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ABSTRACT

Let 7L/l = LZ. (-00,00;Ni), where Ni is a Hilbert space (i = 1,2).
Define‘ the operator L by Lf(x) = xf(x), and let X1 be the character-
istic function of I. We examine bounded linear operators T:il/l—ﬂl/z
which satisfy some or all of the following conditions:

(1) There exists a complex-valued function ng(x,y) on
/7’1 X /9’2 x R% such that Kgy € Ly(1 X)), and (IXf, X58) = I «T5tg
for disjoint compact intervals I and J,

(2) (T,fg)=lim [ K

e—0+ X 18
{XE} Is a suitably chosen fan%ily of subregions of { (x, y‘):xq&y} .

exists for f € 7L/1 and g € 7L/Z.

(3) s-lim el T e ith
f—»1c0

We show that if T satisfies 1 and 2, then XZ(T—TO)XZ is a

exists.

multiplication operator for every bounded interval Z. Then T will
satisfy 3 iff TO satisfies 3, We also obtain a representation for the
limit 3. In case Nl = NZ = complex numbers, and K(x,vy) is the
Fourier transform of an integrable function, then T defined by

(Tig)=lim S|

Y|>£dxdy Klx,y) (x)g(y) satisfies 1, 2 and 3.
e— 0+ - ’

x-y

The theory is applied to the situation V = symmetric oper-
ator, H = gelf-adjoint extension of L+V, and HO = I, in the space
il/. Conditions analogous to 1, 2 and 3 are:

1 g

(1') Replace (TXIf: XJg) in 1 by (E(I)f:EO(J)g)-

(2‘) The same as 2.

(3") s-lim exp(itH) exp(-—itHo) exists.

t— +o0

We show 1' is satisfied when V is a special Carleman oper ~

ator, and 1', 2', 3' are satisfied when V is of trace class,



INTRODUCTION

In this thesis we study problems arising from a consideration
of operator limits of the form ;—lirrimexp(itH) exp(—itHO) = Wi(H’HG)’
where VI-I and HO are self-adjoint cEperators in a Hilbert space H. We
shall refer to Wa;(H’Ho) as the strong or weak, as the case may be,
wave limits corresponding to the operators H and HO" Since the
limits need not exist on the whole space 7L/, it is of interest to find
reasonable projections P and P for which ;-lltirriifsxp(iﬂ—l)exp(-itHO)PO
do exist. Then we denote them by PW:!:(H’HO)PO°

During the last two decades there has been a lively intcrest
in wave limit problems shown by both mathematicians and physicists.
These limits arise in a branch of physics known as scattering theory.
In elementary quantum mechanics, the state of a system is described
by a vector { in a Hilbert space H, In the Schr8dinger model, it is
further specified that |y is a function of the time t and may vary in
accordance with the differential equation Hy = i —g—% which is called
‘the Schr8dinger equation.

The Hilbert space 7/ usually consists of square—integr;.ble
vector-valued functions of position in 3k~space, The operator H is
called the Hamiltonian., It is a symmetric operator usually of the

3k

form Hy = (-A+ V)i, where A= Z i_f , and V is at most a first
i=1 bx;

order symmetric differential operator ‘Whose coefficients are func-

tions of position, The Hamiltonian characterises the system. It has
been shown (13) that H is essentially self-adjoint under fairly general
assumptions on V., This fact permits us to treat a good many physi-

cal problems, including that of scattering, in terms of the well-
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developed theory of unbounded self-adjoint operators. In particular,
the solution to the Schrldinger equation can be written as y(t) =
exp(-itH)y(0). The operators exp(-itH) (-o< t < ©), form a one-
parameter group of unitary operators (8).

Scattering theory is concerned with the physical experiment
in which we have an incoming beam of particles, an obstacle or
'scatterer' and an outgoing beam. We in fact need to imagine two
situations, one in which the scatterer does interact with the beam,
and one in which it does not, In the first case let us denote the state
of the system by y(t), and in the second by Lpo(t), corresponding to
Hamiltonians H and HO’ respectively. Suppose, furthermore, that
y and Lpo agree at some time 7 in the remote past. Then (0) =
exp(i'rH)exp(-i'THo)qJO(O), The wagj limit W_ (H,HO) then gives a
mapping of solutions of HOLIJO =i —51:2 into those of Hy{ = i%d% such
that they 'agree at time -®', Similarly W+(H,HO) gives a mapping
of solutions which agree at time +®., The scattering operator S =
W: W_ maps each solution of Hydg = ii);lt—o— into another such solution
and describes, in a sense, the total change caused by the scattering
interaction in terms of solutions of this equation.

Scattering, when considered from this point of view, becomes
a meaningful concept in comparing asymptotic properties of solutions
of any two differential equations for which the solutions lie iﬁ the
same space and the initial value problem has meaning. We mention,
for example, a study of scattering for the wave equation by Lax

and Phillips (21), and scattering for certain nonlinear equations by

Browder and Strauss (3). There is a discussion of the physical
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basis for the formulation of scattering we have outlined here in a
1953 paper by Gell-Mann and Goldberger (7).

Iﬁ order to apply mathematical analysis to scattering prob-
lems, it is hecessary to specify more precisely the term wave limit
and to make some assumptions about its properties. This was done
by Jauch (11) in 1957 when he introduced the concept of scattering
system. In 1959 Kuroda (18) gave some slight generalizations of
Jauch's formulation. We describe here what is meant by a scatter-
ing system in this general sense,

Let Hl and HO be two self-adjoint operators in a Hilbert
space H. Let Pl and Po be the projections on the absolutely con-
tinuous subspaces of Hwith respect to H1 and HO respectively.

That is, P07L/= {£:1l E:f Il is an absolutely continuous function of p.},
where E3 is the resolution of the identity corresponding to HO. Then
(H,HI,HO) is a scattering system if the following conditions are
satisfied:

i) Wi(Hl,Ho) PO F s-g.irilogxp(itHl)exp(—itHo) PO exis-j:o

i) W, (H,Hg) Po/=W_(H,H) Py,

0
Even the single assumption that the strong limit W, exists
implies a number of important consequences (18, Theorem 3.1)

which we summarize here:

i) W, is a partial isometry with initial set POH and final
set contained in Pl//,

i) W,/ reduces H and the part of H in W,/ is unitarily

1

equivalent to the absolutely continuous part of HO:
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e 3¢
H1P1W+ = W+HOPO , W+H1P1 = H0P0W+ o

If (7L/,H1,HO) is a scattering system, then the scattering operator
S = WiW_ is a partial isometry whose restriction to POH is unitary.
This fact is of importance to physicists (11, p. 152).

Mathematical efforts have been largely directed toward veri-
fying conditions i) and ii) for scattering systems. We shall give a
brief description of the techniques used and the results obtained
below. Scattering theory, however, has not been the prime moti-
vation for studying wave limits. They are a useful tool in studying
conditions which guarantee the unitary equivalence of two self-adjoint
operators Hl and HO’ or more precisely, the unitary equivalence of
I—Ilp1 and HOPO considered as self-adjoint operators on PliL/ and
POIZ/ respectively. The reason for this is that if the strong wave
)P

limit W, (H,H exists, and W+7‘7’ = Plz‘/, then H.P. and H P

0’0 171 0" 0

are unitarily equivalent (18, Theorem 3.2).

The unita-ry equivalence problem has, in fact, been investi-
gated using two different approaches. The historically earlier one
was used by Friedrichs (6) who constructs the unitary operator
giving the equivalence by means of a perturbation method. Having
established this equivalence, Friedrichs then proceeds to prove the
existence of strong wave limits. The scattering theory approach,
on the other hand, establishes strong wave limits first. This method
usually yvields equivalence of Hlpl and HOPO under more general
assumptions, but fails to say anything about the parts of Hl and HO

not in Plizf and PoiL/ respectively.
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The starting point of the scattering theory approach is the

equation
t
exp(_itHl)exp(—itHO) u=u —HS ds exp(isHl) Vexp(—isHO) u,
0

where u€ 7l7/, and Hl = HO + V. In practice one first establishes the
strong integrability of the integrand on (-,0) for all u in some
manifold ”I dense in PO 7£7/. This, of course, implies the existence
of strong wave limits on/ll and the extension to P07L/ is straight-
forward.

We mention here some of the more significant results which
have been obtained in this way. In 1957 Rosenblum (26) essentially
proved the existence of the strong limit lei(Hl’HO)PO under the

assumption that le Ho—l-V, where V is of trace class. In the same

year Kato (14) obtained the strong limit W:!:(HI’HO)PO for V of finite
rank as well as the fact that Wiil/ = P1H° Kato subsequently
extended his result (15) to operators V of trace class (27, p. 77)

by means of an inequélity which showed that for fixed HO W:!:(I:‘Il,HO)P0
is a continuous function of V, from the trace topology on the class

of finite rank operators V to the strong operator topology. The
extension to all V in the trace class is then clear.

It is interesting that the trace class is, in a sense, the
largest class for which this result can hold if we deny ourselves the
privilege of making assumptions about the relationship of V to HO.
Kuroda proved in 1958 (17) that, given any unitarily invariant cross-
norm @ which is not equivalent to the trace norm and ¢ > 0, then for

any self-adjoint operator HO there exists a self-adjoint operator V
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with @(V) < ¢ such that Ha = H0+V has a pure point spectrum.,
Nevertheless, the perturbations which appear in the physical

scatteriﬁg problems seldom, if ever, are of trace class., On the

other hand, 'usually a great deal is known about the operator H By

0*
taking this information into account, the existence of strong wave
limits can still be proved (4), (12), (19), The literature on this topic
is too vast to permit our giving a summary, We mention only a
result by Kato (16) which includes many of these specialized theo-
rems. It asserts, roughly speaking, that if S"Wi—(Hl’HO)PO exist,
and ¢ is a real-valued function satisfying certain smoothness restric-
tions, then S“Wi(d)(Hl)’d)(HO))PO indeed exist.

Specialized techniques have also been devised for dealing
with the case when HO is the Laplacian and V is a multiplication
 operator. There has been work done on eigenfunction expansions
associated with the Schrédinger equation which yields slightly better
existence theorems al;ld gives representations for the wave limits.
"~ We mention in particular works by Povsner (24) and Ikebe (10),
Recently representation theorems for the trace class have beén
obtained by Birman and Entina (1),

Although the existence of strong wave limits implies at least
partial unitary equivalence, the opposite is not true. Jauch (11,
p. 150) asks whether the condition that H1P1 and HOPO be unitarily
equivalent is sufficient to guarantee that‘(ﬁ,Hl,HO) be a scattering
system,  The following example answers this question in the nega-
tive. Let /7 = L, (E,),H, be a self-adjoint extension of 1 2 and

ox

let H, be a self-adjoint extension of i 0 « Then H, and H, have
1 oy 0 1
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absolutely continuous spectra and are unitarily equivalent. Further-
more, exp (itHl)f(x, y) = f(x-t,v), and exp(itHo):f(x,y) = f(x,y-t).
Hence e:;:p(itHl)exp(—itHO)f(x,y) = f(x-t, ytt), from which it follows
that the weak wave limits are 0 and the strong ones do not exist,
Consequently some other conditions are required,

The point of view taken in this thesis is that the unitary
operator U giving the equivalence, that is U*HOU = Hl’ must be
of a rather special form. The investigations of Friedrichs (6) on
perturbations of the operator L in the Hilbert space Ft= LZ(-OO,OO),
where Lif(x) = %f(x), by an integral operator V satisfying certain

Hblder conditions yield U of the form
Utl) = Alx)E) + [ay 2 1ty (F)

The integral must, of course, be interpreted as a principal value.
The Friedrichs theory has since been extended to more general
situations by means of thé concept of a space of gentle operators
introduced by Rejto (25). The generalization of F continues to play
an important role. We might add that the gentle perturbation
approach to the unitary equivalence problem deals with more re-
stricted classes of perturbations than the wave operator approach,
but has the advantage of giving information about the non-absolutely
continuous parts of the spectrum.

In this work we show that a generalization of F is valid for
a class of perturbations which includes the trace class. This class
can be roughly described as those perturbations V for which we

have
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(E,(Df, E,(T)g)=

IxT dp‘d}" ng (P":)‘-) ’

where 1 énd J are disjoint compact intervals, nge Ll(I X J), and El’
EO are the spectral measures corresponding to Hl’ HO respectively,
We also study the connection between ¥ and weak and strong wawve
limits.

For purposes of analysis we need the theory of spectral
representation for unbounded self-adjoint operators (5), (29). For

the special case H1P1 = Hl and HOPO = HO, it asserts essentially

that /7 can be represented as a subspace 71/1 of L2(~°0,°0:Ni) in

which H, becomes multiplication by x, (i = 0,1), That is, there

exist isometries Ui: 7[{* Hi’ such that UiHiUi: = L, where
Li(x) = xf(x).

The question of existence of wave limits is now decided by

the existence of > - lim eitLUlUZe_itL, where UlU; is an isometry
t> 00

3%
mapping 7L/0 onto /‘/1 Actually the isometric character of U1UO
does not seem to play a very special role insofar as the existence

of these limits is concerned. More important is that UlU:; be of

a form analogous to F,

Section I of the thesis deals with bounded operators

T: LZ(-00,°0 ; Nl) —>L2(-°0,00 3 Nz) which possess a form analogous

to F, We construct a large class of examples for which

s-lim eltLTe-ltL exist and obtain a representation for these
t—>+o0 sk
limits. In Section II we apply our theory to the operator UIUO"



SECTION 1

Throughout this section, unless stated otherwise, 7L/i will
denote the Bochner space LZ(-—OO,OO;Ni), where Ni is a Hilbert space
with norm |° li and inner product (- ,*> i (i=1,2), The norm and
the inner product for ]L/i will be denoted by {f e “i and (°, ')i; that is,
(f,g), = Jax<i(x), g(x)>,, and Il% = [ax I£(x)I? , where f,g¢ /7,
(i=1,2). Whenever there is no danger of confusion we may omit
the indices on the norms and the inner products,

We shall consider linear operators T : 7L/l—* HZ and denote
the norm of T by [Tl = sup {”Tf“z : Ilflll <1}.

The symbol Xs will denote the characteristic function of the
set S. When S is Borel measurable we write xsf(x) =XS<X)f(X)°
That is, weitreat Xg 38 a projection on the subspace of functions
with support in S.

Our first step is to define a class Cl of bounded linear
operators which will include those of type F,

Definition 1.1, TeCl if the following conditions are satisfied.

i) T: z‘/l-»%/?_ and Tl <o

ii) For each fe # and each g EiL/Z, there exists a complex-

1
valued function ng(x,y) defined on RZ, such that for any two disjoint
compact intervals I and J, nge Ll(I X J) and (T X1 f, ng)z =

/

IXT dxdy ng(x,y).
It is sometimes useful to have a characterization of Cl
which does not demand us to display the kernel ng, Such an alter-

nate characterization is contained in the following theorem. It is

understood that T is a bounded linear operator.
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Theorem 1.2. The condition T¢ Cl is equivalent to the statement:

Given disjoint compact intervals X and Y, f € ]L/l’ g€ }[/2,’
and ¢ > 0, there exists § > 0 such that if Ik and Jk (k=1,...,n) are

disjoint subintervals of X and Y respectively which satisfy

le J)<6 thenZlexI,ng <e , (1)
k=1

Proof, If Te Cl’ then the corresponding kernel K, € Ll(X X Y) and

fg
1 follows immecdiately. Supposc statement 1 holds.

Let fe€ 7L/1 and g€ IL/Z, We choose disjoint compact intervals
X and Y and construct a finite complex measure p'fg on the Lebesgue
measurable subsets of X X Y which is absolutely continuous with
respect to Liebesgue measure and satisfies Meg (IXJ)= (TXI;E, ng)
where I and J are subintervals of X and Y respectively. We use
the fact that the Liebesgue measurable subsets of X XY form a com-
plete metric space if we set p(A,B) =\((A-B)U(B-A)), where \
denotes Lebesgue measure (22, p. 107). Furthermore, finite unions
of rectangles I XJ are dense in this space.

The next step is to define an additive function P'fg on the
semiring of rectangles by setting p.fg(l XJ) = (Tfo, ng). The
additivity of P’fg follows from the linearity of T and (*,°). We ex-
tend P'fg to the ring of finite disjoint unions of rectangles in a
straightforward fashion. Statement 1 now asserts that Feg is a
uniformly continuous function from this ring into the complex num-
bers. Since the elements of this ring are dense in ocur metric space,

Hfg can be uniquely extended by a well-known technique to the whole

metric space,
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The extension is a measure on the Lebesgue measurable
subsets of X XY, Furthermore statement 1 implies that p‘fg is
absolutely continuous with respect to Lebesgue measure since any
set of measure zero can be covered by a countable union of rec-
tangles of arbitrarily small total measure., Finally we remaxrk
that ;.Lfg is unique,

By the Radon-Nikodym theorem, there exists a function
ng defined on X X Y and unique up to sets of measure zero such
that K, € L

fg 1( J‘IXT fg

If we have Kflg and ng obtained for rectangles Xl X 'Yl

and X2 X YZ respectively the uniqueness of our construction implies

1 _ .2 -
ng = ng a.e. on (X1 N X,) % (xl n Y,) = (X, XYl) n (X, X¥,).

Hence, by an obvious patching proccdurc, a function ng can be

X XY) a.ndp.fgIXJ

defined in the whole plane, having the properties asserted in the
theorem.

In the proof of the preceding theorem we have obtained the
added bonus that if T satisfies statement 1, then the corresponding

kernel ng is unique up to sets of measure zero. This implies:

Corollary 1.3. If Te( , then for fixed fe Hl and ge qu, the cor-
responding kernel ng is unique up to sets of measure zero.

In the ensuing discussion we shall use some linearity
properties of the kernel ng which are contained in the following
lemma. We write K({f, g;x,v) instead of ng(x,y) for reasons of
convenience.

Lemma 1.4, Let Te¢ Cl and let K(f, g;x,vy) be the corresponding

kernel. Then the following statements are true:
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i) For any £, he //l’ g, ke }L/Z and complex numbers a,p, we have
K(aftph, g;x, vy} = oK(f, g;x,y) + BK(h, gix,y) a.e., and
K(f, agtpk;x,y) = aK(f,g;x,y) + BK({,k;x,y) a.e.

ii) If £(-)e 7l7/1, g(+)e HZ’ and a(x), B(y) are complex-valued functions

such that also a(*){(° )€ 7L/1 and B(+)g(°)e #H_, then

2,
K(af, pgix,y) = a(x)Bly) K(f, g;x,y) a. €.

Proof. i) is a direct consequence of Corollary 1.3 and the cor-
responding linearity relations for (T X]'.f‘ XJg)
ii) Let X and Y be disjoint compact intervals and

An = {x:xe X, lax)l <n} ,

B

n

H

{y :ivevy, |[3(y)|~$n} (n=1,2,40.) o

Then {An} and {Bn} are expanding sequences of sets. If we choose
a particular x€ X then xe A_for n > la(x)l. Consequently 91 A =X,
Similarly lx"ll Bn = Y., It follows then that {An X Bn} ‘is an expanding
sequence of sets whose union is X X Y, It is a simple calculation
using i) to show that, whens. and s, are stepfunctions on X and Y

1 2

respectively,

(Tslf, szg) gx dxdy sl(x) sZ]y) K(f,g:x,y)
XY

Then, using the bounded convergence theorem and the continuity of

the inner product, we obtain the corresponding result for bounded

measurable functions, Certainly XA a(*) and X5 Bl*Y (n=1,2,...)
n

n
are hounded measurable functions. Consequently for all subintervals
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I and J of X and Y respectively, we have forn=1,2,,,,

(T XA u.XIf, Xp ﬁng)
n n )

1}

dxdy XA (%) alx) XB (Y)p(Y) K(f, g;x,y)
IXT n n

H

dxdy X, (x) Xg (v) K(af, Bgix,y)
IX3 n n

We conclude from Corollary 1.3 that

XAann(X) Y)a(x)ﬁ(y) K(fs giX, Y):XAuxBu(X, Y)K(af, ﬁy;x,y) Ao B

Finally, using the fact that An X Bn{r X XY, we obtain
a(x)Bly) K(f,g;x,y) = K(af, Pgix,y) a.e. on X XY

Since the set {(x, y): x# y} can be written as a countable union of
rectangles of the form X XY, it follows that the above equation holds
a.e, in the plane.

For our purposes, the most interesting operators T€ Cl are
those whose kernel ng(x, y) is not integrable in a neighbourhobd of
the line x = y. We now define classes Cz and C; of operators T
for which ng is integrable in a principal value sense.

Let Xs and X; be subsets of Rz defined by

x
£

"

{Ge,9) ¢ fx-yl >e}, and

Xé {(x,y): lx~yl =2 ¢ ¢((xt+y)/e)} (¢ > 0), where

]

¢ is the sawtooth functiont
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2+x -1l sx<0

o{x) = s 0(2ntx) = d{x) (n =1, £2, ...)
2-x 0=x<1

See fig. 1, p. 45.
Fix a bounded interval Z and choose TE€ Cl with corresponding

kernel ng. We prove inlemma 1,6 that T, and T; defined by

(T f,g) =§ K. , and (T {,gq) =§ K (2)
e zzﬂxE g e " zzﬂX*{ fg

are bounded linear operators.

Then we define the classes

CZ (zy={T: Te 1’ T0 = W—iir(lﬂ Ts exists} , and

C,(z)={T: Te Cyr Tl = w-lim T! exists} .
g = 0+

Definition 1. 5.

i) CZ = {N CZ(Z) : all bounded intervals Z}
ii) CZ. = {N CTZ(Z) : all bounded intervals Z}

Lemma 1.6. The operators TE and T‘€ defined by equation 2 are

bounded and linear. Furthermore,
“T'SH <33Tl (> 0) (3)

Proof. We first prove 3. Let Ik = [2ke, 2(k+1)s]

andJ, = [ke,(ktl)e] (k =0, =1, 2,...), Choosefeﬁ’l and

g € //Z with support in Z. Then
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(T, g) = (T(Exjkf)% X3, g) =z (Txka,-xjﬂ g)
k,f
=Z_(Tx1kf: xlkg)
+ [-.-+(TxJ_lf, Xy B (Txs Xy ) (TXg E X3 80 .e]
s (4)

where we have used the assumption that

(T)(J f, XJ g) ‘S‘ fg’ whenever Jkﬂ.I£ = ¢
J ><]'
(Definition 1.1, ii)). See fig. 1, p.45.
We now solve equation 4 for (Té f,g) = fX' ng and obtain

the inequality

T g, g) < ITh Nl nguZJrz il llxlkfﬂl uxlkguz
k

+n:ru[...+nxJ tly g ghyt g 11 gl g £l 11xp g +..]
1

1

( Iy gu2>"

I 2
20,

e

<hTl gl ligh, + HTII(Z g fnf)
/ k
k

— 1 L
; llTH(Z %, fuf>2 (z I %, gng)a
1t TR

Since Z‘I f” Uf”iz, and similarly for the other sums, inequality
k
3 follows.

To prove that TE is bounded we construct a sequence of

sets Xs n (n=1,2,...) satisfying:

]
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i) Xg L is2 finite union of disjoint subrectangles of ZZ.
E

ii) Xe a is an expanding sequence whose union except for a
3

null set is Z°NX_. See fig. 2, p. 45.

We define the operator Ts n by (Ts ’nf,g) = fXE ang’

and notice that it is bounded and linear since by i) abave it can

?

be written as a finite sum of operators of the form XJTXI° It is

easy to see that ng € Ll(Z2 N Xs) and

K —>S. K as n—-ow ,
S'X fg . Zznxs fg

€,

Therefore w-lim T = TE and Ts is bounded by the principle of
n-—00 !
uniform boundedness,

As a consequence of inequality 3 we obtain:

Corollary 1.7, Te CZ if and only if there exist linear manifolds

M, dense in Hi (i =1,2) such that h € M, and k € M, implies

1im exists for all bounded intervals Z.
e 0+ zzﬂx; “n,k

At this point we make the additional assumption, to hold

for the remainder of Section I, that Hi =L -OO,OO;N.l) (i=1,2)

5
are separable.

Suppose T € Cz (Z), and let T = w-liin0+T£, We show in
Theorem 1.9 that X,I'X - TO is simply a muEthiplication operator,
The proof is dependent upon the following lemma.,

Lemma 1,8, Let T : 717/197[7/2 be a bounded linear transformation

which satisfies

support (f(x))( I = support (Tf(x)) C I
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up to a set of measure zero where I is any compact interval and
fe 1°

Then for each x € (-©,®) there exists a bounded linear

transformation S(x) mapping N1 into N2 which satisfies
[s(x)l < ITll and Tf(x) = S(x) f(x) x-a.e.

Proof. Choose f ¢ 717/1 and g € 7L/2. Then for any measurable set A
XAf € 7[7/1, and v(A) = (T XAf,g) defines a finite complex measure on
the measurable subsets of the real line. Furthermore, since

v(A) = 0 whenever A is a null set, v is absolutely continuous with
respect to Liebesgue measure, To prove that v is a measure let
{En} be a sequence of disjoint measurable sets whose union is A
and let An = rii]l Ek‘ It is clear that XAnf—> XAf strongly in /‘/1. The

result then follows from the equations:

n

©
Z (TXE f,g) = lim ; (TXE f,g)
n k

n—>
n=1 k=1

=lim (T x, f,g) = (T x,fr8) «
n

n—> o0

We can now apply the Radon-Nikodym theorem to obtain a
complex-valued integrable function ¢(x), unique up to sets of measure
zero, such that v(A) = fA dx ¢ (x) for measurable A,

It is important to notice the dependence of v and ¢ on f and g.
To this end let us write ¢(x) = ¢(f,g;x). Let a,p be complex num-

bers, f,h € ;L/l' and g, k€ H We deduce from the correaponding

2

relations for v that:
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¢(af+ﬂhag;x) = ad(f, g:x) + ﬁ¢(h: g;x)3 and
¢(f,ag+Pk;x) = ad(f,g;x) + Bo(f,k;x) x-a.e.

In order to prove that [S(x)| < lITIl we require the following
sublemma: If a(x) is any bounded measurable complex-valued func-
tion, then ¢(af, g;x) = a(x)9(f, g;x) x-a.e.

The equation

(T XAxlfﬁ g) = (TXIﬂAf’g)

~

| abtgn = | eomos e

InA A

shows that t{)(xlf,g;x) = )(IqS(f,g;x) x~a.e. , which by linearity gives
the result for stepfunctions. Let {an} (n=1,2,...) be a sequence
of stepfunctions converging a.e. to a. Then anf»af strongly in ]L/l
implying (Tanfo,g)—> (T afo,g) for measurable sets A. But
(TanXAf,g) = fA dxan(x)(;S(f,g;x), which converges to fAdxa(x)¢(f,g;X)

by the dominated convergence theorem. It follows that
¢laf, g;x) = alx) ¢(f, gsx) x-a.e.:

We now construct the operators S(x). Letace Ny and b € NZ'
Then for any bounded interval I, X 2€ 7[7/1 and XI‘oe /7/2, S0 we can
construct ¢(XIa, xIb;x). By our hypothesis that T preserves supports
we have for every bounded interval J containing I, and every meas-
urable subset A of I, the equation (TXAa,XIb) = (TXAa’XJb)" it

follows that
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(i)(xIa, xIb;x) = qS(xJa, be;x) for a.e. x€ 1,

Thus the.re exists a function S(a,b;x) which coincides x-a.e. with
d)(xla, xIb;x) on every interval I,

S must satisfy IS(a.,b;x)l < Il Iall lbl2 X-a.e.,
For suppose it did not and the opposite inequality held on a set A of

positive measure, Let afx)= sgn S(a,b;x). Thenf = axpd € Hl

and g = XAb € 7L/2. Furthermore, by our sublemma,

(Tf,g) =SA dx ¢(f,g;x) = gA dx a(x) ¢(x,2sX o bix)
= 5 dx [S(a, b;x) |
A

> Tl laly Ibl, § a = U Nl Bl

which is a contradiction.

Since N1 and N2 are separable, they contain countable dense
linear manifolds over the complex rationals, M1 and M2 respec-
tively. Each of the following equations holds x-a.e. for a given

complex rational r and given a,a’ € Ml and b,b' € M,:

[S(a,bsx)| < Il ia]l Ibl2 s
S(ra,bjx) = r S{a, bix) ,

S(a,rb;x) = r S(a,b;x) ,

S{a+a', bix) = S{a,b;x) + S{a',b;x), and
S{a,bt+b';x) = S(a,b;x) + S{a,b';x) .

Our assumptions on the countability of M1 and M2 allow us to
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construct one exceptional set E of measure zero such that all of the
above equations hold on its complement E'.

For each x € E', <So(x)a,,b)2 = S{a,b;x) defines a bounded
linear operétor from M1 into N2 with norm < [T, Let S(x) be
the extension of SO(;() to N1 = M“l .

Our final step is to show that Ti(x) = S{x)f(x) x-a.e., which

we accomplish by proving that given any f € 7L/1 and g € 7L7l2, then
(Tf,g) = [ dx{S(x)i(x),g(x)>, = [ dx S(f(x), glx)ix)

We prove the result first for stepfunctions f = 2‘. X1 2K and
k
g = % X_]-ﬂ b, , where a, €N, b, e NZ’ the I, are disjoint bounded

intervals, and the J, are disjoint bounded intervals. Then

(Tf,g)=z (Tx; a,_s X b, )
Ikk Jﬂ g

K, L
=z (Tx, Ny, 2 X3, Po "z 51 % St by i)
K, £ oy B LY

Kt EE

= S dx S(f(x), g{x); =)

Now let £ € 7[/1 and g C 717/2. Choosc sequences {fn} and {gn}
(n=1,2,...) of stepfunctions tending strongly to { and g respec-
tively. Then certainly (Tfn,gn)—> (Tf,g). On the other hand, using

the inequality IS(x)! slTIl, we obtain also that

§dx <S8(x) £ (x), g (x)>5 > S‘ dx {S(x)f(x),8(x) >, >

completing the proof of the lemma.
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Theorem 1.9 . Let T € CZ‘ Then for each real x, there exists a

bounded operator S(x) : N; =N, such that

(XZTA XZ —,TO) f(x) = XZ(X) S{x) f(x),
where Z is any bounded interval, f € ﬁl’ and
(T .f,g) = lim K. .
0= ot z?‘ﬂxE fg
Proof. Fix Z, and let I,J be disjoint compact subintervals of Z,.

We shall apply Lemma 1.8 to the operator XZTXZ—T Let fe Hl’

Oa
g € 7L/,, with support (f) C I, support (g) CJ. Then

(x-,Tx f:g)—“-(Tf»g)':g K =5‘ K
z z IXJ fg ZZ fg

= lim Kf

":(T fsg)s
£—~0 zznx’3 g 0

where we have freely used Lemma 1.4 ii).

It follows that support [(XZTXZ—TO)f]C support (f) . The
remainder of the proof is straightforward.

For the class C; we can obtain a stronger result, since
inequality 3 permits us to define the operator T'O for all f € /7/1,
removing the restriction that f have compact support. We denote the
extended operator also by T(‘).

Theorem 1.9', Let Te CZ' Then for each real x, there exists an

operator S'(x) : N1 ->N2 such that

Is'{x)! <4 llTll, and
(T-Tb)f(x) = S8'(x) f(x) x-a.e.,

for all f € ]L/l"
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We define the operator L by Lf(x) = xf(x) and use the same

symbol L for both fe ]L/l and £ € ]L/Z.'

Theorem 1.10, Let T ¢ CZI . Then:
i)  _lim eltL Te—1tL exists if and only if
t=>+00

. itls ~itL ] .
®-lim e’ T‘O e " exists respectively,
£ £00

ii) If one such limit exists then for each real x, there exist

operators Ai(x) : N;= N, such that

A, (x)|= Tl , and

(s lim eltL T e—-itL
f—= £ 00

£} (%) = Ai(x)f(x) X~3, €,

Proof: i) follows immediately upon applying Theorem 1.9,
To prove ii), let I,J be disjoint compact intervals and

fe 7L/1, g € ]L/Z have supports in I,J respectively. Then

itL T e-1tL

( itL -itL,
e c g

£,g) = (Te 777, )

-it{x-
= fIXJ dxdy e t (X Y) ng(x;')f) s

where ng is the kernel corresponding to T,

Since ng € Ll(IXJ), the limit as t—=* © is0 by the

Riemann-Lebesgue lemma. Thereiore

support {w-lim St itk
t—>+00

itL

i) CL

Furthermore lle T e—itL Il = ITll, and our result follows from
Lemma 1.8,

Note. It is possible to prove an analogous theorem for the class
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CZ“ We do not, however, require such a result in the sequel,
In the remainder of section I we construct as examples two

subclasses of CZ whose members T have the property that

5 - lim eltL T enlﬂ"
{—> %00
exist,
Our first example is contained in the following theorem

for the case Hl = ]L/Z = LZ (-00,00),

Theorem 1.11. Let K(x,vy) be the Fourier transform of an inte-

grable function K (p,q). That is,
- -
K(x,y) = { dpdq ! PPV K (p,q) .
In particular K is bounded and

(T, f,g) =S axdy EEI) £60 5T (> 0)

Ix-y [ =

defines a bounded linear operator on LZ(- ®,0), Then the following
assertions are true:

i) w=lim T = T0 exists
g~ 0+

ii) T, l<=fdpdq 1K (p,q)l

iii) s-lim (7T, o) (x) =% miK(x,x) £(x)
t—~>;:00
iv) s-lim (eitL Tg e—ith)(x) =z qi K(x,x) f{x)
t—> £00
it itx

where e f(x) = e” " f(x), and iii) and iv) hold x-a.e.

Proof. We have
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(Ts f,g) = fX dxdyf—(%y—) ) dpdq ei(px+q_y) f{(p,q)
€

= [ apdq K(p,q) [ dxdy eiprf_ng (5)
£
since f(—};)ng is integrable for lx-y| = ¢,
Xg = {{x,y): l‘x-yl Z ¢} as bhefore.
Liet us define the operator Ae by
(A_f.g) = fx dxdyf—(}-(—)x—:g——;_z—l (6)

€

It is well-known from the theory of Hilbert transforms (5, p. 1044)

that s-lim A = AO exists. Hence lim (A f,g) exists and there
e—>0+ € e =0+ €

must be a constant y > 0 such that I(Asf,g)l < vylell ligll (7)
Thus, by applying the dominated convergence theorem in 5 we
conclude that

ipL -iqL

f, e

lim (T _f,g) = [ dpdgq K(p, q) (Ag e g)

e >0+

= (Tof’g) P (8)

which proves assertion i}, Assertion ii) follows from the fact

“AOII = 7.
Liet E denote the Fourier transform of {, that is,
M
E(n) = lim A e—inx f(x)dx ,

M'—’OQ'VEW -M

where the limit is taken in the L2 sense, We know from the theory

of Hilbert transforms that
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(f&of,g) = nif dysgn(n) E(Tn ;(n) (9)

g) = =il dpdq £<p,q> [ dn sgn(ntt) £ (n-p) E(W*—q) ;
(10)

where we have freely made use of the fact that the Fourier trans-
form of ¢ “¥f(x) is f(x-a). Observe that if we fix f of compact
support and restrict p to a bounded interval I, there exists M> 0

such that [t >M implies

[dn sgn(ntt) f(n-p) é(n*“q) =+ [ dn f(n-p) ;(n+q)

independently of q or g . That is,

lim  [dn sgn(n#t) £ (n-p) glnta)= £/ dn{ (n-p) g (ntq)

t=> L0
uniformly for fixed ; of compact support and p€ I, -0 <q<w, and
”g I <1. Since functions of compact support are dense in LZ’ the
restriction that ; has compact support can be removed.

Suppose that Iz(p,q) vanishes for p £ I. Then, using 10
and the fact that the Fourier transform is LZ -norm preserving,

we conclude that lim (Toelth, eit

t—> +o0
fixed f and ”g i< 1, and equals

Lg) exists uniformly for
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+7i [ dp dq K {p,q) [ dn £(n-p) g(ntq)

That is, s-lim e - T, e Il ¢ xists (11)

t—> 00
We now remove the restriction that K(p,q) vanish for p ¢ I. Define

forn=1,2,.0.
K(p,q) p€[-n,n]

0 otherwise

Then lim [ dpdq |K(p,q) - K_(p.q) | = 0.
n—-o ~
Corresponding to Kn(p,q) we can define the operator Tgn), Assertion

i) gives

lim liT

n—>o

(m) ) _
o~ To |l =0,

This result allows us to extend 11 to all integrable functions K(p,q).
Using well-known properties of the Fourier transform we

obtain

[an £ (n-p) glnrq) = § dx P% f(x) ¥ g) ,

from which it follows that
lim (T emiﬂ'J e‘ltLg)
t->£00

0 £,

i [ dpdg Iz(p, q) [ dx ePX ola% £(y) g(x)

]

1

+ri J dx f(x) gG) | dpdq K(p,q) e PXax)

n

i [ dx £(x) glx) K(x,x) .
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This completes the proof of assertion iii). The proof of iv) is
achieved by simply replacing conditions of the form 'the limit
is uniform for fixed f and “g | < 1' with 'the limit is uniform
for fixed g and “f I < 1' and making other minor changes in the
preceding proof,

Corollary 1.12. If f and g are square integrable functions,

then the following statements are true:

i) lim f dxdy i ) () exists
>0+ s

uniformly for fixed f and llgll <1

ii) lim  lim f dxdy Jil=-yit f(! g(x)
t— 00 g—> 0 E X-y

=+ i [ dx f(x) g(x), where

the t-limit is uniform for fixed f and ligll <1
Proof: i) is an immediate consequence of Hilbert transform theory.
The proof of ii) is a minor modification of the argument
given on page 25,
It is interesting that the class of operators T defined in

Theorem 1,10 form a Banach space if we set
I, = [ dpdq IK(p,q)! .

The verification of the axioms is straightforward.
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Our second example deals with the problem of extending
Corollary 1,12 to general Bochner spaces Hi = L2 (-OO,OO;Ni) (i=1,2).

Example 1.13. Consider functions h : R>= N

1 and k : R-*NZ, satis-

fying
sup, lh(y)llsl and sup_ Ik(x)lz~$1 . (12)

(-0, )

Then, iff € // and g ¢ #,, (ily),h(y)) | and {k(x),g(x)), € L,

and
Jay Ksty), nlyy P el f ax (k) g, 1% <ligl, .
We define T_: /‘/l —>/7’2 (e >0) by

1
(T_f,g)= IXS dxdy 2= CE(y)shiy))y (kix) g (x)), (13)
Let Ty = s-lim T , which we know exists by Corollary 1,12 i),

0 g =0t
Furthermore, by equation 7 we have

It <y (£20) (14)
Lastly, Corollary 1.12 ii) implies

itL -itL

s ~lim e TO e exists, and

t-— 00
lim (e T, e ™ f,g) = £ 71 [ dx (£x), hix) (k(x),glx)),,
t—>%c0

(15)

We make a further extension as follows. Choose hi’ ki

00

(i=1,2,...)as in 12 and real numbers ai> 0 satisfying X ui< o
i=1

(16)
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Define T . : H ~#_ as in 13, and put T, . =s-lim T , (i=l,2,..).
E ,1 1 2 0;1 Etl
g0+
K L T o )
Let fg(x’y) = %y ifl a, f(Y):hi(Y) 1 <ki(X),g(X)>2

and define Ts : 7L/l—>7q2 by

. T It fol-

(T8 f,g) = sz dxdy ng(x,y); that is TS = T

M8
o

i
lows from 13, 14, and 16 that

0
T, = s-lim T exists and equals Z a, T, ..
e—0+ E i=1 1 0,1

This means in particular that Tye CZ“

Now, combining 14, 15, and 16 we deduce that

s-lim eitL T0 e_itL exists, and that
t—+00
. iy .
lim (eltLTOe Uht o) = 2pi Jdx = a,(£(x),h,(x)) <k,(x),g(x)>2 .
= 200 i=1 1 1

Remark 1.14. We have shown that the operators TO constructed in
Theorem l.11 and example 1.13 belong to Cz. They also belong to
'

o

For the proof, we need only modify Theorem 1.1l and
Corollary 1,12 by changing the regions of integration from X5 to XE'
(see fig. 1, p. 45).

We proceed by choosing smooth functions f and g which are
dense in LZ(-OO,OO), and show that
ii_n:o_!_fxc dxdy %ﬂf(x) _g—(y-r—) = :T(HIX; dxdy Eé}_{_;rﬂ (=) gly).

We use the fact that K(x,y) is continuous. The extension to L., (-, )

A

is immediate, Corollary 1,12 is modified in an analogous fashion,
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SECTION II

LetH = f\dE)\ be a self-adjoint operator in a Hilbert space
H, The absolutely continuous subspace Hac corresponding to H
consists of those f € #H for which “E}\f ”2 is an absolutely continuous
function of \. That 7L{1c is a linear manifold is immediate. We show
that %/ac is closed by proving ”f” = fd)\ IS HE}\f ”2, given that
@

g 1% = fax & llE £ I° and lf-£_II°~0 (n =1,2,...). The proot

follows from the fact that an | —>“f“2, and

Jan S e g2 Jan ZlE s 17 ] = [fax & (-5, B +(E

\ £.1-1)] |

N

sllf-fnlf el + anll Hf-fnu .

Let P be the projection on ZL/ and let E(.) denote the spec-
tral measure corresponding to H, (E(A f dE ; A Borel measur-

able). If fe iL/ac is also in the domain of H, then
IE@E %< [,3% 1B, 117 < o

for all Borel measurable sets A. We conclude Hf € //__and HP=PH
is a self-adjoint operator in ]L/ac {or in IL/).,

The theory of spectral representation for self-adjoint opera-
tors (5, p. 1205) states that H can be represented as a Hilbert space
of the form %3 @LZ (F'o.) in which H becomes the simple multiplication
operator. More specifically, there exists a family {fa,} of elements
of // and a linear isometry U mapping # onto E@Lz(pa), where
b (A) = [, aliE,z_lI%, such that UHU" = L,[Lg(h) = Ag(\),

g€ %E @ Lz(p.a)]. {fu} is a maximal family with the property that
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a # o' implies (E(A)fa,fa,) = 0 for all Borel measurable sets A,
Applying the representation theory to the restriction of H
to /L/ac’ we find that the measures | are all absolutely continuous
with respect to Lebesgue measure. This means that %) (4 LZ. (p.a)
can be represented as a subspace of LZ(—OO,OO; N), where N is the
Hilbert space of complex-~valued functions ba on the index set {a},
lZ

< o, The mapping we have in mind is given by

b 0 =g () (Be)E, gince P ish, f h \ onl
oM E 8y %) + Since —p— may vanish, for eac only a

satisfying % lba

subspace N}\ of N figures in the mapping., It is evident that Hac
can be represented ag a subspacc fd}\.N)\ of LZ(—OO,OO; N) in which
HP becomes the simple multiplication operator.
Let H, (i = 0,1) be a self-adjoint operator in # and let P,

be the projection on its absolutely continuous subspace. Let
A = J d\N, | be a representation space for H.P, and u.p.H~H

i i, N iTi i i
be the corresponding isometry. We extend Ui to a partial
isometry mapping # into L, (—OO,OO;Ni) by letting components
" perpendicular to Piil/ be mapped into 0, Then Ule; maps L2(~00,00;N0)
into LZ(—OO,OO; Nl) and has norm = 1 although it may fail to be even a
partial isometry. Furthermore P exp(itHl)exp(-itHO)P

1 0"
SRR L e T

U1 e UlUg e UO’ and we can apply the theory of Section I

to the operator UlU;.
We first restate the criterion for membership in the class
Cl in terms of the spectral measures Ei(o) corresponding to I—Ii

(i=0,1). Lethe L_{-%0,0;N_ )and k€ LZ(—OO,OO;N Then for

] % *
Borel sets A and B (UlUO &&h’ XBk) = (UOxAh, UlXBk) =

(EO(A)U;h, El(B)U;‘k), We conclude:
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UlU; € Cl <> for each f,g € 7L/, there exists a complex-

valued function ng(x,y) defined on R2 such that K, & LI(I X J) and

fg

(Eo(Pyf, E, ()P 8= fbeT ey K (x,y) (17)

for every pair of disjoint compact intervals I,J,

In case HOPO = HO’ there is no loss of generality in letting
H0 = I: in the Hilbert space fd)\Nx, where for each A, N)\ is a sub-
space of N, We shall deal with the case in which H1 is a self-adjoint
extension of HO + Vl’ and V1 is a symmetric operator in fd)\N}\a

Since L (~o,%;N) = ([d\N,) @ (fde}\)‘L, H=H ®Lisa seli-

1
adjoint extension of L + V , where L' is the restriction of L to
L
(fd)\N)\) and V = Vl ® O, Hence conclusions concerning Kfc for
5

the operators H and L apply also (o H, and I—IO il we restrict [ and

1
g to the subspace fd)\N)\.
We assume for the remainder of this section that H =
LZ (-00,00;N) and L is the simple multiplication operator in IL/,
In keeping with Section I, we denote the norm and inner product
for /7 by ll° Il and (+,-), and for N by l-| and (+,.) .

Lemmas 2.1 and 2.2 provide the background for Theorem
2.3 which is the first important result of the section.
L.emma 2.1. Let H be a selfi~adjoint operator on the Hilbert space
H. Let R)\ = ()\I—H)"l be the resolvent of H and EIJ. the corresponding
resolution of the identity. Then the limits

lim
g 0+

(RP-i e f,g) exist p-a.e.

for each f,g € H.
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Denote these limits by (R}.L £10 f,g). If we assume in addition
that f (or g) is in the absolutely continuous subspace /l/ac of H, then

for any interval J we have

(@) 8) = 357 Iy @R _jofo8) - R 4,0 5ol

Proof. We begin with the well-known equation (5, p. 1196}
dv(Evf,g)
(R}\ f:g)=§ ——— ImA# 0,
A-v

Observe that

2
4B f,g) = IE_(grg)

-IE | (E-g) 1544 e (etig) 12-1E(f-1g)1%)
(18)
and that each term on the right is an increasing function of v.

The integral (A = u + ic)

2 2 2
gdeEvh“ =S'(p—v)dvl[Evh]l -iagd"“E"h”

v A-v 2 2

(-v)° + e (1-v)ote

defines an analytic function ¢(\) in the upper half plane having nega-
tive imaginary part. Hence y()\) = i_l | defines an analytic function
whose modulus is bounded by one. It is known (23) that under these
conditions lina+ Y(utie ) exists p-a.e. and equals zero only on a null
£ —>

set. From this we conclude that i1—>m0+ ¢(utie) exists p-a.e. and
that i1_r>rb+ (R}H-iaf’g) exists p~a.e. because of 18.

To prove the second assertion of the lemma we argue that

ifforge Hac’ then (Evf,g) is an absolutely continuous function of

v. Let p(v) be its Radon-Nikodym derivative. Then
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(R

S.Ed (E fg)

2, 2

f.g) - (R ,.afsg) = 1lim 21
ptio (o-v)>+e

-10 g— 0+

" S‘e p(v)d )
=lim 2i \ ——————s = 27wi p() p-a.e. ,
€0 (p‘-v)z-i-s2

where the last equality is obtained by using a standard argument

—

9, Chapter 8) based upon the fact that p is integrable and

(-v )2+£

(E(T),g) = [ dp p(p)

|-

is an approximate identity. Furthermore we obtain

which completes the proof.

Liemma 2.2. Let EIl be a resolution of the identity in the Hilbert
space 7L/. Let v(x) be a strongly measurable function from the
real numbers into H such that fJ.dx lv(x)ll < w0 for every finite

interval J, Then for each x!

i) % (Ep“f’v(x)) = win,x) exists p~a. e,

D L (0 v |*(a; IE f[lz) (z?; uEHv(x)qu p-a.e.

iﬁ) Jpax ] dp |wl,x) | <lfll [; dx lv(x)

Proof. Assertion i) follows from equation 18 with v(x) replacing g.

To prove ii), observe that

[(E£,v(x) - (B £,v(x) | = [(B,-E ), vix) |

|. (Ev—Ep)f, (EV—EH)Y(X)) | < | (EV—EH)f I (Ev-Ep)v(x) Il

[ HE 120 002 F IR v 1218 vea 12

1
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Now, whenevery is a point where all three derivatives in ii) exist,
we can dividc the above inequalities by | V- | and take the limit as
v— . which yields ii).

The following application of Schwarz's inequality yields iii)

S‘de S du Twip,x)] sSde 5‘ dys (-&% IE 1 zf(% IE, v(x) Ha)

d 2 % d 2 —5—
{; dx(S‘dp < m gl ) (gduai I v >

<§de I£ll v Il < oo

i
2

In Theorem 2.3 we remain consistent with our previous nota-
tion by letting EO,E be the spectral measures for HD,H and Hac be
the absolutely continuoue subspace corresponding to H., The proof
is dependent upon the two lemmas which follow it.

Theorem 2.3. Let V be a symmetric linear operator in # whose

domain includes that of I-IO = I., Suppose that for each f in the domain
of V and each g € H, (Vi(x), glx)) = (f,vg(x)) X-a.€., where vg(-) is

a locally strongly integrable # -valued function on the real line.
Furthermore, assume H = L+V is self-adjoint.

Then for f € Hac’ g€ H and disjoint compact intervals I,J

we {p,x)
(B, Eg0)g) = fy0; dp dx —E— 19)
B-x
where ng(P"X) = —(%L— (Ep‘f,vg(x)).

Proof. Since HO and H are self-adjoint, the resolvents Rg= (M-HO)_]

and R)\ = (XI-H)_]‘ exist and are bounded operators on H for Im AN# 0,
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Since HO and H have common domain we have the resolvent equation
_n0 0

R)\ = R)\ + Rh Vv R)\

It is clear that R())\ f(x) = # , and E (J)f(x) = XJ(x)f(x)
Hence, for Im A#0, (R)\f, EO(.T g) = f dx (R £(x), g(x)

_ VR, f(x)
£
ey T )
J A-x

’§ dxg<f<’§’_’f‘x’> + <VR>\f(X)’g(X)>£
J

A-x

R,f,v_(x))
§ o SRR Balte) (z0)
J A-x

If p is a positive distance from J,

lim dx éTI}%'(};Z} dx <f(xgix(x) . (21)
e —~0+ J

By Lemma 2.1, (RH N iOf’ EO (T)g) exists p-a.e. Thus we can con-

clude from 20 and 21 that

R . f,v_(x))
lim S‘ dx pric g exists p-a.e. ,
e—~0+ Y7 pooEie - x

and

(R, _iofs Egg) - (R ;L. E (T)e)

t+i0

‘ . f, R . 1,
= lim dx%(RP'“-f vg(x)) _ ( ptie f vg(X)) (22)
J

e — 0+ po-ie - x potoile - x
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To compute the last limit we begin with the equation

d,(E, L7, (x)
(Rp.iie f’Vg(x)) ZS‘ poEie - v

—u— d,(E v _(x)) =FiS‘ ——sd (E_f,v_(x)).
(-v) S z ( v oy g

Then

S- dxg (R _jeErv, (x) ) (R4 fv, () f
J

p-ie - x ptie - x

- 1 _ 1 -V
._S:Idx(p_is_x wiﬁ_}{) { Y 4, B vt

m-v) te

. 1 1 €
P 5.1 ( M-ig ~x * ptie -x) S‘ 2 2 dv(Evf’Vg(X)) :

(h-v) +e

(23)

If we take the limit as ¢ > 0+ in 23, the first term on the right tends

. to 0 by Lemma 2.4, and the second term tends to f dx d E f vg(x)
p X du
p-a.e. by Lbemma 2.5,
Thus 22 becomes
i W (15 x)
(R]J' 10 (J)g) -(R +.10f,E0(J)g) = 27i S‘de -—&——————p_x p-a.e.,

as long as p remains a positive distance from J. This condition is

certainly satisfied if p € I. Then Lemma 2.1 yields

£ (B3 %)
(E(D)}, E,(T)g gdpg ax g (24)
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Wf (H’sx)
M-

is integrable over I X J. Consequently the right side of 24 can be

By Lemma 2.2, wfg(p.,x) is locally integrable and therefore

written as a double integral yielding 19.

Lemma 2.4. Let EP- be a resolution of the identity in H with cor-

responding absolutely continuous subspace Hac. Let v(x) be a
locally strongly integrable function from the real numbers into ]L/o
Then, for f € ]l/ac and p a positive distance from the bounded

interval T,

lim dx £ g ”'Vz > d (B f,v(x) = 0
e >0+ (j-x) te h-v) +e

Proof, Sincef ¢ Hac’ (E f,v(x)) is an absolutely continuous function

of @ and—% (E f,v(x)) = w(u,x) exists p~a.e. By Lemma 2.2,

g de‘dv lwiv,x)| <

Henceg. dx 82 ZS‘ B vz 2d (Evf,v(x))

¥J (h-x)"te (n-v) te
dx \ dv efp-v) w(v,x) .
g:r § [ -m)2+e 2] [ (- v )P +e 2]

Observe that the integrand in the last integral approaches zero as
g > 0 for each choice of p, v, and x. Hence, if we could show that
the integrand is dominated by an integrable function of (v,x) which
does not depend on ¢, our result would follow by the dominated

convergence theorem.

It is clear that I—EQ“L}‘—V)—Z— = -2—
{(p-v) +e
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Iw(v,x)|
2 inf{lp.-—x l;xeJ}

£ (- v) wlv,x) <

[(-x)24e 2] [ (- 24e ]

Consequently ]

which completes the prooi.

Lemma 2.5, Under the assumptions of Lemma 2.4,

lim ‘S dx —= X ‘g £ d (E f,v(x))
e — 0+ (p-x) 82 (p—v)2+£2 vov

Proof. Since f € Hac’ (Ep‘f,v(ﬂ;)) is an absolutely continuous function

Therefore —(%—L- (Epf,v(x)) = w{u,x) exists p-a.e., and

of .
gm dv(Evf,v(X))=S‘dV mww,x)
Then
S.dx ’; — - P-l“X [S‘dvm lw(v,x)
+|S ax L dvm w(v,x) - de;;w(u, x) |

We now use the result of Lemma 2.2, that dex Jdv [w(v,x) < o

to obtain

1
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{p-x)"+e Y +e

=§ ded,, ¢’ s Iw(v,x)]

[(p-x)2e?] lp-x|  (u-v)+e

Ve 1 £
gJ dx l 2 3 - L% lS'dV '(—‘::’—Z———z' !W(V,X)l

< £ d dv lw(v,x)l
[inf{ip.—xl:xe.ﬁf}]?’ S‘J Xg v

which tends to zero as £— 0+,

Next we show that p-a.e.,

. 1 £ T
lim dx —— \ dy ———— w(v,x) = g dx —— Wi, x) (25)
e—>0+ VY X (}L-—v)2+£ J Hox .

Let I be any bounded iunterval. Since fdvfI dx Iw(v ) |< ¢ and

lﬂ ————-—E—z——z— is an approximate identity, it follows that
(p,— v)Tte

lirn dx‘g‘dv > wv,x) = WS dx w(p,x) p-a.e.
e—~>0+ (p- v) te I

Hence if s(x) is a stepfunction on J, we have

lim dx s(x)‘g‘dv————s—z——-i—w(v,x) =S‘dx s(x) wlp,x) p-a.e.
e~>0+ YT (p-v) +e J

(26)

Denote the expression whose limit we are taking by F(s,e,p). Then

[F(s,e,p) | <sup_ I's(x) | ‘gdv (———%Z_l_—z—gjdx lw(v,x)| ,
p-v) te

so that p-a.e. there exists Mp. > 0 such that
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IF(s,e,p)l < Mu. sup_ Is(x)] 27)

With the‘ help of 27, 26 can be extended by means of an elementary
technique to the case where s is a uniform limit of stepfunctions.
Thus 25 is proved.

Theorem 2.3 and statement 17 of this section together imply

that the representation isometries U corresponding to HP and U,=1

0
corresponding to H, satisfy UuU, ¢ . Our next theorem shows
0 0 1

that whenever V is of trace class, UU:; € CZ‘ .

o0
Theorem 2.6. Suppose V is given by VI = 'El (f’hi)hi’ where hi e
i=

(i=1,2’oﬂn) and

o]

z ln, 1% < « (28)

i=1

Then V satisfies the hypothesis of Theorem 2.3 with
0
v (x) =2 h, {(h,(x),g(x)) . In addition, if H,E , and W (w,x) have
g i=1 1 1 I g
the same meaning as in Theorem 2.3,

we (=)
lim - dp dx - exists
&= 0+ VX! Hox

for each f € ]L/ac and g € . XE' is defined on p. 13,

0 O Z
Proof, Since IVills= I¢,n)! Inh Il sllfllz lh 11, and
i=1 ! * j=1 b

(VE, g) = (2 (£.0,)h,g) = S (£.h)(b,,g) = (¢ Vg),
i=1 i=1

V is bounded and self-adjoint. Therefore H is self-adjoint and has
the same domain as L,

o0
"From 28 we deduce that 12_1 fhi(x) |2. < 0 x-a.e., and then
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that

0 oC oo 21 o0 5L
izzll(f’hi)'l lhi(x)l SIIfllifl Ilhi il lhi(x)l < gl (51 ”hi“ )z(izzl,hi(x)l YZ< o

0 0
@ Z g1 i, g00) 1< 2 g sl ), g |

<Z Inlflgh < w,

i=1
o0
which means that vg(x) = _El hi (hi(x),g(x)> converges strongly x-a.e.
i=
Hence we are justified in writing

(Vilx), geh= (B, (6,5,) ny(x), gl

n
M8

] (f,h,) <hi(X),g(X)> = (f,vg(X)) X2, €,

As in Theorem 2.3, we have

d 0
ng(l.k,X) = —d—“IiEl (E}Lf’hi) <hi(X):g(X)> °

The differentiation can be carried out termwise if the series of

derivatives is termwise integrable., This follows from 28 and

Vaw ax 1 (£ 10 | Koy, g60) | = § awigtm e fax o, 00, 560 |
<l lgh n 1% .

In view of Corollary 1.7 it is sufficient to prove 29 for a

dense set of f and g. Let M >0 and define:



d 2
Ay ={f:ife /fac, and g7 IE £1% <M (-w< p <)},
e M 2
BM~{g.gE , and lg(x)“ <M (-o<x<0)} |

It is clear that PABM is dense in 7L7/, and since |If ”2 = fdp. gﬁ: “Epf ”2,
it follows that U AM is dense in 7L/ o
M ac

Hence suppuse [ € AM, g€ DM. Then

[dp. ]—é% (Epf,hi)lz <M llhi 12 (Lemma 2.2, i), and

2

[ax [{hx)gba) [* < M In 1%, (1=1,2,...).

We conclude from Corollary 1,12 i) and Remark 1.14 that there exists

Yy > 0 such that

1 d 2 _
ISX' dp.dx;—_—;-all— (Epf,hi)(hi(x),g(x» | <yM I, 1“ (>0, i=1,2,...),
£

(29)

and that the limit of the integral on the left exists as ¢ — 0+,
" Combining these facts with 28, we deduce that

W (p,x)
lim dp. exists and equals
g0+ Xe' pox

o0

. d
z ]a.lino+ < dpdx—ég (Ep_f,hi) (hi(x),g(x»
i=1 » £

Corollary 2,7. Under the assumptions of Theorem 2.6

't wfg(p,X)
P-x

lim lim dpdx ei(p‘ X exists and equals

t> %0 ¢ =0+ vX!
: >
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o0
: i ‘\c-é— ! 1 1. {x),g(x
J-Wl.zl S‘d-« ax (Exf’lj) <1J( ). gl )>
i=

Proof. We obtain from Corollary 1.12 ii) and Remark 1. 14 that

t d

_— (Ep,f’hj) (hj(x), g(x))

. . i(p-x)t 1
lim 1lim dp dx e = d&

t—tce0 g—0+ X;

:'—h?ri_g\dxdix-(Exf’hj) (hj(x),g(x)> (G3=1,2,000)

The proof then follows with the help of 248 and 29,
Note, Corollary 2.7 and Theorem 1.10 i) together imply that
itL -itL

b
w-lim e UU0 e exist, which in turn implies the existence of
t—> o0

w-lim P exp (itH) exp (-itH

)e
t—> + © 0

It is known, however, from Rosenblum (26) and Kato (15),
that strong limits exist in the last case. Armed with this fact, we
reason in the reverse order to conclude that the t-limit in Corol-
Jlary 2.7 is uniform for fixed g and llfll <1. We are unable to obtain
this result directly from our theory, possibly because we lack

details concerning the nature of Eu“



Xg,g XE,Z X£ 3
71771771/ y{;/if
> <
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