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ABSTRACT

Partl

The solution for the problem of the transient boundary layers
generated by a sink on a plane wall is obtained by an integral method,
Thé incompressible flow is similar and the similarity solutions are
obtained for the two dimensional and axisymmetric cases, The velocity
layer reaches a steady state and the thermal layer does‘ not, For large
times, when the thermal layer is much thicker than the velocity layer, a
solution for the temperature field is obtained ignoring the velocity layer,
With some approximations to the flow near the sink, similar solutions

for compressible flow are also obtained.

Part Ia:

By using the integrated equatiox;s of motion, the development of a
laminar, two-dimensional, dusty jet issuing from a slit is considered,
The solutions are simple in the limits 7—- 0 and 7— oo, where 7 is
the particle relaxation time, For arbitrary 7, a numerical example is

given. With some assumptions, the turbulent dusty jet is also considered.

Part IIb

There are three parameters in the problem of steady motion of a
dusty gas around a sphere, These are the Reynolds number R, particle
parameter ¢ and the mass concentration of dust foo’ Solutions are

obtained by the perturbation method by expanding in terms of R with
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o or ¢/R fixed, in the limit R — 0. Solutions are also obtained for

the limit R tending to infinity with f < <1, In both cases critical

wralvanm AL ~ naiatd
varuTd Ul § CXiou

efficiency of capture as a function of ¢ is calculated in both cases.
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PART 1

THE TRANSIENT BOUNDARY LAYER

PRODUCED BY A SINK ON A PLANE WALL



1. INTRODUCTION

1
VY ataz af 212

ith the sampling of the fluid
in contact with the end wall of a shock tube afte’r the shock has been
reflected awa'y. The problem of normal shock reflection from a cold
wall has been considered before by Goldsworthy [1]. The
solution of this shows that for times such that the distance of the reflected
‘shock wave from the end wall is much greater than the thickness of the
thermal boundary layer, the dynamics is equivalent to that due to a cold
wall being put in contact with a hot fluid of infinite extent. The sampling
problem is posed in the following manner. A steady sink flow (line sink
or point sink) is present in a hot fluid. At time t=0, a plane wall is
introduced into the fluid such that the sink is on the wall. The velocity
and thermal boundary layers that develop on the wall are to be described.
The actual flow configuration, however, is like the one shown in
Fig. L1. This shows the reflected shock wave moving away from the
wall with velocity Us’ the disturbance produced by the sink moving
radially outwards with speed a equal to the speed of sound in the hot
‘gas and the boundary layers of velocity and temperature growing on the
cold wall. Outside the region of influence of the sink, the thermal
boundary layer is described by the Goldsworthy solution. Its thickness
is of order Vvt where v is the kinematic viscosity of the hot gas. The
boundary layers on the wall for x < at are expected to be described by
the problem of a cold wall being suddenly introduced in a steady sink flow.
In the sections to follow these problems will be considered.

a) Line sink in incompressible flow
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b) Point sink in incompressible flow
c) Line sink in compressible flow
d) Point sink in compressible flow.
The problem a) is considered in some detail in sections 2 and 3. The
other three‘ cases are very similar to a) and are therefore treated only
briefly in sections 4, 5 and 6.

The effect of compressibility is small when the flow velocities
are small compared to the velocity of sound. For any sink strength it
is clear that close to the sink, the approximation of incompressibility
breaks down. The flow close to the sink will not be radial and the vis-

cous transonic flow near the sink is quite complicated. This difficult

problem is not considered in this thesis.
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2. LINE SINK IN INCOMPRESSIBLE FLOW

y are chosen along the wall and perpendicular to it as shown in Fig. 2.1.

The boundary layer equations for incompressible flow are the following.

The x momentum equation:

du du du _ 4, 90U d2u ‘
ﬁ'fug-}-{-'l'v-a—;—U-g;"'VW » (2.1)
The equation of continuity:

du , Ov _
5—}-{-4--5-3; = 0 , (2.2)

The energy equation:

9T + 3T+ 9T _ _ 9T = v 92T (2.3)
T Uex TV Ey T XByz TV Bye )

Here u,v are the x and y components of velocity respectively, T is
the temperature at any point (x,y), U is the velocity outside the boundary
layer, v is the kinematic viscosity of the fluid and X is the thermo-
metric conductivity of the fluid., It is assumed that the Prandtl number
is equal to unity in which case v = . U = -a¢/r where @ is the sink
strength (a constant greater than zero) and r is the radial distance
from the sink. The velocity outside the boundary layer is therefore
U = -a/x. For incompressible flow the momentum equation is uncoupled
from the energy equation, The boundary conditions are

u(x,0) = v{x,0) = 0 for all ¢

T(x,0) = Tw = constant

w(x,y) = -a/x at t=0 | (2.4)

u(x,0) = -a@/x for all t

T(x,00) = Ty for all t
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Dimensional analysis of this problem indicates the following
choice of variables. u/U and T/T, are functions of x,y,t and the
parameters v and a@. From these the three dimensionless combinations
y/%, at/x* and v/a can be made. It is convenient instead to take
7 =-}X{ /g and T =+ at/x?* as the independent variables with v/a as

a fixed parameter. Thus

% = function (1, 7; v/ a)
(2.5)
% = function (n,7; v/a)
A stream function ¢ is defined by
= .9 -9
u = oy V=% (2.6)
Equations (2.1), (2.2) and (2.3) give
-1 VRO YUI% LIVRR: VR LIVISHNY O L1 27
dydt ' 9y 9ydx 9x dy* x oy (2.7)
9T, 8y T _ 9y dT _ _ 82T |
at "8y ax ox oy - ¥ 9y’ (2.8)
These are rewritten with n and 7 as independent variables using
. [alv ot [
"'I=Y/X a ’ 'T:")?Z': Y = Vv f(T],V)
98 _ 138
8t ~ t a7
L _..n8 _27 8
0x =  x 9 x OT
2 .12 5
oy y on (2.9)

to get
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_83_f+27(8_f_ _9%f  of aZf) ( )2_1=

onor on on oT T oT on?

[+

I

9T, ,, (2L 8T _ Bf 9Ty _ 8T
(Bn 9t 98T o9n /)  In?

The boundary conditions for f are found now.

- VR-¥ 13
T 9y~ xan

va o [y 2 +z-r)

Therefore the equations (2.4) lead to

f(0,7) =0 for all T
f(n,0) = n
f(n, )= n as n — oo forall 7T
T(0,7) =T_ for all 7
w L)
T(oo,7) = T, for all 7T

T(n,0) =Ty at 7=0 for n>0

21

on?

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The equations (2.10) and (2.11) with boundary conditions (2.14) are solved

approximately by the integral method of Karman and Pohlhausen,

A

good approximation to the profiles of velocity and temperature is the

following.
f= 8F(n/6)
so that

£, = F (n/6) = erf n/6

(2.15)



where
6 = 6(7) | (2.16)
and
T = Tw+ (To - TW) erfn/A (2.17)
where
A= A(T) ‘ (2.18)

6(m) and A(7) will be found by satisfying the integrals of (2.10) and (2.11)
across the boundary layers. IntegrAation of (2.10) fromn=0 to n=oo

gives
© o o) oo

(A ’
g8 [f’F"(z)z dz + 7 [ ZFF”dz]+ 5 [ (1-@) )az =22 (29)
0 0 0

After some algebra this reduces to

g?r N’1))+5/——

whose solution is

52 =vZ 1- 1 . (2.20)
_Vzl(vz -1
[+ (V2-1)27]

Integration of (2.11) gives

.C_l_é(1+ —_—1 (2.21)
dr m) 1+Az 572 ) -4

It is seen from (2.,21) thatas 7 — 0, A2?~ 47 andas 7T— o, 6%—2

and A% ~ 2 In7, This shows that the temperature boundary layer does
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not reach a steady state whereas the velocity boundary layer does, The

equation (2.21) is integrated numerically and is presented in Fig. 2,2.

SOME NUMERICAL ESTIMATES.
Let g, the length scale of the velocity boundary layer be defined

by

4 fa 1
vy 50 =1 (2.22)

and L, the length scale of the thermal boundary layer by

L /ja _1 _

= Vv am = 1 (2.23)
rlI‘he nature of the solution is now illustrated with some typical values.
Let py, the pressure in the fluid far away from the sink be 1/100 atmos-
pheres. Let T,, the temperature far from the wall be 300 degrees
Kelvin, v =13.3 cm?/sec. Let the width of the slit be 0.4mm. Let the
flow through the slit be into a vacuum. At the slit the flow is sonic and

%

the mass flow through the slit is therefore da,*p = po7t % = pomad , where

%k %k
a is the speed of sound at the throat and p is the density at the throat,

Therefore
* *
-d.a - d
@ =7 (Z)(2) ag = 0.579 7 o

where a, and p, are the speed of sound and density at stagnation
conditions. Here a, is 331 m/sec., From the above @ becomes 240

cm?/sec, Using these values of @ and v in (2.22) and (2.23) we get

g =0.236 x 6 (%Q-t-) (2.24)
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and

= 0.236 x A (24°t) (2.25)

The plots of ¢ and L for the four values of time t=10microsec,
100 microsec, 1 millisec and 10 millisec are shown in Figs, 2.3 and 2.4.

The steady state for g is also shown in Fig. 2.3,

DISCUSSION,

It is seen that for large x (i.e. g_zt_ <<1) both § and A are

approximately equal to 2 VYT so that

1=L=x/§-z

For small x (i.e. g%‘ >>1) & tends to 2

= 2Vvt,

"8

Bfe
Bl

, so that =x\/é-2 .
The velocity boundary layer close to the sink approaches the steady state
more quickly than the regions far from it, The time scale of the velocity
boundary layer to approach the steady state is x2/a. L, the thickness

of the thermal boundary layer for large 7 is approximately (the dotted
portionin Fig.2.4) |
L =0.236 x V2 1n (%) (2.26)

which shows that the boundary layer approximation (viz L << x) breaks
down close to the sink, The solution for large 7 should therefore be
reconsidered. The analysis of the thermal layer (assumed thick) can be
made ignoring the velocity boundary layer which has become steady. This
will be considered later,

The fact that the velocity boundary layer reaches a steady state
whereas the thermal layer does not can be seen from the following simple

considerations. Let us assume that a steady state for the thermal layer
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exists. The flux of heat across the thermal layer at any station x

should be equal to the flux of heat into the portion of the cold wall from

(o8] o
fo w(T-To) dy = v fx (i(_%%rT_ﬂ)Y:O dx. (2.27)

Differentiating both sides with respect to x we get

oo

d 9(T -To)

L [ w(T-Ty)dy = -v ) (2.28)

dx f ( oy Ar=0
Putting the orders of magnitude of u and (T-T,;) here, we get approxi-
mately

(T -T_)
o
= (5@ T L)y — (2.29)

where L is the thickness of the thermal layer. On integration (2.29)

gives
In (2) (2.30)

where x, is a constant. This solution is impossible because for x> x,,
L becomes imaginary. It can also be seen that the velocity distribution
U = -a/x just fails to produce a steady thermal boundary layer, Infact
for U = —a/xm whefe m > 1, a steady state is possible because instead
of (2.29) we have

T -T
4a(_a - _ ., w0
L(-2 o, mn) v

or

Lod (L y__v L
mdx(m)_ m
x x x

RI<
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which gives on integration

2 2m " a m-1

+ constant

This solution is acceptable for the constant = 0. It may be noted that

as x— 00, —I;; ~ xm-l if the constant is non zero and % ~ x mz—l if the

constant is zero, This shows that far from the sink the boundary layer
approximation breaks down, This is a common feature of most similar-
ity solutions, a familiar example of which is the Blasius solution for the
flat plate where the boundary layer approximation fails at the leading edge,
Now let us consider the velocity boundary layer. In two dimen-
sional incompi-es sible flow the vorticity w (the z component of the
vorticity vector) satisfies the same equation as the temperature., So

instead of (2.27) and (2.28) we get

Q0 (0 0]
[ uwody=v (% dx (2.31)
x y y=0
0
and

[0 0] .

-é—‘i [ wody = -v (g% (2.32)
0 y=0 ’

Putting the orders of magnitude of u(~ - %) and w(~ -;az-) in (2,32) we

have approximately

da. @ .,y (e . 1y _/I
dx(x ) 1)‘ "(xfz 1) °F 172
showing that a steady velocity boundary layer is possible, It may be seen

easily that the velocity distribution U = - a/x™ with m =1 also produces

a steady state for the velocity boundary layer with

, -2 L . [/ v_ _m+l/2
dx( zm) £ 12 or 1""/2ma x .
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3. LARGE-TIME TEMPERATURE FIELD IN INCOMPRESSIBLE

FLOW WITH THE VELOCITY BOUNDARY LAYER IGNORED

It was seen in Section 2 that the velocity boundary layer reaches
a steady state whereas the temperature field does not. The boundary
layer approximation is inappropriate for large 7 when the thermallayer
is very thick. The temperature field is recalculated here without making
the boundary layer approximation but ignoring altogether the velocity
boundary layer., This approximation is expected to be reasonable for
large times, viz times large compared to x2/a, the time scale of the
velocity boundary layer to approach the steady state.

Fig. 3.1 shows a line sink at 0 producing the velocity field

u, = -a/r and ug = 0

where (r,0) are the cylindrical polar coordinates of any point P, The

equaﬁons describing the temperature field are

9T _a 3T _ 2r
ot r or v VAT (3.1)

with the boundary conditions

T

1]

TW at =0, q forall r and t> 0
(3.2)
T

Ty forall r, © for t=0

The equation (3.1) is linear in T and it is sufficient to solve (3.1) with

boundary conditions (3.3) instead.

T=0 at 6=0, 7 forall r, t> 0,
T=1 forall r, 6 for ¢t=0,

(3.3)
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Dimensional analysis shows that T is a functionof ¢ =6 and

T=at/r? with a/v as a fixed parameter, In these variables the

equation (3.1) becomes

9:T | 9T a a 8:T
4'7'7‘—8—7_2- +—a—7-_(4'T-Z';'T-;)+ P =0

with the boundary conditions (3.5) as shown in Fig, 3.2, viz

T=0 at ¢ =0,7r forall t>0

T =1 at 7T

0 for all o,

The equation (3.4) is solved by separating variables assuming
T = Z An Rn('r) sinnp -+ mn=1, 3, »5 “oe

From (3.4) it follows that Rn( 7) satisfies

d2R dR

2 n n _aTy _ =
4Tt =B 4 — (47 v) n?R_ = 0

with boundary conditions

Rn — constant as r— 0 and

Rn—> 0 as T— o0,

(3.4)

(3.5)

(3.6)

(3.7)

The solutions of equation (3.7) are confluent hypergeometric functions.

The general confluent equation is

wt o [ gy B ]

(3.8)

[ /bh’ h''\ /A A(A-1 2Af' , ah'?
po [ ) @) ¢ AL 248 e L

where the primes indicate differentiation with respect to z, This has
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the independent solutions

e e_f(z) M(a,b,h(z) ) and
z"A e-f(z) U(a,b,h(z) ) (3.9)

where the functions M and U are confluent hypergeometric functions.

It is found that for equation (3.7)

2
+3 /25 4 n2

a.(n)‘-1+ 4y 2

4v

b(n)—1+/—g—2—+nz
- 4y

—
An) =b-a = %("2%,'!‘\/2’37 + n? )

f(r) =h(7) =a/4vT

(3.10)

Therefore the solutions of (3,7} are

. a

' 1 a /, < ) 1oy

2 - s 4+ n —4— .y-
v M(1+ a,

Voo, %) G
and

1( a a

-’5-2—-"‘{ -

. ( v A),eZ.vT.U(1+%+%\[. 1+‘/',@‘3‘.;) (3.12)

{3.12) does not satisfy the boundary conditions because as 7 — oo,

il:::)l) (4”)

and (3.12) , ~ AL o F(b 1), &ﬁ)
 -A-lib
a Ja
Z;;-‘l‘ % + n"
T — 00
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On the other hand the solution (3.11) is well behaved. As T — 0, the

solution (3.11) tends to

A, o/ T, ea/4v7 . (L)a-b L{b) _ T(b) ()

and as T —- oo, Mla,b, Z%"F) — 1 and the solution (3.11) —+ 0. The

boundary condition at 7= 0 gives

. -A
i I'(b) .
T(O,¢)=1=%Zﬂ%&2 = ZAH(%) 'fl:éz-; sinneg
.80 that
A
_4 IMa) ,(a _
A= T () (3.13)

The solution for T satisfying the boundary conditions (3.3) is therefore

A

_ 4 | I(a)  , a T _. . a
T= an 1(b) () - sinng- M(a,b,777)

(3.14)
n=1 3 5-°°°

where a,b. and A as functions of n are given by (3.10). The solution

T, satisfying the boundary conditions (3.2) are therefore
le =T, + (Ty - TW)T (3.15)
where T is given by (3.14).
AN APPROXIMATE SOLUTION WHEN §> >1

The convergence of the series in (3.14) is quite poor for small 7.
When 7 is small, the solution obtained in Section 2 can be used. An
alternative approximate solution can be obtained easily as follows.

Consider equation (3.4) for large g—. Define



g = -g @ (3.16)
In terms of variables ¢ and 7, (3.4) becomes
92T , 8T 2q a) 02T @
2 - ovv—— - — - - .
4 5—-2- + 5-? (47 v T v + 5—4;2' v 0 (3 17)

When -g >>1, . this is approximately

8T
a7

. 92T _
(1 + ZT) + aq,z = 0 (3.18)
whose solution satisfying the boundary conditions (3.3) is

T = erf Y = erf - (3.19)

VZ2In{I+ 27) vZv/a In(l+ 27T)

This describes the thermal layer on the wall ¢ = 0. The other wall

¢ =7 has a similar layer given by

T = erf T-9
VEV7a Ta(IT 27}

The solution (3.19) is not uniformly valid in 7. This solution describes
the thermal layer on the walls for 7< < the 7 for which the thermal
layers on the two walls ¢ =0 and ¢ = 7 meet, i.e. when T at ¢=7/2
is éignificantly different from unity. (Fig. 3.2)

The solution (3.19) will now be compared with the exact solution

(3.14). The right hand side of (3.19) can be expanded in Fourier series

to get
‘ _vn?
T = erf g = ; in “{(1+27) a, 8in ng (3.20)
2ok In{1+27) ~ 4 .

‘ ],3"5 coe
valid when 2v/a In(1427) < <.72( . For large z, M(a,b,z) has the asymp-

totic expansion
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o - za,—b (1 4 (b-a)(1-a) 4o )

2
&
&
3
i

Lo

96

(b-a)(1-a)

— 4 3 . naa)
T_Z — sinng (1+-—a74vT-+

Z ?‘Ln sinncp(l-l-(-%:)(i‘é-z)-b "')

4. . vTn? .
1,—2 -4 sinne 5 +

which agrees with the approximate solution in (3.20) for small 7.

DISCUSSION:
The solution (3.19) is valid for small 7, i.e. a 7 for which the
thermal layers on the walls ¢=0 and ¢=7 are not overlapping signifi-

cantly, A T-scale T, is defined by

N

v m
(za- 1n(1+2'rl)) =1

i.e. 2

an
mo=4(e 1) (3.21)

At T=1T, T(T, _12r_) = erf 2 = 0.995, Using the expression (3.19) the heat
flux through the semicircle of diameter d centered at 0 is calculated.
This is approximately equal to the heat flux out of a slit of width d,

approximate because the velocity field near a finite slit is not given by

i

" the simple radial flow expression u_ = - %; Y 0. Heat flux due to

convection
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7/ 2
@ - a
=2 erf 1 + = -+rdg
]; (3‘.- 1n(1+ 27))/2 r
a
7/2
=ra - 2a erfc « do
k Y
n/2
~ra - 2a erfc ‘——27 + do
fO ( )12
Vs
= ra - -3;2 (%" In(1 + z'r)) (3.22)

This approximation is good for T < 7;., Heat flux due to conduction

_ aT
= 2 v5-i_-rd¢

5 7/ 2
vr 5= fo Tde

0 0 (2v 2
2vr 55 ( - ﬁ (—a—ln(1+2'7’)) )

1
- % 1;; 'T/(].-I-ZT)(—Z—;- 1n(1+2'7')>/2 (3.23)
77 .

3

2 : '
where 7= at/{(3d) . Let the total heat flux divided by 7a be called

Glgs

Y, 8v¥a? T
G, =1 -2 (5."_111(1+27)) 5 " 1 (3.24)
o v @ mﬁr(z-a In(1427)) % (14 27)
The heat flux ratioat 7=1T7; is
1 32(v/ )2 7
Vv _ v/ a Q
G(-&-,‘Tl)—l - + '-é-(l-exp-n;-) (3.25)

2VT  nir
2
The term containing (v/a) is due to conduction and is negligible for

2
large a/v * 7, = at,/(3d) defines a time scale t, at which time the
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thermal boundary layer just covers the region within the semicircle of

diameter d centered at the sink., (Fig. 3.3).

== - --SOME NUMERICAL RESULTS FROM THE APPROXIMATE

SOLUTION FOR LARGE d/v H

Air at 0 degrees centigrade and a pressure of 1 atmosphere has
a kinematic viscosity v = 0,133 C.G.S units. qa for a slit of width 0.4
mm, for a flm;v from a pressure of 1 atmosphere into vacuum is 238
cm?/sec. For a pressure of p atmospheres, a temperature q times
the standard temperature (300 degrees Kelvin) and é, slit of width s

times 0.4mm, v and o are given by the following.
a = 238 svq (3.26)
v = 0133 ¢2vp (3.27)

The table below gives a few values of the characteristic time t,.

Table 3.1
p q 8 a v a/v t; in sec
C.G.S C.G.S
1 1 1 238  .133 1790 5.25. 10™°. exp 550.
101 1 238 1.33 179 5.25. 107°%, exp 55.
.01 1 1 238 13.3 17.9 1.28 1073,
.01 3 1 413 119.7 3.46 5.75 107",

G(v/aq 7) is initially equal to unity and at time t;, G{v/a,7;) =
1/2 Vr =.72 for v/a<<1l Attime t; the thermal layer is considered
to have just covered the slit. A significant amount of cooling has taken
place by this time (i.e. by 1/ 2vr = 28%). The table above shows that

t; is extremely sensitive to changes in the values of @ and v.
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To find the heat flux for times large compared to t,, again for
large a/v, the first term in the Fourier series in equation (3.20) may
11y, for g/v >> 1, the series expansion is the exact

A prenll

solution of equation (3.18) and is valid for all .

4 -v/2a
T:;,-r(1+2'r) sing for T>> T
Heat flux by convection
/2 4 -v/2a
= 2 fo = (1427) singde.* a
-v/2a
:8—7;'5 (27)
Heat flux by conduction
n/2
- d
= ;vr 5 fo T de
v2 -0/ 2v
Sum of the two fluxes
8a -af 2v
= = (2T7) for T>> 7 {3.28)

In general when @/v is not large compared to unity, the first
term of equation (3.14) gives the foliowing approximation for T, for

large T

a ,1 /az
T~ir(l+w+2 s +1)

1"(1+ m-ﬁ-l

2
y._a a
a 2[ zv'*/w”]

sin g (=)

This gives the heat flux for large T
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a .1 fa® i a, [fa?
4 I’(“w*a\/zvz“f » a\z[ vt 7;72“]/"
== = g7l - i\
1"(1 s Vet 4w 1 1; »

which is only slightly different from (3.28).

To give an idea of the shapes of the temperature profiles, two
profiles are shown in Fig. 3.4 for at = ,01cm? (i.e, t= 24.2 microsec)
at x=0 and x=1cm. The constants @ and v refer to conditions on
the last column of Table 3.1. On the centre line 8=74/2, r=y and
T = -:% (1 + —Y(-)-,_-Z—)- 1/6.92 for large T (or small y). This profile has
infinite slope at the origin which is consistent with (3.18). At x=1lcm,
T = erf 9.3y for small 7 which in this case is ,0l. The profiles at

other stations are expected to fall between the two shown in Fig, 3.4,
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4., POINT SINK IN INCOMPRESSIBLE FLOW.

The analysis for this case follows closely the one in Section 2
for the line sink and will therefore be treated briefly. The equations of

axisymmetric flow are

B(ux) a(vx) _

ox oy (4.1)
du du du _ _1 3p 9%u
5t + U.r‘i' V,F— -—£+ v —Tay (4-2)
aT BT 3T 92T

where x, ¢ and y are the cylindrical polar coordinates with the origin

at the sink. A stream function ¢ is defined by

—xu=%¥ -xv=-%;§

U, the x-component of velocity outside the boundary layer = -g/x* and
dp/dx = -pUdU/dx = 2q?/x®>. Interms of the stream function (4.2)

becomes

S SEICR =R SETC R 1

Non dimensional coordinates n and T are defined by

_y [a ;o t
=% Jox >y (4.5)

Dimensional analysis shows that u/U is a function of n and 7. This

requires { to be of the form

P = V2avx © £(n,7) (4.6)
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because then

wu=-L12/q.

as it should be, (4.4) is rewritten in terms of n and T as independent

Vaos - 2f L Ja _af
2@vx M x+v2ux ~ O (4.6)

QK

variables by using

o __3n.8 3718
ax ~ 2 x On x 0T
S .19
gy vy on
s _zT8
Bt L% BT,
to get
_0%f of 9%f 94 of g_a _ 5,1 0 f
Bron * 37 (an o dr ~ an? a'r> 2( tIomE T 2+3 o (4.7)
Similarly the energy equation (4.3) becomes
BT, , (O BT _ Of 8T\ T f_ 1 97T
a'r+3 on 8T 0T On +6n 22 9n? (4.8)

The boundary conditions are the same as for the line sink and are given
by (2.14). As before profiles are assumed for f and T given by the
equations (2.15) to (2.18). The integrated momentum equétion now

becomes
_§. R - _6. - l.
di [1 + 3742 1):| +3 [3Jz+1] =3

whose solution is

3241 |
§2 = __2.._. . 1 - I—-—-—l——-l 3(ﬁ-l . (4;9)
(3v2 +1) L1+ 3 7(v2-1)-

The temperature equation gives instead of (2.21) the following,
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dA

d’r( m) 37 1+A2 52 -1)-—( 1+ )

It is seenthatas 7T— 0, A?=§2~27, Andas T— oo, 62—-—33—«/-2+1 and

1
A (4.10)

1

A ~ 7% The temperature layer does not reach a steady state whereas
the velocity layer does, The equation (4.10) is integrated numerically
and is presented graphically in Fig. 4.1. And Fig. 4.2 shows the graph

of 62 as a function of T.

SOME NUMERICAIL RESULTS,

The length scales § and L of the velocity and thermal layers

respectively, are defined by

£=x- (B22)" - (%) (4.11)
i
L o= x- (B2E). a(%) (4.12)

The following numerical values are assumed. The flow is through a hole
of diameter 0.7 mm, from a pressure of 1/100 atmos into vacuum, The
temperature of the gas far from the wall is 300 degrees Kelvin, v = 13,3

C.G.S. units, The volume flow through the hole

|
™~
3
Ly ]

N
L]

7(-579) d2a,
which gives @ = 0.37 C.G.S. units. With these numerical values

'3
g =1.68 x2 5(9-;3” ) (4.13)

N .
L=168x a(23t (4.14)
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The plots of ¢ and L for the four values of t = 10 microsec, 100
microsec, 1 millisec and 10 millisec and the steady state of y ‘are shown
in the Figures 4.3 and 4.4.

| 3 1
For large 7, A~ 7T /6 and therefore, L ~ x/z(??;’_ﬁ) /", i.e.
1
L“xi:/6 as x — 0 (4.15)

The plots in Fig. 4.3 which correspond to T <10 (refer to Fig. 4.1) are
shown in dark lines and the data for 7> 10 are those corresponding to

the asymptotic linear relat_ionship-given by (4.15).



FIG 4.1
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5. LINE SINK IN COMPRESSIBLE FLOW,
This analysis too, follows the one in Section 2 closely., The

boundary layer equations of compressible, two-dimensional flow are

9 a(pu) 9(pv) _
5t T " ox By 0 (5.1)
du ou ou _p_ ___
Platt " ax* Vay) © * (” (5.2)
8, o8, 2 ,1-Pr 8 ( oh
P(a tv oy By( Pr ay - oy (5.3)

1 _Qi) ; =
= By (,4 By assum1ng Pr=1

where

j=h+ $u? (5.4)

and

" =-}§130— | (5.5)

and the equation of state of a perfect gas is

p= 3‘—;1 ph (5.6)

He1-'e h denotes the enthalpy per unit mass, j denotes the total enthalpy
per unit mass and y is the ratio of épecific heats, The subscripts o
and e refer to standard conditions and conditions outside the Boundary
layer respectively, In the boundary layer equations P =P,

These equations are converted to incompressible form by using
the Illingworth-Stewartson transformation by using the new independent

variables



"
1
g...,x

const
ae "._E..
Y == - d
ol
0
T=t (5.7)

In (5.7), . a denotes the velocity of sound, A stream function is defined

by the following.

u=-o 3 _ __e 3y
p 9y ag 9y
v=_2a(;‘o_§‘_1=§m
p ae t ox

Po (ao oY _Fe % a8y _ v .ﬂ) (5.8)

The momentum equation (5.2) becomes

Po 92y . 8¢ 9% _ 8y 8%y _J By
( ) 5TsY T 3Y BY0X ~8X oYZ j, oMe (3gM,) = -vo 533 (5.9)
and the energy equation (5,3) gives
g . 82,
(ao pO_aJ. _@_"l!.._a;l_ﬂﬁl;ﬁ_v —L (5.10)
9Y' 8X ~ 8ax oY = "o §Y? .

The quantities P, Me and a, for the sink flow are found now.

Let us consider the steady radial flow outside the boundary layer,

The equation of continuity gives
poar = -A

where q is the radial velocity towards the sink and A is the constant

mass flow into the sink., And the Bernoulli equation gives



1 .,% _ fo
2y Pe Poo
y-1 _A? Pe Po

+——
2y plr® Tp, T Py,

For isentropic flow P, and P, are given by

1/y-1

p -1 2
— =f{1 X2 M )
Pe ( * 2 e
Y
P _ (_"s )
Po Poo
Therefore
yt+i
o1 24Y-1 P z
ZArz'(lJrlzrlMe _ﬂMe
Yo Poo
From (5.7)
a a, A
dX = = . = cdX =% . £ dX
00 (s's)

the reference conditions being taken to be those at infinity,

;

fact that

2v/y-1
p~a

for isentropic flow, we have

_ 3y-1
- 2y 2Y-2
dx = (1+3{2—1 Me) dx

Let us consider a monatomic gas. vy = 5/3 for this case.

(5.11)

Using the

(5.12)

The relation

between Me and x(r=x just outside the boundary layer) is, from (5.11),

2
M 2

4
(1+57) = (% 53

(5.13)
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where x; is the position at which Me= 1. On differentiation this gives

Léd_x.=(1+i‘§)(l__1_) M
9 x 3 MZ2 e
and from (5.12)

dX = (1+——) (1 L) Zram

e

On integration this gives

2
16 . x _ 1+Me 1 143 T
27 % T3MIMB T g Bn oy tEt o (5.14)
1 eT Ve 3 e 33

A gré,ph of 16 X/27x%, wvs I/Me is shown in Fig. 5.1, It is seen from

this graph that the straight line approximation

1 16X
M- 2.25 + 3(———27Xl \ (5.15)

is reasonably good. It is noted here that the flow near the slit when Mezl
will not be radial and therefore taking the exact equation (5.13) instead of
the straight line approximation is probably not much of an improvement.
On the other hand, the exact relationship (5.13) makes the problem much

more complex because it destroys similarity, We shall assume (5.14) to

be true, 2y-1
-1 . .2 y-1
The quantity (—-"-) = (1 + y? Me ) and is equal to
M2 2 : 2 2 5
(1 + ——) for a monatomic gas, The graph of § = (a—> p_o_ is
e e

plotted against 16X/Z.7x1 in Fig. 5.2, £=1 is a reasonable approxi-
mation except very close to X=0. We assume this to be true for the
reasons given in the previous paragraph.

The relation between X and x is found by using (5.13) and (5.14).

It is seen that the straight line approximation (from Fig, 5.3)
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x=-1L3x; +x

(5.15) can be written as

9
Me = 1% xl/ X + 1.265x,

Let a=9%x,a,/16 and X=x+ 1.2656x ;. Then aoMe=a/§ where ag
is the velocity of sound at infinity,

With these approximations the equations (.5.9) and (5.10) become

_‘J’___i_ o 82y azlb_q{ +i_g_2__v & (5.16)
— R =3 = "Vo 3y3 .
OYIT "NOY yygx Y g%/ Jo x oY
923 .
_..EE ___J. l 5.% "Vo _8—?}2 (5.17)

The equations of momentum and energy are coupled now, As before,

non dimensional variables n and 7T are defined by

/;l =2  (5.18)

=3

]
M| |
Q
|

Also defining

b= Yvoa f(n,7)

- = g(n, 7) (5.19)
Jo
and using

2 _.a 5

8t~3—('2 ot

B _1 fo 8 _n 8

Y " Vvy 8n " Y an

8 _. _n3 27 08

X XM x o7
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the equations (5.16) and (5.17) are converted to

F)
_0%f + 27 (_____ 9%f _ 98%f of (_a_f_ ., 9
narT an dnoT  on? 87) &=
a'r on o1 9T om) 6n"'
. . . u of
Again the velocity ratio ™ because
e
a —_
__..ed - _’e v/a 1 o Bf
Y=73,09Y T Ta, Vo X o 3
_ .2 a of
ap on
and
u =-aM
e e e
3¢
_.2e a
ap ¥

(5.20)

(5.21)

The boundary conditions on f are given by (2.14), For g they are

g=g.. at n=20, all >0

g=1 al n>0, T=10
We assume
of _ _n_
an - *E5(n
/6
i,e f=6('r~f erf xdx
(]
j = + (jo - J ) erf A('r)
ie g = .gw + (l-gw) erf — A('r)
where = = —_
B 5 T

(5.22)

(5.23)
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The integrated equations of momentum and energy are then

% [1 + 22 -l)r:l +8V2 - (1-g )2 =% (5.24)

and

(5.25)

dA 2T daé _ &/A das _ 2
dT(1+—————————)+zwdT -ar g2 =2
Vit 62/ A% Vi+ 62/A%

These are integrated numerically and presented as graphs in Figure 5.4
(for the particular case Bw = 1). It is noted that in this case both the
velocity and thermal layers do not reach a steady state, This is because
the xﬁomentum and energy equations (5.24) and (5.25) are coupled
except when 8w is equal to unity in which case there is no heat transfer
at all. The thermal layer does not reach a steady state because of

reasons given in Section 2 and therefore the velocity layer also does not.
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6. POINT SINK IN COMPRESSIBLE FLOW,

This is very similar to the analysis in Section 5, Only some of
the equations are presented here and these are numbered so as to corres-
pond with those in Section 5 for the line sink.

The equation of continuity for compressible, axisymmetric flowis

% . 1 3(xpu) , 3(pv) _
at Tx ox ' 8y 0 (6.1)

The equations of momentum and energy are the same as (5,2) and (5.3).

The stream function is defined by

- .LPo 3y
p 9y
- _Po ( 2o 3Y 8y :
xv=-5 (xae 3t " ox (6.8)

In terms of {, the momentum equation is

_Bg(izl_iw_ L (20 2y oy
a

P, x 0YaT T %2 \BY 9Y0X ~ 9X Y’
1 Po®% sayy ) 8y
-k 2e - 2 = - Y%
X Ba (s ig BoM) 3x (M) = - 2 533 (6.9)
and the energy equatidn is
2
20} Po _8j _ (3y 8i _ 8¢ 8j\ _ 9% |
(ae oo x5t - (5 2% R DY) T VoXags - (6.10)
The relation between Me and x, for a monotomic gas is
. MZ 4 2
e) - 16 2
(1+7%) - (m% 2 o

x and Me are related by
-3

2
M
HoHD) ) m
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which has been plotted in Fig. 6.1 after numerical integration, The

following approximation is very good,

1 _ . 4 =
— =5 (X + 1,05 x,) =

e

R |

The plot of X vs x is shown in Fig. 6.2 and the approximation
x=X+ 11 x4

a
is very good, As before (;0—) i—o >3,
e

With these approximations (6.9) and (6.10) become

e S LIV Aoy 8%y az-l__"oa
= YT T S, \8Y e ) ( ) +2 = oy (6.16)
X X2 aYoXxX X
8 _(3v i _ _iﬁ.L |
X 57 - (59 3% ax aY) =vo X 5y1 (6.17)
Non dimensional variables are defined as before.
Y /a
n ==z //—
X 2vX
T =
g = 20vX f(‘r],'r)
L= g, M (6.18)
Jo
Finally, the equations for f and g are
_9%f + 37 (___ 9%f 9% of
67811 on ondr n? 8T
f 3zf _ 1 03 f
z( )‘ > = 2g+% 57 (6.20)

of 9g  of og 8g £ _ 1 82
+3(3n8'r a'ran)’fan 2 ‘Zan% ‘ (6.21)
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The integrated equations are

o+

R (143702 -1) + 2 (3VZ41) - g ) A= (6.24)

aa . ¢ 37 ds 1 5 1
9. (14 -————) y3788 . (L — -1) -8 (J’_7_1+AZ 52 -1) == (6.25)
dr ( V1t 6%/ A2 dr (\/1+A27 52 2 A

These are integrated numerically and the graphs are presented in Figure

6.3 (g, = 1 as before). Both the velocity and thermal layers do not

reach a steady state,
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LIST OF SYMBOLS USED IN PART 1.

A constants in the expansion for T
a speed of sound
d  width of the slit or diameter of the hole
F integral of the error function
f(z) function appearing in the confluent hypergeometric equation
G nondimensional heat flux through the slit “
the ratio j/j,
h specific enthalpy
h(z) function appearing in the hypergeometric equatién
j total specific enthalpy = h + 1 u?

L length scale of the thermal layer

1  length scale of the velocity layer

M Mach number.

M confluent hypergeometric func‘éion

m index in the velocity distribution U = -a/ xm
n integer

P pressure

q radial velocity

r radial distance from the sink
Rn('r) functions in the expansions for T

T  temperature

t time

U hypergeometric function

U x component of velocity outside the boundary layer



u x component of velocity
vy component of velocity
w(z) function appearing in the hypergeometric equation
X,X transformed x coordinates
x x coordinate
Y transformed y coordinate
v y coordinate
z independent variable in the hypergeometric equation
a sink strength
Y ratio of specifit heats
A(T) thickness of the thermal layer
6(7) thickness of the velocity layer
n  nondimensional variable = ¥ ﬁ for the line sink and = < - /_Ol__
xv v x 2vx
for the point sink
u viscosity
v kinematic viscosity
p density
6 polar angle
@ angle
7 nondimensional variable = = for the line sink and = 3 for the point sink
2, 2
g = (5,2) . &
e Pe
subscripts
] standard conditions
oo conditions at infinity
e conditions outside the boundary layer

1

51

values at some fixed position



1, Goldsworthy, F. A,

2. Schlicting, H,

3. Stewartson, K.

4, Howarth, L,
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PART Ila.

THE DUSTY JET
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1. EQUATIONS OF MOTION OF A DUSTY GAS,

o

We follow Saffman's formulation of these equations {ij. The dust
particles are supposed to be uniform in shape and size, Their velocity
field is described by " U(x,t) and the number density by N(x,t). The bulk
concentration (i.e, concentration by volume) of the dust is very small so
that the net effect of the dust on the gas is equivalent to an extra force
KN(U-u) where u is the velocity field of the gas and K is a constant,
where it is also supposed that the Reynolds number of the relative motion
of dust and gas is small compared to unity so that the force between dust
and gas is proportional to the relative velocity. Then with small bulk
concentration and neglect of compressibility of the gas, the equations of

motion and continuity of the gas are -

ou

p(g-t'+2 'Vll.)

-Vp +uV?u + KN(U - u) - (1.1)
Veu=0 (1.2)

where p is‘ the pressure less the hydrostatic pressure, and p and gy
are the density and viscosity of the clean gas, For spherical dust
particles of radius a, K =6way by the Stokes drag formula.

Let f=mN/p be the mass concentration of the dust. Let p be
the density of the gas and p, the density of the material of the dust.
Then the bulk concentration of dust which is the ratio of the volume
occupied by the dust to the volume of clean gas in a given mass of dusty
gas, is fp/pl . Fbr common materials pl/p is of the order of several
thousand, so that the mass concentration f may be of the order of unity

with the bulk concentration remaining very small,
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The force exerted on the dust by the gas is equal and opposite to
the force exerted on the gas by the dust, so that the equation of motion of
the dust is

ou

mN(T_t +U - VU) = mNg + KN@- U) (1.3

where m is the mass of a dust particle, N is the number of dust
particles per unit volume of clean gas and g is the acceleration due to

gravity, The buoyancy force is neglected since p/p; is small. The

equation of continuity of the dust is
%lf— + div(NU) = 0 (1.4)

Let 7=m/K. This may be called the relaxation time of the dust
particles. It is a measure of the time for the dust particles to adjust to

changes in the gas velocity. For spherical particles of radius a,

7= m/K =%7ra3pl/6wau

]
ol
<o

2
e .Q.L |‘5

where v =pu/p is the kinematic viscosity of the clean gas,
We consider a steady, two-dimensional dusty jet with its axis
along x, The flow quantities do not vary with yv and are functions of

only x and z, With

u= (u,0,w) and

U = (U,0,W)

' the equations with the boundary layer approximation are then
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du u _  8%u, f ..
u3x+ 52 - Vs—z-z'-l- T(U u) (1.6)
ou dw_ (1.7
ox ' 0z e iy
ou ouU _ u-U
U ox +w 0z T (1.8)
ow oW _ w-W
U ox T w 6z ~ 7T (1.9)
ONU = 9NW
9w T 8z = 0 (1.10)

The equations (1.6 to 1.10) are the five equations which determine U, W,
N, uand w. p = constant and g has been ignored in the equations,

Some typical values of the relaxation time are given below,

Material ©  Density a ‘ T

gm/cc (microns)
Coal dust in air : 1.2 ; 25 9.1 ms
Coal dust in air : 1.2 50 36.4 ms
" Sand in air 7 2 200 . 0.97 s
Cigarette smoke 1 .3 1.09 ps

Gold particies in olive 0il =~ 19,3 325 4.95 ms
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2. THE JET WITH FINE DUST.

This is the limit 7— 0, Egquations (1.8) and (1.9) show

this limit u=U and w=W, In the right hand side of (1.6), %(U -u) is

replaced by f(U + W %—U using (1.8) and this is equal to
f(u —tw z)' Therefore the equations are now
du) _  9%u
(1+f)(u—+waz =v =% (2.1)
ou , ow _
ox + 9z ~ 0 (2.2)
u =T (2.3)
w = W (2.4)
ofu L ofw _ . _ of of
8x+8z_0—u8+ oz ° (2.5)

The equations (2.1), (2.2) and (2.5) determine f, u and w as functions
of x and z, Equations (2.3) and (2.4) show that there is no slip between
the dust and gas in the limit 7— 0,

The flow configuration is shown in Fig, 2,1. The jet comes out
from a slit of width d with a velocity u,. The dust concentration is fy
at x=0. There is a region (the core) where the maximum velocity in
the jet is still u,. At some distance downstream the core disappears
and the jet spreads with tI;e maximum velocity decreasing with increasing
X.

Von Mises transformation is natural to this problem., Here X=x
and { the stream function are taken as the independent variables. The

equations of transformation are



8 _ 8 8
9x = 9X oy
._i —_ Fa L%
9z P “"_°’
where u = %3 and w = - %;E . The equation (2.5) becomes
of af + wu of _
X 841 a¢
. o8f _
i.e. X 0
or f = £() (2.7)
(2.1) becomes
-
(14f) v =< BX = vu ) 841
. ou _ 8 Ju
i.e, (1+£) 5% = aq} ¢ (2.8)

u and { are found from the two equations (2.7) and (2.8) as functions of
X and ¢, From these u,w and f may be rewritten as functions of x
and z, Initially (at x=0) f has the value f, from Y=0 to y=u,d/2
and is zero for | greater than vuy,d/2. Therefore the solution for f is
the rectangular profile shown in Fig, 2.2. With this value for f, the
equation (2.8) is solved for u as a function of X and .

First the region where the core is present is considered. The
equation (2.8) will be solved by the integral method of Karman and
Pohlhausen assuming for u the profile shown in Fig. 23 This shows

that u=vu, for z <1, or y<uyl, and u has the profile

B () 1 ()

with velocity scale u, and stream function scale ¥ for z > £;. This
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corresponds to the well known hyperbolic tangent profile for ¢ found

for the simple jet., (2.9) corresponds to the velocity profile in terms of

z given by

Uo(z-4 .
¢=uoll+\Irtanh'-—°-§I’-—-—L)- for z> ¢4,

and
Pp=uyz for z < 4, (2.10)

(2.9)follows from (2.10) on differentiation with respect to z, i.e. using

:'%EZE:M Using the-profile (2.9), the two equations needed for finding &

and ¥ are found from (2.8). Integration of (2.8) all the way across the

jet gives

&+ &+

ou du
Hf) == dg = v |u— =0,
[5x4 [ abe
0
. &

ou 27X X . dr
X = 2u g (P-3) ) + 2uqy(P~-B) P outside the core where \Ifx = 9X and
QX = %—i In the core gl;‘-( = 0. Therefore

B+¥ |
Ty oy
f@ (1+£) [2u0(¢-¢)2 53 + 2u(4-8) \"12'] ay =0

; 3 2
e :I;-’h ?§+ fo[% -u—;-l - 2) %%(3‘; - 2) ;%{:': 0 (2.11)
Another equation méy be obtained by taking a moment of (2.8) across the
width of the jet but it is simpler to take instead the folloﬁng. The
integration is performed from (=0 to ¢ =&+ ¥/ V2 at which point
u= 1 Uy . The dusty portion of the jet extends up to = u,d/2 and the
point ¢ = & + ¥/V2 includes the whole of the dusty region, This

integration gives the equation
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@
Zuo(-;-‘% + — + Zuofo[ (u° <1>) =5+ (u°d - @) \I,Z:I

From (2.11) and (2.12) we get

fz_(fz+f§)=_w 1
3 2 2\/2 I
or
o
X Vi,
(—-——- e (2.13)
x 4 2VZ ¥

(2.11) and (2.13) can be solved by iteration for small f,., For fo=0

wle

= constant = £ (u, %

e

Using this in (2.13),

2V2 ¥
,or
6vu0
20Ty =
V2 -1
1.€e.
6vu
¥ = °x (2.14)
vz -1
and 4

&= u, %_.g- /.@.ﬂ)._ (2.15)

For small f, we shall use the approximate relation (2.15) in the form

- % )2 in (2.11) to get



w, ®
x,%% .  [8. 4.7 0 v.8_4 d
EIP +f°[81 ¥ " 37 ‘I’x]'o' 37281 fo¥= Yoy

Using this in (2.13) we get

which gives on integration

_ 6vuy X
vz 1+1‘fo_£0

4f0) 6vuo (2.17)
\/_1+—‘/_f0) |

(2.16) and (2.17) represent the first approximation when f, is small,

(2.16)

and

_ Uod
Q-Z-

wlm

' They are reasonable for fo<1.

The position where the core vanishes (i.e. ® = 0) is given by

J—1+121/-_f0

)(1 if_u.)

.3 (u od (2.18)

d "~

X,/d is proportional to the jet Reynolds number,

SOLUTION FOR X > X, .
For X > X, there is no core. The velocity scale u (the maxi-

mum velocity) and the stream function scale ¥ are to be found. The

velocity profile is assumed to be

2= 1- (Y (2.19)

The equations are obtained as before by integrating (2.8)
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b 2]
gu .. _ Bu | ™ _
[ a6 % AU = [vu 84»] =0
0 0
Here ‘
o, (1’~—‘1‘-z)+2u oy
axX mX\ m o3 X
where
mX~ dX ° X" dxX°
Therefore
a 2 umd/z o
umx"'g‘lf'l'-gum\]?x'l'f fo 9% dq;-O
)
i.e,

2 . “m¥x uody |_ '
3(“m‘1’)x+f°[f‘mx ug - o (“02)+ 397 \ 2 )]_0(2.20)

The other equation is

Wz . .
{ (1f) Lrap = v 22 (-2 )
or
¥ wd , Ux updy Cmx vd] “Um”
mX( 6\/—) ZZJ-_\IIX+f [mX _Z—+%ET(%— ) I\;"( )] ﬁm
(2.21)

(2.20) and (2.21) are solved by iteration as before. For fo =0, (2.20)

gives
u ¥ = uy¥ (2.22)

where ¥, is the value of ¥ at X =X,. From (2.21)
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5 1 ul v
u —_— g4 — u v, = -
mX o3 3z ™ X fGe

Eliminating u , we get

T2 Ty =2vu T,

or

\1,3
3 = 2vuy T, X + constant
Using the initial condition,

¥ - = bvuyy - (X-X,) | (2.23)

(2.22) and (2.23) constitute the zeroth approximation, Now (2.20) can be

integrated to yield
d wdd, u_ .-
Fom ¥+ 5 [0, 5 1) (- 32)]
Swuuth [uo(%'d) +3 ('u_géi('%zf ]

A say (2.24)

(2.20) minus (2.21) is

. \/Zu v
2 d 5 1
S9(uw v-{u —— U+ ——u_ T = (2.25)
3 &X' 'm (mX 6v2 3V3 mX) 20

The zeroth approximation is used to eliminate u_ in (2.24) (only in the

term containing f;, which is small), (2.24) gives for small f,

lu o+ fo[%‘&(%ﬂ) + %(9_0;)3 . (_ %ﬁ H\i}z)]:A

This u is used in (2,25) to get a better approximation for ¥ Let



ugd
C = uy¥, >
d3
D:l{EL\J‘;‘Q'
3\2/ 0 *1

Then

2

(2.25) becomes

When ¥>> ¥,;, this may be integrated in closed form because we have,

approximately

2
2 3
=-Z—v -?A?-dx

which gives on integration

(¥2 - ¥3) = (X - X,) (2.26)

2
(F-9)  @z-) % . %%d
9Av 9 A2 2v

where the initial condition ¥W(X;) = ¥, has also been used. u is given
by (2.24) and (2.26).

The approximate solution for ¥, & and u is given by the
equations (2.16) and (2.17) for X < X, and by (2.24) and (2.26) for X > X, ,
¥> ¥ . The length scale in the core region ¢, is known as a function of
X. Anotﬁer length scale ¢, ils defined as the value of z for which u__u_
u .tz . m

1 = tanh —=

E ¥

is %. i.e. % =
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or

- -l —l— o.l
2, = tanh (JZ) o

where ¥ and u_ are known as functions of X. The boundary of the
dust is given by f,, the value of z for which {§ is 3‘%9_ . For X<X,
£; is given by

Ug (L3 - 4;)
w

220_51. = &4 ¥tanh

and for x> X, by

uod—\I[tn}j[ 13
2 = a um\I’ .

The three length scales arnd the velocity scale u_ ~constitute the solution

of the dusty jef problem, °
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3. THE JET WITH COARSE DUST.

This is the limit 7 tending to infinity which may be obtained by
letting a tend to infinity, 7 and f are proportional to a? and a3
- respectively and therefore tend to infinity. The ratio f/7 =67 auN and
if aN is held constant as a tends to infinity, f/7 can be of order unity.

We now have the equations

u%+w%‘z&=v-g—:%+%(p'u) (3.1)
%+§5"z2 = 0 | L ' (3-2).
U%Ex+ w%% = 0 (3.3)
U%%Z‘ +W§a_ZVZ= 0 : (3.4)
Q%z__'_ %f_ZX.= 0 (3.5)

The three equations (3.3), (3.4) and (3.5) give the solution

c
"

constant

g
14

constant , on a characteristic
dx/dz = U/W,
Initially U =uy and W =.0, so that the solution becomes

u =u°

w

‘0, on z = constant,

From (3.5) it follows

f = constant = f; for z < d/2.
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Each dust particle moves along the x direction with its initial momentum,
When f is large, most of the momentum is carried by the dust. The
term f{U-u)/7 in (3.1) represents the momentum transferred to the gas
from the dust. Because of the large inertia, the dust suffers a loss of
only a small part of its initial momentum but this amount makes a sig-
nificant contribution to the momentum contained in the gas. For large
x, the dust and gas will move together and the solution will tend to the
fine-dust limit, The solution for coarse dust is not I;niformly valid for
large x,

The solution follows the method of Section 2, By using the Von

Mises transformation, we get

au a¢ (u + -f,; (%’-ﬁ -1) (3.6)
U =y, (3.7)

W=0 (3.8)

f=f, for z < d/2 (3.9)

In the region where a core exists, the two integrated equations of motion

are

T | P L
zuo(—_;fﬁ +—§5) = ( -@)+%1n —L (3.10)
' - %od
v-2%4 0

and

The equation (3.10) corresponds to (2.11) and (3.11) is the same as (2.13)

The solution of (3.10) and (3.11) is obtained by iteration for small £/ 7.
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The zeroth approximation is given by (2.14) and (2.15). The first approxi-
mation is

~Ir @ . -
XL XY £ legs Tl

2 vug
A\Irx+ BY = —
V2

where
vz -1
A=———
1242

- (12 -5)

The solution is

T2 = -;\/—__; . l;_;;(1 - exp(-% X)) (3.13)

(3.12) can be integrated using the zeroth approximation for ¥ on the

right hand side to get

v 3/ 2
v & f/in5 2 6vu 2 2 l>‘od
— ’_._. - — — g — Q . -—x A———
Zuo 3 Z) 7-( 2 3) (—2 -1 3 t 2 . (3.14)

(3.13) and (3.14) give the first approximation for X < X, where a core

exists, X, the position at which the core disappears is found from

(3.14) by iteration, The solution corresponding to (2.18) is

X : |
“‘dl' = %(ﬁgl) gd + -f; (4n5 - %) (—5% (V2 -l)Rd) (3.15)

where Rd =uyd/v and ¢ = uy,7/d is the particlé parameter,
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SOLUTION FOR X > X, .

The integrated equations are now

\If+u°d
2 4 _E (% ¥, (T2 uocl
S W=t [“m > In(\p- uod) (3.16)

and (2.25). These are to be solved with the boundary condition ¥ = ,
at X = X,. The solution for large X (corresponding to (2.24) and (2.26)

is as follows, (3.16) leads to

(e - w1 ) = D(X%-);{S) - E(X - X,)

where
1
3
(6 VUO\I"1)
Do Lyq i)
T v‘Ifl
and
E=2Lu.a (3.17)

For ¥ we get the differential equation

4/3_ 2.2 —DX E
o, oo G- 6n)

(C+ DX " -Ex)

_ 4
3
where C is givenby u;¥;, = C + DX; -EX,. It appears that this can

not be integrated in closed form, The asymptotic solution for large X is

YA
2vDX
o3 ~ (3.18)
SJ_ 2
6\/_

provided that f, is not zero. If there is no dust, instead of (3.18) we get
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4, THE DUSTY JET FOR ARBITRARY 7.

Physically it is clear that initially the jet starts off as one with
coarse dust and finally for large x, approaches the fine dust case., The
flow configuration is expected to be the one shown in Fig. 4.1. The
velocity profiles of the gas and dust in the various regions are shown
here in solid and dotted 1ines>, respectively, In core 1, both gas and dustl
retain the ma;ximum velocity u, over‘r a part of the profile, In core 2,
the maxirnurﬁ velocity of the gas is less than u, but the dust still
retains the initial velocity u,. Farther downstream, there are nocores,
We consider only this region to avoid a lot of algebra associated with the
fegions where cores exist, The initial conditions needed for this solution
are obtained by using the coarse dust solution for a distance equal to uo'r,v
the distance travelled by a dust particle in one relaxation time,

The equations for this case are (1.6) to (1.10) (or (2.5)). An addit-

ional stream function for dust is defined by

| Ay

P |

fu = 52

W= - g (4.1)
0z .

We now have the three equations of momentum, (1,6), (1.8) and (1.9) to
determine ¢, Yq and f as functions of x and z., The two equations of
continuity are satisfied automatically. The velocity profile for the gasis
assumed to be given by (2.19) as in the case of fine dust, The stream

function for the dust is assumed to be the one in Fig. 4.2.

i.e Lpd:alp for OSLpS\Ifd
Yg = Q¥ for ¥, <Y< T (4.2)
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where a and T, are functions of x. When x— oo, the slip velocity

tends to zero; i.e.

%1; ‘:“';d_.% or yy=a ¢ = f ¥ de. @ =f.
For f, the flat profile shown in Fig. 4.3 is assumed.
f = constant for 0 < ¢ < \Ifd
=0 for b > Ty (4.3)

f is a function of x only.
Von Mises transformation is used as before, The equations of

transformation are given by (2.6). From (4.1),

oy oy

-4 _,_d

U= =275
woeoda_ (Mg O
T 8x 9x 3y

(1.6), the x-momentum equation becomes

BeormeR) &

(1.8) and (1.9), the x and z momentum equations of dust lead to

e f) (4.4)

| | 8"’&
Mg 8w _f_"i@;._ua“‘d TR s
a0 " 9xX\f oy ) " IX T oy (4.5)
u_ | %% 5,1 % 2 gy Mg 5 1 Mg w M
i 5 R TR YT ) TR a¢)
oy oy
1 1 d W d
=S {v--FaxtT ) (4.6)

These equations are solved approximately by the integral method. The

profiles for u and w are given by
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2yl a2/32
= 1-y%/v
m
and
u z
__.@_k!a__._Q.( m)
W= 8x " T ox ¥ tanh I

The five equations needed for finding ¥, ¥,, f, u and a as functions
of X are derived now. Equation (4.4) is integrated from Y =0 to Y=

to get

L w =2ty (4.7)

2
ng(m T °d

and from ¢=0 to y=¥/VvZ to get

SO T T BN 2 (4.8)
mX 62 J-mX NFl A T d

In using the two momentum equations for the dust (4.5) and (4.6) we make
an additional approximation which simplifies the algebra considerably.

For large X the dusty region occupies only a small part in the centre of

u_z
the jet and so the stream function in this region § = ¥ tanh ;’n - is
~ - -—\h ~ - ﬂk ~ . -
approximated by ¢ = Uz and u 5z = % and w = Zmu T
- ;nx * y. (4.5) is integrated across the dust layer to get
m
£ -1
X ( f ) (4.10)

and similarly from (4.6) we get

ir_g ((au X + oy (aum)X) 1 -umX+ (aum)X
f @ 3x fu ) fu T o7 u fu
m m ‘m
(4.11)
In the above equations the subscript X means d/dx. Finally, a\Ifd is
the value of the dust stream function at the edge of the dust layer and is

equal to the total mass flux of the dust, This is a constant equal to
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fou,d/2 where f, and u, are the mass concentration and dust velocity

at the slit,
i.e. a ¥, =fu d/2 =B, say (4.12)

The equations (4.7), (4.8), (4.10), (4.11) and (4.12) are the five equations
needed for finding ¥, ¥,, f, u and ¢.
The asymptotic solution of equations (4.7), (4.8) (4.10), (4.11) and

(4.12), for large x, can be found easily as follows. Let
f= foo + g{x)
a=a_ + h(x)

where g and h are << foo =g The simplified equations are

2 2
3 um\It-i- Bum = constant = 3 C, say
2
2 5 1 {_1 %Y
= (u_ W) -gu —— T+ ——u_W¥ = —=
3" m™'X mX 6V2 3V2 m X vz o
u =-g;}-1-
mX T
L (“mX) _1 bugly Eugy
mdX \u Tor u u
m m m,».

For {>> B, the solution of these equations is

i
3

W = (6vCX)
L
u = C(6vCX) 3
L
f = f -vCetf (6vCX) 3
[e 0] [e 0]
4
- 2 -3
a = f +vGir (6vCX) (4.13)
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Illustrative example;

The following conditions should be satisfied:

Tawvmimase £

) ] 4+ -t
1) Rd < 30, or laminar flow tc exist.

2) gr/uy < <1, for the effect of gravity to be negligible,
3) uoT/d>>1, to ensure that the dust is coarse enough,
4) f/pp < <1, for the volume concentration to be small,

Gold dust in olive o0il is a reasonable choice. We choose

u, = 200 cm/sec
d =1.38 mm
v = .92 cm?/sec
o= .92 gm/cm?
Py = 19.3 gm/cm?
d_= .65 mm
P
fo=1

T = 4.95 ms from equation (.5,
With these values the four conditions look like this -

1) R, =30

d
2} .024<<1
3) 7.2>>1
4) 1/19.3<<1
For small x, when the slip velocity between the dust and oil is large,
the assumption of Stokes drag is not satisfactory. The slip velocity
decreases rapidly as x increases and the drag over most of the flow
obeys the Stokes formula, The‘ relaxation distance defined as the product

of u, and the relaxé.tidn time is 200 cm/sec X 4.95 ms = 9,9 mm,

The calculation is done in the following manner, It is assumed
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that the dust does not spread for a distance equal to one relaxation dis-
tance. In this region u and ¥ are calculated by using the results of
tion 3. For x<uy7 the dust conceniration is taken to be unity. At

=uT, Q/f = uo/um = 200/136 = 1,47 i.e. a = 1.47, And df/dx =0, at

o
1

X = UqT,

From this point onwards, the differential equations (4.7), (4.8),
(4.10) and (4.11) are solved numerically and the solution is plotted in Fig,
4.1, The excess velocity of the dust particles decreases rapidly and
approaches zero. The initial rise in u of the oil is due to the fact that
the momentum lost by the dust particles is gained by the oil, In this
simplified calculation it has been assumed that for one relaxation length,
the dust keeps its momentum and for x > u,7, begins sharing its momen-
tum with the 0il, A calculation taking into account the two cores etc,
suggested in Fig. 4.1, will not show such a rise in U It is seen that
the dust concentration increases with x and approaches the value 1.15
at infinity. The equation of continuity for the dust is ﬂdud = constant,
where ld is the scale of the dusty portion of the jet, uy the maximum
velocity of the dust and f is the mass concentration. The behaviour of
f depends on how the proéuct ldud behaves as x increases., The dusty
portion is confined to a small region near the axis, The dust is decel-
erating faster than the oil but spreading along =z at a smaller rate than
the oil because of the slip. Therefore, its concentration increases,
Actually in the region x <uyT, the dust will be decelerating less rapidly
than the oil (we assumed it to have a consgtant velocity in this calculation)
and spread at about the same rate as the oil and this could show a decrease

of f in the beginning. The extent of this region leaving out the two cores
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is likely to be small, The change in f as x goes from 0 to infinity

is rather small,
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5. THE TURBULENT DUSTY JET

?)%*E'VP-=‘Y‘;E+VVZE+-§(H-2) (5.1)
Vew=0 (5.2)

oU (u-1U)
Bt FY VU= —F— (5.3)
Liv- (W = 0 (5.4)

where u and U are the instantaneous velocities of the gas and dust
respectively, Stokes law has been assumed to be valid. In what follows,
mean quantities will be indicated by an over-bar and fluctuations by a
prime. We consider the case when the dust appears to be fine for the
mean motion and coarse for the turbulent motion, ' The conditions for the

validity of this will be considered soon. These as sumptions mean
u=0; f=f and f'=0 (5.5)

For the mean motion, we get from (5.1) and (5.3)

v Vu = -Vp+vV2u+fu-Va (5.6)
Veu = 0 (5.7)

and from (5.4)
U-Vf =0 (5.8)

In component form, (5.6) gives
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(u—+w (1+f) (3u'3 Buw!)=__g§+vvz'{; | (5.9)
and

(E%g— aw)(1+ f) (au W aw'z) = -fgngvV"-vTr (5.10)
Wher.e " N

Following Townsend [2], the orders of magnitude of the various terms c
can be estimated in terms of the length scale of the jet, the velocity
scale u_ and the scale of variation along =x, viz L, For free jets,

(5.10) shows p to be constant, Hence (5.9) simplifies to

(u——+w——)(1+f> Buw“ = vg:;‘z;

For flows at high Reynolds numbers, v tends to zero and the final

equations are

(” du w—-)(1+ f) + 3“ ‘”' = 0 (5.11)
fg% + %% = 0 (5.12)
Ef-g-f}-{-+-v; -é%f- =0 (5.13)

or f = constant on stream lines,
Before proceeding further, the validity of the various assump-
tions is discussed,
1) Stokes law: The slip velocity is of order Em' Stokes
law is applicable if Em dp/ v. is less than unity, This assumption

improves as x increases,
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2) The dust appears to be coarse for the turbulent motion;
This will be so if the time scale of turbulent fluctuations is small com-
pared to the relaxation time. i.e,, l/ﬁm << T, where { is the length
scale of the jet. Because { increases with x, this assumption gets
worse as x increases,

3) The dust appears fine for the mean motion: i.e. the
time scale of the mean motion >> 7, Or x/iIm >> T,

2) and 3) together require

TQ
jael

<<l<<u =
m {

and such a range might be narrow in practice.
Next an assumption about the shear stress is necessary. For
jets it is well known that the assumption of a constant (across the jet)

eddy viscosity is satisfactory. This means

e o1
- ] ] - ov—
wwh = Va2
k. T ,8u
=K, uml 9z
=K, v (5.14)

Here um and £ are functions of x. ¥ is the maximum value of the
stream function at the position =x,

As in Section 2, Von Mises transformation simplifies (5.11) to

(+T) 8 = k0 (3 8)

with T

constant = f; for 0 < ¢ < Uy %

d
0 for y>u, 3 (5.15)
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The analysis is very similar to that of Section 2, The relevant equations

are briefly as follows,

The velocity profile in the region with no core is assumed to be
a 2
u
— =10 (-L\%,) (5.16)
u
m

The two equations obtained from the momentum equation are

upd _ mX upd _m u,d '
$ @ ‘I’)x+f[nx 2 397 )* & ¥%("%° )]'0 (5.17)

—2
u u
- 5 m m K,
T 2 v g [ ] T Ky
mX 6«/— 3\,2 X 1/'5 W
-2
um
= -—= K, (5.18)
V2

These correspond to (2.26) and (2.21) of the laminar jet, The approxi-

mate solutions for small f are the following,

£3 _w+fou Sl 4 (5.19)
W zﬁ ]' fo . uo‘I’ ° E—o—é . (T—\F )
6AK2 5 'K, A "2 5 )

= (X-X;) (5.20)
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LIST OF SYMBOLS USED IN PART Ila.

A constant in equation {5.19)

a radius of a dust particle

d width of the slit

g acceleration due to gravity

g(x) function defined in Section 4

h(x) function defined in Section 4

K constant in Stokes drag formula

K, "~ constant in the eddy viscosity relation -
L,L, 13 length scales of the dusty jet

m mass of a dust particle

N number density of dust

P pressure

u,a vector velocity of the fluid and its x component
w z component of velocity of the fluid
U,u vector velocity of dust and its x component
A z component of velocity of dust

X,Z _ Cartesian coordinates

X = x, Von Mises transformation

a defined by 4’d =ay Fig., 4.2

e viscosity

v kinematic viscosity

P density of the fluid

Py density of dust

®, Y, T defined in Fig, 2.3, stream functions
T relaxation time

Subscripts

m maximum value in the jet

0 at the slit

oo at infinity

overbar mean value

prime fluctuation
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PART IIb.

THE STEADY FLOW OF A DUSTY GAS AROUND A SPHERE
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1. INTRODUCTION,

The equations of motion for steady flow of a dusty gas are as
before [1]
—_— o — p S 2 —_ -
u-Vu=- V__P_p + vV g+%(x-g)
V-u=0
~ —— 4-¥%
vy Vv=—¢
V-ify) =0 (L.1)
where
E = velocity of the gas at position g
E = velocity of dust at position z
-f; = pressure at position g
p = density of the gas
v = kinematic viscosity of the gas = n/p
T = relaxation time = m/6mn a,
ap = radius of the dust particle
f = mass concentration of the dust at position x

The flow is over a sphere of radius a with the velocity of the
dusty gas at infinity equal to U, Using a and U as scales of length
and velocity, the equations of motion may be made nondimensional by
defining
u/U

v =3/U

I
1



q
I
&
~
o
f
ol
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where pp is the density of the material of the dust, The nondimensional

position coordinate is defined by
x = x/a.

The equations (1,1) become

Va
- Vus=-Vp+ g +<(x-u (L.2)
Veu=20 (1.3)
u-v
X-VX o = (1.4)
Ve(fx) = 0 (1.5)

The boundary conditions are that u and v — i and f— foo at
upstream infinity, and u=0 on r =1, If any dust hits the sphere, it is
assumed that it sticks to the sphere, If v is directed away from the
sphere, it is assumed that the sphere is not a source of dust. (i.e. f=0
on the surface of the sphere),

a p

The particle parameter can vary widely depending on EE and —B,

For example, for sand in air and water, a is 4.44 and .0044 respectively

a
for —E=.1.
a

The problem is characterized by three parameters f,oc and R,

Various limits of this flow will be considered in what follows,
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2, FLOW AT LOW REYNOLDS NUMBER WITH a~1,

of matched asymptotic expansions, The inner and outer variables are
called Stokes and Oseen variables respectively, The equations of motion

in Stokes variables are (1.2) to (1.'5) of Section 1, The Oseen variables

are
r' = rR
0 =20
V'=V/R
u' =u
f'=f¢
p'=p : (2.1)

and the equations of motion in the Oseen variables are

Ry' - V'w' = -RV'p' + RV'2u’ - fRy! + Yly! L (2.2)
RV - u' = 0 | | (2.3)

Ry'* V¥ = (u'- _i')/aR (2.4)

RV« (f'v') =0 (2.5)

The equation of continuity (1.3) may be eliminated by defining a stream

function ¢ by

r r%sin@ 96

u, = - —t OU (2.6)
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Similarly the Oseen stream (' is defined to eliminate (2.3) by

_ 1 oy!
u'r T r'2gin@ 96"
. 1 ey -
Wy =" TaiE e @7
It is seen that
¢ = R2y

The Stokes expansion is assumed in the form

u=ug + Ru; + -
¥ =Xo tRY; e
P=po/R+p + .-

f=f +Rf + -

=Yg + Ry + o (2.8)

In this expansion the independent variables are r and 6. Further terms

will be determined as the matching proceeds,

The Oseen expansion is assumed in the form

1_1_0'+R21‘+¢..

u' =

Vi=¥o'+ Ry 4 -0

P'=pPo' +Rp' + o

f'=f3' + RETH oo

q;':q—;{%-'+%+--- (2.9)

Further terms will be found as the expansion proceeds.
(2.9) is substituted into the set of equations (2.2) to (2.5) to get

the equations for the various orders in the Reynolds number,
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THE ZEROTH ORDER OSEEN SOLUTION,

These equations are
o'+ V! = ~V'pg! + ! 4+ £o' vo! - Vive'
V' suy' =0
Yo' = Yo'
Vs (f5'¥0") = 0 ” (2.10)

The solution satisfying the outer boundary condition at infinity is simply

o' = ¥o' = A
fo' = foa = constant, and the stream function
Yo' = r'28in29'/2 (2.11)

THE ZEROTH ORDER STOKES SOLUTION.
These equations are obtained by substituting (2.8) in (2.1) to (2.5)

and retaining terms of leading order in the Reynolds number. These are

-Vpo + V2u, = 0

Vv (foy_o) =0 (2.12)

The boundary condition is that uy = 0 on r=1. The solution is the

familiar Stokes solution
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Yo = h(2r2-3r + 1) sintp

fs; = constant = { (2.13)
o (e o)
Uy = Vo is obtained from the above stream function ¢,.
THE FIRST ORDER OSEEN SOLUTION,
The first order equations are
!
i+ Vg, '(I+f,") = -V'p,' + V2,
V'-wt=0
8, =y,
V' (£'30" + £o'v,") = 0 (2.14)
The last of (2.14) gives
of,’
ox 0

Therefore f,' = constant = 0, to satisfy the boundary condition at infinity,

In terms of the stream function, the first two equations of (2.14) give

rt

{D? + (W£g) ((-cosor 52 + 208 ag,)} DZy,' = 0

where

2 in@'
pz = 2 sin@' _9 1 6) (2.15)

- 8r'3+ r'2 3@ \sin® 30O

Except for the factor (1+f,), this is the same as the equation for the
flow of a uniform fluid about a sphere., This solution is well known and

may be taken from Van Dyke's book [2]. If the variables are changed to
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p = r'/(1+£,)

and § = 0', (2.15) becomes

2 9 ; 9 '
{'Dl + (-cos,&-é-';- + s;n,b -5-5)} Dy, =0

where

92 sind 9 1 3
2 -9 sy 90/ 1 9
bf = 9p? * p2  9¥ \sinw~ 8,&) (2.16)

aﬁd q;,' is a function of p and &. The particular integral of (2.16)
which gives zero velocity ‘at infinity and is least singular at the origin is
(Van Dyke's equation 8,28)
- %(1—cosb)
' = -2c,' (I4cosy) - [1 - e :I
where c¢,' is a constant, The Oseen expansion to two terms written in

Stokes variables is

-R Z (1+£,)(1-c0s0)

2g:in2 g
gy = LE%IL;Q. - ziﬁ (1+c039)[1-e ]

which becomes in the limit R - 0, becomes

2 aind
g = S0 4 ac,isine - r(legy) + ¢

and this should match the Stokes solution (2.13). Therefore

¢ =3 /(1+f,) and

- .
W' o= - 3 M [1 } e- ) (1+fo)(1-cos9')}
-T2 (15

and

fi'=0 (2.17)
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THE FIRST ORDER STOKES SOLUTION,

The equations are

Uy *+ Vg, (I+fy) = -Vp, + V2u,

= 4o * Vi
Ve (fvo + fovy) =0 (2.18)
The last two of (2.18) lead to
%2 (fll’;o + fol(u; - auy - V‘_l.o)) =0

or

g + Vi) - £,V - (uy * Vug) =0 (2.19)

The first equation of (2,18) can be written in terms of the stream function

Yy, to get
D2y, = - % (1+£,) - (-l% - -]-33 + ;l-g)sin’-e cos
where
- 92 sin® & 1 9
2 A 9
b = arz T e (sme o0

The solution (from Van Dyke's book) is
Py = ¢ (2r2 -3r + -1-) sin? @ - = (Zrz -3r +1--1- +l- sin® 6cos 6 *(1+£,)
1 1 r 32 ” r re

where c; is a constant, The constant c¢; is found by matching

v §
+ R and -43—04- + }P—‘- .to two terms in the Reynolds number expansion.
0 1 RZ R Yy xp
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The result is
o = 3(1+1£,)/32
The first order solution for ¢; is therefore

3 1, . 3 1.1 .
Uy = (14£,) [-5—2- (2r2-3r + -i,:-)s1nz 6 -33 (2r2-3r +1 - =t -13) sin?0cosB
(2.20)
Next we consider (2.19), the equation for f, (r,0). In this u, is known

from the zeroth order stream function in (2.13). This is

2 -
w = (1-3) i+ 21 v (E

On substituting for u,, (2.19) becomes

1 -1 of, _ 1 r%-1\sin® 9f
(l_r- 2r3)cose~ or (\1-r+ 413 r 06

z
2. Sl 2 _
= foa { - % Q——%}f—lﬁ—e + % (-r?g'l')' (1+2cos? e)} (2.21)

The boundary condition is that f; tends to zero at infinity. (2.21) is a
first order partial differential equation which may be reduced to the

characteristic form

v%: (1 - ;1'- rz'l) cos®

2r3
do .
- 1 x%-1\ sin@
d)\ - -(]. - P + r3 1'
2
df 9 (r2 -1)sin?0 = 9 (r2-1
cTXL = f,a [- 1 ( r% + Y ( =8 ) (1+2cos? @) (2.22)

where \ is the parameter defining the characteristic., The first two of

(2.22) give
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2.
(1—-1-'1---1.2—1._,_1)cos6
de - _(1-1,£2-1)sind

s daypw
\ T/

e
4

and this integrates to
12
¥ =1ff;—9(2r3-3r2+1) (2.23)

The curves g, =constant are the characteristics, Obviously they are
the zero order stream lines, On a stream line the variation of f,  is

obtained by using the first and third of (2.22) to get

2 ,
9 sin?@ . 9 (x2-1
a, foa[- Z(rz-1) 250, 2 (-11?—1(1+2c0529):|

dr

When © is eliminated in the above by using)(2.23), we get

_ 9 (r2-1) (2r2-1) 4r 4y _;l(rz-l)
df, f"a[ 4 r° ré (1+?.1c)(r-1)Z 8 ¥ |
dar " |
1 4rq;o
*(1‘ r 2r3) / - Tznene
(2.24)
Of the + or - sign, the sign to be chosen is the sign of cos®,

First f;, on the stream line Y3 =0 will be found, On 0= 7,

daf,
dr

i
h
[~
R
| a—|
ol
B HN
1
[aery
o
\
i
N
[
i
"ill-a
]
=
e
wj !
ot

This is integrated to get



nation point,
f(l,m) =& oa(4+41n—) 2. 51 f,a

f, on the sphere is calculated next, At r=1, both sides of (2.21) vanish.

Therefore on taking -8% of both sides of (2.21) and then putting r=1, we

get
3 of, . _ 9 in2
2s1n9 20 = 2f(,a sin ©

which gives on integration
f, (1,8) = f(1,7) - 3fa (1 + cosO) (2.26)
From (2.26) we get at 0=0,

£(1,0) = £, (1, 7) - 6f,a

-3 -49 fa.

The solution on the axis 8 =0, r 21, is given by the following,

£ (r, 0)--27 foa(-z;z-zll—.z+ +41ln

2r+1) + 2, (1,7) - 6fya (2.27)

This satisfies at r=1,
f; (1,0) = ~fi{l,7) + 2f;(1,7) -6fpa = -3°-49f,a

The equations (2.25), (2.26) and (2.27) complete the solution for f(r,6)

on the stream line (=0, From (2.27) we see that
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fl (CD,O) = Zfl(]-’ﬂ) "6f0a = = .98 foa

Fig, 2.2 shows the variation of f; on the zero stream line,

To get more information about f;, we consider the case when

Yo is large. The stream lines are straight lines given by

ré¢ .
Yo = 5 sin2 @ (2.28)

df,

On a stream line a0 is obtained by using the second and third equations

of (2.22). This is

2
2. 2 _
gr.  fo@ [—- % E?g-l) sin?9 + % (r—rrll(l+2 cosze)]

% - (2.29)
(1-414 r?-1\ sin@
( r 413 r

Because r >>1 when y, > > 1, (2.29) simplifies to

df fa 9 . 9.9 1
Zh & - Z 2 2.2 2 . =
dp = -sine( 4 sin 0+ ) + 4 CO8 6) 3

o (7_50_57 (% sin% @ --2-57- sinZG)
0

On. integration this gives

9 _Ha . .
fi = 5% ——— ° (sin 40 -2sin20)
64 ( f-—z%)
= - 2 foo (cosesin3'9
8

L9 g c080 (2.30)

The above solution satisfies the boundary condition fi(co,7) = 0. We see

. . i
an increase of f; on the portion from 0 = 7 to > and a decrease from
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0 =-§ to 0. At downstream infinity, f; goes to zero as -:—3

The solution for arbitrary {, can be done only numerically and
ted, The sketch in Fig, 2.3 shows the expected
distribution of dust at downstream infinity, Here regions of positive f;
‘must exist to satisfy conservation of dust, It is observed that the sphere
does not catch any dust because the velocity of dust on the sphere is
Vo =4y = 0. There is only a redistribution of dust around the sphere,
The sketch shows a trajectory of dust near the axis, Such a particle is
deflected sideways as it goes around the sphere and it finally ends up in
a streamline with a larger {j,. This causes a loss of f; near the axis
and a gain farther away from the axis at downstream infinity.

The formula (2.20) for 4 and the formulas (2.25), (2.26), (2.27)
and (2.30) for f;(r,08) constitute the first order solutions. The solution

for f; is, however, incomplete and is known only for ¥y >>1 and for

Yo = 0.

HIGHER ORDER SOLUTIONS, )

It has been shown by Proudman and Pearson [3] that for the flow
of a uniform fluid about a sphere, the next term in the Stokes expansion
for ¢ is of order R?InR and the next term in the Oseen expansion for
¢' is unity., These results are true for the present case, also., These
results are obtained easily by using the asymptotic matching principle,

The second order Oseen equations (i.e, of order unity in R) are
the following

£, =0
'

1
u,=yv,

i+ V'l (45) =, V'pd + V' - (ig)uy' - V',
V'eul =0 (2.3
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The boundary conditions are that u,', v,' and p,' = 0 at infinity and
they match the Stokes solution near the sphere,

The next order Stokes equations (i.e. of order R2InR) are the

following

0 = -Vp, + Viu,
Veu, =0 -
f, = constant

u, =¥, ‘ (2.32)

The boundary conditions are that u, = 0 at r=1 and the solutions match
the Oseen expansion as r — o0, (2.32) are nothing but the set of simple
Stokes equations and the solution is a multiple of the zero order Stokes

solution, This is.
Y, = -1-% (3r2—3r + ;1) sin? @

The constant here has been chosen such that this term together‘ with the
next Stokes term (of order R2?) contains no term of order InR inmatching
the Oseen expansion [3].

The order unity Oseen equations are hard to solve and this has
not been attempted here,

The solution thus far can be summarized now, The Oseen stream

function
1]
L L - L 14+ l-cose'
¢'(r',e') _r 2 szm"-e . %R (+cos6 ) l-e 2 L+ )( )
(1+£,) i

+ O(R?) (2.33)

and the Stokes stream function
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W(r,0) = % (2r3-3r + —:—) sin?0 + R(1+f¢,){—3-3z(2rZ -3r4 ;1-) sinZ @

-2 (2r?-3r4l- —1+-1—-\ sm‘zecose1
32 ¢ r' ré’ y
+ —2= R2InR (2r2-3r+ <) sin0
160 r
+ O(R3) (2.34)

where '(r',0') = R2y(r,0), 6' =0 and r' = Rr, The dust concentration

is given by the expansions
f' = f, + R(0) + R%(0) + o(R?)

and

f=1f, + Rf (r,0) + RZInR(0) + O(R?) (2.35)

where f;(r,0) is given by the equations (2.25), (2.26), (2.27) and (2.30).
The velocity components are obtained by differentiating the stream
function i.e, by using the formulas (2.6) and (2.7). The Stokes expansion

for p is given by

3 ] (1+1,) 7
p(r,0) = - E(E C:Zs + 3 {9(zcos29-1) - £(3cos?8-1)

.3 1 9cos0
+ 32 (6cos?0-1) - 52 (3cos?6+1) - —%z'%'}

9¢( 3cosb
+75(- 2°2°) RInR + O(R) (2.36)

This expression differs from the corresponding expression of Kaplun
and Lagerstrom [4] by the factor (1' + f5) in the second term. The drag
coefficient for the flow of a uniform fiuid about a sphere given by ' -

Proudman and Pearson [3] is
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- 252 . 20 = 4 === R2 2

An observation of (2.36) and the expression (2,34) for (r,0) shows that

the drag coefficient in the present case is

- 242 . =08 — ~LR2 2

(2.37)
It is seen that the leading term for the drag is not influenced by
dust, In the limit R tending to zero, the gas and dust move together
and the whole behaves like a uniform fluid of density p(l+f,). But the
viscosity of the fluid is still n, the viscosity of the clean gas. This is
so because the effective viscosity of a suspension is given by the Einstein

formula [5]

n =no(1+'§-¢_+'~)

where ¢, the volume concentration is assumed to be zero in the present

case, .
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3, VISCOUS FLOW. R — 0, ¢ FIXED.

This is the limit when the particles are very massive, The non-
dimensional equations of motion are the set of equation (1.2) to (1.5) with
the boundary conditions given in Section 1. Expansions in R are con-

sidered as in Section 2, (This is not a physicallimit, a>plin practice. Page 90).

ZERO ORDER OSEEN SOLUTION,
This is quite simply

i
f = constant = f
oo
P;Ov = _Y.Oi =1 (3.1)

ZERO ORDER STOKES SOLUTION,

As in Section 2, the stream function
- 1 z 1\ cinzg '
Yo = 7 (Zr -3r + =) sin 0 (3.2)

and the corresponding velocity

ug = (1 }1-)1+ rz‘f v(f%)- (3.3)

where r? = x? + y2 + z2, The dust velocity and concentration are to be

found from the zero order Stokes equations'

g - Yo
Yo * V¥o =7 (3.4)
Vo (fox¥o) =0  (3.5)

We shall consider (3.4) and (3.5) presently,
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FIRST ORDER OSEEN SOLUTION,

The equations are

' =y,

i Vy,'(4f,') = -V'p,' + V2u,’ .

Vieuw,'=0

Ve (f'e, !+ £1) = 0 (3.6)
for which the solution is f;' = 0 and the stream function

The Oseen flow field is not influenced by the dust to this order even when
the dust particles are massive, (Refer to (2.14) on page 94.)

Further order solutions are hard to find,

Now we consider the equation (3.4) for v,. This is to be found
with thé U, given by (3.3). The equation (3.4) is in fact thev equation of
mo.tion in nondimensional form for a single dust particle moving in the
Stokes flow field. This equation can not be solved in closed form and
therefore some approximate solutioﬁs are obtained,

First we consider the case when ¢ >> 1., The particle‘trajectory
is then close to the straight line y = constant, z = constant and v, = i,

 Therefore Vo can be found from the linearized equation

or o
Yo t 0 5x¥oe = 1o . (3.8)
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The solution satisfying the boundary condition vy, — i at x— oo is

-x/o x

1
Yo = = o f ..1.1.0 (X',Y,Z) ex /0' dx' (3-9)
- 00
From (3.9) it is easily seen that
-x/oc x '
V'.‘Lo=e(r v u x/o-dx'

-0
and consequently, from (3.5), it follows that f, = constant = foo
Because v, also satisfies the condition of incompressibility, a

stream function for dust, viz qu may be defined by

v - 1 %
or ~ r?sin6 90
v e.1 %4
00 = r sinB® 9r
and (3.9) leads to
"x/U' '
by S [ Wy, /g
- Q00 ’
-x/c X
. 2 X'/O'
- f ( T rv3)(V +2 ) - dx!
@ (3.10)

where

2 = x'2 4 y2 4 z2,

On the plane of symmetry 2z=0 and with the substitution x = -w we get

w/o

¥? -
o 4 [n (2 «/1_+'_'Z+(1+w'2)f)

"W/ O 3w

Yy(w,y30) = =
The various integrals are as follows,

f 26 W/o aw' = 2¢



o
-trr! 1 1
f 1+3V'Zew/0dw' - 2l - %]
0
_(L_oLL1,
“\e 927 )

- [(1n2—10+ y) + :‘

where H, and Y, are the Struve and Bessel functions respectively.

v is the Euler's constant equal to 0.5772,

Qo - '
f 1 3 ew/o'dw'=1--1-+ oo
o (l+w'2)/2 o

Therefore

31 0:163
bg(0, o) = 3 - 22T 4+ == (3.12)

The capture cross section is defined by %Yéo where Yoo is the distance
from the axis at infinity of the last trajectory that hits the sphere. Yoo

for the by given in (3.12) is such that

R

3ln 0-163
ym2=1r(%—40_°-+ 0')‘

= cross section. The ratio of this cross section to the frontal area of

the sphere ( = ;rz_) is

£ =1-2i8e, 0:326 (3.13)
o o

Next we consider the case when ¢ < <1. Suppose v, is

expanded in the form
(1) )

Vo =Ug + 0¥g  +of yg 4 cee

Then the equation (3.4) leads to the set of equations
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!
<
)

1
e
o

<l
[
o

=ug - VV¥o + Yo

]
<
[~
1

1=

) M, 4,0, gu,

“Vo =49 ° V_Y.o(z +.Y.o(l)‘ V¥o u

etc.

(1)

It is seen immediately that v,

()

is zeroon r=1 because u,=0 there,
The next equation shows v, to be zero and so on, Thus vy,=0 on
the sphere in the region of validif:y of the expansion. On the other hand
for large ¢, the dust particles do strike the sphere, We therefore
expect a critical value of o to exist above which there is capture of
dust and below which there is no capture,

To explore this further, we consider the equation of motion for

the particles that travel on the axis. ILet v=vi and u =ui, Therefore

dv u-v
- o= = ——— or
dr o

dv _ 2vrd - (2v3 -3r241])
dr ~ 2ovr3

(3.14)

The boundary condition is that v=1 at r — . The point r=1 is a
singular point., The nature of this singularity is investigated now, Let
r=1+h, Then (3,14) becomes

3

dv _ 2v(l+h) - (2h3+ 3h?3)

dr =~ 3
2o0v(l+h)

(3.15)

and the singular point is now at v=0, h=0. A parameter t is intro-

duced to write the above in the form

3
%:mmm-wm“m)

dh

3
rri 2ov(l+h)
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It is seen that the tangents to the trajectories at the origin are the straight
lines v=0 and h=9¢v, Let h= tv., The equations in terms of { and v

are the following,

dv

5t = 2v(1+§v3)'- (3t2ve+ 213 v3)

L. 2o0egv] - G[chv)’ - (3¢%v + 20 "2’]

Retaining only the leading terms, they are’

dv _
dt—Zv

d
G202

which shows that the singular point ¢ = ¢, v=0 is a saddle point as
shown in Fig. 3.1. There are only two trajectories passing through this
point and they are given by {=o¢. Correspondingly, there are only
trajectories in the h,v plane tangential to the straight line h=¢v, Con-
sider the trajectories tangential to v=0, Let v=wh and the equations

in terms of w and h, retaining only the leading terms are

dw _ -
5 = 2w - 3h
"((ilh—t' = 20wh

Therefore the trajectories in the w,h plane are as shown in Fig, 3.2.
The corresponding picture in the v,h plane is as shown in Fig, .3.3.

Qualitatively there are three possibilities for the solution of (3.15)
satisfying the boundary condition v=1 at infinity. These are sketched
in Fig, 3.4 together with some neighboring trajectories for ¢ < o

> “crit,
3
The dotted line shows the solution v=u=(3h2+ 2h3)/2(1+h) which is
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appropriate to the case o =0.
The critical value of Copit WaS obtained by Langmuir and
a cylinder and a sphere for the case of viscous as well as ideal flow

around them, They solved the set of equations

dvX CDR
va dx =" (vx_ux) ’ 24
v C.R
Y o (v ooy ). 2
oV &y = (vY uy) >4
= _ _,
dt =~ X
dy _
dt vy
R 2 2 2 16
(R) = (g +(vy-uy) (3.16)

RU is the Reynolds number based on the diameter of the sphere and the
free stream velocity, CDR/ 24 would be equal to unity when the law of
force between the particle and fluid is the Stokes law. CD is taken at
the local Reynolds number formed from the felative Velocitj. We
observe here that v - Vv has been erroneously written down in these

rit

missing term in the first equation is zero on the axis. The second

equations. However, the calculation of O ri is correct because the

equation is identically zero in this case, The value of Tepit obtained by

Langmuir and Blodgett is 1.214 for the case of the sphere,
The plot of the efficiency of capture X as a function of ¢ is
shown in Fig. 3.5. The asymptotic relation (3.13) is drawn in dark line.

The dotted line passing through the value ¢ = 1,214 is due to the com-

crit

putations of Fonda and Herne, réferred to in the book by Richardson on
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page 31 [7]. The details of computations are not given in this book,

This result of Fonda and Herne seems to be the accepted result in the

totic result is satisfactory for o greater than 20. There do not seem
to be any experimental data on the capture of particles at low Reynolds

numbers with which a comparison can be made,
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FIG 3.4
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4, HIGH REYNOLDS NUMBER. o > > 1.

<t limi i is wh R tends to infini
The next limit to be considered is when R tends to infinity,

Veu=0
u-y
¥y Vy=—
V- (fv) =0 (4.1)

The boundary conditions are that u=v =1, f= foo’ P = p,, atupstream
infinity. We consider the limit ¢ - oo, f fixed, This is the limitwhen
the particles are very massive and to keep f fixed, their number density
tends to zero as ¢ tends to infinity, An expansion in powers of -(1)-_- is

carried out by writing

f=f0+-(-r-+ (4.2)_

etc. The equations to the various orders and their solutions are as

follows.

ZEROTH ORDER SOLUTION.

The equations are



V. (fo Xo) =0 - (4.3)

The solution is very simple, u, is the potential flow solution given by

g = Vo = V[(r+$)cose-,
Yo =i (4.4)

f= foo everywhere except in the wake where it is zero as sketched in

Fig.4.1. The pressure is given by the Bernoulli equation

. 1+ fa))

Po + 5(1 + fo)Eoz. = pm+ “_—2—"‘

FIRST ORDER SOLUTION.

The equations are
Yo - Vu, + 1, «Vu, = -Vp; - f5(uy - ¥o) (4.5)
Yo ¢ V¥ +¥; * V¥ =1, - ¥,  (4.6)
V-u, =0 (4.7)
Ve (fovy +£,¥,) =0 (4.8)

The boundary conditions are that all the first order quantities vanish at

infinity, We consider (4.6) first, Because v, =i and u, = V¢ ,

i Vv, =y -1, whose solution is
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P.
Y, = (4.9)
2r3

It is seen from (4.9) that V - v, = 0, Therefore from (4.8) we have
f, = constant = 0,

Because f;, is zero, the velocity v; in (4.9) can be obtained from a

stream function defined by

1 - 1 9 1
Vor + o ir . rZsin® 00 (q"od + o 4‘1d)
1, ___1_ 2 L
Voot V10 = ~ Tsind or (q’od*a"‘ld)
P 2 qin2
. ., 1d _r4sin“® _ ltcos®
i.e, ‘Pod - = > o (4.10)

The efficiency of capture can be calculated now (Fig.4.2). The point at
which the dust velocity is tangential to the sphere is given by
. :

X X
(+tgm) T =0

where r=1. i.e,

- -1, L
8, = cos " ( o

Therefore the distance from the axis at infinity of the grazing stream
line is given by

2
2 sin © 1+ 0
1 = 1 _ licos
2 Yo = q'd(l’e) 2 20

S T S |
2 20‘+§¢r—z
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THE GRAZING DUST-STREAM LINE
FIG 4.2
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The efficiency of capture is

z=1—%+—l— (4.11)

This will be plotted in the next section,
The solution of (4.5) and (4.7) to find u;, and p, with v, given
by (4.9) seems to be too difficult. We shall proceed to the case of

o <<1,
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5. HIGH REYNOLDS NUMBER, ¢ < <1, f<<1l,

irst the case of {f small of order o¢? 1is considered. In this
case, the inner expansion for f can be found to three terms. Later,
some comments are made about the nature of the solutions when f is of
order 1, ¢ or o2,

The equations of motion and boundary conditions are the same as

in (4.1). An expansion in powers of ¢ is considered in the form

W=Uo touy 4+

Y=YVg toy; + .-
P=Po +op; + o~
£=03f, + o4y 4+ o0+ (5.1)

The independent variables are r and 6,

THE ZEROTH ORDER SOLUTION,

The equations are

Yo+ Vuy = -Vpy

v (Xof:-;): 0

with boundary conditions u, = v, =i, f, =foo at infinity, The solution is

Yo =¥ = Vo = ¢[(r+-zi—z)cose:|

f; = constant = £
oo}

[ 90

1,2 .
Po + 28¢ =P+ (5.2)
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-Fhe-radial-and tangential-components of u, are

1
ur=<1-?) cosf

LIPS (1 + -2-11,-5) 8in0 (5.3)

THE FIRST ORDER SOLUTION.

The equations are

Yo - Vu, +u, + Vuy = -Vp, (5.4)

V-u =0 | (5.5)
Yo * V¥ =1y -y, (5.6)
Ve f33) +143)=0 (5.7)

with the boundary conditions u,, v,, p; and f; - 0 at o. The

solution is

u, =0
Py =0
From (5.6)
¥y = -4 - Vu, = - [(1-—) cos?0 + (H-Zr_,, sin G‘l (5.8)
From (5.7)
Uy + Vi +6 Vv, =0
i.e,

2
Uy

Bo - Vi, = £ V- (8o - Vi) = £ V2 -‘—) (5.9)
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On substituting for u,, (5.9) gives

1 1 .. n0fs 9. l+t2cos?@
) - (1 Zr3 s1n9-3-é—2f3 —F

This equation was obtained by Michael [8] and its solution on the axis
0 = 7 given by him is

2
27f3 ot 2rily 1 (x-1) 1 1 _1
fs = { (Z ) 61n[ r +r+1:l Tr’ 4r2} (5.11)

V3

On the sphere as r tends to unity, he found

£, — - -Z(Z-f3 { In(r-1)+ % cosz-g-+41nsin% - :—:;3 - l_rzﬁ + -lf} (5.12)

f, is seen to be singular on r=1 for all 8. Michael also computed the
distribution of f, on other stream lines near the sphere, At downstream
infinity, f; is positive on all stream lines and because the sphere is not
a source of dust, one suspects the presence of a dust free layer near the
sphere, Because this solution shows a singularity on the sphere, the
region near the sphere is examined afresh by considering the problem in

the inner variables defined by

6' =6

Primes denote the independent variables which are functions of x and
o' = 6.
The equations of motion in the inner variables are the following.,

u'  du’ u' . du' u' 2 | ‘| vt v ‘
r ro, 0 r _ 9-_l§&_f|{—l——1-'+-u} (5.13)

o 9x l+ox 00 4ox -~ o Ox
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1 1 ] t ]
u'r au'e N u'9 au'e_‘-u'ru'9 _ 1 8p'_f,{vr 8v9+ V' 8ve+vrv'e
o Ox l+ox 80 ltox =~ l+ox 80 o Ox  Il4ox 90 ' l4ox
(5.14)
1 1] 1 1]
i aur . i Bue 8ur + uecotﬂ -0 (5.15)
¢ 9x l+ox 006  l+ox l+ox *
] 2 | . 1
:111; av'r . v'e Bvr ) v'e _ u r vr (5.16)
o 0x l+gx 00 l+ox o *
1 ] 1] { - ]
Z'I 8ve+ ve i')veJ,_v'rve =u'e v9 | (5.17)
G O0x l+ox 06 I4ox o ‘
of' vt 2fivi f'v' cotO
L 3 o1 1 9 T e =
g Ox (f vr) + I+ox 086 + 4ox + H4ox =0 (5.18)

The boundary conditions are that the inner solutions match the outer

ones and satisfy the inner boundary conditions on r=1,

The outer solution u is expanded in inner variables to give

30xco080 - 6062x%cos8 + O(¢?)

[
i

3 . 3ox
ue -251n9+ >

sin® - 3¢2x2sin0® + O(c3) (5.19)

The inner solution is the same to this order because f' is of order o3.

i.e,

The dust velocity v' is found next, The leading order equations for V!
found from (5.16) and (5.17) are

av'or : ,
or 9x =-V'or (5.20)

ov'
or a;e - % 8in6 - v'9 - (5.21)

vi

v

it



128

From (5.20), v'or= 0 or -x+ function (). The outer solution for v is

¥=ugo - oug * Vu, + O(e?)

<
!

_ 1 1\ 3cos2@ _ 1 \ 3sin?@ } 2
(1' r3)cose - 0'{(1 - r3) rz' (1+ 21'3 y Zr] +O(0' )
(5.22)

<
i

-(1+3m)sine + £ { (1- ;%S-(H—Z%Z } 8in0cos8+ O(02) (5.23)
Expressed in inner variables, these give
v, = [3o-xcose -60%x%cos0 + 0(03):'
-0 [30:{ - 3c08%6 + O(0?) - - (%--%cx-l-Q(oﬂ) (é%@-x1%4¢x+0(cﬁ>)]
+ O(c?)
and

-_.(3_3 ind - 2gi 2
Vg = (Z zcrx)sme 4s.1n9c0590'+0(0')

There is no term of order unity in v"r. The solution of {5.20) and (5.21)

is therefore

Vg = - -g- sin® (5.24)

The order ¢ equations for v' are

~vi2 =uf - !
00 it T

s _..9; inZ 0 — - 7t ] - 2 [ )
i.e, 1 8in 0 = 3xcos® vlr vlr— (3xcose+ 2 5in 9) (5.25)
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and
ov!
_._.._0_9 =u! - x!
V' 38 - “i1e” Ve
: 9 - 3% . I v = (3% -9
i.e, 1 sinbcos0 = > 8in® vlevle- > 8in® 4s1n0cose)
(5.26)
The radial equation of order o? is
Ve, i
1 1 o o 1 ' 12 - ! -3yt
1r 9x “’oe 00 zvoevxe toxv 00 uzr Vor
and its solution is
v! = -6x*cosO -9x + 27 4in2e cos6 - -(szin"-e (5.27)
2r 4 4 :
The equation for the 8 component is
ov' ov! vt ov!
y 18 ! 16 ¢ 00 _ ¢ .00 R N
Vir oz FVoe 96 T Vie 36 *Voe 50 Tt Vir Voo =26 V26
and its solution is
_ P 27 . 27 2 s 2y s
V'ze = -3x 51n9+—‘-1—x51n9cose - —5-(2cos 0 - sin“0) sinbd (5.28)

Collecting these fogether, the solution y' which matches (5.22) and (5.23)

is
V'r = ¢ (3x<:os49+:(i;sin‘2 9) + o? (—6x2cose-9x+-427'17-sin2 OcosHO - 2;5 sin2 6)
+ Ofe3) (5.27)
3 . 3x . 9 .
] — m — —— - e
v 0="3 sin0O + 0’(2 vs1n9 4s1necose)

+ o2 (- 3x%3in@ + -;41 x8in6cosO - 2—ZcosZ 0 8in0 + *?'slsin3 9)

+ O(c?) (5.28)
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The dust concentration f' has an inner expansion given by
f'=62f% + o3lnof', + c*f'y + O(c?)

The equations for the various orders are obtained from (5.18) by sub-

stituting for v' given in (5.27) and (5.28). These are

5]

fy
)

of!
(3xcose + 2 gin? e) —=2 - 3 5ino =0 (5.29)

oW
D

4 0

of! of"
(3xcose + 2 sin? 9) —5;-5{ - % sin® -565 = -2- f'y (1+2 cosze) (5.31)

The above are first order partial differential equations and are

solved by the characteristic method. The equation for the characteristics

is
3xcosO + 3 sin2 @
dx _ 4
6" 3 .
-3 sin®
Let
x =y/sin?@
Then
dy _ _3 ... 3
a6 = sin> @
3
y = - % (co; 0 cosf + const)
or
3
x = - 2313129 . (C°§ ©  coso+ const) (5.32)

In the x,0 plane, the characteristics are as shown in Fig. 5.1, 0= 7

is the front stagnation point. The characteristic which passes through
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this has the constant equal to -2, f, is constant on a chafacteristic.
Because the sphere is not a source of dust, f} = 0 on all characteristics
below the one that passes through 0=7, the separation line, Above this
separation line, f% must match the outer solution (5.11). The outer

solution when expanded in x and 6 gives
f=0%f -2f, o4lng - 2f, chlnx+ -+
= 3 2 '3 C-2t0 X

Therefore f'y =f; = foo above the separation line and f'y = -9f,/2 above
the separation line, Below the separation line they are both zero.

For f's, on a characteristic given by (5.32)

df'S —_ 9 ] 2 3 °
g0 - 2f_;(l+2cos 9)/-Es1n9

which gives on integration

3, licos®
L] - ¥ - — —e
f'y = 3f3[ Zlnl-cos9+ 2cosG+a]

where @ is a constant on each characteristic, Therefore the solution

for f's is given by

fy = —3fm[— 3 1n Heos8, Zcose]+ F(¢)

2 l-cos@
where
. 3 fcos30
_ 2 2 (Los’ Y |
£ = xsin%0 + > ( 3 COS@)

On a characteristic £ = constant, The function F is found by matching

as follows, If F is chosen to be
-2 In(A+E)
2 0o

where A = constant, we get for large x,
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9 14+ cos® 1
ff, ~2f Inzt 3
2 @™ 1-cos6 A+ xsin29+-g- ——-——C°3s 9. cose)
.9 1+ cos9 1 .9 .4 8
-2 fcoln l1-cos® xsin?0 =~ 2 foohl‘h”.’1n 2

andon 6 =19, f% =- —3- foo Inx which matches (5,12). Therefore

. 9 (1+ cos®)
f'S - 6fmcose + zfmln (]_-coSG)(A‘*‘&)

where

, s
= xsin%0 + 3(cos"8 | cos0 (5.33)
2 3

On the separation line £ =1, £> 1 for the characteristics above the
separation line and § <1 for those below it. Therefore A + £ vanishes
on a characteristic above or below the separation line depending on

“"Whethet A'is less than or greater than -1, If A> -1, there will be
no singularity in the region of ini:erest, viz above the separation line,
‘However, the logarithmic singularity at the front stagnation point still
exists.

In the physical plane, the characteristics and the separation line
look like those sketched in Fig. 5.2, When o is small there is no
capture of dust, The centrifugal force on the dust particles deflects
them away from the sphere. The flux of dust near the stagnation point
also tends to zero because although the dust concentration goes to infinity
like logx, the dust velocity goes to zero linearly in x.

The constant A is to be found by making use of the conservation
of dust, That is, the flux of dust through a plane perpendicular to the
axis at down stream infinity should be equal to ¢3 %o times the area of

the plane, as the area tends to infinity., This can not be done in the
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present case because the outer solution for the dust concentration is not

known, The solutions (5.11) and (5.12) do not give any information of the

When f ~1, f is expanded in the form
f= fo + U'fl +0(0’Z)

and the equation for f, obtained as before, This is the same as (5.9).

i.e,
u?
Bo- VH =5V ()

This was numerically integrated by Michael to get the distribution of f,
near the sphere. It is found that f; increases as the sphere is
approached and is positive on all stream lines (of the gas) at infinity
downstream. The influence of f on u was not found because of the
extensive numerical work it would have involved, In this case the zeroth

order outer equations are

g *Vuy = -Vpy + £ v * Vv,

Veug =0

e

0 = XYo

V. (fo X,o) =

Therefore f, =constant = foo u, is again given by the potential in (5.2).
Po is merely changed by a factor (1+foo). The first order outer equations

are
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<
t
1
©

with u,, v,, p, and f, tending to zero at infinity. Only the first of
the above set is different now and the simple solution u; =0 and p,=0
is no longer true. Because f; can not be found, u; also can not be
found. The outer solution u expanded in inner variables suffers a
- change of order o. (equation (5.19)). So also does v . v is no
longer (3xcos®@ + Z— sin?8) as in (5.27). Similarly the equation for fY
-.«is.not (5.29), . The.inner solution for f' can not be found, The separation
line (if it exists) is also altered.

Similarly it is seen that if f=0f +oPf, + v, flaci 47 b
if £202f + 0% + o, flzo?f -2odIncf +? 4 -;  andif
£=0®f + a*fy + o, ' is givenby £ -2f otlnc + of £y 4. where
f's is given by (5.33). In all cé,ses, f'=0 inside the separation line,

The next section will be devoted to the case of o ~1 and f< <1,
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FIG 5.2
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6. HIGH REYNOLDS NUMBER., o ~ 1. f< <1

In this section t
gas flow field will be considered. The equations of motion in nondimen-

sional form in Cartesian coordinates in the meridional plane are

dv
—2X 2y -v
7 Tat x X
dv
O-dt =uy-vY
4 _
dt - 'x
dy _
dt_vy (6.1)

where t, the time is the independent variable, The velocity components

of the gas are given by

2

‘- 2x
1+ —1———7-
x 2(x2+y2)5 2
3
= - .2
YT T - e

The origin of the coordinate system is the centre of the sphere,

=1
1]

. The pointsu.«vi= 0, ,vy: 0, y=0, x=4+ or -1 are the two stationa.ry
points of the system of equations (6.1). Trajectories in the neighborhood

of the front stagnation point are now considered,

Let
x = -1-¢
y =0
vV =W
x x
v
Y= W
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The equations (6.1) linearized near the point (-1,0) become

feN fe ey )

d 1 0 0 0 1 n
at w i 3 0 - 0 w
x o o x
WY 0 -?:% 0 '%; WY
(6.3)

This is a matrix equation of the form

dz _
-a-E-Bz

Assuming z ~ ekt, Bz =kz and therefore the determinant |B-kI|=0,

The four roots are

~

-1+ v1-12¢ -1+ V1tb o  (6.4)
pn R S— .

k = ’ 2o

2

When ¢ < 1/12, there are three negative roots and one positive root,
When ¢ > 1/12, two are complex with negative real parts, In this case
there are three with negative real parts and one positive root. For all

o, the point §=0, n=0 is a saddle point. The four eigenvectors are

1
0

-1+41-12¢ Exp -1+41-12¢ .t
20 : 20 '

0 : ' | (6.5)
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20 2o

\1+\/1-20‘ Exp -1-+l1-12¢

0 ' (6.6)

0
1
Exp -14+4vlt6g
0 20
-1+ Jl+6 o ' '
' (6.7)
o .
1
Exp -1-4vlibo ¢
0 2o
-1 -Vltbo .
T 20 {6.8)

It is seen that (6.5) and (6.6) involve only £ and W {6.7) and (6.8)
involve only n and Wy' The eigenvector (6.7) is a growing exponential
whereas the rest of them are decaying. It can be seen that if the particle
has at t=0, the same velocity as the gas, it will never cross the axis
£=0 if ¢ is less than 1/12 and will do so otherwise. Thus ¢ = 1/12

is a critical value. The sphere will collect dust when o > 1/12 and will

not if ¢ <1/12, The existence of such a critical value is well known.
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G. I. Taylor first found such a critical value (= %) for the motion of
particles in the flow field near a two dimensional stagnation point, [9]

The trajectories are sketched in Fig, 6.1 for the two cases
o ; 1/12, in a manner consistent with the proper behavior at the station-
ary points, For o < 1/12, the picture is the same as that obtained in
Section 5, The trajectories inside the sphere are of no interest,

It would be of interest to get an idea of the efficiency of capture
for ¢ greater than 1/12. The asymptotic result for ¢ >>1 of Section
4 provides part of the answer. A very crude analysis of the case when
o is close to 1/12 is the followmg

(6 1) can be wrltten in the form

cGE - (1 —L—Z’%—)_o (6.9)

2(x%+ y?)
ey dy, ——3’5%7- =0 (6.10)
2(x°+vy%)
Consider the transformation to new coordinates z and defined by
2 2
1 _1 Z -
y =z | © (6.10a)

The coordinate n is constant on parabolas, with n=0 being the one
that touches the sphere at the stagnation point, (6.9) and (6.10) can be

written in terms of n and 2z and linearized to get

dz d
U#"+"£+3n=0

d?z dz

3 :
@z tag z2=0 (6.11)
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FIG 6.l
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The regions of small n and z, where this linearization is expected to
be reasonable is shown shaded in Fig, 6.2. These equations can be

- P __- .. 2 __ 2 _ 1 PR |1V 1. S
solved easily with the initial conditions

t=0, n =1 - .3
z =1 %%:O

Because the problem is linear, any other trajectory is obtained by

multiplying by suitable constants, The solution is

_ _1-6¢ e—t/Zo- . VlZo’-l t/Z(r cos yl2g-1 t (6.12)

S1I mer— > 2
4120-1 o o
(1+\/1+60') (1 w/1+60' )t
1+60' 1+ \/l+6(r

7 = (6.13)
w/1+6(r 2V1l+60

st+ e

=3
i

and the time 7 at which it hits n=0 is given by

V2ol _ Ji2e-1 (6.14)

tan 20 T 6o-1

Fig. 6.3 is a plot of tana vs, a = 7. The locus of the soiution
point of (6.14) moves on the curves as shown here, When ¢ = 1/12, a=,

As ¢ increases, @ decreases to zero., In particular, when ¢ is near

1/12,
tan\/lZU-l r o= Vi2o-1 o = 12o0-1
20 20 6o0-1
i.e.
. 2g 2om Pl

T = =
6o-1 Vizo-1 Vizo-1

From (6.13) z attime 7T is approximately
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FIG 6.2
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(-1 + VI+60) T

1+ Vlt6o  ViZe-1 (6.15)
2V1l+60

The efficiency of capture Z can be calculated if it is assumed that the
last trajectory to hit the sphere is the one with z=1, In fact, it will
always be less than z=1 as can be seen from the sketch 6.4, X is the

reciprocal of the square of z(7) in (6.15). Therefore

4 (1+60) “2m(Vl+60 -1
z = > exp
(1 + VIt 6o ) Vizo-1

(6.16)

The log-plot of £ vs, ¢ is shown in Fig. 6.5, The formula (6.16) for
o near 1/12 and the formula (4.11) for ¢ > >1 are shown here. The
dotted curve is the curve expected to be valid in the range in between.
Experimental data of Walton and Woolcock are also plotted here, (These
are given on page 129 in the book by Richardson [7] . These experiments
were done by allowing particles of methylene dye to impinge on a water
drop suspended by a glass capillary in a wind tunnel, The amount of dust
collected is measured by the intensity of coloration of the drop. The
Reynolds numbers for this data are in the range 300 to 900, The agree-

ment with this data seems to be satisfactory.
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LIST OF SYMBOLS USED IN PART IIb,

e
T

K 4 I<4 e W v g =

X T 3 € R N <

v 3 © M 9

Subscripts

0
oo
r,o

X,y
1,2,3...

prime

radius of the sphere

radius of a dust particle

mass concentration of dust

unit vector in the x direction

pressure

polar coordinate in the meridional plane
Reynolds number

velocity of gas

velocity of dust

velocity defined in Section 6

position vector

Cartesian coordinate

= y, in Section 6
= (r/ R; also =

stream function

Vvi12¢-1

2I- in (6.14)

parabolic coordinate defined in (6.10a)
viscosity

kinematic viscosity

particle parameter

efficiency of capture

angle

relaxation time

coordinate defined in Section 6

reference condition

at infinity

components along r and 0
components along x and vy

orders in an expansion

dimensional quantity

Oseen variables



147
REFERENCES

[1] Saffman, P, G, On the stability of laminar flow of a dusty
gas, Journal of Fluid Mechanics, Vol,13,
rt1, pp. 120-128, 1962,
[2] Milton Van Dyke Perturbation methods in Fluid Mechanics,
, Academic Press, New York, 1964, Chapter
VII. pp 149-165.

[3] Proudman, I., and Expansions at small Reynolds numbers for
Pearson, J. R, A, the flow past a sphere and a circular cylinder,
Jour, Fluid Mechanics 2, 237-262. (1957)

[4] Kaplun, S., and Asymptotic Expansions of Navier-Stokes
Lagerstrom, P, A. Solutions for Small Reynolds Numbers,
: J. Math, Mech., 6, 585-593, Sept. 1957

(5] Landau, L, D. and. Fluid Mechanics, Pergamon Press, 1959,
Lifshitz, E, M, p. 79

[6] Langmuir, I., and A mathematical investigation of water
Blodgett, K, B. droplet trajectories, Army Air Forces
Technical Report No. 5418, Feb, 1946,
Washington, D. C,

[7] Richardson, E, G, Aerodynamic capture of particles. Proc. of
a conference held at B,C.U.R. A,
Leatherhead, Surrey, 1960, Symposium
publications division, Pergamon Press,1960

[8] Michael, D, H, The steady motion of a sphere in a dusty gas,
J. Fluid Mech., (1968), Vol, 31, part1l,
pp. 175-192,

[9] Taylor, G. I. Notes on possible equipment and technique

. for experiments on icing on aircraft, A.R.C..
Technical Report R, & M. No., 2024,
- January, 1940,



