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ABSTRACT

Several theoretical models are developed to study generation
of nonlinear dispersive long waves by moving disturbances. All these
models belong to the same class as the original Boussinesq or KdV
model. The newly developed models now with external forcing func-
tions added to the KdV equation and the pair of coupled Boussinesq
equations, have been chosen for numerical investigations. A predictor-
corrector method is adopted to develop the numerical schemes em-
ployed here. In order to make the region of computation reasonably
small for the case with moving disturbances, a pseudo-moving frame
and the sufficiently transparent open boundary conditions are devised.
The numerically obtained surface elevations exhibit a series of
positive waves running ahead of the disturbance over a wide range of
transcritical speeds of the disturbance. The numerical results show
that, for speeds close to the critical value, the generation of such
waves appears to continue indefinitely. The numerically obtained
wave resistance coefficient is compared to the results given by linear
dispersive theory. Numerical solutions have been obtained using the
KdV and Boussinesq models with surface pressure and bottom bump
as forcing functions. Comparisons are made between these results
for various cases. Experiments were conducted for a two-dimension-
al bottom bump moving steadily in shallow water of a towing tank.
Experimental results so attained are compared with the numerical
solutions, and the agreement between them is good in terms of both
the magnitude and the phase of the waves for the range of parameters

used in the current study.
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1
I. INTRODUCTION

Since the famous experimental work of John Scott Russell
(1838, 1845), the interplay of nonlinear and dispersive effects in the
long wave theory has attracted many great minds in the history of
hydrodynamics. The controversy between Russell's observation that
the solitary waves maintain a permanent form and the prediction of
wave steepening by Airy wave theory was first resolved by Boussinesq
(1872), and independently by Rayleigh (1876). By restricting the
direction of the wave propagation to be unidirectional, Korteweg and
de Vries (1895) obtained what is known today as the Korteweg-de Vries
(KdV) equation. They also found the periodic solution of the stationary
KdV equation, which they named 'cnoidal waves'. Since the primary
concern of these investigators was to explain how long waves can
propagate without changing their form, these early works all dealt
with free waves. On the other hand, Kelvin (1886) studied the wave
generation by a moving object, either a surface pressure or 'a bed
inequality'. By reasoning based on the Airy wave theory, he argued
that ''whether the irregularity (of a bed) be an elevation or a depression,
a rising of level must travel upstream ---, this traveling of an eleva-
tion upstream must develop a bore'. He also showed that linear dis-
persive theory predicts an unbounded wave elevation as the speed of
the moving object approaches the critical speed from below. It may
seem puzzling that Kelvin did not further pursue to relate the
'traveling of an elevation upstream' to solitary and cnoidal waves,

which must have been known to him. This phenomenon of 'traveling
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of an elevation upstream' was encountered again by Thews and
Landweber (1935) during the ship model experiments in a towing tank
of shallow water. They made an excellent observation which unlike
Russell's report did not attract other researchers' attention. In dis-
cussing the assumption of a steady-state solution in wave problems
involving the radiation condition, Stoker (1952) pointed out that ''one
should rather formulate and solve an appropriate initial-value problem
and then find the solution of the steady-state problem by making a
passage to the limit in allowing the time to tend to infinity,'t Related
to this work we note that the starting point of the Kelvin's 1886 paper
was the assumption that the steady state exists. In discussing the up-
stream influence of a solid obstacle in a uniform stream, Benjamin
(1970) pointed out the necessity of the 'forward surge,' and assumed
'a uniform long wave that extends to a steadily increasing distance
ahead of the body (disturbance).! However, he used the results of
linear dispersive theory for further development of his theory in
reaching the conclusion and limited his discussion to the case of sub-
critical speeds (i. e, less than the long-wave limit in linear dispersive
theory).

Wu (1979) derived a pair of generalized Boussinesq equations
that govern three-dimensional nonlinear dispersive long waves pro-
duced by a moving surface pressure distribution and/or a floor motion
such as tsunami-genic ground motion. Wu & Wu (1983) solved the
generalized Boussinesq equations numerically and reported the

phenomena of 'runaway solitons,! which are generated by the surface
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disturbance moving with a constant transcritical velocity, and
emerging periodically to form a series of positive waves moving
ahead of the disturbance.

At the same time runaway solitons, or, as they were called by
Kelvin, the traveling of an elevation upstream, were rediscovered by
a group of researchers mostly working on ship model experiments in
a shallow towing tank, (Huang, Sibul & Wehausen 1982). The most
salient feature in these experiments is the formation of the two-
dimensional runaway solitons inside the towing tank, even though the
disturbance is a three-dimensional model of a ship.

The purpose of the present work is to study the generation of
nonlinear dispersive long waves by moving disturbances such as a
uniformly moving surface pressure and/or bottom bump. In this
thesis, we present several versions of the governing equations, all of
which belong to the same class as the original Boussinesq equations
or the KdV equation. The surface pressure and the bottom bump
appear in the same fashion in the KdV model, while the bottom bump
has an additional term for the Boussinesq model. Among the derived
equations, the inhomogeneous KdV equation and the pair of coupled
Boussinesq equations are chosen for numerical investigations. A
finite difference approximation is used to develop numerical methods
based on the scheme originally employed by Wu & Wu (1983). To deal
with the moving disturbance, a pseudo-moving frame and the open
boundary conditions are devised and successfully render the region of

computation reasonably small.
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Using the numerical method developed for the Boussinesq
model, the surface elevations and the wave resistance coefficient are
computed for a uniformly moving surface pressure. In contrast to the
results of linear dispersive theory, the numerically obtained surface
wave elevations exhibit a series of positive waves running ahead of the
disturbance for a wide range of speed of the disturbance. The numeri-
cal results seem to indicate that, for sufficiently strong disturbances
moving in a certain range of transcritical speeds, the generation of
such waves will continue indefinitely. The numerically obtained wave
resistance coefficient is averaged over time, and compared to the
results given by linear dispersive theory. Numerical solutions pre-
dicted by the KdV and by the Boussinesq models are compared for the
surface pressure and the bottom bump. In the Boussinesq model, the
surface pressure acts as a stronger disturbance than the bottom bump,
and the disturbance in the KdV model (which does not distinguish the
two cases) renders results between the two Boussinesq solutions.

Experiments are conducted for a two-dimensional bottom bump
moving uniformly in a shallow water tank. Experimental results are
compared with the numerical solutions rendered by both the Boussinesq
and the KdV models. The agreement between numerical solutions and
experimental data is surprisingly good in terms of both the magnitude
and the phase of the waves for the range of parameters used in the
current study. The difference between the results predicted by the
two models are about the same as that between the experimental data

and the results predicted by either of the two models.
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II. THEORY OF GENERATION OF NONLINEAR

DISPERSIVE LONG WAVES

The Boussinesq equations and the KdV equation have been used
to describe nonlinear dispersive long gravity waves in one horizontal
dimension of a constant water depth without any external forcing
agency. DBoth models have the same order of approximation; however,
the KdV equation has a disadvantage in that it allows waves to move only
in one direction. Nevertheless, the KdV equation has been extensively
used and investigated, because it is simpler and it can be solved
exactly for various cases under a certain type of initial conditions.

In this chapter, the inhomogeneous Boussinesq and KdV equa-
tions will be derived for the case when a moving surface pressure is
present and/or a bottom irregularity exists which may vary in space

and time.

2.1 The Basic Equations

The fluid is assumed inviscid and incompressible with a con-
stant density p. Surface tension is neglected, and the wave breaking
is not taken into account. For simplicity in the derivation, we shall
consider gravity waves propagating in one horizontal dimension.

The undisturbed initial free surface at time t = 0 is a hori-

zontal plane at z = 0 (Fig. 2.1). The bottom topography is given by
z = —h(X, t) = -hO + b(X; t) ’ (2' ]-)

where ho is the characteristic water depth, and b(x, t) the deviation,
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which includes a moving bottom bump. The perturbed free surface
elevation is denoted by {(x,t).

The fluid is assumed at rest for t < 0. The fluid motion gener-
ated by some extraneous forcing agency will be irrotational, in accord-
ance with Helmholtz's vorticity theorem. Therefore a velocity potential

¢(x, z,t) exists such that
Vé = u(xz,t)= (uw) , (2.2)

where u is the velocity vector, and V = L( )X,( )Z]. Here the sub-
scripts x,z and t stand for partial differentiation.

The equation of continuity becomes the Laplace equation

V.u=24a¢(xzt) =0, for -0 <x< o, -h(x,t)<z<{(x,t).

(2.3)

The boundary conditions for ¢(x, z,t) are:
on the free surface z = {(x,t);
1. the kinematic boundary condition,

Loto b -9, =0, (2. 4)
2. the dynamic boundary condition,

b+22 4 X6 24 624 gs =0 (2.5)

t p 2'7x zZ g ’ )

on the bottom 2z = -h(x, t);
3. the kinematic boundary condition,

bt+¢xbx-¢z =0, (2.6)

where Py = po(x, t) is a prescribed distribution of pressure on the
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free surface, and g is the gravitational acceleration.

The initial conditions at t = 0 are:
¢(x,z,0)= 0 , (2. 7a)

t(x,0) = 0 . (2. 7b)

It is desirable to work with the following dimensionless

variables:
xt = x/\, (2% 05, 0% b%) = (z,0,h,b)/h, t5=c t/n
(2.8)
¢>i< = (b/co)\_ s (Fn’ u*, W:}:) = (U’ u, W)/CO’ po = po/pgho s

where N\ 1is the characteristic wavelength, and U the speed of the
moving disturbance, and <, the characteristic critical speed defined

as

¢ = (gho)l/z. (2. 9)

In terms of the dimensionless variables, with the superscript*
omitted for brevity, the initial boundary value problem for ¢(x, z, t)
becomes:

the equation of continuity,

b .t B9, =0 for -ltb(xt) < z <ilxt) , (2.10)

the kinematic free surface boundary condition,

L+l -BTTe = 0 on z=tlxt), (2.11)
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the dynamic free surface boundary condition,

1,,2 -1,2

—— = - . 2
¢t+2(¢x+ﬁ ¢Z)+§+po 0 on z=1¢(xt) , (2.12)

the kinematic bottom boundary condition,

-1

bt+ (bxbx-ﬁ ¢ =0 on z-=-1+Db(xt), (2.13)

V4

the initial conditions,

¢(x,2z,0) = 0 , (2. 14a)

£(x,0)= 0 , (2. 14b)
where the dimensionless parameter P is defined as
2
B = (ho/)\) . (2.15)

If we denote the characteristic wave amplitude as a, it is

obvious that

t(x,t) = Ole) , (2. 16)

where

o = aL/h0 . (2.17)

From the dynamic free surface condition, eq. (2.12), it also

follows that

¢(x,z,t) = O(ar) . (2.18)

The dimensionless parameter ® measures nonlinear effects
while B indicates the importance of dispersive effects. Both of them
are assumed small, however, as shown by Ursell (1953); their ratio

determines whether nonlinear or dispersive effects dominate the
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wave phenomena. This ratio, called the Ursell number Ur, is de-
fined as

Ur = a/f . (2.19)

In the present study, we are primarily interested in the case
when

Ur = O(1) , (2.20)

which implies that nonlinear and dispersive effects are of equal

importance.

2.2 The Inhomogeneous Boussinesq Equations
In analogy with Rayleigh's (1876) analysis for the homogeneous
problem (the case of constant water depth without external forcing), the

following asymptotic expansion for ¢@(x,z,t) is assumed

2 2 4
bz, 0) =y BOFEL, LB LRl
(2.21)
+BF (%, 2,1) + BOF,(x,2,8) + ...
where
$(x,t) = Oa) , (2.22)
F.(x,2t = O@) , i=1,23, .... (2.23)

A solution of the form (2.21) will satisfy Laplace eq. (2.10)
everywhere in the fluid, provided

F =0, (2. 24a)

1zz

FZzz = ’lex , (2. 24Db)
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Under the further assumption that
b(x,t) = O(a) , (2.25)

the bottom boundary condition, (2.13), requires that

Flz = bt , (2.26a)

szzz quXX + quJX - bFlzz’ on z=-1, (2.26b)

Integrating eqs. (2.24) and applying the boundary conditions (2. 26)

gives

Fl(x,z,t) = zbt+f1(x,t) , (2.27a)

Fyx,2,t) = ﬁ'lz(quXX by )+b |

(2.27b)

z
zflxx(l+ E) + fZ(X, t)

The arbitrary functions fl(x, t), fz(x, t) can be absorbed into y(x, t)

by letting
1
P, t) = bix, t) + B+ ﬁ (£ +1)
XX
Now dropping the ' and using the new { in (2.21), the expansion of

the velocity potential satisfying the equation of continuity and the

bottom boundary condition can be written as

2 4
QS(X,Zt)‘Uy Eﬁl'*'z—_ +§..._g"_iﬂ.¢ +

XXXX
(2.28)
2.z z3 3
Bz(bt + b\j}xx-l' bx\Jle) + B (E - F)btxx + O(ap™) .
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This expansion contains only one unknown function (x,t), and the
z-dependence is completely determined up to the highest-order terms
retained. We note that in the absence of external disturbances, the
terms with Fi' s in eq. (2.21) all vanish and the expansion (2.21)
reduces to Rayleigh's form.

The boundary conditions on the free surface are essentially
nonlinear as the location of the free surface is a part of the solution.

With the assumption

p (%, t) = O@) , (2.29)

substitution of eq. (2.28) into eqs. (2.11) and (2. 12) results in

(t,- b+ [(1-b+ L) ] ~B(F 4 +5b_)+HOTS =0,
(2.30)
btttz ei-8y  +p +HOTS =0 , (2.31)

where HOTS stands for O(azﬁ, aﬁz). These two equations along
with the initial conditions constitute the basic system for determining
$(x,t) and {(x,t). The inhomogeneous Boussinesq equations are
derived by replacing ¢ (x,t) with the layer mean velocity potential
f(x, t) defined as

t(x, t)
f&x)=ﬂ-b+gflg é(x, z, t)dz . (2.32)
-1+b(x, t)

From this and (2. 28) we deduce the relations between Y (x,t)

and f(x,t) as
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£x,8) = (6 D-B(E b+ = b,)+O(p?) (2.33a)
_ 1 1 2
Yo D= £l )+ BEE_+3b)+0(ap?) . (2.33b)

From eqgs. (2.30), (2.31) and (2.33Db), the inhomogeneous

Boussinesq equations are found

(¢, - b,) + [(1-b+ g)fx]X + HOTS = 0 , (2.34)

1.2 8
fr Lt - Lt

B -
xt TPt 5 B, + HOTS = 0. (2.35)

A similar set of equations was obtained by Wu (1979) under the less
restrictive assumption that bX = O(1). Wu's equations reduce to
(2.34, 2.35) when b is taken O(@), as in the present development.
The two equations (2.34, 2.35) can be combined by eliminating
{(x, t) to yield a single fourth«order partial differential equation for
f(x,t) as
ftt_ fxx + fofxt + ftfxx - g fxxtt + HOTS =
(2.36)

This combined inhomogeneous Boussinesq equation shows some
interesting features. The surface pressure appears to leading order
in the same manner as the bottom disturbance. There is, however,

an additional term at second order for the bottom disturbance which

is absent for the surface pressure. This suggests that whenever the
disturbances are small a surface pressure may produce a very similar

solution as a bottom bump if both disturbances are prescribed by the
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same function. As the disturbance becomes larger, the bttt term in
(2.36) will no doubt make a contribution and some differences between
the location and type of disturbances will become apparent.

Lepelletier (1981) and Schember (1982) obtained a similar expression

under the same assumption as Wu (1979), and used it in their numerical

computation.

2.3 The Inhomogeneous KdV Equation

For the homogeneous case, the KdV equation can be derived
from the Boussinesci equations by restricting the direction of the wave
propagation, as shown by Whitham (1974). To derive the inhomogeneous

KdV equation, the additional assumptions that

p (% t) = O@p) , (2.37)

b(x,t) = O(ap) , (2.38)

are necessary. Since these are more restrictive than the assumptions
in the previous section, the original set of eqs. (2.28, 2.30, 2.31,
2.33, 2.34, 2.35, 2.36) all remain valid, if the terms of the same
order as the neglected are neglected for consistency. For later use,

we rewrite some of them below:

the expansion of the velocity potential,

2 2. 4
$(x,2,t) = ¢ - E%f—z)—qJX; 9——%{—2—)—41 +pzb, + O(ap?)

’

(2.39)
the relations between y(x,t) and f(x,t) ,
f(x, 1) = U (%, t) - 2u__+ O(@p?) (2. 40a)
24 i 6 XX ’ .
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- B 2
the pair of equations for f(x,t) and §(x,t) ,

(¢, -b)+ 1 +2)] +HOTS=0 , (2. 41)

£, +§,+-—f Ef  + p_+HOTS= 0

3 , (2. 42)

the combined fourth order partial differential equation for
f(x, t),

B8 -
£ - f F2Lf Hff -Lf  +HOTS=-(p_+D), . (2.43)

It is useful to introduce the layer mean horizontal velocity
v(x,t) defined as

L(x,t)
vz, t)= (1 -b+¢)" " 5 0, (%, 7, )z . (2. 44)
-14+b(x, t)

Thus, the relation between v(x,t) and fx(x, t) becomes
vix, t) = fx(x, t) + HOTS . (2. 45)

If we replace f_ by v in eq. (2.41l) and in the x-differentiated

version of eq. (2.42), we have

(& - b) + [(1+ _(,)v] + HOTS = 0 , (2. 46)
_E -
v, t ;x TV s 3 Vet T Pox + HOTS = 0 . (2.47)

The lowest-order approximation to these gives

§t+VX: 0 and vt+§,x-—- o . (2. 48)
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If the eqs. (2.37, 2.38) had not been assumed, we should have

obtained

§t+u = b and u, + ?;x = “Pox (2. 49)

which is a system of inhomogeneous linear nondispersive long-wave

equations. Eliminating u gives

Cet " 5xx ™ Poxx T Pyt

A solution of this for a uniformly moving disturbance such that

p, = p(x-tFn) and b = b(x - tFn)

is given by

(Fn'2 - 1)-1(po+ Fnzb), for Fn#1l ,
not defined, for Fn = 1 ,

as can be easily proved by back substitution (see Lamb (1932)). We
may therefore conclude that the forcing disturbance P, and b must
be of higher order than the leading terms because otherwise no bounded

solution exists at Fn = 1,

If we restrict ourselves to a wave moving to the right, a
solution of eq. (2. 48) is
v==8, (2.50)

§,t+t_,X= 0 . (2.51)

Then, we look for the next-order approximation of the form

v = t +aC+8D , (2.52)
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where C and D are O(o, B). Substituting eq. (2.52) into eqs. (2. 46,

2.47) we get
((.,t + t_.X) + (zggx - bt + aCX) + E)DX + HOTS =0, (2.53)

1 —
G, te )+ gL +p t+taC)+pMDd -3t J)+HOTS=0.
(2.54)
The eq. (2.51) implies that we may replace the t derivatives

with the minus x derivatives for the terms of o(c, 3); thus, eqgs.

(2.53, 2.54) are consistent if

__1l,2.1
oaC = -4C +-2-(po- b) , (2. 55)
D = 1 L (2.56)
- 6 XX - -
Hence we have
_ 1,2 B 1
vix, t) = 1;—4§, +62; +2(po-b)+HOTS, (2.57)

gora+d o +By v mOTS= -2 (p +b). (2.58)

oxX

Equation (2. 58) is called the inhomogeneous KdV equation,
which implies that under the more restrictive assumptions (2.37,
2.38) a surface pressure and a bottom bump of equal functional
distribution will produce the same wave field. Akylas (1984) and
Cole (1985) derived a similar equation for a similar problem, however,
with the delta function on the right-hand side. The KdV model pre-

sented here is an approximation uniformly valid in time t and in the



17
entire region of x for the forced motion, while both Akylas and Cole

derived it as an equation valid only for their outer problem.

2.4 Wave Resistance
A disturbance moving through an inviscid fluid having a free
surface will experience a resistance due to the generation of waves.
This wave resistance can be obtained in various ways, and here the
work-energy principle is implemented for the entire fluid domain. We
shall use dimensional quantities until the final results are obtained.
The energy density e(x, z,t) of the fluid is defined as

2
o

e(x, z,t) = > + gz . (2.59)

The time rate of change of the total energy E(t) in the entire fluid

domain S(t) is

dE/dt = (d/dt)g e(x, z, t)pdS =S\ (de/dt)pdS . (2. 60)
S(t) S(t)

To compute de/dt, we use the Euler equation

du/dt = - V(p/p + gz) , (2.61)
and find

p(de/dt) = -u -Vp = - V- (pu) , (2.62)
where the equation of continuity, V . u = 0, has been used for the

last equality. Thus we have
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dE/dt

-( V- (pu)dS
“5(t)

o0
-S\ de\ [(pu)X + (pw)z]dZ (2. 63)

-§ [5\ (pu)dz]_dx+ {[p (uf_-w)] _g-[p(ub -wl, .

- 00 - 00

The first integral in the last expression vanishes. Hence the
kinematic boundary conditions on the free surface and on the bottom,

eqs. (2.4) and (2. 6), give

0]
dE/dt = - g (p Ly = Ppb)dx (2. 64)

-0

where Py is the pressure at the bottom. The same result was also
derived by Wu (1979). For a moving disturbance of finite length, the
integrand vanishes except over the length L of the disturbance.

For a disturbance moving uniformly to the left with the velocity

U, we define a moving reference frame (x', z', t') by
x'=x+Ut, z'=2, t'=t¢t . (2. 65)

For a surface pressure and a bottom bump dE/dt can be rewritten as

dE/dt = - UY (p (x! )é S\(p ¢ ,)dx! (2. 66)
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dE/dt = Uy[pb(x',t')bx,(x‘)]dx' , (2.67)
L
respectively.
By the work-energy principle dE/dt must be equal to the work
done by the moving disturbance. If the wave resistance is denoted by
R(t), we must have

dE/dt = UR+ B , (2.68)

where B = B(t) represents the rate of the work done due to the
vertical wave motion underneath the disturbance.

For a surface pressure, if there exists a steady-state solution,
then the second integral vanishes, and so does B because there is no
vertical motion of the fluid with respect to the moving frame. In
general, however, B is nonzero. The wave resistance and B can

be identified from (2. 66)

R = -y (poéx,)dx' s (2.69)
L

B = -y (poét,)dx' . (2. 70)
L

For a bottom bump B is identically zero, and the wave

resistance is given by

R :5\ (ppb,)dx' . (2. 71)
L
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The coefficient of the wave resistance is defined as

2
Cg = R/pgh” . (2. 72)

Then eqgs. (2.67, 2.71) give CR for each case in terms of the di-

mensionless variables as follows:

for a surface pressure,

CR = -S\ (poéx.)dx' H (2.73)
L
for a bottom bump,

CR = y (pbbx,)dx' , (2. 74)
L

where L' = L/\, and pb*: pb/ pgh ~ and the superscript * is

omitted. Py is obtained by the Bernoulli's equation applied at the

bottom

py = 1-b-¢t+0(aﬁ) . (2. 75)

In the absence of surface pressure, the Bernoulli's equation applied to

the free surface gives

by = -¢{ + O(ap) . (2.76)
Combining (2. 75, 2.76), we obtain

pp, = 1-b+i+0O(af) . (2.77)

For the KdV model b is neglected for consistency.
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III. NUMERICAL METHODS

In the previous chapter we derived several versions of equiva-
lent model equations. They all belong to the same class as the origi-
nal Boussinesq model and in principle any of them can be used to study
the propagation of nonlinear dispersive long waves generated by
moving disturbances. In this chapter we choose for numerical inves-
tigations the inhomogeneous Boussinesq equations (2.34, 2.35) and the
inhomogeneous KdV equation (2.58), for which we will use a finite
difference approximation to develop numerical methods based upon the
scheme employed by Wu & Wu (1983).

Once the governing equations are derived, they can be re-
written in terms of the dimensional variables. Now for a moving
disturbance spanning over a finite length, this length L can be used
in place of X in nondimensionalization. Having done so, we obtain
the same equations in dimensionless form as before but with the new

definition of x*, t*, ¢* and P as follows:

)
t

x/L, t*= cot/L, ok = ¢/ c, L ,
(3.1)

w
t

2
(B, /L)"

where the quantities on the right-hand side are dimensional. We
also introduce another dimensionless parameter ¢ and time T
defined as

e = hO/L , (3. 2a)

e
3¢
t

Cot/ho = t¥kfe . (3.2b)
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Here and in the sequel, the asterisk * will be omitted for brevity.

3.1 The Inhomogeneous KdV Equation
From eqs. (2.58) and (2. 14b), the inhomogeneous KdV equation

along with the initial condition is given by

rta+do +8y  =.a, (3.3)
LE=0 at t= 0 , (3.4)

where the +(-) sign is taken for a disturbance moving to the right(left),

and

d(x, t) = %(po-l-b)x . (3.5)

For the reason of numerical stability, as shown by Whitham
(1974), we replace the dispersion term ¢ with ir’xxt (+, left-
going; -, right-going) in (3.3), by invoking the lowest order approxi-

mation. Thus the KdV equation becomes
3
-+, - =a, (3.6)

for a disturbance moving to the left, which we shall consider through-
out this study.

Equation (3. 6) will be approximated by a finite difference
equation. In discretization the forward difference is used for the
time derivatives and the central difference is used for the spatial
derivatives. The resulting difference equation is solved in a finite
spatial domain, X, < x< XN which is called a window. We

denote the uniform grid size in space by 4&x. Then the number of
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grid points is N + 1, where

N = -XO)/AX . (3.7)

(XN

The uniform grid size in time is denoted by At. For any

function Q(x,t), we adopt the following notation

Q7 = Qx,+ idx, jAt) for i=[0,N], j=[0,«), (3.8)

L 0

and

=)o) o)t (3.9)

where Qj is a (N-1l)-dimensional column vector, and the superscript
T stands for the transpose.

For computational reasons, it is desirable to have a reasonably
small window size. Since the disturbance is moving, it will eventually
hit the boundary. To prevent this, we introduce a pseudo-moving
frame, which moves in the direction of the motion of the disturbance.

A definition sketch is given in Fig. 3. 1.

To advance in time, a predictor-corrector method is employed
without iteration at the corrector stage. The local truncation error is
of O(AxZ,AtZ).

For the predictor vector n we have:
-y A2y -y T

- j J_ j j ]
ve i1 + (1 + Zy)g.l v& i1 + At(di + q; )

for i=[1,N-1}], j=[0,K-1] , (3.10)

where KAt is the final time level and
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Bleaxs)™ ! | (3.11)

<
I

By . 3.12)

-1 3, j
-(2Ax) (1 + > gi ) & i+1 §’i_-l

Equation (3.10) is implicit, as we have to solve a set of simul-

taneous equations at each time level. In matrix form we have

n=tdrata s g ), (3.13)
where
— -
1+ 2y -y 0 0
-y IL+2y -y
A = (3.14)

-y 1+ 2y -y
0 0 -y 1+ 2y ,

= b2
= 1'10":0: 1_1 » (3.15)

i
Z
]

S
ﬂN éer

A is a constant tridiagonal matrix of the dimension (N-1),
which is strictly diagonally dominant.

The vector rj is determined by the boundary conditions im-
posed on the artificial boundaries at i = 0 and N. These boundary

conditions are called open or transparent boundary conditions, because

they are intended to permit the passage of a wave through the boundaries.
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To obtain them, we use

L, = £L_ (3. 16)

X

and the Taylor series expansion up to the second order. The sign in
eq. {(3.16) is taken so that the waves must leave the window. Hence,

the open boundary conditions at i = 0, N are

. . . 2 . . .
ng=ti v -the )it} (3.17)

. . .2 . . .
_ N j Web_ o J_ j J
MINTENaT P2 B m AN T B 2y T ENL)
(3.18)
where

_ At
6 = (Ax,- 1) . (3.19)
The corrector vector §J+1 is given in matrix form by:
R R TN B L N CUR I o) I E N1y
where the elements of the vector s are

s; = -@ax)T 1+ S - ) 3-21)

Equation (3. 20) is also implicit, and we use the same open boundary
conditions for the corrector; i.e.,

1 _ 1

o

The performance of the open boundary conditions is related to

the role of the pseudo-moving frame. If we choose At and Ax such
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that

J = Ax/ AtFn (3.23)

is an integer (J =2,3,3, ...), then the disturbance travels Ax in J
time steps. If we shift the window every J time steps and if we look
at the solution only when the window is shifted, the position of the
disturbance in the window does not change. At the time of window
shifting, a new grid point emerges into view from the upstream side

of the window while an old grid point disappears at the downstream
side as it moves behind the window. In the interim time levels, while
the window remains fixed as well as during window shifting, the
mechanical laws are referred to the fluid frame throughout. Thus,
only the region of computation undergoes stepwise changes, hence the
name pseudo-moving frame. As the shift is done in the direction of
the motion of the disturbance, the downstream boundary always chases
any waves reflected from this boundary due to the imperfectness of the
open boundary condition. If we assume the reflected waves are small
in magnitude, they must propagate with a speed almost equal to the
critical speed. Therefore, for the moving disturbances with Fr = 1.0,
the reflected waves are limited to the neighborhood of the downstream
boundary. The upstream boundary is taken far enough away from the
forerunning waves that no waves ever encounter the boundary.

To provide the new upstream boundary value §_1j+l when the

window is shifted, we use the same principle used to get the open

boundary condition, namely,

. . S
ty = vz 6Nt v e-nie)- 2 ey o
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With the initial condition
tL. =0, for i=[0,N], (3.25)

the formalism of our numerical procedure is now complete.

We need to know the stability and the convergence of the
numerical procedure described so far. There are two ways to ex-
amine these aspects of a numerical procedure. One way is to prove
the stability and the convergence of the scheme analytically. The
other way is to directly run the numerical code for well-chosen test
cases. For nonlinear problems, such analyses are generally compli-
cated and linearized analysis often fails to predict nonlinear instability.
Therefore, we choose the latter method to investigate the numerical
scheme.

To test the stability and the convergence of the code, we first
consider the homogeneous case, d = 0, without shifting the window.
Equation (3. 6) with d = 0 has a family of exact solutions of permanent
form, among which we take a solitary wave solution as an initial
condition. We obtain the solitary wave solution by substituting the
ansatz

C(x + Vi) = aosechz [K(x + Vt)] , (3.26)

into the homogeneous version of eq. (3.6) to determine V and K in
terms of a_. We find

a

vV = 1+—2-9 , (3.27)
K = [3a_/26(2 + ao)]l/z. (3. 28)
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2 . . . .
We note that P =€ is just a scaling ratio of the x- and z-axis in
this case.
If x =0 is taken as the position of the initial solitary wave

peak, the discretized initial condition is

Qio = ag sech2 [KAax(i - Ip)] for i=[0,N] , (3.29)

where the eq. (3.28) is used for K and

Ip = -xO/Ax

The numerical solution for a = 0.3 is shown in Fig. 3.2, for which
we used Xq = -20, XN = 10, Ax = 0.1, K= 200, At = 0.1 and

¢ = 0.5. The amplification factor A(t), defined as

A=max. (peak value-initial amplitude)/(initial amplitude) ,

* (3.30)
is about 1% at K = 160. The speed of propagation is within 1% of the
value predicted by eq. (3.27).

To examine the accuracy of the imposed open boundary condi-
tion (3.16), we allowed the above solitary wave to run twice as long,
and thus pass through the left boundary, and compared the result to
another computation differing only in that a larger window was used
(XO = -40). The effect of the boundary condition is then sought by
taking the difference between the two results, as shown in Fig. 3. 3.
Before the main portion of the solitary wave reaches the boundary
(t < 16) the difference is negligible. For t > 16, the maximum

difference is about 1 % of the initial solitary wave amplitude.
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Further refinement of the boundary condition can be achieved

if we use the relation between V and ag and
Et = i’_VEX ’ (3.31)

instead of eq. (3.16). The result with this minor modification is even
more striking with the maximum difference being less than 0.1 % of
the initial wave amplitude.

To determine the proper grid size Ax and At, various values
were tested. It is clear that smaller grid éizes yield better results;
however, very small grids will consume excessive computation time,
and we sought intermediate grid sizes to give accurate results with
economic computation time.

For the case of the homogeneous problem, since a solitary
wave moves with a supercritical speed, it is quite safe to have
Ax = At. We show in Table 3.1 the comparison of the amplification
factor A(t) for Ax = At equalto 0.05 and 0.1 up to K = 800. At
the final time level A= 0.6 and 4.4 % for Ax = 0,05 and 0.1,
respectively. Considering that the computation time is four times
longer if the grid size is reduced by half, we accepted the error with
Ax = 0.1 for K < 1000.

For the case of the inhomogeneous problem, J, eqgs. (3.23),

is chosen so that

JFn = — = 2 , (3.32)



30

and thus renders At about a half of Ax. Although our numerical
scheme is implicit, for convergence it is generally believed safe to
keep the CFL (Courant-Friedrichs-Lewy) condition with a margin to
account for possible departures due to the effects of the nonlinearity.
We obtained satisfactory results for Ax = 0.2 and At determined
by eq. (3.32) and used these values for all the results presented in
this thesis.

The VAX 11/780 digital computer in the Booth Computing Center
of Caltech was used for all the computations. A typical case, running

for K = 1000, used about 120 seconds of CPU time.

3.2 The Inhomogeneous Boussinesq Equations

The system of coupled eqs. (2.34, 2.35) is more preferable
for numerical computation than the combined eq. (2.36), since we
should use a higher-order implicit scheme for the latter, if a reason-
able size of grids is to be used (see Schember (1982)). On the other
hand, for the former we can devise a mixed explicit-implicit method,
which drastically reduces the computation efforts.

From eqgs. (2.34, 2.35) and (2. 14), the inhomogeneous
Boussinesq equations along with the homogeneous initial conditions

are

gt+[(1—b+t;,)fx]X = b, , (3.33)
1.2 _ B
ft+t;+§-fX -g-fxxt—-po_zbtt , (3.34)

{L = 0 and f = 0 at t = 0 . (3.35)
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Discretizing these eqs. (3.33, 3.34, 3.35), we adopt the same
principles and notations as in the previous section.

We denote the predictor vectors as 7, y for {,f, respectively,

and get
=¢J + atG) (3.36)
755 i’ :
-0y, 1t (1 + Zcr)y.1 =0y <
j j j J j
-ofi_l + (1 + 20)fi - 0fi+1 + At(Pi + Z.1 ), (3.37)
for i= [1,N-1], j=[0,K-1],
where
s =pBax)" !, (3.38)
and the elements of the vectors GJ, P) and Z) are
i b _AL"21 i d j o J
C—.1 = bti Ax (1 b.1 +L.1 )(fi+1 Zfi + fi-l )
(3.39)
-1 J -1 J j iog Jd
i _ J_By
Pro= =Poi -2 Py (3. 40)
Jo_ j 2,-1 j i\2
Z.l = —{,.1 - (8Ax7) (£i+1 - fi-l ). (3. 41)

Equation (3.36) is explicit, as the right-hand side is given in terms
of known quantities at the j-th time level. Equation (3.37) is implicit
and has exactly the same structure as eq. (3.10). In matrix form we

can write
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iy ard | (3. 42)

e}
i

o VP s 2i+ ) | (3. 43)

<
m

where H is a constant tridiagonal matrix

- -
1+20 -g 0 . 0
-0 1+20 -0
H = - (3. 44)
- 1420 -0
0 . 0 -0 1+20 ,

and m) is the boundary vector as explained before (see r) in (3. 15)),

_ i -
= yp-f), i=1, (3. 45)

Yo and yN are determined by the open boundary conditions

) ) ) 2 . X ,
P I RPN | Iy 6 (23 J j
vo = f17+3 (B - £+ 5 (6 - 2e v e ) (3. 46)

. .. 2. . .
= J, 2 J_ ey 8 (s j j
YN T INar T Ung I T N - 2y i)
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jtl j+1 .. .
For the corrector vectors ¢ and f we obtain in matrix

(3.48)

form:
gj'*'l = §J+ %E(Gj'*'l + YJ) ,

e am izl P L2 Wy ]

(3. 49)

f
where the vectors Yj and W are given by
YiLj btin‘ ax 'bij+1+ (LTSI AR Y
- @ax b T oy -y Dby -y
(3.50)
(3.51)

2.-1 2

W, =
i
The boundary vector for the corrector is the same as that for the
(3.52)

jrl and

i+l _
f = YN

i+l _
fo7 = yve Iy
To proceed to the next time level, we need to determine 3;0
(3. 53)

predictor, and thus we have
Using the same open boundary conditions, we get

z.:‘Nj-}-l.
R X AR R S YA A A
Py 3y 8 g dy 8 Jyg
N TENT T2 BN N T N - 2Nar t AN
(3.54)
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When the window is shifted, it is needed to provide the new

upstream boundary values §_13+1 and f_13+1, which are computed by
jtl_ 5,1 j Jy, 1 2 d j j
g—l —gl +2(6'1)(g2";0)+2(6‘1) (42"2;1"'40),
(3.55)
Y _oed oL s oved e dyv e s C10eed oedy £
f__1 = f1 +2(6 1)(f2 f0)+2(6 1) (f2 2f1+fo)
(3.56)
With the initial conditions
t)=0 £2=0 for i=[0N], (3.57)

the numerical procedure is now completed.
To test the stability and the convergence of the code, it is
desirable to use a permanent form solution to the homogeneous version

of eqs. (3.32, 3.33),

z;t + [(1 +(,)fx]x = 0 , (3.58a)
1.2
£+ L+SE -gfxxt = 0 . (3.58b)

However, there is no such a permanent wave solution of eq. (3.58a, b)
with a simple form as a solitary wave solution of the KdV equation.
On the other hand, the homogeneous version of eq. (2.36),

- - B -
foo - T2+ EE - Bf =0, (3.59)
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does admit solitary wave as an exact solution. Although an exact
solution of eq. (3.59) does not satisfy egs. (3.58a, b) exactly, the
error is of O(Ot3), and we used the exact solution of eq. (3.59) in
stability and convergence tests. We obtain the solitary wave solution
by substituting the ansatz,
a

e B
K.V

flx + V t) = -
B B'B

tanh[KB(x + VBt)] , (3. 60)
into the eq. (3.59) to get VB’ KB in terms of ap- Equation (3. 60)
is made an ansatz, because in the lowest-order approximation - ft

and fx are the surface wave elevation and the horizontal velocity,

respectively, and also because fX must be negative if the wave moves

to the left. We find

1/2

VB = (1+ aB) , (3.61)
1/2
Ky = [3ag/48(1 + ag)]'/? | (3. 62)
Taking a, = ap, we obtain
V > Vg and K > Kg , (3.63)

from eqs. (3.26, 3.27) and (3.61, 3.62). Thus we see that the KdV
solitary wave moves faster and is less dispersed than that of the com-
bined Boussinesq equation. Making use of eq. (3.58b) to find ¢, we
have

2p

1+aB

4 (X+VBt) = { sechZ[KB (x+VBt)]+aBsech4[KB(x+VBt)]}

’

(3. 64)
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where ap is confirmed as the peak value at x+ VBt =0. If x=0 is

taken at the initial wave peak, the discretized initial conditions are

00 B (sech?[K Ax(i- 1)] + apsech[K Ax(i-1 b
i " Trag B p B -
(3. 65)
fO =- °B tanh [KoAx(i - 1 )], for i =[0,N] (3. 66)
i TRpVg B p’ ’ ) |

The numerical solution for ag = 0.3 is shown in Fig. 3.4,

for which we used Xy = -40, XN = 10, Ax= 0.1, K =400, At = 0.1 and
€ = 0.5. The amplification factor A is about 5.9 % and 7.4 % at

= 160 and K = 320, respectively. Since the initial conditions are
not the exact solution of eqs. (3.58a,b), it is not surprising to have
some change at the initial stage. A changes only 1.5 % between
K = 160 and 320, which is about the same as we had for the KdV
model in the previous section (A changed 1 % between K = 0 and
160). The proposed open boundary conditions were tested in the same
manner as before, and similar results were obtained as shown in Fig.
3.5. The proper grid size for the case of the homogeneous problems
was decided as described earlier and the test results are shown in
Table 3.2. It shows that for Ax = At = 0.05 A at K = 200 and 1600
are 3.2 % and 4.4 % respectively, ‘which means most of the amplifi-
cation occurs at the initial stage. For the case of inhomogeneous
problems, it is necessary to observe the CFL condition with a margin

as the numerical procedure is now half-explicit. Ax = 0.2 and At
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given by eqgs. (3.32) were also found successful, and were used for
most of the results shown in this thesis. A typical case, running for

K = 1000, used about 240 seconds of CPU time.
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Iv. NUMERICAL RESULTS AND DISCUSSION

The numerical results presented in this thesis were obtained
using the numerical methods developed in the previous chapter.

For a moving surface pressure, the surface wave elevation and
the wave resistance coefficient computed using the Boussinesq model
are shown for a full range of the depth Froude number, Fn, from
Fn = 0.1 to Fn = 1.3. The wave resistance coefficient numerically
obtained is compared with that computed using the linear dispersive
theory. The results of the linear dispersive theory are summarized in
the Appendix.

For a moving surface pressure and a moving bottom bump, both

assuming the same functional distribution, the numerical results pre-

dicted by the Boussinesq and the KdV models are compared.

4.1 Numerical Results for a Moving Surface Pressure
The numerical results obtained using the inhomogeneous
Boussinesq model for a moving surface pressure are now discussed.

We consider the following surface pressure distribution
po(x +tFn) = (pm/Z)[l—cos {27 (x+tFn)}], for 0 < (x+tFn) < 1
o , otherwise . (4. 1)

The motion starts at t = 0, and x = 0 is the initial leading
edge of the disturbance. The surface wave elevation and the wave
resistance coefficient were computed for various values of Fn and

p,... The results for p_ = 0.1 and ¢ = 0.5 are shown in Figs.
m m
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4.1.1-4.1.17. Fn is varied from 0.1 to 1.3 with an increment of 0.1
except in the neighborhood of Fn = 1, where the increment is 0. 05.
Each figure includes 5 snapshots of the surface wave elevation at equal
time intervals as viewed in the pseudo-moving frame and the wave
resistance coefficient CR plotted as a function of time. The position
of the disturbance is indicated by two vertical lines. The parameters

used in the computation are given in Table 4. 1.

4.1.1 The Surface Wave Elevation

To describe the kinematics of the wave system, we divide the
range of Fn into 4 groups.

Groupl. Fn = 0.1, 0.2; There are no noticeable waves
generated except in the region just underneath the disturbance, where
the surface is depressed.

Group 2. Fn = 0.3-0.85; If we are in the moving frame and
looking only at the downstream waves, we might think that a steady-
state solution would soon be established, since the trailing waves near
the disturbance do not seem to be changing soon after the motion starts,
say, after four waves have been formed. However, there is a series
of positive waves moving ahead of the disturbance, though they are
very small in magnitude compared to the trailing waves.

Group3. Fn = 0.9 -1.15; We see a series of positive waves
of good size running ahead of the disturbance followed by a slowly pro-
longing negative wave of nearly constant displacement, which is
immediately followed by a train of modulated cnoidal waves in the

trailing region.
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Group 4. Fn = 1.2, 1.3; All the transient waves are swept
far downstream, and the surface is elevated only around the distur-
bance. In this range of Fn, the disturbance only has a local effect.

We note that the depressed prolonging constant wave immedi-
ately behind the disturbance, which we shall call the depleted region,
is present only in Group 3.

For Groups 1 and 4, the surface elevation is similar to that
given by the inhomogeneous linear nondispersive long-wave equation,
as discussed in Section 2.3. We may use the linear nondispersive
theory for a rough estimate, though there are some small quantitative
differences between the predicted amplitudes of the free surface dis-
placement.

For Groups 2 and 3, the wave pattern is drastically different
from that predicted by the linear dispersive theory. The positive waves
running ahead of the disturbance, called runaway solitons, do not
exist at all in the solution of the classical linear theory. Moreover,
for the transcritical range of Fn, the linear dispersive theory pre-
dicts the wave elevation to increase beyond all bounds as Fn
approaches 1 from below, as shown in the Appendix. In drastic con-
trast, the present nonlinear theory predicts well-defined waves every-
where.

As the runaway soliton propagates upstream for a fixed Fn,
its amplitude, a slowly grows. For Fn = 1 the evolving shape of
the first runaway soliton is shown in Fig. 4.2.1 at various times.
Based on the discussion in Section 3.2, the numerical amplification

of the first soliton at the end of the computation time can be estimated
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as about 4 % of the initial amplitude shortly after its emergence from
the disturbance region. This seems to suggest that there is another
reason for the growth in addition to the numerical amplification. A
possible reason is that the runaway soliton just generated is not pre-
cisely a solitary wave of permanent form and will thus still be under-
going some evolution. In Fig. 4.2.2, for the case of Fn =1, the first
soliton which runs away, when CR has its second minimum, t = tz,
is compared to the permanent form solitary wave of the same ampli-
tude given by eq. (3.65). t = t, is taken because the first runaway
soliton begins to have its tail fairly near the undisturbed water surface
at that time. We define the effective wavelength of a solitary wave as
the length over which the wave elevation exceeds 3 % of its maximum
value (see Lighthill (1978)). Then the Ursell number of the newly born
soliton is found to be 32, which is twice that of the permanent form
solitary wave with the same effective wavelength, 16, as given by eq.
(3.65). Therefore, it seems that the evolution of the runaway soliton
is very likely the cause for the continued growth. We will return to
this point in the next chapter, where we discuss the experimental re-
sults.

The location of the first zero-crossing point of the surface eleva-
tion, x' = X o is of interest for practical importance as well as for
understanding the kinematics of waves around the disturbance region.
X,. moves back and forth as the runaway solitons are generated and it
is at its mean position when the surface elevation above the leading

edge is highest or lowest. The wave slope near the leading edge of the

pressure distribution is large or small when X, is at its mean

position. In Fig. 4.2.3, we show the time history of x__ for Fn = 1.
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As Fn increases, a and the time required to generate a run-
away soliton, TS, becomes larger. In Fig. 4.3.1, a and TS are
shown as functions of Fn, where a is the amplitude of the first run-
away soliton at t =t, and TS is the time interval between the first
two minima of the correspoinding CR(t) curve.

In Fig. 4.3.2, the mean value and the fluctuation (2nd maximum -
2nd minimum) of x,. are shown as functions of Fn. It indicates that
the mean position of the first zero-crossing point is near the leading
edge for small Fn's, and moves backward as Fn increases.

We define r, as
a 2 (4.2)
where a, is the wave height of the trailing wave closest to the distur-
bance. Wave height is taken because the trailing waves are cnoidal-
like waves. Then, as Fn increases, r, grows as long as the run-
away solitons are generated. In Fig. 4.3.3, r, is given as a function
of Fn. We used a and a, at t=t, for the computation of ro-
This trend of increasing r, points out the differences between Group
2 and 3, and clearly shows that for small Fn the trailing waves are
the most striking feature, while at higher Fn the leading waves grow
to substantial size.

For other values of the Py (0.05 and 0.15 were investigated),
the general trends discussed above are all qualitatively the same. Ts
as a function of Fn is presented for P, = 0.05, 0.1, 0.15 in Fig.
4.3.4. It shows that, as P increases, Ts decreases and the upper-
bound of Fn, above which no solitons are generated, becomes some-

what larger.
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4.1.2 The Wave Resistance

The wave resistance is given by the integration of the pressure
distribution multiplied by the wave slope over the disturbance length,
(2. 69), and is a function of P Fn and time for a given shape of
pressure distribution. Variations of the wave slope in the region of
the applied pressure distribution are necessary to change the wave
resistance.

Thus, for Groups 1 and 4, CR becomes almost zero after an
initial transient period, because no new waves of significant size are
generated after that time.

For Groups 2 and 3, CR(t) curves show as many maxima as
there are runaway solitons generated. Since there is no other physical
phenomenon observed which has such a long period, the fluctuation of
the wave resistance must be associated with the generation of runaway
solitons. We observe that the maximum or minimum of CR occurs
when the surface elevation above the leading edge, x' = 0, is highest
or lowest, respectively.

For the subcritical case (Fn < 1), the difference between a
maximum and the following minimum values of CR decreases as time
goes on. This implies that the generation of the runaway solitons may
cease after a certain period of time. We also note that the upstream
surface level near the leading edge raises to a certain value. The
time required to reach such a limiting state becomes longer as ¥n
approaches 1.

For Fn > 1, the difference between a maximum and the

following minimum values changes very little as time increases.
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This implies that the generation of runaway solitons may continue
indefinitely. Based upon the observation of CR with time described
above, we further subdivide Group 3 into Group 3a, Fn = 0.9, 0.95
and Group 3b, Fn =1,0-1, 15,

We may decompose CR into two components

C, = C

R rs t C

RT (4.3)

where CRS(t) is due to the generation of runaway solitons, and
CRT(t) is the rest. CRT(t) can be found approximately by connecting

the minima of CR with a smooth curve. We observe that

CR(t =00 = CRT(t = o0) for Fn < 1.

no limiting value for Fn > 1.

(4. 4)

For Fn < 1, CRT(t = o) consists of two parts. One is due to
the trailing waves and the other is due to the constant raised water
level just ahead of the disturbance. This result seems to agree with
what Benjamin (1970) obtained; however, he used the results of linear
dispersive theory and his model for the long-time behavior is quite
different from what we observe.

As a measure of the work done by the disturbance in generating

a runaway soliton, we define WS as
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where the integration is taken over the time interval between the two
successive minima of the CR. WS for the first three runaway solitons
at Fn =1 and the total wave energy of the permanent solitary wave,
eq. (3.64), of corresponding amplitude, ET’ are presented in Table
4.2. It shows that W is somewhat smaller than the corresponding
ET. The reasons for this discrepancy are yet to be understood in
relation to the question whether the runaway soliton is really an entity
when it emerges from the disturbance region.

From the numerical results for Fn < 1, we observe that the
wave resistance coefficient averaged over the time interval between

the first and the third minimum (or fourth when available), C can

RA’
be used as an approximate asymptotic limiting value of CR. In Fig.
4.4.1, we show C as a function of Fn for p_ = 0.05, 0.1, and
RA m

0.15. Because the full linear dispersive theory predicts that the wave
elevation becomes unbounded as Fn approaches 1 from below, it is
somewhat surprising, at least at first glance, to see a maximum CRA
occur around Fn = 0.6 rather than 1. However, the wave resistance
need not be unbounded, as Fn tends to 1 from below. As shown in

the Appendix, according to the linear dispersive theory, the wave

resistance coefficient is given by

Cp = po, sin®(k/2¢) [1- (e/2me)?17 [1 - (2k/sinh 2)]"}

’

(4.5)

where the dimensionless wave number, k, is determined by the dis-
persion relation. There are two limiting cases of interest, namely,

when Fn approaches zero from above and 1 from below. As can be
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easily shown, CR is bounded for both cases, and the values taken are
zero and (3/8) pmz/e 2, respectively (see Appendix for details). As
CR for ¥Fn > 1.0 is zero in linear dispersive theory, CR has a
finite discontinuity at Fn = 1.

In Fig. 4.4.2, CRA is normalized by pn: /ez for the non-
linear results presented in Fig. 4. 4.1 along with the results of linear
dispersive theory. The linear dispersive theory predicts a maximum
value of CRA at a Fn of about 0. 64, We note that the existence of
the maxima is due to the finite size of the disturbance. Although the
two theories give fundamentally different wave patterns, the agreement
in the prediction of the wave resistance coefficient is remarkable over
the whole range of Fn. The current nonlinear theory gives a continu-
ous rapid decrease for Fn ® 1. For Fn > 0.6, the linear dispersive
theory becomes invalid, because the predicted wave amplitude becomes
so large that the assumption of the small amplitude is open to question.
However, for 0.2 < Fn < 0.6, it is difficult to say which theory gives
the more accurate wave resistance and surface elevation, and it is
highly recommended that this issue be resolved experimentally., The
existence of the maximum of CRA implies that there may be a
critical point near Fn = 0.6 around which runaway solitons of notice-
able size begin to form and CRA starts to decrease slowly. As the
strength of the disturbance increases, the difference between the two
theories becomes larger as we would expect, and so does the range of
Fn over which the nonlinear theory predicts the nonnegligible values

of the wave resistance.
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4.1.3 The Basic Mechanism

The basic mechanism of the whole phenomenon is yvet to be fully
understood; nevertheless, our understanding, so far, can be described
as follows. According to the linear dispersive theory the group
velocity is slightly less than the phase velocity, whose upper bound is
the critical speed. Hence the energy, accumulated with the dispense
of the work done by the moving disturbances in its neighborhood,
should propagate downstream. This becomes more and more difficult
as Fn increases, and consequently the surface elevation near the
disturbance becomes unbounded as Fn approaches 1. In the nonlinear
theory it is possible for waves to move faster than the disturbance it-
self. Therefore, some part of the energy propagates upstream, and
thus the wave elevation remains bounded as Fn tends to 1.

For Fn < 0.8, we observe from the numerical results that the
trailing waves are responsible for most of the wave resistance, and
that CRS is very small compared to CRT’ However, as Fn
increases, the runaway solitons become larger, and the depleted
region appears. For Fn close to 1, CRS is as big as CRT and the
wave amplitude of the runaway solitons is about the same as the wave
height of the trailing waves. As Fn further increases, more of the
energy propagates upstream than downstream. For Fn greater than
1.25 approximately, the runaway solitons are not fast enough to propa-
gate away from the disturbance, and the waves are localized to the

neighborhood of the disturbance.
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4.2 Comparison of the Inhomogeneous KdV and Boussinesq

Equations

We now compare the solution behavior of the inhomogeneous
KdV equation with that of the inhomogeneous Boussinesq equations.
As seen from eq. (2.43), the Boussinesq equations differenitiate a
moving surface pressure from a moving bottom bump, while the KdV
equation does not. As shown in the Appendix, the linear dispersive
theory predicts similar wave shapes for both disturbances, but the
wave amplitude for the bottom bump is smaller than that due to the
surface pressure of equal strength by a factor of sech k. This
factor is always less than 1 and approaches 1 as k tends to zero,
that is, as Fn tends to 1 from below.

As examples, we take the same cosine function as a disturbance
for the surface pressure and the bottom bump, and use P, or bm: 0.1
with Fn = 0.8, 0.9, 1.0, 1.1. The results of the inhomogeneous KdV
and Boussinesq equations are shown in Figs. 4.5.1-4.5. 4 and Figs.
4,6.1-4,6.4, respectively.

The main differences are the shape of waves and the number of
runaway solitons generated by the end of the computation time. We
see that the surface pressure, in the Boussinesq model, acts as a
stronger disturbance than the bottom bump, and that the disturbance
in the KdV model gives the results between these two. This observa-
tion continues to hold in general for a wide variety of values of P
and bm. In Figs., 4.7.1-4.7.3, we present the results of the KdV

and Boussinesq model for p_ or b__ = 0.2 with Fn = 1.
m m
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Further discussion of these models and comparison with
experimental results will be made after the experimental procedures

are described in the next chapter.
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V. EXPERIMENTS FOR A BOTTOM BUMP

AND THE COMPARISON WITH

THE NUMERICAIL RESULTS

To aid in evaluating the results from the numerical solution,
and to focus directions for future developments, we carried out
experiments using a bottom bump moving uniformly along a shallow
water tank. The bottom disturbance is preferred to the surface
pressure for its ease of construction and implementation. After we
observed qualitative agreement between experiments and theory in
preliminary experiments, our main efforts were directed toward
measuring the wave elevation. Since we knew from the numerical
solution that the phenomenon is unsteady, we positioned several wave
gages at various locations to detect the evolution of the waves during

and after their generation.

5.1 Experiments for a Bottom Bump

5.1.1 Experimental Setup and Measurements

Experiments were conducted in a flume 7.5 m long, 0.75 m
wide and 0. 6 m deep, constructed of glass. The bottom unevenness
of the flume is less than + 0.1 cm. A two-dimensional bump 4.9 cm
long, 72 cm wide and 0. 65 cm high at its mid-chord plane was
machined of aluminium. In cross section the bump had a circular
arc top and a flat base. To make the bump electrically insulated
from the water and wave gages in the tank, the surface of the bump
was finished with Krylon Spray Enamel No. 1604. It was positioned

just above the floor of the flume with a gap of 0. 05 cm at the highest
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location of the floor, and was rigidly suspended from a towing carriage
by two vertical bars at the channel sides. The carriage ran on wheels
along parallel tracks mounted above the flanged top of the side walls.
A 1/4 HP DC motor (Bodine NSH-55) was used to move the carriage
along the track by means of a cable drive. The carriage speed was
controlled remotely with the aid of a Minarik variable speed control
(Model Wé3). The carriage could be brought up to a speed within 60
cm of its rest position and maintained the speed for the length of a
data run (4-5 m). The maximum speed obtainable was 150 cm/sec,
and the range of the speed used in the experiments was between 40 and
90 cm/sec.

Wave elevations were measured using parallel-wire resistance
type wave gages. A drawing of a typical wave gage and the circuit
diagram of a full bridge for the wave gages are shown in Figs. 5. 1.1,
5.1.2, respectively. Two stainless steel wires of various lengths
(4.5-7 cm) with a diameter of 0.16 cm (1/16 in. ) were used for a wave
gage, and the wires were spaced 0.5 cm apart. A change of wetted
length of the wave gage in water causes an imbalance in the pre-
balanced bridge circuit and induces an output voltage proportional to
the change in submergence depth. A bank of Hewlett-Packard carrier
preamplifiers (Model 8805A) provided a 4.5 volt 2400 Hz excitation
signal to each bridge. The demodulated and amplified output of these
preamplifiers was within + 3 volts and single-ended at ground potential.
Since the output from the preamplifiers still retained some of the
2400 Hz excitation component, a low-pass filter, RC circuit having a

cutoff frequency of 300 Hz, was used to eliminate this noise.
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The speed of the carriage was measured by a tachometer in
contact with the track. A switch-clock system was also used to obtain
an independent measure of the average speed over the range where the
speed data obtained by the tachometer were almost constant. A typical
shape of the speed vs. time curve (see Fig. 5.1.3) was a steep
ramp with a small overshoot at the initial acceleration stage, followed
by a desired uniform speed. A block diagram of the experimental set-
up is shown in Fig. 5.1.4.

One set of experimental data was obtained from 2 different runs
of the bump along the flume. Each run was made at the same speed
but in opposite directions. Three wave gages were fixed in the
flume as shown in Fig. 5.1.5, and were mounted on a support beam,
which was T-jointed AMES angle, and which spanned the entire length
of the tank. In this way we obtained wave gage records at 5 fixed
locations from 2 runs of the experiment. Since one of the fixed wave
gages, FWG, was at the middle of the measuring interval, it was used
to check the repeatability of the 2 runs. Another wave gage Was
mounted on the carriage and moved with the bump. The position of
the moving wave gage, MWG, was 1.0 L upstream or 5.0 L. downstream
from the leading edge of the bump in each run. Thus each set of data
consisted of 5 FWG, 2 MWG records and a speed curve, all of which

were recorded as a function of time.

5.1.2 Data Acquisition and Experimental Procedure
A Sanborn thermal chart recorder (Model 358-~100A) along with
a Sanborn low-gain amplifier bank (Model 958-2900) were used for

immediate visual inspection of the data. All measurements of wave
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elevation and speed was digitized with the Analog-to-Digital (A/D)
data acquisition system built into a Digital Equipment Corporation
PDP 11/23 computer installed in the laboratory. The digitized values
were obtained at a sampling rate of 20 Hz and were converted from
integer numbers between 0 and 4096 (12 bit resolution) to real num-
bers which corresponded to a + 5 volts range. The data acquisition
was done using a Fortran program which was run through a graphic
terminal (Tektronix 4105) next to the tank. An analog back-up of the
data was simultaneously recorded on a Hewlett-Packard FM tape
recorder (Model 3968A).

As the length of the tank is limited, we had to carefully choose
the parameters to make the best use of the given limited facilities.
To have at least 2 runaway solitons generated by the end of the experi-
ment, the bump needed to travel about 100 times its length. Because
we could obtain useful data for only 5 m of the flume, the upper bound
of the bump length was about 5 cm. In the preliminary experiments
with bm > 0.3, we observed that the troughs of the waves running
ahead of the bump were 20-30 % of the water depth above the undis-
turbed water surface. Hence the upstream wave structure resembles
the bore model in the theory of hydraulic jumps, where the nonlinear
effects dominate the dispersive effects. Therefore we decided to
use bm < 0.2, and then the dimensionless parameters o, B
determined the bump height and the range of water depths. In the
experiments € ranged from 0.8 to 1.1 and brn ranged from 0. 12 to

0.16. For each water depth, tests were done for 0.6 < Fn < 1.3.
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A complete list of the parameters used in the experiments is given in
Table 5. 1.

Calibration of wave gages was done before and after the experi-
ments for each water depth case. From each calibration a proportional
conversion constant was obtained by using a least-square fit and the
average of two was used for the experimental data obtained between
two calibrations. The calibration range was typically + 2 ¢cm, and the
error in the least-square fit was typically 2-3 % for the values at the
end of calibration interval. Since the two calibration constants differed
by less than 5 %, the error range can be estimated as about 5 % for the
highest waves measured in the experiments. While we were preparing
for the next run, experimental data were processed and the surface
elevations and the speed record were plotted on the graphic terminal

in terms of dimensionless variables.

5.2 Comparison of Experimental and Numerical Results

5.2.1 Numerical Simulation

To more accurately interpret any comparison between the
experimental data and the numerical results, we need to consider the
effects, which are neglected in the mathematical model but exist in
the experiments.

First, we consider the effects of viscosity. For long waves,
energy dissipation occurs mainly due to bottom friction. It is suffi-
cient to estimate the attenuation of runaway solitons, because they
should suffer most wave attenuation. We adopt the empirical formula

suggested by Daily and Stephan (1952) for the attenuation of a solitary
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wave in a channel with smooth side walls and bottom. It is given in

dimensional form as

/4 4

alhy =(a /)l + @ /)t e x/mlt, (s

where
- 3,1/241/2
C, = (1720)1 +@h B)][v /(gh *)!/?1}/2,
and a, is the initial amplitude of the solitary wave, a the attenuated
amplitude, B the width of the channel, v the kinematic viscosity of
the fluid and X, is the distance traversed by the solitary wave.

Typical values can be chosen as follows:

- _ - 2 _ -
ao/ho = 0.5, hO/B—-I/lS,, v=0.01l em7/sec, xl/ho—SO, ho- 5 cm,

and give an attenuation factor &

Q= (a.o - a,)/a,o =5-6% ,

which is an approximate estimate for the first runaway soliton at the
end of the experiments. Thus we may conclude that the effect of wave
attenuation included in the experimental data is small.

The presence of a viscous boundary layer around the bump may
increase the effective strength of the bump. As a rough estimate we
can use the displacement thickness of a flat plate in steady laminar
flow (typical Reynolds number is 3.5 x 104), which is given in dimen-

sional form as (see Schlichting (1979)),

6, = 1. 2wx/n) /% (5.2)
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Taking x =5 cm and U = 40 cm/sec, we obtain

51 = 0.05 cm

Therefore, the displacement thickness near the trailing edge is é.bout
the same as the clearance between the bump and the channel floor.

As stated in Section 5.1.1, bottom unevenness was + 0.1 cm, which

is not negligible compared to the bump height, 0.65 cm. For the
numerical simulations, we assumed that the bottom was flat at its
mean position and that there was no net flow between the base of the
bump and the channel floor, and we neglect the effects of viscosity at
the top of the bump. In an attempt to account for bottom unevenness,
the bottom-bump clearance, and presence of a viscous boundary layer,
an effective bump height of 0.8 cm was used instead of the actual bump
height of 0. 65 cm. Using the effective bump height, 0.8 cm, the new
range of bm is from 0. 15 to 0.2; that is, we increase bm by

0. 03-0. 04.

As the width of the tank is finite, there is an edge effect.
Considering that the aspect ratio (width/length) of the bump is about
15, we may also conclude that the assumption of one horizontal di-
mension is valid. Wave elevations were measured at points as close
as possible to the longitudinal center plane.

Another difference between the experiments and the mathe-
matical model is that it takes a finite amount of time to reach a uniform
speed in the experiments, while in the theory we assume the uniform
motion is reached instantaneously. As the distance traveled by the

bump is integration of the speed with respect to time, the difference
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in the initial acceleration makes the position of the bump given by the
theory different from that in the experiments. Since the position of
the bump is a key to the phase of the wave system, we modified the
numerical scheme to solve an unsteady motion problem and used the
experimentally obtained speed record at the initial acceleration stage

as an input to the numerical simulation.

5.2.2 Comparison with the Boussinesq Model

Experimental data along with the numerical solutions predicted
by the Boussinesq model are shown in Figs. 5.2.1-5,2.20 for
bm = 0.15, 0.166, 0.185, 0.2, and for each bm’ cases of Fn: 0.7,
0.8, 0.9, 1.0, 1.1 are presented. The solid line is used for the
numerical solution and the dotted line for the experimental data.
Each figure consists of 10 curves. The first two curves are numeri-
cally obtained snapshots at time T = T1 and T, where T, corres-

2 2

ponds to the final instant for each experiment and T, = TZ/Z. The

1
next two curves are from the MWG's, and show the generation of run-
away solitons and the development of the depleted region in the moving
frame. The next curve gives the numerically obtained wave resistance
coefficient. The last 5 curves are from the FWG's, and show the
comparison of experimental and numerical results of the evolution of
the whole wave system in the fixed frame of reference.

First let's look at the case bm: 0.15, Figs. 5.2.1-5,2.5.
Now, we may divide the range of Fn into three Groups A, B and
C. For Group A (Fn = 0.72, 0.79) the number of waves running

ahead and their amplitude are in good agreement with the theory.

For trailing waves, the agreement is good at the initial stage;
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however, it becomes poorer as time goes on. We observe that the
numerical solution gives higher waves in the trailing region, and that
the experimental FWG records show a decrease in the amplitude of
the first trailing wave as time goes on. As trailing waves become
more steepened, they begin to break in the experiments, and conse-
quently move more slowly. For Group B (Fn: 0.89, 1.01) all the
features noted in the previous chapter, namely, the runaway solitons,
the depleted region and the trailing waves, are exhibited by both
results, and their quantitative agreement in terms of both the magni-
tude and the phase of waves is surprisingly good; however, we notice
that slightly bigger and more runaway solitons are generated in the
experiments. For Group C (Fn = 1.11) the surface depression in
the depleted region is in good agreemenﬁ; however, the amplitude of
runaway solitons is underpredicted by the numerical solution.

As bm increases, the descriptions given above continue to
hold in general. The agreement between theory and experiments re-
mains good in upstream waves for Group A, in the entire region for
Group B and in the downstream waves for Group C. For the trailing
waves of Group A, the numerical solution predicts higher amplitude
waves, and wave breaking was observed in the experiments. For
runaway solitons and the trailing waves of Group B, the numerical
solution gives slightly fewer and smaller amplitude waves than the
experimental data. For runaway solitons in Group C, experimental
results show larger amplitude for small bm’ and smaller amplitude
for large bm. For stronger disturbances, breaking of runaway

solitons was observed soon after their emergence from the disturbance
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region. From the FWG records for cases bm = 0.185, 0.2 in Figs.

5.2.15 and 5. 2. 20, we observe that the amplitude of the first soliton
in the record of FWG at x = -74.1 is smaller than that in FWG at

x = -57.1, which indicates that wave breaking occurred between these
two FWG's., As bm increased, the range of Fn for which no wave
breaking was observed narrowed.

We recall the amplification of runaway solitons discussed in
Section 4.1.1 as they propagate upstream. During the experiments,
we often observed that a clean runaway soliton was formed near the
disturbance, and then, as it propagated upstream, it started to break
some time after it left the disturbance region. This supports the idea
that runaway solitons are still evolving as they move ahead of the
disturbance.

Due to the limited length of the tank it is difficult to confirm
the supposition that these runaway solitons will be generated without
end for Fn > 1. However, based upon the agreement between the
experimental data and the numerical results, we may conclude that
the generation of the runaway solitons for Fn > 1 will last for a very
long time, at least for the range of parameters used in these experi-
ments. For Fn <1, it seems that the limiting state is approached
in a much shorter (finite) time.

Related to the wave breaking observed in the trailing waves,
it is certain that the wave resistance of a finite disturbance moving
with speed corresponding to 0.7 < Fn < 0.8 must include the
breaking effect, as the wave breaking changes the wave field signifi-

cantly.
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5.2.3 Comparison with the KdV Model

From the discussion in Section 4.2, we learned that the bottom
bump in the KdV model acts as a stronger disturbance than a corres-
ponding bump in the Boussinesq model. The discussion in the previous
section indicates that the Boussinesq model gives fewer and smaller
waves than the experimental results for most cases with the exception
of regions where wave breaking occurs. Thus, it remains to be seen
which of the models will predict more closely the experimental results.

To show the differences between the results of two models,
we present the comparison of the results of KdV model and the
experimental data for the two extreme cases, bm = 0.15 and 0.2 in
Figs. 5.3.1-5.3.10. Let us first look at the case brn = 0.15. For
Group A (Fn = 0.72, 0.79), the KdV model predicts larger upstream
waves than the experimental results, and bigger waves in the trailing
region than the Boussinesq model. For Group B (Fn = 0.9, 1.01)
the agreement is excellent everywhere. The solution of the KdV
model is only slightly less than the experimental data, and is closer
to the experimental results than the results of the Boussinesq model.
For Group C (¥Fn = 1.11) the depressed wave is in good agreement,
and the amplitude of the runaway solitons is underpredicted by the
KdV model. Again, the results of the KdV model are in closer agree-
ment with the experiments. For the case bm = 0.2, we see that the
KdV model gives more and larger runaway solitons than the experi -
mental results for all Froude numbers.

In summary, both the Boussinesq and the KdV model predict

less than the experimental data in most cases for weaker disturbance.
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The solution of the KdV model becomes larger than the experimental
results as the disturbance becomes stronger. Considering the effects
present in the experiments such as viscosity, bottom unevenness, and
bottom-bump clearance, it is difficult to say definitely which model
performs better. However, it seems that the KdV model is no less
competent in its performances than the Boussinesq model for the
range of parameters tested in the present study; thus, we may conclude
that the KdV model is suitable in future analytical treatment for
Fn ® 1, because it gives all the basic features of the solution and

because it is simpler.
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VI. SUMMARY AND CONCLUSIONS

In this thesis, several models of nonlinear dispersive long -
wave equations, which are uniformly valid in space and time, were
derived when external forcing agencies were present. In particular, a
moving surface pressure and a moving bottom bump were studied in
detail. All of the derived equations belong to the same class as the
original Boussinesq equations or the KdV equation. The Boussinesq
model was formulated under the assumption that the disturbance is of
O(et) and no explicit restrictions were placed on the speed of the dis-
turbance. The inhomogeneous KdV equation was derived under the
more restrictive assumptions that the strength of the disturbances is
of O(af), and that the speed of the moving disturbance is close to the
critical speed. The surface pressure and the bottom bump appear in
the same fashion in the KdV model, while they show slight differences
in the Boussinesq model.

Employing a predictor-corrector method, numerical procedures
were developed to solve the inhomogeneous KdV equation and the pair
of coupled inhomogeneous Boussinesq equations. The numerical
scheme is implicit for the KdV model and mixed explicit-implicit for
the Boussinesq model. To deal with the moving disturbance, a
pseudo-moving frame and sufficiently 'transparent' open boundary
conditions have been devised and they are successful in rendering the
region of computation reasonably small.

Using the numerical method developed for the Boussinesq

model, the surface elevations and the wave resistance coefficient
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were computed for a cosine surface pressure moving uniformly with
the depth-Froude-number, Fn, ranging from 0.1 to 1.3. In contrast
to the results of linear dispersive theory, the present numerical
results for the water surface wave elevation exhibit a series of positive
waves running ahead of the disturbance for Fn ranging from 0. 25 to
1.25. These forward propagating solitary waves are especially well
defined for Fn = 1. To distinguish the salient features of the resulting
wave field, the range of Fn can be divided into 4 groups: For Group 1
(Fn < 0.2) and Group 4 (Fn > 1.25), the effects of the moving dis-
turbance are localized to its neighborhood only. For Group 2
(0.2 < Fn £ 0.85), the trailing waves reach a steady state soon after
the motion starts; however, a series of positive waves moves ahead of
the disturbance, though their amplitude is very small compared to that
of the trailing waves. For Group 3 (0.85 < Fn < 1,25), the upstream
running positive waves become large and comparable to the trailing
waves in their magnitude, and we have a slowly prolonging negative
wave of nearly constant displacement between the disturbance and the
trailing waves, which is a train of modulated cnoidal waves. We may
further subdivide Group 3 into Group 3a (0.85 < Fn < 1) and 3b
(1< Fn < 1.25). For Group 2 and 3a, there seems to be an end of
the generation of the waves running ahead, and the upstream surface
level near the leading edge of the disturbance rises to a certain con-
stant value. For Group 3b the generation of the runaway soliton
seems to continue indefinitely.

Using linear dispersive theory, the wave resistance coefficient

was computed for the same cosine surface pressure disturbance as
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used before, and its value was found to be bounded for all Froude
numbers and has a finite discontinuity at Fn = 1. The numerically
obtained wave resistance coefficient was averaged over time, and
compared to the results predicted by linear dispersive theory. The
results of the current nonlinear theory are larger for 0.2 < Fn < 0.6
and smaller for 0.6 < Fn < 1.0 than those given by linear dispersive
theory, and they exhibit a continuous rapid decrease for Fn 2> 1.
With the same cosine distribution for the surface pressure and the
bottom bump, computations were done using the KdV and the Boussinesq
models, and the results of the two models were compared. In the
Boussinesq model, the surface pressure acts as a stronger disturbance
than the bottom bump, and the disturbance in the KdV model gives re-
sults intermediate to the two Boussinesq results.

Experiments were conducted in a shallow water tank using a
bottom bump moving uniformly with Fn ranging from 0.6 to 1.3,
Wave elevations were measured by a set of resistance type wave gages
installed both in a moving and in a fixed reference frame. Experi-
mental data were compared with the results predicted by the
Boussinesq model. The numerical results and the experimental meas-
urements are in good agreement for the upstream waves of Group A
(Fn = 0.7, 0.8), for the entire wave field of Group B (Fn= 0.9, 1.0)
and for the downstream waves of Group C (Fn = 1.1). For the trailing
waves of Group A, the numerical results predict waves with higher
amplitude than those measured, and wave breaking was observed in
the experiments. For runaway solitons in Group C, experimental

data show larger amplitude for weak disturbances and smaller
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amplitude for strong disturbances relative to the numerical prediction
of nonlinear theory. For sufficiently strong disturbances, breaking of
runaway solitons was observed soon after their emergence from the
disturbance region.

The numerical solutions of the KdV model were also computed
for comparison. Over the range of the parameters used in the current
study, the difference between the results predicted by the two models
are about the same as that between the experimental data and the re-
sults predicted by either of the two models. The KdV model seems to
have advantages for future analytical treatment for Fn = 1, because
it is capable of predicting all the basic features of the solution and

because it offers a simpler formulation.
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APPENDIX

Linear dispersive theory is well described in textbooks such
as Lamb (1932), Stoker (1957), Whitham (1974) and Lighthill (1978).
When a uniformly moving disturbance is present, the surface elevation
can be obtained by solving either an initial value problem or a proper
boundary value problem under the assumption that a steady state
exists. Here, we shall follow Lamb (1932) who takes the latter ap-
proach, and we will quote the results without providing the inter-
mediate steps. The relevant sections are 245, 246, and 249 for a
moving surface pressure, a moving bottom bump and the wave resis-
tance, respectively. Dimensional quantities will be used until final
results are obtained.

The wave resistance, R, experienced by a disturbance moving

uniformly with a subcritical speed, U < c is given by (Section 249)
R = [1- (Cg/U)]E , (A. 1)

where Cg is the group velocity, and E is the mean wave energy per
unit area of the free surface. Cg is given by

U .
C, = 3 [1 + (2kh_/sinh2kh )] , (A, 2)

where the wave number, k, is determined by the dispersion relation

/2

2 _ 1
(U/co) = 1:a.nh]:<h0/kho , c, = (gho) (A.3)

We note that the wave number depends on the speed of the disturbance

only aside from the water depth ho‘ E is given by



E = 1 pga®, (A. 4)

where A is the amplitude of the stationary waves far downstream.
Substituting eqs. (A.2) and (A. 4) into (A. 1) the wave resistance can be

rewritten as

R=  pgA’ll - (2kh_/sinh2kh )] . (A.5)

Therefore, once k is determined by eq. (A.3), we only need to know

A to obtain the wave resistance.

Using the Fourier's method, for a moving surface pressure

such that

po(x') = Plé(x'), x'=x+Ut, and U < c, > (A. 6)

where 6 1is the delta function, the surface wave elevation is given by

(Section 245)

t = |- (ZPl/pUZ)M(kho)sinkx' + Olexp(-kx")], x' > 0
Olexp(kx")], x' < 0 , (A.7)
where
M(£) = 2sinh®t/(sinh2f - 2€) . (A. 8)

To generalize this result to a disturbance prescribed by an arbitrary
function, we need to replace (i/T\')P1 sinkx' by I (k, x') (see

Lighthill (1979)),

I' = [P(k)exp(ikx') - P(-k)exp(-ikx')] ,
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where P(k) is the Fourier transform of po(x') defined as

©
P(x) = (1/2w) g po(x' Jexp(-ikx')dx' , (A.9)
-0
. 1/2 . . .
and i= (-1) . Since P(-«) is the complex conjugate of P(x), T

can be rewritten as

r

2i Im[P(k)exp(ikx')] ,

2i mod[P(k)] sin(kx' + arg[P(k)]) , (A.10)

where Im stands for the imaginary part, mod for the modulus and
arg for the argument of the complex function, respectively. Hence the
amplitude of the waves far downstream for an arbitrary shaped dis-

turbance, Ap’ becomes

A = (41r/pU2)M(kho) mod[P(k)] . (A.11)

As U approaches <y from below, kho tends to zero, and mod[P(k)]
tends to the area of the disturbance, which is the integration of po(x')
with respect to x' over the length of the disturbance. Therefore, as
U approaches <, from below, Ap tends to infinity, since M(§) is
singular at § = 0.

The cosine pressure distribution used in the numerical compu-

tation can be written in terms of the dimensional quantities as

- _ 1 1
po(x’) = (pm/Z)(l cospx'), 0< x'< L

0, otherwise, (A.12)

where

b= (/L) . (A.13)



69

Its Fourier transform at « = k is given by

2

P(k) = (ip_/4n)[1 - exp(-ikL)[[u?/k(®- 9] . (A.14)
Therefore, Ap becomes
A_ = (2p_/pU%)M(kh )sin(kL/2)[n2/k(k> - u3)] . (A.15)
P m o :

We note that Ap is zero if L is any integer multiple of the wave-
length, (2w /k), of the waves far downstream. In other words, there
are some particular Fn's at which no waves are generated far down-
stream for a fixed L. Substituting eq. (A.15) into eq. (A.5), and

making use of eqs. (A.3) and (A. 8), the wave resistance is obtained as

R = (p_’/pg)sin® (kL/2)[1 - (k/p)?]"2 [1-(2kh,_/sinh2kh )] .

(A. 16)
Similarly, for the moving bottom bump

b(x') = B,é(x') , (A.17)

the surface wave elevation is given by (Section 246)

L = -(ZBl/hO)N(kho)sinkx' + Olexp(-kx")], x' > 0
Olexp(kx"')], x' < 0 , (A.18)
where

N(E) = E/sinh§)M(E) . (A.19)

We define dimensionless variables as follows



I = 1 o= ® o=
x x /ho’ k kho, P, pm/pgho ,
(A. 20)
P %= P /ogh’, B.* = B, /h 2
1 1/P8%, » Fy 1'%
and in the sequel we omit the asterisk * for brevity.

From eq. (A.14) we find the wave resistance coefficient CR

in terms of dimensionless variables as

Cr = pnf sin(k/2e)1 - (k/2m¢ )21 2[1- (2k/ sinh 2)]" ) ,
(A.21)

which is the eq. (4.5). The dispersion relation, (A.3), can be re-

written in terms of the dimensionless variables as
Fn® = tanhk/k . (A.22)

It is clear that, as Fn tends to zero from above, k approaches
infinity. Therefore, CR approaches zero as Fn tends to zero from
above. As Fn approaches 1 from below, k tends to zero, and
sinz(k/Ze) and 1-(2k/sinh 2k) have the same behavior; namely, both
terms are proportional to kz, which renders CR bounded. Hence
we have

. 3 2
lim CR = g (pm/e) . (A. 23)
Fn—-1~

To compare the wave elevation due to a surface pressure to
that generated by a bottom bump, we consider the dimensionless form

of egqs. (A.7) and (A.18) for x' > 0. From eq. (A.7) we obtain
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t = -2P Fn-ZM(k)sin(kx')+ Olexp(-kx')], for x' > 0

1
(A. 24)

Similarly from eq. (A.18) we find

{ = —ZBlN(k)sin(kx’) + Ofexp(-kx")], for x' > 0
* (A, 25)

Therefore, if P1 = Bl’ using eqs. (A.17) and (A.22), the ratio of the
amplitudes, a, at far downstream for the surface pressure and the

bottom bump becomes

Fn % (k/sinhk) ,

1}

g
[¢]

coshk . (A. 24)

This indicates that the wave amplitude due to the surface pressure is
always larger than that due to the bottom bump, and that both distur-
bances generate similar waves as Fn approaches 1 from below, if

both disturbances assume the identical functional distribution.
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TABLE 3.1

Amplification Factor A for the K4V Equation

Ax = At = 0.1 Ax = At = 0. 05
t

peak value A(t) % peak value At) %

0 0.3000 0 0.3000 0
10 0.3030 1. 00 0.3005 0.17
20 0.3045 1.50 0.3008 0.27
30 0.3056 1.87 0.3009 0.30
40 0.3074 2.47 0.3011 0.37
50 0.3090 3.00 0.3012 0. 40
60 0.3100 3.33 0.3014 0. 47
70 0.3120 4. 00 0.3016 0.53
80 0.3133 4. 43 0.3018 0. 60
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TABLE 3.2

Amplification Factor A for the Boussinesq Equations

Ax = At = 0.1 Ax = At = 0. 05

peak value ALY % peak value A) %
0 0.3000 0.3000 0
10 0.3151 .03 0.3097 3.20
20 0.3191 .37 0.3112 3.73
30 0.3213 .10 0.3117 3.90
40 0.3240 .00 0.3122 4. 07
50 0.3266 .87 0.3124 4,13
60 0.3282 . 40 0.3125 4,17
70 0.3308 .27 0.3128 4. 27
80 0.3315 .50 0.3131 4.37
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Parameters used in the Numerical Computation

for the Cosine Surface Pressure of P, = 0.1

dK is given by dK

disturbance by the end of computation, t = Kat.

= 0.1, e .5

F_ -xg  xy  Ax T At K dgk
.1 10 10 0.1 20 0. 050 1000 5
.2 10 10 0.1 10 0. 050 500 5
.3 10 10 0.1 6 0. 056 300 5
.4 10 20 0.1 5 0. 050 250 5
.5 20 20 0.2 4 0. 100 400 20
.6 20 25 0.2 3 0.111 300 20
.7 15 25 0.2 3 0. 095 450 30
.8 20 25 0.2 3 0. 083 600 40
.85 20 25 0.2 2 0.118 750 75
.9 20 25 0.2 2 0.111 750 75
.95 20 25 0.2 2 0.105 1000 100
.0 20 25 0.2 2 0.100 1000 100
. 05 20 25 0.2 2 0. 095 1000 100
.1 20 25 0.2 2 0. 091 1500 150
.15 20 30 0.2 2 0. 087 1500 150
.2 10 20 0.2 2 0. 083 1000 100
.3 10 20 0.2 2 0.077 1000 100

= Kax/J, and is the distance traveled by the
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TABLE 4.2

Comparison between WS and ET of the First

Three Runaway Solitons for Fn =1

Wg Er
1st 0.1036 0.1370
2nd 0.1027 0.1340

3rd 0.1058 0.1389
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9

TABLE 5.1

Parameters used in the Experiments

for the Bottom Bump

bm = 0.65¢cm, L = 4.9 cm
ho(cm) bm/ho (bm/ho) Fn
4,0 0.163 0.200 0.7, 0.8, 0.9, 1.0, 1.1,
4,33 0.150 0.185 0.7, 0.8, 0.9, 1.0, 1.1
4,83 0.135 0.166 0.7, 0.8, 0.9, 1.0, 1.1,
5.33 0.122 0.150 0.7, 0.8, 0.9, 1.0, 1.1,

ateffective bump height bm =

>k*with the error of + 0.02

0.8 cm is used.
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B.5.

Fig. 3.2. Stability test of the numerical KdV model using the
solitary wave as initial condition, a = 0.3.
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Fig. 3.3. Test of the boundary condition for the numerical KdV
model using the solitary wave as initial condition,
aj = 0.3, with two different window sizes.
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Fig. 3.4 Stability test of the numerical Boussinesq model using

the solitary wave as initial condition, ap = 0.3.
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B.85

Fig, 3.5. Test of the boundary condition for the numerical
Boussinesq model using the solitary wave as initial

condition, ap = 0. 3, with two different window sizes.
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Fig, 4. 1. The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ =0.1, € = 0.5
m

and Fn = 0. 1.
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TFn
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TFn

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for P = 0.1, ¢ =0.5
and Fn = 0.2.
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Fig. 4.1.3. The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ =0.1, € = 0.5
m

and Fn = 0. 3.
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B. 81

Fig. 4. 1. 4.

The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for p_ =0.1, € = 0.5
and Fn = 0. 4 m
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4P

The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ =0.1, ¢ = 0.5
m

and Fn = 0.5.
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TFn

Fig. 4.1, 6.

The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ =0.1, € = 0,5
m

and Fn = 0. 6.
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The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ =0.1, ¢ = 0.5
m

and Fn =0.7.
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Fig. 4. 1. 8. The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for p__ = 0.1, € = 0.5
and Fn = 0. 8. m
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Fig. 4.1.9. The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the
numerical Boussinesq model for P = 0.1, e = 0.5
and Fn = 0. 85,
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Fig. 4. 1. 10.

The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ =0.1, € = 0.5
m

and Fn = 0.9.
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Fig. 4. 1. 11. The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the
numerical Boussinesq model for P = 0.1, €« =0.5
and Fn = 0.95.
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Fig. 4. 1.12.

The surface wave elevation and the wave resistance

coefficient of the cosine surface pressure given by the

numerical Boussinesq model for p_ = 0.1, ¢ = 0.5
“m

and Fn = 1,0,
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The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for p_ =0.1, € = 0.5
and Fn = 1.05. m



99

B.8

: TFn
nunulnnlllllzw 68

SEEEENNERNTETE L L ity kL bt i 128

188

\Illlllllllllllllllllllll 398

J— .

BN

8.2

1 1 1 1 { { 1 1 L ] Trn

308

Fig., 4. 1. 14, The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for p_ = 0.1, € = 0.5
m
and Fn=1,1.
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Fig. 4.1.15. The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for =0.1, e =0.5

)
and Fn = 1. 15, m



101

o TFn

Lo i 128
:'l"l"'@'l"l"“l"-l-u.u-u 168
:n--n--@-un-----nnu.;_u 288
Cr
ﬂ.Bl:
E&u——' L ' ! L A ! y TFn
208

Fig. 4.1.16. The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for p__ =0.1, ¢ = 0.5
m
and Fn = 1. 2.
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Fig. 4.1.17. The surface wave elevation and the wave resistance
coefficient of the cosine surface pressure given by the
numerical Boussinesq model for p_ = 0.1, € = 0.5
m
and Fn = 1. 3.
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Fig. 4,2.1, Evolving shape of the first runaway soliton at various
times for Fn = 1,
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Fig. 4, 2. 2,

Comparison of wave shape between the first runaway
soliton and the solitary wave of permanent form for

Fn= 1.
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Fig. 4.2.3. Time history of the location of the first zero-crossing
point of the surface elevation for Fn = 1,
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runaway soliton as functions of Fn, for P, = 0. 1.
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crossing point of the surface elevation as functions
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to the disturbance as function of Fn.
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Generation period of the first runaway soliton as a
function of Fn for P = 0.05, 0.1 and 0. 15,
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Fig, 4. 5,3. The surface wave elevation and the wave resistance
coefficient of the cosine disturbance given by the
numerical KdV model for p_ =0.1, € = 0.5 and

m
Fn=10.
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Fig, 4.5, 4

The surface wave elevation and the wave resistance
coefficient of the cosine disturbance given by the
numerical KdV model for p =0.1, € = 0.5 and
Fn= 11, m



116

8.8

- TFn

HANEEEENEEEEERENE Y JﬂvIAIJMJ_LJ_LLu_LLJ_J 16

plllllllllll \J/\\_'ANUGU-L-U-MJ 48

8.81 L

] i 1 i ] { 1 ] 1 j TFn

88

Fig. 4.6.1. The surface wave elevation and the wave resistance
coefficient of the cosine bottom bump given by the
numerical Boussinesq model for P = 0.1,
e = 0.5 and Fn = 0. 8.
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4.6.2. The surface wave elevation and the wave resistance
coefficient of the cosine bottom bump given by the
numerical Boussinesq model for P = 0.1,

e = 0.5 and Fn = 0.9,
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Fig. 4.6.4. The surface wave elevation and the wave resistance

coefficient of the cosine bottom bump given by the
numerical Boussinesq model for P = 0.1,
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coefficient of the cosine bottom bump given by the
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€ = 0.5 and Fn = 1.0,
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Drawing of a typical wave gage.
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Fig. 5.2.1. Comparison of the surface elevations between the

experimental data and the numerical solution given
by the Boussinesq model for Fn = 0.72, bm = 0.15
and € = 1,00.
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Fig. 5.2.2. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn=0.79, b = 0.15 and
€ = 1.09. m
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Comparison of the surface elevations between the
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Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn = 0. 70, b_=0. 166
and € = 0.99.
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Comparison of the surface elevations between the
experimental data and the numerical solution given

by the Boussinesq model for Fn = 0. 80, brn = 0,166
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and € = 0,99,
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Fig, 5.2.9.

Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn = 1,00, b__ = 0, 166
and € = 0.99. m
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2. 10,

Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn = 1.11, b_ = 0. 166
and € = 0.99. ™
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Fig. 5.2.11. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn = 0. 72, bm = 0. 185
and € = 0. 88,
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experimental data and the numerical solution given
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Comparison of the surface elevations between the
experimental data and the numerical solution given
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experimental data and the numerical solution given
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Fig. 5.2.16. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn=0.73, b_ =0.2

m
and € = 0, 82.
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Fig, 5.2.17. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the Boussinesq model for Fn =0.82, b_ =0.2
and € = 0, 82, m
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Fig, 5.2.19. Comparison of the surface elevations between the

experimental data and the numerical solution given
by the Boussinesq model for Fn =1, 01, bm =0.2
and € = 0. 82,
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Fig. 5.3. 1. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the KdV model for Fn = 0. 72, b = 0,15 and
e = 1.009.
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experimental data and the numerical solution given
by the KdV model for Fn = 0.79, bm = 0.15
and € = 1.009.



150

B.4 T = 53.80

T =181.59

 — 1 TR b duds.. nan I  Iebabeel il i dtiites T {

- MWG 5.8 188
N . L 1 t 1 L L 1 ]
Cq o =
.82 L
M L ] 1 1 L 1 1 L 1
- Fvs "2303
B.4 L

. FWG -48.2 @ VS )
" . : e AA A0
. FWG -57.1 ' VAL
L | 1 {\‘t-j[‘ ‘}::A N\ ]
FVE -74.1 )

O AA

aad

Fig. 5.3.3. Comparison of the surface elevations between the
experimental data and the numerical solution given
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experimental data and the numerical solution given
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Comparison of the surface elevations between the
experimental data and the numerical solution given
by the KdV model for Fn = 1. 11, bm = 0.15 and

€ = 1,09.
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Fig. 5.3.6. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the KdV model for Fn = 0.73, bm = 0.2 and
e = 0, 82.
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Fig. 5.3.7. Comparison of the surface elevations between the

experimental data and the numerical solution given
by the KdV model for Fn = 0.82, b_=0.2 and
€ = 0, 82,
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Fig. 5.3.8. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the KdV model for Fn = 0, 89, bm = 0.2 and
€ = 0. 82.
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Fig. 5.3.9. Comparison of the surface elevations between the
experimental data and the numerical solution given
by the KdV model for Fn = 1.01, bm = 0.2 and
e = 0, 82,
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experimental data and the numerical solution given
by the KdV model for Fn = 1. 12, bm = 0.2 and
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