models are examined.
First, the equilibrium points of the system are calculated. The
presence of real equilibrium points in addition to the desired
quiescent operating point indicates the existence of unstable
transient solutions; therefore, these additional real equilibrium
points must be eliminated. Next, the trajectories or transient

waveforms are calculated. Peak transient current and voltage levels

may then be determined, and the existence or absence of unstable
solutions verified.

In Chapter 13, a simple boost regqulator example is solved. The
various modes of operation are determined, and analytical expressions
are found for their equilibrium points and boundaries in the state
plane. Approximate analytical expressions are also found for the
time-domain transient waveforms. A number of modifications are
suggested which improve the response, and yield a completely stable

regulator. This boost regulator example was constructed, and the



139

analysis of Chapter 13 was verified experimentally, as summarized in
Chapter 14. The observed transient waveforms agree quite well with
the predictions, and the existence of unstable solutions is confirmed.
As summarized in Chapter 15, this analysis points out the
possibility of instabilities which occur owing to the nonlinear nature
of the switching regulator. Insight may be gained into the large-
signal behavior of the regulator, and the modifications necessary to
obtain a well-behaved, globally stable regulator then become
apparent. Thus, the informed large-signal design of switching

regulaters is now possible.
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CHAPTER 10
FUNDAMENTALS OF STATE-PLANE ANALYSIS

10.1 Introduction

The plotting of transient waveforms in the state plane is a
well-known technique for the analysis and design of nonlinear
systems. Not only can the state plane portrait of a system illustrate
its stability regions, but also the transient peak currents and
voltages may be found. The various salient features of the response,
such as the positions of equilibrium points, may be determined, and in
many cases analytical expressions can be obtained which yield insight
into the dependence of these features on the various circuit element
values. The effect of various modifications such as the addition
of a current limiting mode is also easily seen. Thus, the state-plane
technique is a useful design tool.

The noniinearity inherent in the converter power stage, whose
effect on the distortion generated by switching amplifiers is considered
in Part 1, is not the only nonlinear phenomenon of significance in a
switching regulator. A number of different modes of operation occur,
either unavoidably or by design. These modes include the saturation of
the pulse-width modulator, the transient discontinuous conduction mode,
and current limiting modes, all of which affect the stability and peak
transient current and voltage ievels of the reqgulator. Consequently,

it is of interest to review the behavior of piecewise systems.
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In this chapter, the fudamentals of the analysis of piecewise
nonlinear systems in the state plane are reviewed. The various types
of equilibrium points which can occur are listed, and their influence
on the trajectories of the system is described. The applicability of
tnese techniques to switching requlator analysis is illustrated by
example. The large-signal regulator design problem is then examined
in greater detail, and the strategy for the solution of this problem

is formulated,.

10.2 Review Of State-Plane Analysis And Piecewise Systems

The state-plane is used in Part Z to display the transient
inductor current and capacitor voltage waveforms of the switching
regulator for various values of initial voltage vC(G) and current iL(G).
For example, consider the boost regulator of Fig. 10.1. This system
contains two independent states, the inductor current iL and the

capacitor voltage v The state plane for this converter might appear

o
as shown in Fig. 10.2. The transients which result from a few different
initial conditions are plotted with time as an implicit variable; these
are known as the "state-plane trajectories" of the system. It can be
seen that some state-plane trajectories converge to the point (IO,VG)
while others do not.

The equilibrium points of a system are prominent features of its
state-plane portrait; they reveal a great deal of information regarding

the large-signal response. The system is designed to regulate the

capacitor {output) voltage at a quiescent level VO. The quiescent
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inductor current IO is then determined by the output load. Thus, by
design, the system contains an equilibrium point at (Ig,vo).

In general, every equilibrium point of a system satisfies the
continuous-time relation given in Eq. (10.1a) or its discrete

counterpart Eq. {10.1b}, given below:

dx(t
x(t) =0 (10.1a)

dt

-5 (10.1b)

X
-n+l =m

where the vector x(t) contains the independent state variables of the
system. As demonstrated in Chapter 12, Eq. (10.1) may be used to
obtain analytical expressions for the positions of the equilibrium
points. A nonlinear system may have more than one equilibrium point;
indeed, the boost regulator example of Chapter 13 contains three. The
presence of real equilibrium points in addition to the desired
quiescent point indicates that the response for large signals deviates
substantially from the small-signal predictions, and that unstable
solutions may exist. Therefore, these unwanted real equilibrium points
must be eliminated.

A classification of the different types of isolated real
equilibrium points can be found in any nonlinear system textbook. If
a1l trajectories in the neighborhood of a given eguilibrium point

diverge from the given point, then it is called an "unstable
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Fig. 710.3. A plecewise systeom 48 described by different {possibly
nonddinean) state equations Ln each of several reglons An
the state plane.

equilibrium point™. If some trajectories in the near vicinity converge
and others diverge, then it is a "saddle point", while if all nearby
trajectories converge then the point is a “"stable equilibrium point”.
If all trajectories in the entire state plane converge to a single
equitibrium point, then it is "globally stable"., It is desired to
ensure that the quiescent operating point of the regulator is globally
stable, and furthermore that all trajectories converge in a well-
behaved manner,

The typical switching regulator is a piecewise system. As
illustrated in Fig. 10.3, one set of possibly nonlinear state equations
describes the system in region 1 of the state plane, a different set

of equations describes the system in region II, and so on. Associated
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with each region is a separate set of trajectories and equilibrium
points. The stability of the entire system depends not only on the
equilibrium points and shapes of the trajectories in the various
regions, but also on the boundaries between the regions.

For example, consider the system described by the following

state equations:

X1 5%

. _ for Xy > 0 (10.2a)
X, = = X, = X, *1

2

X; =X,

. for X, < G (10.2b)
N S i 1

The state equations change, depending on the sign of X3 hence, the
state plane for this system contains two regions whose boundary is the

tine S 0. As shown in Fig. 10.4, the state equations contain two

real equilibrium points. For X » 0, the eqguilibrium point occurs at

(1,0}, and for x. < 0 the equilibrium point occurs at {-1,0).

1
The system trajectories are constructed by considering each

region separately. For X, > G, the state equations (10.2a) are

linear and can be solved exactly: the waveforms are damped sinusoids.

These solutions are plotted in the state plane as shown in Fig. 10.5;

they spiral into the stable focal point at (1,0). The trajectories

predicted by £g. (10.2a) are shown as dotted lines in the left half-

plane since Eq. (10.2a) is not valid for X, < 0.
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~ Region |

%,>0

Fig. 10.4. The segions of the state plane fon the system of Eq. (10.2).
The night half-plane L8 descaibed by Eq. {10.2%a] and the
Left hatf-plane &5 desciibed by Eq. (10.2b}.



Fig. 10.5.
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The solufions of the state equations (10.2a) forn the night
half-plane are damped sdnusodds; hence, the traiectonies
splral into the stable gocus at (1,0}, These scbutions
are valid for xy > 0,

Kei)

‘‘‘‘‘‘

The sofutions of the state equaticns (10.2b) fon the Legt
half-plane are also damped sinusodids; the thajectondies
spiral dnto the stable focal point at (-1,0). These
solutions ane only valid fon xy < 0,



Fig. 10.7. The complete state-plane portrait of the system of Eq. {10.2).
Some thajectordies converge to the stable equilibrium point
(1,0), white the othens converge to {-1,0).

A similar analysis holds for X, < 0. In this case, Eq. (10.2b)
is solved and the solutions plotted in the state plane as shown in
Fig. 10.6. The trajectories spiral into the stable focal point at
{-1,0). These solutions are not valid for X, > C.

Figures 10.5 and 10.6 may now be combined as shown in Fig. 10.7
to obtain the state-plane portrait for the entire system. It can be

seen that some trajectories converge to (1,0}, while others converge

to (-1,0). Thus, neither equilibrium point is globally stable.



As a second example, consider the system described by the following

state equations:

7%

. for x; >0 (10.3a)
Xy = = % = X, = g.5

X, =%,

Xy = = Xy = X, - 1 for Xy < 0 (10.3b)

This system is similar to the system of Eq. (10.2), except the

equilibrium point at (1,0) has been moved to (-0.5,0j.

i . :
o T 1 + {
Xe it

Xigt)

Fig. 10.8. The tanjectonies in the right hatf-plane fon the second
example are described by Eq. (10.3a); they spinal towards
the vintual equilibrivm peint at (-0.5,0}. These solutions
are only valid for xy > Q.
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For Xy > 0, the solutions are again damped sinusocids, and the
trajectories tend to spiral into the focal point at (-0.5,0), as snown
in Fig. 10.8. Howeveyr, these trajectories leave the right haif-piane
where Eq. (10.3a) is valid before the focal point is reached; thus,
the system is not actually in equilibrium at (-0.5,0). Instead,

Eq. (10.3b) is invoked as Xy becomes negative, and the solutions
spiral into the stable equilibrium point at (-1,0) as shown in Fig.
10.9. It is apparent that this real equilibrium point (-1,0} is
globally stable.

Because the point (-0.5,0) lies outside of the right half-plane
where Eq. (10.3a) is valid, the system is not actually in equilibrium

there. Such a point is called a "virtual equilibrium point". In this

instance, the original system, described by Eq. (10.2), is not globally

Fig. 10.9. The complete state-plane portrait of the system of
Eg. (10.3). The real equilibnium point at (-1,0) 4s
gLobally stable.
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stable because it contains two veal equilibrium points. However,
movement of the equilibrium point of the right half-plane state
equations into the left half-plane causes the system to contain one
real equilibrium point and one virtual equilibrium point. The
renaining real equilibrium point at (-1,0) then becomes globally
stable.

Although it is necessary to eliminate all extra real equilibrium
points before a weil-behaved globaliy stable system is obtained, simply
changing these extra real equilibrium points into virtual ones is

not always sufficient. For example, consider the system

il = x, +0.5

,  for X, > 0 (10.4a)
x2 = - Xi ~ 0.5 Xy = ,55 j
;‘1 =x, - 0.5

> for X < 0 (10.4b)
x2 Tz - Xi - 0.5 X, = 0.55

The state equations for the left half-plane now contain a real stable
equilibrium point at (-~0.3,0.5) and the state equations for the right
half-plane contain a virtual equilibrium point at {-0.3,-0.5).
Equations {10.4) may be solved by the same procedure used for the
previous two examples. The trajectories for the left half-plane spiral
into the stable focal point at (-0.3,0.5), as shown in Fig. 10.10a, and
the trajectories for the right half-plane tend to spiral intoc the
virtual focal point at (.0.3,-0.5), as shown in Fig. 10.10b.
Combination of Figs. 10.10a and 10.10b then yields the complete system

trajecteories shown in Fig, 10.11. It can be seen that solutions in the
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Fig. 10.10. The trajectonies fon the third example descnibed by
Eg. (70.4]. ({a}] The solutions of the state equations
which descrnibe the Left half-plane spinal into the stable
focal point at {-0.3,0.5), These sckutions are not valid
gon xy > 0. {b) The solutions of the state equations which
descnibe the night halg-plane spinad towands the virtuak
equilibrium point at (~0.3,-0.5). These sofutions axre not
valid gon Xy < 0.



Fig. 10.11. The complete state-plane portradl o4 the system of Eq.
{10.4}. Some trnajectonies converge to the stable
equilibrium point (-0.3,0.5), while oihens converge Lo a
stable Limit cycle. The reaf equildibrium point (-0.3,0.5)
is not globally stable.

vicinity of the real equilibrium point at {~0.3,0.5) converge there,

but all other solutions enter a stable Timit cycle instead. Thus,

this system is not globally stable.

It is evident that the fact tnat a piecewise system contains
exactly one real equilibrium point, which is locally stable, is not
sufficient to guarantee global stability. Nonetheless, it is necessary
to eliminate all extra real equilibrium points in order to obtain a
well-behaved system. Since it is fairly simple to obtain analytical
expressions for the positions of the equilibrium points in the state
plane, a reasonable design procedure is to first position the

equilibrium points of the system such that all except the desired

quiescent operating point are virtual. The system trajectories are
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then constructed, either by computer as detailed in Chapter 12, or by
approximate methods as described in Chapter'13. This either provides
verification that all transient solutions are stable and well-behaved,
or it reveals the presence of a limit cycle and indicates that further

modifications are necessary.

10.3 The Switching Regulator Problem In More Detail

The regions of operation of a typical switching regulator are
shown in Fig. 10.12. The particular configuration used in this example
is the same simple boost regulator studied in detail in Chapter 13. The
system operates in the usual unsaturated mode in the vicinity of the

quiescent operating point (EO,V {region 1 in the figure). The state

)
equations are nonlinear in this region, and more than one real
equilibrium point may occur here. Next, the saturation of the pulse-
width modulator causes the duty ratio to remain fixed, at its

minimum value in region 2 and at its maximum value in region 3. The
state equations are linear in both of these regions; hence, each region
contains a single equilibrium point which may be real or virtual.
Region 4 is the transient discontinuous conduction mode, described by
yet another set of nonlinear differential equations. Regions 1, 2, 3,
and 4 occur naturally in most switching regulators. A fifth region

of operation is usually added as shown in an attempt to limit the peak
current levels which the system must endure. The state equations which
describe this region are usually nonlinear also. Thus, a typical

system contains many regions of operation and is described by piecewise

state equations.
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Vo v (t)
Fig. 10.12. The negions of operation of a typical boost negulatonr:
(1) wunsaturated negion; (2) D = 0 satwriated neglon;

{3) D =1 saturated region; {4) transient discontinuous
conduction mode; (5) cwwrent Limiting mode.

It is apparent that a transient analysis of even the simplest
practical switching regulator may become very complex and involved.
To be effectively designed, the system must first be analyzed in a
systematic way. First, the various regions must be identified, their
boundaries constructed, and the state equations defermined. This is
done in the next chapter. The key "linear ripple approximation” used
in previous small-signal analyses [1,2,41] is used here to obtain more
lucid results. The transient solutions should then be somehow
constructed, and analytic expressions found for all salient features
which allow the intelligent design of the system. Owing to the
piecewise nonlinear nature of the system, this is a difficult problem

in general, For second order systems, the state plane is an efficacious
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tool and is employed in the chapters which follow. The trajectories
can be easily found, and the effect of modifications such as the
addition of a current Timiting mode or limiting the maximum duty ratio
is apparent. Unfortunately, the general higher order system is much
more difficult to design. Analytical expressions for the Tocations

of the equilibrium points may still be determined and used to position
them properly; but, as noted in the previous section, this is not
sufficient to guarantee global stability. The solutions may, however,
be found by computer methods; this allows the verification of global
stability and the determination of peak transient voltages and currents.
The modifications necessary to obtain a well-behaved system then

become apparent,
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CHAPTER 11
LARGE-SIGNAL MODELLING

11.1 Introduction

In this section, the nonlinear state equations which describe
switching regulators operating in the continuous conduction mode are
derived, and the regions of thejr validity are identified. Two
versions of the model are useful. First, a discrete-time model is
found which is suitable for computer simulation. Second, an
additional approximation is made which yields a continuous-time
model; this model is often more convenient for analytical calculations.
Both models incorporate the key "linear-ripple approximation" used in
previous small-signal methods [1,2,11,47,48]. However, no small-signal
assumption is made; as a result, the method is valid for large signals.

Next, the saturation characteristics of the pulse-width modulator
are accounted for. The duty ratio is always restricted to lie in a
range no greater than [0,1], and the effect of this restriction on
the stability of the regulator is so profound that no large-signal
analysis can ignore it. Another mode may also occur, known as the
discontinuous conduction mode [2,50]. This mode is modelled for
transient conditions. The result of this section is the formulation
of basic state equations which model the switching regulator and which
are used in the subsequent sections to determine stability regions

and peak transient component stress levels.
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11.2 Unsaturated Reagion Model

The first step is to write the state equations of the regulator
system during the two switched intervals DTS and D'TS. During each
interval, the system may be described by a set of linear differential

equations:

during interval DTS (transistor ON)

dx(t)
K

= Al x(t) + Blﬂ. (11.1)
dt

during interval D'Ts (transistor OFF)

dx{t)
K

= A x(t) + Bu (11.2)
dt 2 - 2

where [ = duty ratio D' =1 - D.
TS = time of one complete switching period.
K is a matrix usually containing values of inductance and capacitance.
x is a state vector, usually comprised of inductor currents and
capacitor voltages.

u is a vector of independent sources.

These equations may be solved exactly; however, the subsequent
analysis is greatly simplified if the "linear-ripple approximation”
[1,2,11,47,48] is made. Specifically, if the natural frequencies W,

of the converter power stage are all well below the switching
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frequency, then Egs. (11.1) and {11.2) above have approximately linear
solutions. This is indeed the case in well-designed converters, in
which the switching ripple is much smaller than the average value.
In this case, only the terms to order (miTS) need be considered;
higher-order terms are negligible. This corresponds fto the approxima-
tion of the exponential matrix by the zero-order and first-order terms
in its series expansion.

The result of this approximation is the following solutions for

x(t} during the two switched intervals:

x{t) = (I+ KAL) x(0) + KB ut (11.3)

during 0 < t E_DTS

3 -1 -l
x(t) = (L+ KA (t - DT )) x(DT) + K B,u (t - DT.)
during DTS <t«< TS {11.4)

Combination of Eqs. {11.3) and {11.4) and eiimination of the second-

order terms which appear yields the following expression for 51Ts):

- -1 N -1 T
x(T) = [T+ 7T K(DA + D'A)Ix(0) + T K (DB +D'BJu  (11.5)



160

Furthermore, after n + 1 switching intervals,
- - ~1 i
x{(n + E)TS) =X {1+ TSK (DnA1 + Dnaz)]ﬁn

-l R
+ T K [DB, + D'BJu (11.6)

This is the basic difference equation which describes the response
of the system. It contains a constant term; hence, the system is not in
equilibrium at the origin. It is convenient in the analysis which
follows to redefine the axes so that the quiescent operating point of

the regulator is at the origin. The quiescent operating point occurs

at:
%7 50’ Dn+1 - ﬂn ) DO (11.7)
Insertion of Eq. {11.7) into Eg. (11.6) and solution for 50 yields
= ' -1 i
X, = - (DA, + DGA)T (DB, + DB, U (11.8)

The axes may now be shifted by use of the substitution below.

., D =D +d (11.9)
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Ead -1 s ~ ,,_} ~
X4y = [T+ TRTADA + Do) JIx  + TKL(A; - A))Xy + (B) - B, )uld)

2)5n (11.10)

+ T4 K(A - A

Eq. (11.10) arises from the substitution of Eg. (11.9) into Eq.
(11.6}, and is the difference equation which describes the regulator
while operating in the normal, unsaturated mode. No small-signal
assumption has been made; hence, Eq. (11.10} is valid for large signals.

The duty ratio is usually a linear function of the regulator states.

In this case,

d = - £ (11.11)

n -
where f = feedback gain vector.

As a result of the linear dependence of 8“ on gﬂ, the ngn(al-az)gn
term in Eq. (11.10) is quadratic, and the difference equation is
nonlinear. This nonlinearity can seriously degrade the transient
response of the regulator, possibly causing instabilities.

The discrete form of Eq. (11.10) and (11.11) makes them ideally
suited for evaluation by computer. It is a simple matter to implement
these equations on a small desktop computer and obtain the large-signal
transient response of any switching regulator operating in the
unsaturated region. In view of the difficulty of obtaining a closed-
form analytical solution to Eg. (11.10) under transient conditions, this
is an attractive alternative. Some of the time domain waveforms

illustrated in this thesis were obtained in this manner.



162

Although the discrete equations above are well-suited for digital
computer evaluation, they are sometimes inconvenient for analytical
calculations. It is then preferred to obtain a continuous-time model
which contains familiar R's, L's, C's, and nonlinear devices, and hence
yields physical insight into the design problem. This has
previously been accomplished for the small-signal case [1,2,11], and the
same technique is applicable here. In particular, one uses a
forward-differencing approximation to estimate the continuous-time

derivative of the state vector, as beiow:

dx{t) X .. -X
o i  m (11.12)

dt T

B
This approximation is valid if all natural frequencies of the closed-
loop reguiator are much less than the switching frequency. With this
approximation, Eq. {11.10) becomes

dx(t)

¢ dt ) (DoAz ¥ Déﬁz)gﬁt) + [(Az i A2)§0 ¥ (Bl ) B2)Ela(t)

+d(t) (A - A)X(t) (11.13)
with d(t) = - £3x(t)

This is a continuous-time state equation which describes the
regulator while operating in the normal, unsaturated mode. It can be
used to infer the nature of the response to large perturbations and the

existence of instabilities. Owing to the presence of the 3(AI - Az)g
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term, this state equation contains quadratic nonlinear terms.

Thus, the equations which describe the response of switching
regulators during large transients have been found for the case where
the pulse-width modulator is ﬁnsaturated and the system operates in
its usual mode. The linear-ripple approximation was made; this has
the desirable effect of simplifying the analysis while ignoring the
usually negligible effect of the high frequency switching ripple. A
set of discrete state equations with guadratic nonlinearities is the
result; these equations are well-suited for computer evaluation of the
large-signal transient response. An additional approximation may be
made which yields a continucus-time version of the state equations.

This is often desirable for analytical design.

11.3 Saturated Region Models

So far, it has been assumed that the requlator always operates
in its usual unsaturated mode, No account has yet been made of the
inherent limits on the duty ratio: the duty ratio must always lie
within the range [0,11; often, the limit is even more restrictive.
Qutside the usual operating range, the duty ratio remains constant at
its saturated value, and the regulator behaves as an open-loop linear
system. This can significantiy affect the large-signal stability of the
regulator; in consequence, these additional modes of operation cannot
be ignored. Some aspects of this effect have been previously considered

[51,52,53]; the phenomenon is further investigated here.
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Fig. 11.1. Twc-state booat regulaton example.

As an example, consider the two-state boost regulator of Fig. 11.1.
In order to stabilize the system in the presence of the right-half
plane zera which appears in the small-signal duty-ratio-to-output
transfer function, the inductor current is fed back in addition to the
output voitage. The expression for the control signal (duty ratio) is

therefore

D(t) = D + d{t)

g
~ = . ~ _ ~ = _ TJ\
d{t) Fi - TV, fx (11.14)
where DO = quiescent duty ratio
fi = current feedback gain
f, = voltage feedback gain

2
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< e
v

Fig. 11.2. The saturated and unsaturated regions of the state plane.
lg and Vg are the quiescent inductor current and capaciton

voltage.
If D{t) is limited to the range [D . , D 1 then the unsaturated region
min max

is the section of the plane where

D, <D -f% <D (11.15)

min 0 nax

To the left of this region, the duty ratio is fixed and equal to Bmax,

and to the right of this region, the duty ratio is fixed and egual to
D . . The situation is illustrated in Fig. 11.2.
min
The state equations in the saturated regions are easily found.
Wnen -f?ivis greater than Dmax - DG, then D{t) is constant and egual to

D . Llikewise, D(t} is constant and equal to D . when -FI% 9s Jess
max min b



than B, - D Substitution of D = D into (11.6) yields
mirn n sat

o

_ -1 . -1
X 1 [T+ TSK (Ds At DsatAZ)]?fﬁ ¥ TSK [Dsa

~n+ at 1 Bi * 53&\2282]-ti

t

where D = gither D or D . (11.16)
sat max Bin

D! =1+ D
s

sat at

This is a system of Tinear difference equations which describe the
response of the system in the saturated regions.
The continuous-time state equations are again found by use of the

forward-differencing approximation. The result for the D = D

sat
saturated region is
dx(t)
‘ dt ] LDsat Al * 953tA2]§ﬁt) ¥ [Dsatgl * DsatB2]E- (11.17)

This is a system of linear differential equations which describes

the response in the D = D saturated region. Since the systems

sat
described by Eq. (11.16) and (11.17) are linear their so¢lutions are

exponential in nature. Furthermore, they contain exactly one

equilibrium point. This point occurs at

X, = -1D

1 -1 ]
—{ satAl * DsatAIZJ [Bsatal * Dsatazjy- (11.18)

Tnis equilibrium point may or may not occur within the saturated

region.
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Thus, three modes of operation have been identified which occur
in any ideal switching regulator. This change of operating mode is a
result of the saturation of the pulse-width modulation process. The
regions in the state plane in which each mode occurs have been found,
and the relevant equations have been derived. In each saturated mode,

the system state equations become linear.

11.4 Transient Discontinuous Conduction Region Model

The practical switching reguiator exhibits a fourth mode of
operation called the transient discontinuous conduction mode. It is
a consequence of the nonideal realization of the switch by a single
transistor and diode, as in Fig. 11.3. The-diode does not allow the
inductor current to become negative; instead, the diode becomes
reverse-biased prematurely. As a result, three swifched intervals
occur, as in Fig, 11.4. As in the continuous conduction case, the
transistor conducts during interval DTS, and the diode conducts

during interval Dsz' However, when the inductor current reaches zero,

L
S ) S
+
R
Vo = c== ga
s
[0 e e ] —-—

Fig. 11.3. The nqnideai,&ea@{zazian of the switch by a single
Transcston and dicde causes the disconfinuows conduction
mede o ocoust.
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transistor on diode on diode off
transistor off

l

Fig. 11.4. Inductor current wavedorms during the discontinuous
conduction mode. An additional swifched interval DiTg
ccours during which both transiston and dicde are o44.

the diode ceases to conduct; hence, both transistor and diode remain
off during interval DBTS.

The discontinuous conduction mode has been previousty modelled
under steady-state and small-signal conditions [2,42,50,54]. This
analysis can be extended without difficulty to include large-signal
phenomena. In essence, one follows all of the steps of the small-signal

state-space averaging procedure, including the modifications necessary

for the discontinuous conduction mode, with the exception of the

small-signal approximation itself.
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As in the continuous conduction mode, the first step is to write
the state equations of the regulator system during the various
switched intervals. During each interval, the system is described by a

set of linear differential equations:

during interyal QTS (transistor ON, diode OFF)
dx(t)
= A, x(t) + By (11.19)
dt
during interval Dsz (transistor OFF, diode ON)
dx(t)
= A, x{t) + Bu (11.20)
dt
during interval D3TS {(transistor OFF, diode OFF}
dx{t)
— A, x{t) + By (11.21)

where D = duty ratio applied to transistor switch,

D+92+D3-= i (11.22}
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It is desired to solve the above equations by use of the
linear-ripple approximation, as was done for the continuous conduction
mode case. Unfortunately, a difficulty arises in that the inductor
current ripple is large compared to its average value; as a resuit,
the higher-order terms which arise from the inductor current rippie
are significant. This is dealt with in [2] by averaging the inductor
current over each switched interval. It is then a good approximation
to replace the instantaneous inductor current in the state equations
by this average current, provided that the switching ripples on the
other states in the system are much smaller than the average values.
This is a conseguence of the requirement that the natural freguencies
of the system be much smaller than the switching frequency: 1if the
capacitor voltages change sufficiently slowly, then they react only
to the average inductor current rather than the instantaneous current.

Hence, one must treat the discontinuous variable, the inductor
current, bifferently from the other voltages and currents in the
system, This is accompiished by partitioning the state vector and
matrices as foliows. Let

-i(t} -

x(t) = (11.23)

 £(t)

where i(t) is the discontinuous state variable and £(t) is a vector

which contains the remaining state variables.
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Hence, with the approximation described above, the solution of Eq.

{11.19) becomes

. - . T T
1(DTS) (1 + DTSal) i(0) + DTSE1 £(0) + Dnglg (11.25)
g(D?S) E (I + DTSAI) £(0) + DTSX_<1>DTS + DTSB;E‘ (11.26)
where <t‘>DT = inductor current averaged over interval DTS
B

The average inductor current is found with the assumption of linear

ripple:

<i>DT 2 (i{0) + i(DTS))IZ (1n.27)



172

Similar expressions result for interval Dsz:

: = . T T
T((0+D,)T = (1 +D,Ta) i(0T ) +D,T g, (0T ) + DT Bu
(11.28}
£((D + Dz)TS 2 {1+ DZTSAz) gﬂDTs) + DETS Y, <i>DZTS + DZTSBZH
{11.29)
with <i>_ . = inductor current averaged over interval D.T :
DZ'IS 28
<1>DZTS = (1(DTS) + 1((D + DE)TS))/z (11.30)

The expressions for interval Q3TS are simpler, since the inductor

current is zero during this interval. Hence,

i(T.)=0 (11.31)

E(T) = (1 + DT A ({0 +D,)T ) +D,TBu (11.32)

<> . =0 (11.33)
3's

One final simplification can be made. During the first interval

in which the system enters the transient discontinuous conduction mode,
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the initial inductor current {0} is not necessarily zero. However,
for all subsequent switching cycles in the discontinuous mode, i(0)
is necessarily zero. Also, since i({D + SB)TS} is by definition zero,
Egs. {11.27) and (11.30) reduce to

<> = <i> = (0T _)/2 £y (11.34)

DTS D2 Ts av

Thus, the average inductor current during interval DTS and DzTS is the

same and is equal to iav.
Combination of Egs. {11.26), {11.29), and {11.32), and

elimination of the second- and third-order terms which appear yields

£(1_) = [1 + T (DA +D,A, + D,A)]E(0) + T_[DB, + D,B, + D;B.Ju

ALAER AR (11.3)

v

with i, =0T Il £(0) + glu] (11.36)

av

Furthermore, after n + 1 switching intervals,

ln + )T ) = g(n + 1) = [T+ T (D(n)}A + D,(n)A, + D,(n)A,)]E(n)

+ Tg[g(n)gl +D,(n)B, + 03(n)3332'+ T, [D(n)y, + D, (n)y,] iav(n)

(11.37)
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with i_n) = DT, [2] £n) + gulse (11.38)

One additional constraint is required which reflects the fact that
interval DZTS ends when the instantaneous inductor current falls to
zero. Combination of equations (11.25) and (11.28), and elimination

of second-order terms yields

It

(0 + DT ) = (1+ T (ba, +0,a))) i(0) + T (D) + 0,27)E(0)

-+

T T
T, (08 + Dy8))u

z9 (11.39)

Furthermore, after n + 1 switching intervals, i(0) = 0. One then obtains

0 = (D(n)z] + D, (n)z]) &(n) + (B(n)g] + D, (n)8))u (11.40)

Equations (11.37), (11.38), and (11.40) are the basic difference
equations which describe the response of the system in the transient
discontinuous conduction mode. Because of their discrete form, they are
well-suited for computer evaluation. As noted in [2], the system
contains one less independent state than the usual in this mode because
the inductor current is constrained to zero at the end of each switching
cycle. This system is in general nonlinear.

It is sometimes preferved to obtain a continuous-time model for
this mode of operation. This can be done by application of the same

technique used for the continuous conduction mode model in Section 11.2.
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In particular, one uses the Euler forward-differencing approximation

to estimate the continuous-time derivative of the state vector, as

follows:

a1

dt T
s

£
e (11.41)

n

With this approximation, Egs. (11.37), {11.38), and {11.40) become

de (t)
Tt = [DA; + DA, + DyAJE(t) + [DB) + D)8, + D80
+ [0y, + Dy, 00, (1) (11.41)
D{t) T T T
i (8) = ——= [gElt) + gl (11.42)
av 2
0 = [D(t)z] + D, (t)zale(t) + [D(t)g] + D,(t)g)]u (11.43)

These are the continuous-time equations which describe the
regulator while operating in the transient discontinuous mode. The
system is quite nonlinear in this region since the duty ratio D(t) is,
through the use of negative feedback, made dependent on the states of
the system £(t) as well as on the inductor current i(t).

The transient discontinuous conduction mode boundary can be easily
found. The discontinuous mode occurs whenever the predicted length of

interval Dsz is shorter than {1 - D)Ts. D2 may be found by soclution
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of scalar eqguation (11.39); use of the criterion Dz < 1 - D then yields

T ¢ T 157
[o] + 0'51(0) + [08] + 0'e T
{1 + DTSa1 + D Tsazj

(11.44)

i(0) < - T

where D' £1.0p

The system will operate in the transient discontinuous conduction mode
during any switching cycle in which inequality (11.44) is satisfied.
Note that this boundary is a function of all of the states of the
system, £(0}, as well as of the duty ratio D. Thus, the boundary may
be a fairly complicated curve in the state plane. For example, it is
shown in Chapter 13 for a bpost regulator example that the boundary

is parabolic in the unsaturated region and linear in the saturated
regions.

Thus, the equations which describe the response of switching
regulators during large transients have been found for the case where
the system operates in the discontinuous conduction mode. The analysis
is similar to the continuous conduction mode analysis, except that
special care must be taken to reflect the fact that the inductor
current ripple is large compared to its average value., This is deait
with by the use of the average inductor current, rather than the initial
inductor current, in the state eguations for each interval. A set of
discrete nonlinear state equations is the result; these equations are
well-suited for computer evaluation of the large-signal transient
response. An additional approximation may be made which yields a

continuous-time version of the state equations, as is sometimes
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desired for analytical design. The region in the state plane in which
this mode occurs has been found. In the next chapter, the models of
this chapter are applied to the study of the large-signal transient
waveforms and instabilities which are Tikely to occur in switching

regulators.
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CHAPTER 12
LARGE-SIGNAL ANALYSIS

12.17 Imtroduction

The objective of this chapier is the construction of the system
response and the identification of sources of potential instability.
First, the equilibrium points of the system are caiculated. It is
possible for more than one eguilibrium point to exist, and this can
lead to instability under large transient conditions. Second, the
trajectories of the states of the regulator are determined, either by
hand or by computer. The salient features are identified, and it then
becomes apparent how to modify the system in order to obtain an
acceptable response. The analysis is demonstrated on the boost

requlator of Fig. 11.1.

12.2 Equilibrium Points in the Unsaturated Mode

The equilibrium points of a system are the most prominent features
of the state-plane portrait of a nonlinear system. Calculation of the
equilibrium points is a useful tool for pinpointing the source of
instabilities and for constructing trajectories.

Two types of equilibrium points can exist for a given region of
the state plane. The first type, known as & "real equilibrium peoint,"
is an equilibrium point which occurs inside the given region. The
presence of real equilibrium points in addition to the desired quiescent

operating point guarantees the presence of at least one unstable
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solution. Hence, such points must be avoided. The second type is
called a "virtual equilibrium point" and occurs outs%de the given
region. The system is not actually in equilibrium at a virtual
equilibrium point; nonetheless, these points can influence the
transient response of the regulator. The presence of virtual
equilibrium points guarantees neither the existence nor the absence
of unstable transient responses.

Equilibrium points occur where

f“* - ~ .

x> §§ (discrete) (12.1)
dR*

—= 0 {continuous) (12.2)
dt

Since the forward differencing approximation, Eg. (11.12), has been
used, Eqs. (12.1) and (12.2) are equivalent.
Insertion of Eq. {12.2) into Eq. (11.13) yields

0 = [A + d*B]x* (12.3)

W

' T
where A = DA+ DA, - (A - A X" - (B -BJuf

B = Al - A2
dr = - £R
£* = the value of X at the desired equilibrium point
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A is the small-signal continuous-time closed-loop system matrix, and
B is a matrix which describes the nonlinear term. Equation (12.3}
describes the positions of the equilibrium points in the unsaturated
region. In addition teo the trivial solution x* = 0 (the desired
quiescent operating point), a number of extra solutions may exist.
One may easily find these other equilibrium points by the following
procedure:

First, notice that if Eq. {12.3) is satisfied for

some X* # 0, then necessarily x* lies in the

nontrivial null space of [A + d*B]. In other

words, [A + d*B] must have a zero eigenvalue,

x* must be an eigenvector corresponding to

that zero eigenvalue, and
det{A + d*8] = (12.4)

A relatively simple procedure, then, is to first find which values of
d* satisfy Eq. (12.4). Once the values of d* are known, the solution
of Eq. (12.3), together with the constraint d* = - fx*, is
straightforward. One can then see how t¢ design the regulator such
that these additional equilibrium points are correctly positioned
outside of the unsaturated region. Their influence on the transient

response of the regulator can then be made smalil.
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For the boost example of Fig. 11.1, the quantities in Eq. {12.3)

are
i* -Rl -n,
g_* = A=
A* -
| V¥ N, ]/de
ffl 0 1
i - B -
_fz_ -1 0 |
(12.5)
- - ¥
where R1 RL + Vof1 n, DO + Vof2
n, = DO + Iofl Rz = R | («1}10f2)
10 = guiescent inductor current
Vo = quiescent output voltage

Eq. (12.4), the expression for the control (d*) at the equilibrium

points, then becomes

-

Loy (12.6)

2z
* L og + + ==
d d (n1 nz) non, ¥ R2
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This equation is quadratic and has two roots; hence, two equilibrium
points may exist for the unsaturated region in addition to the

quiescent operating point gd* 0. For the values specified in Fig. 11.1,

the two roots are

d* = ,236, 13.64 (12.7)

The equilibrium point at d* = .236 is well within the unsaturated
region. It causes the large-signal transient response to differ
significantly from that predicted by small-signal models; in fact,
some solutions are unstable.

The root d* = 13.64 represents a virtual equilibrium point. It
lies outside the unsaturated region where Eq. (12.6) is valid; in
consequence, the system is not actually in equilibrium at this point.
Nonetheless, it is possible for a virtual equilibrium point to
influence the response of a nonlinear system. In this case, however,
the distance it lies away from the unsaturated region is sufficiently
large that its effect on the trajectories is negligible.

The positions in the state plane of the equilibrium points are

now found by solution of Eg. {12.3). For this example, one obtains

i* = - d*
£t szz(nz - d*)
U* = - d* (12.8)

f1
f?_ + 'ﬁ; (d* - ﬂl)
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Fig., 12.7.

Summarny of the unsaturated region equilibrium points fon

the boost example of Fig. 11.1. 1In addition to the usual

quiescent operating podnt, a neal equilibrium point exists

af d* = 236,

occuwis at d* = 13.64.

A linsdgnificant) vintual equilibrium point

For the values specified in Fig. 11.1, these expressions yield

2.0R, V¥

L]

~

i*

1.94, V*

1l

it

The unsaturated

Fig. 12.1.

desired quiescent operating point at £7= 0, an unwanted real

~3.7V

~24.2V

Two real equilibrium points exist:

if

at d* = .236

at d* = 13.64

(12.9)

region equilibrium points are summarized in

in addition to ihe

equilibrium point occurs as shown; hence, unstable responses are

expected to occur,

A virtual equilibrium point also occurs, but has

little effect on the response of the system,
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The nature of each equilibrium point and the approximate
trajectories in the vicinity of these points may be found by
perturbation and linearization of the nonlinear state equations,

Eq. (11.6) or (11.13). Let

1

(t)

[ad

50 + x* +'g_(t)

]

B(t) = Dy + d* + alt) {12.10)

X{t) and d{t) are the state vector and duty ratio perturbations with
respect to the equilibrium values (50 + x*} and (DO + d*), respectively.
Upon insertion of Eg. (12.10) into the continuous-time state equation,
and upon elimination of higher-order nonlinear terms, one obtains
dx (t)
dt

K = [A + d*B - Bx*f'] X(t) (12.11)

wnere A and B are defined as in Eq. {12.3). Eq. (12.11) describes
the response of the system in the vicinity of x(t) = Xyt %
Since the nonlinear terms have been discarded, it is valid only for
small signals. The nature of the equilibrium point at x(t) = X, tx*
may now be determined by calculation of the eigenvalues {(poles) of the
system in Eq. (12.11). For this boost exampie, the characteristic
equation of Eq. (12.11) becomes

i

det[sK - (A + d*B - Bx*f1)] = s2LC + s[(R, + v )+ (g - 1%L
2

+ i*(fl(ni - d*) - szl) + v*(fi/R2 + fz(nz - d*)) =0

(12.12)
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For the equilibrium point at d* = .236, the roots of Eq. (12.12) are

s, = -2600 S, = 3000 rad/sec {12.13)

Since one root is in the right half-plane, and the other is in the

left half-plane, the real equilibrium point at d* = .236 is a saddle
point. Thus, by perturbation and linearization of the system state
equations about each equilibrium point, one may determine the nature of

the solutions in the vicinity of these points.

12.3 Egquilibrium Points In The Saturated Modes

The next step is the investigation of the equilibrium points of
the saturated regjons. Since in these regions the response is linear,
exactly one equilibrium point occurs for each region. If either of
these points is real, then unstable responses exist. Therefore, the
equilibrium points of both saturated regions must be virtual in a
globally-stable regulator.

The equilibrium points for the saturated regions are given by
Eg. (11.18). This equation is now solved in a straightforward manner
to find the positions of the saturated region equilibrium points. For

the boost example, one obtains

y 1

Vg = 2+ ] - (12.14)
Dsat * RL/Dsat R
Vsat

I, = (12.15)

sat
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where
Vsai = equilibrium output voltage for D = Dsat saturated
region
i = equilibrium inductor current for D =D saturated
sat sat
region.

One possible design strategy is to 1imit the duty ratio to a
range sufficiently smaller than [0,1], thereby improving the response
by wmoving the saturated region equilibrium points well outside of their
respective regions. Hence, it is of interest to determine the locus

of V and 1 in the state plane for various values of D .
sa sat Ba

t t

Combination of Egs. (12.14) and (12,15) yields

2 _ 2 s
Isat RRL Isat Rvg + Vsat 0 (12.16)

Thus, the Tocus is an ellipse, Eqg. {12.16) is plotted in Fig. 12.2.
It can be seen that the D = 0 point is well outside of the D = Dmin
saturated region; consequently, the choice of Dmin = { poses no
apparent problems. However, the D = 1 point lies inside the D = Dmax
saturated region for the case illustrated. As & result, unstable
solutions are guaranteed to exist for the choice of Dmax = 1.

One way to avoid obtaining a real equilibrium point in the D = Dmax
saturated region is to choose Dmax sufficiently less than one, thereby
moving the equilibrium point outside the region. A second way is to
lower the ratio fz/fl {i.e., increase the amount of current feedback

in relation to the output voltage feedback). This moves the D = Dmax
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Fig. 12.2. The Locus of saturnated negion eguilibiium podints in the
state plane 45 a portion of an eblipse. The saturated
rnegion boundatries ate supernimposed. The regulator must be
designed such that both saturated region equilibrium points
are virntual.

saturated region beoundary to the left, past the equilibrium point.
Both strategies are effective in eliminating the presence of unstable
transient solutions.

The nature of the saturated region equilibrium points and
trajectories is easily found by evaluation and solution of the Tinear
state equations, Eq. (11.16) or (11.17). First, the nature of the
equilibrium point of the D = Dsat region is determined by calculation
of tne eigenvalues of the system in Eg. {11.17). For this boost
example, the characteristic equation of the Dmax = 1 saturated region

becomes

det[sk - (D__ A

AL DmaXAz)j = {1 + sL/RE) (1 + sRC) =0 {(12.17)



188

Since both roots are in the left half-plane, the real equilibrium point
in the Dmax = 1 saturated region is stable.

Since Eg. (11.17) is linear, its solution is straightforward,
and hence the time domain waveforms in the saturated regions are
easily calculated. Since the equilibrium point in the D = Dmax region
is stable, the solutions in this region are decaying exponentials or
damped sinusoids which tend towards this stable equilibrium point. A
similar result holds for the D = Dmin saturated region: the {(virtual}
equilibrium point is stable, and hence the solutions are decaying
exponentials or damped sinusoids which tend towards the virtual
equilibrium point, but the sclutions leave the D = Emin saturated
region before this virtual equilibrium point is reached. A further
example of the solutions in the saturated regions is given in the
next chapter, where the actual waveforms are calculated for a specific
boost regulator example.

Thus, the positions of the equilibrium points can be cailculated
without difficulty. The presence of real equilibrium points in addition
to the desired quiescent operating point indicates that the requlator
is not globalily stable; therefore, these points must be eliminated.

As an example, the equilibrium points of a two-state boost regulator
were found. In addition to the quiescent operating point, one real
equilibrium point existed in the unsaturated region and another in the
D = 1 saturated region. Hence, this design was not globally stable.
The response could be improved by moving these equilibrium points well
outside of their respective regions; they would then become virtual

equilibrium points.
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12.4 Construction Of Trajectories

Knowledge of the existence and positions of the equilibrium points
of the reguiator yields a great deal of insight into the large-signal
operation of the system; however, this knowledge is not complete. It
is also necessary to calculate peak transient currents and voltages,
to show that no 1imit cycles exist, and to verify that all possible
responses are well-behaved and stable. Therefore, it is desirable
to construct the system trajectories.

A number of methods exist for the analytical construction of
trajectories [5,44], such as the vector-field method or the method of
isoclines. For second-order systems, these methods work well. However,
since the dimension of the state space is equal to the number of states
of the system, these analytical methods become impractical for regulators
with many states. In some cases such as the boost example of the
next chapter, various approximations may be made which allow the
analytical calculation of the nonlinear system response.

Unfortunately, none of these techniques are completely general; as a
result, it may become necessary to resort to computer simulation. Tne
state equations describing the transient response of the regulator,
Eg. (11.10), are easily implemented on most computers. Most of the
state-plane trajectories illustrated in this thesis were plotted by 2
small desktop computer programmed in BASIC.

Figure 12.3 contains the flowchart of the program. The initial
state x. of the system is given as input, and then the computer

=0
iteratively calculates gn, the values of the state variables at {he
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Fig. 12.3. Flowchart of the computer progham for the caleulation of
the trajfectonies and time domain thansient wavefoims,

switching instants t = nTS, as follows: at the n-th switching interval,
tne duty ratio 8n is evaluated from Egs. (11.14) and (11.15}. The
region of operation is determined by use of Egs. (11.15) and (11.44}.

If the system is in the unsaturated region, then Eq. (11.6) is used to

find £n+1' If the system is in one of the saturated regions, then
Eq. (11.16), is used to determine gn = (x

X4y " 50), with Dsat taken

+1
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to be either Dmax or Smin depending on the region. Other modes of
operation, such as current 1imiting or saturation of devices in the
feedback path, could be added here if desired. The program then
increments n and repeats the procedure. State-plane trajectories may
be obtained, where the values of two of the states are plotted in a
plane, or time domain waveforms may be found.

The computer-drawn state plane trajectories for the two-state
boost regulator example are shown in Fig. 12.4. The peak values of
inductor current and output voltage during any given transient are
apparent, The effect of the unsaturated region real equilibrium
point at i* = 2.0A, v* = -3.7V can also be seen: some unstable

solutions occur which bend away in the vicinity of the equilibrium

\

Fig. 12.4. Computen-predicted state-plane thajectonies fon the fwo-
state bovsi example. Some ransients converge o the
desired quiescent operating point X = 0, while othens
converge o the uwwwanted real equiﬂxb&4um point 4in the
S = D saturated negdon. The real equilibrium point at

= %% L5 a saddée point.
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point and head towards a large negative value of V. This equilibrium
point is a saddle point. As explained in the previous section, another
real equilibrium point exists in the D = 1 saturated region. This
point is a stable eguilibrium point, and a1l solutions which do not
conyerge to the désired quiescent operating point converge to this
additional equilibrium point.

This system may be made globally stable by sufficient increase of
the ratio of current feedback to voltage feedback. The system then has
four virtual equilibrium points in addition to the real quiescent

operating point. The trajectories are plotted in Fig. 12.5 for the

values fl = 0.8, f2 0.08. It can be seen that all solutions converge
to the point i = 0, v = 0, and a well behaved, globally stable response

is obtained.

e

ia. 12.5. The quiescent cperating point of Lhe two-slate boost
e nzgu%azon example becomes globally stable when the ratic

of 3 1o T 4s increased a Aufficdent amount.
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Transient waveforms may also be plotted vs. time. This was done
for the boost with integrator example in Figs. 9.5, 9.6, and 9.7. In
this way, the actual response of systems with more than two states may
be predicted, the existence or absence of unstable solutions verified
and peak currents and voltages determined,

Thus, the nonlinear models of Chapter 11 may be used to
investigate the large-signal response of a switching regulator.
Equilibrium points may be calculated analytically, and positioned
properly to obtain a well-behaved response. The actual state-plane
trajectories or time-domain waveforms may be calculated easily by a
small desktop computer; this allows the informed design of the

regulator and ensures a globally stable system.
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CHAPTER 13
EXAMPLE: TRANSIENT ANALYSIS OF °
A SIMPLE BOOST REGULATOR

13.7 Introduction

The relevance of the general analysis of the previous chapters is
best illustrated by a specific example. In this chapter, the complete
large-signal behavior of the simple boost regulator of Fig. 13.1 is
determined, its salient features are identified, and some ways to

improve the response are suggested.

R, L
M T —1—D
3 ilf) 420pH
+
Vo =~ C by 2R
—— ——
15V _ 2900pF %30:2
Lo r
PWM
Tt%(ﬂ
:10))
e fa v(t)
f,=0.5v"!
D°=O3E VO

Fig. 13.1. Boost regulaton example.
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First, the small-signal characteristics of the regulator are
designed. The feedback loop contains pure voltage feedback, without
compensation networks or current feedback; this simplifies the
large-signal analysis and results in a more lucid example. Next, the
usefulness of the equilibrium output voltage curves is discussed,
emphasizing the fact that these curves cannot be used to determine
transient voltages or currents. The different modes of operation
are then identified, and analytical expressions are found for their
boundaries in the state plane. Each region is studied in detail,
revealing the positions of the equilibrium points for each region and
their effect on the large-signal stability of the system. Suitable
approximations are then made which yield simple expressions for the
time-domain transient waveforms. The complete transient behavior of
the system, as weil as some possible strategies for the improvement of

its response, then becomes apparent.

13.2 Small-Signal Design

The quiescent operating point of the regulator must be stabilized
for sma}i perturbations before the large-signal behavior is considered.
This is accomplished here using the techniques described in [1,2].

The small-signal loop gain may be found by use of the state-space

averaging technique; it contains two poles and a right-halif-plane zero:

Te1, U -s/e) (13.1)
1+ s/ml)(l + s/mgf
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where
£, = w)/2n %10 Kz = 1/2nC(R, ] [DLR)
f, = w,/2n 1 kHz ¥ R,/2nL
fo=w/2n %4 ki = (Dy2R - Ry)/2mL

Eq. (13.1) is plotted in Fig. 13.2. It is apparent that the open-loop
system is overdamped; owing to the large value of capacitance used,
the output capacitor dominates the open 1o00p response.

A moderate amount of dc loop gain is used, such that the loop

gain reaches unity at 100 Hz with a phase margin of 90°.

I Toi

~40 df -

-270% -

£ 1 1
1O Hz OO H2 ikHz

Fig, 13.2. Small-signal analysis: the syatem Ls overdamped, with a
phase masgdn 04 approximately 90°,
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Hence, the closed-loop response is also overdamped and is dominated
by a low-freguency pole at 100 Hz. A high frequency pole occurs at
1 kHz. Thus, the poles of the closed-Toop system are well separated,
and the two modes do not interact. The small-signal design is very

conservative.

13.3 Equilibrium Output Voltage Curves

The familiar expression for the open-loop equilibrium output
voltage as a function of applied constant duty ratio may be found by

use of Eq. (11.8). For the boost example, one obtains Eq. {13.2);

this relation is plotted in Fig. 13.3.

L (13.2)
D' 1+ RE/D’ZR

This expression is derived with the assumption that the system is 1in
steady-state; consequently, one cannot deduce nonequilibrium properties
such as transient voltages or incremental gains. Eqg. (13.2) can only
be used to determine the output voltage in equilibrium.

The boost reguiator of Fig. 13.1 is in eguilibrium at more than
one value of output voltage VG; these points may be found graphically
by use of Fig. 13.3, as follows: If the system is in equilibrium at a
given duty ratio D {read along the horizontal axis of Fig. 13.3}, then
the output voltage V is given by the equilibrium gain curve (read along
the left-hand vertical axis of Fig. 13.3). The feedback circuit senses

this voltage and determines a new duty ratio Df according to the



Fig. 13.3.

Fig. 13.4.
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G i
Oy D

Equilibrium output voltage V as a gunction of applied duty
ratio D, The system s designed Lo operate af quiescent

duty ratio Dy and cutput voltage Vg.

The system 44 in equilibrium at duty ratio Do (Dy axis
scale 45 exaggenated).
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linear voltage feedback law b = DG - fz(v - VO), as read along the
right-hand vertical axis of Fig. 13.3. The system is in equilibrium
if and only if D = Df. )

For example, the system is in equilibrium at duty ratio DO; this
is the usual quiescent operating point. Referring to Fig. 13.4, at
this point the converter produces output voltage VO in equilibrium,
As a result, the feedback c¢ircuit returns duty ratio D0 (read along
right-side vertical axis), and applies this value to the converter
(along horizontal axis). Since this is the original duty ratio, this
point is indeed an equitibrium point.

We must avoid the temptation to say, "the slope of the
equilibrium voltage curve reverses sign for high duty ratios;
therefore, the incremental Toop gain under transient conditions
reverses sign, positive feedback is applied, and the system becomes

unstable. A saddlie point therefore occurs at the inflection point;

v Ao,

=0

£ o oo s e e e

Oy

- J

Fig. 13.5. The system cannot be in equilibrium at daty4m1t¢u Dy; hence,
fnis 45 not a saddie point,
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i.e., at the duty ratio which produces peak eguilibrium output

voltage."” The fallacy lies in the attempt to predict the output

voltage under transient conditions by use of the equilibrium gain

curve. The curve can, however, be used to determine whether the
inflection point is a saddle point. Referring to Fig. 13.5, eguilibrium
voltage Vl is predicted when duty ratio D1 is applied to the converter.
The feedback circuit then returns duty ratio Dz‘ Since D2 ¥ Dl, the
system is not in equilibrium, and hence no saddle point can occur

for D = Di‘

The correct position of the saddle point is at D = D*, illustrated
in Fig. 13.6. If the system is in equilibrium at D = D*, then the
output voltage is V*. The feedback circuit therefore returns duty
ratio D*. Since this is the original duty ratio, the system is in

equilibrium.

vi 40

Fig. 13.6. The system can be n equilibrium at duty natic D*. This
46 the cornrect position of the saddle podint.
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Vv 4 ‘Df
-0
v, 1P
1
O i
Dy * b

Fig. 13.7. A Zhird equilibrium point occuns at D = 1; this 45 an
undesined stable equilibrium point.

A third equilibrium point occurs at D = 1, as shown in Fig. 13.7.
The duty ratio cannot be larger than unity; as the output voltage is
decreased, the duty ratio increases until it saturates at D = 1. Past
this point, the duty ratic remains constant. If the system is in
equilibrium at D = 1, then the output voltage is 0. The feedback
circuit returns duty ratio 1, and hence the system is in equilibriun.
This eguilibrium point is stable.

This graphical procedure can be refined so that all equilibrium
points are found at once. The requirement that D = Df yields an
expression which, along with the equilibrium output voltage Eq. (13.2)},
constitute two equations which must be satisfied simultaneously.
Hence, one can plot both equations on the same graph; they intersect

at each eguilibrium point.
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The feedback relation for this system is linear with saturation,

as in Eq. (13.3}):

amin ? v 3-vmax
D= Dy~ (v - V) sV svav o (13.3)
\ - W
where
Voax = Vo t (g - Dpin M/
Votn = Yo * By - D)/,

With the requirement that D = D_ in equilibrium, Eq. (13.3) becomes

t

D , V>V
min =~ "max
D= s DO - fz(V - VO) . vmax >V 2»vmin (13.4)
\ max * = min

The equilibrium points of the system occur where Egs. (13.2) and (13.4)
are satisfied simultaneously. These two equations are plotted in

Fig. 13.8a for the case D* < Dmax < 1; the three equilibrium points

are readily apparent. It can be seen that the two undesired
equilibrium points could be eliminated by choosing Bmax < D*, as in
Fig. 13.8b. Although the elimination of these undesired equilibrium
points does not guarantee global stability, it is nonetheless a
necessary condition. In many cases, the choice of Dmax sufficiently

iess than D* yields an acceptable response.
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In summary, the equilibrium output voltage curve is derived with
the assumption that the system has reached steady-state. Transient
information has been discarded; in consequence, one cannot deduce
nonequilibrium properties from this curve. However, the positions of
all equilibrium points can be found; for this example, in addition to

the usual quiescent operating point of [0 = D, a saddle point occurs

Q
at D = D* and a stable equilibrium point occurs at D=1,

13.4 Modes of Operation

In this section, the various modes of operation are identified.
Analytical and numerical expressions are found for their boundaries
in the state plane. There are a total of four modes of operation in
this example. In addition to the normal unsaturated operating range,
the feedback control may saturate at the maximum duty ratio (Dmax = 1),
or at the minimum duty ratio (thn = ). For inductor currents near
zero, the system may enter the discontinuous mode, where the diode
becomes reverse-biased prematurely. The boundaries of each region are

plotted in the state plane, providing quantitative knowledge of each

mode.

As described in Section 11.3, the duty ratio must always lie in
the interval [0,1]; sometimes the 1imit is even more restrictive:
[Dmin,DmaXJ. Qutside the usual operating range, the duty ratio remains

constant at its saturated value, and the regulator behaves as an open

loop system.
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For the boost example considered here, linear voltage feedback
is employed. Inside the usual unsaturated operating range of the
converter, the duty ratio, determined by the feedb§ck loop, is a Tinear
function of the output voltage as given below:

D(t) = DO - fz(v(t) - VO) {13.5)}

If the output voltage is decreased, the duty ratio increases until,

at some voltage V . , the duty ratio reaches its maximum limit D .
min nax

Past this 1imit, the duty ratio remains saturated. vmin may be

calculated by use of Eg. {13.5), with the result given below:

¥ = VO + (DO - D __Wf (13.6)

min max 2

A similar phenomenon occurs as the output voltage is increased beyond
the voltage Vmax which causes the duty ratio to saturate at its

minimum value D,
Hmin

Vo=Vt (DO -D . Y/f (13.7)

max min 2

Hence, three operating modes have been identified so far, as

summarized in Fig. 13.9. For V > v(t) > V__ , the system operates
max min

in its usual unsaturated mode, with the duty ratio varying lineariy

with the output voltage. For v(t) > V ..o the pulse-width modulator

saturates, and hence the duty ratio remains constant at D = Dmin.

Finally, the pulse-width modulator also saturates when v(t) < Voin?
in this case, the duty ratic remains fixed at D = Dmax. For the circuit
values specified in Fig. 13.1, the quantities of Eq. (13.6) and {13.7)

are
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Fig. 13.9. The boundaries 4in the state plane of the three modes 0§
operation which have been identified 80 garn: the D = 1
satunated negion, the unsaturated negdion, and the D = 0
satunated neglon.
D, = 0.31 D, =0 D -
VQ = 18.0 Volts
I, = 0.87 Amps (13.8)
V. =16.6 Volts
min
= 18.6 Volts

max
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A fourth mode which occurs in this example is the transient
discontinuous conduction mode. As described in Section 11.4, it
arises because of the nonideal realization of the switch by a single
transistor and diode; rather than allow the inductor current to
become negative, the diode becomes reverse-biased prematurely. This
alters the system state equations; consequently, this mode must be
considered separately.

The region of the state plane in which the transient
discontinuous mode occurs is found by use of Fig. 13.10. During
interval DTS, when the transistor conducts, the inductor current rises
approximately linearly, with slope Vg/L. The current at the end of
this interval is therefore

v
1(0?3) = (0} + tﬁ DT_ {13.9)

During interval D’?S, when the transistor does not conduct, the current

decays approximately linearly, with slope (Vg - v)/L.

4
i(DTg)
i(0)
.
]

i'"(Tg)

Fig. 13.10. Inductorn cwuvient wavegomms for determination of the
transdent discontinuous conduction mode boundary. The
discontinuous conduction mode oceuns 44 i'{Tg) < O,
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The system enters the discontinuous mode if the inductor current faills
to zero before the end of the cycle, in other words, if i‘(TS) < 0.

i’(TS) is easily calculated from Fig. 13.10:

—

V - v
- I g 1 = 4 5 - D
i (TS) I(DTS) + 5r b Ts i(0) + r (Vg D'v) (13.10)

Therefore, the transient discontinucus conduction mode occurs

whenever

<
i(0) < & (D'v - V) (13.11)

L
Tnis is the basic relation which describes the discontinuous mode

boundary for the boost converter. It depends on both the duty ratio

and the output voitage.
For v >V, when the duty ratio is saturated at D= D ., , the
- &R min

discontinuous mode boundary becomes

o |
—

10) < = (0w - V) = (-0 v - v,) (13.12)

5
L

which is a linear function of the output voltage v. For the values

specified in Fig. 13.1, one obtains

i(0) < 0.17 Amps at v = Vmax (13.13)



209

For ¥ < v < ¥ , when the system operates in the unsaturated
min - — max
mode, the duty ratio is a linear function of v as given by Eq. (13.5).

Combination of Egqs. (13.5) and (13.11) yields

r-‘-—-i
wn

(0} < (b'v - Vg)

D=0y~ f,(v -V,

(13.14)

—d

s 2

= — {fv- +v(D, - f V) -V
L(z (o 20) g)

which is a quadratic function of the output voltage v. This relation

coincides with the value given in Eq. (13.13) at v = Vo and crosses

the i(0) = 0 axis at

V= 18.2 Volts {13.15)

The boundary predicted by Eq. {13.14) is negative for voltages less
than this value. Of course, i{0) cannot be negative; therefore, the
transient discontinuous mode does not occur when the output voltage
is less than the value specified by Eq. (13.15).
For v < ¥ . , when the system operates in the D= D saturated
-— Iin max
mode, the discontinuous mode boundary becomes

T T
HORSRCRIER = (- v - V) (13.16)
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Fig. 13.11. Discontinuous conduction negion boundaries in the state
plane.

For the values specified in Fig. 13.1, one obtains

T

. 5 v . _
i(0} < - tm-vg = - (.71 Amps (13.17}

Again, since 1(0) cannot be negative, the transient discontinuous
mode does not occur while the duty ratio is saturated at its maximum
Timit.

The region in the state plane where the transient discontinuous

conduction mode occurs is summarized in Fig. 13.11.
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Thus, the simple boost regulator exhibits four modes of operation.
In addition to the usual unsaturated mode, the system may operate with
the duty ratio control saturated at its maximum or minimum limits. For
small inductor currents, the regulator may enter the transient
discontinuous conduction mode. A fifth mode, current limiting, is
usually added; the implementation of this mode is discussed later in
this chapter. We will next calculate the detailed response of the

system in each region.

13.5 Unsaturated Region Waveforms

The state equations in the unsaturated region are nonlinear; an
exact closed-form solution is not known. In this section, a number of
approximations are made which yield an accurate analytical expression
for the transient response in this region. This expression correctly
predicts the presence of unstable solutions and the positions of the
equilibrium points.

As noted in Section 13.2, a large value of capacitance was
chosen for this example; as a result, the system is overdamped and the
closed-Toop small-signal poles are well-separated. Under these
conditions, the system contains two natural modes:

(1} A fast mode, in which the inductor current changes rapidly

while the capacitor voltage remains nearly constant, and

{2) a slow mode, in which the capacitor voltage changes slowly

and is followed by the inductor current.
This suggests solving the two modes separately and assuming that any

interaction is negligible.
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The unsaturated region continuous-time state eguations are found

by evaluation of Eq. (11.13). For this example, one obtains

di{t) . Sy 0 ~a
L rranlie R1 i(t) ny v(t) + d{t) v(t) (13.18a)
dv(t) _ - Sy 0 YR
C N, i{t) v(t)/R2 d(t) i(t) {13.18b)
where a(t) = -1, ;(t)
Rl = RE =3 Q
R, = R |(-1/1,f,) = - 2.5 @
no= DO + V0f2 = 9,7
n, = DO = .69
) 1
Vg = & —————=18.0 Volts
DO 1+ REIDOR
VG
[ = = .88 Amps
0 1
DOR

D, + d(t) < D

valid for D |
min — maXx

i

Fast Mode
With the assumption that the fast mode occurs in a time interval

sufficiently short, the capacitor voltage is essentially constant.

Eq. (13.18a) then becomes
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L %&-ﬁl . Ri?(t) - nIG(G) + d(0) v(0) (13.19)
with 4(0) = - f, v(0)

;(0) is given

This is a linear differential equation. Its solution is

~ -t 0 A ~w, t
i(t) = i(0) e L + X%Ql {a(0) - nl)(] - e L ) {13.20)
1

where = R1/L s T = L/R1

wr,

Note that the fast mode is stable when wy > {J. After the fast mode

has decayed,

Fiad

) > @-n) = -

(f. v +n.) (13.21)
1 p 2 !

m‘( >

valid for t » > T

As shown in Fig. 13.72, the inductor current decays
exponentially during the fast mode, and eventually reaches the quasi-
equilibrium value given in Eq. (13.21). By assumption, the capacitor
voltage remains essentially constant. Hence, the state-plane
trajectories, plotted in Fig. 13.13, are nearly vertical lines. They

end at the parabola described by Egq. (13.21).
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Fig. 13.12. Unsaturated negion fast mode waveforms. The inducton
current decays exponentiadly and reaches quasi-equilibrium,
whife the capacifon voliage nemains essentially constant.
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Slow Mode

For times much greater than 1_, the fast mode has decayed and

L’
hence the inductor current is at the guasi-equilibrium value given by

Eg. (13.21). Substitution of Eq. (13.21) into Eq. (13.18b) yields

R - X A R
C d;ét) = - %ié) [ d(t) - (nj#n,)d(t) + npn, + ﬁij (13.22)

with d(t) = - f, v(t)

Eq. (13.22) is the basic differential equation which describes the

slow mode. Since d(t) is linearly proportional to v{t), Eq. (13.22)
contains cubic and parabolic nonlinear terms as well as a linear term.
Tnis equation could be integrated immediately; however, it is preferred
to first employ an additional approximation which yields more lucid

results.

Note that the guantity in brackets in Eq. (13.22) is identical
to Eg. {(12.6), with d* replaced by a(t); this is the expression for the
additional unsaturated region equilibrium points. Evaluation of this

expression yields

R

1
+ nz) d* + nyn, + = 0 (13.23)

d*z - (!’E ﬁ-'*
2

1

d* = .56 , 9.8

The equilibrium point d* = .56 is significant; it is a saddle point.
However, the equilibrium point at d* = 9.8 Ties well outside the
unsaturated operating range of the system, and hence has little effect
on the transient waveforms. Unfortunately, its presence complicates

the analytical expressions severely.
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Notice that the two roots of Eq. {13.23) are well-separated. This

suggests that one may factor Eq. {13.23) analytically, as follows:

2 ~
dc - (nl + nz) d + nn, + Rl/R2
Rl ~ ~
2 (nln2 + ﬁ; - (n1 + nz)d) {1 - d/(n1 + ”2)) {13.24}
. ) 2
valid provided (n1 + nz) > > ‘nlnz + RK/RZl

Eq. (13.24) predicts that the unsaturated region equilibrium points

occur at

d* £ .53, 10.4 (13.25)

Hence, Eg. {13.24) appears to be an accurate approximation of
Eq. (13.23).

Furthermore, if

d(t) f, v{t)

| ® S} < <] {13.26)
ny f o, n,o+n,

everywhere inside the unsaturated operating range of the requlator,
then the virtual equilibrium point at d* ¥ (n1 + nz) may be neglected

entirely. This is indeed the case here, where (n1 +n,.) = 10.4, and

3
Ia(t)] < .69. This is a useful approximation for many systems.
With these approximations, Eq. (13.22) becomes

S 4 g V() [T - v(t)vA] 2 0 (13.27)
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where 1
w{;-‘: = 2?7(?00 HZ)
172
. n.n. + R./R
vz o L2 1 2 - .1.12 Volts
fz(n1 + nz)

Eq. {13.27) is the basic state equation which describes the slow mode,
with the effect of the virtual equilibrium point at d* = 10.4 neglected.

It is now easily solved by integration:

v(t) t

. jr (13.28)
A u(l - u/v*)
v{0) 0

Evaluation of the integrals and solution for v{t) yields

R -mCt
(t) ® V(03 (13.29)

1+ ~iww{e

Eq. (13.29) is the basic result of this section; it is the approximate
large-signal response of the slow mode. Note that, for [V(0)} < < |v*|,
the denominator becomes nearly unity and the response approaches the

small-signal result:

ST
$(t) = 9(0)e © (13.30)

valid for [¥(0)] < < |¥¥|
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Fig. 13.14. Unsatunated negion sfow mode wavegorms for the case
v(0) > 0. The sofutions are stable, and decay mone

rapidly than Zhe swmall-signal nesulf,

It is of interest to sketch the response for larger values of
v(0). The first case considered is when ¥{0) > 0. In this case, the

denominator of Eq. (13.29) is greater than 1:

—

A - 1
1+ X0 o ST gy s (13.31)
V*

for v(0) > O

~

since v* is negative. As a result, the response given by Eq. (13.29)
decays more rapidly than the small-signal response of Eq. (13.30), as
shown in Fig. 13.14. It is clear that the system is stable for all

v{0)} > 0.
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Fig. 13.15. Stow mode wavefonms fon the case 0 > V(D) > v*. The
sofutions are stable but decay sfower than the smali-signal
result,

The next case is ;(0) = 0, where the system is started at the
quiescent operating point. The solution is trivial, given by
C(t) = 0 for all t.

For 0 > G(G) > C*, the denominator of Egq. (13.29) is less than

one but greater than zero:
v(o) , "ct
0 <1+ (e - 1) <1 (13.32)
V-k

for 0> ;(6) > y*

again since v* is negative. The response given by Eq. (13.29) decays
slower than the small-signal response of Eq. (13.30), as shown in
Fig. 13.15. Nonetheless, the solution is stable and eventually reaches

the quiescent point v = 0.
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Fig. 13.16. Stow mode wavefonms fon the case v* > v(0). The solutions
are unstable,

The fourth case is v(0) = y*. The solution then becomes

v(t) = v* for all t (13.33)

for v(0) = v*

In this case, the system is started exactly at the (unstable) saddle
point at Vo= v,

The final case is where 9{0) is more negative than v*. The

i

denominator of Eg. (13.28) is then negative at t = 0, passes through

zero after some finite time, and goes to +1 as t -+ =. Hence, the

system diverges in finite time, as shown in Fig., 13.16. O0f course,
for ;(t} + Vo < Vmiﬁ, the system leaves the unsaturated region where
Eq. {13.29) is valid; the model for the D = Dmax saturated region
(given later in this chapter) must then be used. Nonetheless, the

behavior for v(0) < v* is undesirable and must be corrected before
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a sound design can be obtained. Some methods for achieving this are
discussed later in this chapter.

The complete inductor current waveform may now be calculated; it
is the combination of Egs. (13.20) and (13.29). The complete
capacitor voltage waveform is given by Eq. (13.29) alone. Thus, the

complete unsaturated mode response is as summarized below:

~ ""wt
= —v0e %
1+ W0 g,
V*
(13.34)
~ ~ -t - - -, t
i(t) = 1(0) e “L - vé: (n1 + f2 vit)) (1 - e L }

The state plane trajectories in the unsaturated region can now be
plotted, as in Fig. 13.17. As noted before, the fast mode trajectories
are approximately vertical lines, and end at the parabola described
by Eq. (13.21). The slow mode trajectories move along this parabola,
and end at the quiescent operating point for ;(O) > G*. They diverge

~

and end at the D = Dmax region boundary for v{0) < 3

Thus, simple, approximate analytical expressions are found for
the response of this boost reguiator example in the unsaturated mode.
Two key approximations are made. First, the occurrence of two
approximate natural modes of the system is assumed, and the
interaction which actually takes place between them is neglected.

This is justified because their time constants are widely separated.
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(1)

> v {t)

Fig. 13.17. Complefe unsatunrated region siafe-plane portaalt. A soddie
podnt oecuns Jakong the parabola which describes the slow
mode at v v* Solutions are stable fon v(0) > ¢*, and
unstable fox v(0) < ¥*,

Second, the influence of the virtual equilibrium point which occurs

at d* = 9.8 is neglected; this simplifies the analytical expressions
with Tittle loss of accuracy. The predicted waveforms exhibit the
correct qualitative behavior, including the presence of a saddle point

and unstable solutions. It is shown in Chapter 14 that the results are

quantitatively correct also.
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13.6 D =D ., Saturated Region Waveforms
min

It is desired to calculate the trajectories and waveforms in the
other regions as well. In this section, the equilibrium point and
transient waveforms for the D = Dmin saturated region are found. Since
the duty ratic is constant, the state equations become linear in this
region, and hence are easily solved.

Eq. {11.17) is the general continuous-time state equation for the
saturated regions. Evaluation of this expression for the boost

regulator example yields

L d;ét = - Ry A(t) - D;in vit) + v (13.35a)
c dgét) - D;in i(t) - v(t)/R (13.35b)

valid for vit) > V

— max

T
H(t) > = (0 v(t) - V)

min
Since these state equations are linear, their solution is straight-
forward. The waveforms in this region are decaying exponentials or
damped sinuscids.
The same type of approximation used in the unsaturated region may
be used here if desired. Owing to the large value of output capacitance
used, the natural frequencies of the system in the D = Bmin region are

well-separated, and the system is overdamped. Under these conditions,
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the system again contains the following natural modes:
(1) a fast mode, in which the inductor current changes rapidly
while the capacitor voltage remains nearly constant, and
(2) a slow mode, in which the capacitor voltage changes stowly
and is followed by the inductor current.
This suggests solving the two modes separately, as before.
With the assumption that the fast mode occurs in a time interval
sufficiently short, the capacitor voltage remains essentially constant.

Eq. (13.35a) then becomes

di(t) - : N
L T ° - R£ i(t) Dmin v{0) + Vg {13.36)

i(0) is given

The solution of this linear differential equation is

~w,t V- Dl v{0) -w, T
i(t) 2 i(0)e 3 +-B . min (1-e 2) (13.37)
£
Ry
where wy TS 2n(1.1 kHz)
13 = I_/RE

D .
i{t) - 5 min {13.38)

valid fort > > 1
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The inductor current decays exponentially during the fast mode, and
eventually reaches the quasi-equilibrium value given in Eq. {13.38).
By assumption, the capacitor voltage remains essentially constant.
For times much greater than 13,the fast mode has decayed, and
hence the inductor current is at the quasi-equilibrium value given in

Eq. (13.38). Substitution of this expression into Eg. (13.35b) yields

dvit) v(t) D,V
{ ——— ¥ . e+ min g (13.39}
dt Ri[RE/Dmin R£

The solution of this linear differential equation is

-wat v 1 ~m4t
v(t) 2 v(0) e + B ; (1 - e ) (13.40)
Dmin 1+ RE/Dmi R
1
where w, = > = 21 (20 Hz)
Rj|R,/D T €
min

For large t, Egs. (13.40) and (13.37) predict that the system reaches

the D = D . saturated region equilibrium point {1 where

min0’ Vmino)’

y 1

o= B = 13.6 VYolts
min0 D 1+ R /D‘Z
£ m

min inR

(13.41)

= 45 Amps

Je
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Fig. 13.18. The thajectonies predicted by the D = Dpin saturated
hegion state equations., These solutions are not valid
outside of the D = Dyin satunated region [shaded axea).

These relations could also be found by evaluation of Egs. (12.10) and
(12.11).

The D = Dmin saturated region state plane trajectories are plotted
in Fig. 13.18. The fast mode trajectories are nearly vertical lines,
since the capacitor voltage remains essentially constant during this
time. The slow mode trajectories Tie along the line described by

Eq. {13.38), and end at the (virtual) equilibrium point (Imi ).

n0? VminO
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Fig. 13.19. The thajectornies in the D = Dy;, saturated negion axe
neanfy vertical Lines which ané ot the thansient
discontinuous conduction negion boundary,

Note that the siow mode and the equilibrium point lie outside
the D = Dmin saturated region where Egq. (13.35) is valid. As a result,
the system leaves the D = Dmin saturated region before the slow mode
or yirtual equilibrium point is reached. As shown in Fig. 13.19, only
the fast mode trajectories inside the region are valid.

Thﬁs, in the D = Dmin saturated region, the output voltage remains
essentially constant while the inductor current decays exponentially.

As shown in Fig. 13.19, the trajectories are nearly vertical lines

wnich end at the transient discontinuous conduction mode boundary.
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13.7 D=0 Saturated Region Waveforms
maX

The analysis for this region is similar to the analysis of the
previous section. The system is again described by a fast mode and a
slow mode, and contains one equilibrium point. The major difference
lies in the fact that the slow mode trajectories occur inside the
b= Dmax saturated region, and the equilibrium point may be real
rather than virtual. The presence of a real equilibrium point inside
this region indicates that solutions which do not converge to the
desired quiescent operating point occur.

The continuous-time state equations for this region may be found

by evaluation of Eq. (11.17); the result is

L d—;%f*l = - R, (L) - D v(t) + v (13.42a)
c %’éﬁl: D i(t) - v(t)/R (13.42b)

where D =1 - D
max max

valid for v{t) <V,
- MLk

i(t) » 0
The state eguations are again linear in this region, and their
solutions are decaying exponentials or damped sinusoids. For this
example, the time constants of the two modes of the system are again
well-separated, and the response may be approximated if desired by

the same procedure used for the D = Dmin saturated mode. The result

for the fast mode is
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-w3t vV - D vy(0} ~w3t
i{ty = i(0) e S S (1-e ) (13.43)

Re
where wy == 2n (1.1 kHz)

T =7/‘u)3

After the fast mode has decayed,

v
i(t) = nax (13.44)

vatid for t > > 13

Insertion of Eq. (13.44) into Eq. (13.42b) and solution for v(t) then
yields the slow mode response:
-w, T V 1 - t

v(t) 2v(0) e ° +—B : (1-e °) (13.45)
Dmax 1+ R./D ? R
£ "max

1
where wg = " = 21 (1.8 Hz)
RI]RE/qmaX C

After both modes have decayed, the system reaches the D = DmaX

saturated region equilibrium point, given by

D R
Voo™V —55— =0 Volts
max0 BR +D R
£ max
(13.46)
y
0" —————BT§--= 5 Amps
max R+ D R
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Fig. 13.20. The trajectories in the D = Dy, saturated negion. ALL
sofutions in this negion converge to the undesined real
equilibrium point at (5A,0V).

The D = Dmax saturated region trajectories are plotted in Fig.
13.20. The fast mode trajectories are again nearly vertical lines
since the capacitor voltage reamins nearly constant during this time.
The slow mode trajectories lie along the line given by Eq. (13.44),

and end at the real stable equilibrium point (I v ).

max0’ ‘max?d
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This behavior is very undesirable; all solutions in the D = Dmax

saturated region converge to the unwanted real equilibrium point

(ImaXO’ VmaxO

possible for the system to "hang up". This situation may be

} rather than the quiescent operating point. Thus, it is

rectified by the addition of current feedback or current Timiting

(discussed in Section 13.9}), or by decreasing DmaX {discussed next).
Perhaps the simplest way to render this system globally stable

is to limit the maximum duty ratio. For an overdamped system such

as this one, the system becomes globally stable for Dmax < DO + d*

(d* is given by Eq. {13.23)). As an example of this, the trajectories

are plotted in Fig. 13.21 for the case Dmax = ,825. The fast mode

trajectories are again vertical lines, and the siow mode trajectories

again lie along the line described by Eq. (13.44}, but the equilibrium

point no Tonger lies inside the saturated region. Evaluation of

Eq. (13.46) for this value of Dmax yields

y = 200,1 Volts
max(

(13.47)
nax0 © 3.8 Amps

Hence, the D = Dmax saturated region equilibrium point now becomes
yvirtual. Rather than hanging up inside the saturated region, the slow
mode trajectories now enter the unsaturated region as shown.

Although this is a stable response, it may still be unacceptable.
The peak transient current may be as much as five times the quiescent

inductor current of .87 Amps. A very large inductor may be reguired

to handle this current.
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Fig., 13.21. The trafectornies in the D = Dp,. saturated region for the
case when Dpay 48 Limited to 0:825. ARL solutions inside
this negion now tend towands the unsaturated region.
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13.8 Transient Discontinuous Conduction Mode Waveforms

The final region of operation is the transient discontinuous
conduction mode. The state equations are nonlinear inside this region;
however, the nonlinear terms are very small in magnitude. As a result,
their effect is negligible, and the transient waveforms are very
nearly decaying exponentials.

There are actually two subregions inside this region: (1) for
y{t) > V .. the duty ratio is saturated at D = 0, and (2) for
v(t} < Vmax, the duty ratio varies linearly with v(t). The response
in the saturated subregion is trivial; both the diode and the
transistor remain off during the entire switching cycle. As a result,
the inductor current is zero and the capacitor voltage decays through

the Toad R. The waveforms can be written by inspection:

i

i(t) =0
v(t)

where we = 1/RC = 27{1.8 Hz)

~w6t (13.48)

1§

v(D) e

valid for i = 0 and v » V¥
- max

For v(t) < Vmax, the state equations are nonlinear; however, the
solution is numerically very close to Eq. {13.48). The state equations

may be found as described in Section 11.4; evaluation of Egqs. (11.41),

(11.42), and (11.43) yields
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Fig. 13.22. The dnducton curnrent wavedorm fon the transient
discontinuous mode.,

vV D(E) T
iav(t) = ~5~§E¢—~#ii (13.49a)
D{t) + Dz(t) Dz(t)
dv(t) vit) i (t)
- . + 8y D (t) (13.49c¢)

dt RC c 2
The inductor current ceases to be an independent state since it is
constrained to be zero at the beginning and end of each switching cycle.
1av is the value of the inductor current averaged over interval
(D + DZ)TS, as in Fig. 13.22. The system is nonlinear because i_ 1is a
Tinear function of duty ratio D(t) and hence of v(t) also, and Dz(t)
is a nonlinear function of v(t). These two terms appear multiplied

together in Eq. (13.49c). Since Eg. (13.49 abc) represents a first-
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order system, it could be integrated in a straightforward manner to
yield an expression for v(t}. However, this is unnecessary because
the amplitude of the linear term in Eq. (13.49¢c) is more than an order
of magnitude larger than the nonlinear term everywhere inside the
discontinuous conduction region. This can be seen as follows: From

Eq. (13.49a),

¥y T
] < S

max

- max D(t) = .062 Amps {13.50)

From Eq. (13.49b),

D] < max WE%T“ 825 (13.51)
max &

Hence, the magnitude of the nonlinear term is less than

[iav! {02{ / C = 17.6 V/sec (13.52)
max max

The magnitude of the linear term is bounded below by

= 209 V/sec (13.53)

Hence, the effect of the nonlinear term is of second order. To a good

degree of approximation,

%‘éﬂ; X,%L (13.55)

v(0) given
everywhere inside the transient discontinuous conduction region. The

solution is then given by
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-wét

i

y{t) = v{0) e {13.56)

for all i,v inside the discontinuous conduction region. This is a
valid approximation whenever expression {13.53) is much larger than

(13.52) in the worst case. This can be expressed as

T i b (13.57)

where Vb is the output voltage at the edge of the discontinuous
conduction region, as given by Eq. (13.15). Note that Eq. (13.57) is a
measure of how far the system is from egquilibrium in the region since,
if the "much greater than" sign is replaced by an equal sign, then the
right hand side of Eg. (13.49c) becomes zero at Vb, and hence the
system is in equilibrium there. Therefore, one expects the above
approximation to be valid as long as the quiescent operating point of
the system lies sufficiently far from the discontinucus mode.

Thus, the state equations are nonltinear and first-order in the
discontinuous conduction region. Although these equations could be
integrated directly to obtain an expression for the voltage waveform
in this mode, it is much simpler to approximate the solution by a
decaying exponential. This approximation is valid whenever Eg. {13.57)

is well-satisfied.
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Fig. 13.23. State-plane thajectories of Lthe entine system. Solutions
convenge 1o the quiescent cperating point fon v(Q) > V*,
but converge to the unwanted equilibaium point (5AR,0V) fox
v(0) < V*. A saddfe point occuns along the sfow mode
Locus fon v = V*,

13.9 Discussion

The complete state-plane portrait of the system can now be
drawn, as in Fig. 13.23. The fast mode trajectories follow nearly
vertical lines in all regions. The slow mode trajectories follow the
i = 0 axis in the discontinuous conduction region, the parabola
described by Eq. (13.27) in the unsaturated region, and the line given
by Eq. (13.44) in the D = 1 saturated region. It is apparent that the

solutions converge to the desired quiescent operating point (Ia’vo)
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Fig. 13.24. The qualitative effect of a neduction in cutpul capacitance
C on the state-plane trnajectonies. The capacitor veliage
dncreases forn Large values of D*1, and the trajectonies
become rcunded fon curtrents near quasd-equilibaium,

for v{0) > v*, but end at the unwanted equilibrium point in the D = 1
saturated region at (5A, Ov) for v{0) < v*, Peak transient currents
and voltages can be found; in particular, the peak inductor current
is larger than the guiescent value IO for v(0) < VG.

The qualitative effect of a reduction in output capacitance C
or increase in inductance L can also be deduced. In this case, since
the time constants of the fast and slow modes are not as well-
separated, the trajectories no Tonger follow vertical lines during a
fast mode. Instead, one expects the capacitor voltage to increase for

large values of D'i, the average diode current, as shown in the upper



Fig. 13.25.
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The average dicde current L8 nefated te the inductor
cwvent by the duty natic: <ig> = D'i., I§ the average
diode cunrent L8 greaten than the Lead cwrrnent 4in a given
switohing cyele, then the net output voltage increases
oven the given cycle.

portion of Fig. 13.24. Also, one expects the slow mode to

start before the fast mode has finished; hence, the trajectories

become rounded for currents near quasi-equilibrium. The time domain

waveforms for this case can be calculated exactly in the saturated

regions since the state equations become linear there. The waveforms

may also be calculated analytically in the discontinuous conduction

mode since

, although the state equations are nonlinear, they are
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separable and of first order and hence can be integrated directly.
Unfortunately, it is not known how to soive the second-order nonlinear
state eguations which describe the unsaturated region when the time
constants of the modes are not widely separated. One must resort to
the computer methods described in Section 12.4 for this case.
Nonetheless, the gualitative argument presented above allows one to
sketch the approximate state plane trajectories.

It is desired to ensure that all solutions converge to the
quiescent operating point (Ia’vo)’ and that peak current levels do not
exceed some maximum value Ilim' One way to accomplish this is through
the addition of a current limiting mode. A number of different
current limiting modes are possible; probably the most useful one is
known as the "current-programmed mode", where the converter duty ratio
is determined by the times at which the instantaneous switch current
reaches the maximum value Ilim. This has the effect of shortening the
duty ratio when the inductor current is near Ilim, and it often is
effective in Timiting the peak inductor current. This mode has been
previously modelled under steady-state and small-signal conditions
147,48,55,56].

The basic strategy employed in most current limiting moﬁés is to
reduce the duty ratio such that the switch or inductor curvent is
regulated at the maximum level Ilim' Therefore, the trajectories
follow a horizontal line at i = Ilim, as shown in Fig. 13.26, when the
system operates in a properly functioning current limiting mode.

Note that the unsaturated region saddle point and the D = 1 saturated

region equilibrium point now become virtual. Furthermore, if the
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Fig. 13.26. The effect of the addition of a propenly designed current
Limiting mode. The trajectonies follow the herizontal
Line 1 = ljin. The system becomes globally stable.

average diode current <id> = D'i is greater than the load current
y/R, then the net capacitor charge increases over each switching cycle,
and hence the output yoltage v increases. The current limiting mode
trajectories then move towards the right as shown. It is apparent

that the addition of a current limiting mode can render the boost

example globally stable.
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Fig. 13.27. The satutration of the pulse-width modulfaton affects the
cwent Limiting mede also. In this case, the 0 = 0
saturated mede occuns gon all cuwwrents greaten than Iysq.
The trajectony at ftww-on 45 shown.

The saturation of the pulse width modulator may affect the
current limiting mode also. For example, consider the turn-on
transient of the boost example with current limiting, where
i{0) = 0 Amps and v{0) = 0 Volts. As shown in Fig. 13.27, the system
begins in the D = 1 saturated region, the fast mode occurs, and the
inductor current increases rapidly. When the inductor current
reaches Ilim’ the current 1imiting mode is invoked, and the duty ratio
is decreased in an attempt to restrict the current below Ilim.
However, since the output voltage is approximately zero, the current
continues to rise independently of the duty ratic. This can be seen

from the basic fast mode differential equation, repeated below:
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i

- Ei(t)-{}'(t)v(())-l-vg )
v(0) =0 (13.58)

it

Vg - R, i{t)

wnich is independent of D{t)}. In consequence, the duty ratio is
decreased to its minimum value of zero, where it remains as long as
i > Ilim. During this time, the O = Dmin saturated region model of
Section 13.6 appiies. In particular, the current continues to rise
until it reaches the gquasi-equilibrium value of 5 Amps, given by
Eq. (13.38). The slow mode described by Eq. {13.40) then occurs.
Eventually, the inductor current again reaches Ilim and the current
limiting mode functions properly.

Thus, it is apparent that the addition of a current limiting
mode does not necessarily guarantee that peak current levels are
always below the desired level Ilim‘ For the boost regulator example,
it is impossible to control the duty ratic such that the peak current
at start-up is only three Amps. Nonetheless, the addition of a current
1imiting mode is an effective means of obtaining global stability.

As discussed in Section 13.7, global stability may also be
obtained by 1imiting the maximum duty ratic. However, since the slow
mode inductor current i1s controlled by the parasitic inductor dc
resistance Rﬂ, as given by Eq. (13.44), the peak current levels may
be much larger than desired. As a result, the current limiting mode is

usually preferred.
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Thus, a simple boost regulator has been analyzed and is found to
be stable for small signals but not globally stable. In particular,
all transients for v{0) < v* converge to the undesired equilibrium
point at zero voltage and high current. Approximate analytical
expressions have been found for the nonlinear response of the converter,
subject to key assumptions which reguire that the time constants of the
system are well-separated, and that the third equilibrium point of the
unsaturated region is extraneous and may be neglected. The vafious
regions of operation in the state plane have been identified; in
addition to the usual unsaturated mode, D = Dmin and D = Dmax
saturated modes may occur, as well as a transient discontinuous
conduction mode. The system may be rendered globally stable by the
addition of a current Yimiting mode, Approximate analytical expressions
may be found for the system trajectories; transient peak current levels
then become apparent. In this way, the large-signal transieni behavior

of the boost regulator example may be understood, and the system

a3y be intelligently designed.
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CHAPTER 14
EXPERIMENTAL VERIFICATION

A boost regulator was constructed and measured to provide
verification of the analysis of Chapter 13.

The schematic of the power stage is shown in Fig. 14.1. It is
necessary to overdesign the system so that it can tolerate the large
currents which occur when the quiescent operating point is not
globally stable. Thus, the inductor, transistor, and diode must
handle five Amps. This is alsc why the somewhat large value of 3 &
is chosen for R,; since the peak currents are limited by R,, they

£
would be even larger and more difficult to verify if a smaller vaijue

of R, were used,

£
UES 1303
4
¥
R L
s i{1
VAR > |

30,75W  420uH,7A

-

zg% - c R
= DagHi0 Lo & L S= v %gg&

B e . |

Fig. 14.1. Boost power stage used to experimentally vernify the
analysis of Chapfern 13,
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Fig. 14.2. So that the Transient response may be abﬁq&qad on an
oscibloscope, the system L4 exciled repelilively.

It is desired to vepetitively excite the circuit so that the
transient response may be observed on an oscilloscope. This is done
by cycling the system through the states shown in Fig. 14.2, as follows:
During 7., the system soft starts to a given perturbation duty ratio
Ql. The feedback loop is disabled. During Tz’ the feedback loop is
enabled, and the resulting transient is observed on the oscilloscope.
The system either converges to the desired guiescent operating point
corresponding to D = DO’ or an unstable response occurs. Quring T3,

the feedback loop is disabled, the duty ratio is set to zero, and the

power stage is allowed to cool off. The entire sequence then repeats.
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Fig. 14.3. Block diagram of the controld circuit.

Tne block diagram of the control circuit is given in Fig. 14.3.
A clock circuit generates the timing signals Tl’ Tz’ and T3. These
signals control analog switches which connect the input of the pulse
width modulator to a soft-start circuit during interval Tl, to the
voltage feedback during interval Tz’ and to ground during interval ?3.
A Timiting circuit allows Dmax and Dmin to be artificially set to any
level. A z-axis signal is provided so that the oscilloscope may be
blanked during intervals Tl and T3; in this way, only the desired

transients which occur during interval TZ are seen on the oscilloscope.



HP 6263 B
POWER
SUPPLY

remote sense

.

—
am—

=

L 1

Fig. 14.4.

The test setup is diagrammed in Fig. 14.4.

Boost regulator Tektronix 7854
under fes! Digital
‘) % Oscliloscope

1EEE

% chA 488
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HP 5826 A B
K.
Computer N
HP 9872C
Plotter

The ftest setup.

The trhajectonies ane acquired and stonred
by a computen, which can tnen plot sevenal diffenrent
thafectondies on the same ghaph.

A dc

current probe

measures the inductor current and a voltage probe measures the output

voltage; the two signais are displayed on the oscilloscope in x-y

mode to obtain the state plane trajectories.

oscilloscope allows one to send the data to a computer.

The use

of a digital

The computer

stores the trajectories generated from several different initial

conditions and then plots them on the same graph.
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Fig. 14.5, Experimentaf data fon the basic boost regulaton. The
results agree quite well with the predicted trajectories
0f Fig. 13.23.

The experimental data obtained for the basic boost regulator
of Chapter 13 are shown in Fig. 14.5. The presence of unstable
sotutions for v{0) < 16.8V is apparent. Also, the approximation of the
fast mode by nearly vertical lines appears correct. The discontinuous

conduction region can be seen along the horizontal axis for

1

V(t) > 18.25V. The quiescent operating point at v £ 18V, 1 = 0.9A is
stable since all solutions in its vicinity converge there, but the
equilibrium point at v = 16.8Y, 1 = 4.25A is a saddle point because
the fast mode trajectories in its vicinity converge but the slow mode

trajectories diverge. The unstable trajectories tend towards the
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Fig. 14.6. Expenimental data for the boovst regulaton with Dpay
neduced to 0.825.

stable equilibrium point in the D = Dmax = 1 saturated region at
(53A,0Y). Thus, the experimental data agree guite well with the
predictions of Chapter 13,

The case where Dmax is reduced to .825 is shown in Fig. 14.6.
The saddle point and D = Dmax region equilibrium point now become
virtual. It can be seen that peak current levels may still be as
large as 4 Amps. Nonetheless, all trajectories are stable. The

measurements agree quite well with the predicted response of Fig. 13.21.
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Fig. 14.7. Experdimental data fon the boost regulator with C reduced
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0

The third set of measuremnts made is for the case when Bmax is
again 1, but the capacitor is reduced from 2900 uF to 450 uF. As
predicted in Section 13.9, the fast mode trajectories are no longer
perfectly straight vertical lines. Instead, the capacitor voltage
increases for large values of D'i, as seen in the trajectories with
initial capacitor voltages of 1& and 19 Volts., Also, the trajectories
become rounded for currents near quasi-equilibrium. Hence, the
qualitative predictions for this case are also verified.

Thus, the boost regulator example of Chapter 13 is shown in
three instances to behave as predicted. In consequence, the validity
of the analysis of Chapter 13, as well as of the models of Chapter 11,

is established.
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CHAPTER 15
CONCLUSIONS

Because the small-signal switching regulator models are linear
and hence easily applied to most practical design problems, and
because of the insight they afford into the operation of the regulator,
they are indispensable tools for the design of a switching regulator.
However, because of the small-signal assumption, these models do not
describe the behavior of the regulator during large transients. As
evinced by the example 1in Section 9.2, it is possible for 2
regulator to be stable for small perturbations but not for all large
perturbations. A design of this type is unreliabie.

It is of interest, therefore, to formulate models which are valid
for large signals and to determine the nature of these large-signal
instabilities. It would then be possible to ensure that the large-
signal transient response is well-behaved. A set of large-signal
models is described in Chapter 11, The key linear-ripple approximation
of the small-signal state-space averaging method [1,2,11] is employed,
but no small-signal assumption is made. The resulting nonlinear state
equations correctly predict the large-signal behavior of the system
while it operates in the usual unsaturated mode.

The effects of other nonlinearities in the system must be
included as their influence is substantial. The saturation of the

pulse-width modulator can have a stabilizing effect on the system.
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The transient discontinuous conduction mode prevents the inductor
current from becoming negative. A current*1imiting‘hode may be
purposely added; this too can help stabilize the system.

The equilibrium points of a system are prominent features of its
state plane portrait, and the knowledge of their number and positions
can yield a great deal of insight into the large-signal system
behavior., The equilibrium points of switching regulators are studied
in Chapter 12.

Analytical expressions are found which may be used to place the
equilibrium points at suitable locations in the state plane, thereby
improving the large-signal transient response. This is first
demonstrated for the example of a two-state boost regulator with total
state feedback. It is found that this regulator has four equilibrium
points in addition to the quiescent operating point. Only two of these
points may have a serious detrimental effect on the response, however.
With proper circuit design, this example may be rendered globally
stable.

Tne actual state-plane trajectories or time-domain transient
response may be found. This is easily accompliished by the computer
evaluation of the models of Chapter 11. In this way, the existence
of unstable solutions may be observed, and peak values of transient
response waveforms calculated.

A simple boost regulator example is analyzed in Chapter 13. The
modes of operation are identified, and their boundaries in the state

plane are determined. The models of Chapter 171 are evaluated, and
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approximate analytical solutions are found for the §ctual time domain
transient waveforms. It is found that some transients converge as
desired to the guiescent operating point, wnile others are unstable
and result in large inductor current. This situation may be corrected
by the addition of a current Timiting mode or by limiting the maximum
duty ratic. The predicted behavior of this sytem is verified
experimentally in Chapter 14.

A number of effects have been neglected here. Additional modes
of operation may exist, such as other types of current lTimiting modes
or the saturation of other devices in the system. Also, more analysis
is possible, such as the prediction of 1imit cyclies and the
analytical estimation of stability regions. Nonetheless, the most
basic aspects of the nonlinear phenomena which occur have now been
described, and the informed large-signal design of most switching

regulators is now possible.
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