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Abstract

An investigation of combustion instabilities was conducted using an approxi-
mate analysis which allows any relevant physical processes to be included. The
resulting system of coupled nonlinear oscillator equations was studied using
the methods of dynamical systems theory. Previous investigations have fur-
ther simplified thé system using the method of time-averaging and truncation
to a small number of modes. We have investigated the consequences of using
these additional approximations, a case which had not been addressed com-
pletely in the literature. It was determined that application of the method
of time-averaging introduces a stability boundary which limits the range in
~ which the averaged equations are valid.

Transverse oscillations in a cylindrical chamber were also treated. It was
established that in addition to its role in energy transfer between modes, non-
linear gasdynamics also provides a means of shifting the frequencies of oscilla-
tions to integral multiples of the fundamental. This additional role can reduce
the efficiency of energy transfer, thus increasing the acoustic amplitudes. An

example of a low amplitude transverse oscillation was produced suggesting a
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'méan's by which the amplitudes of transverse modes, as well as nonintegral
longitudinal modes, may be reduced.

The coupling between combustion processes and acoustic oscillations was
studied as a possible explanation of the phenomenon known as triggering.
Using several ad hoc models, the cffects of nonlinear pressure coupling and
velocity coupling on the behavior of the system were investigated. Substantial
regions of pessible triggering were produced when using a model of velocity
coupling with a threshold, but only if nonlinear gasdynamics was also included.

The interaction between combustion noise and acoustic instabilities has re-
ceived rclatively little attention. The sources of noise in a combustion chamber
are associated with vorticity and entropy waves. By including these contri-
butions in the approximate analysis, the general forms of the stochastic ex-
citations were obtained. Subsequently, the effects of these excitations on the
amplitudes of acoustic modes were studied. When only nonlinear gasdynamics
was included, no cases of bimodal probability density functions, characteristic
of triggering, were found. However, when the model of velocity coupling with

a threshold is added, bimodal probability densities can occur.
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Chapter 1

Introduction

Early in the development of rocket propulsion, it became apparent that un-
wanted oscillatory motions often occur in propulsion systems. These oscilla-
tory motions, commonly referred to as combustion instabilities, still present
a problem in the design of modern systems. Combustion instabilities arise
due to a high energy density being confined to a chamber where dissipation
is relatively small [15]. Only a very small fraction of the available cnergy is
required to start and maintain oscillations having unacceptable amplitudes.
These oscillations can cause unwanted vibrations and in extreme cases can
lead to failure of the propulsion system.

There are two general types of nonlinear oscillations which occur in com-
bustion chambers, spontaneous oscillations and pulsed oscillations. A spon-
taneous oscillation, or intrinsic instability, occurs when the system is linearly
unstable so that any perturbation in the pressure field will grow exponentially
in time. Under the influence of nonlinear effects, the pressure field may reach
a periodic motion, or limit cycle. An example of a spontaneous oscillation is
shown in Fig. 1.1. A pulsed oscillation, on the other hand, is a true nonlincar
instability of a linearly stable system. Small perturbations in the pressure field
decay cxponentially to zero, while larger perturbations may lead to stable or

unstable periodic motions. Examples of a pulsed oscillation for a stable and
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Figure 1.1 Example of a spontaneous oscillation; pressure at the
head end of the chamber after a small perturbation
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Figure 1.2 Example of a pulsed oscillation; pressure at the head
end of the chamber after a stable initial pulse
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Figure 1.3 Example of a pulsed oscillation; pressure at the he
end of the chamber after an unstable initial pulse
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unstable initial pulse are shown in Figs. 1.2 and 1.3.

Spontaneous oscillations have often been encountered in practice since dis-
sipative mecﬁanisms inside combustion chambers are usually quite small. For
this reason, the first investigations into combustion instabilities dealt only with
the question of linear stability. This was the main thrust of research in the
1950s and 1960s [22]. The linear problem is now fairly well understood and
gives much information about intrinsic instabilities [21]. However, solution to
the linear problem is insufficient to predict limiting amplitudes of oscillations
and offers no hope of capturing pulsed instabilities, or “triggering.” Due to
these insufficiencies, investigations into nonlinear behavior were pursued in
order to address the following two questions: 1) what limiting amplitude will
a linearly unstable system reach; and 2) under what conditions will a linearly
stable system exhibit triggering?

The first question has been the focus of many studies over the past three
decades. Chu and Ying [7], in the first study concerning linear instability, used
the method of characteristics to treat thermally driven waves in a pipe. Using a
pressure sensitive heat source, a limit cycle was determined to occur, although
combustion processes and mean flow were not considered in their analysis.
Sirignano and Crocco [54] investigated some of the influences of combustion
and mean flow using techniques similar to those of Chu and Ying. A weak
shock model was employed to study limit cycles in a rocket motor where
_ combustion was assumed to occur in a negligibly small region at the head
end of the chamber. Both of these analyses, however, involved the solution of
partial differential equations for specific problems, and it was not possible to
obtain general trends applicable to other systems.

An important change in the study of linear instabilities was introduced by
Zinn and Powell [59] in their investigation of transverse oscillations in liquid

rocket motors. Galerkin’s method was applied to spatially average the conser-
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vai:ion equations ‘using a single mode approximation to the spatial waveform
of the oscillation. The resulting set of ordinary differential equations for the
unknown dependent variables was then solved numerically.

Independently, Culick [12] applied spatial averaging to study longitudinal
oscillations in solid rocket motors. Again, the acoustic field was approxi-
mated by a single mode. An additional simplification was introduced by the
application of time-averaging, a step which not, only gives a reduction in com-
putational time, but also provides a framework to more easily obtain general
trends of the problem. More careful examination of experimental results for
solid propellant rockets and T-burners revealed that the acoustic field was
more complicated, and the approximate analysis was reformulated to explic-
itly include all possible acoustic waves in a later work [13].

The only means of checking the validity of the approximate analysis based
on spatial and time-averaging is by comparison with numerical results due
to the large uncertainties associated with experimental data. Culick and
Levine [19] performed such a comparison for a limited number of cases in-
volving one-dimensional flows. The approximate analysis was shown to pro-
duce good agreement with numerical methods, at least for cases where the
amplitudes do not become too large.

Subsequently, the approximate analysis has been used systematically to
investigate the problem of linear instability, and considerable progress has been
. made. Awad and Culick [3] and Yang and Culick [55] studied the conditions
for the existence and stability of limit cycles for longitudinal and transverse
acoustic modes, respectively. Both of these works used the time-averaged
equations along with truncation to a small number of modes. It was also
assumed in both works that gasdynamics, to second-order only, provided the
only nonlinear influences. These works established that, in this case, the

existence and stability of limit cycles depend only on the linear parameters of
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thé.system, while nonlinear gasdynamics influences the limiting amplitudes.

Paparizos and Culick [51] obtained exact results for the existence, stabil-
ity, and a.mpiitude of limit cycles for two longitudinal modes in a cylindrical
chamber using the time-averaged equations. The results were consistent with
the previous works but provided more insight by utilizing a geometrical repre-
sentation theory. This work also extended the previous results by considering
the energy transfer between modes. It was determined that the preferred
direction of energy transfer is from the lower to the higher acoustic modes,
consistent with experimental observations and with the fundamental behav-
ior of compressible motions in fluid mechanics. The effect of truncating the
infinite system to two modes was also addressed by comparison of the exact
results with numerical results for higher numbers of modes.

Exact solutions, such as those obtained by Paparizos and Culick [51], have
been obtained only for a limited number of cases. In fact, analytic solu-
tions have been restricted to the time-averaged equations with nonlinear in-
fluences arising from gasdynamics only and truncation to a small number of
modes. In order to determine the effects of these approximations, Jahnke
and Culick [37, 38] first applied the methods of dynamical systems theory.
Using continuation methods, the effects of truncation to a small number of
modes and time-averaging were investigated. The results showed that these
approximations may have a strong effect on the behavior of the system of
_ equations. For instance, in the case of a first mode instability, the two-mode,
time—aVéraged equations predict a stability boundary above which no stable
periodic solutions exist. Application of dynamical systems theory showed that
this stability boundary does not occur with the original equations. This inves-
tigation illustrated the usefulness of dynamical systems theory in determining
general trends which would be much more difficult to obtain using numerical

simulations.
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“The second question, “under what conditions will a linearly stable system
exhibit triggering?,” has received increasingly more attention as the under-
standing of liﬁear instability has grown. This question is important because
the unstable growth of oscillations induced by finite pulses is potentially seri-
ous in practical rocket motors. During the Apollo program, NASA developed
a method of rating the stability of liquid rocket engines by “bombing,” i.e.,
exploding small charges during a firing. A motor is then considered accept-
ably stable if the decay rate exceeds some chosen value. Liquid rockets may
experience pulses, for example, during ignition, changes of thrust level, or if
for some reason liquid reactants accumulate in a region and suddenly ignite.
A common cause for pulses in solid rockets is expulsion of pieces of an igniter
or of insulation material.

Results for nonlinear gasdynamics to second-order have not explained this
type of behavior. However, a simple example introduced by Awad [2] gave
reason to belicve that gasdynamics to a higher order might lcad to the pos-
sibility of triggering. The phase diagram for a one-degree-of-freedom system
suggests [3, 51] that a linearly stable third-order system might produce trigger-
ing to stable limit cycles. Motivated by this example, Yang et al. [56, 57, 58],
Kim [42], and Paparizos and Culick [52] treated the case of third-order acous-
tics in an attempt to explain this type of true nonlinear instability. Results for
third-order acoustics were found to be qualitatively like those for second-order
. acoustics, and once again, no cases of triggering were reported.

Althdugh it was not proven explicitly, calculations for a wide range of spe-
cial cases in the previously mentioned works showed that nonlinear gasdynam-
ics up to third-order does not contain the possibility of triggering. Evidently,
some other nonlinear contribution must also be included. Kim [42], Yang et
al. [58), and Paparizos and Culick [52] examined mean flow/acoustics inter-

actions as a possible mechanism of triggering. While the mean fow offers a
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sigﬁiﬁcam energy source which could possibly sustain such oscillations, the
results did not produce cases of stable limit cycles for a linearly stable system.

The inter&ction of oscillations and combustion processes is a very com-
plicated process. It is likely that this interaction plays an important role in
pulsed instabilities. For this reason, the nonlinear response of combustion pro-
cesses to acoustic perturbations has been investigated as a possible cause of
triggering. Kooker and Zinn [43] investigated the role of nonlinear pressure
coupling in pulsed oscillations. By solving the equations of motion simultane-
ously with the equations governing the nonlinear pressure coupled response of
the propellant, the effects of large-amplitude disturbances on solid propellant
rocket engines were studied. Because this was a numerical investigation, it
suffers from the same shortcoming as all numerical works. Each calculation is
a special case: extracting qualitative rules of thumb potentially helpful in the
design process is a tedious matter. In addition, there is no way with numerical
solutions to know rigorously if a limit cycle has been reached.

Motivated by the operational implications of triggered instabilities, the Air
Force Rocket Propulsion Laboratory conducted a lengthy experimental and
theoretical program over a period of about a decade beginning in the mid-
1970s. Baum, Levine and Lovine published the last paper [5] covering that
project in 1988; the paper contains a complete list of references to the work.
Extensive data were taken for a range of geometries and for three propellants,
- using either explosive charges or ejected plastic objects to generate pulses.

As part of the effort to understand the observations, Baum and Levine [4,
45] solved the partial differential equations numerically for conditions approx-
imating those in the tests. As described in Section 5.2.1, a simple model of
nonlinear combustion response was used, based on the idea of the kinematical
nonlinearity associated with velocity coupling.

Although quite satisfactory rcsults were obtained, the authors were well
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aW.a,r(S of the deficiencies of using a purely numerical analysis to interpret mea-
surements. It is, for example, difficult to make definite conclusions concerning
the relative influences of nonlinear combustion and other processes. More-
over, because the run time of the numerical solutions was limited by practical
considerations arising with the computers then available, it is not clear that
any of the numerical results definitely represent limit cycles for long times
after the pulses. Nonetheless, the results showed convincingly that nonlinear
combustion is an essential feature of those pulsed instabilities treated.

Powell et al. [53] used the approximate analysis based on spatial averaging
to study instabilities in solid rocket motors and T-burners. Using a heuristic
model of pressure coupling, a case of triggering was reported. However, the
pressure coupled model does not seem to have a good physical basis. Also,
the presentation of results does not easily show whether or not triggering to a
stable limit cycle has actually occurred.

Awad [2] and Yang et al. [56] used simple model examples to investigate
possible nonlinear combustion response functions. Using models with one and
two modes, these works found that “self-coupling” terms can be important in
triggering. However, the focus of these works was on identifying what type
of terms could be important in triggering rather than on realistic modeling of
combustion processes. It is important, yet difficult, to determine if a model is
physically realistic.

Gadiot and Gany [29] used the approximate analysis with both spatial and
time—avefaging‘ to investigate the effects of nonlinear pressure coupling. Cases
of triggering were reported, but the results are questionable. A perturbation
method was used to derive the approximate analysis which assumed that the
amplitudes are small compared to the mean pressure. The amplitudes of the
oscillations are much higher than the range of applicability of the perturbation

method. Also, it appears that the gas phase was not handled properly in the
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de{ieldpment_of the pressure coupled response function.

Kim [42] used an ad hoc velocity coupled model along with the two-mode,
‘ time—averaged equations. Limited amounts of triggering were found for some
ranges of the velocity coupled response function. Greene [32] treated a simpler
ad hoc model of velocity coupling, one which turns out to be a subset of the
model used by Kim. Both of these analyses failed to determine the effects
of the approximatiAons introduced by time-averaging and truncation to two
modes. As a result, the reported cases of triggering may be a consequence of
truncation to a small number of modes instead of an actual case of triggering.
This possibility will be addressed in the current investigation.

The present work uses the approximate analysis developed by Culick to
investigate nonlinear combustion instabilities. In particular, it is the purpose
of this work to investigate the effects of different nonlinear contributions with
emphasis on nonlinear combustion response and noise.

In Chapter 2, we will develop the approximate analysis based on spatial
‘averaging in the form of Galerkin’s method. This well-established analysis,
introduced by Culick, leads to a set of coupled nonlinear oscillators. Nonlin-
ear contributions from gasdynamics to second-order will be derived. Other
nonlinear contributions will be handled in subsequent chapters. The method
of time-averaging, as applied by Culick [12], will also be described.

In Chapter 3, the methods of dynamical systems theory will be introduced.
_ These methods have proven to be very useful tools in the study of nonlinear
systems of equations and are therefore well suited for the purposes here. Three
different continuation methods, applicable to steady states, periodic solutions,
and folds, will be discussed. Finally, the nonlinear acoustic equations will be
put into a form that can used with these methods.

Many previous investigations have studied the case where gasdynamics

provides the only nonlinear contribution, and much progress has been made.
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Noﬁetheless, there are sﬁll unanswered questions, and some of these will be
addressed in_Chapter 4. This chapter will study the effect of the method
of time-averaging when a higher number of modes is included. In addition,
dynamical systems theory will be applied to the case of transverse modes. The
effect of including higher transverse modes will then be determined.

The rmodeling of nonlinear contributions from combustion processes will
be covered in Chapter 5. Several models will be used to investigate the influ-
ence of nonlinear combustion on instabilities in solid propellant rocket motors:
one which represents coupling to pressure fluctuations at the burning surface,
and three which represent coupling to velocity fluctuations. The influence of
these models on the behavior of the system of equations will be studied, with
emphasis on locating the possibility of pulsed oscillations.

The influence of noise is examined in Chapter 6. First, the unsteady field
will be split into acoustic and random parts to determine the form of the
stochastic terms, as in the work by Culick et al. [20]. The previous results
by Culick et al. will be extended by determining the eflects of each type of
stochastic excitation, by adding more modes, by including noise in more than
one mode, and by treating the case where nonlinear combustion is also taken

into account.
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Chapter 2

Development of the Nonlinear

Acoustic Equations

In general, combustion chambers contain some type of particulate matter such
as liquid droplets or condensed solid propellant. The presence of such matter
can significantly change the properties of the flow inside the chamber, with
the speed of sound being especially affected due to the additional mass of
this material. In order to account for these changes, it is necessary to begin
with the conservation equations for two-phase flow. Although many gases and
condensed species may be present, it is sufficient to treat the gases as one
gas with average properties and the condensed species in an average way as
a fluid [16]. Following the method developed by Marble [48] and applied by
Culick [13] to combustion instabilities, we will further simplify the conservation
*equations by combining the equations for two-phase flow into an equivalent
form for a singie medium having the mass-averaged properties of the two

phases.
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2.1 Conservation Equations

- The equations of motion for two-phase flow, allowing for the conversion of
‘ particulate material to gas, are as follows.

Conservation of mass (gas):

op
a—tg + V- (pu) = wp (2.1)

Conservation of mass (particles):

0
% + V- (ppttp) = —wp (2.2)

Conservation of momentum:

0 o
= (pgt + pptp) + V - (pputs + ppitptty) + Vp =V - 7 (2.3)
ot

Conservation of energy:

0
52(/’960 + ppepo) + V - (pgueo + pptipepe) + V- (pu) =V-g+Q  (2.4)

where w, is the rate of conversion of particulate material to gas and T is the
viscous stress tensor for the gases. The heat flux vector, g, represents the heat
transfer by conduction, while () represents heat released by chemical reactions.
- It should be noted that p, is the mass of particles per unit volume and not
the densify of the particulate matter itself.

Many cases of interest involve small accelerations and temperature changes
so that the velocities and temperatures of the two phases differ by only a small
amount. For these cases, the particles and gases are nearly in equilibrium, and
the density ratio, Cy,, = pp/pg, is almost constant throughout the chamber.

Marble [49] has shown that for such a case, the mixture behaves like a perfect
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2
: : g'as".with proper modiﬁcétidn of the thermodynamic properties. As a result,
the conservation equations for two phase flow can be rewritten in a form for a
. single mediurﬁ with the mass-averaged properties of the two phases. We will
now develop the analogous set of conservation equations for the mixture.
The first step in the development of the conservation equations for the mix-
ture is to rewrite the momentum and energy equations for the gas phase only.
Simple fearrangemént of Egs. (2.3) and (2.4) yields the following equations for
the gas phase.

pg{%+(u-V)u]+Vp:V-?—a+Tp (2.5)

oT
PgCu [—87+(u-V)T] +pV-u=V-q+Q+Q,

+(epo—€o)wp +u-0+u-(V-T)+ (uy—u)-F, (2.6)

The variables describing the interaction between particles and gas are defined

as follows:

o = —(u, — )y, (2.7)
Fo= i | B2+ (- Dy, (28)
@ =—ne |52+ (w V)T (29)

where o is the momentum transfer between gas and particles due to residual
combustion, and F, denotes the force exerted on the fluid by particles. In
Eq. (2.6), @, is the heat transfer between phases, with ¢ denoting the specific
heat of the particulate matter.

The assumption of small accelerations and temperature changes allows us

to define two small quantities for the differences in velocity and temperature
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- between the two phases. By defining éu, = u,—u, we can rewrite the equation

for F, in terms of the velocity of the gas and the velocity difference.

Fp=-— [%;‘ +(u- V)u]

90
- Pp l: 6‘1:1) + (u - V)ou, + (dup - Viu + (du, - V)ou,| (2.10)

Rearranging we obtain
ou
[c‘% + (u - V)u } =—F,+0F,, (2.11)

where the force of particles upon the fluid due to the velocity difference, 6F,,

has been defined as follows.

OFp = pyp + (u - V)du, + (du, - Viu + (du, - V)du, (2.12)

Odu,
ot

Similarly, letting 67, = T, — T leads to an equivalent equation for the conser-

vation of energy.

PpC [aa—f + (u - V)T] = —Qp + 60, (2.13)

where

04T, |
6Qp = TPpC [——3—1‘—2 + (up - V)T, + (duyp - V)T + (Su,, - V)(STIJ} - (214)

Finally, adding Eq. (2.5) to (2.11) and (2.6) to (2.13) yields the momentum

and energy equations for the mixture.

[‘96': (u- V)u] +Vp=V 7 -0 +IF, (2.15)
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3

- [or '
PCy [Et——f—(u-V)T] +pV-u=V-q+Q+45Q,

+ (60 — co)wp +u-0 —u-(V-7)+bu,-F, (2.16)

From these equations, we can see that the mixture behaves like a perfect gas

with density p = p, + pp and the following thermodynamic properties [48].

¢y + Cpuc
g, = 2T me 2.1
14+ Cy, (2.17)
.t Cye
&= C (2.18)
_ R
Ry =< +°C (2.19)
S
¥y = . (2.20)

Using these new properties, the proper speed of sound for the mixture is

_ 1/2
_ — 5 Y P
a= Ry T = — . 2.21
T [1 + Cp pg] (221)
Depending on the mass fraction of particles, the speed of sound for the mixture
can be significantly reduced from the speed of sound for the gas alone.
In the development of the approximate analysis, it is convenient to use
pressure instead of temperature. Using the mass and energy equations for
the mixture along with the appropriate equation of state, p = pRyT, we will
_rewrite the energy equation with the pressure as the dependent variable.
Op

‘a?+(u'v)p:—’_)’PV"U"*'(’_Y—1)[V'Q+Q+5Qp+(€p0*eo)wp

+u-0—u-(V-T)+0u, - Fp— TV - (p,0u,)] (2.22)

The present goal is to develop a general framework for the approximate

analysis. We are not currently concerned with the forms of the source terms
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on the right-hand sides. Therefore, we will now assemble and rewrite the

conservation equations for the mixture in a more illustrative form, partly in

preparation for the development of the nonlinear wave equation in the next

section.
mass :
" momentum :
energy :
where

0p B
E—F(U'V)p*W
p[%l;—qL(ro)u] =-Vp+F
9p

a%—vpV-u:—u-Vp—i—P,

W= —pV-u-—V-(pduy),

F=V-T—0+F,

P=F-1[V-q+Q+Q,+ (epo —€)wp +u-0o

—u-(V-T)+6u, - F, —c,TV - (p,0u,)]

2.2 Derivation of the Nonlinear Wave

Equation

(2.23)

(2.24)

(2.25)

(2.26)
(2.27)
(2.28)

The conservation equations for the mixture are the equations used in the study

-of acoustics with some»additional terms. This is not coincidental and stresses

the opinion that combustion instabilities are best viewed as perturbations of

classical acoustics [15]. Therefore, as the first step in the development of the

approximate analysis, we will derive the nonlinear wave equation for pressure.

To construct the nonlinear wave equation, we first write all variables as
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sums of averaged and small-amplitude fluctuating parts [13].

p(t) = + /(1)
p(r,t) =p(r) + p'(r,t) (2.29)

u(r,t) =a(r) + u'(r,1)

It is assumed.here that the averaged values are independent of time and satisfy
their own conservation equations. Substitution of Eq. (2.29) into the conser-
vation equations for momentum and energy yields the following equations for

the fluctuating quantities.

! !

P +Vp'=—p’%tu——ﬁ(ﬂ-Vu'+u’-Vﬁ+u'-Vu')
—pu-Va+ua -Vu' +u'-Va)+F (2.30)

8])’ — = ! =~ 1 - P / ~ / 7 = ! / !

E—i—fypv-u =-3w'V-u—-w'V-v'-u-Vp —u -Vp—u -Vp +P

(2.31)

Previous results have convincingly demonstrated that the influence of third-

order gasdynamic terms is almost always quite small [56, 57, 52]. Third-

order gasdynamic terms appear to affect the quantitative values of results

only slightly, while producing the same qualitative behavior as results obtained

V using only second-order terms. Therefore, in the above equations, only terms
to second-order in perturbations have been retained.

From Egs. (2.30) and (2.31), the nonlinear wave equation for pressure is

easily formed. This is achieved by first differentiating Eq. (2.31) with respect
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to time, followed by substitution for du’/dt from Eq. (2.30).

1 32pl
2 e
VP a? ot?
v e ve s w Vet ve s PO LW G
pvV {u Vu +u' -Vu+u vu+ﬁ8t}+a26t U
]._ ap’ ]. a ] 7 — 1 ! lapl !
+§"'VW+Z—EE(" -Vp' + 39’V u)+z_l—2 5 +V-F (2.32)

In obtaining this equation, we have assumed that the average pressure is uni-
form throughout the chamber, which is equivalent to assuming that the average
Mach number is small. Under this assumption, terms which are second-order
in @ are ignored.

In many cases, entropy waves can be neglected, allowing a reduction in
the number of dependent variables. Using the isentropic relation, p = Cp7,
with Eq. (2.29) leads to the following approximation for p', thus reducing the

number of dependent variables.

!
gl (2.33)

a2

Introducing this approximation into Eq. (2.32) gives the following formula for

the nonlinear wave equation for the pressure.

182]9'
Wﬂ—gaﬁ:m (2.34)
where
AV (@-Vu 4w Va) 4+ La. v LI
h=-pV-(a-Vu' +u Vu)+a2u v8t+62 Btv {7 (2.35)
/ ! =
. bov 2 PO L0 oy L0 v
pV (u Vu+f7}38t)+&28t(u \%22) C_LQ(%(]DV u')

. 1oP
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2
7‘ Thé‘_c()rresponding boundary condition for p’ is found by taking the scalar

product of the outward normal vector with the momentum equation (2.30).

A Yy = —f, (2.36)
with
| ou' | L ey
f:pﬁ-n—l—p(u-Vu +u' -Vu)-n (2.37)
p/ ou'

+pu-Vu') -+ =— - —F -n.

az ot

2.3 Development of the Approximate
Analysis

The idea behind the approximate analysis is to transform the partial differ-
ential equations into an equivalent set of ordinary differential equations. This
is achieved by averaging over the volume of the chamber using Galerkin’s
method [12, 13]. This removes the spatial dependence, leaving a system of
ordinary differential equations with time as the independent variable.

The application of Galerkin’s method consists of multiplying the nonlinear
wave equation by an appropriate weighting function, then integrating over
the volume. Here, the weighting function is chosen to be the unperturbed
-wave form predicted by classical acoustics for the same chamber with rigid
boundaries andbno combustion or mean flow. This is a sufficient choice for
the cases under consideration, but for other cases of interest, it may not be

suitable. By setting h = f = 0, we obtain the equations which define the
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mode shapes for the unperturbed motions.

V% + k2, =0 (2.38)
f-Vip, =0 (2.39)

The wave number for the n,;, mode is denoted by k,,. Using the mode shape ¢,
as the weighting function, we now apply Galerkin’s method, which amounts to
comparing the unperturbed problem with the actual problem. The steps con-
sist of multiplying Eq. (2.34) by ¢,, multiplying Eq. (2.38) by p/, subtracting

the results, and integrating over the volume.

0%y’ .

‘/[p Vi, — wnvz 1 dV + /1/),, 51 —dV + k2 /d)np'dl — /-z;bnlzfll’
(2.40)
After applying Greene’s theorem to the first term on the left-hand side and

subsequently substituting for the boundary conditions, we arc left with an

integral equation for the pressurc fluctuation.

- / Vu (?t]: dV + k2 / YapdV = — / pohdV — jé YofdS  (241)

Now we would like to develop an approximation to the unsteady pressure
field for use in the above equation. We assume that the classical modes shapes
.defined hy Egs. (2.38) and (2.39) form a complete orthogonal set. Using these
modce shzipe-s as a basis, the unsteady pressure ficld is written as a synthesis

of classical modes with time-varying amplitudes 7, (t).

Z ()t (7 (2.42)

The terms in h and f are all small, being either second-order in perturbations,
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or first-order multiplied by a small quantity, e.g., the Mach number of the mean
flow. Hence, as approximations in A and f, we will use p’ from Eq. (2.42),

. along with the corresponding velocity from classical acoustics,

w(r )= 7’"2(2)w (r). (2.43)

m=1 m
We assumge that the unperturbed modes are orthogonal so that the follow-
ing properties hold.
[ Bnndv = B2 (2.44)
E: = / Yidv (2.45)
Substituting Eqgs. (2.42) and (2.43) into (2.41) and using these propertics, we

obtain a system of second-order ordinary differential equations describing the

amplitudes of the acoustic modes.

A ‘
) +win, = F, (2.46)
where w,, = ak, and
a? '
F,=—— U hdV mfdS ¢ i
PR {/" +.7£¢ / 5} (247

-Equation (2.46) describes the unsteady motions of a set of coupled nonlinear
oscillators. In order to solve for the amplitudes 7, it is first necessary to
evaluate h and f. These functionals are very general and can accommodate all
damping and amplification mechanisms, e.g., viscous losses, particle damping,
and combustion response. The most difficult part of the problem is in the
identification and modeling of the physical processes which are important in

the system of interest.
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'It should be noted that several assumptions have been made in the develop-
ment of Eq. 2.46. While these assumptions may limit the range of applicability
. somewhat, thé approximate analysis is still useful for a wide range of cases
of practical interest and has provided much insight into combustion instabil-
ities in the past, as well as in the present study. In Chapter 6, two of these

assumptions, namely neglecting vorticity and entropy waves, will be relaxed.

2.4 Equations for Computing the Time-
Dependent Pressure Field

The set of coupled nonlinear equations (2.46) are the basis for the numerical
results in much of the present analysis. To carry out the calculations, the
forcing functions F,, must be written explicitly in terms of the amplitudes 7,.
That result is accomplished by using the expansions (2.42) and (2.43) as an
approximation to p’ and «' in h and f.

Because the procedure for evaluating the integrals arising from the lin-
ear and nonlinear gasdynamics has been previously documented in several
places [21, 13, 42], only the important aspects will be discussed here. First, all
linear processes, those arising from the gasdynamics and any others generated
from P’ and F', will produce the terms 20,7, + 2wnfnn, in the n'® equation
of the set (2.46). In general, linear coupling will also be present; from the

“gasdynamics alone, one finds the off-diagonal terms
p Ky
5 > (k—ﬁ + 1) / (@ - V)¢ dV. (2.48)
" i#n J ' :

In principle, lincar coupling can be eliminated by defining a new set of

orthogonal modes by applying familiar methods. For example, in the case of
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two modes, the governing linear equations are

& Suyiiy + 2y = ay7ie (2.49)
dt? : >

d?n. . .
T,f — Yty + Pty = g, (2.50)

where Q? = w? — 2w,8; and a2 # a9, are constants. The characteristic equa-
i i 1

tion, whose reots A; are the new eigenvalues for the uncoupled modes, is

X' —2(n + ) A + (QF + 03 + 4oy @y — a19a9) )N + (O + Q)N + Q5 = 0.
(2.51)

If there is no coupling (a;2ay; = 0) the roots of this equation arc Qf and
2 shifted by the perturbations represented by ;. Those values arc then
perturbed by an amount proportional to a2a9; when coupling is present. But
@202, is proportional to the square of a characteristic Mach number M, of
the mean flow. Thus a12a9; is small and a simple perturbation expansion of
Eq. (2.51) will show that the roots are shifted by amounts proportional to
a0, ~ M2

However, it is assumed in this study that terms of order M? and higher
can be dropped. Hence the effects of linear coupling, being of order M?, must
be dropped. Tt is of course possible that other sorts of linear coupling might
arise from F' and P’, but we will assume that those too arc negligible. Hence

‘the system (2.46) has the form
'ﬁn + w;—:,'r]n. = 20‘71.7:]11. + 2wn9n7]'n, + (Fn)nonlineara (252)

where the last term contains all nonlinear processes.
We will ignore nonlinear contributions from F' and P’. If also we continue

the practice followed in the previous works using this method and drop terms
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of order M, (M})? where M, is a characteristic Mach number for the unsteady
flow, then the gasdynamics to second-order lead eventually to [13]
oo o0
\GD . _
(Eb)nonlinear = Z [A7Lij7]i7,j + B‘nijmnj]’ (253)
=1 3=}
where

1 1 , - 2
Angj = E? / {ﬁ—:f(VT/"i - Vi + 54 Vi )

+ (Vi - V)V,] - V'i/)n}dV, (2.54)

k2 13.72‘

1 o2
© (Ve - Ty + 305V + iV - Vi JdV.  (2.55)

Bpij = ——=
nij E,% ' 5

The analysis as developed so far is very general. It can be applied to
a chamber of arbitrary geometry. However, the special case of a cylindrical
chamber is often of interest when dealing with rocket motors. We will therefore
restrict the investigation to the case of a cylindrical chamber of radius 2 and

length L. For this case, the mode shapes are given by

cos mé
tn (1) = €08 kiz Ty (KmsT) (2.56)
sin mé,

with the wave number of the ny;, mode defined as
2 12, .2
kn = ]ﬁ:[ + /‘\zms.

The eigenvalues k; are I /L, while the values of k,, are found by solving for
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the roots of the derivative of the Bessel funetion.

dJ m ( foms 7')

ar = (2.01)

r=R

2.5 The Method of Time-Averaging

In previous work based on the approximate analysis, considerable use has
been made of the first-order equations produced by time-averaging Eq. (2.46),
beginning with Culick [12, 13]. The idea is that in many applications, the
oscillations have slowly varying amplitudes and phase: only small fractional
changes occur during one period of the fundamental mode. For this type of
oscillation, the mecthod of time-averaging developed by Krylov and Bogoli-
ubov [44] allows the system of second-order equations to be transformed into
a simpler system of first-order cquations.

For an oscillation with slowly varying amplitude and phase, it is reasonablc

to write the amplitude 7, in the following form.
Na(t) = 7o (1) sin (wpt + @ (1)) = An(t) sinwnt + By (t) coswnt (2.58)

where 1, (1), ¢n(1), An(?), and B, (t) are assumed to be slowly varying functions

of time. Using this representation, the velocity of the oscillator becomes
Ma(t) = Apwn, cos wpt — Bywy sinwy,t + [An sin w,,t + By, cos wWpt]. (2.59)

Assuming that the amplitudes are slowly varying functions of time implies

that

Apmy << 1, (2.60)

B, << 1. (2.61)
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. The above inequalities indicate that the bracketed terms in Eq. (2.59) are

negligible compared with the first two terms. In fact, since we have introduced
. two functions in place of 7,, we have the freedom to impose an additional

constraint on A, and By, and we require that [9]
A, sinwyt + B, coswpt = 0. (2.62)

Upon isubstituting Eq. (2.58) in (2.46), applying the above constraint, and
averaging over one period of the fundamental mode, we obtain a system of

first-order differential equations for the amplitudes A, and B,.

An 1 t+71
4 _ / F, cosw,t'dt’ (2.63)
dt WnT1 Jy
dB 1 [Hm
dtn == / F, sinwyt'dt’ (2.64)
nT1 Jy

When the integrals are carried out, A,, and B, appearing in F,, are treated as
constants since they vary little in the time 7y of integration.

This form of the time-averaged equations has been used extensively in the
past. When applying the methods of dynamical systems theory, however, it
will be more efficient to use the variables r, and ¢,. Performing the same
procedure above with the variables r, and ¢, leads to the following time-

averaged equations.

d’l"h 1 st ’ !
. F, cos(wnt’ + ¢y)dl (2.65)
n t
d 1 t+71
n—%ﬁ = / F, sin(wnt' + ¢y, )dt’ (2.66)
n'l Jt

Substantial progress has been made using the time-averaged equations,
especially when used in conjunction with truncation to two modes. As men-

tioned in Chapter 1, analytic solutions are obtained for a limited number of
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casés, a significant accomplishment given the complexity of the original prob-
lem [51, 17]. Time-averaging and truncation to a small number of modes
. can change thé behavior of the solutions, however, and results must be com-
pared to the .1'esults obtained for the original oscillator equations. One way of
checking these approximations is through the use of dynamical systems theory
covered in the next chapter. In Chapter 4, we will use this theory to explore

the validity of the time-averaged equations.



Chapter 3

Dynamical Systems Theory

Numerical simulations, such as those shown in Figs. 1.1-1.3, provide detailed
information for one specific set of parameters and initial conditions. Each run
is a special case, and it is an expensive and tedious process to obtain general
trends. A better way to study the behavior of a system of nonlinear equations
is through the use of dynamical systems theory.

Dynamical systems theory has proven to be a very useful tool in the study
of systems of ordinary differential equations. Although this theory has been
used extensively in other fields, it has only recently been applied to the study
of nonlinear combustion instabilities, first by Jahnke and Culick [38]. When
applied to the system of equations derived in the approximate analysis, dy-
namical systems theory provides a systematic approach for determining general
trends. For instance, regions of possible triggering can easily be located using

“the tools.of dynamical systems theory.

In particular, the methods of dynamical systems theory can be used to
create bifurcation diagrams which provide a visual representation of nonlinear
equations by plotting the equilibrium points of a.system as a function of one
parameter. For a given value of this parameter, a bifurcation diagram shows
all possible states of the system and the stability of these states. This is

best illustrated by looking at two sample diagrams which correspond to the
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silﬁlil;itions in Figs. 1.1-1.3.

The bifurcation diagram in Fig. 3.1 corresponds to the spontancous os-
. cillation of Flg 1.1. All modes except the first acoustic mode are linearly
stable. Therefore, when the linear growth ratc of the first mode is negative,
i.e., oy < 0, the system is linearly stable, and when it is positive, the system
is linearly unstable. From this diagram, we see that for a positive value of
¢y, there are-two cquilibrium points; one unstable steady state and one sta-
ble limit cycle (for clarity, only the maximum value attained in limit cycle is
plotted). Since the steady state is unstable, any perturbation from it will be

attracted to the periodic solution.

|771 Imax
—— Stable steady state
------------ Unstable steady state _— ”
—— Stable limit cycle ' _—

&3}

Figure 3.1 Example of a supercritical bifurcation, characteristic
of a spontaneous oscillation

In the case of a pulsed oscillation, the system is linearly stable, so o
‘must be negative. Figure 3.2 corresponds to the pulsed oscillation shown in
Figs. 1.2 and 1.3. For the chosen value of ¢4, there are now three equilibrium
points; a stable steady state, an unstable limit cycle, and a stable limit cycle.
Depending on the initial conditions, the system can be drawn to either of the
stable solutions, as illustrated in Fig. 3.2 for two different initial pulses. For
a one-dimensional system, the branch of unstable limit cycles represents the

boundary between the region of attraction of the steady state and the region
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of attraction of the limit cycle. However, for a multi-dimensional system, it is
not so simple, The regions of attraction depend on the initial conditions in all
. modes, not just the mode pictured in the diagram. This will be demonstrated

in Sec. 5.3.3 for several different rectangular pulses.

|771|max

-
e
4

7 —— Stable steady state
Unstable steady state

/)/!4 'i‘ —— Stable limit cycle
Unstable s

Initial Pulse AT B Unstable limit cycle

Stable / o

Initial Pulse

Figure 3.2 Example of a subcritical bifurcation corresponding to
the simulations in Figs. 1.2 and 1.3

The previous bifurcation diagrams were generated through the use of lo-
cal continuation methods. Using these methods, steady states and periodic
solutions may be traced as functions of a free parameter of the system, thus
allowing the global behavior of the system to be determined. In addition,
two-parameter continuations can be used to track loci of turning points, or
folds. Continuation methods and their application to the nonlinear acoustic

-equations will be described in the following sections.
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3.1 Calculation of Steady States

The nonlinear acoustic equations (2.46) comprise an autonomous system of

ordinary differential equations. The general form of such a system is

Li—"f = F(z, 1), (3.1)
where x is the set of unknowns and p is a paramcter of the system. Sys-
tems with higher-order time derivatives can always be put into this form by
a suitable change of variables. The change of variables for the acoustic equa-
tions (2.46) will be introduced in Sec. 3.5.

The usual starting point in the analysis of a nonlinear system of the
form (3.1) is to calculate the steady states of the system and determine the
local stability of these states. The steady states arc found by setting all time

derivatives in Eq. (3.1) to zero and solving the resulting set of equations,
F(z,pp) = 0. (3.2)

There are many methods, e.g., Newton’s method, which can be used to solve
for the zeros of this function, but it is not always a trivial step for a general
nonlinear system. For our purposes, determination of the steady states of
Eq. 2.46 is of little concern since the only physically realistic steady state is
the trivial one, n,, = 0 for all n. Of greater importance is whether or not this
steady state is linearly stable or unstable, i.c., what is the local stability of
these steady states?

The local stability of a stcady state of a nonlinear system can be deter-
mined using the Hartman-Grobman linearization theorem [33, page 13}. This
theorem proves that the local stability is determined by the eigenvalues of the

Jacobian matrix of the linearized system. Let & = &+ dx, where Z is a steady
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: state found by solving Eq. (3.2) and dz < 1. Using a Taylor series expansion,
the system can then be linearized about the steady state . The linearized

. system is given by
d& = Fyp(z, u)ox, (3.3)

where F(Z, ) is the Jacobian of the function F(x, ) evaluated at . Ac-
cording to the Hartman-Grobman theorem, if no eigenvalues of F(Z, 1) have
positive real. parts, then the steady state is locally stable. If any of the real
parts of the eigenvalues are positive, then the steady state is locally unstable.
When one or more eigenvalues have a zero real part, the stability of the system
can change and lead to a qualitatively different behavior of the system. Points
where the stability of the system changes are known as bifurcation points.
Many different types of bifurcations can occur in a nonlinear system, al-
though only three types are commonly found in our analysis. The type of
bifurcation is determined by the number of eigenvalues with zero real parts.
A pitchfork bifurcation occurs when one real eigenvalue is equal to zero and
F,(%,p) = 0. Two additional branches of steady states are created or de-
stroyed at a pitchfork bifurcation, as the name implies. A turning point bi-
furcation, or fold, is characterized by F,(Z,p) # 0 and a change in sign of
du(x)/dx. By the factorization theorem, a change in stability of solutions
takes place when du(x)/de changes sign [36, page 22|
» Perhaps the most iﬁlportant bifurcation in the study of combustion insta-
bilities is the Hopf bifurcation, which occurs when a pair of purely imaginary
eigenvalues exist [1, page 212]. At a Hopf bifurcation, a branch of periodic
solutions is created. The branch of periodic solutions produced at a Hopf
bifurcation may be either stable or unstable, as demonstrated in Figs. 3.1
and 3.2. If the branch of periodic solutions is initially stable (a fold or other

bifurcation may later change the stability), the bifurcation is said to be su-
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perérz'tz'cal. If it is initially unstable, the branch is said to be subcritical. As
Fig. 3.2 demonstrates, the combination of a subcritical bifurcation followed by
. afold in the branch leads to the possibility of triggering. Therefore, subcritical

bifurcations are important in the study of pulsed oscillations.

3.2 Continuation of Steady States

From a known steady state (x,, &), it is possible to calculate a nearby steady
state (x,+ dx, 4, + o) using a local continuation method. The basis for such
a continuation method is the implicit function theorem [36, page 13]. This
theorem proves that for a continuously differentiable system, the steady states
arc continuous functions of the parameters of the system. Therefore, solutions
of Eq. (3.2) are continuous functions of the parameter y, so long as F(x, p) is
sufficiently smooth.

The current investigation uses the package AUTO by Doedel [26, 27] to
perform continuations of stationary states, i.e., steady states and periodic
orbits. The general method as applied to steady states will be outlined in this
section. Many of the details are omitted here since the continuation method is
simply a tool used to study the system; see Doedel ct al. [24, 25] and Kcller [41]
for more details on the continuation method, and Jahnke and Culick [37] for
application to the nonlinear acoustic equations.

One way of calculating solutions along a branch of steady states is to use
i as the continuation parameter. However, with this choice, the continuation
method breaks down when a fold is encountered [41, page 74]. To avoid this
shortcoming, AUTO uses the pseudoarclength continuation technique devel-
oped by Keller [40]. First, a new parameter s is defined which represents the

arclength along the branch of steady states. Both = and p are considered to
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be unknown functions of s. Therefore, we are now seeking solutions to

F(a(s), u(s)) = 0. (3.4)

By making y an unknown, we have increased the number of unknowns by one.

To close the system, we require that

(") + (1) =1, (3.5)
where
o = dx
ds’
ph= d
ds’

The slope of the branch can be determined by taking the derivative of F(x(s), u(s))

with respect to s. Using the chain rule, we obtain
Fex'+ F,u' =0. (3.6)

However, calculating the slope in this manner requires the inversion of the
matrix (F, — F},), a numerically expensive calculation. A less expensive
procedure can be used when two steady states, e.g., (xg, po) and (1, uy),
‘are known. In this case, AUTO approximates the above derivatives by the

following formulas.

T =— (3.7)

p = W T o) (3.8)
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It is also useful to approximate Eq. (3.5) by
(x ~—®)a) + (1~ )y — As = 0. (3.9)

The computational process then consists of the following steps [37].

e Approximate &’ and ' at the previous steady state using Egs. (3.7)

and (3.8).

e Calculate an approximation to the new steady state using € = z;+a|As

and o =y + piAs.

e Reduce the crror between the approximate steady state and the actual
steady state to an acceptable level using Newton’s method in the follow-

ing way.
LTir| = ; — F;l(ﬂ?z‘, /L])F(ﬂ)i, H‘l) (310)

In order to determine the stability of the steady states and find bifurcations
of the system, the eigenvalucs of the Jacobian are also computed at each
step. When a bifurcation is found, AUTO allows branch-switching in order to

calculate solutions along any new branches.

3.3 Continuation of Periodic Solutions

A periodic solution of Eq. (3.1) is found by solving

& — 7F(z(t), 1) =0, | (3.11)
z(0) —z(1) =0,
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where time has been rescaled by 7, the period of the orbit. The system (3.11)
is not unique since if () is a solution, then &(t + o) is also a solution. This

. arbitrary phase shift can be removed by minimizing the function [26]

4(o) = /0 &(t + o) — @y ()| B, (3.12)

where x;_; is a known periodic orbit. Setting the derivative of Eq. (3.12) equal
to zero and integrating by parts yiclds an integral condition which closes the

system.

fl z(t)z)_, (t)dt =0 (3.13)

To allow continuation past folds, the above system of equations (3.11) and (3.13)
is reformulated in terms of the pseudoarclength continuation technique. Fi-

nally, the periodic solution is discretized in time allowing the computation to

be transformed to a continuation of stecady states, as illustrated in Fig. 3.3 for

the current system of interest. The details of this procedure and its implemen-

tation in AUTO are described well in Doedel et al. [25] and will be omitted

here.

Bifurcations of a periodic orbit can also occur. In the case of periodic orbits,
the type of bifurcation is determined by the number of Floquet multipliers
with modulus equal to one.* One Floquet multiplier is always located at
"z = 1 due to periodicity. A second Floquet multiplier at z = 1 signifies a
pitchfork bifurcation, which creates or destroys two additional branches of
periodic solutions. A period-doubling bifurcation occurs when one Floquet
multiplier is located at z = —1. Finally, a torus bifurcation occurs when a

complex pair of Floquet multipliers has magnitude of one [26, page 48).

*A brief overview of Floquet theory is given in Appendix A; see Iooss and Joseph [36,
Sec. VIL6] or Guckenheimer and Holmes [33, Sec. 1.5] for more details.
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n 7] max

1

Figure 3.3 Illustration of discretization for the periodic solution
continuation method

The stability of periodic solutions is also determined by the Floquet mul-
tipliers. If any Floquet multipliers have modulus greater than 1, i.e., |z| > 1,
the periodic solution is unstable. Only if all Floquet multipliers (other than

the one at z = 1) have modulus less than 1 is the limit cycle stable.

3.4 Continuation of Folds

1t is often interesting to know how the location of a fold varies with a second
parameter. For instance, when studying the possibility of triggering, we may
wish to know how the region of possible triggering varies with another pa-
rameter, say the strength of coupling to combustion processes. AUTO allows
the locus of folds to be continued as a function of two parameters. This is

accomplished by performing a pseudoarclength continuation of the following
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system:

F(z(s), u(s), Ms)) = 0,
Fi(x(s), pu(s), A(s))#(s) = 0, (3.14)
$(s) o — 1 =0,
(@ — o) @y + (& — ¢o) g + (1 — o)y + (A — Ao) Xy — As = 0,

where A is a second parameter and ¢ is an eigenvector found by solving the
equation Fy(x(s), A(s))¢(s) = k(s)d(s).

The above procedure is for the continuation of folds in branches of steady
states. The method can be extended to accommodate folds of periodic solution
branches as well. AUTO allows continuation of folds in branches of both steady

states and periodic solutions.

3.5 Application to the Nonlinear Acoustic
Equations

To apply dynamical systems theory to the nonlinear acoustic equations, it is
necessary to transform the system from second-order to first-order. This is

accomplished by defining a new variable ¢, such that
Cn = T'I'n,- (315)

When this new variable is substituted into the second-order system of equa-

tions (2.52), we obtain the first-order system of 2n equations,

"-]n = Cn; (316)
én = 20,7 + (2wnb, — w,‘fl)nn + (F,,,)NL. (3.17)
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If we let

o (3.18)

Cn

in Eq. (3.1), then all of the methods of dynamical systems can be readily
applied. In most cases, the continuation parameter is chosen to be the linear
growth rate of the fundamental mode so that ¢ = ;. In the study of the
second longitudinal mode instability covered in the next chapter, however, it
is more appropriate to chose the linear growth rate of the second mode.

When using the time-averaged equations, the main branches consist of
steady states instead of periodic solutions. The time-averaged equations as

developed in Chapter 2 are

1 t+711
Ty = QpTy + - / (Fn)NL cos(wpt’ + ¢n)dt’, (3.19)
1.J4

. 1 t+711
Tngn = ~Ontn — — / (Fo)NE sin(wnt’ + ¢,)dt'. (3.20)
1.J¢

If the equations are modified somewhat, a steady state continuation method
may be used. In a limit cycle, q.Sn is constant, but not necessarily equal to zero.

However, if we define a new variable for the phase shift as

@, (t) = ng1 — ¢y, (3.21)

we find that d,, is equal to zero in a limit cycle. Therefore, for the time-

averaged equations, we define
T = , (3.22)
and a steady state continuation method can then be used instead of a more ex-

pensive continuation method for periodic solutions. In addition, the dimension

of the system is reduced to 2n — 1 since ®; = 0.
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Chapter 4

Nonlinear Gasdynamics: The
Consequences of Truncation and

Time-Averaging

Many previous investigations have used the approximate analysis developed
in Chapter 2 to study the influence of nonlinear gasdynamics in a cylindrical
combustion chamber. Most of those investigations have also used the approxi-
mations of time-averaging and truncation to a small number of modes in order
to simplify the system of equations. The effects of truncation were examined
by Jahnke and Culick [39], but the effects of time-averaging have not been
properly studied, especially when more than two modes are included. The
cost of calculating solutions for the time-averaged equations is much lower
than for the original equations, particularly when the methods of dynamical
Asystems theory are uséd; a steady state continuation method is much more
efficient than a continuation of periodic solutions. Therefore, it is desirable
to use the time-averaged equations as long as they produce correct results.
In this chapter, we will determine the effects of the method of time-averaging
on the case of longitudinal modes in a cylindrical chamber. We will also use
dynamical systems theory to study transverse modes in a cylindrical chamber,

a case not previously treated using these methods.
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»

4.1 Longitudinal Modes

Oscillations in solid propellant rocket motors often involve mainly fluctuations
" in the axial direction. If we restrict the analysis to longitudinal modes in a

uniform chamber, the mode shapes are given by
Yy = cos kn, (4.1)

where the wave number of the ny, mode is k&, = % Thus, the frequencies for
longitudinal modes are integral multiples of the fundamental frequency, i.e.,
wp = nw;. This simplifies the equations by transforming the double sum in
Eq. (2.53) to two single sums. The resulting equations are [51]

ﬁn + wi"?n = 2an7;}n + 2wn0n77n - Z[C( )7717]77, i+ Dgz)nz'r]n z]

i=1

- Z[C(z)nznnﬂ + Dm)nznn—m] (Fn)g?ﬁera (4~2)

where the term (F,)XE  contains any nonlinear contribution other than gas-

other

dynamics to second-order and the nonlinear gasdynamic coefficients are given

by

CLY = g+ iln = (7 = D), (4.30)
O = =g i+ 5 = 1), (4:3b)
DY) = %"—%W — 2i(n — 1)), (4.3¢)
DY = @—fiﬁ[n + 2i(n + 1)) (4.3d)

The system of equations (4.2) will henceforth be referred to as the original

oscillator equations.
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X
To determ‘ine the effécts of time-averaging, results for the original oscilla-
tor equations will be compared to results for the corresponding time-averaged
. equations. Apf)lication of the method of time-averaging as outlined in Chap-
ter 2 leads to the following set of equations.

n—1
drn

o anrn+ Bwnann icos(®, — ®; — P,,_;) (4.4a)

+ Buwn, Z TiTnti COS(Pppi — ®; — @)

1=1

1 t+7
+ — (Fn)oNt%ler cos(wnt’ + ¢n)dt,7
dé 1. -
n .
Tn dt s _Hnrn + iﬁwn E TiTn—g Sln(‘I)n - (I)z - (I)n_z) (44b)

i=1

o0

+ Bwy Z TiTp4i SIN( Py — D, — By,)
t+7'1

- —/ other Sln(wnt + ¢n)dt,

where ®, = n¢; — ¢,, and 3 = (1 + 7)/87.
In this chapter, we are interested in nonlinear contributions from gasdy-

namics only. Therefore, we assume here that (F,,)Nt . = 0 in both the original

other —
oscillator and the time-averaged equations. The effects of other nonlinear

contributions will be dealt with in subsequent chapters.

4.1.1 First Mode Instability

In many cases of interest, the first mode is linearly unstable, and the remain-
ing modes are linearly stable. This occurs because unsteady energy release
often affects primarily the fundamental mode, while dissipation from particle

damping, etc., is often larger for higher frequencies. Paparizos and Culick [51]
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2
studied the case of a first mode instability using the two mode, time-averaged
equations. Later, Jahnke and Culick [39] used dynamical systems theory to

_determine the effects of truncation on the system of equations. In this section,

| n | 1 2 3 1 41 5 | 6 |
an, (sec™?) [0 — 300 | -324.8 [ -583.6 [ -889.4 [ -1262.7 [ -1500.0
O, (rad/sec) [ 129 | 46.8 | -29.3 |-131.0 | -280.0 | -300.0

Table 4.1 Linear growth rates and frequency shifts for the first
mode instability

we will investigate the other approximation, namely time-averaging, when the
first mode is unstable. The linear growth rates and frequency shifts in Ta-
ble 4.1 will be used; the fundamental frequency w; is 5654.87 rad/sec.

In their study of the first mode instability, Paparizos and Culick found a
stability boundary for the two mode, time-averaged equations. For values of
o > —%aQ, no stable limit cycles exist. Jahnke and Culick compared these
results with those obtained using the original oscillator equations. As shown
in Fig. 4.1, the two mode, original oscillator equations produce a turning point
bifurcation at a;; = 146.2 sec™. Above this value, no stable limit cycles exist.
For this particular case, there is good agreement between the two results up
to a; ~ 120 sec!. Closer to the turning point bifurcation and the stability
boundary, the results diverge.

. When four modes aré included in the analysis, a turning point bifurcation
does not appear in results for the original oscillator equations, as shown in
Figs. 4.2-4.5 for modes one to four. The time-averaged equations still produce
a stability boundary, but it occurs for a higher value of a;. Now, the time-
averaged results are accurate up to a; =~ 200 sec™!. In the six mode case, the
range is increased even more, as shown in Figs. 4.6 for the first mode. Results

for more than six modes were also calculated, and this trend continued as
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Figure 4.1 Maximum amplitude of 7 in limit cycle for the time-
averaged and original oscillator equations; first longitudinal
mode instability, two modes

more modes were included; see Figs. 4.7 and 4.8 for eight and ten modes,
respectively.

It is evident that if a sufficient nuinber of modes is used, the time-averaged
equations can adequately predict the amplitudes of acoustic modes in a highly
unstable system. Although the limit cycle amplitudes do not match exactly
for very high values of a;, the agreement is good until the amplitudes become
large. It must not be forgotten that both sets of equations are based on
a perturbation method, and results are not valid for ‘large’ amplitudes, say
greater than 0.3 or so.

The previous figures also show another interesting result. One major con-
clusion of the investigation by Jahnke and Culick concerned the stability
boundary produced by the time-averaged equat.ibns when truncated to two
modes. It was reported that this stability boundary was an artifact of trun-
cation to two modes and not a result of the method of time-averaging. Closer

inspection of the current results reveals that this is not true. As more modes
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x
are included with the tinie-averaged equations, the stability boundary shifts to
a larger value of a;, but the boundary is still present as illustrated in Fig. 4.9.
_ The turning pkoint produced by the original oscillator equations is, in fact, a
consequence of truncation to two modes sinc‘e no turning point is found when
using a higher number of modes. However, the time-averaged equations ap-
pear to produce a stability boundary, no matter how many modes are included

in the analysis.

4.1.2 Second Mode Instability

The previous section has shown that the time-averaged equations can yield
satisfactory results for the case of a first mode instability. This case is fairly
simple; no additional bifurcation points have been found. The case of a second
mode instability, however, can be more complicated, as shown by Jahnke and
Culick [39, 38]. For small values of as, the odd-numbered modes are unex-
cited while only the even-numbered modes have non-zero amplitudes. As the
system becomes more unstable, these modes can become excited via a period-
doubling bifurcation if an insufficient number of modes is included. Additional
bifurcations, such as torus bifurcations, have also been found when the second
mode is unstable. The values in Table 4.2 were used by Jahnke and Culick
and will be used here as well to determine the effects of time-averaging when

the second mode is unstable.

[ n [Tt 2 [ 31 415 [ 6 |
an (sec?) || -84.9 | 0 — 200 | -161.0 | -279.4 | -329.7 | -520.2
0, (rad/sec) | -66.7 | 12.9 | 1082 | 468 | 88 | -29.3

Table 4.2 Linear growth rates and frequency shifts for the second
mode instability .
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In their study of a second mode instability, Jahnke and Culick [37] obtained
results for truncation to four modes using both the time-averaged and original
. oscillator equétions. However, results for the time-averaged equations were
qualitatively -incorrect. Only one branch of limit cycles was reported, while at
least two other branches are present. Two additional bifurcations, one period-
doubling bifurcation and one Hopf bifurcation, are also found as shown in
Figs. 4.10-4.13.

Bifurcation diagrams for the time-averaged equations are difficult to obtain
when the second mode is unstable, so it is possible that other branches may
also be present. Due to the combination of unexcited modes along with a
singularity for r, = 0, it is not possible to construct the bifurcation diagrams
in the normél fashion. The modified computational process is as follows. First,
compute a steady state (i, @, = 0 for all n) for a small value of o, using only
the second and fourth modes in the simulation. This state is then used with
the continuation method to generate the primary branch, i.e., the one reported
by Jahnke and Culick. Next, a search for other steady states and/or periodic
solutions is performed for different values of oy using all four modes. When
a stationary solution is found, the continuation method allows this branch to
be calculated as well.

Creating a bifurcation diagram in this manner is less than ideal since bi-
furcations of the full system cannot be located while using only the even-
numbered modes. It is therefore difficult to determine if all branches have
been discovered. It should be noted, however, that it is always difficult to
know whether or not all possible states of the system have been located due
to the possibility of isolated solutions [36].

In any case, application of time-averaging along with truncation to four
modes produces a very interesting result for the second mode instability. This

is the first case reported in which two stable periodic solutions have been
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found for the same values of the linear parameters. As seen in Figs. 4.10-4.13,
there is a small range of o, which contains two branches of stable limit cycles.

. Which stable iimit cycle is reached depends upon the initial conditions, as
demonstrated in Figs. 4.14 and 4.15. When more modes are included in the
analysis, this behavior, i.e., that shown in Figs. 4.10-4.13, no longer occurs.
It is clearly a direct result of truncation to a small number of modes and is
therefore of little cohsequence in the overall picture. It does, however, illustrate
the complexity of the system of equations, even when truncated to only a few
modes.

Results obtained by Jahnke and Culick [37] for the four mode case showed
that the agreement between the original oscillator and time-averaged equations
is good for mildly unstable systems. We will now look at the six mode approx-
imation to determine if the inclusion of more modes extends this to a more
linearly unstable system. We would also like to establish whether the time-
averaged equations can accurately predict the complex behavior produced by
the original oscillator equations.

The bifurcation diagrams for the six mode case were produced using the
procedure outlined above. As shown in Figs. 4.16-4.21, the results for the
two sets of equations are qualitatively similar, although the locations of the
additional bifurcations are not exact. As in the first mode instability, a sta-
bility boundary exists which appears to influence the accuracy of results. As
more rﬁodes are included, the boundary shifts to a higher value of as, and the
time—averziged results are then accurate over a larger range of oy as well.

It was previously shown by Jahnke and Culick [39] that the period-doubling
bifurcation produced by the original oscillator equations is a result of trunca-
tion. This is also the case for the time-averaged equations. Figure 4.22 shows
a comparison of results for the 16 mode, time-averaged equations and the re-

sults obtained by Jahnke and Culick for the original oscillator equations (only
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>
the second mode is included for brevity). For this range of as, no additional
bifurcations are found, and the odd-numbered modes remain unexcited. In
.addition, the a;mplitudes are in close agreement over the entire range.

The previous sections have shown that the time-averaged equations can
produce good results in the cases of a first or second longitudinal mode insta-
bility. This is a very useful result since the time-averaged equations can be
used at a substantial savings compared with the original oscillator equations.
However, the following points should be kept in mind whenever using these
equations. 1) The approximate analysis is based on a perturbation method
which assumes that p'/p is a small quantity. Therefore, results with large
amplitudes are not valid. 2) The accuracy of results depends on the number
of modes included in the analysis: the more highly unstable the system, the
higher the number of modes needed to obtain good accuracy. In particular,
agreement between the two sets of equations is good only sufficiently far from

the stability boundary produced by time-averaging.
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Figure 4.22 Maximum amplitude of 72 in limit cycle for the time-
averaged and original oscillator equations; second longitudinal
mode instability, 16 modes
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4.2 Transverse Modes

~Several previous works have studied transverse oscillations in a uniform cylin-
“drical chamber using the approximate analysis [55, 57, 42]. Those investiga-
tions have used the additional approximations of time-averaging and trunca-
tion to a small number of modes in order to obtain analytical solutions. In
this section, we will apply the methods of dynamical systems theory to cases
involving traI{sverse modes. We will also study the role of nonlinear gasdy-
namics in the formation of limit cycles using the analytical results obtained
by Yang and Culick [55].
When dealing with transverse oscillations, an extra degree of freedom al-
lows the possibility of both standing and spinning modes. In this study, we
will treat only the case of standing transverse modes by restricting the mode

shapes to only one of the two azimuthal eigenvalues. The mode shapes are

then defined by
Y (1) = I (KmsT) cOsméb. (4.5)

The wave number of the ny, mode k, is now equal to k,,; and is determined
by solving Eq. (2.57). Table 4.3 is a list of the wave numbers for the modes
which will be used in this section. Note that, unlike longitudinal modes, the
wave numbers and thus the natural frequencies are not integral multiples of
the fundamental mode.- Also, the nonlinear gasdynamic coefficients A,;; and
Bij for transverse modes involve integration of Bessel functions. Closed form
solutions are difficult to obtain, and the values will thus be calculated by
numerical integration.

Yang and Culick [55] studied the conditions for existence and stability of
limit cycles for transverse modes using the time-averaged equations truncated

to a small number of modes. The amplitudes of oscillations were found to
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0 1 2 3 4 3] 6
3.8317 1.8412 | 3.0542 | 4.2012 | 5.3176 | 6.4156 | 7.5013
7.0156 | 5.3314 | 6.7061 | 8.0152 | 9.2824 | 10.5199 | 11.7349
10.1735 | 8.5363 | 9.9695 | 11.3459 | 12.6819 | 13.9872 | 15.2682

Table 4.3 Nondimensional wave numbers for transverse modes,
(kmsR)

be quite large, even for reasonable values of the linear growth rates. We will
investigate two of the cases treated by Yang and Culick to determine the reason

that such high amplitudes were attained.

4.2.1 Tangential Oscillations

Of the cases studied by Yang and Culick [55], the case involving only the
first and second tangential modes produced the largest amplitudes. In fact,
all results for this case were outside the range of validity of the approximate
analysis. An example of a numerical simulation of the time-averaged equations
is shown in Fig. 4.23.

Truncation to a small number of modes can have a substantial effect on the
amplitudes of oscillations in some cases. It was suggested by Yang and Culick
that this may be partly responsible for the large amplitudes. To determine the
effects of truncation on tangential oscillations, results for the original oscillator
equations with truncation to two, four, and six modes are compared. Asshown
in Fig. 4.24, inclusion of more modes had an effect on the amplitudes as ar
increases. However, the results are valid only for Very small values of o, due
to the large amplitudes that are reached. Below a,, 2 0.0002 sec™!, there is
virtually no difference between results obtained using two, four, and six modes.

It was also determined that including tangential modes with higher values of s
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has little effect on the amplitudes. It is thus evident that the high amplitudes
found by Yang and Culick are not the result of truncation to a small number
.of modes. |

The energy balance among acoustic modes is very important in the forma-
tion of limit ¢ycles [51]. The simplest case of a limit cycle consists of onc mode
which provides cnergy, one mode which dissipates energy, and a mechanism
which transfers energy between the two. In order to better understand the case
of tangential oscillations, we will investigate the balance of energy between the
first and second tangential modes using the time-averaged equations. The first
tangential mode will be unstable, while the second will be stable.

In terms of the amplitude r,,, the nondimensional cnergy in an acoustic

mode is defined as [46]

enlt) = (i ) 720 (16)

where E? is the inner product defined in Chapter 2. This definition of energy
is different than the definition used in the investigation by Yang and Culick.
The previous definition referred to the energy in the oscillator, not the energy
in the acoustic mode. Differentiation of Eq. (4.6) with respect to time yields

the rate of change of energy in the acoustic mode.

de, E? dry,
=2 oy, — 4.7
dt ( R?L ) "t (4.7)

Thus, in order to study the energy balance in detail, we need an expression

for dr,/dt.
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As derived in Yang and Culick [65], the time-averaged equations for the

amplitudes and phase difference of the first and second tangential modes are

drr

prale QpTip + QpTypTer €08 X, (4.8)
d
;;T = QypTyr + bTrfT cos Xr, (4.9)
dX 2
L = 20,0 + Oy + Qor — (ZaTr2T + bTTﬂ) sin X, (4.10)
dt . Tor

where

XT(t) = 2¢1T - ¢2T + Qtha
Qyr = 2wy — War,

a4y = —0.0521 (%) ,

by = 0.1873 (%) .

Substitution of Egs. (4.8) and (4.9) in (4.7) gives the rate of change of energy

in the first two tangential modes.

d
Z;T = 2040811 + 2076, 7751 €OS X1 (4.11)
d 2
T o ey + 2brar (fﬂ) cos Xx (4.12)
dt 2T

In the above equations, the first term in each equation represents the rate of
énergy production/dissipation in the acoustic mode, while the second term
represents the rate of energy transfer into/out of the mode.

Based on the results for longitudinal modes by Paparizos and Culick [51},
we expect that the sum of linear energy production and linear energy dissipa-
tion should equal zero in limit cycle, i.e., Y 20y, = 0. Although it has not

been proven formally for the case of transverse modes, numerical results show
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that for the first and second tangential modes,
200,111 + 201607 & 0. (4.13)

Atteﬁnpts at a formal proof have been unsuccessful so far due to the complex
nature of transverse modes. This topic will be the subject of futurc work.

The rate of energy transfer between modes depends on the phase difference
X7, so it is important to examine this variable more closely and determine its
role in the balance of energy. In particular, we are interested in cos X since
it is a measure of the efliciency of the energy transter mechanism. We will
first look at the limiting value of cos X7 in limit cycle, and then examine its
transient behavior.

In limit cycle, the amplitudes r,, and the phase difference X, are constant.
Therefore, the time derivatives in Eqgs. (4.8)-(4.10) vanish, and the system

becomes

QT T + G,TT[T’I'QT COS X’[\ == 0, (4.]4)
QyrTar + Do cos Xp = 0, (4.15)
2
‘-291’1‘ + 02’}’ + SZZT ha (20;1‘7”2’]’* + b'r':‘—‘ll) Sirl XT - 0. (4.16)
2T

From Eq. (4.16), it is easy to see that

—20,, + 6 ‘
sin X, = 0 O & S ) (4.17)

2
. T
2(1"]‘7 2’]" b’[‘ Tz'l‘

After substitution for r,; and r,; from Egs. (4.14) and (4.15) followed by some
straightforward algebra, we find that

2 - (2a1T + a21‘)2
> T = =. 4.18
cos® X (200r + aa2)2 + (2017 — Oyr — Slar)? ( )
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*
This is an important relation as it reveals much information about the
energy transfer between modes. Two results can be obtained immediately
. from this equation. First, when the numerator 2a;; + a,r is equal to zero,

then.
cos X = 0. (4.19)

In terms of the energy balance, this relation corresponds to a complete absence

of energy transfer between modes, as inspection of Eqs. (4.11) and (4.12)

1

shows. As a result, a stability boundary occurs when a7 = —3

a,p due to
the lack of energy transfer. Closer inspection of the equations for longitudinal
modes shows that this, i.e., zero energy transfer between modes, is the cause
for the stability boundary in that case as well.

A second result is found when the second term in the denominator of

Eq. (4.18) is equal to zero, i.e., 26,; — 0,y — Qyr = 0. In a more illustrative

form, this is equivalent to
CUQT - 02T = 2 (wlT — HIT) . (4.20)

Hence, if the shifted linear frequency™ of the second tangential mode is exactly

twice the shifted linear frequency of the first tangential mode, then
|cos Xq| =1, : (4.21)

and the energy transfer between modes is most efficient. If the shifted linear
frequency of the second tangential mode is not exactly twice that of the first,
then the energy transfer is less efficient and the amplitudes must become

larger in order to attain a balance between the rate of energy transfer between

*By shifted linear frequency, we mean the unperturbed natural frequency shifted by
linear processes, i.e., w — 6.
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modes and the rates of eneré;y production /dissipation. For instance, in the
casc studied by Yang and Culick, 0, and 6,, were arbitrarily set to zero.
. The limiting value of | cos X1 is 0.143 so that the energy transfer mechanism
is only 14.3% as efficient as the case in which Eq. (4.20) is satisfied. This
inefficient, energy transfer is precisely the reason that such high amplitudes
were produced. Accurate modeling of all important lincar processes is needed
in order to obtain gbod quantitative results.

To illustrate the dramatic effect that linear frequency shifts can have on the
amplitudes of the tangential modes, bifurcation diagrams were generated using
the original oscillator equations. Figure 4.25 shows diagrams for three different
ratios of shifted frequencies, (w.y — 8yr)/(w,y — 61r). The arbitrary choice by
Yang and Culick of 8, = 8,, = 0 corresponds to (wyr — ) /(wr —bi7) = 1.66.
For this ratio of shifted frequencies, the amplitudes arc quite high, and the
results are valid only for very mildly unstable systems. When the ratio is
increased to 1.8, the amplitudes are reduced substantially. Finally, the smallest
amplitudes are attained when the ratio is cxactly equal to two, as indicated
above. The results arc then valid for a much larger range of ¢, in this case.

The effect of the lincar frequency shifts can also be secen directly in the
analytical results obtained by Yang and Culick. The limiting amplitudes for

the first and second tangential modes are

, 26,1 — Oor — Dar )
T'fTI QprpQigy [1+( 11 2T n) }, (422)

QgD 206, + Qor
511/2
Q7 20, — By — ? :
= ——2 {1+ . 4.23
Tor P |: ( 20«’1'1‘ + Qyp ( )

By inspection, we see that both r,; and r,; are minimum when Eq. (4.20) is
satisfied, i.c., 20;p — Byr — o = 0. As |26, — 85y — (2, increases, the ampli-

tudes for the first and second tangential modes increase as well. The stability
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Figure 4.25 Tlustration of the effect of frequency shift on limit cy-
cle amplitudes, first and second tangential modes; (R/a)or =
"0.1, 91T = 0

boundary is also easily identified in Eqs. (4.22) and (4.23). At the stability
boundary, the denominator 2c,y + a,y is equal to zero, and the amplitudes
become infinite.

As a side note, it is interesting that the analytical results for the first and
second longitudinal modes obtained by Paparizos and Culick [51] display these

same characteristics. The amplitude of the first longitudinal mode is given by

2
2 alLGfQL 201L - 02L
= — 1 —_— . 4.24
TIL ' /62 [ + (2a1L +a2L ( )

Both the stability boundary and the effect of the linear frequency shifts are

apparent. Of course, the frequency difference €2, = 2w;;, — wy, is equal to zero
and does not appear in this equation. In addition,. we can extend the require-
ment on linear frequency shifts to include higher modes for the longitudinal
case. By induction, it is easy to show that n#,, — 6,. = 0 leads to the most

efficient energy transfer; see Eq. (4.4).
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3

4.2.2 First Tangéntial and First Radial Modes

The time-averaged equations for this case are [55]

d
% = QT + ArTirT 1R COS XR, (4.25)
drip 9
el 0urTir + br7ip cos Xp, (4.26)
dX . 2
R = =200+ 0 + Qg — (2aRr1R + bR—Tl—T) sin Xk, (4.27)
dt Tir

where

XR(t) = 2(/511‘ - (blR + QlRta
Qg = 2wir — Wi,

a5, = 0.1570 (%) ,

by = —0.1054 (%) .

It should first be noted that the natural frequency difference for the first
radial mode |€2;z] is less than the frequency difference for the second tangential
mode |Q,r|. When the frequency shifts 0, are set to zero as in the study by
Yang and Culick, a smaller frequency shift is required from nonlinear processes
than in the previous case. We would therefore expect the amplitudes to be
smaller since the energy transfer between modes is more efficient. This is
‘consistent with the numerical and analytical results obtained by Yang and
Culick.

All of the previous observations apply for this case as well. In particular,

the nonlinear coupling is most efficient when 260, — 8, — ., =0, i.e.,
wlR - HIR = 2(w1T — 01'1‘)- (4.28)

Yang and Culick found that the first radial mode also oscillates at twice the
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Figure 4.26 Illustration of the effect of frequency shift on
limit cycle amplitudes, first tangential and first radial modes;
(R/a)oyr = —0.1, 6,1 =0

frequency of the first tangential mode once a limit cycle is attained. Thus,
when Eq. (4.28) is satisfied, nonlinear gasdynamics is only involved in trans-
ferring energy between modes and is thus very efficient.

As in the case of tangential oscillations, the linear frequency shifts can
have a pronounced effect on the limit cycle amplitudes. Figure 4.26 shows
bifurcation diagrams for three ratios of shifted frequencies. A ratio of 2.08
corresponds to the Yang and Culick case where 8, = 6,z = 0. The amplitudes

decrease as the ratio is decreased until a minimum is reached at a ratio of 2.

4.3 The Role of Nonlinear Gasdynamics in the
Formation of Limit Cycles

Previous investigations have identified the role of nonlinear gasdynamics as

a means of energy transfer between modes. The current results show that
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~ nonlinear gasdynamics hés aﬁ additional role in the formation of limit cycles,
namely as a means of frequency shift.

Numerical s;imula,tions performed by Yang and Culick showed that in limit
cycle, the se(;ond tangential mode oscillates at twice the frequency of the
first tangential mode, even when the linear frequency shifts do not satisfy
Eq. (4.20). The natural frequencies are not integral multiples of the fun-
damental for transverse modes, but the modes must necessarily oscillate at
integral multiples of the shifted fundamental mode when in limit cycle. When
Eq. (4.20) is not satisfied, nonlinear processes must shift the frequencies and
maintain them at integral multiples of the fundamental. In the current chap-
ter, nonlinear gasdynamics is the only nonlinear process and must therefore
be responsible for any frequency shifts. It is apparent that when nonlinear
gasdynamics is involved in shifting and maintaining frequencies, it is less ef-
ficient at transferring energy between modes. The higher the frequency shift,
the less efficient the energy transfer becomes.

We will now take a brief look at the transient behavior of both cos X; and
the total rate of energy transfer between modes for the case when 0,; = 0, =
0. By comparing Figs. 4.27 and 4.28, we see that the evolution of cos X, occurs
on a much smaller time scale than the total energy transfer. This implies that
the frequency shift provided by nonlinear gasdynamics occurs on a smaller time
scale as well. To show this, an approximation to the instantaneous frequency of
oscillations was obtained using the zero crossings of 7,,. For the purposes here,
this apprdximation is sufficient since we are only interested in the transition
time and not the details of the transition itself. Figure 4.29 shows the evolution
of the oscillatory frequencies of the first and second tangential modes. As
expected, the frequency of the second tangential mode quickly shifts to twice

the frequency of the first mode and remains there for the duration.
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4.4 Concluding Remarks

In the present chapter, several important results have been established. First,
it was shown that results obtained using the time-averaged equations agree well
with results from the original oscillator equations, as long as the amplitudes
are not too large. However, it was also determined that the method of time-
averaging introduccs a stability boundary above which no stable limit eycles
exist. Near this boundary, the amplitudes become large, and the results are
7o longer valid. As more modes are included in the analysis, the stability
boundary shifts to a higher value of . This extends the range over which the
time-averaged equations agree closely with results from the original oscillator
equations.

It has been determined that the stability boundary produced by the time-
averaged equations is the result of zero energy transfer between modes. More-

over, the original oscillator equations are also affected by this breakdown in
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energy transfer. Inspection of Figs. 4.2-4.5 reveals a marked increase in am-
plitudes at approximately the same location as the stability boundary. How-
.ever, the originél oscillator equations have additional coupling to higher modes
which was averaged out by the method of time-averaging. This coupling al-
lows the original oscillator equations to produce stable limit cycles past the
stability boundary, although the amplitudes increase due to less efficient en-
ergy transfer. -The two mode case is special as there is no coupling to higher
modes. A turning point bifurcation is thus found near the time-averaged sta-
bility boundary due to insufficient energy transfer between the two modes.

Furthermore, it was determined that, in addition to its role of energy trans-
fer between modes, nonlinear gasdynamics also provides a means of shifting the
frequencies to integral multiples of the fundamental. By definition, the acous-
tic modes must oscillate at integral multiples when in a limit cycle. Therefore,
if the linear processes do not shift the frequencies sufficiently, nonlinear gas-
dynamics must necessarily shift them if a limit cycle is to be reached. This
additional role reduces the efficiency of gasdynamics in transferring energy
between modes. Higher amplitude oscillations are thus attained. It happens
that the frequency shift provided by nonlinear gasdynamics occurs at a much
faster rate than the exponential growth of the amplitudes. This should be
studied more closely to determine the reason for the two vastly different time
scales.

The previous results demonstrate the importance of accurate modeling of
linear proéesses. For transverse modes, the amplitudes are especially sensitive
to the linear frequency shifts. In addition, results obtained using the approx-
imate analysis may not be valid if the shifted frequencies differ substantially

from integral multiples of the fundamental.



Chapter 5

Modeling the Nonlinear Combustion

Response of a Solid Propellant

Combustion of a solid propellant is nonlinear chiefly for two reasons: chemi-
cal processes depend nonlinearly on both temperature and pressure; and the
conversion of condensed material to gaseous products is a nonlinear function
of the properties of the local flow ficld. Nonlinear behavior necessarily arises
in any representation of the chemical kinetics, the strongest influence being
due to the Arrhenius factor appearing in the usual formulas for the reaction
rate. In the past, analysis of unsteady burning has been directed largely to
investigating the response of burning to small fluctuations of the flow ficld
in order to satisfy the needs for predicting linear stability. In particular, the
response of burning to fluctuations in pressure has received the most atten-
tion; see Culick [10] for a review of calculations of the linear response function.
Without a thorough analysis of the entire burning process, it is not possible
to state unequivocally the form that the nonlinearity should take.

For the purposes here, the precise formula for nonlinear unsteady combus-
tion is unimportant. We intend primarily to determine the effects of different
nonlinear combustion models on the behavior of the system. We investigate

the matter with models representing both pressure and velocity coupling. One
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model represents nonlinear pressure coupling, and three represent velocity cou-
pling. The pressure coupled model is derived by extending the derivation of
.a linear respoﬁse function to include sccond-order terms. The first velocity
coupled model was introduced by Baum and Levine [5, 45]. This model has
been successfully used in comparisons of numerical results and observations of
pulsed instabilitics. The third model, proposed by Greene [32], is also based
on the idea of vel()ci.ty coupling but using a slightly different form than the
Baum and Levine model. The final model is a modification of the Greene
model to include the influence of a threshold velocity.

In order to be used in the present analysis, any model of unsteady com-
bustion must be put in such a form as to fit into the appropriate terms in the
forcing function given by Eq. (2.47). For gasdynamics up to second-order, the

right-hand side of Eq. (2.46) can be written:

— 2 .
- pﬁ“ F,=p / (@- V' +u' - V) - VipdV
1 .
+i§ Y'YV -+ a - Vp')yppdV
g | PV ut e V)i

lincar gasdynamics

' ' ou’ 10 f
+ﬁ\/ [ul . V’u' + %‘_0‘1:_] : v’l/)nd‘/ -+ EEZ)_]L /(’_)fplv . ul “+ u’ . VZ)I)I(/}nd‘/
(5.1)

nonlinear gasdynamics

ou 1 0P
+ f pog - AndS - f [,Tz(“dr‘” +_f’-w-n] dv

linear and nonlinear other contributions

surface processes
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The linear and nonlinear'gasdynamics terms will be computed using the
zeroth-order approximations (2.42) and (2.43) for the pressure and velocity.
.To the same ofder, the density fluctuation may be set equal to its isentropic
value, p'/p = p'/¥p, legitimate because we assume that there is no residual
combustion within the chamber. Those terms labeled “other contributions,”
containing for example, interactions between the gas and condensed phase,
will be ignored here.

It should be noted that the surface integral in Eq. (5.1) differs from the
form used in Kim [42] and Greene [32]. In those representations, two additional
terms are included in the surface integral. When deriving this equation, we
have expanded in terms of two small parameters. It is necessary to keep terms
consistently. The above representation is correct as derived.

As a means of accommodating nonlinear combustion of solid propellants,
we are concerned with the remaining terms arising from unsteady processes
on the boundary of the chamber. Part of this contribution is due to the
exhaust nozzle and will be absorbed in the linear attenuation. For the non-
linear combustion, the term labeled “linear and nonlinear surface processes”
is nearly equal to the time derivative of the second-order fluctuation of mass
flux inward. The mass flux at the surface is defined as m = pu so that the

fluctuating part becomes

m =m—m
=(p+p)(B+u) - pu

= pu' + p'(a +u).

Because @ is independent of time, a form which can be directly substituted in

Eq. (5.1) is obtained by taking the time derivative of the above equation and
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rearranging terms.

“ou' | am’ A ,ou’

_ LI i
" o s T

(w+u) -n (5.2)

If happens that analysis and modeling of unsteady combustion leads to
results for mass fluctuation, but as shown by Eq. (5.1), the gasdynamics prob-
lem within the:- chamber requires the unsteady velocity as the boundary condi-
tion. Thus we can include contributions from nonlinear combustion by use of
Eq. (5.2). Substitution of Eq. (5.2) into the surface process term of Eq. (5.1)
gives

ok o

(Fn)comb - —(97 . n'l,bndS

a2

NYpdS — f ) - A,dS. (5.3)

To evaluate the last two integrals, the linear approximation for u’ expressed

in terms of the admittance function A, will be used: [21]

U

= aAb% (5.4)

Using this approximation along with the isentropic assumption, p' = pp'/7p,

yields

2
pfz (F )comb /—a—{l/)nds—f' p/ (Ub + 2CLAb—) -g* ( ) wnds

(5.5)

where we have written @4, = —u - 1 for the average velocity of the flow inward
at the burning surface and ' = —m' - i for the fluctuation of inward mass

flux.
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5.1 Second-Order Pressure Coupling

The linear response of a solid propellant to pressure fluctuations at the flame
" has been treated in many analyses, usually leading to the same two parameter
expréssion as found by Denison and Baum [10, 23] if the only unsteady process
accounted for is heat conduction in the condensed phase. The form of the two
parameters depends-on the models chosen for the solid and gas phases. Here,
the nonlinear ‘response function will be derived by retaining terms to second-
order in fluctuations using the following models for the solid and gas phases:
1) the solid is assumed to be homogeneous and nonreactive with constant
properties, 2) combustion is assumed to be uniformly distributed in a small
region near the surface which begins immediately at the solid-gas interface, and
3) combustion responds quasi-statically to fluctuations in pressure only. The
linear response for this special case has been previously treated by Culick [11],

so many of the details will not be covered here.

5.1.1 The Solid Phase and Solid-Gas Interface

We begin with the energy balance at the solid-gas interface written to second-

order in fluctuations.

dr\’ dr\’ -
(m;) :(kd—) + (cp — )RT!+ Qui + (¢ — T, (5.6)

st s~

where the subscript s denotes the value at the solid—gas interface. @), is the
heat released at the surface, while ¢, and c are the specific heats of the gas
and solid, respectively. This will be the main equa,t.ion into which the solutions
from the solid and gas phases will be substituted. Under the assumptions listed

above, solution for the solid phase yields the fluctuation of heat transfer from
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. the intérface to the solid.

dr\’ T 1-T,/T,w
k,— ) = T A2 —H 2 5.7
(de)s = e {Ts T A m (5:7)
where ) is a complex function of frequency found by solving the equation
A = 1) = ikyw/72; T, is the temperature of the cold propellant.
To complete the analysis of the solid-gas interface, an assumption regarding
the rate of conversion of solid to gas must be made. As is common practice,

an Arrhenius Law will be used for pyrolysis at the surface.
1 = BT e e/ BT (5.8)

Introducing mean and fluctuating quantities, we obtain a relation between
the fluctuation of mass flux at the surface and the fluctuation of the surface

temperature.
i’ T [86=1 5 (E_B\] (% :
- = (61 + E) 5 + b E+ (7 - E)] (?) : (5.9)

where

E;

E .
RoT,

(5.10)

Combining Egs. (5.6), (5.7), and (5.9) leads to an equation relating the heat

transfer from the gas to the solid-gas interface and the surface temperature

ar\' . -
= = mcT,
(kgd$)5+ me

fluctuations.

N\ 2
ClT + Cy (;) ] , (5.11)
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5.1.2 The Gas Phase

The solution for the gas phase gives another formula for the fluctuation of heat

transfer to the solid-gas interface.

dT\'’ -
(k) = etn

where

— Qrkyw
ﬁzzchs

A2

This expression introduces an additional variable, the reaction rate w. Thus,
we need another relation between the pressure and the reaction rate to com-
plete the analysis. We assume that the reaction rate can be expressed as a
function of pressure only and that the linear burning rate may be approxi-
mated by 7 = ap™. This leads to the following equation relating the reaction

rate and pressure to second order,

Cp A2 w' p/ pl 2
A R —4+Wol = 1
c (1—TC/TS> 5 5T 2(15) ! (513
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where
‘ -
W, = 2n( H)+ A’

W, = (2n? —n)(l—H)+2n % 4 Gmn=4)

Ac ¢ 2A?
Substitution of Eq. (5.13) into Eq. (5.12) yields

(k g) T,
' dz 3+_(/31+E)

’ITL

/ s 2
WAL + WA (Q) 28+ B)N =
p p m

SN 2
— WlAgﬁ +2 (ﬂ1 + E)A? (%) } . (5.14)

Finally, equating (5.14) and (5.11) followed by substitution for T} from Eq. (5.9)
leads to the nonlinear response function. In the linear limit, the response func-

tion can be written in the two parameter form of Denison and Baum [23].

linear __ m’/ﬁz _ nAB
B = T T AD-—(1+A) L AB’ (5.15)
with
B Qs cp 1
B—2<1 C(TS—TC)) + T (5.16)

Using this definition, the nonlinear response function is written as a function

of the linear response function.

inear W inear inear D . inear p’
RYU — Rlinear 4 Wle — (R} )Q—AW1 (R} )3] <5)’ (5.17)
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where

03_ﬁ1(ﬁ1_ )+ﬂ1E+(E—E>,
2 2
Ci=B+E.

Both the linear and nonlinear response functions are complex quantities.
When used in calculations of time-dependent motions, an approximation to
Rlimear can be made for pure oscillations (see Culick and Yang [21] for details):

r (1)1 4 r ) 10 i
(R + iRt = [R,‘, )+ R} ’aa] et (5.18)

Hence, to incorporate the linear response functions in the analysis, we may set

. . 210
Ri’mear — RI() ) +RI())_—

~5 (5.19)

since to zeroth-order, we have pure oscillatory motions; w is taken to be w, in
the n'? oscillator equation. It is assumed that the nonlinear response function

can be handled in the same manner.

RY = Re (R)") + Imag (R}") -2 (5.20)
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RY — 2RI RY
D @\° ™\ pe| |7
+ [(Rb) -3 (RD) R ~ (62)

Finally, the nonlinear pressure coupled model can be included by substi-

Imag (RY") = B + {%2

1

tuting the following formula for 0r'/0t in the surface integral.

om' mo
T ggt‘(p'RyL) (5.23)

5.2 Velocity Coupling

Motivated by observations suggesting that the response of a burning solid
likely depends on the scouring effect of flow velocity parallel to the surface,
McClure and his colleagues [34, 50] treated the corresponding phenomenon for
unsteady motions. The idea is that changes in the burning rate of a solid may
be dependent on changes of the magnitude but not the direction of the flow
past the surface. The simplest possible cause of such behavior is associated
with convective heat transfer. Whatever its true physical origin, this sort of
nonlinear behavior is commonly referred to as “velocity coupling.” Including
this effect in analysis of the unsteady burning rate introduces essentially a
kinematical honlinearity.

The first models of velocity coupling were intentionally simplistic in order
to be used in the available stability analysis prograins. Later, three JANNAF
workshops concluded that velocity coupling is still not well understood and
that all existing models had serious physical deficiencies. Due to these defi-
ciencies, Baum and Levine [45] developed an ad hoc model which produced
good agreement with experiment. This model, as well as two other ad hoc

models derived from it, will be used in the present analysis.
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5.2.1 The Baum and Levine Model

In the experimental and theoretical investigation of pulsed instabilities by the

" Air Force Propulsion Laboratory, Baum and Levine [45] introduced a model
of nonlinear combustion response based on the idea of velocity coupling. To
obtain agreement between predicted behavior and observations, one param-
eter representing the response of combustion to the velocity parallel to the
burning surface was changed. By changing only this parameter, they were
able to match the growth rates, the limit cycle amplitudes, the mean pres-
sure shift, and the waveform quite accurately. This suggests that the chosen
nonlinearity must be fairly close to the important physical processes present
in the exper.iments. Therefore, the first velocity coupling model will be the
model introduced by Baum and Levine.

The Baum and Levine model is an ad hoc model in which the mass burn-
ing rate is directly modified by some function of the velocity [45]. For that
reason it was originally called the ‘burn rate augmentation model.” The total
mass burning rate is written as a combination of linear pressure coupling and

nonlinear velocity coupling as
m = Mpe|l + Ry F(u)], (5.24)

where 11, is the mass flux due to pressure only and R, is a constant related to
the sensitivity of burning to velocity parallel to the surface. Since the evolution
rate of solid to gas should depend on the magnitude but not the direction of
the scouring flow, and the simplest assumption is linear dependence, F(u) is

taken equal to |u'|.
miv = tpe[l + Rucltt'[] (5.25)

We ignore the possible influence of mean flow speed and assume that the fluc-
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tuation of mass flux depends on |u'|, not on |@ + u'|. This is not an essential
appr0x1mat10n but does simplify the numerlcal calculations by avoiding com-
_plications arising from the variation of the mean flow speed along the surface.

The fluctuation of 71 is calculated with Eq. (5.25),

m =1m—m

= (m;)c + TTan)[l + Ryclu'|] — ﬁipc

= m;c[l + RVC‘“”” + ﬁlpchc|'U',‘-

By definition of the response function Rj for linear pressure coupling [21],

= = Ry—, (5.26)
m Yp
and we have
m/ pl I , T;ch ,
— =R, + RyR.. f: |u'| + —==Ry|u'|. (5.27)
m P \ 7P m

Substitution of Eq. (5.27) in (5.5) gives

pE>2 mRyRy. [ O olu’
pa2n (Fn ?ol;nb +/§ l:_‘ |] T/)ndS +mpchc/ l |’¢nds

e (2)2 (3o {2 i3 (7))

For simplicity, assume that there is no steady erosive burning, so 7y = M =

piiy and drop the linear terms in curly brackets, with the assumption that they

are combined with other linear processes. Then the formula for the nonlinear
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forcing function due to combustion is

BL ' ’ma RbRVl v/1‘_(1 P I / / a
(El)comb pEZ { ’Ty/ Py Iu I dS + R ol n
9 (p
ot —

_ 21221, / (_ ( )unds} (5.28)

where M, = m/pa = p/a.
With a simple assumption we can reduce the number of parameters by one.

From the definition of Ay and Ry, [Culick and Yang [21], Eq. (93)].

_ . AT, /T,
Ay + My = M, (Rb + - /1/[ )

For the purposes here it is sensible to ignore non-isentropic fluctuations of

temperature in the flame — set AT =0 — and

Ay

=R, — 1.
M, (

o1}
s
=)
~—

Hence Eq. (5.28) becomes

) 0
(Fn)?ol;nb = E% {C f df (_— |ul|) ’L/}ndS

Ol | po -
+ G2 / ot YndS — Cy / —3_f thn dg} (5.30)

with

O'l = RvaCa
Ry

CQ -
f)l
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The préssure coupled fesponse function R, will again be a complex quantity
in general. Here, we will set R,(f)v = 0 so that C, and C, are real constants.
_Such an a,rbitré,ry choice is within the intent of this paper to investigate the
qualitative behavior, in particular to determine whether or not triggering can

be found.

Application of Time-Averaging

The method of time-averaging is applied to the Baum and Levine model in
much the same manner as described in Chapter 2. However, as originally
outlined, the method is incapable of handling discontinuities introduced by
|u’|. Following the procedure introduced by Greene [32], an extension to the
original method of time-averaging will be made in order to deal with these
discontinuities.

First, |u'| can be written in terms of the sgn function as follows:
|u'| = sgn(u')u’ (5.31)

In order to simplify the analysis, we will use an approximation to sgn(u’)
introduced by Kim [42] and used subsequently by Greene [32]. For the case of

two longitudinal modes, sgn(w') can be written as

sgn(u') = —sgn(rp )sgn(1 + % cos k). (5.32)
. 1 .

If we assume that |9p/m| < 1 for all time, we obtain a useful approximation

to sgn(u').
sgn(u') ~ —sgn(i) (5.33)

While the assumption |s/m;| < 1 is not always satisfied in general, the higher
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freqﬁ.ericy content -will be averaged out when time-averaging is applied, as

noted by Greene. Therefore, the approximation (5.33) should be reasonable

for both the two mode case and cases involving a higher number of modes.

The main simplification introduced by using approximation (5.33) is that

the term sgn(u') no longer depends on both space and time; it is now only a

function of time. It is also useful to note that during the period of integration,

71 changes sign only once. Thus, when the method of time-averaging is applied

to a term involving |u’'|, the time integral can be split into two parts, both of

which have an analytic solution.

The splitting of the time integrals is most easily accomplished if we write

71 in terms of r; and ¢ so that sgn(n;) becomes

sgn(n;) = sgn[cos(wit + ¢1)].

Equivalently, this can be written as

_ +1 ifty <t <t,
sgn(i) =
1 ift; <t <ty

where

to = (=7/2 — ¢1)Jwi,
ty = (7/2 — ¢1)/wr,
tg = (371'/2 - ¢1)/wl.

(5.34)

(5.35)

Finally, the first two terms in the Baum and Levine model can be time-

averaged by rewriting the term as sgn(7;) times some remaining term, then
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integrating the result as follows:

| s = [ par — [par, (5.36)

t

where [*] is the remaining part of the term to be averaged.

5.2.2 'Gr(_aene’s Model

Greene [32] carried out calculations with a response dependent on the absolute

value of the velocity,
m' = mCy|u'|. (5.37)

Substitution in Eq. (5.5) and omission of the linear terms as in Sec. 5.2.1 gives

the result corresponding to Eq. (5.28),

i Sl N
(Fo) o = %%. {04 / g:lwnds—cg / <%) o (%) Wzs}. (5.38)

Thus Greene’s model leads to two of the three terms appearing in the Baum

and Levine model represented by Eq. (5.30).

5.2.3 Threshold Velocity Model

Threshold effects have been observed in experimental investigations of velocity
;:oupling. Ma et al. [47] used subliming dry ice to simulate the flow in a solid
propellant rocket motor. A piston was used to generate acoustic waves in
the chamber. The investigation found a threshold acoustic velocity above
which the mean mass flux increased linearly with the Reynold’s number of
the acoustic fluctuations. Below the threshold value, the mean mass flow was
approximately constant. The increased mass flux was determined to be a

result of increased heat transfer to the surface after transition to turbulent
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flow had occurred.

To determine the possible influences of such a threshold in this investiga-
.tion, Greene’s ﬁlodel will be modified to include a threshold velocity. Instead
of using a direct dependence on the magnitude of velocity, the following model

for the mass flux will be used.
m' = mR,F(u') (5.39)

Figure 5.1 shows the function of velocity which will be used in the threshold

velocity model. This function introduces a dead zone in which the nonlinear

0.1 . : . :
0.09
0.08
0.07

~ 0.06

= :
g
kk, o005

0.04

0.03

0.02

0.01

i 1 1
-8. 1 -0.08 -0.06 -0.04 -0.02

Figure 5.1 Function of velocity to be used in-the threshold veloc-
" ity model; u; = 0.02

contribution from combustion does not affect the system. When the ampli-
tudes of oscillations become larger than the chosen threshold value u;, the

nonlinear effects are then felt.
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5.3 Discussion of Results

For solid-propellant rockets, problems of pulsed instabilities arise only in mo-
tors having relatively high L/D and involve mainly axial fluctuations. There-
fore, for the numerical results in this section, we will treat the case of longi-

tudinal modes only.

5.3.1 Nonlinear Pressure Coupling

Even for small amplitude oscillations, the nonlinear response function can
differ substantially from the linear response function as shown in Figs. 5.2
and 5.3 for A = 6.0 and B = 0.55. When p'/p = 0.01, the second-order
terms increase the magnitudes of both the real and imaginary parts of the
response function substantially. Nonetheless, no cases of triggering have been
found for these parametric values, as well as other realistic values of A and B.
The parameter space is large, so it is quite possible that this nonlinear model
could lead to triggering for some values. So far, however, the search has been
unsuccessful.

For the case of nonlinear pressure coupling, it is important to know the
linear stability boundary of the propellant response. Culick [10] reported the

following stability criterion for the parameters of the linear response function.

(B+1)

A< —(3_1)2

(5.40)

If this condition is not met, the propellant is intrinsically unstable and the
values of A and B are not realistic. |

Interestingly, triggering to stable limit cycles was found for values of A and
B outside this stability limit. The values given in Appendix B yield A = 6.0
and B = 0.486, which are located just outside the stability boundary. As a

result, the response functions are quite different from those when Eq. (5.40) is
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response functions vs. nondimensional frequency; A = 6.0, B =
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satisﬁed, as shown in Figs. 5.4 and 5.5. Results for truncation to two and four
modes are displayed in Figs. 5.6 and 5.7. In both cases, a substantial region
.of possible triggering was found. We have no explanation for this behavior at
the present time. Although the values of A and B are unrealistic, this case
may be useful by providing a better understanding of the possible causes of

triggering and should be studied in more detail in the future.

5.3.2 Velocity Coupling

We will now consider the models representing coupling to velocity oscillations.
All models are derived from the Baum and Levine model, so we will begin with
it. Substitution of Egs. (2.42) and (2.43) in Eq. (5.30) yields, for longitudinal

modes,

2(L/D 77
(Fn)omb = (—/ By { 2RbRVCZZ[ - Wﬂ?ﬂ?g} Ifj,)

2
™
v i=1 j=1

"

o

A
4w R ‘ Nl
Ve C
e Z nzI( ) —dwi (R —1) D> mim I,(”J)}, (5.41)

. =1 j=1 .
B c
where R,. = Ry.a and
17(1‘3) = /07T cos nlsin(i — §)Z +sin(i + §)Z ]sgn( "dz, (5.42a)
Iff) = /w cos nZ sin 1Zsgn(u')dz, (5.42b)
0
1) = / " cos nifcos(i — §)& + cos(i + j)7]dz, (5.42¢)
o .

with Z = mz/L. Thus, the Baum and Levine model consists of three different
terms, two of which make up Greene’s model. Due to the discontinuity in-

troduced by sgn(u'), the integrals I (1) and I ) will be evaluated numerically

nij
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using the trapezoidal rule.

One purpose of the following calculations is to determine what effect each
.term has on the system. In particular, we would like to answer the question:
which terms are sufficient to produce triggering for reasonable values of R
and/or R,? Another purpose of the present analysis is to determine the effects

of truncation to a small number of modes and time-averaging.

Initial Results - The Discrepancy between the Time-Averaged and

Original Oscillator Equations

The initial results for velocity coupling showed a substantial difference in the
behaviors predicted by the original oscillator equations and the time-averaged
equations. As shown in Fig. 5.8, the original oscillator equations produced a
subcritical Hopf bifurcation at the origin with a very low amplitude unstable
branch of periodic solutions. The time-averaged equations, however, produced
a much different result. The Hopf bifurcation, usually found at the origin,
was shifted to a negative value of a;.. Depending on the value of R, and
the number of modes included, this bifurcation can be either subcritical or
supercritical. An example is shown in Fig. 5.9 for four modes and ‘several
values of R,.. Whenever the time-averaged equations produced a subcritical
bifurcation, the region of possible triggering was always much smaller than
the region predicted by the original oscillator equations.

This discrepancy was a very puzzling result. The two sets of equations
should, affer all,> produce very similar results in the linear limit. Nonetheless,
it was first believed that this discrepancy was caused by application of the
method of time-averaging since one of the nonlinear terms was first-order.
After further consideration, it is now apparent that this discrepancy is the
result of an approximation introduced while applying the continuation method

to the original oscillator equations.
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F(u') x 10%

Figure 5.10 Approximation to |u’| using the arctan function

As mentioned earlier in Chapter 3, the continuation method is based on
the implicit function theorem which requires that all functions are continu-
ously differentiable. In order to meet this requirement when using either of
the velocity coupled models, an approximation to |u'| is needed. The initial
results such as those presented in Fig. 5.8 utilized |u'| ~ u'2 arctan(1000w’).
As Fig. 5.10 illustrates, the agreement is not good near u' = 0. Although
this approximation was necessary in order to use the continuation method, it
changed the nature of the equations by introducing an “artificial” threshold
velocity. This threshold, while very small, introduces a dead zone so that for
very small disturbances, the effect of nonlinear combustion is absent. The
behavior of the system is thus changed from a shifted spontaneous oscillation
to an apparent region of possible triggering. The original oscillator equations
should in fact produce results similar to those predicted by the time-averaged
equations.

To prove that this was the case, a more accurate method was developed

which does not require use of the sign approximation. The new method pro-
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duces more accurate resuits for the branch of periodic solutions, but it cannot
accommodate steady state calculations due to the discontinuity at w' = 0.
. Therefore, calc‘ulations must begin at a numerically calculated limit cycle in-
stead of at the Hopf bifurcation point. A brief description of the method will
be given, although most of the programming details will be left out.

The first step is to numerically generate one complete cycle of the peri-
odic solution using a simulation program. A cubic spline interpolation rou-
tine is used to calculate numerical values of the limit cycle at intermediate
points when they are needed for the continuation method. After a properly
discretized solution has been obtained, the continuation method can then pro-
ceed as normal with one modification: the integrals in the velocity coupled
model will be integrated exactly instead of numerically as before.

The integrals I (4)

nij and I,(f) will be handled in the following manner. For a

given number of modes n, there can be at most n — 1 zero crossings of u’ for
z in the range of 0 to L (this depends on the current values of 7, 72, etc.).
After determining the location of these zero crossings, the integral can be split
into parts, each of which can be integrated exactly.

This method has been applied only for the case of two modes since the zero
crossings can be determined analytically. It should work for a higher number of
modes as well, although the zero crossings must be located by numerical means.
Results for a two mode case using Greene’s model are shown in Fig. 5.11. As
suspectéd, the original oscillator equations produce an a-shifted Hopf bifurca-
tion, similar to the results obtained using the time-averaged equations. Both
sets of equations agree qualitatively, but the time-averaged equations predict
much larger amplitudes than the original oscillator equations.

Results obtained for the four mode, time-averaged equations were also
compared to the exact, two mode results, as seen in Fig. 5.12. Not only

is the location of the Hopf bifurcation point more accurately predicted, but
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the égréement_ is better for a larger range of o, as we might expect. It is
clear from these examples that the time-averaged equations can produce good
quantitative and qualitative results, as long as a sufficient number of modes is
included. We will therefore use the time-averaged equations to obtain further
results for the velocity coupled models.

Although the initial results obtained using the original oscillator equations
were misleading, the discrepancy between the two results suggested that a
threshold velocity might be important in triggering. This was the motivation
behind the threshold velocity model: to study the effects of a true threshold
velocity. Results obtained using the threshold velocity model will be discussed
in a later section.

This discussion of the initial results for the velocity coupled models illus-
trates the usefulness of dynamical systems theory in the study of combustion
instabilities. Using only numerical simulations, it would have been extremely
difficult to find the cause of this discrepancy. Bifurcations and accurate pre-
diction of their locations are fundamental in understanding the behavior of a

nonlinear system.

Further Results for the Velocity Coupled Models

We will now study the two velocity coupled models in more detail. Previous
investigations have found regions of possible triggering using variations of these
two models, but only when the system was truncated to two modes.

The in\./estigation by Kim [42] used the Baum and Levine model to study
triggering in solid propellant rocket motors. The manner in which the model
was developed led to only one of the three terms in the Baum and Levine
model. Therefore, in the investigation, only term A of Eq. (5.41) was in-
cluded. Regions of possible triggering were found using this term, although

the amplitudes of the limit cycles were quite high, perhaps outside the range
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of validity of the approxirhate analysis.

The model introduced by Greene [32] consists of the remaining two terms
of the Baum ahd Levine model. However, in the development of the origi-
nal equations, Greene kept some higher order terms which should have been
dropped in order to be consistent. As a result, term C of Eq. (5.41), which
should be included in his model, was not taken into account. Using only term
B in the analysis, limited cases of triggering were reported for the two mode,
time-averaged equations. Therefore, we will now investigate the three terms,
both individually and together, to determine which, if any, are capable of pro-
ducing pulsed oscillations. In addition, we will study the effects of truncation
to two modes, an approximation used by both Kim and Greene without proper

consideration of the possible consequences.

The Effects of Individual Terms

The three terms of the Baum and Levine model, labeled A, B, and C in
Eq. (5.41), represent three different types of nonlinear combustion response.
By using each of these terms individually with the time-averaged equations
and/or the original oscillator equations, their effect and relative importance
will be determined. |

The first term in the Baum and Levine model, term A, represents coupling
to both pressure and velocity oscillations and thus depends on both R, and
R,.. Figure 5.13 indicates that for truncation to two and four modes, this
term prodﬁces the possibility of triggering, shown by a region of stable limit

cycles for a; < 0 sec™l.

A value of 2.18 was used for the linear pressure
coupled response function, R;. This value was used in the study by Baum,
Levine, and Lovine[5] and seems to be a reasonable choice. The value of 16.15
for the velocity coupled response function was chosen to give a sizable region

of triggering. This value seems high based on results obtained by Levine
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Figure 5.13 Maximum amplitude of first acoustic mode using
term A with the original oscillator equations; two and four

modes; R, = 16.15, R, = 2.18

and Baum [45]. In their study, R,. = 5 produced acceptable amplitudes,
while R,. = 13 yielded amplitudes well outside the range of validity of the
approximate analysis.

If the value of R, is increased even higher, it was found that eventually,
the coupling to combustion processes becomes so strong that triggering is
no longer possible. In order to explain this observation, a two parameter
continuation using R, as a second free parameter was employed to plot the
loci of turning points. The result is shown in Fig. 5.14. As R, is increased
from zero, a turning point defining the lower limit of possible triggering is

created at a; = 0 sec”!

and shifts to the left. The upper turning point also
shifts to the left as R, is increased. At a value of R, = 22.8, the loci of
turning points meet. Above this value, the coupling of velocity oscillations
to combustion processes becomes so strong that nonlinear gasdynamics is not

able to transfer energy at a sufficient rate to maintain a stable limit cycle.

Thefefore, the possibility of triggering does not exist above this value. The
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Figure 5.14 Loci of turning point bifurcations for the first acous-
tic mode, original oscillator equations using term A; two modes;
Ry =2.18

four mode case produced similar results, although the loci met at a higher
value of R,.. It will be shown later that for more reasonable values of R, the
term A, the first term in Eqgs. (5.30) and (5.41), will have a rather small effect
on the system.

The second term in Eq. (5.41), labeled B, represents coupling to velocity
oscillations only. Using only this term, Greene [32] showed that regions of
possible triggering occur when the system is truncated to two modes. The
present results are consistent with Greene’s findings, as seen in Fig. 5.15 for
R,. = 5.32. A two parameter continuation was used to plot the locus of turning
point bifurcations as R, is increased. Term B is a first-order term, and as
such, it introduces an a-shift as R,. is increased from 0. The Hopf bifurcation
is initially supercritical sd that pulsed oscillations are not possible. However,
as the linear cross-coupling becomes stronger, the Hopf bifurcation can change

from supercritical to subcritical, depending on the number of modes and other

parameters of the system. For the two mode case, all values of R, greater
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than 0.94 produce -a subéritical bifurcation, thus yielding the possibility of
triggering to a stable limit cycle.

When four ‘modes are included in the analysis, the transition point at
which the Hopf bifurcation changes from supercritical to subcritical occurs
at a higher value of R,.. Inspection of Fig. 5.16 shows that this transition
occurs at R, = 5.93. Above this value, regions of possible triggering are
found, although the fegions are quite small for reasonable values of Ry.. It is
interesting to note that some values of o; and RVC, which led to the possibility
of pulsed oscillations in the two mode case, now predict only spontaneous
oscillations when four modes are included.

For a higher number of modes, the behavior is similar to the four mode case;
see Fig. 5.17 for a six mode approximation and several values of R,.. Small
values of R, produce only spontaneous oscillations, while larger values lead to
small regions of possible triggering. A two parameter continuation shows that
the behavioral transition occurs at a slightly higher value of R,. compared
with the four mode case, as illustrated in Fig. 5.18. As R, is increased above
6.53, a small region of possible triggering is created and shifts to the left.

The final term, C in Eq. (5.41), is a nonlinear pressure coupling term. For
very high values of Ry, this term produced a subcritical bifurcation leading to
unstable limit cycles for a linearly stable system. However, for the conditions
examined so far, it did not produce the right type of coupling to nonlinear
gasdynamics to produce a fold that could lead to stable limit cycles. Hence,
this term does not lead to triggering. Furthermore, for reasonable values of
Ry, term C had little effect on the system and can be neglected if we restrict

ourselves to small perturbations.
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The Effects of Truncation

When solving Egs. (2.46), it is necessary to truncate the system of equations
to a finite number of modes. For the purposes of the approximate analysis, it is
desirable to use the smallest number of modes which still provides accurate re-
sults. Many previous studies involving nonlinear gasdynamics only have used
truncation to two modes, the minimum number of modes required to produce
a limit cycle. As Jahnke and Culick [39] have shown, this approximation does
not always produce good results for highly unstable systems. This approxi-
mation may become invalid for linearly stable systems as well when nonlinear
combustion is also taken into account.

In the previous section, the effects of truncation were apparent in the results
for the term B. This is better illustrated in Fig. 5.19 which compares results
for two, four, and six mode approximations directly. Truncation to a small
number of modes can thus change the qualitative behavior when only term B
is used. In addition, we would like to determine the effects of truncation on
the Baum and Levine model, i.e., when all terms are included.

When the Baum and Levine model is used, the system of equations appears
to be more sensitive to truncation errors, as illustrated in Fig. 5.20 for R, =
3.75. This is caused by the upper turning point introduced by term A. If
an insufficient number of modes is included in the analysis, this turning point
increases the limit cycle amplitudes. Figure 5.21 shows that for two modes,
values of R,.4.22 no longer lead to the possibility of triggering. This is clearly
a result of truncation, as comparison with the four mode case in Fig. 5.22
shows. When four modes are included, the results are good for higher ranges
of Ry.. Therefore, as the coupling to combustion p.rocesses becomes stronger,
more modes must be included to obtain satisfactory results.

In general, the inclusion of a nonlinear combustion model seems to make

the system more sensitive to truncation effects. Depending on the strength and
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Figure 5.19 An example showing the effect of truncation to a
small number of modes; time-averaged equations with Greene’s
nonlinear combustion model, Ry, = 5.32

form of the nonlinear combustion model, more or less modes may be required
to obtain accurate results. It does not appear that the required number of
modes can be predicted in advance. Instead, this depends on the strength of
the combustion response, as well as all parameters of the system.

While this section has not ruled out Velocity coupling with no threshold
velocity as a possible explanation for pulsed oscillations, it has shown that the
models of velocity coupling adopted here produce regions of possible triggering
only for very limited ranges of parameters and high values of Ry.. In all cases
treated, the region of possible triggering predicted by both the Baum and
Levine model and Greene’s model is extremely small if a sufficient number of
modes is included. Both models are ineffective at producing large regions of
possible triggering. The main influence of these models appears to be an o-
shift. A system which is linearly stable without the model of velocity coupling

can become unstable if the velocity coupled response function is large enough.
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Figure 5.21 Loci of turning point bifurcations for the first acous-

tic mode, time-averaged equations using the Baum and Levine
model; two modes, By, = 2.18
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Figure 5.22 Loci of turning point bifurcations for the first acous-
tic mode, time-averaged equations using the Baum and Levine
model; four modes, R, = 2.18

This is especially true for reasonable values of R;. Thus, we will now study

the effects of a threshold velocity to determine its possible role in triggering.

5.3.3 Threshold Velocity Effects

As suggested by the earlier discrepancy between results for the time-averaged
and original oscillator equations, the threshold model was developed in order to
study the effects of a “true” threshold velocity. Greene’s model was chosen as a
base for this model because it is less sensitive to truncation to a small number
of modes than the Baum and Levine model. While the second-order term A
may increase the region of possible triggering slightly, it can be neglected for
reasonable values of R, and Rj.

Application of the method of time-averaging does not readily allow the
threshold velocity model to be used. Therefore, results will be obtained us-

ing the original oscillator equations. As explained earlier for the models of
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Figure 5.23 Maximum amplitude in limit cycle of first acoustic
mode with and without a normalized threshold velocity of 0.02;
four modes; Ry, = 5.32

velocity coupling, the threshold velocity function shown in Fig. 5.1 must also
be smoothed to be used with the continuation methods. This approximation
of the threshold velocity function will affect the quantitative accuracy of the
results slightly, although the qualitative behavior will be correct.

A normalized threshold velocity (u;/a) of 0.02 was chosen for initial results.
This corresponds to a velocity of 21.5 m/s and is comparable to the threshold
velocity used by Levine and Baum [45]. In Fig. 5.23, results for this value are
compared to the case of zero threshold velocity. As expected, the threshold
velocity model produces a large region of possible triggering for a reasonable
value of Ry..

For velocity oscillations with amplitudes less than the chosen threshold ve-
locity, the effect of nonlinear combustion is nonexisfent. Therefore, the path
of periodic solutions should be identical to the case of linear pressure coupling,
i.e., a supercritical bifurcation occurring at the origin. This is precisely the

behavior shown in Fig. 5.23. Once the magnitude of the velocity oscillations
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reaches the threshold value, noﬁlinear combustion quickly becomes important,
and a fold in the path is produced. The unstable path remains nearly hori-
zontal until othef nonlinear contributions become strong enough to produce
a second fold, thereby producing a path of stable periodic solutions. Another
observation from Fig. 5.23 is that the amplitudes of oscillations are lower than
the amplitudes for a zero threshold velocity. This is a direct result of the dead
_zone introdﬁced by the threshold velocity function.

Compared with the previous results for both the Baum and Levine model
and Greene’s model, the threshold velocity model produces a much larger
region of possible triggering. It is thus interesting to see how this region is
affected by the magnitude of the threshold velocity.

Using a two parameter continuation with u; as the second parameter, the
influence of the magnitude of the threshold velocity on the region of possible
triggering will be determined by plotting the location of the lower limit of pos-
sible triggering. The turning point on the left-hand side of Fig. 5.23 represents
the lower limit, while the upper limit is simply a; = 0 sec™ since the system
must be linearly stable for triggering to occur.

The result of the two parameter continuation for R,. = 5.32 is provided in
Fig. 5.24.* There is actually no triggering for u;/@ = 0, although a large region
of possible triggering exists for u;/a infinitesimally greater than zero. As u; is
increased, the region becomes increasingly smaller until finally, a critical value
is reached above which triggering is no longer possible. This phenomenon was
noted by Levine and Baum [45], but no possible explanations were given.

An example of a case in which the threshold velocity is greater than u§™®
is given in Fig. 5.25. For such a high threshold velocity, the rate of energy

production by nonlinear combustion cannot equal the rate at which energy is

*Note that there is a discrepancy between Figs. 5.23 and 5.24 for u; = 0. This is due
to the quantitative inaccuracy of the original oscillator equations when using the threshold
velocity model in the continuation method. The plot of u; = 0 in Fig. 5.23 was generated
using the time-averaged equations which are more accurate in this case.
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Figure 5.24 Influence of the threshold velocity u; on the region

of possible triggering; Ry, = 5.32

transferred to higher modes by nonlinear gasdynamics. Therefore, for a stable
limit cycle to exist, additional energy must be provided by linear processes,
i.e., a; > 0. For this reason, a propellant with a very high threshold velocity
will be impossible to trigger. The critical value of u; depends directly on the
value of the velocity coupled response function, as one would expect. The

rate of energy production is proportional to R,. As the coupling to velocity

oscillations becomes stronger, i.e., Ry, increases, u$™ increases accordingly, as

demonstrated in Fig. 5.26.

Although no region of possible triggering exists when uSTt is exceeded, it is
possible that more than one stable limit cycle may exist for the same value of
oy, as Fig. 5.25 demonstrates. When this is the case, the limiting amplitude
that is reached depends on the initial conditions. Previous results for nonlinear
contributions from gasdynamics only proved that when a limit cycle exists, it

is unique. It appears that this may not be true when nonlinear combustion is

also included in the analysis.
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An Example Demonstrating the Effects of Pulse Shape and Location

When only nonlinear contributions from gasdynamics are taken into account,
‘there is at most one stationary state. The limiting solution is therefore in-
dependent of the initial pulse shape [3, 55]. When nonlinear combustion is
also included, more than one stationary state may exist and the pulse shape
is therefore important.

To illustrate this point, we will perform simulations using several different
rectangular pressure pulses which are initially at rest. The first pulse is nonzero
only in the range 0 < z < .25L where it has a magnitude of 0.1. The two and
ten mode approximations to this wave are shown in Fig. 5.27. Although two
modes do not provide a good approximation to the intended waveform, the
simulations will show that the final results are the same as the ten mode case.

For the two mode approximation to the rectangular pulse, the initial con-
ditions are 7;(0) = 0.045, 75(0) = 0.032, 7,(0) = 0, and 12(0) = 0 [14]. The

linear growth rate was chosen to be —20 sec™!

, and the initial conditions are
plotted .on the bifurcation diagrams sh\own in Fig. 5.28. The initial conditions
for both 1, and 7, are in the regions of \éttr«action of the stable limit cycle, i.e.,
the magnitudes are larger than the magnitudes of the branches of the unstable
limit cycles. However, the initial conditions for 7, and ), are in the regions of
attraction of the trivial steady state, so it is difficult to say whether the final
solution will be the trivial steady state or the periodic limit cycle. As shown in
Fig. 5.29, the system is drawn to the periodic limit cycle, and the pulse is said
to be “unstable.” The ten mode approximation produced the same behavior
although the amplitudes are smaller due to truncation effects; see Fig. 5.30.
An interesting result is obtained if we increase the width of the pulse to
75% of the chamber length so that the pressure perturbation is nonzero in

the range 0 < z < .75L. For the two mode case, the initial conditions are

m(0) = 0.045, 172(0) = —0.032, 7,(0) = 0, and 73(0) = 0. These initial
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Figure 5.29 Time history of the pressure at the head end after a
reclangular initial pulse in the range 0 < z < .25L; two modes,
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Figure 5.30 Time history of the pressure at the head end after a
rectangular initial pulse in the range 0 < z < .25L; ten modes,
a; = —20 sec™!
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Figure 5.31 Time history of the pressure at the head end after a
rectangular initial pulse in the range 0 < z < .75L; two modes,
a; = —20 sec™1

conditions are the same as the previous pulse with the exception of 7y, which
has changed sign. In the bifurcation diagrams, the initial conditions are located
at the same points. Nonetheless, the Perturbations decay over time, and the
pulse is stable. Simulations of the two aﬁd ten mode approximations are shown
in Figs. 5.31 and 5.32, respectively.

It is apparent that the size of a pulse can affect the behavior of a system.
In addition, the location of the pulse is also important. To demonstrate this
observation, a rectangular pulse with a width of .25L will be introduced at
two different locations in the chamber. The first location is in the range
0 < z < .25L, i.e., the same location as the first pulse. As already shown,
the pulse is unstable, and a periodic solution is attained. The spatial and
temporal variations of pressure and velocity for é ten mode simulation are
shown in Figs. 5.33 and 5.34. If the pulse is placed sufficiently far from a
wall, the pulse is found to be stable. The pressure and velocity oscillations

produced a pulse in the range .40L < z < .65L are presented in Figs. 5.35
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Figure 5.32 Time history of the pressure at the head end after a
rectangular initial pulse in the range 0 < z < .75L; ten modes,
a; = —20 sec”!

and 5.36. It was determined that if the pulse was closer to a wall than ~ .12L,
the resulting motions would be unstable. This result only applies to a pulse
with a width of .25L and a magnitude\of 0.1.

To understand the reason for the different results, we need to look closely
at the waves produced by the initial pulse. For ¢t > 0, a pulse which is initially
at rest splits into two waves moving in opposite directions. When a wave
encounters a solid boundary, the wave is reflected and continues in the opposite
direction. The wave shapes and amplitudes are affected by all linear and
nonlinear processes in the system until a stationary state is reached.

The pulse located at the head end of the chamber is a special case. One
of the waves is immediately reflected, and a large wave is produced instead
of two distinct waves. This is shown in Fig. 5.37.- Comparison of this wave
pattern with the pressure distribution in the limit cycle (Fig. 5.38) shows that
the basic wave structure is the same. Very little energy is thus required to

change the wave from its initial shape to the final shape in the limit cycle.
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The seéond pulse is introduced in the interior of the chamber, and two
distinct waves_are produced. The initial wave pattern for this pulse is much
different than the waves in the limit cycle, as displayed in Fig. 5.39. The
dynamics of the system attempt to change the shape of this wave to that
of the limit cycle wave. However, as energy is extracted from the system,
the velocity fluctuations decrease below the threshold value. Without this
additional source of énergy, the oscillations cannot be sustained, and the pulse

is stable.

5.4 Concluding Remarks

In the current chapter, several models of nonlinear combustion response have
been used to study the effects of nonlinear contributions from combustion
processes. The first model, which represents coupling of combustion processes
to pressure oscillations, model, was produced by extending the derivation of
a linear response function to include terms to second-order. For parametric
values corresponding to realistic propellants, ﬁhis model did not produce the
possibility of triggering.

The next two models were used in previous investigations by Kim [42]
and Greene [32] and represent coupling of combustion processes to velocity
oscillations. Both of these studies, however, did not develop the system of
equations consistently and terms which should be included were left out. We
have corrected the inconsistencies, and the resulting equations were used to
study the effects of velocity coupling on combustion instabilities.

The investigations by Kim and Greene concluded that velocity coupling can
produce substantial regions of possible triggering. Unfortunately, both of those
studies used the approximation of truncation to two modes without regard to

the possible consequences. In the present chapter, the effects of truncation
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Figure 5.35 Spatial and temporal variation of pressure after a
rectangular initial pulse in the range .40L < z < .65L; ten
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to a small number of modes were also studied. Although the present results
for two modes are consistent with the findings of Kiﬁl and Greene, the region
of possible.,__triggering is either greatly reduced or eliminated altogether when
nﬁé_fe ‘t.ha,n two modes are included. When the possibility of triggering still
exists, it is only for very restrictive values of the parameters.

A's the pr‘evi;)u's three models did not produce substantial regions of possible
trigg-ering, a final model was introduced to study the effects of a threshold
Velocity.: This phenomenon has been observed experimentally and may be
important in pulsed instabilities. When a threshold velocity is taken into
account, a large region of possible triggering may be found. The size of the
region depends on the magnitude of the threshold and the strength of the
coupling between combustion and velocity oscillations. Finally, an example
was presented which shows the effects of pulse shape on the behavior of the

system when more than one stationary solution is present.



126

Chapter 6
The Influence of Combustion Noise

Combustion ‘chambers are inherently noisy environments. This is apparent
from listening and from inspection of the power spectra of pressure records
from test firings. When a combustion instability is present, the power spec-
trum exhibits well-defined peaks in addition to background noise over the
entire range of frequencies. Substantial noise sources in rocket motors include
flow separation, turbulence, and combustion processes. It is expected that
the presence of noise will affect in some way the amplitudes and possibly the
qualitative behavior of organized oscillations. That is precisely the purpose of
this chapter: to determine the influence of noise on combustion instabilities.
Only a small amount of work has been done on the interactions between
noise and acoustic instabilities. Culick et al. [20] studied the influence of noise
on combustion instabilities, but only for a very simple case: two acoustic
modes with noise preseht only in the first mode. In addition, the formulation
was flawed, and the form of the resulting noise terms is not quite correct.
Clavin et al. [8] studied the influence of turbulence on instabilities in liquid
rocket motors. Using only one mode in the analyéis and third-order nonlin-
earities, it was reported that the inclusion of noise can lead td the possibility
of triggering. It is a well-known result that a single third-order equation may

produce a subcritical bifurcation. When more acoustic modes are considered,
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this fnay not be the case, vas demonstrated by Yang et al. [56] for third-order
gasdynamics. Therefore, the results of Clavin et al. may not be applicable in
general.

The present analysis is an extension of the previous work by Culick et
al. [20]. We will first decompose the flow field into acoustic and non-acoustic
parts using a method developed by Chu and Kovésznay [6]. This will allow
the general form of the noise terms to be developed. Finally, we will simplify
the equations in order to study the possible influences of noise on combustion

instabilities.

6.1 Splitting the Unsteady Flow Field Into
Acoustic, Vortical, and Entropic Modes
of Propagation

Fluctuations in a compressible fluid can be decomposed into three types of
waves: acoustic waves, vorticity waves; and entropy waves. A thorough dis-
cussion of this idea is presented by Chu and Kovésznay [6]. The three waves
propagate independently in linearized theory of a uniform mean flow, but are
coupled when the mean flow is non-uniform [18]. For example, the pressure in
an acoustic wave is changed slightly by the presence of a vorticity or entropy
wave if the mean flow is not uniform. Coupling between modes may also occur
at the boundaries of the chamber.

Although noise is detected as pressure waves, the sources of noise are asso-
ciated with the presence of vorticity fluctuations (e.g., turbulence, flow separa-
tion, etc.) and entropy or non-isentropic temperature fluctuations. Therefore,
decomposing the unsteady flow field into the three types of waves allows both

noise and acoustic instabilities to be handled in the same analytical frame-
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3
WOI‘k' that was developed in Chapter 2. The contributions from vorticity and
entropy waves will appear as additional force terms on the right-hand side of
the acoustic equation.

Following the analysis of Chu and Kovasznay [6], the thermodynamic and
kinematic variables can be written as a sum of fluctuations in the three waves

as follows.

P =p,+Po+Ps (6-1)
Q' =Q, +Q + (6.2)
s = s, +sq+ 5, (6.3)
u' = u, + ug + u, (6.4)

In general, all of the fluctuations will be nonzero, but not all terms are the
same order. If we restrict the analysis to small amplitude motions, the three

waves have the following characteristics [6]:

( )a acoustic waves: pressure and velocity fluctuations, no entropy change
( )o vorticity waves: velocity fluctuations, no pressure or entropy changes

( )s entropy waves: entropy and velocity fluctuations, no pressure change

Thus, to zeroth-order, the fluctuations in the three waves are given by

P = e, (6.5)

Q' = Q, (6.6)

s = s, (6.7)

u = u, +ug + ul. (6.8)



129 .

An equation for the density fluctuation is obtained by expanding the for-

mula for the entropy of a perfect gas.
——= ——35 (6.9)

The acoustic pressure and velocity can be expanded as a superposition of

the classical acoustic modes so that

p; =p Z nm(t)¢m(r)7 (6'10)
u, = mzzjl ﬁ;"k(%,:) Vipm (7). (6.11)

Substitution of Eq. (6.5) in the left-hand side of the nonlinear wave equa-
tion (2.32), followed by application of Galerkin’s method, leads to a set of

coupled nonlinear oscillator equations.
iin + With = Fy (6.12)

The right-hand side will be slightly different from the previous derivation since
the isentropic relation between p’ and p' was not used. The general form of
the forcing function F,, including gasdynamics to second-order, is [18]

pE.
62

1 1
Fn = /3.[1 + _—212 + ﬁI3 + _—2]4
) ac a

ou’ 1 0P
+/p81: -ﬁdS—/[556—7;¢n+f’-an dv, (6.13)
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where

I = / (w-Vu' +4d' - Va) - Vi,dV, (6.14a)
L= % / (¥p'V - a+ aV - p)i,dV, (6.14Db)
Y N .LLAY

I3—/(u Vu' + F 8t) V,dV, (6.14c)

Iy = %/(ﬁp’v cu' +u' - V' )ndV. (6.14d)

Recall that the zeroth-order approximations for pressure and velocity were
used to evaluate F,, in the development of the approximate analysis. The
same idea will be applied here, although there are additional contributions to
the velocity fluctuation from coupling to vorticity and entropy waves which will
be included. We will now substitute Egs. (6.5), (6.8), and (6.9) to determine
the form of the additional forcing terms.

The first integral I; is linear in the velocity fluctuation and therefore gives
rise to three integrals, one associated with each of the waves. Some simpli-
fication is gained by using a vector identity to rewrite the integrand of I

as
@a-Vu' +u' -Va=V(a-u)-(axVxu+u xVxua). (6.15)
Then after substitution for «', I, can be written as

L=I+I!+1, (6.16)
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With'
= / V(- u) — ul, x V x @] - VisodV, (6.17)
0= /A[V('a )~y X V X @~ @ X Q] - VaudV, (6.18)
If:/[V(ﬂ-u’s)—u’sxVx'&—ﬁxqu’s]-Vz/)ndV. (6.19)

The integral I, is linear in the pressure fluctuation and hence produces only

one integral.
a 0 ~ml T T /
I2 = IQ = 5_2 [’ypav -u+u- Vpa,] wndV (620)

The integrals I and I3 are the gasdynamical contributions to the linear
stability problem. For the same reasons given in Section 2.4, the linear cou-
pling resulting from gasdynamics will be ignored. Therefore, we obtain the

familiar result

a [ ... 1.1 :
P {le + 5—2—12} = 207 + 2w 0n1n- (6.21)
On the other hand, the integrals I3 and I{ contain ug and w) which act as

source terms for the ‘noise’ part of the acoustic field. They are independent

of the acoustic field and schematically can be written in Eq. (6.13) as

a
PE;

n

{pUf + 1)} =200, (6.22)

The last two integrals are second-order in fluctuations and, as such, produce
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up to nine distinct integrals each. After substitution for u', I3 becomes

Iy =I3* + I3 + I

+ I+ O+ I (6.23)
+ B+ P I
where
aa __ I pa a af) ___ I [
o= | |- v, + 52 2| VeV, BT = [l - Vup] - VipdV,
/ ! ;
1o = / [u; V! + %%t’fi ViadV, I3 = / [l - V] - VapodV,
sa ! ! /); au:z: 1919) ! l
IS - u, - V'u’a + 'EW : v'l/)ndva I3 = [uﬂ : Vuﬂ} : and‘/a
/ ! .
I = / [u; Ve, + %% ViV, 1 = [l V] Ve,

I = / [ug - V] - Vap,dV.

Both terms in the integral Iy depend on pressure. Since pj, = p}; = 0, only five

of the nine integrals are nonzero after substitution for p' and u'.

3 L AR R A AT
[f = gt / (Y9, V - ug)¥ndV

R (ARt
I = aat [ (ug - V) ¢ndV
i = o [ iy

Using the isentropic relation p,/p = p, /7D, the integrals I$* and If* can

be combined to produce the second-order gasdynamics terms developed in
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Chapt-er 2. The remaining terms in I3 and I, are either linear in acoustic
fluctuations or second-order in non-acoustic fluctuations. The final form of
the two integrals is thus

=2

a o« o @] o
=5 {plg + = } = > Attty + Buggminy]
n

i=1 j=1

8

+ [(5 + §”(4)) i + éfﬁ)m] +2O, (6.24)

=1

where _,51 has been defined as

2
50 = ——— (PP + I + L+ 1)} (6.25)

n

Schematically, then, after Eqs. (6.21), (6.22), and (6.24) are substituted in the

right-hand side, the set of forced oscillator equations takes the form

in + Wit = 2070 + 2wn8n1s — Z Z mﬂhm + Bpigminsl
=1 ] 1

+ (Fn other + Z [5:}11772 + §m7h] + —n (626)

where we have defined

Gi=6 + 6, (6.27)
Eni = £, | (6.28)
=, =50 4 20, (6.29)

This system of equations is very complex and there are many free parame-
ters. For instance, if we truncate the system to N modes, there are 2/V linear
parameters and an additional 2N? + N unknown functions. In order to sim-

plify the equations somewhat, we will therefore neglect cross-coupling terms in
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v and &, i.e., terms with n # i. These terms may turn out to be important,
but neglecting them will allow for easier initial computation of results and will

suffice for the purposes here. The simplified set of equations is

oo 00

iin + Wit = 2007 + 2w BnTh — Z Z [Anijnitlj + Bnigming]
i=1 j=1

+ (F) N + E2(8) 1 + &n(t)mn + Zn(t).  (6.30)

6.2 Modeling of the Stochastic Sources

The problem has now been reduced to solving Eq. (6.30) for the time-dependent
amplitudes 7, (t). The source terms §ﬁ(t),~ £,(t), and E,(t) represent stochas-
tic processes of some sort and are responsible, in this formulation, for the
background noise found in the power spectra of test firings. The problem
of modeling these processes, however, remains. This requires specification of
both the spatial and temporal distribution of the velocity and the entropy. At
the present time, no models exist for these fluctuations.

There are several other paths that can be followed at this point which
include obtaining approximate representations for the velocity and entropy
fluctuations based on experimental data or numerical simulations. The ap-
proach that will be taken here is to assume forms for the source terms which
are based on observations of experiments. By inspection of the pressure traces
(;f test firings, it is appaient that the stochastic prdcesses in real systems are
broadband with very small correlation times*, 7.. The limit 7. — 0 represents
a delta correlated process, i.e., a process which is totally uncorrelated with
itself. It is thus interesting to study this limiting case and assume that the

stochastic terms are represented by white noise.

*The correlation time is the time above which the autocorrelation function is zero. This
is a measure of the dependence of the process on its past.
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The definition of a white noise process is a process whose spectral density
is flat, i.e., all frequencies are present at the same amplitude. Although such
a process cannot occur in a real system, white noise can be a very useful tool
for studying real processes which have very small correlation times compared
to the macroscopic times of the system. This is true of the random processes
and systems of interest [20]. Therefore, we will approximate &, &,, and =,
by mutually independent white noise processes with zero mean values and
intensities o¢’, ¢, and o7.

By defining (,(t) = 9, (t), the second-order system (6.30) can be rewritten

as an equivalent first-order system.

= Cadt “ (6.31)

dC = 200 Cndt + 2wnbnnndt + FNVdt + (nE2dt + np&ndt + Epdt

The forcing function FN" contains nonlinear contributions from gasdynam-
ics and other processes, such as combustion. Since we are approximating
the stochastic processes by white noise, the following substitutions can be

made [31].

dWE' () = €2dt, (6.32)
dWE(t) = &,dt, (6.33)
dW=(t) = Z,dt, ; (6.34)

where W&'(t), WE(t), and WZ(¢) are independent Wiener processes. Using

this new notation, the system of equations becomes

dn, = (udt, (6.35)
dCy = 20 Cndt + 2wnOnmadt + FNdt 4 CdWE (8) + 0 dWE(2) + AW (1).
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Thus, we are now interested in solving a system of stochastic differential equa-
tions with both additive and multiplicative noise. Throughout the rest of this
chapter, these two types of noise will be referred to as external excitations and

parametric excitations, respectively.

6.2.1 Stochastic Differential Equations

Unlike differential equations in ordinary calculus, there is an infinite number
of ways to interpret differential equations with stochastic source terms. This
is due to the highly erratic nature of white noise. Of the infinite possibilities,
however, there are only two commonly used interpretations: the Ito and the
Stratonovich representations. While the Tto representation has a better math-
ematical basis, the Stratonovich representation allows the use of the rules of
ordinary calculus and often has more physical meaning. Which representation
is best depends upon the physics of the particular case under investigation.
This is best illustrated through a simple example taken from Gardiner [31,

page 103]. Consider the stochastic diff(irential equation
dz = xdW (), (6.36)
with the initial condition
z(0) = 1. ; (6.37)
If this equation is interpreted in the Stratonovich sense, the solution is

z(t) = W O-WO, | (6.38)
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The évxpect‘ed value of z(t) can be calculated using the formula
E(&) = e1269/2} (6.39)
and the expected value of the square of the Wiener process, which is of course

E(W(t) - wW(0)]?) =t. (6.40)

Therefore, the expected value of z(t) is

E(z(t)) = E (V-0 (6.41)
= B - OF)/2} (6.42)
= ¢'l?, (6.43)

For the same equation, the Ito sense yields

2(t) = W O-WOI-51} (6.44)

s

with an expected value of

E(z(t) =E (e[W(t)—W(O)]—t/Z) (6.45)
— A B(W-w )~} /2 (6.46)
= 0. , (6.47)

Thus, the Ito and Stratonovich representations give two vastly different an-
swers for this problem. In the Ito case, the variable fluctuates near zero, while
in the Stratonovich case, it grows without bound.

The reason for this discrepancy is that the Stratonovich representation

is anticipating, while the Ito representation is nonanticipating. This can be
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shown using the equivalent difference equation.

Az = sAW (1) (6.48)

7

In the definition of the Stratonovich integral, the integrand is evaluated at the
midpoint between the lower and upper limits of integration. Therefore, the

difference equation can be written

Tiy1 T T4

Tip1 = i + 9

(Wit — W5). (6.49)
Due to the multiplicative term z;,1 (Wi 1 — W;), the system anticipates the
next value of the Wiener process. However, the evaluation point for the Ito

integral is at the lower limit of integration, and the difference equation becomes
Zivr = X + xi(I/V,-H — VVZ) (650)

In this case, the right-hand side does not depend on x;,;, and the system
is nonanticipating. Therefore, the reason for the discrepancy is that in the
Stratonovich case, the variable z(¢) anticipates the next value of the Wiener
process, while in the Ito case, it does not.

The choice between the two representations is then as follows. If there is a
correlation between the noise and the system, i.e. the system is anticipating,
then the Stratonovich representation should be used. On the other hand, if the
actual noise process is in fact truly random, i.e., the system does not anticipate
its next value, then the Ito representation is the correct choice.

Here, the terms &, &,, and =, represent real noise processes with small
but finite correlation times. In the limit 7. — 0, we are approximating these
real processes by white noise. In the actual system, the acoustics of the cham-

ber will anticipate the real noise processes due to nonzero correlation times.
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Therefore, the Stratonovich representation is a more appropriate choice due
to its anticipating nature [31, page 105]. We will thus assume that the sys-
tem (6.35) is composed of Stratonovich differential equations and treat them
accordingly. For more information on the intricacies of stochastic differential
equations, see Gardiner [31] or Horsthemke and Lefever [35].

In our study, it will be necessary to numerically simulate the system of
stochastic differential equations. Euler’s method is the most common proce-
dure used to simulate Ito stochastic differential equations. However, in order
to use this method with Stratonovich differential equations, the system must
first be transformed to an equivalent system of Ito equations using the Wong-
Zakai theorem. This complicates matters unnecessarily. If instead we use
a second-order Runge-Kutta method, the Stratonovich differential equations
can be simulated directly. This can be shown by writing the differential equa-
tions as equivalent difference equations and then substituting them into the
second-order Runge-Kutta algorithm. We will approximate the Wiener pro-

cesses using variates generated by the Box-Muller transformation [30, page

309].

An example of a simulation using this method is presented in Fig. 6.1.
A sample pressure trace is shown along with the corresponding normalized
spectrum. Inspection of the spectrum shows the distinct frequencies which
are associated with an acoustic instability, along with broadband background

noise. This is characteristic of actual test data of a case when an instability

is present.

6.3 Monte-Carlo Simulations

In the previous chapters, we have studied only deterministic systems. Since

we are now interested in nondeterministic systems, it is natural to use the



140

.Presstire atthe headend -
l=]

- . L 1 1 L 1 L L .
500 550 600 650 700 750 800 850 900 950 1000
Nondimensional Time, ta/l-

S001f ' :
ot sty k'Y J'.'M.. M AN .

(o] 0.5 1 1.5 2 25 3 3.6 4 4.5 5
Nondimensional Frequency, fL/a

Figure 6.1 Sample pressure trace and normalized spectrum for
one simulation

probability density functions of the amplitudes of acoustic modes to investigate
the dynamics of the system. There are two main ways of determining these
probability density functions: solution of the corresponding Fokker-Planck
equation and through the use of Montg—Carlo simulations.

The Fokker-Planck equation describés the time evolution of the probability
density functions of the acoustic amplitudes. It can be constructed using
the coefficients of the system of stochastic differential equations. Even for
relatively siniple systems, however, the Fokker-Planck is extremely difficult to
solve; see, e.g., Franklin and Rodemich [28]. Therefore, we will use the second
method to calculate results for this chapter.

The Monte-Carlo method provides a means of approximating the prob-
ability density functions without the difficulty of solving the Fokker-Planck
equation. In this methodk, a series of numerical “éxperiments” is conducted,
usually in the same manner that one would conduct actual experiments. After
the flow field has become well-developed (say 1000 periods of the fundamental

mode or so), the amplitudes of the acoustic modes are sampled. The results
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are then used to construct histograms which, after normalization, approximate
the instantanegus probability density functions of the modal amplitudes. The
approximation becomes better as the number of experiments is increased.

In the current study, each Monte-Carlo simulation will consist of 10000
numerical experiments. The lincar parameters will be fixed throughout a
series of experiments, Whilc the initial conditions for the simulations will be
varied systematically. In particular, a square initial pulse which is nonzero
from 0 < z/L < .25 will be used. The sizc of the pressure pulse p'/p will be

varied from 0 to .2 linearly so as to include all likely values.

6.4 Results

For initial results, we will use the simplest possible set of equations. The sys-
tem will be truncated to two modes with noise included explicitly only in the
fundamental mode. In addition, we will assume initially that the only nonlin-
car contributions arc associated with gasdynamics. These simplifications were
used by Culick ct al. [20] and will allow the effects of each type of stochastic
process to be determined. In Sec. 6.4.4, some of these simplifications will be
relaxed to investigate the effects of noise when nonlinear contributions from
combustion are also included.

Note that for the results given in this chapter, it is more convenient to
work in terms of the amplitude r,, instead of 7,,. By utilizing this variable, all
attractive states of the system will be either stable or unstable steady states.
This allows us to avoid dealing with limit cycles which are not as well-defined

for stochastic dynamical systems.
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6.4.1 The Effects bf én External Excitation

The term =; is'an external excitation, i.e., it does not depend on the current
state of the system. As a result, this type of excitation does not change
the qualitative behavior of the system from that of the original deterministic
system [35]. No matter how large the intensity, the addition of an external
excitation does not affect the locations or types of attractors in the system.
Instead, an external excitation provides only a random perturbation from these
states; the dynamics of the system are constantly striving to bring the system
back to a state of equilibrium.

To better understand the effects of an external excitation, it is useful to
treat the deterministic case as the limit of Z; — 0. For a deterministic system
with nonlinear gasdynamics only, the stationary probability density functions
will be delta functions in terms of r,. For example, the probability density
functions of a linearly stable system will be delta functions at r, = n, = 0,
for all n. When an external excitation is introduced, the effect is to broaden
the delta peaks about the mean value. This broadening effect can be seen
in Figs. 6.2 and 6.3 for linearly stable ;mnd unstable systems, respectively. It
should be noted that the nonzero mean value seen in Fig. 6.2 is a result of the
transformation from 7, to r;. The amplifude n, will still have a mean value
of zero, as expected.

To demonstrate the effect of noise intensity on the probability density, the
value used in Fig. 6.3 was doubled, and the result plotted in Fig. 6.4. As the
intensity of the noise increases, the variance of the probability density function
increases so that a larger range of modal amplitudes is likely. The mean value

of the amplitude, however, remains unchanged.
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Figure 6.2 The influence of an external excitation of the fun-
damental mode only on a linearly stable system; 2 modes,
015 = 0.0005 sec™3/2, a3 = —25 sec™?

180 . . . . . . . . .
160} . 7
140} i
120} ‘ ) T

100 i

P(r1)

80+ B
60 B

a0l . . ]

1 1 1 1 1 1 1 s 1
o 001 002 003 004 005 006 007 008 0.09 0.1
Amplitude of the first acoustic mode, r;
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damental mode only on a linearly stable system; 2 modes,
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6.4.2 The Effects of a Noisy Linear Growth Rate

Unlike the external excitations covered in the previous section, the parametric
excitations €Y7 and & depend upon-the current state of the system. In a

more illuminating form, the system (6.30) can be rewritten as

. P 1 v . 1 ’ =
il +wip = 2 (m + '2_61) Th + 2w, (91 + %’fl) m+ (PN +Z,(2),
1

fiy + wanp = 2099 + 2wallamy + (F)N. (6.51)

By inspection of the above system, it is easy to see that £} is a random per-
turbation of the lincar growth rate of the first acoustic mode. Similarly, & is
a random perturbation of the lincar frequency shift. In this section, we will
study the effects of a noisy linear growth rate on the dynamics of the system,
while the effects of a noisy linear frequency shift will be handled in the next

section.
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There are two main effects which are caused by the noisy linear growth
rate £Y. The first is a result of approximating a real noise process by white
noise. Since no real process is truly white, the system will have a small but
finite memory, i.e., there will be some correlation between the noise and the
system. This correlation is taken into account by the Stratonovich represen-
tation through its definition of the stochastic integral [35]. As a result, the

linear growth rate is increased to an apparent value given by

, o\ 2
ag
(al)apparent =0+ (”—21—) . (652)

Thus, one effect of a noisy linear growth rate is to shift the bifurcation diagram
by an amount proportional to the square of the intensity of the noise. This is
also known as noise-induced drift [35]. The second effect of the noisy linear
growth rate is similar to the effect of an external excitation. It is basically a
disorganizing effect which tends to spread the peak of the probability density
functions about the mean value.

This type of parametric excitation was studied by Horsthemke and Lefever [35]
on a first-order nonlinear equation. In that study, the Verhulst model with a
noisy growth rate was shown to have two transition f)oints at which the prob-
ability density function changes qualitatively. Thus, there are three ranges of
linear growth rate which produce three different types of probability density
function. The same types of probability density functions were found in the
acoustic eduations with a noisy linear growth rate. However, in our system,
it is difficult to predict the exact location of the transition due to the highly
nonlinear nature of the equations.

For highly stable systems, i.e., a; < 0 sec™!, the attractor at r,, = 0 is so
strong that the solution will always be drawn back to this steady state. As a

result, the stationary probability density functions for highly stable systems
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Figure 6.5 Probability density function for a system with a noisy
linear growth rate in the fundamental mode only; 2 modes,
af = 0.01 sec%/2, a; = —8 sec™!

will be delta functions at r, = 0 for all n. For mildly stable and/or unstable
systems, a second type of probability density function occurs. While the most
probable value is still zero, the mean value is not. This type of probability
density function was shown previously ih the study by Culick et al. [20]. An
example is shown here in Fig. 6.5 for oy = —8 sec™L.

The final type of probability density occurs in systems which are more
unstable. In that case, the linear growth rate «; is so large that it is unlikely
that the noise will be strong enough for a sufficient amount of time to drive the
solution back to the trivial state. Therefore, both the mean value and the most
probable value are nonzero. Figure 6.6 shows an example of such a probability
density function for a; = 25 sec™!. Note that the mean value is slightly from
the deterministic value of 0.07. This is an example‘of noise-induced drift..

Recall that in the deterministic system, only two qualitatively different

regions are found. When noise of a parametric nature is added, three distinct

regions arise because r, = 0 is a stationary point of the system for all values
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Figure 6.6 Probability density function for a system with a noisy
linear growth rate in the fundamental mode only; 2 modes,
ot =0.005 sec™®/2, oy = 25 sec™

of a; and 0% [35]. However, if an external excitation is also included in the
system, 7, is no longer a stationary state, and only two different regions are

found.

6.4.3 The Effects of a Noisy Linear Frequency Shift

The effects of a noisy linear frequency shift are very similar to the effects
of &, so only a brief discussion is necessary. Since §; is also a parametric
excitation, a stationary state occurs once again for r, = 0, and three regions
of distinct types of probability density functions are produced. The three
types are qualitatively similar to those in the previous section, although the
transition points may occur at different values of ;. A sample probability
density function for a linearly unstable system with a noisy linear frequency

shift is plotted in Fig. 6.7.
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6.4.4 The Effects of Noise and Nonlinear Combustion

In the previous sections, it was assumed that the only nonlinear processes
present in the system were associated with gasdynamics. We will now study
the case in which nonlinear contributions from both gasdynamics and com-
bustion are included. Two additional assumptions will also be relaxed in this
section. First, we will include four modes in the simulations instead of only
two. Second, we will include stochastic sources explicitly in both the first and
second acoustic modes.

When nonlinear combustion is added to the stochastic system (6.30), the
resulting probability density functions can be quite different, as one might
expect. In order to investigate the possible influences of nonlinear combustion
processes in the presence of noise, we will introduce the threshold velocity
model into the system. We have previously shown in Chapter 5 that this

model can produce regions of possible triggering in which two stable solutions
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threshold velocity model, u;/a = 0.03, R, = 7.8, 4 modes

exist simultaneously. In a stochastic system, this corresponds to a bimodal
probability density function such that there is a high probability of low and
high amplitudes and a low probability of intermediate values.

For the results in this section, we-will use u;/a = 0.03 and R,. = 7.8
for the parameters in the threshold velocity model. Using these values along
with the linear parameters from Table 4.1, the bifurcation diagram for the
deterministic system is shown in Fig. 6.8. This diagram will be useful in the
discussion of results. In addition, the following values were chosen for the
iptensities of the stochastic sources: of = 0.005 sec™®2, 0§ = 0.025 sec™/2,
and o= = 0.0005 sec™%/2, for n = 1,2. In the figures of this section, we will vary
only a; while keeping all other parameters fixed. By changing this parameter,
we will demonstrate a variety of the possible forms of the probability density
functions.

From inspection of Fig. 6.8, we see that the region of possible triggering

begins at approximately oy = —30 sec™! for the deterministic system. Below
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this \}alue, the system is stéble to any size perturbation. To illustrate the effect
of noise on such a system, a linear growth rate of —35 sec™ was chosen. Fig-
ure 6.9 shows the resulting probability density function for the first acoustic
mode. Note that this closely resembles Fig. 6.2 in which only an external ex-
citation was included. For this case, the attractor of the deterministic system,
i.e., the trivial steady state, is so strong that the amplitudes never reach large
values. Therefere, the parametric excitations have a very small effect on the
system. Most. of the noise contribution is a result of the external excitation.

As the linear growth rate is increased to a value above —30 sec™!

, wWe enter
the region of possible triggering where an additional attractive state is present.
Three values of o were chosen in order to show how the probability density of
the fundamental mode changes throughout‘this region; see Figs. 6.10-6.12. As
the value of o is varied, the regions of attraction of the stationary states will
change. This will have a noticeable effect on the probability density functions.

The first value of a; was chosen very near the lower boundary of the region
of possible triggering. For a value of a; = —25 sec™!, Figure 6.10 shows the
probability density function of the fundamental mode. The low amplitude
attractive state is dominant because the region of attraction for this state
is larger. However, the effect of the high amplitude attractive state is still
present, resulting in a long tail in the probability density function.

As we increase o further to a value of —20 sec™!, the effect of the high am-
plitude state becomes more noticeable, as shown in Figure 6.11. The regions of
attraction of the two states are becoming more equal so that amplitudes sur-
rounding both states have high probabilities. Note that the probability density
function is continuous, and the intermediate values are nonzero. This means
that the background noise can lead to a qualitative change in the behavior of
the system. This is not consistent with the usual definition of triggering in

which a larger amplitude perturbation is necessary.
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Figure 6.12 corresponds to a3 = —10 sec™t. This figure is a good example
of triggering in the presence of noise. The background noise is generally insuf-
ficient to cause transition from the low amplitude state to the high amplitude
state.. However, since we are assuming Gaussian distributed noise, even large
amplitude perturbations are possible, and the stationary probability density
function will in fact be continuous. The probability of intermediate amplitudes
will, nonetheless, be very small.

The last two figures illustrate the changes in the probability density func-
tion as the deterministic system becomes linearly unstable. For a linear growth
rate of a; = 5 sec™!, there are two stable limit cycles in the deterministic sys-
tem. This is apparent in the probability density function shown in Fig. 6.13.
The region of attraction of the low amplitude state is small, and the higher
amplitude state is more likely. Finally, Fig. 6.14 shows a case in which only

one stable state is present.

6.5 Concluding Remarks

The current chapter has investigated some of the intricacies of systems in-
volving stochastic excitations. First, the flow field was split into acoustic and
nonacoustic parts in order to determine the general form of noise processes
in the context of combustion instabilities. The resulting terms depend on the
spatial and temporal distribution of both velocity and entropy fluctuations.
As no models of these processes are available, we have chosen to represent
them by Gaussian white noise.

The system of stochastic differential equations is very complex with many
free parameters. In order to obtain initial results, we have ignored cross-
coupling noise terms, as well as noise terms in higher modes. In general, these

processes may be important and should actually be included. However, the



152 .

0 4
30 .
40 B
120 -

100 N
80H -
60H B
40l .
20 B

00 0.01 0.62 0.03 0.04 0.65 0.06 0.07 0.68 O.IOQ 0.1

Amplitude of the first acoustic mode, r;

Figure 6.9 Probability density function for the first acoustic
mode for a; = —35 sec™! using the threshold velocity model;
wgfa = 0.03, Ry, = 7.8, 4 modes

150 T T T T T T T T T

100} 1

£
Y
50H -
0 L P AAANNAANPAYAIIVS A atena 1 L L
[s] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Amplitude of the first acoustic mode, r;

Figure 6.10 Probability density function for the first acoustic
mode for ay = —25 sec”! using the threshold velocity model;
ut/a = 0.03, Ry = 7.8, 4 modes



153 -

70 T T T T T T T T T

50

401

P(r1)

30

20

104

1 1 1 1 1 1 1
(o] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Amplitude of the first acoustic mode, 1

Figure 6.11 Probability density function for the first acoustic
mode for @; = —20 sec™! using the threshold velocity model;
uy/a = 0.03, Ry = 7.8, 4 modes

60 T T T T T T T T T

50

P(r1)

1 1 1 L e, I Il I3
00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Amplitude of the first acoustic mode,.r;

Figure 6.12 Probability density function for the first acoustic
mode for a; = —10 sec”! using the threshold velocity model;
ut/a = 0.03, Ry = 7.8, 4 modes



P(r1)

P(r1)

154

70 . - r r r .

ol o , |
50 4
40| u
30 » 1
P * i
10+ ‘ -1
NNMWN\MMMM A .
00 0.;)2 0.04 O.Sg\—ﬂ 0.08 0.1 0’.“12 0.214
Amplitude of the first acoustic mode, r1
Figure 6.13 Probability densit& function for the first acoustic
mode for oy = 5 sec”! using the threshold velocity model;
ug/a = 0.03, Ry = 7.8, 4 modes

80 g T T T T T T
70} T —
60 -1
s0} ‘ -
40} 4
3o} g
20 . . |
10 | .

OO 0.62 0.B4 O.IOG O.JOB 011 0.12 0.I14

Amplitude of the first acoustic mode,.r

Figure 6.14 Probability density function for the first acoustic
mode for a; = 10 sec”! using the threshold velocity model;
ut/a = 0.03, Ryc = 7.8, 4 modes



155 -

N
purpese here was mainly to investigate the possible influences of the types of
excitations which are present in the system.

Using Monte-Carlo simulations, we have determined the effects of the three
types of stochastic excitations on the acoustic amplitudes. This was performed
for the case of nonlinear contributions from gasdynamics only. In addition,
nonlinear contributions from combustion processes were added in order to
determine the effects of noise on a system with more than one stationary
state. In this case, bimodal probability density functions are possible.

The current investigation has only scratched the surface of this field of
study. We have, in fact, treated only a limited number of specialized cases,
and much work remains to be done. Most importantly, more realistic models of
the actual stochastic processes are needed. "This involves collecting statistical
data of vorticity and entropy waves, either by experiment and/or computer
simulation. Until this is achieved, models with nonzero correlation times, i.e.,

colored noise, should be used to better approximate the actual processes.
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Chapter 7

Final Remarks

In the present work, many aspects of nonlinear combustion instabilities have
been studied within the framework ofxan approximate analysis introduced by
Culick [12]. This analysis leads to a sct of coupled nonlinear equations which
allows general trends to be obtained at a minimum of time and expense. In
addition, any physical processes can easily be incorporated into this analysis.

In many past investigations, the method of time-averaging has been applied
to the nonlinear oscillator equations without complete consideration of the
possible consequences of this approximation. By applying the methods of
dynamical systems theory, we have determined the effects of application of
the method of time-averaging and truncation to a small number of modes. It
was determined that the stability boundary found previously in the two mode,
time-averaged equations is a result of time-averaging and is not an artifact of
truncation to two modes as previously reported [38]. It was shown that this
boundary limits the range in which there is good agreement between the time-
averaged equations and the original oscillator equations. In particular, results
will only be valid sufficiently far from the stability boundary. As more modes
are included, the boundary shifts to a higher value of « but is still present.

The results are thus valid for more highly unstable systems.
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It is a well-established result that nonlinear gasdynamics is a source of en-
ergy transfer between acoustic modes. By studying the energy balance in the
limit cycle, the present study has established that nonlinear gasdynamics also
provides a means of shifting frequencies which are not initially integral multi-
ples of the fundamental so that a periodic limit cycle may be reached. This is
important in transverse oscillations because the frequencies of transverse oscil-
lations are usually quite different from integral multiples. This additional role
reduces the efficiency of energy transfer between modes, and higher amplitudes
are required to produce a periodic limit cycle.

This finding suggests a way to decrease the amplitudes of transverse os-
cillations, and an example was presented showing this possibility. By suit-
able tuning of the linear frequency shifts 6, the efficiency of energy transfer
between modes can be increased, thereby decreasing the modal amplitudes.
Previous works have concentrated on reducing the linear growth rates as a
method to decrease the amplitudes. The present results suggest that a change
in the linear frequehcy shifts can have a more pronounced effect on the limiting
amplitudes of spontaneous oscillations.”

The effects of nonlinear combustion response were studied using several
models. The first model represented nonlinear coupling to pressure oscilla-
tions. For parametric values corresponding to realistic propellants, the possi-
bility of pulsed oscillations was not found. Two models representing coupling
to velocity oscillations were also investigated. Although these models produce
small regidns of possible triggering for limited ranges of parametric values,
both models seem to be inefficient at the type of coupling to nonlinear gas-
dynamics which leads to true nonlinear instabilities. Therefore, a new model
was developed to determine the effect of a threshold velocity, a phenomenon
that has been observed experimentally. The threshold velocity model was the

only model which produced considerable regions of possible triggering. This
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Sllggésts that a threshold velocity may be important in pulsed instabilities.

In the last chapter, the assumptions that entropy and vorticity waves are
negligible were relaxed. By including these contributions, the general forms
for the sources of noise in a combustion chamber were developed. From the
power spectra of motor tests, it is apparent that these processes are broad-
band with very small correlation times. Therefore, the limiting case of white
noise was investigated. Under this assumption, the effects of cach of the three
types of stochastic excitations were determined.

A previous work by Clavin et al. [8] had reported the possibility of pulsed
oscillations, i.c., bimodal probability density functions, when multiplicative
white noise was included in a single mode approximation to the acoustic field.
However, in this study, no cases were located in which the addition of noise
produced regions of possible triggering. Bimodal probability density func-
tions were found only when the threshold velocity model was included in the

analysis.



Appendix A
An Overview of Floquet Theory

In the present study, we are mainly interested in periodic solutions which
are the result of bifurcation from a steady state solution of an autonomous
problem. Therefore, we will restrict the current discussion accordingly.

Let us consider an n-dimensional system of the form

V = F(V), (A.1)
F(0) #0,

which has steady solutions V' = V3. For the case n > 1, T-periodic solutions
may bifurcate from the steady solutions. Define these T-periodic solutions as
u(t) = u{t + T). Now consider an arbitrary disturbance v of the solution V

in the ncighborhood of the bifurcation:
V=Vy+u(t)+v (A.2)
The derivative of the disturbance vector v is as follows:

v = F(V() + u(t) + 'U) — F(VU + U(t)) (Ag)
= f(u(t),v)
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wheré'f(u(t),v') = fu(lt + Tj, v) and f(u(t),0) = 0. Expanding f(u(?), v)

in a Taylor series about v = 0 and keeping only first order terms, we find that

flu(t),v) = fo(u®)]-)v,

or
b = A(t)v, (A.4)

where A(t) is a T-periodic vector which is defined as A(t) = f,(u(t)|-).
The system of equations (A.4) is a linear, T-periodic, n-dimensional set
of differential equations. It has n linearly independent solutions which we
will denote as v (2), ... ,v,(¢). Arranging these solutions into a matrix whose
columns are the vectors v;(t), we obtain a fundamental solution matrix, ®(¢).
Furthermore, we impose that ®(0) = I, where I is the identity matrix.
The periodicity of the solution vectors v; implies that the column vectors

of ®(t + T') are linear combinations of the columns of ®(1), i.e.,
®(1+T)=d(t)-C, (A.5)

where C is an n x n constant matrix. Substituting for ¢ = 0, it follows
that C = ®(T). It is also easy to prove by induction that ® satisfies the
equality [36].

®(nT) = "(T) (A.6)

The ecigenvalues of the fundamental solution matrix ®(7") are commonly
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referred (o as Floquet multipliers. They are found by solving the problem
D(T)- ¥ =\NT)"T, (A.T)

where W are the eigenvectors and A(7T) are the eigenvalues or Floquet multi-
pliers. Using Egs. (A.6) and (A.7), we find that the Floquet multiplicrs satisfy

the relation
AHTY = MnT). (A.8)
Therefore, A(1’) can be written in the following form.
MT) = e (A.9)
It can be shown that the solutions of © = A(t)v(t) are given by [36]
v(t) = ®(t) - P. (A.10)

In order to study the stability of the solution v(t), consider the following.

v(t+nT)=®(t+nT) ¥ (A.11)
— &(£)®"(T) T (A.12)
= A"B(t) (A.13)

Therefore, if |A] < 1, then v(t) — 0 as t — o0, and the solution is stable. On

the other hand, if |A| > 1, v(t) grows over time, and the solution is unstable.
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Appendix B
- Solid Propellant Physical Properties

Geometrical properties:
length L =0.5969 m
radius r, = 0.0253
Combustion properties:
linear burning rate 7y, = 01145 m/sec

Physical properties:

Propellant temperature T.=300 K
Surface temperature T, =880 K
Flame temperature Ty =3539 K

Thermal conductivity of propellant k, = .41868 J/m-s-K

Thermal conductivity of gas ko, = 083736 J/m-sec-K
Thermal diffusivity of propellant %p = 1.0 x 1077 m?/scc
Activation energy E,/Ry=8011 K
Heat releasc on surface Q, = 700687 J/kg
Heat release in gas phase Q; = 2512080 J/kg
Average reaction rate i = 10657.1 kg/m?-sec

Average mass burn rate M = 3.4 kg/m?-sec
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Physical properties (cont.):

Specific heat of gas cp, = 2020 J/kg-K
Specific heat of propellant ¢ =1373.6 J/kg-K
Average specific heat ratio vy =1.1787
Pressure exponent in burning rate law n=.3

Temperature exponent in pyrolysis law B =0
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