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ABSTRACT

Measurements of some of the properties of high-degree solar p- and f-mode
oscillations are presentéd. Using high-resolution velocity images from Big Bear Solar
Observatory, we have measured mode frequencies, which provide information about
the composition and internal structure of the Sun, and mode velocity amplitudes
(corrected for the effects of atmospheric seeing), which tell us about the oscillation

excitation and damping mechanisms.

We present a new and more accurate table of the Sun’s acoustic vibration
frequencies, vne, as a function of radial order n and spherical harmonic degree .
These frequencies are averages over azimuthal order m and approximate the normal
mode frequencies of a nonrotating, spherically symmetric Sun near solar minimum.
The frequencies presented here are for solar p- and f-modes with 180 < ¢ < 1920,
0 <n <8, and 1.7mHz < v,¢ < 5.3 mHz. The uncertainties, o,y, in the frequencies
are as low as 3.1 uHz. The theoretically expected f-mode frequencies are given by
w? = gky ~ gf/Rg, where g is the gravitational acceleration at the surface, ky, is
the horizontal component of the wave vector, and Rg is the radius of the Sun. We
find that the observed frequencies are significantly less than expected for ¢ > 1000,

for which we have no explanation.

Observations of high-degree oscillations, which have very small spatial features,
suffer from the effects of atmospheric image blurring and image motion (or “see-
ing” ), thereby reducing the amplitudes of their spatial-frequency components. In an
attempt to correct the velocity amplitudes for these effects, we have simultaneously
measured the atmospheric modulation transfer function (MTF) by looking at the
effects of seeing on the solar limb. We are able to correct the velocity amplitudes
using the MTF out to £ &~ 1200. We find that the frequency of the peak velocity
power (as a function of £) increases with £. We also find that the mode energy
is approximately constant out to £ ~ 200, at which point it begins to decrease.

Mode energy is expected to be constant as a function of £ if the modes are excited
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by stochastic interactions with convective turbulence in the solar convection zone.
4 Finally, we discuss the accuracy of the seeing correction and a test of the correction

using the 1989 March 7 partial solar eclipse.
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CHAPTER 1

Introduction

1.1 Historical Overview

The study of solar oscillations promises to uncover a wealth of information
about the solar interior. The information presented in this thesis is intended to
add to the body of knowledge that has so far been acquired. Solar oscillations are
interesting not only as one of the many phenomena visible in the photosphere, but
also as a tool for probing the solar interior. Solar oscillations, which are largely
vertical motions of the solar atmosphere with periods of roughly five minutes, were
discovered by Leighton and co-workers (Leighton, Noyes, and Simon 1962), and
were quickly dubbed the solar “five-minute” oscillations. Leighton’s observations
showed that any given point in the solar photosphere behaves as if a wave packet
were passing by, which lasts 6 to 7 cycles and has a peak velocity of ~ 1km/sec.
Scientifically, the field lay barren for a decade until the oscillations were explained by
Ulrich (1970) and independently by Leibacher and Stein (1971) as the superposition
of millions of coherent acoustic normal modes oscillating within cavities in the
interior of the Sun. Thus, the wave-packet nature of the five-minute oscillations can
be explained as a beating effect between modes of nearly identical frequency. The
normal modes can be characterized by their frequency v and degree ¢, where £ is
a measure of the spatial frequency of the mode. Higher values of £ correspond to
higher spatial frequencies, or correspondingly to smaller spatial features. Ando and
Osaki (1975) calculated a dispersion relation for the oscillations, which subsequently
was obsérva’cionally confirmed by Deubner (1975) and by Rhodes, Ulrich, and Simon
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~ (1977) for the 200 ¢ S 1000 range. The observations were high-resolution, partial-
“disk Doppler observations of the photosphere, which when spatially and temporally
Fourier-transformed, revealed that the modes fall along distinct ridges in the ¢-v

plane.

Observational progress continued with the low spatial resolution, high temporal
resolution, integrated-sunlight, full-disk Doppler measurements made by Claverie
et al. (1979) and Grec, Fossat, and Pomerantz (1980), in which the £ = 0, 1,
2, and 3 modes were identified. The individual mode velocity amplitudes were
found to be ~ 20 cm/sec. These modes have also been seen in integrated sunlight
brightness measurements (albeit with a much lower signal-to-noise ratio) in which
data from the Active Cavity Radiometer Irradiance Monitor (ACRIM) on board
the Solar Maximum Mission (SMM) spacecraft were used (Woodard and Hudson
1983). By splitting the solar image into a central disk and an outer annulus and then
differencing the Doppler signals, modes with £ = 3, 4, and 5 have been identified
(Scherrer et al. 1982). The gap between these low-£ observations and the earlier
high-£ observations was finally bridged by Duvall and Harvey (1983, 1984), who
used full-disk Doppler and Ca II K brightness images and subjected them to a
spatio-temporal decomposition using the theoretical mode eigenfunctions. Their
analysis resulted in frequencies for the range 1 < £ < 200. Note that the list of
observations here is not intended to be comprehensive—only those that represent

major advances in mode coverage have been listed.

These observations have spawned the field of helioseismology, or the study of the
interior of the Sun through the study of its vibrations. This is similar to terrestrial
seismology, in which vibrations of the Earth (i.e., earthquakes) are used as probes of
its interior. The mode frequencies provide information about the composition and
internal structure of the Sun, whereas the amplitudes and linewidths are related to
the mechanisms that excite and damp the oscillations. Modes of different degree
are used to probe the Sun to different depths. The low-£ modes sample the Sun

from the surface to nearly the center, whereas the higher-¢ modes sample only
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' the upper portion of the convection zone. There are two approaches to using the
oscillations as probes of the solar interior. The most straightforward method is the
so-called “forward problem,” in which mode properties are calculated for a given
solar model and then compared with the observational properties. Parameters in
the solar model are then adjusted so that the calculated properties agree with the
observed properties. The other method is the “inverse problem,” in which the radial
and latitudinal dependence of certain physical quantities in the Sun are deduced
through the use of integral equations that use the observed frequencies as inputs. See
Unno et al. (1989) and Brown, Mihalas, and Rhodes (1986) for reviews of these two

methods. Below, we briefly summarize some of the key results of helioseismology.

The most obvious result of the forward-problem approach is the calculation of
the mode frequencies and the identification of the modes in the observational data.
Other results include adjustments to the helium and heavy-metal abundances, and
a new estimate of the depth of the convection zone (see Gough 1983, and Stix 1989
for brief reviews of these topics). Inversions of oscillation frequencies have been
used to determine the sound speed as a function of depth (Christensen-Dalsgaard
et al. 1985; and Christensen-Dalsgaard, Gough, and Thompson 1988). There has
been a considerable effort to map the Sun’s rate of rotation as a function of depth
and latitude using frequency inversions. The main conclusion is that the rotation
rate is roughly constant from the surface down to the base of the convection zone
with a latitudinal dependence equal to that seen on the surface. A transition to
solid-body rotation occurs below the convection zone (Libbrecht 1988d; see also
Harvey 1988, and Libbrecht and Morrow 1991 for reviews of this subject). Finally,
changes in the mode frequencies as a function of solar cycle have recently been
observed by Libbrecht and Woodard (1990). They have measured the frequency
shift as a function of ¥ and have concluded that the mechanisms driving the shift

are operating within a few scale heights below the photosphere.

'The next major advance in solar oscillation observations is expected to occur

when the Global Oscillation Network Group (GONG) project comes on line in 1994.
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The GONG project will consist of six sites, located at approximately 60° intervals
around the Earth, which will make coordinated Doppler observations of the full
solar disk. This network of sites will observe 24 hours per day for three years.
Furthermore, there will be partially redundant coverage between sites, so that data
gaps produced by bad weather will be avoided. The designers of the GONG project
expect a duty cycle of & 93% with an instrument that can see modes out to £ ~ 150
(Harvey, Kennedy, and Leibacher 1987; Harvey et al. 1988; Hill et ol 1988; and
Pintar et al. 1988). Beyond GONG lie the solar oscillation instruments that will be
carried on the NASA /ESA Solar and Heliospheric Observatory (SOHO) spacecraft
(Domingo 1988).

1.2 Overview of Thesis

This thesis deals with some of the observable properties of high-£ solar p- and
f-modes. We present measurements of the temporal frequencies of the modes,
and also the velocity amplitudes of the oscillations. The key difficulty in studying
these modes (especially the velocity amplitudes) is the need for high spatial resolu-
tion. Unfortunately, the Earth’s atmosphere robs us of this needed resolution via
what astronomers refer to as “seeing.” Atmospheric seeing blurs and distorts high-
_ resolution images of the Sun. As such, we have developed a method for correcting

for these effects.

In Chapter 2, we present the needed theoretical background for the under-
standing of solar oscillations. We discuss the concept of resonant cavities within
the Sun, and their associated normal modes. The existence of a mode does not
imply that there is any energy in the mode, just as the fact that a tuning fork can
vibrate at a given frequency does not mean that it is vibrating. Accordingly, the
most likely mechanisms that can pump energy into and drain energy out of the

modes are discussed.

The frequency measurements are covered in Chapter 3. To this end, we describe

the principles behind the data-acquisition system that is used to create a time
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'sequence of Dopplergrams, or velocity images, of the Sun. The starting point for
most helioseismology studies is the calculation of the oscillation power spectrum
(known as a kp-w diagram), which we create from the Dopplergrams. Since we
are not able to resolve individual modes in this spectrum, we have approximated
the mode frequencies using a multi-Gaussian approach. This results in a table of
mode frequencies which will extend the measurements described in § 1.1. These
high-£ frequencies sample the very top of the convection zone, and it is hoped that
the physics of this region in the Sun can be better understood through inversions of
these frequencies. As an example of an open question, we find a significant difference
between the measured and calculated values of the f-mode frequencies. We have

no explanation for this discrepancy.

The mode velocity amplitudes are measured using essentially the same tech-
nique as that used to measure the frequencies. Chapter 4 covers our velocity am-
plitude measurements. An earlier attempt by Libbrecht et al. (1986) to study the
mode velocity amplitudes was inconclusive because of the effects of atmospheric
seeing. We repeat their observations and correct for the effects of seeing. Further-
more, we hope to be able to make some statements concerning the mode excitation
and damping mechanisms. As mentioned above, seeing artificially reduces the am-
plitude of the high-£ modes. We correct for this effect by measuring the modulation
transfer function (MTF) of the atmosphere by looking at the atmosphere-induced
blurring of the solar limb. We describe the limb profile data along with our model
of the seeing which we ﬁave used to create the MTF. The MTF is used to correct
the amplitude response of the kj-w diagram. The remainder of Chapter 4 is con-
cerned with presenting the corrected amplitude measurements in a useful form. We
find that the frequency of the peak velocity power (as a function of £) increases
with £. We know of no explanation for this result. The most widely accepted
solar oscillation excitation mechanism is that the modes are stochastically excited
through interactions with turbulent convection in the solar convection zone. The

key idea behind this theory is that the modes share energy with convective eddies.
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“For £ 5 200, we find that the mode energy is approximately constant. Mode energy

is expected to be constant if the modes are in energy equipartition with the eddies.

Finally, in Chapter 5 we address a very difficult subject—the degree to which
we have accurately corrected for the effects of atmospheric seeing. We examine
this issue from three different points of view. First, we discuss our choice for the
model of the seeing and compare it to those used by others. Second, we address
any systematic errors that may be introduced by the model used. Last, we describe

a test of the seeing measurements using the 1989 March 7 partial solar eclipse.



CHAPTER 2
Theoretical Background

2.1 Introduction

Of all the phenomena visible in the solar photosphere, the five-minute oscil-
lations are one of the most completely understood, and are widely used as tools
to probe the interior of the Sun. In this Chapter, we shall review the theory of
solar oscillations. The oscillations have been explained as normal-mode, acoustic
vibrations in resonant cavities within the Sun. There are two key issues to con-
sider: the frequency spectrum of the oscillations, and the energy (or in terms of
observed quantities, the surface velocity) spectrum. We will begin by introducing
the equation of motion for the solar plasma. This leads to the concept of resonant
cavities and their associated eigenfrequencies. While this model has worked quite
well, the quality of the observations has advanced to the point where theorists are
using observational data to generate minor refinements to the standard solar model.
Given the concept of resonant cavities in the Sun, we next address the question of
what mechanism is exciting the normal modes of the cavities. The most likely
explanation is that the modes are excited stochastically through interactions with
- turbulent convection. This model has not yet reached the level of refinement .of the
former, but it is clear that progress is being made. Throughout this réview I have
drawn very heavily from three very excellent review articles, the first by Deubner
and Gough (1984) for the description of the resonant cavities and their frequencies,
the second by Libbrecht (1988c) for the description of the excitation and damping

mechanisms (a more technical review can be found in Cox, Chitre, Frandsen, and
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Kumar 1991), and finally, the third, by Libbrecht (1988a) which covers both topics.

" Other very good review articles are referred to as required.
2.2 Propagation Characteristics of Solar Oscillations

Sihce the oscillations have very small amplitudes, along with very high Q-
values, they can be described by a linearized, adiabatic theory. The linearized
equations of motion for conservation of momentum, energy, and mass are normally
solved numerically for a given solar model. However, in order to gain a better
physical understanding of the oscillations, these equations, in a spherical geometry,

can be reduced to (Deubner and Gough 1984)

d?v
EE‘ + kg\Il = 0, (2.1)

where we have also ignored perturbations in the gravitational potential (the Cowling
approximation). Here, ¥ = p'/2¢?V . ¢, where p, ¢, and & are the density, the
speed of sound, and the fluid displacement vector, respectively, and k,. is the radial

component of the wave vector. The eigenfunctions for the displacement are

fnlm = Re{ [Rnl(r)nm(ea ¢)l’

2.2
Yem(8, ¢) >

1 aYm 9, iw
+@ne(7‘)( 26 °tone 16(¢ ¢)¢)}e th}’

where Y,(6,¢) is a spherical harmonic, R,(r) and ©,,(r) are the radial and

horizontal displacemeﬁt eigenfunctions, and r, , and ¢ are unit vectors in spherical
coordinates. Perturbations to scalar quantities (such as p, p, and T) are given, for
example, by

6pnem = Re [5png(r)ng(0, ¢)ei“’""”t] , : | (2.3)

where 8pn¢(r) is a radial wave function. In Eqgs. (2.2) and (2.3), wpem is the angular
frequency of the mode, and n, ¢, and m are integers, where n is the order of the
mode, £ is the degree of the mode, and m is the azimuthal order of the mode. There

are n nodes in the radial direction, 2m zeroes in the equatorial direction, and from
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" pole to pole there are £ — |m| nodes. There are 2¢ + 1 values of m with |m| < 4.
‘Modes with m = 0 are called zonal modes, and those with m = +¢ are called
sectoral modes. The eigenfunctions described by Eq. (2.2) are somewhat analogous

to the wave functions of a hydrogen atom.

The dispersion relation for the radial component of the wave vector, k.., is given

by .
W? — 2 N?

kl=———=+k} (5—1), (2.4)

c
where the acoustic cutoff frequency, w,, is defined as

2
w? = — (1—2%), (2.5)

the horizontal component of the wave vector, kj, is
= —— (2.6)

and the square of the buoyancy (or Brunt-Vaiisild) frequency, N, is

N?=g (% - i) , (2.7)

c2

where c is the speed of sound, H is the density scale height, and g is the acceleratibn
due to gravity. The buoyancy frequency is the frequency at which a parcel of gas in a
gravitational field will oscillate when displaced from its equilibrium position. When
N? < 0, the gas is unstable in response to small perturbations, and convection
results. Note that the dispersion relation is independent of m. This suggests that
the oscillation frequencies will be degenerate in m. This also follows from the fact
that we are treating the Sun as being spherically symmetric, and hence, there is no

preferred orientation of the angular coordinate axes.

If k2 < 0, then the oscillations are evanescent and propagation does not oc-
cur. If k2 > 0, then the oscillations are wavelike and propagation does occur; i.e.,
energy will be transported. In the latter case, there are two classes of propagating

normal modes in the Sun: p-modes in which pressure is the restoring force, and
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" g-modes in which gravity (or buoyancy) is the restoring force. The p-modes are
‘essentially acoustic vibrations. There is a third class of propagating waves that are
not described by the above formalism, namely, the f-modes. These are essentially
compressionless surface gravity waves in which ¢ = 0. The f-mode dispersion
relation is

w? = gky,. (2.8)

In order to further examine the propagation characteristics, we can rewrite

Eq. (2.4) as
2 2 2
2 _ w LU+ W
kr_g(_ﬁ)(l_:;’;)’ (2.9)
where
2 1 o2 2 1/ w2 212 2 o2 1/2
wi =3 (S +w?) £ 1 (S? +w?)” — N2S; , (2.10)
and where

Sg = c—-w = ckh, (2.11)

which is known as the Lamb frequency. As stated before, we must have k% > 0 for
propagation to occur. This occurs for either of the following two cases: (a) w? > wi
and w? > w?, or (b) w? < w? and w? < w?. Clearly, these two cases represent

-

high- and low-frequency regimes.

For the high-frequency case (a), Eq. (2.4) reduces to

w2 —(.()2

k2 = —5— - k2, (2.12)

which is the dispersion relation for acoustic waves in a stratified atmosphere (Lei-
bacher and Stein 1981). This allows us to identify case (a) as being p-modes. We
now want to consider how the p-mode propagation characteristics vary with depth.
The sound speed increases with temperature as ¢ « T'/2, and therefore increases as
r decreases. Consider an acoustic wave of frequency w and horizontal wave number
ky that is propagating downward. According to Eq. (2.12), k, decreases as the

wave goes down (since a region of increased sound speed is being entered), and the



-11 -

~wave is refracted away from the radial direction. The wave turns around when its
“horizontal phase speed, w/kj, exceeds the local speed of sound. This is essentially
a restatement of Snell’s Law—a ray is refracted away from the normal when it
enters a region of decreasing index of refraction (or increasing phase speed). We
see here from Eq. (2.12) that when w < w, an acoustic wave will not propagate.
" The acoustic cutoff frequency w, decreases with temperature as w, o< T~1/2, and
therefore, increases as r increases. At some point w, will increase above the wave
frequency w, and the wave will no longer propagate and will be totally reflected.
The acoustic cutoff frequency in the photosphere is v, ~ 5.5mHz, and any wave
with a frequency higher than this will propagate out of the photosphere and into
the ch'romosphere where its energy may be dissipated into chromospheric heating,.
These waves will no longer be trapped in the Sun. In summary, p-waves encounter
two turning points that define the boundaries of resonant cavities in the Sun. The
lower turning point is produced by refraction (caused by a change in the sound
speed), and the upper turning point is produced by internal reflection (caused by

change in the acoustic cutoff frequency).

For the low-frequency case (b), Eq. (2.4) reduces to

N2 2
k2 = k2 (Tu? - 1) —Ze (2.13)

c?’

which is the dispersion relation for gravity waves in a compressible atmosphere
(Leibacher and Stein 1981). This permits us to associate case (b) with g-modes. -
The propagation characteristics for g-modes are slightly different from those for p-
modes. From Eq. (2.13), we see that when w > N, gra,vity.waves will not propagate.
- This condition holds in the convection zone where N? is negative (this is, in fact,
the defining characteristic of the convection zone). Therefore, gravity waves will not
propagate within the convection zone, and are evanescent in this region because the
solar material is buoyantly unstable. The condition w > N also holds very near the
center of the Sun. In summary, g-waves encounter a turning point at the base of

the convection zone, or at r = 0.71Rg, where Rg is the radius of the Sun, and can
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propagate from this point down to very near the center of the Sun. We shall not
| go into much more detail concerning g-modes, since this work covers only f- and
p—mo'de oscillations. There are many review articles (in addition to those préviously
mentioned) that cover g-modes, such as Toomre (1984), Severny and Kotov (1984),
Christensen-Dalsgaard (1988a), and Vorontsov and Zharkov (1989).

The above discussion can all be united in a propagation diagré,m that shows the
critical frequencies wy. Fig. 2.1 shows such a propagation diagram for a standard
solar model. w is plotted as a solid curve for several values of £, and w_. is plotted
as a dashed curve. The horizontal lines represent modes: When they are solid,
the mode is propagating, and when they are dashed, the mode is evanescent. This
picture is very similar to those used to describe quantum mechanical potential well
problems. From this picture we see how waves are trapped in the solar interior to
form normal modes. The p-modes are trapped between an outer boundary very
near the surface of the Sun, and an inner boundary, the location of which is ¢- and
w-dependent. Furthermore, we see that the low-£ modes penetrate deep into the
Sun, but not to the core, and the high-£ modes all exist just below the photosphere.
The g-modes can propagate almost all the way to the center of the Sun, but are

reflected at a boundary just below the base of the convection zone.

This leads to a very simple picture of a p-mode as being an acoustic wave
“trapped in a cavity defined by two concentric spherical surfaces, the outer surface
of which is just below the photosphere (see Fig. 2.2). We do not observe the actual
propagating wave, but instead, see the evanescent action of the wave in the photo-
sphere. Since g-modes are trapped deep in the Sun, it is very difficult to see their
evanescent action in the photosphere, as it has been greatly diminished. The same
holds true for the very low-frequency, low-£ p-modes (see Fig. 2.1). As a result of
this, there is very little observational evidence for these two classes of modes. In
the case of the g-modes, this is very unfortunate, since they are the modes that best

sample the deep interior of the Sun.
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2.3 The p-Mode Frequency Spectrum

Oscillation frequencies Vpgm = Wpem /27 can be estimated from the condition

for a normal mode:

/ i krdr ~ (n + €)m, (2.14)

where rj, and roy; are the locations of the inner and outer turning points. Basically,
this condition states that an integral number (n) of half wavelengths must fit be-
tween the boundaries of the cavity. The extra phase factor of er (where e is of order
unity) takes into account the fact that the oscillation amplitudes do not actually go
to zero at riy and roy¢, but instead must match the decaying, evanescent solutions

outside the cavity.

Using Eq. (2.14), a low-£ (n > £), asymptotic expression for v,¢ was derived
by Vandakurov (1967) and later modified by Tassoul (1980):

1 1
Unt = 1 [n + ':2- (€+ §) + €p} + (Sn[, (215)

where .

Ro g -
Yy = 2/ - = 135 uHz, (2.16)

0
and where

e = — _oz£(£—+12:_,8_ (2.17)

& n+ %E +e
The constant e, is of order unity and is related to the effective polytropic index
near the photosphere. The constants o and 3, also both of order unity, are related
to the equilibrium structure of the Sun. Note that the oscillation frequencies are
approximately evenly spaced in order n for modes of the same degree £. Further note
that modes separated by An = F1 and A¢ = 12 (i.e., leaving n + 3£ unchanged)

have approximately the same frequency.

A high-£ (¢ > n) asymptotic expression for v,¢ can also be derived from

Eq. (2.14) (Deubner and Gough 1984):

2 L (n + €)Gkp, (2.18)

V —
272

~

£
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" where G = —dc?/dr and is of order the solar surface gravity g. For £ > 1, and since

these modes are trapped just below the photosphere, we can make the approxima-

tion
kp ~ ¢ (2.19)
"~ Ro’ '
- and therefore, Eq. (2.18) becomes
1 £
2~ —_—
Vnt N 5 (n+ E)GR@ . (2.20)

This equation describes parabolas (for constant n) in the £-v (or kj-w) plane as
shown in Fig. 2.3 (and also Figs. 3.6 and 3.7). It is the frequencies described by
these parabolas that are the subject of Chapter 3.

The m-degeneracy in the oscillation frequencies can be lifted by the application
of deviations from spherical symmetry. The most obvious deviation is uniform

rotation, which produces a frequency splitting of the form

Vntm = Vnto + mvg, (2.21)

where vy ~ 0.440 pHz is an average solar rotational frequency. The concept here
is analogous to the Zeeman effect in atomic physics in which the application of
a magnetic field lifts the degeneracy of the energy levels of an atom. There is a
physical explanation for Eq. (2.21) in which we consider two modes (n,£,+m) in
a spherically symmetric Sun. These two modes are traveling in opposite directions
(owing to the the e£™m terms contained in the spherical harmonics Yz +m(6, ¢)).
When rotation is included, the two modes are advected past the observer at different
- rates. The prograde mode (e.g., +m) travels faster than normal, and the retrograde
mode (e.g., —m) travels slower than normal. These changes can be interpreted as
changes to the oscillation frequéncies. Further deviations from spherical symmetry,

such as a latitudinal dependence in the rotation, produce splittings of the form

Untm = Vnto + mvy + mivg + . 7 (2.22)
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Measurements of these deviations are used to measure solar rotation as a func-
 tion of depth and latitude (Harvey 1988, and other references contained in those

proceedings; and Libbrecht and Morrow 1991).

Taking into account the frequencies specified in Egs. (2.8), (2.15), and (2.20),
Eq. (2.21), which describes rotational frequency splitting, and the fact that v, ~
5.5mHz, we find that there are about 10 million modes in the range 0 < £ < 3000,
which is a spectrum rich with information about the internal structure of the Sun.
Beyond £ = 3000, all modes are above the acoustic cutoff frequency, and therefore

propagate out of the photosphere.
2.4 Excitation and Damping Mechanisms

The evidence that the séla.r five-minute oscillations are trapped acoustic waves
is quite compelling. The errors between the calculated frequencies of the oscillations
and the measured frequencies are in the 0.5% to 3.0% range (at least for 0 < £ <
1000), with the discrepancies increasing with £ and v (Christensen-Dalsgaard 1990).
In fact, the state of the field is now such that the measured frequencies are used to
study the internal structure of the Sun (see Stix 1989 for a brief review; see also
Brown, Mihalas, and Rhodes 1986). However, the excitation mechanisms that drive
the oscillations to their observed amplitudes have yet to be fully explained. There
are two main types of excitation mechanisms that have been proposed, namely,
overstability mechanisms, and interactions with turbulent convection. There are
also other less commonly accepted mechanisms (see Brown, Mihalas, and Rhodes
1986 for a brief review). We shall discuss these two categories of mechanisms in the

following paragraphs.

An overstability is a situation in which a perturbation grows with time; i.e., it
is a situation of positive feedback. A system driven by an overstability mechanism
is said to be self-excited. The overstability mechanism most commonly studied

in conjunction with solar oscillations is the x-mechanism. In the x-mechanism,
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" the opacity, Kk, can be thought of as a “radiation valve” in which a compression-
.4 induced increase in x causes an excess of radiation to be trapped, which further
heats the solar plasma. The resulting expansion is greater than the previous cycle
of expansion. The x-mechanism is responsible for the large (AR/R ~ 0.1), slow
oscillations in Cepheid variables (with periods measured in days) and RR Lyrae

stars (with periods measured in hours).

There have been a number of attempts to calculate the stability of p-modes
(Ando and Osaki 1975; Goldreich and Keeley 1977a; Christensen-Dalsgaard and
Frandsen 1983; Kidman and Cox 1984; and Antia, Chitre, and Narashima 1986).
However, the results have been inconclusive, primarily because of the difficulties
associated with modeling interactions of the oscillations with radiation and con-
vection. Specifically, if the x-mechanism were the dominant excitation mechanism,
then the driving would occur in the hydrogen ionization zone (which is just below
the photosphere), where energy is transported primarily by conveétion and to a
lesser extent, by radiation. The key difficulty lies in calculating the modulation
of the convective energy transport processes that is a result of the presence of the
acoustic oscillations. Assuming that the solar p-modes are found to be overstable,
there must also be a nonlinear damping mechanism operating to limit the growth

of the mode amplitudes to finite values.

Kumar and Goldreich (1989) have taken another approach to this problem.
They essentially assumed that the p-modes are self-excited by an overstability mech-
anism, and then they investigated possible damping mechanisms, specifically non-
linear 3-mode coupling. They have explored the implications of these assumptions
by comparing them to observations, and have concluded that the modes are not
overstable. Their argument has two parts to it, one of which applies to p-modes,

and the other of which applies only to f-modes.

For small-amplitude, overstable p-modes, the energy input rate is

a‘ = aE, (223)
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‘where a > 0. In order for the mode energy to remain finite, there must be a
" nonlinear damping term of the form —3E? (with 8 > 0) in the energy growth-rate
equation. This would give a steady-state energy of E = a/f. Kumar and Goldreich
have looked at 3-mode coupling, which was thought to be the most efficient method
of limiting the energy of overstable solar p-modes, and have found that the energy

dissipation rate is

dE

— =E, (2.24)

where v > 0. Therefore, the total rate of change of the p-mode energy is

‘Z—f — (a=)E. (2.25)
If @ > v, then the mode energy will grow exponentially, and if & < 7, the mode
energy will decay to zero. -Neither of these situations can be the case since we
observe the modes to have nonzero, steady-state energy values. If a = v, then the
mode energy will be constant (as observed), but of an arbitrary value that is not
determined by the overstability mechanism. It is, however, very unlikely that the
energy input and dissipation rates would exactly cancel in this fashion. Therefore,
Kumar and Goldreich conclude that the p-modes are most likely not overstable. It
should be noted, however, that there may be some subtle form of nonlinear damping

acting on the solar p-modes, which has not yet been investigated.

The f-modes are essentially compressionless waves, and therefore cannot be
self-excited by the x-mechanism. Kumar and Goldreich have considered the pos-
sibility that the f-modes receive energy from p-modes via 3-mode couplings, and
have found that-two competing processes are at work. They have found that two
p-modes will couple with an f-mode to transfer energy into the f-mode.. On the
other hand, an f-mode will couple with either an f- or a p-mode and a propagat-
ing wave to remove energy from the f-mode. (A propagating wave, here, refers
to a wave with a frequency higher than the acoustic cutoff frequency, which will,
therefore, propagate out of the solar atmosphere. Such a wave removes energy from

the atmosphere.) The net outcome is that the resulting f-mode energy is several
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~orders of magnitude less than the energy of a p-mode of similar frequency. Since
* f-modes are observed to have roughly the same energy as p-modes with compara-
ble frequencies (see Chapter 4), there must be some other excitation mechanism
driving the f-modes. It is possible that an overstability mechanism (other than the
-mechanism) is driving the f-modes, but there are none that satisfy the above ar-
gument regarding overstability of p-modes. As a result, Kumar and Goldreich find
that it is not unreasonable to assume that the\ mechanism that excites the p-modes

also excites the f-modes.

The other leading contender for the mode excitation mechanism is that the
modes are stochastically excited by interactions with turbulent convection, the de-
tails of which were first worked out by Goldreich and Keeley (1977b) and later
refined by Goldreich and Kumar (1988, 1990). The basic idea here is that turbu-
lence in the convective zone generates acoustic noise. Some of this acoustic energy
is then transferred into the acoustic modes. The concept is similar to what hap-
pens when one feeds a microwave cavity with a broad-band frequency spectrum of
electromagnetic radiation — the cavity resonates at its resonant frequencies. Of

course, with the Sun, the details are much more complicated.

Acoustic noise is generated by turbulence via the Lighthill mechanism (Lighthill
1952; see also Stein and Leibacher 1981 for a very simple explanation). There are
two types of turbulence discussed in the Goldreich/Keeley/Kumar papers: free
turbulence, which is turbulence in the absence of any external forces, and forced
turbulence, which is turbulence in the presence of an external driving force, such as
gravity. Lighthill found that the dominant emission process for homogeneous, free
turbulence is quadrupolar in nature. The resulting acoustic power is proportional to
M? where M is the Mach number of the turbulence. One sees, right away, that the
power radiated by turbulence is highly sensitive to the turbulence model. Any lack
of understanding of the turbulence (of which there are many) is greatly amplified

when calculating the acoustic noise generated by the turbulence. It should be noted
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" that the mechanism at work here is similar to that which is responsible for noise

~ from jet aircraft engines. (However, I have yet to personally test this theory! *¥)

Goldreich and Keeley (1977b) considered not only the emission of acoustic
noise by turbulence, but also the absorption of acoustic noise by turbulence. They
considered quadrupole emission and absorption terms and found that the modes
were in energy equipa,rtitidn with resonant, convective eddies; i.e., the energy in a
mode, F, is approximately the same as the kinetic energy in a convective eddy that

has a turnover time equal to the period of the mode:
E ~ mv?, (2.26)

where m is the mass of the eddy, and v is the characteristic velocity of the turbulence.
They related the eddy size to the scale height, H, and used m ~ pH3. Eq. (2.26) can
be related to the observed photospheric mode velocities by introducing a quantity,
M,, referred to as the mode mass (Goldreich and Keeley 1977b), which can best be
thought of as that quantity of mass which, when moving with the surface velocity
of a given mode, has the same energy as the energy in the mbde. Then the energy
of a mode is given by

E = M,P,, (2.27)

where P, is the observed surface velocity power. Given this basis of comparison,
Eq. (2.26) underestimates the observed mode energies by several orders of magni-

tude.

Goldreich and Kumar (1988) have since refined this work and considered the
effects of gravity on acoustic emission and absorption, and found that the dominant
emission term is dipolar, whereas the dominant absorption term is still 5, quaLdrupole.
It should be noted that their model consists of turbulence in a box, which bears
little resemblance to the actual Sun. They find that for homogeneous, gravity-driven

turbulence in a box, the energy in a mode is increased by a factor of M ~2 so that

E ~mc?, (2.28)
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* where they now associate the convective eddies with granulation cells. Note that
'_ the granulation-cell turnover times are of order five minutes, which is just right
for driving the five-minute oscillations. Also note that the spread in granulation
cell turnover times nicely accounts for the fact that the 10 million different modes
all have approximately the same energy (see Chapter 4), and are simultaneously
excited. Libbrecht (1988a) shows, as follows, that Eq (2.28) is in rough agreement
with the low-£ observations (Libbrecht 1988b). The energy in a convective eddy is
simply

E~pHIL?S?, (2.29)

where p ~ 1077 gm/cm® is the density at 75900 = 1, H =~ 100km is the scale
height, L ~ 1000 km is the horizontal size of a granulation cell, and ¢ &~ 10km/sec.
This gives E ~ 10?8 ergs which is, as stated, in rough agreement with the low-¢

observations.

Recently, Goldreich and Kumar (1990) have further modified their theory by
introducing a density gradient in their turbulent fluid, thereby better approximating
actual conditions in the Sun. They now find that monopole emission is also a
significant factor. This has the effect of canceling out the dipole emission of the
previous model, thereby reducing the mode energy by a factor of M2, which, once
again, gives a mode energy given by Eq. (2.26). However, in this case, we still
associate the convective eddies with granulation cells. Since M ~ 0.3 just below the
photosphere, the mode energy is reduced by a factor of ~ 10, giving E ~ 1027 ergs.
This is in rough agreerhent with the higher-£ observations (see Chapter 4).

At any rate, it appears most likely that the modes are stochastically excited
by interactions with turbulent convection. This mechanism has the advdntage in
that it explains the observed f- and p-mode energies to “astrophysical accuracy.”
It is also apparent that further work is needed to fully determine the excitation and

damping mechanisms.
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Figure Captions

Figure 2.1: A propagation diagram for a standard solar model. Solid curves
represent w4 /2w, and dashed curves represent w_ /27 in the regions where the
critical frequencies are real. The lower horizontal axis scale extends out to r/Rg =
0.9995; beyond that value, the scale is expanded by a factor of 100, and is indicated
on the upper horizontal axis, where A is the height above the photosphere. The
curves w4 are for £ =1, 5, 50, and 100. In all cases, w4 are increasing functions of
¢ at fixed r/Rg, which permits the identification of the curves. In the interior, the
w— curves for £ = 5, 50, and 500 are essentially indistinguishable, as are all four w,
curves in the atmosphere, where w & w.. The thin horizontal lines represent normal
modes; they are continuous in zones of propagation and dashed in the evanescent
regions. This picture is very similar to those used to describe quantum mechanical
potential well problems. The lowest-frequency mode is an £ 2 25 g-mode. Its
amplitude is likely to be substantial in either the interior or the atinosphere, but
not both. The next line represents an £ = 1 g;-mode (where the subscript is the
radial order n of the mode), which has the character of a p-mode in its outer zone of
propagation. The third line is an £ = 5 p,-mode, which is a simple p-mode confined
to a single region of propagation. The highest-frequency line is an ¢ = 500 pg-
mode; because the evanescent regions are thin, this mode could have a substantial
amplitude in both the photosphere and the chromosphere. (From Deubner and
Gough 1984). '

Figure 2.2: A ray diagram for acoustic waves trapped in the solar interior. The
circle represents the solar surface, and rays for standing waves for different values of ¢
are plotted. This diagram shows schematically that lower £ modes penetrate deeper
into the solar interior, and that the wave vector (and also the fluid displacément) is
predominantly vertical at the surface. (From Libbrecht 1988a, which was adapted
from Toomre 1986).

Figure 2.3: A schematic ¢-v diagram showing the loci of p-mode frequencies de-

termined from a theoretical solar model. The different lines (or “ridges”) are for
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" different values of the radial order n, and are labeled on the right side of the dia-

gram.
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CHAPTER 3

Frequency Measurements

3.1 Introduction

The solar normal mode frequencies, vy, as a function of degree, £ (averaged
over azimuthal order, m), and radial order, n, are particularly useful in modeling
the radial structure of the Sun, since the agreement between the measured and
calculated mode frequencies can be used to test solar models. Without the normal
mode spectrum, one would have to be satisfied with reproducing little more than
the observed solar radius and luminosity, given the Sun’s mass, age, and chemi-
cal composition—not a good situation, given the uncertainties in the solar helium
abundance and our lack of understanding of the physics of convection. Further-
more, because differént solar oscillation modes penetrate the solar interior to dif-
ferent depths, it is possible, with an accurate set of mode frequencies, to invert the
data to determine the internal sound speed as a function of radius (Christensen-
Dalsgaard et al. 1985; Christensen-Dalsgaard 1988b; Shibahashi and Sekii 1988;
and Vorontsov 1988). From this, one would hope that a better understanding of

the physics of the solar interior would ensue.

Much work has been done in measuring the frequencies of low- and intermediate-
£ modes (see, for example, Duvall and Harvey 1983, 1984; Grec, Fossat, and Pomer-
antz 1983; Woodard and Hudson 1983; Henning and Scherrer 1986; Libbrecht and
Zirin 1986; Duvall et al. 1988; and Jiménez et al. 1988), as these modes sample the
greatest range in solar depths. At first glance, it would seem that high-¢ (¢ 2 150)
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" ‘modes are not as useful for inversion purposes since they are confined to the upper
 1-2% of the solar interior. However, the pressure is rapidly varying in this depth
range, and as a result, the high-£ modes sample a large range of pressure values,
and are, therefore, also useful for understanding the structure of the convection
zone. Unfortunately, not much work has been done in this area of measuring the
frequencies of high-¢ modes. The work that does exist typically uses data with
very low signal-to-noise ratios. Also, when data with good signal-to-noise ratios
exist, very little effort has been made to accurately measure the mode frequencies
(Kneer, Newkirk, Jr., and von Uexkiill 1982; Deubner 1983; Gouttebroze, Damé,
and Malherbe 1984; Nishikawa et al. 1986; and Hill 1988).

With this in mind, we have undertaken to produce a new set of high-degree
solar oscillation mode frequencies, with as high an accuracy as possible, and covering -
the greatest range in £ and v possible; our results are presented in Table 3.2. This
table, using new and better data, covers higher values of £ and a greater range in
v, plus frequency uncertainties and systematic errors that are considerably smaller
than those quoted in previous papers. Much of the work in this chapter is based

on, and is an extension of, work presented by Libbrecht, Woodard, and Kaufman

(1990).
3.2 Overview of Data Analysis

A helioseismology data set usually consists of a time series of intensity or ve-
locity images of the Sun, with sample intervals of about one minute and lengths
ranging from one day to several months. In this work, we have used velocity im-
ages, or Dopplergrams, which are produced by differencing images made in the red
and blue wings of a solar absorption line. Here we shall briefly describe the tech-
niques used for modal decomposition of a time series of Dopplergrams. We will

later expand upon this description of the analysis.

A standard practice used for identifying individual solar normal modes is to

fit a time series of solar velocity images to projected spherical harmonics with a
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l_ range of £ and m, and then Fourier-transform the time series of fit coefficients. The
. resulting power spectra, S¢,(v), show a number of sharp features that are due to
solar p- and f-modes, and these power spectra are further analyzed to determine
the solar oscillation frequencies. Another standard technique commonly employed
to increase the signal-to-noise ratio is to average the power spectra over all m for a
fixed £, forming averaged power spectra, Sy(v), after first displacing the individual
Sem(v) spectra to remove the effects of rotational splitting. The resulting peaks
in the averaged power spectra are then analyzed to determine the frequencies of
the p- and f-modes at fixed £ and n, which approximate what one would find if
the Sun were spherically symmetric and nonrotating. With this brief description
of the modal decomposition of solar oscillation data, we begin the discussion of the

particular analysis used on the current data.
3.3 Instrumentation and Data Acquisition

Solar oscillations, which are essentially mechanical vibrations of the Sun, are
typically observed using one of two techniques. The first is to look at the result-
ing intensity changes that are due to compressions and rarefactions of the solar
atmosphere. The second method is to look at the motion of the solar photosphere
using an absorption line that has been Doppler-shifted by the oscillations. The
latter method, while instrumentally more complicated, is capable of .producing data
with a much higher signal-to-noise ratio than the former technique. The velocity of
the solar photosphere at a given point can be measured by sampling the red and
blue wings of an absorption line. The difference in these two quantities is propor-
tional to the velocity of the absorbing medium at that point. Velocity images, or
Dopplergrams, of the photosphere were first made by Leighton (Leighton 1959; and
Leighton, Noyes, ahd Simon 1962), and are produced by making images of the Sun
in the red and blue wings of an absorption line, and then subtracting the two images.
This technique necessitates the use of a very narrow bandpass (< 0.25A) imaging fil-
ter so that light from only one wing of the line can be seen. Several different types of

filters meeting this requirement are currently in use in solar astronomy. In this work
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~ we have used a birefringent, or Lyot, filter (Lyot 1933). In essence, the birefringent
filter works by passing linearly polarized light through a birefringent crystal (usu-
ally quartz or calcite). The birefringence produces a wavelength-dependent phase
shift, and hence, a wavelength-dependent rotation of the input polarization vector.

The resulting transmission profile, T, after passing through an analyzing polarizer,

T = gosz (I%) , (3.1)

where d is the thickness of the crystal, and € is the difference between the fast

1s

and slow indices of refraction of the crystal. Peaks in the transmission profile are
given by n)g = de, where n is an integer. If we let A\ = XA — Ao < Ag, then the
transmission profile can be approximated by

T = cos® (WA/\) . (3.2)
Ao

The important point here is that there are approximately equally spaced maxima in
the transmission profile. One can vary the spacing between maxima by varying the
length and/or properties of the birefringent crystal. By combining several stages
of the crystal/polarizer elements (with appropriately chosen spacing between trans-
miséion maxima), one can create a filter with a bandpass of ~ 0.25A or smaller.

The birefringent filter is described in more detail by Evans (1949).

By varying the orientation of the pola.riza,tion.vector of the initial polarized
light to the filter by +90°, the center of the filter bandpass can be shifted by +1/2
of the bandpass. This can be accomplished by either mechanically rotating a po-
larizer, or by electrically chopping an electro-optic crystal. The latter technique
was used for these observations, and employed a polarizer and A/4 plate (creating
a circular polarizer), and a KD*P crystal. The circular polarizer sends circularly
polarized light into the KD*P crystal. The voltage applied to the crystal is chopped
by an amount such that the crystal produces £7/4 of retardation. This results in
an output consisting of linearly polarized light, the two states of which are perpen-

dicular to each other, and which can serve as inputs to the filter. This technique



-30 -

" is described in more detail by Mosher (1976). It should be noted that the filter
'_ described here is an idealization of the actual filter. The actual filter is somewhat
more complicated in design and requires other optical elements to function properly
as a Doppler analyzer. It should also be noted that with minor modifications, the

techniques described above are commonly used to measure solar magnetic fields.

All data described here were collected in 1987 and 1988 at Big Bear Solar
Observatory (BBSO) using the BBSO videomagnetograph (VMG) system config-
ured for Doppler measurements (Zirin 1985). The 6439 A Ca line was used for
all measurements. The typical optical setup used for these observations is shown
schematically in Fig. 3.1. The output of the telescope was sent through several ancil-
lary filters (typically neutral density and heat absorbing filters), and an interference
prefilter with a bandpass of ~ 20 A. The beam then passed through a “wavelength
selector,” consisting of a linear polarizer, a A/4 plate (these two elements forming a
circular polarizer), and an Inrad KD*P electro-optic crystal. A field lens was used
to make the beaxh more collimated as it passed through a Zeiss 0.25 A birefringent
filter, originally designed for use at H,, which has been modified for use at 6439 A.
The filter output was re-imaged onto a COHU 4810 CCD camera with a standard
RS-170 video output.

The data acquisition system is shown schematically in Fig. 3.2. A PDP 11 /44
microcomputer controlled the acquisition of data. Irﬁages were taken at video rates
(30 images/sec) and were digitized into eight-bit 512 x 481 pixel images using a
Quantex DS-20 image processor. For technical reasons, the usable part of the image
was slightly smaller than this. Under computer control, a red image was acquired
and stored in the 12-bit memory of the Quantex. After switching the voltage on
the KD*P crystal, a blue image was acquired and subsequently digitally subtracted
from the stored red image, resulting in a velocity-proportional image. This process
was repeated 96 times, each time adding the resulting red/blue pair to the Quantex
memory. This entire procedure resulted in a Dopplergram, consisting of integrated

red/blue pairs, that took slightly less than 10 seconds to create. Dopplergrams
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 were collected at the rate of one per minute. Each Dopplergram was written to
magnetic tape, and was also displayed on a video monitor. The video monitor was
then photographed by. a Mitchell 35mm motion picture camera operated in single
frame mode by the computer. This resulted in a movie of the velocity data, which,
quantitatively, was not of much value, but was very useful for debugging purposes.
It should be noted that the VMG system (configured for Doppler measurements)
operates in much the same fashion as the data acquisition system on the BBSO

dedicated helioseismology telescope described by Libbrecht and Zirin (1986).
3.4 Description of Data

As mentioned above, data were collected at BBSO for a few weeks in the sum-
mers of 1987 and 1988. In the end, only one day from each year was analyzed as
all of the remaining days suffered from problems (e.g., equipment failures, clouds,
poor seeing, etc.). Each data set consists of a time series of Dopplergrams, taken
at a rate of one per minute, of the center portion of the solar disk. Since different
telescopes were used for each of these observing campaigns, most of the relevant
parameters describing the two data sets are different. Table 3.1 shows these pa-
rameters; however, the primary difference between the two data sets is that the
1988 set has approximately twice the spatial resolution of the 1987 set. These data
sets were originally made for the purpose of measuring velocity power as a function
of £ at high £ (Kaufman 1988, and Chapter 4). Such measurements are easily af-
fected by atmospheric seeing. To correct for this effect, the telescope was moved
from the center disk to the limb, at approximately 15-minute intervals, and a se-
ries of short-exposure limb profiles were acquired. This was accomplished without
interrupting the collection of Doppler images. Atmospheric seeing was then quan-
titatively determined from smearing of the limb profile. For the purposés of the
frequency measurements described in this chapter, no correction for the effects of

seeing has been made. Fig. 3.3 shows a typical Dopplergram.

Since the Dopplergrams are only partial disk images and the solar limb is not

visible, we have no direct way of accurately determining the image scale from the
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Table 3.1

Observational Parameters

Date 1987 July 23 1988 July 19
Time (UT) 14:45-00:59 14:18-20:28
No. of images 616 372

Telescope 25 cm (10 in) refractor 66 cm (26 in) reflector
Image size 267" x 197" 136" x 100"

No. of pixels 498 x 460 498 x 460

Horizontal

image scale, Sy 0.536" /pixel 0.273" /pixel

Ry 945.94" 944.30"

Preliminary scale

factor, d¢/dk 21.66 42.92

Qualitative seeing fair good

data itself. However, approximate image scale information was collected during
the observing runs by making two images of a sunspot, with the telescope moved
a known amount between the two images. These two images were later digitally
superimposed using an image processing system that has the capability of sliding
one image across the other. In this way, the pixel shift between the two images was
measured, and hence, the approximate image scale was determined. The horizontal
image scales for the 1987 and 1988 data sets are given in Table 3.1. Since the
CCD camera used to acquire data has pixels with differing horizontal and vertical
dimensions, and since the camera output is in video format (with its associated
aspect ratio of 4/3), the horizontal and vertical image scales are different. However, -

given one image scale, it is easy to find the other, since

_ 352
T 4481
where Sy and Sy are the vertical and horizontal image scales. In Table 3.1, we also

Sv SH, (3.3)

present preliminary values for the scale factor (see § 3.7),

2 R@

d/dk = 55’

(3.4)
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l‘ where Rg is the solar radius. The scale factor is expressed in terms of the horizontal

image scale, since vertical distances will later be expressed in terms of Sg.
3.5 Preliminary Data Analysis

The time series of Dopplergrams were not perfect—there were occasional gaps
or bad images. The gaps were typically produced by computer failures, and the
bad irﬁages were typically due to a cloud passing in front of the field of view, or the
telescope being bumped by one of the operators. Locating missing images in the
time sequence was a trivial task. Bad images were located, first by collapsing each
image onto a line, and then fitting a straight line to éach image. The resulting fit
coefficients were then plotted as a function of image number (or time). Bad images
appeared as spikes in the plot. If the duration of the bad segments in the time series
was excessive (2 30 minutes, or about 5% of a day’s worth of data), that data set
was deemed unusable. In the remaining data sets, the bad or missing images were
replaced with linear interpolations using the the two endpoint images that surround

the gap.

The birefringent filter used to produce the Dopplergrams suffers from spatial
nonuniformity across the field of view. This is for numerous reasons, such as the
difficulty in producing birefringent blocks of quartz and calcite with perfectly plane-
parallel faces, temperature gradients in the filter (which change the lengths of the
optical elements), and the inherent feature that the filter bandpass is different for
axial and nonaxial rays. A rough attempt at cofrecting for the filter nonuniformities
was made by subtracting a best-fit planar background from each image. This later
turned out to introduce more problems than it solved, as will be seen in Chapter 4.
However, this correction had no effect on the fre(iuency measurements described in

this chapter.
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3.6 The kp-w Diagram

Carrying out. the above operations results in a “perfect” data set which can
then be decomposed into component modes. A 512 x 512 point, two-dimensional
spatial Fourier transform was performed on each image, thereby turning the data
set into a k,-ky-t diagram. The Fourier transform is equivalent to making a plane-
wave approximation to the spherical harmonics (Hill 1988). Since each image was
slightly smaller than 512 x 512 points, the array to be transformed was padded
with zeroes. For each time series of spatial-frequency components, a best-fit linear
background was subtracted. Temporal Fourier transforms (using 1024 points for
1987 and 512 points for 1988, with appropriate zero padding as required) were
then done, resulting in a k,-ky-w diagram. This entire procedure is schematically
illustrated in Fig. 3.4. At this point, the k;-ky-w diagram is in general complex,
and contains the amplitude spectral density of the oscillations. However, we are
primarily interested in the power spectral density (PSD), so we next calculated the
squared magnitude of the k;-ky-w diagram to get the PSD. We shall normally refer
to the PSD as the power spectrum. Accomplishing this 3-D Fourier transform was
not a trivial task, because of the large amounts of data and the limited amounts of
computer memory and disk space. At one step in the computation, the 1987 data set
required upwards of 130 Mbytes of storage. This storage requirement necessitated
that the data set be broken up into more manageable chunks, thus increasing the

complexity of the computation and the associated bookkeeping tasks.

The mode structure of the oscillations, as seen in kz-ky-w space, takes on the
form of concentric, slightly nonaxisymmetric surfaces, which Hill (1988) refers to as
“trumpets.” Solar rotation is responsible for the nonaxisymmetric aspects of the
surfaces. These surfaces are depicted schematically in Fig. 3.5, which is taken from
Hill (1988). Peri (1988) prefers a more colorful description for these surfaces and
compares them to calla lillies. The approximate relationships between k, and k,
and the mode indices, £ and m, are k, ~ m/Rg and k, ~ €2 — m?/Rg. From this,

one sees that the k, = 0 plane corresponds to sectoral modes (¢ = +m), and that
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" the surfaces are symmetric about the k, = 0 plane. See Hill (1988) for a further

" explanation of this procedure.

We then corrected for frequency shifts produced by solar rotation (Eq. 2.21)
using a value of vy = 0.475 pHz. This correction was an approximate one and is
the result of trial and error with different values of vg. The optimal value of v was
selected by correcting the frequency shifts in only the sectoral modes (the k, = 0
plane), and then folding this plane along the w axis. This latter operation amounts
to adding the spectral amplitudes of the prograde and retrograde components of
the sectoral oscillations. When good alignment was observed between the prograde
and retrograde modes, the optimal value of v; was found. Note that our value of
ve differs from the commonly accepted value of 0.440 uHz. We believe that this
discrepancy is due to a slow, flexure-induced drift of the telescope over the course
of the observations. In essence, if the telescope is made to point at the center
of the solar disk, then the solar surface will appear to move slowly past the field
of view because of solar rotation. Flexure-induced image motion will appear as a
similar drift and will therefore modify the measured value of vu. In summary, this

discrepancy is not cause for concern.

After the corrections for rotational effects have been completed, the surfaces in
the k;-ky-w diagram (trumpets) are axisymmetric and can be described as figures
of revolution about the w-axis. These figures of revolution can now be collapsed

upon themselves by integrating along circles of constant

kn = k2 + & = /KE 1)/ Ro (3.5)

(taking into account the different horizontal and vertical image scales), thereby
producing averaged power spectra, Sx(v), where k is an integer index correspond-
ing to the spectral components in the spatial Fourier transform. This procedure
is equivalent to the procedure of azimuthally averaging the rotationally corrected
Sem(v) spectra to get averaged power spectra, Sy(v). Collectively, the Sk(v) form
a kp-w (or ¢-v) diagram. Fig. 3.6 shows the kj-w diagram for the 1987 data set.
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1 Ridges (corresponding to radial eigenfunctions with constant n) can be seen out to
£ ~ 1800. The kj-w diagram for the 1988 data set is shown in Fig. 3.7. Qualitatively
(and quantitatively, as shall be seen in Chapter 4), the seeing was better for the
1988 observing run (see Table 3.1); and, as a result, the amplitude degradation of
higher spatial frequency features, e.g., higher-£ modes, is less. Consequently, ridges
in the 1988 data can be seen out to slightly higher 4, i.e., out to £ ~ 1900. Also, note
that since the 1988 time series is half as long as the 1987 time series, the temporal

frequency resolution for 1988 is twice as large as the 1987 resolution.
3.7 Frequency Measurements: Ridge Fitting and Systematic Errors

At high £, say for £ 2 250 (the value here is not very well known), the mode
linewidth is greater than 0v,,,/8¢, and therefore it is impossible to resolve individual
multiplets. Indeed, at this point the oscillations will no longer be true global modes.
In principle one could make a detailed model of the data to determine a mean
multiplet frequency, although the large widths of the spectral peaks for this range
of £ make accurate frequency determinations more difficult. We have chosen here a
somewhat simpler and quicker analysis—namely, fitting the constant-n features in
the averaged power spectra (the ridges) to Gaussian functions of v, then using the
centroid of the Gaussian to estimate the ridge frequency at fixed ¢. This Gaussian

“ridge-fitting” technique was first exploited by Libbrecht and Kaufman (1988).

Mode frequencies were estimated by fitting the power spectra, Sk(v), to a series

of Gaussians

‘ N
Sk(v) = Y A~ ol gpemve)/oh | (3.6)
=1

where v; is the frequency of the ith ridge, the subscript B refers to a wide back-
ground Gaussian, and C is a constant background offset. The necessity for includ-
ing the two background terms will become more apparent below. These terms will
also be needed to accomplish the velocity power measurements described in Chap-
ter 4. The nonlinear, least-squares fits were accomplished using the Levenberg-

Marquardt method described in Press et al. (1986), and were made over the range
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" Vmin = 1.5 mHz to ¥max = 5.5 mHz. Initial guesses for the v; came from Libbrecht
‘and Kaufman (1988) where available, and were hand-identified from plots of the
Sk(v) when no tabulated values were available. A first attempt at fitting the above
equation to Si(v) for 1987 gave adequate results except where the frequency of
the background Gaussian was within &~ 300 uHz of the frequency of the f ridge.
This occurred for £ 2 1100, and for these spectra the f-mode frequency and width
were sufficiently close to the background frequency and width to prevent the fitting
algorithm from converging on appropriate values for the f-mode and background
amplitudes. In Fig. 3.8 one can see that for k¥ 2 54 (¢ 2 1100), vg, 0B, and Ap
no longer vary smoothly because of the fit convergence problems. The background
offset, C, appears not to have been affected by this problem. Below ¢ ~ 1100,
the fitting algorithm was well behaved and we determined that both vp and op
varied approximately linearly with ¢ (see Fig. 3.8). This fact was exploited by re-
doing the fits to Eq. (3.6) with vp and op no longer free parameters. We used
vp = 3126 4 8.55k uHz and op = 648 + 5.58k uHz. Similar results were found for
the 1988 data. Fig. 3.9 shows the new background fit parameters; the background
Gaussian amplitude, Ag, now behaves more sensibly above k 2 54. Fixing vg and
op also allowed the fitting algorithm to converge to sensible values of the f-mode
amplitude, Ay. Below £ = £, (or k£ = kyyjn ) the Gaussian model of the power spec-
tra breaks down because individual ridges can no longer be resolved. For the 1987
data, £nin = 170, and the breakdown occurs at £y, ~ 340 for the shorter duration |
1988 data. Above £ = Lmax (or k = kpax) the signal-to-noise ratio has decreased
to the point where ridges can no longer identified. For the 1987 data £i,.x & 1880,
and for the 1988 data (which were aéquired under conditions with better seeing)
Lmax ~ 1930. Typical power spectra and their fits are shown in Fig. 3.10. Typically,
the o; were found to be about 60 — 200 yHz, and are certainly not indicative of
the intrinsic mode linewidths, at least in the regions of the £-v plane where others
have measured linewidths (e.g., see Libbrecht 1988b). Fig. 3.11 shows the raw v; in
a schematic ¢-v diagram with error bars given by the ridge widths, o;. Note that

in the k = 80 (¢ =~ 1683) spectrum in Fig. 3.10, the Gaussian component of the
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background noise is clearly visible, and appears as a shoulder on the low-frequency
‘side of the n = 0 ridge. As shown in Fig. 3.12a, for £ < 1500, Ap is a constant
20% of the maximum ridge amplitude at fixed ¢, A; max(€), and by £ ~ 1880 it
increases to a factor of 3 greater than A; max(£). Similarly, for the velocity power,
P (which is proportional to 0;4; and is shown in Fig. 3.12b), Pg(€)/P; max(£) =~ 1
until £ &~ 1500, and then increases with £ to ~ 20 at £ ~ 1880. Similar results were
found for the 1988 data set. |

The cause of this background noise is unknown. There are two major classes of
possible explanations. One is that the background noise is a real solar phenomenon.
Duvall and Harvey (1986) have suggested a possible mechanism whereby large-scale
convective turbulence (such as supergranulation) modulates the spatial frequency of
the oscillations, thereby producing a plethora of nearby sidebands. If the sidebands
are closely spaced and if the spatial frequency resolution is relatively poor, the
sidebands could appear as background noise in the five-minute band. Duvall and
Harvey (1986) even suggest that this effect has been seen in their data at £ = 150,
hewever, only at the 2% level. The other class of explanations is that the noise is
due to some sort of spurious Doppler signal introduced into the data. Heterodyning
of low temporal frequency, large velocity signals (again, such as supergranulation)
by seeing can introduce broad-band noise (Ulrich et al. 1984). Phase jitter could
also have been introduced by imperfect repointing of the telescope after the above-
described seeing measurements. Changes in the angle of arrival of a light beam
entering a birefringent filter produce changes in the spectral response of the filter.
If the filter used in these observations was not perfectly telecentrically located in the
optical path, then angle-of-arrival changes produced by seeing would cause spectral
- response changes, which would amplitude-modulate the Doppler oscillation signal
(Grigoryev and Kobanov 1988). Again, this could produce sidebands that would

show up as a background noise at five minutes.

The 1987 {-v diagram was calibrated by comparing the ridge frequencies in the
range 170 < £ < 400 (340 < £ < 400 for the 1988 data) with those determined from
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"an intermediate—resolufion data set containing full-disk Ca II K images. This data
set has been-déscribed in detail by Libbrecht, Woodard, and Kaufman (1990), but,
to briefly summarize, it contains frequencies in the intermediate-£ range of 145 <
£ < 400, with typical uncertainties of ~ 1 pHz. The procedure for determining
the optimal scale factor, d¢/dk, is to assume different values of d¢/dk, and for each
value of d¢/dk, calculate the difference between each measured frequency (from
the high-resolution data set) and the appropriate reference frequency (from the
intermediate-resolution data set). These differences are then averaged and plotted
as a function of d¢/dk. A line is then fit to the resulting points; the point at which
the line intercepts the d¢/dk-axis is the optimal value of d¢/dk (see Fig. 3.13).
Using this method, we found a scale factor of d¢/dk = 21.304 £ 0.013 for 1987 and
42.735+0.107 for 1988. These agreed adequately with the less accurate scale factors
shown in Table 3.1, which were determined by independent means. The factor-of-10
difference in the scale factor errors is due to the fact that the region of comparison

for 1987 contained 65 points, whereas for 1988 it contained only 10 points.

These Gaussian “ridge fits” are not completely free of systematic error, since
they do not derive from a detailed model of the data. In addition to a possible scale
error in the images, the dominant source of systematic errors in ridge-fit frequencies
is due to a combination of the fact that the mode eigenfunctions are not completely
orthogonal to our set of spatial filter functions, and that the oscillation power, P,
is not constant at fixed n. The former allows spatial sidelobes from modes with
2" # £ to leak into the spectrum Sy(v), while the latter insures that sidelobes that
are approximately symmetrically spaced in frequency about the central peak are
not of equal amplitude. This tends to pull the measured frequency of a ridge in the
 direction of higher power. These systematic errors are approximated by |

AV RS B o e’

(3.7)

where we have followed Libbrecht and Kaufman (1988) in approximating the spher-
ical harmonic overlap function by V(¢,£') = exp[—(£ — ¢' — a)?/2s%], with a = €/
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" representing a small scale error. Since an explicit derivation of Eq. (3.7) has never
‘been published, we have included its derivation, along with those of Egs. (3.8) and
(3.9) below, in Appendix L.

The parameter s cannot be straightforwardly estimated from the data because
of the artificially large linewidths. Instead, we considered the plane-wave approxi-
mation to the spherical harmonic overlap function, V(¢,£'), finding

o (€ —1£")

N ny gine? e — )
V(L2 sinc® ajdk

(3.8)

The small scale error, a, is not included here since it is considered separately in terms
of corrections to the scale factor, df/dk. The formalism developed in Eq. (3.7) can
still be used if we approximate the plane-wave mode leakage function by a Gaussian
of the appropriate width. By matching the full width at half maximum (FWHM)

of the sinc? function with that of a Gaussian, we obtained

de
s = 03762 ~8 (3.9)

for the 1987 data. This produces corrections that range from —4 pHz to +9 puHz.

The corrected frequencies were then used to recalibrate the -v diagram using
the above-mentioned method, giving new scale factors of d¢/dk = 21.344 + 0.013
for 1987 and d¢/dk = 42.921 + 0.101 for 1988. Fig. 3.14 shows the region of over-
lap between the intermediate-£ frequencies used for the calibration and the 1987

corrected high-£ frequencies.
3.8 Random Errors

The corrected frequencies were interpolated using a cubic spline onto a grid |
with integral £ and spacing of 20 for 1987 and 40 for 1988. Random errors in the
frequencies, 0,¢, were inferred by measuring the scatter in the fit frequencies along
a given ridge. That is, for each £ in a given ridge, a quadratic polynomial in #' was

fit to the frequencies in that ridge over some range £ — Al < ¢! < £+ AL. After
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" subtracting the polynomial fit, the uncertainty was determined from the residual
‘'scatter, assuming normally distributed errors. Typically, a 25-point (corresponding
to Al = 240 for 1987 and Af = 480 for 1988) fit was used, except when there were
less than 25 points in the ridge. In these cases, the quadratic was fit to the largest
odd number of points in the ridge. At the ends of a ridge, 25 points (if available)
were still used in the fit, but they were no longer centered on the mode of interest.
By plotting the frequency differences between the high- and intermediate-¢ data sets
against 15242 L2PMAD onq 04 from Eq. (3.7) (cf. Figs. 3a and 3b in Libbrecht
and Kaufman 1988), we find that the residual systematic errors are of the order of +
20 uHz for 1987, with considerable scatter. However, the random errors in the high-
¢ frequencies are considerably greater than those in the intermediate-¢ calibration
frequencies. When this is taken into account, we find that the systematic errors in
the high-£ frequencies are probably no greater than the associated random errors.
As an example, the systematic errors associated with the uncertainty in the scale
factor, d¢/dk, can be found as follows. Since v oc £/2 (¢f. Eq. 2.20), the error in
frequency due to an uncertainty in £ is Av = 12£y, Now, Al = ek, where ¢ is the

2 £
error in the scale factor. Therefore,

1 €

AV = S Tar"”

(3.10)

and, for v = 4000 pHz, Av = 1.2 uHz. This is approximately 10 times smaller than
the random errors in the frequencies. We therefore conservatively estimate that the
remaining systematic errors are equal to the random errors. The final frequency
uncertainty for a single mode can be found by adding, in quadrature, the random

and systematic errors. This amounts to multiplying the random error by v/2.
3.9 Discussion

Fig. 3.15 is a schematic ¢-v diagram showing both the 1987 and 1988 frequen-
cies. Table 3.2 contains the high-£ frequencies and their uncertainties for the logical
union of the 1987 and 1988 data sets, with 1987 values taking priority. The o, in

Table 3.2 do not include the assumed remaining systematic errors. Fig. 3.15 can be
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" used as a guide for determining which frequencies are from 1987 and which are from

11988. All the frequencies and their uncertainties in Table 3.2 are plotted schemati-
cally in Fig. 3.16. ‘Also plotted in Fig. 3.16 is Eq. (2.8), a theoretical expression for
the f-mode frequencies, w? = gk, or, equivalently, v = 3158\/6/1_000 pHz.

As can be seen from Fig. 3.16, there is a considerable discrepancy between the
observed and theoretical values of the f-mode frequencies, going as high as 150 xHz
at £ = 1860. We are unable to explain this discrepancy. It could be real, in which
case it might be caused by the presence of an exponentially decaying, horizontal
chromospheric magnetic field. Roberts a.nd Campbell (1988) and Campbell and
Roberts (1989) have analyzed such a case, but they have calculated that the f-
mode frequencies would increase by as much as 127 pHz at £ = 1300 for a 200 Gauss
field. Evans and Roberts (1990) have examined the case of a uniform chromospheric
magnetic field and found even greater f-mode frequency shifts. However, these are,

again, frequency increases.

Another explanation for the f-mode frequency shifts might involve variations
in the propagation properties of the acoustic waves which result from modifica-
tion of the wave phase velocity by turbulent convection. The basic idea is that
turbulent convection introduces a small, randomly fluctuating velocity field which
randomly increases and decreases the oscillation phase velocity. This reduces the
average phase velocity of the wave, and hence decreases the frequency of the mode.
Note that this mechanism acts not only on the f-modes, but also on the p-modes.
Furthermore, the effect is greatest primarily at high ¢ and secondarily at high v,
since modes with these characteristics propagate primarily in the convection zone.
Brown (1984) has examined the case of a randomly fluctuating vertical velocity
field and has found that the frequency of the £ = 1450 f-mode will be decreased by
~ 17 uHz. This is a factor of ~ 4 smaller than the measured difference. Goodman
(1990) has considered the case where convection produces velocity fluctuations in
the horizontal direction and has found similar results for the frequency shifts (albeit

still an order of magnitude less than the observed shifts).!

1 T thank Peter Goldreich for bringing these results to my attention.
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We cannot exclude the possibility that the frequency discrepancy could also
be due to unknown systematic effects, such as differential image motion, and mis-
reglstratlon between images induced by seeing and telescope shake. Hill (1984) has
modeled the effects of differential image motion on modes with £ ranging from 500
to 550 and found that frequency differences up to 12 uHz can be produced. How-
ever, the difference is not systematically high or low, and the simulation assumes
that the seeing is much worse than what would normally be encountered at any
ground-based observatory. Finally, the f-mode frequencies might be pulled down-
ward by the presence of the background noise. The background noise appears as a
straight ridge in the ¢-v plane, which crosses below the f ridge at £ ~ 1400 and, as
noted above, makes the f ridge look asymmetric. This asymmetry could cause the
centroid of the Gaussian fit to be shifted toward lower frequencies. However, we be-
lieve that we have accounted for this effect by including the appropriate background
terms in Eq. (3.6). Also, the frequency discrepancy starts to appear at £ ~ 1000,
which is well before the background ridge crosses below the f ridge. If this pulling
effect were the cause of the frequency differences, we would expect that the observed
frequencies would be greater than the theoretical va.lu’es for £ < 1000, and this is

not observed.

Finally, we consider any changes in the p-mode frequencies that may have
occurred between 1987 and 1988 because of solar cycle effects. In Fig. 3.17 we show
the frequency change, Av = vgg — Vg7, as a function of £. The error bars were found
by standard error-propagation techniques; i.e., op, = \/m . No attempt
was made to classify ﬁhe frequency change for different frequency ranges. After
averaging these results we get (Av) = 10.8 & 1.3 pHz. The uncertainty associated
with (Av) does not contain any uncertainty associated with errors in the scale
factors. Using Eq. (3.10) evaluated at 4000 pHz, we can include these uncertainties
by adding them in quadrature to the intial uncertainty of 1.3 uHz to get a new
result of (Av) = 10.8 + 5.0 uHz.

Libbrecht and Woodard (1990) have studied frequency changes over the périod
1986-1988 for 5 < £ < 140 and 1mHz < v < 4mHz. Throughout this range, they
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: have found that Av oc M, where M, is the mode mass (see § 2.4). By assuming
.that this relationship still holds at £ = 1500, we can compare our results with the
Libbrecht and Woodard results. If we assume that their frequencies changed linearly
with time over the two-year span from 1986 to 1988, we would expect Av(1500) =~ 2
pHz. Murray (1990) has used the magnitude of the solar surface magnetic field, | B,
averaged over the visible portion of the Sun, as an indicator of solar cycle related
changes. His results, which are derived from Kitt Peak National Observatory full-
disk magnetograms, show that magnetic activity was constant in the period 1986-
1987, and that magnetic activity started to increase during the period 1987-1988.
This suggests that all of the changes in the Libbrecht and Woodard frequencies
occurred in the one-year period from 1987 to 1988, and that we would then expect
Av(1500) = 4 pHz. This 2 1o difference, combined with all of the aforementioned
uncertainties that are due to both transient magnetic effects and high-¢ frequency
modifications resulting from surface interactions with turbulent convection, suggests
that our frequency shifts are in agreement with those measured by Libbrecht and

Woodard.
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Table 3.2
Solar p-Mode Frequencies®

n /£ v n £ v n £ v

0 280 1698.245.5 | 0 920 3022.2+ 3.7 [ 0 1560 3855.2+14.0

300 1743.615.5 940 3047.1%+ 3.7 1580 3881.5+14.3
320 1799.145.5 960 3078.4% 3.5 1600 3906.9+14.4
340 1867.745.5 980 3112.84& 3.4 1620 3943.3t14.4

360 1903.9%5.5 1000 3140.1+ 3.4 1640 3957.2+14.4
380 1942.3%5.5 1020 3167.8f 3.2 1660 3976.8+14.4
400 1998.0+5.5 1040 3195.8+ 3.1 1680 3992.2+14.4
420 2042.8+5.5 1060 3230.7+ 3.3 1700 4019.4+14.4
440 2090.9+5.5 1080 3261.4+ 3.4 1720 4010.6+14.4
460 2147.4+5.5 1100 3281.8% 3.6 1740 4042.0+14.4
480 2190.2+5.5 1120 3309.3t 3.4 1760 4048.3%£14.4
500 2227.845.5 1140 3341.7+ 3.3 1780 4067.5+14.4
520 2277.84+5.5 1160 3368.9+ 3.7 1800 4150.8+14.4
940 2325.415.6 1180 3394.7% 4.1 1820 4140.1+14.4
360 2364.81+5.5 1200 3418.3+ 4.3 1840 4132.8+14.4
980 2404.115.6 1220 3444.9+ 4.3 1860 4156.2+14.4
600 2437.8+4.5 1240 3471.0+ 4.3 1880 4272.7+£22.3°
620 2487.1+4.6 1260 3494.4+ 54 1920 4275.8+22.3°
640 2523.9+4.2 1280 3519.2+ 5.4
660 2562.8+4.2 1300 3540.3+ 54 | 1 180 1900.4+ 7.0

680 2602.3t4.1 1320 3565.0+ 5.5 200 1975.1+ 7.0
700 2632.4+4.1 1340 3602.4f 5.5 220 2044.9+ 7.0
720 2671.4+3.9 1360 3621.2+ 54 . 240 2110.0+ 7.0
740 2712.5+3.9 1380 3644.0+ 6.4 260 2159.9+ 7.0
760 2742.6+3.8 1400 3676.2+ 6.6 280 2215.7£ 7.0
780 2778.3+3.8 1420 3702.5+ 6.7 300 2296.4% 7.0
800 2821.0+3.7 1440 3711.5+ 6.7 320 2345.6% 7.0
820 2857.6+3.6 1460 3738.9+ 7.0 340 2399.8+ 7.0
840 2890.9+3.7 1480 3771.4+ 8.2 360 2448.9+ 7.0
860 2926.3+3.6 1500 3777.6+ 8.4 380 2501.1+ 7.0
880 2957.1+£3.5 1520 3814.8+ 9.5 400 2546.7+ 7.0
900 2984.1+3.6 1540 3845.9410.5 420 2604.2+ 7.0

Note: All values derived from 1987 data except where noted.
* n = Radial Order, £ = Spherical Harmonic Degree, v = Frequency (uHz).
® Value derived from 1988 data.
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Table 3.2
Solar p-Mode Frequencies®

n /£ v |n ¢ v n ¥£ v

1 460 2700.5+6.0 | 1 1100 4070.1+ 5.9 | 2 220 2490.1+11.7
480 2745.3+6.0 1120 4108.3+ 6.0 240 2565.7+£11.7
500 2795.2+5.8 1140 4147.1+ 6.0 260 2637.8+11.7
520 2846.4+5.8 1160 4189.2+ 7.2 280 2709.6+11.7
540 2890.1+5.7 1180 4232.1+ 8.7 300 2787.1+11.7
560 2929.7+4.4 1200 4267.4+ 8.8 320 2844.1+11.7
580 2977.9+3.8 1220 4303.9£10.0 340 2912.5+11.7
600 3024.7+3.7 1240 4356.1+12.0 360 2961.7+11.7
620 3065.2+3.8 1260 4391.5+13.5 380 3027.3£11.7
640 3116.7+3.8 1280 4427.8+14.4 400 3089.6+11.7
660 3159.2+3.6 1300 4461.8+14.4 420 3138.5%11.7
6380 3199.4+3.8 1320 4501.61+20.8 440 3194.4+ 8.7
700 3241.443.7 1340 4537.2+20.9 460 3252.44 8.4
720 3281.3+3.8 1360 4591.2+20.9 480 3307.8+ 8.4
740 3329.24+3.7 1380 4642.4+22.5 500 3359.1+ 8.2
760 3372.61+3.7 1400 4671.1+23.3 520 3412.0+ 7.9
780 3410.913.6 1420 4709.1+£23.4 540 3471.3+ 7.8
800 3450.513.8 1440 4766.6+23.4 560 3519.7+ 6.3
820 3497.2+3.9 1460 4836.4+23.4 580 3565.6+ 5.7
840 3547.414.1 1480 4886.5+23.4 600 3622.5+ 4.7
860 3586.5+4.1 1500 4924.3+23.4 620 3675.6t 4.9
880 3623.1+4.1 1520 4957.41+23.4 640 3721.5+ 4.9
900 3663.6+4.1 1540 4968.2+23.4 - 660 3781.5% 5.1
920 3701.3+4.0 1560 5083.2+23.4 680 3832.7L 5.6
940 3751.0+4.1 1580 5061.9+23.4 700 3877.4% 5.6
960 3785.8+4.1 1600 5082.1+23.4 720 3922.5+ 5.6
980 3829.9+4.0 1620 5088.2+23.4 740 3982.3+ 5.9
1000 3873.6+4.7 1640 5133.9+23.4 760 4024.8+ 6.0
1020 3910.94+5.0 1660 5194.1+23.4 780 4065.6+ 6.2

1040 3945.015.0 800 4119.9+ 6.7 |
1060 3996.9+5.0 | 2 180 2298.5+11.7 820 4171.8+ 7.8
1080 4037.9+5.1 200 2400.3+11.7 840 4225.2+ 7.7

Note: All values derived from 1987 data except where noted.
2 n = Radial Order, £ = Spherical Harmonic Degree, v = Frequency (uHz).
b Value derived from 1988 data.
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Table 3.2
Solar p-Mode Frequencies®
n £ v | n £ v n £ v
2 880 4320.1+ 8.2 | 3 340 3391.8+104 | 3 980 5245.2+ 7.5
900 4374.3+ 8.2 360 3457.6+10.4 1000 5310.9+ 7.5
920 4425.1+ 9.5 380 3535.2+10.4 1020 5346.2+ 7.5
940 4465.3£12.0 400 3606.51+10.4
960 4506.8+13.0 420 3669.2+104 | 4 180 3021.9+ 9.2
980 4549.2413.1 440 3740.6+ 8.3 200 3149.8+ 9.2
1000 4600.81+13.6 460 3804.8+ 8.4 220 3261.3L 9.2
1020 4648.0+14.0 480 3861.5+ 8.3 240 3353.3% 9.2
1040 4694.24+15.7 500 3925.4+ 8.3 260 3448.4+ 9.2
1060 4737.3+16.2 520 3990.8+ 8.3 280 3545.8+ 9.2
1080 4805.7+16.2 | - 540 4050.0+ 8.3 300 3654.5f& 9.2
1100 4861.21+16.2 - 560 4105.3% 7.5 320 3750.9+ 9.2
1120 4889.2+16.2 580 4162.9% 6.1 340 3840.0+ 9.2
1140 4944.11+16.2 600 4224.7+ 5.2 360 3912.6+ 9.2
1160 5016.8+16.2 620 4290.5+ 5.1 380 4007.0& 9.2
1180 5075.4+16.2 640 4344.4+ 5.0 400 4092.1+ 9.2
1200 5110.2+16.2 660 4406.8+ 6.2 | 420 4175.3+ 9.2
1220 5123.6+16.2 680 4456.1%+ 6.4 440 4264.2+ 8.7
1240 5196.51+16.2 700 4502.4+ 6.8 460 4334.6*+ 8.9
1260 5243.9+16.2 720 4574.1% 6.9 480 4406.7+ 8.7
1280 5237.8+16.2 740 4627.1+ 7.2 500 4475.4+£11.3
1300 5299.11+16.2 760 4676.0f 7.3 520 4549.0+11.3
1320 5305.2+14.0° 780 4728.6+ 7.5 - 540 4635.9+11.3
800 4785.3+ 7.5 560 4691.3£11.3
3 180 2666.9£10.4 820 4844.4% 7.5 580 4749.5+11.3
200 2779.4+10.4 840 4898.6+ 7.5 600 4815.4+11.3
220 2884.9+10.4 860 4951.9+ 7.5 620 4881.9%11.3
240 2969.0+£10.4 880 5008.9%+ 7.5 640 4946.3£11.3
260 3049.2+10.4 900 5072.84+ 7.5 660 4997.9+11.3
280 3145.0£10.4 920 5114.8& 7.5 680 5068.6+11.3
300 3235.9£10.4 940 5167.0& 7.5 700 5124.0+11.3
320 3318.8£10.4 960 5199.84+ 7.5 720 5198.0+£11.3

Note: All values derived from 1987 data except where noted.
* n = Radial Order, £ = Spherical Harmonic Degree, v = Frequency (pHz).
P Value derived from 1988 data. '
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Table 3.2

Solar p-Mode Frequencies®

n £ v n ¢ v n £ v

5 180 3340.0+16.0 | 5 520 5080.0+11.3 [ 6 420 5065.2+11.6
200 3480.2416.0 940 5126.61+11.3 440 5172.2+11.6
220 3614.8+16.0 560 5219.6+11.3
240 3729.2+16.0 580 5314.0+11.3 | 7 180 3937.5+17.1
260 3833.4+16.0 200 4110.2+17.1
280 3943.4+16.0 | 6 180 3632:3%+13.0 220 4289.4+17.1
300 4075.7+16.0 200 3797.5+13.0 240 4399.1+17.1
320 4161.1+16.0 220 3963.7+£13.0 260 4533.4%£17.1
340 4279.1+16.0 240 4081.84+13.0 280 4706.2+17.0
360 4357.24+16.0 260 4212.1+13.0 300 4815.1£17.0
380 4448.24+16.0 280 4314.4+13.0 320 4940.1£17.0
400 4543.1+ 9.2 300 4442.8+13.0 340 5062.5£17.0
420 4641.9+ 9.2 320 4561.5+11.6 360 5155.6+17.0
440 4738.6+ 8.7 340 4665.0+11.6
460 4827.5+ 8.9 360 4760.6:11.6 | 8 180 4230.0+17.1
480 4873.1+ 8.7 380 4869.2+11.6 200 4423.7£17.1
500 4967.0+11.3 400 4974.2+11.6 220 4600.2+£17.1

Note: All values derived from 1987 data except where noted.
* n = Radial Order, £ = Spherical Harmonic Degree, v = Frequency (pHz).
b Value derived from 1988 data.
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Figure Captions

Figure 3.1: A schematic of the typical optical bench setup used at Big Bear
Solar Observatory (BBSO) for the collection of Dopplergrams. See the text for a
description of the different components. These optics were used on both the 25 cm
(10 in) vacuum refractor and the 66 cm (26 in) vacuum reflector at BBSO. The
commonly used videomagnetograph (VMG) system is essentially the same except

that the circular polarizer is removed from the optical path.

Figure 3.2: A schematic of the data acquisition system used in the collection
of Dopplergrams at BBSO. See the text for a description of the operation of the

system.

Figure 3.3: A typical Dopplergram collected by the BBSO VMG system. The

image size is approximately 136" x 100".

Figure 3.4: A schematic diagram illustrating the calculation of a k,-ky-w diagram

from a time series of Dopplergrams.

Figure 3.5: A schematic illustration of the mode structure of the oscillations as
seen in kg-ky-w space. The different surfaces correspond to different values of the
radial quantum number n. The slight nonaxisymmetry in the surfaces is due to

solar rotation. Taken from Hill (1988).

Figure 3.6: An {-v power spectrum diagram for the 1987 data. Power can be seen

out to £ ~ 1800. For this diagram we have used a scale factor of d¢/dk = 21.344.

 Figure 3.7: An /-v power spectrum diagram for the 1988 data. Power can be seen
out to £ ~ 1900. For this diagram we have used a scale factor of df/dk = 42.921.
Since the seeing was better for the 1988 data set, powér can be seen out to higher
£. Also note that since the 1988 time series was half as long as the 1987 time series,

the temporal frequency resolution for 1988 is twice as large as for 1987.
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hFigur'e 3.8: The background power fit coefficients vp, op, Ap, and C, from the
'nonlinear, least-squares fit of the averaged power spectra, Si(v), to Eq. (3.6). Note
that for k 2 54 (€ 2 1100), the fits suffer from convergence problems. The bold

lines are linear fits to vg and op, for k < 54.

Figure 3.9: The same background fit coefficients, except that vg and o are no
longer free parameters in the fit, and are set to vary linearly with k. Note that Ap

and C vary in a much smoother fashion now.

Figure 3.10: Typical power spectra from the 1987 data set (shown in Fig. 3.6)
and their Gaussian ridge fits (i.e., to Eq. 3.6 in the text). Also shown are the ridge
identifications (f and p;), along with the Gaussian component of the background
noise (B).

Figure 3.11: A schematic {-v diagram showing the raw v; determined from the
Gaussian ridge fits. The error bars are given by the ridge widths, ;. The data

shown are from the 1987 data set.

Figure 3.12: (a) Ratio of the background Gaussian amplitude, Ap, to the maxi-
mum ridge amplitude, A; max. (b) A similar plot for velocity power, Pg and P; max-

Velocity power is proportional to o;A;.

 Figure 3.13: A comparison of the intermediate-¢ “standard” frequencies in Lib-
brecht, Woodard, and Kaufman (1990) with the measured, raw v; from the Gaussian
ridge fits, for different values of the scale factor d¢/dk. The point at which a straight
line fit to the averaged frequency differences crosses the d¢/dk-axis is the optimal
value of the scale factor. A value of d¢/dk = 21.304 £ 0.013 was found for the 1987

data (shown here).

Figure 3.14: A schematic /-v diagram showing the overlap region between the
full-disk, intermediate-£ frequencies from Libbrecht, Woodard, and Kaufman (1990)
(+++), and the v; from the 1987 Gaussian ridge fits (x), corrected for the systematic
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“effects described by Eq. (3.7).

Figure 3.15: A schematic ¢-v diagram showing both the 1987 (+) and 1988 (x)
mode frequency determinations. This figure can be used as a guide for determining

which frequencies in Table 3.2 are from 1987 and which are from 1988.

Figure 3.16: A schematic {-v diagram showing the final mode fréquency determi-
nations and their uncertainties (given in Table 3.2). Also plotted is the theoretical
expectation for the f-mode frequencies, w? = gk, or, equivalently, v = 3158\/[/—10—00
uHz. Note that at high ¢, the measured f—mbde frequencies are significantly below

the theoretical expectation.

Figure 3.17: The differences between the 1987 and 1988 frequencies plotted as a
function of £. The average difference is (Av) = 10.8 + 5.0 uHz and was found to be

not significant. See the text for further discussion.
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CHAPTER 4

Amplitude Measurements

4.1 Introduction

Much work has been done in calculating the frequencies of the Sun’s normal
modes of vibration, and the frequencies of observed p-modes have been theoreti-
cally reproduced to within 0.5%. However, very little progress has been made in
predicting the amplitudes and linewidths of the oscillations. This is a direct conse-
quence of our lack of understanding of the excitation and damping mechanisms. As
described in § 2.4, there are two main candidates for excitation mechanisms. One is
that the modes are overstable because of the k-mechanism (see Libbrecht 1988a for
a review and references therein). The other more likely theory (due to Goldreich,
Keeley, and Kumar) is that the modes are being stochastically excited by turbu-
lent convection in the convection zone (Goldreich and Keeley 1977b; Goldreich and
Kumar 1988, 1990). Possible damping mechanisms include radiative damping and
turbulent viscous damping. (See Libbrecht 1988a and Libbrecht 1988c for reviews
of this subject). One prediction of the Goldreich/Keeley/Kumar theory is that the

modes are in energy equipartition with the eddies of the turbulent convection.

Some work has been done in measuring mode amplitudes and linewidths, and
in particular Libbrecht (1988b) has measured mode amplitudes and linewidths for
£ < 60. Almost no accurate measurements exist for p-modes with ¢ > 60. Libbrecht

et al. (1986) have attempted to measure high-¢ mode amplitudes, but their results -
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were inconclusive because of uncertainties produced by atmospheric seeing. This is
'unfortunate ‘since high-£ modes propagate only in the top of the convection zone,

where it is thought that most of the excitation and damping occurs.

The primary difficulty in measuring mode amplitudes at high £ is that atmos-

- pheric seeing smears out the small spatial features associated with these modes. In
this wofk, we have made velocity observations at the center of the solar disk, and

have simultaneously measured the atmospheric modulation transfer function (MTF)

in an attempt to correct for the effects of atmospheric seeing. The atmosphere can

be thought of as a low-pass spatial filter. By looking at the solar limb, which, before

being distorted by seeing, has a known spatial profile, we can determine the MTF

of this low-pass filter. This MTF can then be used to correct the spatial power

spectrum of the solar photospheric velocity field. Much of the work described in

this chapter is based on, and is an extension of, work presented by Kaufman (1988).
4.2 Description of Data

In devising a method to measure the seeing we have carefully considered the
words of Coulman (1985) in his article Fundamental and Applied Aspects of Astro-
nomical “Seeing”:

The reputation of a given telescope at a given site is too often a
matter of opinion. Although it can be argued that objective as-
sessment would be facilitated if astronomers regularly made and
recorded quantitative measurements of image quality, it must be

remembered that any appreciable sacrifice of astronomical ob-
serving time is quite unacceptable.

- The data used in this work are the same as those used for the frequency measure-
ments described in Chapter 3, with the addition of the seeing measurements that
we now describe. The seeing data were collected using the same optical system
and data acquisition system described in § 3.3. Throughout the course of a given
observing day, at approximately 15-minute intervals, the telescope was slewed to

the east limb of the Sun by the operator. The positioning of the telescope was not
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hp‘recise' as it was moved in the “image search” mode, which uncouples the position
of the telescope from the position of the telescope guider. The image search mode
has the advantage that the telescope can be moved quickly, and that the previous
position of the telescope (i.e., the center of the solar disk) is “stored” and therefore
can be returned to quickly. Short-exposure (at video rates), 128 pixel-wide limb
profiles were then acquired using the same system used to collect Dopplergrams,
except that images taken in the red and blue wings were added, rather than sub-
tracted. Each exposure resulted in the collection of four limb profiles taken from
the positions shown in Fig. 4.1. It should be noted that these are not true, radial
limb profiles. Corrections for this discrepancy are small and are dealt with later.
Limb profiles were collected for a time approximately equal to the time it took to
make one Dopplergram (~ 9 sec). This resulted in the collection of seven sets of
four limb profiles every 15 minutes for the 1987 data set and nine sets of four every
15 minutes for the 1988 data set. The relevant parameters describing the two limb-
profile data sets are shown in Table 4.1 (and also Table 3.1). This entire process
was completed in less than a minute, and the telescope was then moved back to
the center of the solar disk, so that the next Dopplergram could be made. The

collection of Dopplergrams was never interrupted by the collection of imb profiles.

A typical example of one complete sample of raw limb profiles is shown in
Fig. 4.2. Fig. 4.3a shows plots of one individual limb snapshot from the four different
sample positions shown in Fig. 4.1. Fig. 4.3b shows an overlay of all of the limb
profiles from a given sample for the four different sample positions. Note that
blurring of the limb can be seen in all of these figures and that image motion is

clearly indicated in Figs. 4.2 and 4.3b.
4.3 Modeling the Effect of Seeing on Solar Images

Two factors contribute to the measured seeing. The most fundamental is image
blurring (or “soft seeing”). Since the Dopplergrams are integrated velocity images,

image motion (or “hard seeing”) also contributes to the image degradation. Note
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“that image motion can be produced both by the atmosphere and by telescope shake.
‘We do not differentiate between the two, since their effects on the image quality are
the same. Also, we do not attempt to explain, in detail, the sources of the different
types of seeing. Our goal is only to measure the MTF produced by the different

types of seeing and to use it to correct the more important velocity data set.

Table 4.1

Limb Profile Observational Parameters

Date 1987 July 23 1988 July 19
Time (UT) 14:45-00:59 14:18-20:28
No. of profiles

per sample 28 36

No. of samples 41 40

Total no.

of profiles 1148 1440
Horizontal

image scale, Sy 0.536" /pixel 0.273" /pixel
No. of pixels 128 128

Profile size 68.6" 34.9"
Qualitative seeing fair good

In this work, we have modeled the effects of atmospheric seeing on the profile
of the limb (or the spatial characteristics of the solar surface velocity field) as being
given by the convolution of a point spread function (PSF) and the spatial profile
of the true limb (or true velocity field). That is, the observed limb profile, £(z), is
related to the true (or theoretical) limb profile, L(z — z4) (which has been smeared,
or blurred, by a model PSF; S(z)) by

+-oc0
£(z) = / L(z' — 20)S(z — o) da, 41)

—00

where z is the horizontal image coordinate, and z, is an arbitrary offset of the limb
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- /position. The PSF used in this work is the sum of two Gaussians given by

1

S(z) = l+a

[S1(z) + @S2 (), (4.2)
where Si(z) is a standard, normalized Gaussian function of width o;:

Si(a) = —mme=/20% (4.3)

V2ro?

We have assumed that o; > 0y, and a < 1, i.e., that the PSF is composed of

a narrow, large-amplitude Gaussian and a wide, small-amplitude Gaussian. The
latter Gaussian is probably due to scattered light in the optics. The choice of
Eq. (4.2) as our PSF is dealt with in more defail in Chapter 5. The theoretical limb
profile, L(z), is that of Pierce and Waddell (1961) with an arbitrary multiplicative

intensity parameter, Iy:

L(u)=I0A{a+bu+c[1—uln(l+%>]}, (4.4a)

where a = 0.81999, b' = 0.34918, ¢ = —0.55132 (chosen for A = 6400 A), and
p = cos 0, where 6 is the angle between the direction to the observer and the normal

to the solar surface. Alternatively, this can be expressed in terms of £ = Ry siné

/ z? z? 1
L(:I:)—Io{a-l-b I—R_Z’@+c|:1_ l—R—%ln(l-i-—l\/——j——-g)]}. (4.4b)
©

The dashed curve in Fig. 4.4 shows this limb-darkening curve in the vicinity of

as

the limb. Of course, the profile of the undistorted limb is not truly known, but,
because our pixel size (0.27-0.54") is larger than the apparent scale height of the
solar atmosphere (H = 100 km = 0.14"), we can say that the profile is known to
the accuracy of our measurements. Also, there were a number of possible choices
for the form of the true limb profile. Most limb models agree quite nicely at any
appreciable distance from the limb—the differences appear only when z ~ Rg
(¢ = 0). In summary, the choice of the form of the true limb profile is not too
critical so long as limb darkening is adequately modeled. Fig. 4.5 shows a typical
example of the PSF used here, and the solid curve in Fig. 4.4 shows an example of

our true limb profile smeared by this PSF.
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' 4.4 Measuring the Seeing: Limb Fitting
Each observed limb profile, Ly (z), was fit to the smeared limb model

+o0
Lo(z) — /_oo Lo(z' — 29)S(z — 2') dz’, (4.5)

where L(z) is given by

L(z) if z < Rg;

Lo(z) = {0 2> Ro. (4.6)

and where L(z) is given by Eq. 4.4b. The following five parameters were fit for:
Iy,01,02,a, and zq. The nonlinear, least-squares fits were accomplished using the
Levenberg-Marquardt method described in Press et al. (1986). Calculating the fit

was not a trivial task because integrals of the form

z—2z'

I, = /+°°L®(:c’—a:0)5,-(:v—:v’)(ﬁai)nd:v', n=012  (47)

—00

were needed to evaluate the fit, and these integrals cannot be evaluated analytically.
Numerical integration of the integrals was unsatisfactory because of the rapid change
in L(z) at the imb. Because of this, very fine grids, and hence, large amounts of
CPU time, were needed to accurately evaluate the integrals. By using the Fourier
transform convolution theorem to aid in evaluating the integrals, we found that
accuracy could be maintained while minimizing CPU time. A typical fit to Eq. (4.5)
is shown in Fig. 4.6.

Of the five parameters that have been fit for, the second through fourth are
functions of image blurring (“soft seeing”), and the last is related to image motion
- (“hard seeing”). For a given sample of 28 or 36 limb profiles, the fit parameters
were averaged, and corrections were then made for small cos 8 effects resulting from
the nonradial nature of the limb profiles on the four sets of averaged parameters.
The five averaged and corrected parameters from one limb sample position (for the
1987 data set), Iy,01,02,, and o,, are shown, as a function of time, in Fig. 4.7.

It should be noted that any of the parameters o;, 02, or ‘a taken separately, as a
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“function of time, are not indicative of the seeing. These parameters must be viewed

collectively (through the MTF) to fully understand the seeing. Finally, the averaged

and corrected parameters were, again, averaged over the four limb positions. Image
motion was included as time-integrated image blurring by allowing

ol = o} +02, (4.8)

where o0, is the RMS deviation from the mean of z¢. This proceés resulted in four
parameters that describe the seeing at a given moment. Typical values for these
parameters were found to be o3 ~ 1.7, o3 ~ 18" 0, ~ 0.5", and a ~ 0.3. These
combine to give the PSF a full width at half maximum (FWHM) of ~ 4" as shown
in Fig. 4.5. Note that atmospheric blurring and motion, telescope shake, telescope

optics, and image focus contribute to this PSF.
4.5 The Modulation Transfer Function (MTF)

The MTF is the Fourier transform of the PSF. Therefore, the amplitude MTF

(as a function of spherical harmonic degree, £) is

MTF(¢) = - -il- - [e—(af-i-af,o)t?/ZRzo + ae"(”3+°30)€2/2R%] _ (4.9)

With the limb profile fit parameters as a function of time, we were able to
produce MTF(¢,t), the MTTF as a function of time, for the two data sets as shown
in Figs. 4.8a and b. The MTFs, averaged over the entire day, are shown in Figs. 4.9a
and b. From these plots, one can see that the morning seeing was better in 1988
than in 1987, and that at the lower-£ values, the seeing worsened throughout the
course of both days. Furthermore, 1988 had better overall seeing than 1987. All of
these conclusions agree with the qualitative observations of the experienced BBSO
observing staff that were made at the time the data were collected. The MTFs with
15-minute sample intervals were interpolated using a cubic spline to get MTFs with

regular one-minute sample intervals. These were used in the seeing correction.
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/‘ 4.6 Correcting the kj,-w Diagram with the MTF

The correction for the effects of seeing occurs during the calculation of the kj-w
diagram. For the most part, the corrected kj-w diagram is calculated in the same
manner as described in § 3.6. Starting with the “perfect” data set described in § 3.5,
-~ a two-dimensiona.l spatial Fourier transform was performed on each image, thereby
turning the data set into a k;-ky-t diagram. We then assumed that the MTF, which
was measured in the horizontal, or z, direction, is also valid in the vertical direction
because the atmospheric seeing qualities are assumed to be locally isotropic. At
each point at kj, given by Eq. (3.3), on each time slice of the k,-k,-t diagram, we
divided by the appropriate value of MTF(¢,¢). This is the seeing correction. As in
§ 3.6, a best-fit linear background was subtracted from each corrected time series
of spatial-frequency components, and temporal Fourier transforms were performed
on each time series. This procedure resulted in a k,-k,-w diagram that has been
corrected for the effects of atmospheric seeing, and is illustrated schematically in

Fig. 4.10. Next, we calculated the power spectral density from the k;-ky-w diagram.

The seeing-corrected k,-k,-w diagram was then corrected for the effects of solar
rotation using the value of v found in § 3.6 for the uncorrected data sets. Finally,
we integrated the k,-ky-w diagram along circles of constant kj, to get a kj-w diagram.
Fig. 4.11 shows the uncorrected and corrected kj-w diagrams for 1987; Fig. 4.12
shows them for 1988. There are two important points to note in these figures.
Firstly, in the corrected kj-w diagrams, the power in the oscillations does not drop
off as strongly with ¢ as it does in the uncorrected diagrams. This is a result of
the seeing correction. Secondly, at high £, the power increases dramatically. This
is due to the breakdown of the seeing correction. That is, at very high £, the MTF
has very small values (~ 0.1 at £ = 1200), and the effect of any errors in the MTF
is magnified when the spatial power spectra are divided by the MTF. Furthermore,
note that ridges can be seen out to slightly higher ¢ in the 1988 corrected kp-w
diagram than in 1987. This correlates with the better seeing in the 1988 data set.
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4.7 Power Measurements: Ridge Fitting

The velocity power in each ridge was measured using the same ridge-fitting
technique described in § 3.7. The background parameters vg and o were fixed
using the same values used in making the seeing-uncorrected fits. The velocity

power in the ith ridge, P, ;, is the integral of the appropriate Gaussian or
P, ; = A; 770:'2’ : (4.11)

where A; and o; are identified in Eq. (3.4). Ridge frequencies were also measured,
but they were not corrected for the systematic effects described in § 3.7. For each
ridge, the measured powers were smoothed, as a function of ¢, to remove high-
frequency components. Similar power measurements for the uncorrected data sets
were also made. From here on we shall be concerned With displaying the power

measurements in a useful fashion, and with interpreting the results.
4.8 Contour Plots of Power in the /-v Plane

A useful way of looking at mode power would be a way that gives an overall
picture of the excitation and damping mechanisms, irrespective of the frequency
spectrum in the £-v plane. That is, the loci of the mode frequencies in the ¢-v plane
are determined only by the solar model, and, for small changes in the solar model,
a different frequency spectrum will result, even a.ssuining that the same excitation
and damping mechanisms are at work. Given this point of view, mode powers are
best viewed in terms of a power contour plot in the ¢-v plane. Unfortunately, the
generation of such a plot is somewhat difficult, primarily because of the nonuniform
distribution of data points in the ¢-v plane. We shall describe here the procedure
used in creating the power contour plots, shown in Figs. 4.13, and 4.14, for the
two data sets. The numbers demarcating the ridge positions in these figures are
the smoothed velocity power measurements described above. For the purposes of
evaluating the effect of the seeing correction, both the uncorrected and corrected

contour plots are shown in these figures.
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The first step in generating contours was to create boundary conditions at £myin,
'emx, Vmin = 1.5 mHz, and vpax = 5.5 mHz (i.e., the four £ and v extremes of the
£-v diagram). This was necessary so that contours could be generated outside the
convex envelope described by the available points in the £-v plane. In other words,
since the heart of any contour-plotting algorithm is some method of interpolation,
it was necessary to provide data at the extreme regions of the ¢-v plane so that the
interpolation could be carried out (as opposed to an extrapolation). However, we
should point out that our solution to this problem was, in fact, to extrapolate (intel-
ligently) into these regions, albeit using methods different from those that generate
the interpolations for the contours. As such, we created boundary conditions by
extrapolating the available powers out to the borders of the ¢-v plane. Specifically,
we assumed that the velocity power could be written as a separable function of £
and v; i.e.,

P(1,£) % Prax N(¥)A(L), (4.12)

where N,A € [0,1] as in Libbrecht et al. (1986). We then calculated A(€) by
averaging the data over all v and smoothing the result. N(v) was calculated by
averaging the data over the the first few available ¢-values and doing a polynomial fit
to the resulting average. The polynomial fit was used to generate P,(v,4nmin) at all
frequency grid points. Py(Vmin,£) and P,(Vmax, £) were generated using A(¢) scaled
to the appropriate power values from the above polynomial fit. Finally, P,(v, €yax)
was generated using interpolated values from a linear fit to the logarithm of the
£ = £pax data points (including the ones created at viin and vmax ). These boundary
data points, along with the actual data points, were used as inputs for generating

the interpolations for the contours.

The method used for bivariate interpolation of a nonuniform distribution of
data points is described in Lawson (1977). Briefly, this method involves first par-
titioning the data points into a triangular grid. Triangles are selected using the
so-called max-min angle criterion; that is, for any convex quadrilateral, divide it

into two triangles such that the minimum interior angle of the two triangles is max-
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' imized. Next, a bivariate linear interpolation is performed in the triangular region.
'Using this method, a uniform grid of points can be generated. The particular imple-
mentation of this algorithm used here is the one contained in the NCAR Graphics
subroutine CONRAN (Clare, Kennison, and Lackman 1987). Although this sub-
routine does both interpolation and contour plotting, we used only the interpolation
portion because of the unsuitable nature of the contour plots. It was necessary to
delve into the NCAR software and extract the interpolated points so that they could
be used for other purposes. The actual contour plotting was accomplished using
standard methods for a rectangular grid of points. The final results are shown in
Figs. 4.13a and b for 1987, and in 4.14a and b for 1988. Note that the contours
for the uncorrected data sets are not shown for frequencies below the f-mode fre-
quencies. This is a result of a failure of the interpolation algorithm to generate
meaningful interpolations in these regions. However, this is not a great loss, since
the corrected data sets are the ones of interest. Also, note that the inter-ridge
velocity power depicted by the contours should not be interpreted literally. These
contours serve only to give a rough picture of the excitation and damping mecha-
nisms, irrespective of the exact solar model used to generate the mode frequency

spectrum.
4.9 Peak Velocity Power and Frequency of Peak Velocity Power

The peak velocity power as a function of ¢, P, max(£), and the associated
frequency of the peak, vpyax(£), were found from the interpolated data used to
make the contour plots. That is, for each ¢, the maximum power and associ-
ated frequency were located. In terms of the approximation given in Eq. (4.12),
Py max(€) = PpaxA(£), however, this approximation was not used in measuring
P, max(€). The frequency of the peak power cannot be described in‘ terms of this
approximation, since it assumes that the frequency of the peak power is, by defini-
tion, not a function of £. Figs. 4.15a and b show P, max(£) for the two data sets.

Also shown are the same quantities as derived from the seeing-uncorrected data
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“sets so that the effects of the seeing correction can be seen. Figs. 4.16a and b show
Vmax(£), as derived from the seeing-corrected data only, for the two different years.

By fitting a straight line to vpax(€) we find that

Vmax(£) = 3140 + 0.316¢ uHz (4.13a)
for 1987, and for 1988 we get

Vmax(£) = 3198 + 0.266¢ uHz. (4.13b)

We know of no explanation for any functional dependence of vy .

The kink in the 1988 P, max(€) curve at £ ~ 475 is due to an imperfection in
the interpolation algorithm described in § 4.8. The problem occurred in the choice
of boundary conditions at fyin. A peak in the velocity power (as a function of
v) occurred at a slightly higher value of £. However, the corresponding peak was
missing in the £ = £y, cut through the £-v plane because no mode was present at
that point. Therefore, we underestimated the value of the peak velocity power at
£min and slightly misidentified the position of the peak. This error in the boundary

points affects the interpolation, which, in turn, affects the peak power measurement.
4.10 Velocity Power as a Function of Frequency

Since vmax is a function of ¢, it is reasonable ﬁo look for other ¢-dependent
effects in the velocity power as a function of frequency. In other words, if we
resort to the approximation given by Eq. (4.12), we want to look for possible ¢-
dependencies in N(v). (Of course, any {-dependencies in N(v) render unnecessary
the approximation given by Eq. (4.12).) This information is already contained
in the contour plots shown in Figs. 4.13 and 4.14, although the effects may not be
immediately obvious. Instead, we show the velocity power as a function of frequency
(averaged over different ranges in £) in Figs. 4.17a and b, for the two different years.
These curves are based on the smoothed velocity power measurements described in

§ 4.7, i.e., the data used in generating the contour plots described in § 4.8. The
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| velocity power measurements were binned in frequency and averaged over three
different ranges in £: 100 < £ < 400, 400 < £ < 700, and 700 < £ < 1000. The
averaging over a relatively narrow range in £ has the effect of produ;:ing semi-
continuous curves. If not for the averaging, the curves would be sparsely populated
with data points because of the ridge structure in the £-v plane. The ¢-dependency
In Vpmax is clearly seen as a shift in the peaks of the different curves. Other than the
shift in the peaks of the curves, there appears to be no other major £-dependent
effects in the velocity power as a function of frequency; i.e., the different curves
have essentially the same slopes in the low- and high-frequency regimes. The astute
reader will, however, notice a slight difference in the high-frequency slopes, but this

is probably due to a poor signal-to-noise ratio in this regime.

Overall, these measurements agree with similar measurements made by Lib-
brecht et al. (1986). This is a valid comparison even though their measurements
were made using data that was not corrected for the effects of seeing. Atmospheric
seeing only affects the results in terms of the spatial frequency dependence, not the
temporal frequency dependence. It should be noted that this is not the most ideal
way of looking at the data because averaging over £ tends to smear out features in
the curves. These plots are presented only for the simplicity with which they can

be viewed.
4.11 Low-{¢ Velocity Power Measurements

Other measurements by Libbrecht et al. (1986) show that P, max(£) appears to
have a peak at £ ~ 100-300, or at least a plateau below this range. Unfortunately,
this is exactly where our velocity power data derived from ridge fitting ends. We
therefore investigated other means of measuring P, max(£) at lower values of £. We

shall describe here those methods and the results of our investigation.

We focused on the data contained in the Si(v) power spectra, i.e., the original

kp-w diagram. Howe‘ver, before the low-£ (or low-k) data could be used, two ma-



- 82—

/b jor corrections had to be performed. First, we subtracted the known background
'(described by Ap, vB, 0B, and C in Eq. 3.4) from the Sx(v). Since we had these
background parameters only down to £,,i,, and since we wanted to go down as low
as possible in £, it was necessary to extrapolate ithe background parameters down
to £ = d¢/dk (or, k = 1). As will be seen below, we could not go down to ¢ = 0
(k = 0). As seen in Fig. 3.8, we found it reasonable to use extrapolations of linear
fits for vp and op, and extrapolations of linear fits to the logarithms of A and C.
Values of these four background parameters derived from the fits were actually used
for the first few power spectra above kpj,. With these extrapolated values, linear-fit
values, and values from the actual ridge fitting in hand, we subtracted the Gaussian
background and the constant background offset from the kj,-w diagram. One should
be reminded to treat any £ < {,,;, result from this procedure with a certain degree

of suspicion because of the use of the extrapolated background parameters.

The second correction needed before P, y2x(€) could be calculated was a result
of the subtraction of a best-fit planar background from each Dopplergram (as de-
scribed in § 3.5). This subtraction has the effect of filtering the spatial-frequency
power spectrum of each Dopplergram, and, hence, the spatial-frequency response
of the kp-w diagram. In correcting for this effect, we have considered only the one-
dimensional analog, i.e., the frequency response of a best-fit linear subtraction from
a sinusoid with frequency k. We have derived the modulation transfer function for
such a filter in Appendix II. The MTF for the spatial-frequency component index

k (of the kp-w diagram) as a function of spatial frequency index j is

6 18
MTFi(j)=(1— == ) b6jk + ——. 4.14
Fi(5) ( 7r2jk) ik + T4j2k2 ( )
Since this MTF is a two-dimensional function, there is a leakage from one spatial-
frequency component of the kj-w diagram to another. That is, after subtracting
a best-fit line from a sinusoid of frequency k, which has a delta function power
spectrum, the result no longer has a delta function power spectrum. The resulting

spectrum is contaminated with power from nearby sinusoids. Fig. 4.18a shows the
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/diagonal, or j =k, term of the MTF. The MTF is essentially unity, except for the
first few components. Plotting the ratio of the first off-diagonal to diagonal terms,
or MTF41(k)/MTF41(k + 1), in Fig. 4.18b, we see that the off-diagonal terms
are essentially negligible. Therefore, we have approximated the actual nondiagonal

MTF with a diagonal MTF consisting of the original diagonal terms, or

MTFk(k) =1- -L + 18

5 + (4.15)

Therefore, the second correction to the kj-w diagram consists of dividing the kth

spatial-frequency component by MTFy (k).

With the kp-w diagram now completely corrected for background and system-
atic effects, we are able to begin the low-£ velocity power measurements. The
analysis is, again, based on the approximation that the velocity power in the kj-w
diagram is separable in k5 and w, as in Eq. (4.12). Given this approximation, we
note that the average power in a given frequency band, as a function of £, should
have the same functional dependence as Py max(£). Therefore, P, max(£) can be cal-
culated by integrating the velocity power over a given range in frequency (in this case
2.0mHz < v < 4.0mHz), and then dividing by the number of ridges in this range.
The number of ridges in the given frequency range was determined by counting, us-
ing the frequency data set in Libbrecht, Woodard, and Kaufman (1990). However,
this counting procedure results in a noncontinuous, ihtegrally varying function. To
overcome this drawback, we fit a 7th-order polynomial to the ridge count. Results
of the counting procedure and the fit are shown in Fig. 4.19. Fitting a polynomial
to the ridge count also has the added benefit that it compensates for the fact that
partial ridges were included in the integration over frequency. That is, the ridges in
the kj-w diagram have finite widths, and integrating over a fixed range in frequency
may select only fractions of certain ridges. Fractional values of the fitted ridge count
then compensate for fractional ridges in the frequency integral. An arbitrary scaling
factor of about 2 was needed to make the low-£ power agree with the high-£ power.
Figs. 4.20a and b show P, p,,x(£) for 1987 and 1988, respectively, as calculated by
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I_'the high-£ ridge-fitting method and the low-£ integration method. Also shown are
the same quantities for the data without the seeing correction. One can see that
there is very good agreement in the region of overlap between the two methods.
Also, at very low £ the seeing-uncorrected and seeing-corrected data converge, as
one would expect, since the atmospheric MTF is approximately 1 in this region.
Furthermore, and most importantly, we see that the data from both years exhibit

the expected peaks at £ =~ 100-300.
4.12 Comparison of 1987 and 1988 Results

In comparing the velocity power results from the two different years, we see
that the two P, max(£) curves exhibit the same gross characteristics, but that the
specifics are different. Fig. 4.21 shows P, pax(£) for 1987 and 1988 plotted together.
Here, we have used the low-£ values from the analysis described in § 4.11 and the
high-£ values from the analysis described in § 4.9. (For the 1988 cﬁrve, we have
replaced the first four points of the high-£ ridge-fit section of P, max(¢) with four
points from the low-£ integrally produced P, max(£¢). This lessens the effect of the
systematically produced kink at £ &~ 475 described in § 4.9.) The two curves have
been scaled such that the areas under the curves between £ = 40 and £ = 400 are the
same. This comparison range was chosen because first, there are essentially no data
below £ = 40 (actually, below £ ~ 20 for 1987 and ¢ ~ 40 for 1988), and second,
it is at low £ that we would expect Py, max(€) to be most free from any possible
systematic effects induced by the seeing correction. Furthermore, as £ increases,
the seeing correction‘ will, at some point, break down, presumably at a lower value
of £ for 1987 than for 1988, since the seeing was worse in 1987. A value of £ = 400
was judged to be a good compromise between wanting high £ for good comparison,

and avoiding the region in which the seeing correction might break down.

Excluding any possible solar cycle effects, we would expect Py max(£) to be the
same for both 1987 and 1988. However, there are distinct differences. Both curves

exhibit the same positive slope at low ¢, but the curves are offset in this region. In
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: each case, Pv,max(@) then peaks out, albeit at different values of ¢: ¢ =~ 170 for 1987
and £ ~ 300 for 1988. Finally, the two curves gradually decay to about the same
value at £ ~ 800. However, at this point the 1987 curve exhibits a rapid increase.
This is a result of the poorer seeing in 1987, and, hence, the seeing correction breaks
down at an earlier £. If we had shown higher values of £, the 1988 curve would also
show the same rapid increase, except that it would begin at a higher value of £.
In fact, for £ 2 1100, the 1988 curve does start to show a mild increase, i.e., the

beginnings of the seeing-correction breakdown.

Given that the data from the two years exhibit enough relative similaﬁties, and
that some of the key differences can be explained, we have found it advantageous to
average the results from the two years. Fig. 4.22 shows P, max(£) averaged over the
two years. To do this, we first used a cubic spline to interpolate the two individual
curves onto an integrally spaced grid with a spacing of A¢ = 10. These two data
sets were then averaged to get the curve in Fig. 4.22, except that beyond ¢ = 810,
we did not use the average, and instead used only the data from 1988. The error
band is a constant width out to £ = 810, at which point it increases exponentially to
£ = 1200, where it has a value 50% greater than the constant value. The constant
error was determined by first smoothing the standard deviations of the averages,

and then averaging the smoothed errors to get the final value.
4.13 Discussion

If we assume that the modes are excited by stochastic interactions with turbu-
lent convection, then the energy in a mode is given by Eq. (2.27), which is repeated

here:

E = M,P,. , (4.16)

Furthermore, if we assume that the oscillations are in energy equipartition with the
exciting convective eddies, and if we also assume that the convective eddy energy is
constant in the frequency range of interest, then E will be constant, and hence, P,

M;1. In Fig. 4.22, we have also plotted M, () for 75000 = 0.05. This was created
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" from mode masses calculated by Kumar (1990), using a model from Christensen-
‘Dalsgaard and Berthomieu (1991). These mode masses were interpolated in the
v direction using a cubic spline, and then masses corresponding to frequencies of
the measured peak velocity power (i.e., Umax given in Eq. (4.13a)) were selected to
give the curve in Fig. 4.22. We see that there is very good agreement between our
observations and M, '(¢) for £ < 200. Kumar, Franklin, and Goldreich (1988) have
calculated this result, assuming that the oscillations are in energy equipartition with

the turbulent convection.

If the energy in a given mode is Enm, then the energy in a given multiplet
is Ene = Y, Entm = (2¢ 4+ 1)E,4, and the peak energy as a function of £ is
Emax(£) = max(Ep;). Epax(f) is, of course, directly related to Py max(£). In
Fig. 4.23, we show the peak energy, Enax(¢), assuming that the energy is given
by Eq. (4.16). Since we have measured only the relative velocity power, we have
scaled these results to full-disk Dopplergram, £ = 20, v = 3.20 mHz mode energy
measurements in Libbrecht (1988b). Kumar and Goldreich (1989) find that Ep,ax(£)
will decrease at higher values of ¢; however, the exact quantitative dependence is

determined by the assumed damping mechanism, or mechanisms.

The total energy in all modes of degree £, Ep = 3 Ey, can be calculated using
the approximation in Eq. (4.12), Eyax(4), N(v), and a table of mode frequencies.
Using the frequencies in Libbrecht, Woodard, and Kaufman (1990), Fig. 4.24 shows
Eg, calculated for the range 1.5mHz < v < 5.5mHz, and that the total energy in
all oscillations peaks at £ ~ 170.

Finally, the total energy in solar p- and f-modes, Eiot = 3, E¢, can be found
by integrating the curve in Fig. 4.24. However, as a prerequisite to that, we show
the cumulative total energy, Ecym(£) = Ef,=0 Ey, in Fig. 4.25. Since Ecypm(£) does
not quite converge to a constant value, there is, clearly, some remaining energy in
the modes above £ = 1200. However, extrapolating Ecym(£) out to higher £, we can

conclude that Eio¢ 2 6 X 1033 ergs. Therefore, the total energy contained in solar
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. p-modes is about equal to the total energy radiated by the Sun in 1.5 seconds.
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Figure Captions

Figure 4.1: A schematic showing the positions on the solar disk where the limb
profiles were collected. Short exposure (at video rates), 128 pixel-wide limb profiles

were taken at these four positions.

Figure 4.2: Typical example of one complete sample of limb profiles from the four
positions shown in Fig. 4.1. There are nine profiles from each of the four positions,
giving a total of 36 limb profiles. These data are from 1988. Image blurring and

image motion are visible in this picture.

Figure 4.3: (a) Plots of the individual limb snapéhots from the four different
positions shown in Fig. 4.1. This corresponds to one scan line in Fig. 4.2. (b) An
overlay of all of the limb profiles from a given sample for the four positions shown

in Fig. 4.1. Asin Fig. 4.2, image blurring and image motion are both depicted here.

Figure. 4.4: The theoretical, or true, limb profile and a blurred limb profile. The
dashed curve shows the true limb-darkening curve, Lg(z), given by Eq. (4.6), in
the vicinity of the limb. The solid curve shows the blurred limb-darkening curve,

Lo(z), given by Eq. (4.1) and the point spread function (PSF) given in Eq. (4.2).

Figure 4.5: A typical example of the PSF given by Eq. (4.2). The PSF consists

of a narrow, large-amplitude Gaussian, and a wide, small-amplitude Gaussian.

Figure 4.6: A typical limb profile (thin line) and the fit (thick line). The fit is to
Eq. (4.5).

- Figure 4.7: The averaged, corrected limb fit parameters from one of the four limb
sample positions (shown in Fig. 4.1) for the 1987 data set, where the image scale
is 0.536" /pixel. From the top down, the curves are: 1) I, (da.shed line) measured
in relative units (the morning-to-evening intensity variation is due to changes in

the sky transparency that coincide with the motion of the Sun); 2) o (solid line)
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'measured in pixels; 3) 05, (dot-dashed line) measured in pixels; 4) oy (solid line)
measured in pixels. 5) a (dashed line) measured in absolute dimensionless units.
Taken separately, any of these five quantities as a function of time are not completely
indicative of the seeing. The seeing can be interpreted only through the modulation

transfer function (MTF).

Figure 4.8: The MTF shown as a function of spatial frequency (or spherical har-
monic degree £) and time. This is Eq. (4.9). (a) The MTF for 1987. (b) The MTF
for 1988. The morning seeing in 1988 was better than in 1987, and for both years,
the seeing worsened throughout the the course of the day.

Figure 4.9: The MTF averaged over the entire day. (a) The average MTF for
1987. (b) The average MTF for 1988. Overall, the seeing was better in 1988 than
in 1987. This agrees with the qualitative observations of the experienced BBSO

observing staff.

Figure 4.10: A schematic illustrating the calculation of the corrected k;-ky-w

diagram from a time series of Dopplergrams and the MTF.

Figure 4.11: The uncorrected and corrected ¢-v power spectra diagrams for the
1987 data. Note that the power drops off much more rapidly with £ in the uncor-
rected diagram than in the corrected diagram. The very rapid power increase at

high £ in the corrected diagram is due to the breakdown of the seeing correction.

Figure 4.12: The uncorrected and corrected ¢-v power spectra diagrams for the
1988 data. Note that the seeing-correction breakdown occurs at a higher ¢ here
than for the 1987 £-v power spectrum diagram (Fig. 4.11). This correlates with the
seeing being better in the 1988 data set. |

Figure 4.13: (a) A contour plot of mode velocity power in the ¢-v plane for the
1987 uncorrected data. The numbers demarcating the ridge positions are the actual

mode velocity power measurements. The lack of contours below the f-mode ridge is
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“a result of the failure of the algorithm that generates the inter-ridge velocity powers.
(b) Same as (a) except for the seeing-corrected data. See the text for more details

on the generation of these contour plots.

Figure 4.14: (a) A contour plot of mode velocity power in the ¢-v plane for the
1988 uncorrected data. The numbers demarcating the ridge positions are the actual
mode velocity power measurements. The lack of contours below the f-mode ridge is
a result of the failure of the algorithm that generates the inter-ridge velocity powers.
(b) Same as (a) except for the seeing-corrected data. See the text for more details

on the generation of these contour plots.

Figure 4.15: The peak velocity power as a function of £, P, max(£), for the corrected
and uncorrected data sets. The solid curves show the corrected data, and the dashed
curves show the uncorrected data. These curves are derived from the contour plots
shown in Figs. 4.13 and 4.14. (a) P, max(£) for the 1987 data set. The rapid increase
in the corrected P, max(¢) at high £ is due to the breakdown of the seeing correction.
(b) Py max(€) for the 1988 data set. The kink at £ ~ 475 is due to an imperfection

in the interpolation algorithm. See the text for more details.

Figure 4.16: The frequency of the peak velocity power as a function of ¢, vmax(€)
for the seeing-corrected data sets. The thick lines are straight-line fits, and are
given in Eqgs. (4.13a) and (4.13b). (a) vmax(£) for the 1987 data set. (b) viax(£) for
the 1988 data set.

Figure 4.17: The velocity power as a function of v averaged over different ranges
in £. The data were averaged over the following ranges in £: 100 < £ < 400 (o),
400 <€ <700 (2), and 700 < £ < 1000 (o). The displacement between the different
curves is arbitrary. (a) Results from the 1987 data set. (b) Results from the 1988

data set.

Figure 4.18: The MTF for a best-fit linear subtraction filter, given by Eq. (4.14),
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and shown as a function of frequency, k. The filter response is two-dimensional,
‘and was used to correct the low-£ velocity power measurements. (a) The diagonal

terms of the MTF, given in Eq. (4.15). (b) The first off-diagonal terms of the MTF.
The off-diagonal terms are essentially negligible compared to the diagonal terms.

Figure 4.19: The number of ridges in the frequency range 2.0mHz < v < 4.0 mHz.
The thin curve is the actual ridge count, based on a table of frequencies in Libbrecht,
Woodard, and Kaufman (1990). The thick curve is a Tth-order polynomial fit to

the ridge count. This is used in calculating the low-£ velocity power measurements.

Figure 4.20: The peak velocity power as a function of £, P, max(£), for the cor-
rected and uncorrected data sets, based on the high-£ ridge-fitting technique and the
low-£ integration method. The corrected and uncorrected ridge-fitting results are
depicted by the solid and dashed lines, respectively. The corrected and uncorrected
integration results are depicted by the plus signs and the crosses, respectively. Note
that there is very good agreement between the two methods. (a) P, max(¢) for the
1987 data set. (b) Py max(£) for the 1988 data set. See Figs. 4.15a and b for more
details.

Figure 4.21: P, max(£) for both the 1987 (dotted curve) and 1988 (dashed curve)
data sets. The low-£ values come from the integration method, and the high-£
values come the ridge-fitting technique. The two curves are scaled such that the

areas under the curves between £ = 40 and ¢ = 400 are the same.

Figure 4.22: P, n,.(¢) averaged over the two data sets. Beyond ¢ = 810, only the
1988 data were included, as the seeing correction for the 1987 data started to break
down at this point. See the text for details on the error band. The dashed curve is
M 1(€) for 75000 = 0.05, where M, (£) is the mode mass. This curve assumes that

the oscillations are in energy equipartition with constant energy convective eddies.

Figure 4.23: The peak energy, Enay({), assuming that mode energy is given by
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Eq. (4.16). The data have been scaled to full-disk Dopplergram, £ = 20, v = 3.20

" mHz, mode energy measurements in Libbrecht (1988b).

Figure 4.24: The total mode energy in all modes of degree ¢, E,, calculated over
the frequency range 1.5mHz < v < 5.5mHz. Note that E; peaks at £ ~ 170.

Figure 4.25: The cumulative total energy, E.,;m(£), calculated from E;. From this
we conclude that the total energy in all modes, Eiot, is Etor = 6 X 1033 ergs, or

about the same as the amount of energy radiated by the Sun in 1.5 seconds.
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CHAPTER 5

Accuracy of the Seeing Correction

5.1 Introduction

In this chapter, we shall consider a very difficult issue—the accuracy of the
seeing-correction technique described in Chapter 4. In short, we have no easy way,
at present, to quantitatively assess the accuracy of the seeing correction. We can,
however, address several topics that we believe will make the seeing measurements
and corrections more plausible. First, we briefly consider the choice of the PSF. That
is, does our choice for the PSF accurately model the properties of the atmosphere
and telescope optics? Second, we briefly address any possible systematic errors
that may have been introduced by our choice for the PSF. Finally, we describe a
test of the seeing-correction technique that we performed using the 1989 March
7 partial solar eclipse. It should be noted that this test is not a perfect test.
That is, a negative result indicates that the seeing-correction technique is flawed,
whereas a positive result indicates that the technique is self-consistent, but still
possibly flawed. The ultimate test, of course, is to compare our results with space-
based observations. This should be feasible in the mid-1990s when the NASA /ESA
Solar and Heliospheric Observatory (SOHO) flies. Among the instruments on this
spacecraft will be the the Solar Oscillations Imager (SOI), which uses a Michelson
Doppler Interferometer (MDI) as a velocity analyzer. This instrument is expected
to see out to £ ~ 4000 (Domingo 1988; Scherrer et al. 1988; and Hoeksema, Scherrer,
Title, and Tarbell 1988).
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5.2 The Choice of the PSF

When the seeing-correction technique was developed, several different choices
for the PSF were considered. The obvious choice of a single Gaussian was tried,
but the two-Gaussian PSF with three free parameters, 0, 02, and «, yielded much
better fits to the limb profiles. This is the primary reason for the choice of Eq. (4.2)
" as the PSF. Furthermore, the PSF given by Eq. (4.2) allows the following, very
physical association to be made: S;(z) (the narrow, large-amplitude Gaussian) is
related to blurring produced by the actual atmospheric seeing and by the optical
system, and aS3(z) (the wide, small-amplitude Gaussian) is related to scattered

light produced by the atmosphere and by the telescope optics.

This association is consistent with the seeing measurements in Tsay et al.
(1990), in which Anderson Mesa (at an elevation of 2198 m), near Flagstaff, AZ,
is evaluated as a possible site for the location of an optical interferometric array.
In this work they used an f/11, 14-inch Celestron telescope, a CCD camera, and
an image processor to measure the FWHM of instantaneous stellar images. For
each of their seeing measurements, they collected 60 32 x 32 pixel images of a
bright star at video rates. They found that a single Gaussian adequately fit the
one-dimensional stellar profile, with typical FWHMs of 1-2"". Their measurements
were taken in the nighttime desert skies, which are presumably more transparent
than the skies over Big Bear Lake (which is adjacent to the Los Angeles Basin).
Furthermore, their optical system is considerably simpler than ours; i.e, they have
no large pieces of glass or crystal (such as in the Zeiss filter), and they have fewer
exposed mirrors and ancillary filters (which are excellent dust-collecting surfaces).
Given these differences between the two systems, one would expect there to be less
scattered light in the Anderson Mesa measurements, and therefore, the two choices
for PSFs are not inconsistent with each other. Also, their FWHM values for the

nighttime seeing are consistent with our daytime values of ~ 4".

Subsequent to the completion of this work, we discovered that others have used
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a two-Gaussian PSF as a model for seeing. Lévy (1971) measured the brightness
.' power spectrum of the solar granulation during the 1966 May 20 eclipse. The data
consist of 10 photographs of the granulation and the lunar limb (at 5300 A) made
with 1/580 sec exposure times. The limb of the Moon in front of the Sun was used
to measure the PSF in a manner similar to that described in Chapter 4 and § 5.4
below; however, their model for the PSF was slightly different from the one used in

Chapter 4:

1
S(z) = ;e—(z/a)z + -ll;e_(z/b)z. (5.1)

They find that the average FWHM for their PSF is ~ 0.8". Deubner and Mattig
(1975) essentially repeated these observations using the 1973 June 30 partial eclipse.
Their data consist of six granulation/lunar limb images (at 6070 A), which were

selected out of total of about 21,000 exposures (made at a rate of 18 frames/sec).

Using the same PSF model in Eq. (5.1), they find a FWHM of ~ 0.5".

At first sight, the order-of-magnitude difference in PSF FWHMs from our data
and from that of Lévy and of Deubner and Mattig seems quite disconcerting. One
wonders if the seeing can be that substantially different between BBSO and these
other sites. There are three parts to a possible explanation for this discrepancy, all
of which are true to some degree. The first is simply that the seeing was better
during the granulation measurements. BBSO (at an. elevation of 2,067 m) is a site
that is capable of having very good seeing; however, our measurements were made
on days that were considered average for the seeing at BBSO. Deubner and Mattig’s
measurements were made at the Observatorio del Teide at Izafia, Tenerife in the
Canary Islands. This observatory is at an elevation of 2,400 m, and is usually well
above the inversion layer, and is surrounded by a large body of water (the Atlantic
Ocean). These factors make for a site with excellent seeing characteristics, as the
surrounding air mass is very homogeneous. Lévy’s data were taken at the Pic-
du-Midi Observatory (at an elevation of 2861 m), another site known for excellent

seeing characteristics.
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_ The second half of the explanation is that the optical system used in our meas-
urements (see Fig. 3.1), specifically the filter, is very complex. The Zeiss birefringent
filter used in our measurements consists of ~ 40 crystal or glass elements (which
have a total length of about 40 cm), each of which could introduce a small amount of
defocussing. The net blurring effect from these and other ancillary optical elements
is no doubt considerable. As discussed above, the sheer bulk of the optics in the
Zeiss filter must also introduce considerable scattered light into our measurements,
thereby contributing further to the width of the PSF. On the other hand, the op-
tical systems used in the granulation measurements were very simple, consisting of
the telescope, an interference filter, and a camera. This explanation is further sub-
stantiated by noting that o; (the primary contributor to the FWHM of our PSF)
is 2-4 times as big as o, (see Fig. 3.7 and also Figs. 5.4 and 5.5). In other words,
the effects of image blurring are 2—4 times those of image motion. This suggests
that the atmospheric image-blurring component of the PSF has been artificially
enhanced. This is consistent with the above discussion concerning the complexity

of our optical system.

Finally, the third part of the explanation is that, at least in the case of the
Deubner and Mattig data, the very best images out of a set of many were selected
for analysis; in particular, they chose the best 0.03% of their images. It is not
clear from Lévy’s paper if a similar technique was used, but given standard solar
observational technitiues, it is most likely that a movie of the eclipse was made
and some form of image selection was employed. The technique of image selection
is known to give improvements in the image quality by a factor of 2-4 (Beckers
1989). Image selection was not practical in our Doppler observations because of
the requirement for an evenly spaced time sequence of images, and because of the
inordinately large quantity of data that would be generated. Given all of these
factors, it is not so surprising that the PSF FWHMs measured by Lévy and by

Deubner and Mattig are so much better than ours.
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5.3 Systematic Errors in the PSF

One of the most obvious features of the MTFs shown in Figs. 4.8a and b are
the kinks that appear at £ ~ 170. One might think that these kinks are a result of
the two-Gaussian PSF used; however, we believe that these are real features in the

MTFs. We tried several other PSF's of the form

N
5(2) = —— 3" i Si(a) (5.2)

i=1 %

=

with the o; in the Sj(z) fixed and having a geometric ratio, i.e., o, = 2" 10y, and
with the «; all free parameters. Sums of Gaussians with up to N = 5 were tried.
These PSFs are less physical than Eq. (4.2); i.e., physical properties cannot as easily
be associated with the different terms, as was done above. However, they are more
general than Eq. (4.2), and they always produced MTFs that essentially agreed
with the ones in Figs. 4.8a and b. It is interesting to note that the MTFs produced
by Lévy (1971) and Deubner and Mattig (1975) in their granulation brightness
power spectrum measurements (described in § 5.2) also exhibit the same kink. We

therefore conclude that the aforementioned kinks are real features in the MTFs, and

are most likely a result of both atmospheric blurring and scattered light influencing

the MTFs.
5.4 The 1989 March 7 Eclipse Test of the Seeing Measurements

As stated before, we can think of the atmosphere as a low-pass spatial filter.
By measuring the inputs and outputs of this filter we are able to determine the
properties of the filter, i.e., the MTF. One way to test this procedure would be to
subject the filter to different inputs, measure the outputs, and see if the resulting
MTFs are the same. One should note that this is not a perfect test. If the resulting
MTFs are different, then there is a flaw in the procedure. However, if the MTF's
come out the same, then the procedure is self-consistent, but may still contain flaws.
We had the unique opportunity to perform such a test using the partial solar eclipse
of 1989 March 7, with the two different inputs being the solar limb as seen on the
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fb‘a.ckground of space, and the lunar limb as seen in front of the solar disk. The
path of the Moon across the solar disk, as seen from BBSO, is shown in Fig. 5.1.
The model used to describe the seeing is still that of Egs. (4.1) and (4.2). The
unsmeared solar limb profile, Lp(z), is still that given in Eq. (4.6); the unsmeared

lunar limb profile is a step function given by

Le(z) = {(? ;:.: ; gi’ (5.3)
I3 is the intensity of the Sun in the vicinity of the lunar limb and R is the lunar
radius. It varies gradually, depending on the position of the Moon, and is a result
of limb darkening. I§ is not the intensity of the Sun at the center of the solar
disk. Tt should be noted that Eq. (5.3) is not completely valid when the lunar limb
is near the solar limb, i.e., in regions of rapid change in the intensity of the solar
disk due to limb darkening. This occurs at the beginning and end of the eclipse.
Essentially what happens here is that the “top of the step” in the step function is no
longer flat. The result of using this step-function limb profile in these regions is an

underestimation of the actual MTF, i.e, overestimating the severity of the seeing.

The telescope optics and data acquisition system used to collect solar and lunar
limb profiles were essentially the same as that described in §§ 3.3 and 4.2, with the
VMG system mounted on the 25 ¢m (10 in) vacuum refractor. The data a.équisition
software was set up to collect limb profiles from the positions shown in Fig. 4.1.
This necessitated that both the solar and lunar limb cut through the camera field
of view (FOV) approximately vertically. In order to satisfy this requirement, the
camera was mounted on a rotatable stage, which allowed the operator to adjust
the camera angle to compensate for the changing limb orientation. The camera
angles were predetermined for five-minute intervals, so that given the time, one
could look up the appropriate camera angle to within 2.5 minutes. This amounted
to, at most, a 3° error in the camera angle. Fig. 5.2 shows the Sun/Moon positions
and the camera FOVs for three different times. Fig. 5.3 is a photograph of the
eclipse taken through the BBSO 20 cm (8 in) Singer-Link refractor. Finally, the
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Table 5.1

Eclipse Observational Parameters

Date ‘ 1989 March 7
Time of first contact (UT) 16:57

Time of last contact (UT) 18:48

Time of maximum coverage (UT) 17:52
Maximum coverage 29%

No. of profiles per sample 36

No. of solar limb samples 68

Total no. of solar limb profiles 2448

No. of lunar limb samples 66

Total no. of lunar limb profiles 2376
Horizontal images scale, Sy 0.527" [pixel
No. of pixels 128

Profile size 67.4"
Qualitative seeing fair

relevant parameters describing the eclipse and the two limb profile data sets are

shown in Table 5.1

It should be noted that these eclipse observations were a very exacting task,
given that two other observing programs (on two different regions) had to be satis-
fied using three telescopes, all of which were essentially mounted on the same spar.
These difficulties were overcome by extensive planning in which it was decided
what each of the observer’s responsibilities would be and the order in which the
observations were to be carried out, and by the preparation of elaborate checklists.
Furthermore, it was decided to hold dynamic redirection to a minimum by allowing
only one person (the Chief Observer) access to the telescope control paddle. All
requests for telescope repointing went through this person. Despite an addition -
to the observing program (at the very last minute), all the observing goals were

successfully met. The BBSO observing staff should be complimented for their skill
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Cin carrying out these observations.

The limb profile analysis is the same as that described in § 4.4. Each limb
profile was fit to the médel given in Eq. (4.5). Eq. (4.6) was used for the unsmeared
limb profile for the solar limb profiles. Since the unsmeared lunar limb profile is
much simpler than that of the solar limb profile, Eq. (4.5) reduces to the much

simpler, analytical form for the lunar limb profiles

B () et (S o0

where we have used Eq. (5.3) in place of Lp(z) in Eq. (4.5). The five fit parameters,

Iy (or Ig), 01,02,a, and g, were corrected for the same effects described in § 4.4.
Fig. 5.4 shows I, 01,02, a, and 0., from one limb sample position, as a function of
time, for the solar limb profiles; Fig. 5.5 shows I3, 01,02, @, and 0, from one limb
sample position for the lunar limb profiles. In Fig. 5.5., there is a noticeable decrease
in I§ at the beginning and end of the eclipse. As described above, this is a result of
the variation in I§ with lunar limb position. Note that there is a very slight increase
in a at the beginning and end of the eclipse. This is because the Moon is near the
solar limb, and at that point, as described above, L¢(z) is a bad approximation of
the unsmeared lunar limb profile because of the rapid variation in I} due to limb
darkening. The average PSF FWHM determined from these parameters is ~ 2.8".
Note that this FWHM is somewhat better than the FWHM determined from the

seeing measurements described in Chapter 4.

The MTF is, again, given by Eq. (4.9). MTFg(#,t) is shown in Fig. 5.6a, and
MTF(4,t) is shown in Fig 5.6b. The edge effects, which result from the breakdown
of Eq. (5.3) at the limb, show up quite clearly in MTF¢(4,t) as a decrease in the
MTF at high £. Finally, Fig. 5.7 shows the time-averaged MTFs. The average lunar
MTF is slightly less that the average solar MTF at high ¢, but this is attributable
to the average’s being pulled down by the artificially lowered lunar MTFs at the
beginning and end of the eclipse. Other than this small difference, we see that the

two MTFs are in quite good agreement with each other. This result lends credence
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" to the seeing-correction technique. It does not prove that the technique is correct.
However, had the two MTFs been different, this would have been cause for worry. ..

to put it mildly!
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Figure Captions

Figure 5.1: The path of the Moon across the face of the Sun for the partial solar
eclipse of 1989 March 7, as seen from BBSO. The Moon is shown at three different

instances: time of first contact, time of maximum coverage, and time of last contact.

Figure 5.2: A schematic showing the camera field of views (FOVs) for the three
different Sun/Moon positions shown Fig. 5.1 (represented here by a dashed line,
a dot-dashed line, and a dot-dot-dot-dashed line). The small rectangles represent
the camera FOVs and the camera angles fof each of the three times. Within each
rectangle, limb profiles are taken, as in Fig. 4.1. I thank Dr. Dale Gary for his help
in producing this figure and Fig. 5.1.

Figure 5.3: A photograph of the 1989 March 7 partial solar eclipse taken near the
time of maximum coverage. The two small, white lines indicate the location and

orientation of the solar and lunar limb profiles.

Figure 5.4: The averaged, corrected limb fit parameters from one of the four limb
sample positions (shown in Fig. 4.1) for the solar limb profiles. The image scale
is 0.527" /pixel. From the top down, the curves are: 1) I; (dashed line) measured
in relative units; 2) o; (solid line) measured in pixels; 3) o,, (dot-dashed line)
measured in pixels; 4) oy (solid line) measured in pixels; 5) « (dashed line) measured
in absolute dimensionless units. Taken separately, any of these five quantities as
a function of time are not completely indicative of the seeing. The seeing can be

interpreted only through the modulation transfer function (MTF).

- Figure 5.5: Same as Fig. 5.4, except for the lunar limb profiles (with I3 repiacing
). |

Figure 5.6: The MTF shown as a function of spatial frequency (or spherical har-
monic degree £) and time. This is Eq. (4.9). (a) The MTF as derived from the solar
limb profiles. (b) The MTF as derived from the lunar limb profiles. Note that there
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" is a slight decrease in the lunar-derived MTF at high £ at the beginning and end of
“the eclipse that results from a breakdown of Eq. (5.3).

Figure 5.7: The solar- and lunar-derived MTFs averaged over the duration of the
eclipse. The two MTF's are essentially identical, thereby increasing the confidence

level of the seeing-correction technique.
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APPENDIX I

The frequencies resulting from the ridge-fitting technique used in Chapter 3
are approximations of the actual mode frequencies. Each ridge peak is actually
comprised of many individual mode peaks that result from power from modes with
different £' leaking into the power spectrum at £. The centroid of this collection of
mode p.ea.ks is used to approximate the actual m = 0 mode frequencies. We discuss

here the corrections for the key systematic error in this procedure.

For a given ridge n, each ridge peak at £ consists of a peak from the actual mode
frequency, at vyn¢, and sideband peaks from nearby modes, at ;. The measured
centroid of this collection of mode peaks is the result of the ridge-fitting procedure,
and is at v;,. Therefore, the error in the measurement of v, (after dropping the
subscript n) is

Avy = vy — v, (A.L1)

The measured frequency is the weighted sum of all the different frequencies present

in the spectrum at £. Therefore,

i — 2 ve Pes
-
e Pey

where Pgy is the power from the £'th mode that has leaked into the £th power

(A.L2)

spectrum. The measurement error then becomes

Et' AV(!PUI
zt' Ptl’

where Avy = vy — vpr. Py can be expressed in terms of an overlap function

Avg = (A.L3)

Py =V (¢, f’)Pg:, (A.I.4)

where V(£,£') is the fractional amount of the ¢/ mode leaking into the £th power
spectrum. In other words, V(¢,¢') = |(1/)¢|¢vgr)|2, where 1 is the eigenfunction of

the ¢th mode. Py, above, is the power in mode #'. So, Eq. (A.1.3) becomes

_ T Ave V(L €)Py
AVt - Zt' V(e’ e')P[I

(A.L5)
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Now, Py can be expressed in terms of Pp:
Py = Py(£ + AL), (A.I.G)

where A = £ — {'. After performing a Taylor expansion on Eq. (A.L6), we get

Py ~ P, (1 + Aedl;‘ep : ) . (A.L7)

Substituting this into Eq. (A.I.5), and after noting that
Avp = AE%, (A.L8)

we get
dv din P

Avg Yoo ALEV(£,0)) (1 + Apdlnke) (AL9)

e V(6 )(1+ Aedln e

We now assume that V{(¢,£') is given by
0 — ao)?

V(e,¢) = exp [—(iz-;zﬁ‘-)-} , (A.L10)

where a = €/ represents a small scale error, and s is the approximate number
of modes leaking into the £th power spectrum. After substituting for V(¢,¢') in
Eq. (A.I.9) and letting the sums go to integrals, we get

Av = "sziliia—p£ eedV

3 P, O A (A.I11)

where we have dropped negligible terms in a? and a d(Iln P;) /df. This is the result
obtained by Libbrecht and Kaufman (1988).

We are now faced with the task of evaluating s. For full-disk, spherical harmonic
decompositions (as in the low- and intermediate-£ analyses in Libbrecht, Woodard,
and Kaufman 1990), s is found to be approximately 2. In this case, the mode
linewidths are smaller than the spacing between the leakage modes, and s can be
determined essentially by counting the leakage modes. In the case of partial disk,

Fourier-transform decompositions, s is not easily evaluated because of the artificially
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large linewidths. This makes counting the leakage modes difficult. In this case, we
shall explicitly calculate V(£,¢') to find s.

The plane-wave approximation to a spherical harmonic is
e = e72mike (A.1.12)

where k is an integer, £ = kd¢/dk (d{/dk is the scale factor), and z € [0,1] and is

defined over the observing window. Then,

1
(¢l|¢£’)=/ e21rikze—21rik’zdx
0

(A.I.13)
= e™*=Fginc [w(k — k"] .
Therefore, we find that
' N . g TAL
V(¢,4') = sinc T (A.I.14)

We can approximate Eq. (A.I.14) by Eq. (A.1.10), which will allow us to ap-
proximate s, and to continue using the formalism developed in Eq. (A.I11). We
make the approximation by matching up the half width at half maxima (HWHMSs)
of the two functions. For the the Gaussian, the HWHM is

HWHM = v2In2s, (A.L15)

and for the sinc? function, the HWHM is

HWHM = 0.4429465—2. (A.L.16)
By equating these two HWHMs, we obtain
s = 0.376204%. (A.L17)

This value of s can be used in Eq (A.I.11), and corrections for systematic errors can

be made to the ridge-fit frequencies.
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APPENDIX II

In order to properly measure the velocity power of the low-¢, we must calculate
the frequency responsé, or modulation transfer function (MTF) of a best-fit linear
subtraction filter. That is, given an input ﬂn(z), and the least-squares linear fit to
the input, g(z), we want the power spectrum of the difference, fou(z) = fin(2z) —

9(z). Let the input be

fin(z) = sin(kz + ¢)

. (A.IL1)
= Asinkz + B cos kz,

where A = cos ¢ and B = sin¢. Let the linear least-squares fit to fin(z) be
g9(z) =a+ bz (A.IL2)

and the difference be
fout(z) = fin(z) — g(x). (A.IL3)

Expressed as a Fourier series, this is

fout(z) = Alsinjr 4+ B’ cosjz. All4
J J

J=1

The power in the jth frequency component is

P(j) = Ag? + B}z (A.IL5)
 and the MTF of this filter is
MTF«(j) = (Pk(4)), (A.IL6)

where ( ) denotes an average over all phase angles ¢.

We must first calculate g(z) by minimizing

2w
x* = /0 (fin(z) — a — bz)? dz (A.IL7)
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‘with respect to a and b. Of course, a line is not a very good approximation to a
function like fin(z) given in Eq (A.IL.1). Recall that the goal here is not accurate
modeling, but, instead, filtering of an input signal. We find that

34
a=— (A.I1.8a) -
and
341
b= - (A.IL.8b)
Therefore, the least-squares linear fit is
3A T
9(a) == (1 - -7;) (A.IL9)
and the filter output is
. ' 34 T
fout(z) = Asinkz + Bcoskz — = (1 - —7;) . (A.IL.10)

Calculating the Fourier series of fout(z) (Eq. A.IL4), we find that the Fourier coef-

ficients are

64

A = Aby, — —= -
37 AR T e (A.IL11)
B! = Bsj;.

Therefore, Eq. (A.IL.5) becomes

2 . 2
12‘4) o4 (A.IL12)

i) = (1= 75 ) o+ i

where we have used the fact that A2 + B% = 1. Finally, averaging over all phase
angles, we get the MTF of the filter:

. 6 18 |
MTF(j) = (1 - 7r2—]k) 8k + pr e (A.I1.13)

where we have used the fact that (42) = (cos? ¢) = 1.

I am indebted to Dr. Martin F. Woodard for his guidance in carrying out this

calculation.
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