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ABSTRACT

An experimental study to determine the dynamic buckling load
of a spherical cap under impulsive loading was carried out. Impulsive
loading was realized experimentally by use of a spray deposited
explosive (Silver Acetylide-Silver Nitrate). The experimental dynamic
buckling loads were compared to the dynamic buckling loads as
calculated by using an energy criterion. The critical load from the
energy criterion was determined by the conducting static pressure
volume tests on the spherical caps. It was found that experimental
results were consistently below the dynamic buckling load as predic-
ted by the energy criterion. It was thought that this inconsistency
resulted from the fact that transition state found in the static experi-

ment was not the same as the dynamic transition state.
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NOMENCLATURE

A Area over which surface traction is added
Ai Coefficient of parabolic line i=1,2,3
A Area over which explosive is sprayed

Base diameter of spherical cap
C Pendulum Constant = v

Jie

E Modulus of elasticity = 10.8 x 106 psi
g Gravitational acceleration = 386 in/sec2
H Vertical displacement of pendulum
h Local thickness of spherical cap
hav Average thickness of spherical cap
Ah Thickness variation of spherical cap
Ip Impuise
Ith Theoretical impulse
KE Kinetic energy
Z Length of pendulum system

Mass of pendulum system

Static preload
Pcﬂ Classical buckling pressure of complete spherical shell

_ 2E (E)Z

[3(1_v)211/2 R

PEX Experimentai buckling pressure

PEXB Experimental buckling pressure before dynamic buckling
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NOMENCLATURE (Cont'd)

PEXA Experimental buckling pressure after dynamic buckling
P Theoretical buckling preésure (Ref. 9)

R, Local radius of spherical cap

R, Average radius of spherical cap

So ’ Slope of prebuckling path

S Sllopebof postbuckling path

"f‘i Surface traction i=1,2,3

U Strain energy

ug Displacement of spherical cap 1i=1,2,3

A% Potential energy

v Velocity of ballistic pendulum
v Velocity of spherical cap
% Difference of the potential energy
v Volume
W Weight of the pendulum
X Horizontal coordinate of spherical cap
Y Vertical coordinate of spherical cap
Xo’Yo Center of spherical cap
b [3 2. ] 1/4

A Geometric parameter = = (1 -v™)

4

f Rh

v Poisson's ratio = 0.3
o Density

€ Round off error
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NOMENCLATURE (Cont'd)
Postbuckling load deflection angle = % arctan (

Measurement trace of spherical cap

Horizontal displacement of pendulum system

=)
S -S
o
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I. INTRODUCTION

Recently, one of the active research areas has been the deter-
mination of dynamic buckling criteria through the use of an energy
criterion. The attractiveness of this approach to the dynamic buckling
problem results from its simplicity.

The analysis for the dynamic buckling of arches with various
boundary and loading conditions has been carried out by several
investigators (Refs. 1-6). An experimental investigation has been
carried out for a clamped arch under step loading (Ref. 4) and an
elasticity supported arch with impulsive loading (Ref. 5). The clamped
arch subjected to step loading showed good agreement between theory
and experiment (Ref. 4). However, for the simply supported arch with
an impulsive load the agreement was poor (Ref. 5). The reason for
this disagreement is not known at this time. Since the energy approach
to the dynamic stability of arches was successful for step loading, the
author was encouraged to study a more realistic structure. Therefore,
a spherical cap was chosen as a model. This choice was made since a
spherical cap has a convenient geometry for experimental work. It
was decided to use impulsive loading for the experimental work. How-
ever, N. C. Huang's theory (Ref. 7) shows the spherical cap subjected
to impulsive load is not a dynamic buckling problem. This is due to
the fact that, for the unloaded spherical cap, there exists only one
equilibrium position which corresponds to the undeformed position.
However, if a static preload is applied, there exist at least three
equilibrium positions, if the static preload pressure is above a certain

value called the lower buckling pressure.
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For each equilibrium position there exists a corresponding
potential energy. Therefore, in order for the cap to move from one
equilibrium position to another equilibrium position at a given static
preloading level, the difference in potential energy must be supplied
from an external source. For the impulsive load problem, this
energy is supplied in the form of kinetic energy. The critical energy
is the minimum amount of energy necessary to go from a lower poten-
tial energy state to a higher potential energy state at each static
preload.

For the arch problem studied by Cheung (Ref. 4) and Delph
(Ref. 5), this amount of energy can be calculated analytically. For
the spherical cap, this procedure is very difficult, since the govern-
ing equations for this type of problem are highly nonlinear. An
attempt is therefore made to determine the potential energy levels
directly from the experiment.

Parts II and III of this thesis describes the tests carried out to
find the pressure volume behavior of spherical caps under a uniform
static pressure and the calculation performed to find the potential
energy levels at each static preload. Part IV describes the dynamic
buckling tests that were carried out to determine the critical dynamic
buckling impulse at several static preload levels. Part V shows the
comparison of the dynamic buckling boundary as found from theory
and experiment.

It should be emphasized that the work carried out in this

thesis is directed toward answering the following two questions:
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1. Can the energy barrier between the unbuckled and buckled
equilibrium positions be measured experimentally ?
2. 1Is knowledge of the size of this barrier useful in determin-

ing the dyhamic buckling impulse ?



4

II. STATIC EXPERIMENT

2.1 Cap Design

The geometric parameters of a spherical cap are the thickness,
height, and the radius. The ratio of the thickness to the radius of
curvature of the middle surface must be much less than one if the
spherical cap is to be called ''thin''. A spherical cap is called
"shallow' if the ratio of its rise at the center to the base diameter is
less than, approximately 1/8. The static buckling pressure must also
be under 15 psi due to limitations in the method of preloading the cap
in the dynamic experiments. In addition, the experimental caps were
designed such that theoretically two caps had an axisymmetric static

buckling mode and two caps had an asymmetric static buckling mode.

. b [3,, 2]1/*
This fixes the geometric parameter )\ = fT{—h_ [Z (1-v )] to be
between 2.5 and 14. With these restrictions, a radius of 20 inches
and a base diameter of 4 inches were chosen. This gave a cap thick-
ness varying from 0.015'" - 0.030'". The caps were machined from
7075-T651 aluminum plate. A drawing of the cap and its integral
support is shown in Fig. 1 with the cap mounted in the static test
apparatus.

Thickness and radius enter the buckling pressure as squares.
Therefore they must be measured as carefully as possible. The
thickness was measured many times by using a micrometer. Taking
many measurements around the circumference and at the center the
average thickness can be calculated. This calculated thickness and
the maximum thickness variation are shown in Table I for the four

caps tested.
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The radius of the caps were determined in the following
manner. The spherical cap was measured using a dial gage along

© 90°, and 135°. The four

each of the following axis: 00, 45
contours of each spherical cap from the measured data are shown in
Figs. 2 through 5. Using a least square method, the data points are
fitted by a parabolic polynomial approximation as shown in the figures.
This gives the best fit radius for the cap. The theoretical analysis
used to determine the radius is shown below:

As shown in Fig. 6 the equation for a circle passing through

x, y with radius R 1is expressed as

X-x)% + (Y-v ) - R? (1)

The numerical procedure is to find Xo’ Yo and R which best fit the

measuring points. Equation (1) can be rearranged as follows:

R® . v® . (x-x)°
o) o
Y = v
-ZYO(I - 3y )
o
since Y is approximately equal to R —Y— ~ l{~0_(l_(_);_l__)_~0(10-2)
o PP y €eq ' Yo R 0(10)
therefore, by neglecting 0(10-2)
_ 1 2 2 2 2
Y = 'ZYo (R - Y0 - X7+ ZXXo - Xo) (2)
Y can also be expressed as a parabola
Y = A, +A,X +A,X° (3)
1 2 3

The coefficients AI’ AZ’ A3 are determined by a least square fit
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method. Comparing the coefficients of eqsi (2) and (3)

_ 1 22 G2 2
Ay = - a7y R -F - X0)
(o)
XO
A, = - (4)
O
1
A = 3¢
(0]

The above equation can be solved for R as follows:

1 A2 2 B

1
R = 26+ 766 - (5)
4A3 4A3 A3

The four radii determined from eq. (5) for each cap and the average
radius of each spherical cap is shown in Table II. The estimated

error for this procedure is approximately 1 per cent.

2.2 Static Equipment

The pressure-volume behavior of the spherical caps was found
using the test equipment shown in Fig. 7. The caps were uniformly
pressurized using a hand operated hydraulic oil pump. Since it was
desirable to test in a rigid pressure chamber, the pressure was
measured using semiconductobr strain gages (Kulite DLP-120-500),
which were attached on the bottom plate of the pressure chamber.

One gage was placed in the tangential direction at the center of the
bottom plate and one gage in the radial direction at the edge. They
were connected in a half bridge, in such a manner that the signal from

the gages added. The voltage across the bridge was maintained at

2.45 volts.
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The gages were calibrated using a manometer (Fig. 8).

Several runs gave a calibration factor of 3.00 + 0.015 psi/mv. After
completing the dynamic test (10 months later) this calibration was re-
peated. At this time the factor was determined to be 2.80 psi/mv.
This factor was used in reducing the data after the dynamic tests.

The volume change was measured by a glass tube of constant
cross section which was attached on the top side. During the pressure-
volume tests the pressure was measured which gave increments in
volume of 0.1 inch head. This head was measured using a microscope
attached to a traversing mechanism with increments of 0.001 inches.

The estimate error in this measuring was less than 3 per cent.

2.3 Static Test Procedure

The pressure-volume experiment was conducted by increasing
the pressure gradually, until the load reached the buckling pressure,
point A in Fig. 9. At this point the volume changes rapidly to point
B in Fig. 9, with an accompanying pressure drop. The location of
point B depends upon the ratio of the stiffness of the pressure
chamber to the stiffness of the test component. For the pressure-
volume tests conducted before the dynamic tests, it was desirable to
limit the volume so that the cap experienced no plastic deformation.
This was the reason for the rigid pressure chamber. For the
pressure-volume tests before the dynamic test, the volume was
gradually decreased to some point C in Fig. 9. At this point the

spherical cap will snap back to the prebuckling shape point D in Fig.
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9. Then with a continuous reduction of the volume head, the pressure
will drop to the starting point.
For the post dynamic test experiments, it was necessary to
determine the pressure-volume curve toalarger volume than point B.
Therefore, after buckling the cap to point B, the volume was increas-

ed to point E.

2.4 Static Test Result

The pressure-volume results for spherical caps 1 and 2 are
shown in Figs. 11 and 12. Considerable difference in the pre and
post test curves is noticed. This results from the damage to the cap
occurring during the dynamic test. The consequence of the difference
in the pre and post test results in pressure volume behavior will be
discussed in the comparison between analysis and experiment.

The pressure-volume behavior after the dynamic tests for
spherical caps 3 and 4 were carried out using a large diameter
volume tube such that the behavior to point E in Fig. 9 could be
determined. The pressure-volume results for caps 3 and 4, pre and
post dynamic test are shown in Figs. 13 through 16. The pre and post
test results show very little difference in behavior. This indicates
little damage was done to the caps during the dynamic tests.

For the four caps tested, the geometric parameter,

M= ——= |7 (1-v7) , the classical buckling pressure,
Rh h.2 2E
P g = (g BiL vz)] 172 and the static buckling pressure for

both pre and post dynamic testing are shown in Table III. A compari-

son is made with the theoretical and experimental results of other
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investigators (Refs. 8 and 9) in Fig. 17. As can be seen from the
figure, the static buckling pressures before the dynamic tests are
very close to the theoretical results except for cap 1. However, this
cap gave results similar to other caps of this geometry (Ref. 8). The
results after the dynamic tests show that cap 1 and cap 2 suffered
damage during the dynamic tests. However, cap 3 and cap 4 buckled

at pressures within 1 per cent of the pre dynamic test results.



10

1II. ENERGY CRITERION CALCULATION

The pressure-volume curve from the static experi_meht can be
used to calculate the potential energy of the cap at any pressure level.
This is accomplished in the following manner. The potential energy

is. given as

124
V:U—f Tiuid‘A (6)
A

14

where U is the strain energy and f Ti u, dA is the potential of the

applied forces. The surface tractior{: T, can be replaced by the
uniform pressure P. For the cap under uniform external pressure,
the second term can be expressed as Pv where v is the volume
between the deformed and undeformed cap. The strain energy U can
be found at any pressure P by determining the work done on the cap

up to the pressure and position of interest. This U is given by the

P
integralf Pdv. Therefore, the potential energy can be written as
(o}

follows:

P
v =f Pdv - Pv (7)
o

With the experimental pressure-volume curve of the spherical
caps before (or after) dynamic buckling, eq. (7) can be used to evalu-
ate the potential energy at each pressure level. From these data the
energy difference between equilibrium positions at the same value of
pressure can be calculated.

Throughout the unstable range, AC, in Fig. 9, the detailed

behavior can not be obtained due to the instability of the shell in this



11
region. Therefore, this part of the pressure-volume relationship is
approximate by several curves. A straight line jump and a special
curve forming a sharp cusp at the buckling pressure are shown in
Figs. 14 through 16. The difference of potential energy caused by
these approximations is as much as 18 per cent. This difference will
be discussed further in the comparison of the energy criterion with
the dynamic test results.

From the experimental pressure-volume curve and eq. (7),
the strain energy is obtained by integration along the path from the
initial point to the point of interest. The area under the path was
obtained using a trapezoidal integration rule. The second term is the
multiplication of the pressure and volume at the point of interest.
Therefore, the potential energy can be calculated from eq. (7) at each
pressure level.

The resulting potential energy curves for the four caps tested
are shown in Figs. 18 through 28, both pre and post dynamic test
results are shown. At each pressure level between A and B or E
(see Fig. 10), there exists at least two equilibrium positions. Each
position has a known potential energy.

The equilibrium position on the curve OA has a lower
potential energy than the equilibrium position at the same pressure
level on the curve AE. The difference in this potential energy re-
presents the minimum increase in energy necessary to cause the cap
to buckle. This difference can be easily evaluated from the experi-

mental curves,
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IV. DYNAMIC EXPERIMENT

The dynamic experiment consists of applying a short duration
impulse loading to the spherical cap. The caps were preloaded by a
static external pressure. The response of the cap was measured using
a noncontacting displacement pickup. The cap support and pressure
chamber were also mounted as a ballistic pendulum in order to deter-

mine the impulse delivered to the cap.

4.1 Design of Dynamic Equipment

The static preloading on the cap was applied by partially
evacuating a chamber behind the cap. However, since in some tests
the static preload was only 2 psi, a shock wave is created in the
chamber by the vibrating cap. This phenomena will effect the cap
displacement. In order to avoid the interference of the reflecting
wave, the length of chamber was chosen to be 20 inches long. This
gives 2.5 milliseconds before the reflected shock wave reaches the
cap. Since the pressure chamber is part of the ballistic pendulum
(Fig. 29), it was necessary to design it with a minimum weight to
insure adequate motion of the pendulum. Therefore, a 1/8 inch wall
thickness cast acrylic resin tube was selected.

The pickup holder and support (Fig. 31), were designed such
that the measurement of the displacement of the spherical cap was not
affected by the motion of the pickup itself, and so it gave minimum
interference with the shock wave generated by the cap. In order to

find some estimate of the pickup support motion, it was assumed that
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the pickup was forced with a pressure pulse having the same frequency
as the vibrating cap. An approximate natural frequency of the spheri-
cal cap of 3,300 cycle/sec was obtained by Galerkin's method.

The noncontacting displacement pickup was mounted at the
center of a beam support. The natural frequency and amplitude of
supporting system were calculated by Hamilton's principle. The beam
was made of steel with a 3/16 inch width and a 1/2 inch height. The
pickup holder was made of aluminum, and the estimated natural fre-
quency of the supporting system was approximately 4, 200 cycle/sec.

The maximum amplitude of the pickup was calculated to be less than

0.001 inches.

4.2 Dynamic Equipment

The impulsive load was generated using a light sensitive spray
on explosive (Silver Acetylide-Silver Nitrate, AgZCZ-AgNO3, Refs. 4
and 12). The impulse produced by the explosive was determined by
its weight. The weight-impulse calibration was found during the course
of the dynamic experiments. The amount of explosive powder was
sprayed on Mylar over a 2 inch diameter circle and weighed by an
analytical balance to + 0.001 gm. The Mylar was deformed into a
spherical shape by a heat treatment in order to obtain a good contact
with the spherical cap. The Mylar was attached to the cap by scotch
tape and the explosive was then ready for detonation.

The detonation was accomplished by a high intensity light

generated by a Xenon flash tube. The Xenon tube was set 10 inches

away from the Mylar and connected with a capacitor charged to 5, 000
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volts. The center displacement of cap was measured by a pickup
which was mounted on the supporting system (Fig. 31). The pickup is
a reluctance type transducer which makes no contact with the shell
surface being measured. The system is capable of detecting displace-
ments of less than 0.001 inch, and has a working range of approxi-
mately 0.35 inches. The pickup output was connected to an
oscilloscope to record the response. A displacement transducer was
used at the rear plate of the ballistic pendulum to determine the
displacement of the system. This was displayed on an XY plotter.
After a dynamic test, the trace on the XY plotter was read by a
traversing mechanism in increments of 1/1000 inches. This hori-
zontal displacement, A, of the pendulum system can be converted into

impulse as follows: The impulse can be related to the momentum of

the ballistic pendulum as

IP = MV (8)

Equating the kinetic energy of the ballistic pendulum to the potential

energy at the top of its swing gives

MgH = + MV? (9)

The rise in height can be related to the horizontal distance for a

small angle of swing as follows:

o~

A
H = 55 (10)

From eq. (8), (9), and (10), the relation between impulse and the

pendulum motion is obtained. I,=C-A where C = W and

P
W = Mg. j.[g—
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The impulse data from the experiment are shown in Fig. 32.
Using the least square method, the experimental data were fitted with
a straight line which is shown in the figure. The data for cap 3 and 4
are shown in Fig. 33. As can be seen, these data are considerably
better due to improvements in the experimental technique. Comparing
these two calibration lines there is a difference in slope of 0.93 per
cent and 1.89 per cent in intercept at the vertical axis. The calibra-
tion lines obtained are somewhat different from that obtained by
Cheung (Ref. 4). However, the data for this experiment lie in the

range of weight below that investigated by Cheung.

4.3 Dynamic Test Procedure

The amount of explosive powder to be sprayed on the Mylar
was estimated from the potential energy results. Twelve to sixteen
explosive charges were prepared for each cap. The cap displacement
pickup was calibrated before each series of dynamic tests. After
checking of the transducer and recording system, Fig. 30, the static
preloading was applied to the cap using a vacuum pump. At each
static preloaded level, the lightest weight of explosive was first
selected. Then gradually the weight of explosive was increased until
the dynamic buckling boundary was found. Similarly, the dynamic

tests were repeated from a lower to a higher static preload level.

4.4 Dynamic Results

As pointed out in the last section, the dynamic tests were

conducted by increasing the amount of explosive applied to the caps.
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Several traces of the resulting displacement with increasing explosive
weight are shown in Fig. 34. The vertical scale is the voltage from
the displacement transducer. The horizontal scale is the time axis.
For this scale the upper beam is 1 ms/cm and the lower beam is the
same trace on a 0.2 ms/cm time scale. The vertical scale of the
lower beam is one-half that of the upper beam.

Four distinct types of behavior can be noted in the figure. If
the cap is loaded below the dynamic buckling boundary, the response
obtained is very small. Several examples of this type of response are
shown in Fig. 34, parts A, C, F, and H. If the cap is loaded above
the dynamic buckling impulse, and the static preload is sufficiently
high, the cap will jump to the buckled position and oscillate about that
position. The cap will remain in the buckled position until the static
preload is removed. This type of motion is shown in Fig. 34, D, G,
and I. For the third type of motion, the cap will jump to the buckled
position but will return to the unbuckled position. This occurs because
the buckled equilibrium position is incapable of capturing the cap.

The return to the unbuckled position is possible since the energy
difference between the buckled equilibrium position and the energy of
the unstable state is very small. This type of motion is shown in Fig.
34E.

For the fourth type of motion, the cap jumps to the buckled
position, returns to the unbuckled position and on the second oscilla-
tion returns and stays at the buckled position. This type of motion is

shown in Fig. 34B.
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The maximum center displacement of the spherical cap was
read from the oscilloscope trace as shown in Fig. 34, using the pre-
determined calibration curve of the displacement pickup. The
impulse was also converted from the amount of explosive weight by
the calibration curve (see Section 4.2). Then, the experimental
maximum displacement was plotted against impulse for each cap.
Several of these curves are shown in Figs. 35 and 36.

If the static preload on the cap was sufficiently high, the
critical dynamic buckling boundary was distinct. This type of be-
havior is shown for cap 1, p = 10 psi, cap 2, p = 10.5 psi. For a
small value of the preload, the distinction between the unbuckled case
and the buckled case was not as clear. Typical of this behavior is the
curve for cap 1, p = 7 psi, cap 3, p =4 psi, cap 4, p =2 psi. Itis
difficult to find the critical impulse for dynamic buckling from these
curves when the static preload is small. However, the boundary is
somewhat easier to find when all of test data are plotted on one curve

for the various static preloads. These curves will be discussed in

the next section.
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V. COMPARISON OF ENERGY CRITERION

AND EXPERIMENTAL RESULTS

The impulse required to add a sufficient amount of kinetic
energy to the cap to cause buckling can be calculated from the experi-
mentally determined potential energy curves. The calculation is
performed as follows: Assume the explosive is uniformly distributed

over an area A, then the initial velocity can be calculated as

I
S th
vV = 11
—h& (11)
where p = density of spherical cap, 0.1 1b/in3 for aluminum, & =

2, h = average

the area over which the explosive is applied, =« (1)2 in
thickness of the cap (see Table I). The kinetic energy is then deter-
mined

2

KE = ph AV (12)

E]
2
This kinetic energy is equated to the difference of the potential energy

which can be found from the static test results. Therefore,

KE = AV (13)

From egs. (11), (12), and (13) the theoretical impulse is obtained

_ h' AV
n = —2a3 (14)
The impulse can be found at each preload level using either the static
test results after or before the dynamic buckling tests. Also, for the
unstable region, either the line jump or the special curve forming a

sharp cusp can be used.



19

The results of these calculations for the four caps tested are
shown in Figs. 37 through 40. The dotted part of the theoretical
curves was obtained by extrapolating the experimental data to lower
pressures than were experimentally measured.

Caps | and 2 were tested in the initial phase of the expex{‘i-
mental program. Unfortunately, cap ! was subjected to a very high
impulse in an initial test before a proper calculation of the explosive
was determined.. Also, cap 2 was tested at a high static preload
before tests at lower static preloads were conducted. These two caps
suffered some damage (permanent deformation) as can be seen from
the pressure-volume curves (Figs. 11 and 12). The result of this is
also reflected in the calculation of the theoretical impulse (see Figs.
37 and 38). When comparing the theoretical result with the experi-
ment it seems reasonable to use the theoretical analysis based upon
the post dynamic test results since the damage to caps 1 and 2
occurred early in the dynamic testing.

With the experience gained in testing caps I and 2, more
successful tests were carried out on caps 3 and 4. These caps were
tested starting at lower static preloads and then proceeding to higher
static preloads. Little difference between results obtained before and
after the dynamic tests of caps 3 and 4 was found, except at high static
preloads.

In the four figures (Figs. 37 through 40) the experimental
critical dynamic buckling boundary was drawn from the test data. The
boundary at low static preloads and high static preloads for the four

caps is easy to determine. However, it is more difficult to estimate
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the boundary in between these two extremes due to the difficulty of
obtaining the desired explosive weights. The theoretical line is a
smooth curve, therefore, the part between the extremes is inter-
polated as a smooth line.

Since the unstable equilibrium path could not be measured
experimentally in the pressure-volume tests, some estimate of the
behavior in this range must be made to make a comparison with the
dynamic test results. An indication of the initial slope of this path can
be found from the paper By Fitch (Ref. 13). Fitch calculates the initial
postbuckling behavior of shallow spherical caps which buckle into an
asymmetric mode. This implies A > 5.5. In this reference the initial
slope of this path is denoted by S and the slope of the prebuckled path
is denoted by So' From these two slopes a quantity called A is

defined as follows:

2 S
0\ = ';r' arctan (—sf;-—_—-s)

For cap 3, with A = 6.0, the { given by Fitch is -0.61. For the two
curves given in Fig. 14, the o is -0.81 for the special curve and
-0.38 for the straight line jump. For cap 4, witha \ = 6.7, the &
given by Fitch is -0.50. For the two curves given in Fig. 16, the o
is -0.82 for the special curve and -0.45 for the straight line jump.
The true curves should lie somewhere in between these two extremes.
Comparing the experimental dynamic buckling boundary with
the theory, for cap 1, the experiment is as much as 50 per cent lower

than the theoretical results. For cap 2, the theory and experiment
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are very close. The experiment for cap 3 is lower than the theory by
about 25 per cent at intermediate static preload levels. The experi-
mental curve for cap 4 lies 30 per cent lower than the theory over the

complete static preloads. In general the experimental data are lower

than the theory.
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Vi, CONCLUSION

The potential energy barrier which separates the buckled and
the unbuckled equilibrium states for a spherical cap was determined
using the results of static tests. Knowledge of the size of the energy
barrier determines the amount of kinetic energy that must be supplied
to the cap to make it buckle. The energy was supplied to the cap by
using explosive loading.

The static tests as performed contain an unstable region. The
behavior of the test specimen in this region depends on the rigidity of
the experimental apparatus and the rigidity of the test specimen. This
unstable region was approximated by several curves. For most of the
curves the difference in critical impulse was very small. However,
if the unstable region was approximated by a curve forming a cusp at
the buckling point, a considerable difference was found in the
estimated impulse. This difference could be as much as 20 per cent.
Therefore, further knowledge of the unstable path is necessary for an
accurate determination of the critical impulse using the energy
criterion.

For the dynamic buckling experiments carried out, the critical
impulse could be determined within a reasonable accuracy. For all
caps except cap 2 the experimental boundary was below the theoretical’
boundary. The difference between the theoretical and experimental
boundaries was of sufficient size (25 per cent - 50 per cent) that it
could not be attributed to experimental error (< 25 per cent) alone. It

is interesting to note that the best agreement between theory and



23
experiment was obtained for cap 2, for which the unstable region of
the static tests was smallest.

The sizeable difference between the theory and experiment may
also be explained as follows. The energy barrier as determined from
the static experimental tests may not be the smallest barrier between
the unbuckled and buckled positions. The static tests were carried
out in such a manner that part of the postbuckled region was stable,
since the tests were constant volume tests. This may have caused
the transition state which was used to determine the energy barrier to
always be axisymmetric. Other transition states corresponding to
lower energy barriers and perhaps nonaxisymmetric deformation may
possibly exist.

The determination of the potential energy of these asymmetric
transition states by static experimental tests may not be practical.
Therefore, either these unstable equilibrium states must be deter-
mined analytically or an improved method must be developed to
estimate the potential energy of the transition states using both

experimental and analytical techniques.



24
REFERENCES

Hoff, N. J. and Bruce, V. G.: Dynamic Analysis of Laterally
Loaded Flat Arches. J. Math. Phy., 32, pp. 276-288,
(1954).

Simitses, G. J.: Dynamic Snap-Through Buckling of Low Arches
and Shallow Spherical Caps. Ph.D. Dissertation, Dept. of
Aeronautics and Astronautics, Stanford University (1965).

Hsu, C. S.: Equilibrium Configuration of a Shallow Arch of
Arbitrary Shape and Their Dynamic Stability Character.
Int. J. Mech., 3, pp. 113-136 (1968).

Cheung, M. C.: The Static and Dynamic Stability of Clamped
Shallow Circular Arches. Ph.D. Dissertation, Dept. of
Aeronautics, California Institute of Technology, (1969).

Delph, T. J.: The Dynamic Stability under Impulsive Loading of
Shallow Arches with Elastic End Restraints. Engineer
Dissertation, Dept. of Aeronautics, California Institute of
Technology (1969).

Cheung, M. C. and Babcock, C. D., Jr.: An Energy Approach
to Dynamic Stability of Arches. AFOSR 69-2818 TR,
September 1969.

Huang, N. C.: Axisymmetric Dynamic Snap-Through of Elastic
Clamped Shallow Spherical Shells. AFOSR 68-0469 TR,
(Feb. 1968).

Krenzke, M. A, and Kiernan, T. J.: Elastic Stability of Near
Perfect Shallow Spherical Shells. AIAA J., Vol. 1, No. 12.

(December 1963).



10.

11.

12.

13.

25

Huang, N. C.: Unsymmetrical Buckling of Thin Shallow
Spherical Shells. J. of Appl. Mechanics, p. 453, (Sept.
1946).

Liepmann, H.W. and Roshko, A.: Element of Gasdynamics.
p. 64, John Wiley and Sons, (May 1967).

Roark, R. J.: Formulas for Stress and Strain. p. 354,
McGraw-Hill Book Company, New York, (1965).

Nevill, G. E. and Hoese, F. O.: Impulsive Loading Using
Sprayed Silver Acetylide-Silver Nitrate. Experimental
Mechanics, (Sept. 1965).

Fitch, J. R. and Budiansky, B.: The Buckling and Postbuckling
Behavior of Spherical Caps Under Axisymmetric Load.
AIAA/ASME, (April 1969).



WALL THICKNESS OF CAP

26

TABLE 1

Model Wall Average Thickness Base Diameter
Number Thickness Variation b inches
h inches Ah inches
av
1 0.0317 +0.0030 4,018
-0.0046
11 0.0245 +0.0017 4.002
-0.0013
111 0.0204 +0.0011 3.998
-0.0014
v 0.0160 +0.0010 4.000
-0.0010
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TABLE III

GEOMETRIC PARAMETERS AND BUCKLING PRESSURE

Model A PCZ PEXB PEXA I%a’cio 7; 11§a’c10 P
Number psi psi psi EXB'" th EXA"" th
I 4.60 33.54 16.40 14.17 0.82 0.71
II 5.50 25.31 19.81 14.60 0.98 0.72
111 5.94 15.82 12. 66 12.54 1.03 1.02
v 6.73 10.33 8.34 8.24 1.03 1.02
Iy = Geometric parameter
Pc[, = Classical Buckling Pressure
PEXB = Experimental Buckling Pressure before
Dynamic Buckling
PEXA = Experimental Buckling Pressure after
Dynamic Buckling
P =

th

Theoretical Buckling Pressure (Ref. 9)
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- <

FIG. 6 COORDINATE SYSTEM FOR FINDING
SPHERICAL CAP RADIUS
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FIG. 7 EQUIPMENT USED IN STATIC TEST

FIG.8 EQUIPMENT USED IN PRESSURE CALIBRATION
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FIG. 30 EQUIPMENT USED IN THE DYNAMIC TEST
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FIG.38 THEORY AND EXPERIMENT
FOR SPHERICAL CAP 2
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FIG.40 THEORY AND EXPERIMENT FOR SPHERICAL
CAP 4



