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ABSTRACT

Part 1

A centripetal pump consists of a self-aligning rotor in
rotation close to a fixed plane stator. In such an apparatus Reiner
observed an excess air pressure in the gap between the discs over
ambient and a consequent repulsive force between the discs, Reiner
interpreted this repulsive force to be the result of non-Newtonian
properties of air, Since this hypothesis is in contradiction with
known behavior of air in other similar situations, we try to explain
it as due to imperfections of the apparatus used and consider three
possibilities: dynamic unbalance of the rotor, instability of the rotor
and vibrations of the stator. The results of the analyses show that
the third possibility can explain Reiner's observations under some
reasonable assumptions. It is concluded that Reiner's hypothesis is

unjustified,

Part 1I

A model for inhomogeneous turbulence, due to Saffman,
describes turbulence in terms of two scalar densities governed by
nonlinear diffusion equations. Using this model some turbulent flows
are studied toassess the value of the model as a basis for analyzing
turbulent flows. The specific problems studied include the two-

dimensional wake, the two-dimensional jet, the turbulent couette
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flow, flow in a channel and the turbulent trailing vortex, Predictions
based on the model agree fairly well with experimental results
except for the turbulent trailing vortex, Some shortcomings of the

model as evident from the application are discussed,
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PART 1

An Analysis of Reiner's Centripetal Pump



1. Introduction,

A 'centripetal pump' consists of two discs—a stator S which
is fixed and a rotor R which rotates—with a small air gap between
them. Popper and Reiner (1956) demonstrated that when the gap
between R and S is very small (of the order of a few microns) the
air pressure in the gap at the center of the discs is higher than
ambient by as much a'.s 50 cms of water. This might be appropri-
ately called the 'Reiner effect', Since an analysis based on Newtonian
behavior of air and perfectly parallel discs (Stewartson's solution)
predicts a small suction at the center of the discs, Reiner suggested
that the Reiner effect is due to viscoelastic properties of air,

Velocity gradients comparable to those in Reiner's experiments
occur in boundary layers. Analyses of boundary layers based on
Newtonian behavior of air yield results in agreement with experiments
(Schlichting 1954). Also, calculations (Taylor and Saffman 1957) show
that non-Newtonian properties of air are too small to account for
Reiner's observations. So, Taylor and Saffman tried to explain the
Reiher effect as due to imperfections of the apparatus used. They
considered two possible imperfections: (a) a small tilt of the stator
(b) small normal oscillations of the rotor relative to the stator. They
made some estimates of pressure rise at the center of the discs and
these roughly agreed with Reiner's observations.

In order to reduce the imperfections, if any, of the types
considered by Taylor and Saffman, Reiner built the apparatus shown
in Fig, 1. Here the rotor R is centered by a ball and is driven by a

pin which is free to move along a pair of slots in the rotor. Thus
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the rotor is free to align itself parallel to the stator. Also, axial
motion of the drive shaft, if any, is not transmitted to the rotor.
Thus, it is seen that the weight of rotor tends to bring the two discs
together, Reiner found that, when in rotation, the rotor did not
contact the stator but floated on a thin film of air (a few microns
thick). Although, under similar conditions, the mean pressure
between the two discs with the new apparatus was about a tenth of
that with the old apparatus, Reiner still considered the effect as due
to viscoelastic properties of air and made no effort to explain the
difference between the two sets of results. If the Reiner effect were
due to imperfections of the apparatus, one could explain such a
difference as due to differences in the imperfections of the two
machines., Thus, the new results seem to reinforce the hypothesis
of Taylor and Saffman.

In what follows we try to explain Reiner's observations made
on the new apparatus on the basis of Newtonian behavior of air and
consider the following possibilities,

(1) The rotor is not in dynamic balance so that the rotor is
acted on by a moment due to centrifugal forces. The rotor tilts due
to this moment and results in a situation similar to the one
considered by Taylor and Saffman.

(2) The position of the rotor when it is parallel to the stator
is unstable so that the rotor executes self-excited oscillations,

(3) There exist vibrations of the stator excited by imperfections

in the drive system,



2. Analysis.

2.1 Effect of Rotor Unbalance.

In Reiner's apparatus of Fig. 1, the center of gravity of the
rotor is above the center of the locating ball by about 1. 5 mm. Thus if,
due to errors in machining, the center of gravity ofthe rotor does not
fall on the axis of rotation, the rotor, during rotation, will experience
a moment due to centrifugal acceleration, Such a moment will be
resisted by hydrodynamic forces in the airfilm if the rotor tilts an
appropriate amount., The tilted rotor also produces lift which can
resist the weight of the rotor,

To see whether the above possibility can provide a reasonable
explanation for Reiner's observations, we analyze the steady motion of
a rotor whose axis makes a small angle with the axis of rotation.

The pressure p' which is taken as a function of polar coordinates

r',0' and time t' is governed by the equation (Saffman 1957)

2
ot

9 (rlh|3pi . 3pv 5 p'h‘3 . ap')=6ﬂi

or' M ar! + 00'\ pr' YL 90’ (p'r'h') +12

(p'r'h') (2.1)
where h', the thickness of the air film between the rotor and the
stator,is a function of r',6' and t'., p', the density of air, can be
taken as proportional to pressure since the flow, under the conditions
we are considering, is known to be very nearly isothermal (Salbu 1964).

Introducing new variables:
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(2.1) can be written, in dimensionless form, as:
{rh3 (1+p) —9} + 9{——11—“3) —9} N r—{h(1+p)}+ 2\r t{h(1+p)} (2.3)

where

A = Q‘l& )\*:)\(]_-Zé) . ({):%

do
Poho? ’ at’ (2.4)

i
Q
¢ is the angular position of the radius of greatest rotor inclination

with respect to a fixed direction ox' as in Fig. 2. Thus gﬁ is the

speed of nutation of the rotor.

For steady rotation, %% =1 and (2.3) reduces to

o (782 1+p) B2) + B (2 4p) 88) = X'x Bfnaep)} (2.5)

with

N o= N1-2) = -

For any specified distribution of h, one has to solve (2.5)
subject to the boundary condition p=0 at r =1, For a small

inclination of the rotor relative to the stator, one can take



h=1+ercos® (2.6)
where eho/a is the angle between the plates,
Eqn, (2.5) with h given by Eqn. (2.6) can be solved for small
values of e (i.e. e < <1) by seeking a solution of the form

P=pje+p;e? +pyedt .o (2.7)

Such a solution was obtained by Taylor and Saffman for the case

when N of Eqn. (2.5 was equal to \. For the present case with

X = -\, we can easily obtain p; as

p1 = A(r) cos® + B(r) sin0 (2.8)
where

A - iB = C(r) = ll—(-\/'-—i-z-.—ll)-r (2.9)

J1(Vin)

27

and the mean value of p, defined by—f:» = Z%rf pd6, is
0

~

P =pie + pye? + p; e +0(et) (2.10)

It is found that 51 53 = 0 and

dA

3
Pz =5 fr rgr 4r - $(A%+B?) (2.11)

B fp
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The resultant hydrodynamic forces on the rotor are

(a) A force along oz which is resisted by the normal component
of rotor weight,

(b) Small lateral forces along oy and oz which are resisted by
the centering ball,

(c) Atorque about oz which is resisted by the drive shaft,

(d) Moments about the ox and oy axes which are resisted by
the moments due to centrifugal forces and that due to gravity.

We calculate (a) and (d) only, as (b) and (c) are not relevant.

The force along oz is

1
L = f’§27rr dr pga?
0

1

2npgal e? f 52 rdr + O(e%) (2.12)
0

=
¢}
&
i

where Ez is given by Eqn.(2.11) It is not possible to evaluate L
explicitly except for values of A small compared with 16, when A(r)
and B(r) can be expanded as power series in A. Using such an

expansion one finds that

— 2y 2
Pe = (30 - 3xterted) ronh) (2.13)

using this

TPpgaZeZ\?
L = 05—+ 00te et (2.14)
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The moments about the ox and oy axes, Mx and My’ are given by

27 1
M_ = poa’ f f p r2sin6 + drde
o o
2
= pa’e] [ p,risin6-dr de + O(e?)
o o
T 1
= p a3ef f (A(r)cosd + B(r)sin®) sin®@ r2dr d6 + O(e?)
o o
1
=pyrale f B(r)r? . dr + O(e?) (2.15)
0
Similarly,
1
M = -pomae [ A(r) r?dr + O(e?) (2.16)

o
From (2.15) and (2.16) we have

1
-pom @e [ {A(r)-iB(r}r? dr + O(e?)

C
1

~pow ade f C(r) r2dr + O(e?)
)

11

M. +iM
Yy x

Then using Eqn. (2.9), we have

i
MY + iMX= -powa-"ef{m—r} r¢dr + O(e?)

o Ti(Vin)
= -pomade PAVEN - 31 +0(e?)

Vin I ,(Vin)

3¢ I (Vin
. En"’4a e : E*fli)\ + O(e?) (2.17)

1
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For small values of \, we expand MY + iMx as a series in \

to obtain

: 2
M, + M, = - pomate {5% - o5 + OO } + O(e?) (2.18)

From (2.18) we can obtain MY and Mx separately as

3 2
MY = Pﬂll"-s-a;—é‘i’-‘— + O(e?, \te
3
M_ = - Bﬁ’%—ﬂ + O(e?, Mo (2.19)

Now, we proceed to calculate the forces and moments due to

gravity and centrifugal acceleration, We choose a coordinate system

oxyz with the origin at the center of the stator such that the pro-
jection of the radius of maximum rotor inclination falls along ox as
in Fig. 2. Let z, be the z coordinate of the center of the ball,
Let Xg’ Yg’ zg be the coordinates of the center of gravity of the

rotor, The moments on the rotor due to the centrifugal forces and

gravity can be written as

2
M_ = -Q + z_ - 2zg+ 2)dm -
f(Yg V) (2 = 2g + 2) Mgy,
where x,y,z are the coordinates of an elemental mass dm.

Expanding the integral in the above, we have

¢

z 2
M_ = -Q mgyg(zg-zo)-mgyg-ﬂ fyzdm.

X
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If we idealize the rotor to be a thin disc and further assume

eh
that the angle of inclination of the disc, —a-Q to be small, we have

z = - E:—lnx and thus
2
1 2 Q eho
M, = -Q my (2 -2, - mgy, - — [ xy dm
& my_(z_- 2q) (2.20)
= = m z -Z - m .
Yg g Zo ng
Similarly, the moment about oy is
2
= -2zg) + m + m
- m xg(zg Zg gxg x
2 2
2 mQaa
= m¢§) xg(zg- Zg) + Mg Xg STz (2.21)

i H
For steady motion M_ = M_, M_=M and L = W, the force
vy Yy X X
tending to bring the discs together (i.e, = W, the weight of rotor

plus the spring load). These conditions, on using (2.12), (2.17), (2.20)
and (2.21) give

2
porale [ I, (Vixy ] 2 m§ ehga
-———R|—— |=mQx (z -24) + mgx - ———
‘ JINR)J e e & 4
pomate [.]'3(\/1)\)} 2
I =mQy (z_-2z¢) - mgy
4 i, (VIN) g8 g
1
2 2 —
2wpga e [ p, rdr=W (2.22)

(Y]

From (2.22) we can, for conditions typical of Reiner's experi-

ments, calculate values of Xg and Yy necessary for steady motion as
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follows. We assume an hy; and hence a A and calculate an e satisfy-
ing the last of (2.22), using (2.9) and (2.11) for evaluating 52. When
e is known, xg and yg can be found from the first two of (2.22).
For X small compared with 16, the explicit forms for L, Mx’ My
from (2.14) and (2.19) can be used to simplify calculations. Table
below shows the results from such calculations, Here rg ”%Wzg'

Table 2.1

Data: a = 0,97 inches

Po = atmospheric (15 psi)

zg- Zg = ilg inch

Weight of rotor + springload = W = 85 gms,
Speed of rotation = 9000 rpm.

h, as measured by Reiner ~ 6 microns,

Assumed hg(p) N e Ty
' 12.38 4 0.314 0.025
6.19 16 0.116 0.026
2.47 100 0.075 0.028

It is seen that the value of rg necessary for steady motion is
not critically dependent on hy; and the center of gravity of the disc
should be off axis by about 0,025 inches. Considering Reiner's
claim to extreme accuracy in the making of the rotor, an error in

rotor centering of this magnitude looks unlikely,
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2.2 Analysis of Rotor Stability.

Consider a situation identical with that in Reiner's experiments
except for a pivot which keeps the central distance between the two
discs constant, Evidently, a steady state with the rotor rotating with
its plane parallel to the stator is possible. If such a state is stable
and the pivot is removed, the rotor will sink.

But, if the above steady state is unstable, it is possible for
another equilibrium state to exist such that the rotor executes
oscillations of finite amplitude. Such oscillations produce a lift,
which, for an appropriate value of the central distance between the
discs, can be equal to the weight of the rotor. Under such conditions,
if the pivot is removed, the rotor will not sink,

Thus, instability of the rotor when its center is held at a
constant distance from the stator could provide a basis for an
investigation of self-excited oscillations. In what follows, we

Ve

analyze such a possibility,

]
The pressure p, is governed by the equation (2.1) which on

introducing the variables:

o
]
2
o
e}

0

o g
i
o
1
o
<o
™
+
A
@l
n
@

(2.23)

becomes:

= (rh3(1+p)-g'§-)+a—% (;1 h3(1+p)‘g%> = Ar L {rpin} + 2Ar 2 {(pi}  (2.24)
90
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We linearize eqn. (2.24) about the equilibrium solution p = 0,

h =1 by defining
p=¢€p, +0(@€2, h=1+eh(r,o,t) (2.25)

where € < <1 and hl(r,a,t) is of order unity, We get

B (.91}, 2 (18p)_,,. 08, ,,. 9h, o,
8r<r"3?)+35 r ag)‘)‘r st M oo T 2MT G t2Ar i (2.26)

Corresponding to the possible oscillations of the rotor in the two

degrees of freedom, we choose h; to be of the form
€h, = a(t) rcosd + B(t) rsin® (2.27)
and seek the solution for p; in the form

€ p, = F(r,t)cosb + G(r,t) sin®. (2.28)
. hoa hOB . . . :
It is seen that = » T are the inclinations of the rotor relative to
the stator. Using (2.27) and (2.28) in (2.26) we have the equations

for F and G as:

8 ( 8F\ _F_ 2 2 do oF
ar(r ar) = AxG 4 Ar B() +2xr SE 4 2nr G

2 2
a—i(r%G;)-%=-)\rF— At a(t) + 2hr %%+2kr-%% (2.29)
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Eqns, (2.29) have a particular solution

Fp = -ar, Gp = -fBr (2.30)
Writing
F=F +F ,G=G_ + G (2.31)
c P c
we have equations for FC, GC as

5 aFC FC 8FC

ar (Fr) T T MGt
5 aGC GC aGc

5?(r or ) TTr T )\ch+2)‘1. ot (2.32)

The boundary condition corresponding to p = 0 at r = 1 implies that

at r =1,

F, = aft), Gc = B(t) (2.33)

For linear stability analysis, we take a(t) and 5 (t) of the form

(2.34)

a = R{aoeqt} s B = R{Boeqt}

where a4, Bg, g are complex., Corresponding to (2.34) we take

FC, Gc of the form
- qt = qt
F_o=R{F_ %}, G = R{Gcoe }. (2.35)
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Equations for Fco’ Gco’ obtained from (2.32) are

il OF o Feo X

5-1:(r 8r.) T or cho+Z)\quco

2 (p Zeoy Seo b anrqa 2.36
6r<r Br) r M co+ rat., (2.36)

with boundary conditions from (2.33) as:

F,,) =a, , G (=8 (2.37)

It will be seen that (2.36) yields a single Bessel's differential

equation for Fco + iGC0 whose solution subject to (2.37) is

J] (V iX-Z)\q r)
J,(ViN-2\q)

Foot iGCO = (ay + 1By)

c (2.38)

i
Similarly from (2.36) we have a Bessels equation for Fco-/iGco

whose solution subject to (2.37) is

J (V-ix-2\q 1)
= (ag -ifg) (2.39)
0 o J,(V-in-2hq)

Co - lGC

Using (2.38), (2.39), (2.34) and (2.30) in (2.31) we have

Jy (Vi -2 q r J(V-iN-2\q r ¢
F=R l:%(a0+i[30){-r+ } + (ao-iﬁo){-r+ }:leq
L J, Wik -2\q J;(W-iN-2Nq)

1 .
G =R [E(ao+1ﬁo){-r+ -r+

J(Vin-2nq r)} (2g-iBy) J (v -ix-2\q r}:] qt
- - e
I T (ViN-20q) 2i IV -ir-2%q)

(2.40)
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We now proceed to calculate the moments Mx' and M_, on
the rotor about the axes ox' and oy'. Since we have neglected fluid
inertia, the moments due to stresses in the fluid on the rotor are
equal and opposite to those on the stator. It is more convenient to
evaluate the moments on the stator because the normal stress in the
fluid in contact with the stator is the same as the pressure p. Using

this fact, we have,

2m 1
Mx, = poa3f f przsinadr de = powa3f G(r,t) dr (2.41)
oo 0

Using (2.40) and after some simplification

(ag+iBg) J3(Vin-2Nq) (@p-ife) J3(V -iX-2\p)

M_, = poma’R|{ - — 1ed(2.42)
* ’ \: 8 J1(Vin-2Nqg) 81 J (v -ix-2\p)

and similarly

ag+iBe J3(Vir-2hq) a@-iBg J3(V-ir-2Aq)
M_,= -pyTadRI{— +—3 tedt| (2.43)
y T, (Vin-2nq) J,(V-ix-2xq)

The equations of motion for the rotor, in a system of co-
ordinates o'x", o'y", o'z" with 0z" normal to the plane of the rotor

as in Fig. 2 are

A &)X" + C W n wyn = Mxn
A d)yn -C Wom W T Myn
C G)Z“ = MZ" (2.44)
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In the above Mx"’ MY", Mz" are the moments of external
forces about o'x", o'y" and o'z" respectively, C is the polar
moment of inertia of the rotor about its axis o'z", A is the moment

of inertia of the rotor about a diameter passing through the center of

the centering ball in Reiner's experiment, Idealizing the rotor to be

2
a thin disc we have 2A=C = m_za_ where m is the mass of the rotor,
w_u and Wyns the angular velocities of the rotor about o'x" and o'y"

e us ahg Bhg
are related to the inclinations of the rotor, Y and = by

(2.45)

We can rewrite (2.44) in the coordinate system ox', oy', oz'.
If we define the torque of external forces about the new axes by
Mx" M_, and M ,, we have the transformation relations, to first

order in —2
a

h h
anM'_M'g_O__ 19—2
z z x' a y' a
ah
M_, = M_, + M_, —2
X X z a
h
M,,:M,+M,E—-9 (2.46)
Y Y z a

The angular velocity about oz' can be taken to be a constant
equal to . Using this, we have the transformation relations for

angular velocities as



-q - ahy Bhy
Wzn T “x' a “y' a
ahg
(J.)X" - W ] + wzu a
h
gn = wgr + ey, E;Q (2.47)

Using (2.46) and (2.47) in the last of (2.44) we can easily

h
show that M, is of first order in ;0 . On using this, it follows from

h
(2.46) that, to first order in —2, M w=M_,and M_, =M_,.
a X X y" vy
Finally equations (2.44), on retaining only the first order terms in
h
-;Q, become

2 mhoa de do
T lae ~ 274t =My,

2 mhya {dza
4 dt?

=4

(2.48)

a8
+2 ‘dt} =
Using (2.34), (2.42) and (2.43), equations (2.48) can be written as

2
mahy,Q 2 qt

=R | poma®{ —% T T8 )e
J(Vin-2\q) J (v -ik-2)\q)

2
ma hy§ 2 qt
R =2 (@ @pt2qBole

= R |po mal 3 + 3 )e
T (V-ix-2\q) J,6/-in-2Xq)

(2.49)
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Defining

2
mf h,

S = po a2

(2.50)
and taking the sum and difference of the first and i times the second

of equations (2.49), we have

[ 2 I3 (Vix-2xq) ]
(g +iBo) | S(q +2iq) - ————
° ° J, (Vix-2xq) |

[ J3 (V=-in-2)q)]
(@p - iBo) | S(q + 2iq) - =0 (2.51)
’ ° T, (V-ix-2\q)

b

Equations (2.51) are the characteristic equations for the
eigenvalues of q and the eigenvectors a5, P;. It is seen that two

equivalent possibilities exist, They are:

I, (V-ix-2xq)

(a) ag +iBp = 0; S(q®+2iq) =
° ° JI(V -i)\-ZKq)
J, (WiN-21q)
(b) @y - iBg = 0; S(q?-2iq) = (2.52)

T, (Vir-2nq)

The constant S appearing in the above is in the neighborhood
of 0,001 under the conditions of Reiner's experiments. Consequently,
we need study equation (2.52) for only small values of S, For the
case S = 0, the eigenvalues correspond to J_,,(M) = 0. Since
J3(z) = 0 has zeros only on the real axis we see that all the eigen-

values corresponding to J3(v -iA-2\q) = 0 have negative real parts
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and hence represent stable solutions., The eigenvalue corresponding
to the root z = 0 of J;3(z) = 0 is purely imaginary and represents a
state of neutral stability,
For small values of S, the eigenvalues of (2.52) are close to
those for S = 0 and hence represent stable solutions with a possible
exception corresponding to the case z =0, We pursue this case

further by expanding J3(z) and J,(z) in series of z as follows.

Jy(z) = % + O(z5)
Ji(z) = £ + O(z%) (2.53)
Writing
q=q, +ilg -3) (2.54)

where d,, 4; are small compared with unity we find on using the

first form in (2.52)

S 108 S
%\—; q. = 3 (2.55)

9, = -

The real part of q (i.e. qr) is negative and implies stability

of motion. Consideration of the corresponding eigenfunction shows
that the rotor axis approaches the vertical exponentially by spiralling

around the vertical axis with an angular velocity nearly equal to half

the angular velocity of the rotor.
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An interesting possibility is the occurance of instability of
the rotor for sufficiently large S, Thus if S is increased from zero
we may expect an S, say S,, at which the equation (2.52) exhibits
neutral stability., If this is possible, let the corresponding eigen-

value, which is purely imaginary, be im where m is real, Then

(2.52) becomes

J, (V-ik-2im\)
J; (v =in-2im\)

2
Sp(-m - 2m)

3
I3 {iz V(i+2m)n}
Jl{i% V(1+2m)\ }

2
- So(m + 2m)

(2.56)

The left hand side of (2.56) is real so that for nonzero Sy,
we should have a real right hand side., But reference to tables of
Bessel's functions for complex argument (McLachlan 1954) shows that
the right hand side of (2.56) is never real and we have the surprising

result namely that the motion of the rotor is stable for any S.
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2.3 Effect of Vibrations.

The rotor in Reiner's apparatus is mounted such that there
is no coupling with the drive shaft for rotor motion along the axis
or about a diameter, Thus significant vibration cannot be trans-
mitted to it from the drive system. But the drive system can
transmit vibrations to the stator through the supporting structure,
Such vibrations can arise in the drive system due to several
possible reasons,

Dynamic unbalance in the drive train can generate vibrations
corresponding to the angular velocities of its members. Since the
Reiner's machine has only a pair of shafts running roughly at the
same speed, the resulting vibrations correspond roughly to the
angular speed of the rotor,

The apparatus employs several ball bearings which can
generate vibrations at several frequencies (Moeller 1953). Among
the more significant are the ones produced due to a faulty spot on
a ball striking the races and the ones due to the balls entering and
leaving the loaded zone as the balls roll on., These vibrations have
a fundamental frequency typically ten to twenty times the angular
speed of the shaft on which the bearings are mounted and are
particularly rich in harmonics.

Other possible sources of high frequency vibrations are the
angular friction drive which can induce vibrations due to stick-slip
phenomenon at the friction surfaces and the electric motor which can
induce vibrations of a frequency corresponding to the meshing of its

magnetic 'teeth',
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Any such oscillations of the stator induce oscillations of the
rotor through the air film. As indicated by the analysis of Saffman
and Taylor (1957), the relative motion between the discs can produce
a lift on the rotor which may be sufficient to sustain its weight.

To pursue this possibility quantitatively, we consider the
idealized problems of a stator of radius a executing simple
harmonic oscillations. First we consider stator oscillations normal
to itself with an amplitude x, at a frequency w. For studying the
motion of the rotor separated from the stator by anair film of mean

thickness hg, it is convenient to define the dimensionless numbers

M and N as
2 2
mw hg LRpwa
M = . N = ———— 2.57
pora? ’ Po ho? ( )

Under conditions corresponding to Reiner's experiments, N
is large compared with unity and for this case we can show (Beck
et al 1969) that for harmonic oscillations of the rotor, the airfilm

behaves like a spring of stiffness m w?K in parallel with a dashpot

|

of strength mwC where

[

feped 1 2
K = ﬁ[l‘(ﬁ)

C = (2.58)

Ll
2o

Using the above, the relative displacement between the two

discs, y = ygsin(wt'+$), can be related to the displacement of the
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stator, x = xpsinwt', through the equation of motion for the rotor
which can be written in dimensionless form using ;r- = y/%x, and t = ot

as

2, — Adv _——
S¥ + CTE 4+ Ky = -sint (2.59)

The behavior of the solution of (2.59) is well known. The
amplitude of ;r- (i.e. yo/%o) tends to 1 as M — w and tends to zero
like M as M tends to zero. For M near unity, y,/x, is large.

The value of M in the range of Reiner's experiments, with w
corresponding to the angular speed of rotor is very small (=~ 0.001)
and thus y,/x,< < 1. This implies that vibration of the stator at a
frequency equal to the angular speed of the rotor is transmitted to
the rotor without loss of amplitude and there is no significant
relative motion between them. Further, we can show that the lift
on the rotor due to the relative oscillations between the discs is

1
L = ﬁ’;ﬁ (?5 (1 - (N;)a) (2.60)

For the above case, the lift of the rotor is insignificant for any
reasonable Xo/ho and cannot possibly resist the weight of the rotor,
For w corresponding to vibrations induced by imperfections in
the bearings, M is comparable to unity and then Yo/xo is of order 1.
Taking y,=x, and equating the lift of the rotor to its weight, W, we

have
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2
xy = hg | —— (1 - (2.61)
° ° [SPOwa ( (Z/N)Z)]

Equation (2.61) estimates an x; in the range of 0.5 to 1.0
microns for conditions corresponding to Reiner's experiments,
Next we consider harmonic oscillations of the stator about a

diameter, For this case, equation (2.1) can be written as

9 (113 ph® 8p 8
= (rh ) 3L (r e (prh) + No= (prh) (2.62)
where
2 2
p_' 6Qua I2npa
= , A = ———— . N=——— 2.63
P Po PohoZ Poho? ( )

Here n is the frequency of stator oscillations, The other quantities
are defined as in Section 2.1 except that p is the pressure ratio and
not the pressure perturbation.

For N very large, the solution of (2.62), valid everywhere
except in a small region near the edge r = 1, is obtained by equating

the last term of (2.62) to zero as:

ph = F(r,0) (2.64)

If yo, the maximum amplitude of stator oscillations (at the

tip of a diameter), is assumed small compared with h;, we can take

h=14+€r cosBsint (2.65)
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where €= yo/h,. Corresponding to (2.64) and (2.65) we take ph,

which is symmetric in €, to be

ph = 1 + €%(r, 0) (2.66)

An equation for f(r, 0) is obtained by taking the time average of
equation (2.62) and using (2.65) and (2.66) retaining only terms of

order €2 and smaller. We thus find

L)
L2}
=

9?2 i) 1 92 of
a2t Tor T2 90 T M b (2.67)

R |

The boundary condition at the edge for equations of this type
was derived by Pan (1967) by a consideration of the full equations
corresponding to (2.62). But we can easily find the correct boundary
conditions by a boundary layer type of analysis near the edge which
shows that the time average of p?h® is independent of the scaled
variable normal to the edge in agreement with Pan (1967). From

this we can show that
_ 3 _ 3,3
f(1,0) = 4 cos 6 = g t g cos 26 (2.68)

Solution of (2.67) with the boundary condition (2.68) is easily

seen to be of the form

f(r,0) =

00 jw

+ g(r,9) (2.69)

where g(r,0) is a periodic function of 6. We do not evaluate g(r, 0)



-26-
as it does not contribute to the lift of the rotor.

Thus from (2.66), using (2.69), we have

ph=1+¢ (% + g(r,e)) (2.70)

from which, using (2.65), we have

2 2 2 2

2 2
p=1- ercosesint+%e +€ rcosOsin t + € g(r, 0)

and thus the time average of p is

- 2

p =143 € (1, c0820,, Fog) (2.71)
8 2 2

The normal force on the rotor, L, is easily obtained to be

) 2
L=%;p-rra(%§) (2.72)

Based on equation (2.72) and using a reasoning as for axial
vibrations we have an estimate for the amplitude of stator vibrations

of about 1 micron at the tip of a diameter,
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2.4 Discussion,

We considered three possible explanations for Reiner's
observations. The first which assumes rotor unbalance was proved
to be unreasonable on the basis of Reiner's claim to accuracy in
the making of the rotor. The second possibility namely that the
rotor was unstable was shown not to exist provided that the distur-
bances were small., Though this does not rule out self-excited
oscillations of finite amplitude, such a possibility looks unlikely,

The third which assumes the presence of vibrations does provide a
reasonable explanation if we assume that the stator vibrates normal
to itself or about a diameter at a sufficiently high frequency with a
maximum displacement of about 1 micron. Though the analysis was
restricted to sinusoidal oscillations for analytical convenience, it is
easy to see that similar results are true for oscillations over a
spectrum of frequencies likely to exist in the Reiner's apparatus.
Vibrations of the stator about a diameter are particularly likely
because the movable part of Reiner's apparatus, which includes the
discs and a drive shaft, is supported only at three points with two
of them on a horizontal axis. The third support is a worm lacking
a gear and is likely to provide freedom of movement due to backlash.

From equation (2.61) we note that for a given amplitude of
vibration, the central separation between the discs, hy, increases
with increase in pressure., Also, we may expect increased vibration
with increase of rotor speed. This would imply a larger h, at higher
speeds according to (2.61). Similar conclusions are valid for stator

vibrations about a diameter. Reiner's observations are consistent
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with the above behavior., Also, there is nothing in Reiner's
observations to rule out vibrations of about 1 micron amplitude and

the hypothesis of viscoelastic behavior of air looks unreasonable,.
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PART II

A Study of Some Turbulent Flows

Using a Model for Inhomogeneous Turbulence
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1. The Model

1.1 Introduction.

Turbulent flows are common in nature and include many of
practical importance, These flows are highly irregular and complex
and it is not practical to analyze these starting from the Navier-
Stokes equations. Even the restricted question of predicting only the
mean values of the flow quantities is still unanswered,

Any theory of turbulent flow not starting from the Navier-
Stokes equations has to make empirical assumptions about the tur-
bulent stresses. Several such theories—among them the mixing
length theories of Prandtl and Taylor—have been tried., These
simple theories are unsatisfactory in that they involve non-universal
constants, For each type of flow, these constants have to be deter-
mined from experiments. Thus, these theories can only be considered
as a compact means of presenting experimental results, The need
for a theory which can be applied to novel situations without the aid
of experiments still exists,

Recognizing this need, Prandtl (1945) proposed a one-equation
model for turbulence. He assumed that the eddy diffusivity E was
proportional to gf where g is the amplitude of turbulent fluctuations
and £ is a length scale characteristic of the mixing due to turbulence.
q was determined from an equation roughly corresponding to the
turbulent energy equation. The distribution of { was assumed suit-
ably for each type of flow. Spalding (1969) and his co-workers

studied some turbulent flows using Prandtl's model. They state that
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their applications show the inadequacy of the Prandtl's model,

Harlow and Nakayama (1967) propose a two-equation model
roughly similar to the Prandtl's model above with the local length
scale ¢ itself being the solution of a second model equation. But
they have not applied their model to any real flow situation and the
usefulness of their model is still an open question.

Other two equation models include the ones due to Kolmogorov
(1942) and Spalding (1969). These models employ two model variables
roughly corresponding to the energy density and the vorticity density
of the turbulent fluctuations. The eddy diffusivity is taken to be the
ratio of energy density to the vorticity density. No application of
Kolmogorov's model to any flow is available., The model equations
due to Spalding contain a number of free parameters and his
applications to some simple flows (i.e. pipe flow, jets) indicate that
the free parameters are not universal constants. Thus the useful-
ness of his model is open to question,

Independently, Saffman (1969) proposed a two-equation model
for turbulence. This model describes turbulence in terms of the
energy density e and a vorticity density w and resembles the model
due to Kolmogorov. These model equations contain a set of universal
constants., It is a remarkable fact that these constants can be deter-
mined once and for all from some very general considerations. It
is our purpose to see whether these equations provide a satisfactory
basis for analyzing turbulent flows. Though it is possible to take
into account the effect of compressibility and molecular viscosity by
suitable modification of the equations, we confine our attention to tur-

bulent flows of incompressible fluids with zero molecular viscosity,
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1.2 The Model Equations.

Turbulence, according to Saffman's model, is characterized
by two scalar densities, the ‘energy density' e and the 'vorticity

density' w, satisfying non-linear diffusion equations given by:

ou. 241
Bw? w? a3 |4_,.3, 08 ( . 0
B+ g, T OO [ 8x.>] Bu® + axi(cr Eaxi (1.1)
2 i
de Be _ ¥ (8 2 _ B (*p Oe
ot +u, x, =a e(ZSij) ew + axi (0” E 3"1 ) (1.2)
with
du, ou.
_o1f_ 1, ] ‘
S5 = 2(8xj+ axi) (1.3)
E = e/w (1.4)

In the above, the u, are the components of the mean velocity
vector. a, a*, B, o, 0'* are universal constants,

For the solution of any flow problem, we have, in addition to
the model equations above, the equations of conservation of mass and

momentum as:

Bui
=, - 0 (1.5)
1
du, ou
_i _*__106p , 0
ot TYex. T T p ox, + o (2ES;) (1.6)

It will be observed that the Reynolds stress tensor, 2E Sij’
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is described by a scalar eddy diffusivity, E, related to the turbulent
densities e and w by eqn. (2.4). Also, the vorticity equation contains
(aui/axj)z and is thus sensitive to rigid body rotation while the
energy equation contains the strain Sij which is not, This is in
accordance with the intuitive idea that energy production should not
depend on rotation while vorticity should, being related to angular
momentum,

The constants a, a*, B, o, 0'* are determined once and for
all by comparing the solutions obtained by using the model equations
with known properties of some simple turbulent flows., From such

considerations Saffman found that

te 3
sk EA

2 <@

2 V2

S 3
sk %

=03, o=o=% 2<B<z2,

(1.7)

1.3. Structure of Solutions Near a Solid Wall,

The law of the wall for a turbulent boundary layer states
that the mean velocity u depends on the normal distance from a

solid wall according to the equation

u u,y

sk

u = —If (loge ot B) (1.8)

u, is the friction velocity related to wall shear T (i.e

u? = 'rw/p). B is a constant which depends on the nature of the

<

wall and is 2.4 for a smooth wall. k is the Karman constant,
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A study of the structure of solutions of the model equations
(Saffman 1969) shows that near a wall the model equations permit a

solution going like:

a vl + ofl)

e =
a u, 1
w = Xy + 0(;)
du U 1
== = — + o~ 1.9
ay =&yt o) (1.9)
where
z a-a
k = yp (1.10)

We see that the form of (1.9) agrees with that of (1.8). For
the ran‘ge of parameters given by (1.7), k lies in the range of 0.38
and 0.47. The accepted value of k, 0.4l, lies in this range and we
consider the model equations satisfactory in this respect. The

constant B in (1.7) provides a boundary condition which the solution

of model equations has to satisfy at a solid wall,

1.4 The Turbulent-nonturbulent Interface.

The model equations permit a sharp interface between the
turbulent and non-turbulent regions. Such interfaces occur in all

free turbulent flows. The model equations do not have a length
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scale so that the structure of solutions of these equations near the
interfaces depend only on local conditions near them., Hence, with-
out loss of generality, we study a plane steady interface at x=0 as
in Fig. 1.1{(a). 7The turbulent fluid in the region x> 0 entrains the
nonturbulent fluid in x < 0 at a speed u(t). The fluid velocity
parallel to the interface just ahead of it, v,, may be a constant
(as in the case of wakes and jets) or may depend on time corres-
ponding to an interface advancing into an inviscid flow with curvature
(e.g. a vortex) or a region of inviscid shear flow. In general the

model equations specialized for a plane interface are:

o

ot uax

de  9e_ * |8v|_ . 8 (E Be
at+“ax‘°’eax' Bewt3:\Z ax)

B’ B2 av 8 (E 82
e i e | B e 2 (5 5 (111

We seek a solution of (1.11) for x > 0 which has v continuous across
the interface at x= 0. By trial and error we find that, for small

x, the required solution has the form

v~ Ag(t) + Ap(t) x In x + Ay (t) x

e ~ By(t) x?

w ~ Do) (1.12)
with

Ag(t) = vo(t), A, () ult) = id%t-) (1.13)
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A, and By are arbitrary and depend on the still unspecified
conditions in the turbulent fluid near the front, These quantities
are determined in any specific flow situation by satisfying the
appropriate conditions at solid walls or other interfaces bounding
the turbulent region.

Typical profiles for v as a function of x for constant t are
shown in Fig., 1,1, In general, % maintains its sign through the
interface and is infinite as we approach the interface from the
turbulent side. In the case when v, is a constant (as in jets and
wakes), v is nonsingular, When -C-l—ég< 0 corresponding to a

ox dt
diffusing turbulent line vortex, % is positive and the tangential
velocity near the interface of the expanding vortex is as in Fig. 1.1(b).
The case when u = 0 will not be considered here. Saffman

(1969) shows that in this case the interface is noticeably less sharp

and for x> 0
4
v~ A, + Ax (1.14)

In Appendix I, we show that the structure of solutions near
interfaces obtained above is consistant with the limit of viscous

solutions with the viscosity v tending to zero.
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2. Some Applications,

2.1 The Two-dimensional Wake,

We consider a two-dimensional wake with a kinematic
momentum defect D. If U is the free stream velocity and u,v are
the perturbations, the model equations with boundary layer approxi-

mations become

ot ay= 0
Ug—z=a>ke g—%[-eer%g—y(Eg_;)
U%(*f—:awz %“B&'F%%(E%“;E o

We seek a similarity solution of this set of equations in the

form:

€ o)
1 ]
c U
5 b
xS
T 3

I
c
»
[ME
o
b

n (2.2)

b
14

In the similarity variables, equations (2.1) for n < 0 reduce to



i § 1
-2K2-KK n = oaK?F -BK’> + (JK ) (2.3)

The first of (2.3) can be integrated once and we can choose
'
the arbitrary constant to satisfy the symmetry condition F (0) = 0

to get
J

We have to solve the last two of (2.3) and (2.4) for the
functions F, J, K subject to the symmetry conditions J'(O) = K'(0)= 0.
Also, we should have a turbulent-nonturbulent interface at n = -\
where \ is a constant which determines the width of the wake, For
convenience in numerical solution we define new variables by the

relations

AGF ()
A, a*)\ :T—( n)

F(n)
J(n)

K(n) = Age N~ ' K(m)

AN (2.5)

I

n

Then (2.4) and the last two of (2.3) become, with p = Aooz*/x and

%
po= a/a , Ay being a constant as yet undetermined,



4]~

—_—— et e |

— PR — —3
2K+ nKK +pp*K2?F -BpK +(JK) =0 (2.6)
The structure of solutions of (2.6) near the turbulent-non-
turbulent interface at n = -1 is of the type shown in Fig, 1.1(d). We

seek series solutions for f, ._T-, K valid near -r_)- = -1 of the form

F

it

£+ A%+ AE3 + o(8?)

i
i

Bo(£8+ B &3 + B,£5) + o(£®)

=]
I

2Bg (€ + C1€% + C,83) + o(E3) (2.7)

where § = n+ 1. Using the form (2.7) in (2.6) we find that B, is

arbitrary and the other coefficients are related by the equations:

Bz = CZ + ZAZ +C12 - BICI + ZAIB]_ - ZAICI +A.1 = O

9B1 -6C1+4p+8=0

4B2 - ZCZ ‘i" chz - 5B1Cl + 3B12 + p(2A1+B1°2B0)+ %Bl = 0
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6B, + 4up+12=0

ZBZ + ZCZ +4B1Cl + ZPH(AI“" Cl) - 26B0p+ 7C1" ZCIZ = 0 (2.8)

For a B, and a p, we can find a unique solution of the set
of equations (2.6) exhibiting the structure near ;1—= -1 of the form
(2.7). We can choose a B; and a p such that the solution so
obtained satisfies the symmetry conditions at n = 0 (i.e. E'(O) =
E'(O) = 0). Iterative schemes to obtain such a solution based on
Newton's method and the method of steepest descent do not converge
and we adopt the following simple but expensive procedure,

We choose a By, and a p and integrate the set of equations
(2.6) using the Adam-Moulton scheme, We use (2.7) to provide the
starting values for the numerical integration, the first point being at
-0.95. We record the values of 3—'(0) and K'(O) so obtained and
repeat the process for several values of By, and p. With sufficient
data it is possible to plot curves in B,p plane with 3'(0) = 0 and
with KR(O) = 0. The intersection of these curves provides the
desired choice of By and p. The procedure is repeated for various
values of o and B as desired., Fig. 2.1 shows one such plot., We
observe that the intersection is weak and provides an explanation for
the failure of the iterative schemes.

The initial values for numerical integration are obtained from
(2.8) and have errors of the order £3, These errors are expected
to be less than 1%. The accuracy of numerical integration cannot be
easily estimated. Solutions obtained by using the step sizes An = 0.01
and 0,005 did not show significant differences., The solutions presented

are thus believed to be correct to within a few percent at the worst,
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The numerical procedure determines f‘-, E, K which can be
related to F, J, K by (2.5). The unknown A; in these is determined

by the condition of conservation of momentum as below:

X
U [ wudy=D
-\
1
i.e. 2AgN [ F dn=1 (2.9)
0
Also, by definition
Aoafﬂ<
= p (2.10)

I N —_— (2.11)

Table 2.1

Solution of Model Equations for Wake. o = 0.3,

B @ A x% F(0) J(0) K(0)

2.0 0.15 0.71 0.48 1,085 0.442 2.25
1.67 0.21 0.53 0.34 1.53 0.358 2.29

Experiment 0.354 1.37
(Schlichting)

The solution is now complete. Significant results are shown in
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Fig. 2.2 and Table 2.1, As the velocity profile obtained from
experiments does not have a well-defined edge, it is convenient to
compare the estimated growth of the wake with experiments by
defining a \; related to Y%: the ordinate at any x at which the

2
velocity defect reaches half its value on the axis, as

It is seen that the wake width is well estimated and the values of
the parameters in the permissible zone are best chosen to be

B =% and o = 0.21.

2.2 The Two-Dimensional Jet.

For a two-dimensional jet with total (kinematic) momentum

flux M, we can seek a similarity solution of the form:

-1
2

F'(n)

1 ¥
v = M2 x 2(nF - 3F)

(2.12)

3
il

<

~
]

Here F(n) is the stream function. The jet extends from
n=-xton=4+\, Using the form (2.12) in the model equations,

we have to the boundary layer approximation, for n < 0,
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' 2JF
-FF = 23—
i FJ' sk B i V ¥
-JF -=-=a JF -JK+ 137 /K)
] i it [ ]
- 3K?F - FKK =oK?F -BK?® + (JK) ~ (2.13)

It is useful to transform wvariables as below:

by
2
{
>
o
O
>

3
1
>
—

3
'
=

(2.14)

A, and C, are (negative) constants still underdetermined. In

the new variables the equations (2.13) become, with p = oz/)\ and

Q = a*/a/
. —T—H
FF +2E5 -9
K
P T T 37! T3
IF + L +§;;(JEJ—) +pQTF -C,TR) =0
—_2 el —-—iv —2 i -3 |
3K F +FKK +(JK ) +p(K F -2C;K )=0 (2.15)

Without loss of generality, solutions of (2.15) near -r; = 0 can be
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taken to be

F=14A1%+A,1 +0(n)

o
n

2 + BZHS + 0(n3)

K=n+ Cy,n? + o(n?) (2.16)

On using the form (2.16) in (2.15) we find that A, is arbitrary
and the rest of the coefficients can be related to A,,p and C,. Thus,
for every given set of p, A; and C; we can find a unique solution of
(2.15) having a structure near n = 0 of the form (2.16)., We can find
a set of values for p, A, and C; such that the solution so obtained
satisfies the symmetry conditions :T—'(l) = -I_i_'(l) =0 and F(1) = 0, the
last following from the fact that v=0 at n=1. We find such a
solution by a procedure similar to the one used in the case of the
wake, This determines f, -J—, K. F, J, K can then be found using
(2.14). The only unknown in these equations, ‘Ao, is found from the

condition of conservation of momentum of the jet:

A
2
[ wdy=M
-\
2 1 2
ie. 24, [ F dy=1 or Ay = -

We present some results so obtained in Fig. 2.3 and Table

2.2. Data from experiments are presented for comparison, It is
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observed that the width of jet is considerably over-estimated by the

model equations, The best values for the constants in the model

equations are: f = —;’- , and « = 0,20,

Table 2.2

Solution of Model Equations for a 2.D Jet. a = 0.3.

B o N N1 F'(0) J(0)  k(0)
2

2.0 0.15 0.412 0.214 1.78 0.0278 2.46
2.0 0.20 0.368 0.191 1,89 0.0232 2.78
1.67 0.20 0.29 0.147 2.2 0.0216 4.06

Experiment 0.1 2.68

2.3 Turbulent Couette Flow.

The flow between two infinite parallel planes at y = -L and
y = +L. moving parallel to themselves with equal but opposite velocities
is of considerable interest because it is possible to solve the model
equations analytically. In such a flow, let u, be the friction velocity
at either wall and u(y) be the velocity of the fluid, Then, the model

equations reduce to:

€ |lo
|
1]
o

dw T~ Bwl+ o= (eS2) =0 (2.18)
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Eliminating -3-9’- in the second of (2.18) using the first, we have

sk

1 1
2
dwu, - ew +§(%—) = 0 (2.19)

whose solution satisfying the symmetry condition de/dy = 0 at y=0

and the condition at a solid wall e(L) = aﬂzuz, is seen to be

3

e =a u, (2.20)
Using (2.20) the last of (2.18) becomes
sk 3 & 2 2
(a/oz -B)w tau, %ﬁ = 0 (2.21)

With the notation w(0) =wgy, (2.21), on integration yields

3k

do _ “a/a Vof —og (2.22)

dy 2a"u

ale
3

Another integration and the use of the boundary condition at

the wall y = L, which implies w —+ o0 as y— L

[0 o]
[ = . Yocalex (2.23)
Vot -wgt v Zoz*ui

wo can be determined easily as w(0) = w; which on using

(2.23) becomes

— -~ = L(—%) (2.24)
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oo}

{ ‘/'?Tt_—l 1.31
= = (2.25)
L Q—a/(a*) (Q-a/a*)

2a% u 2 2a%u 2

i.e- Wo

The integral in the numerator of the above equation is a

Jacobian-Elliptic function and its value has been evaluated using

tables.,
The velocity profile is obtained from (2.18) as follows:
du w 2 w
= = = ¢ = -
% *
dy e o
Thus
w
- w dy
u = f ¥ do dw
w a
0
1
Zui 2 © o dw
ie, w o= | f —_— ‘ (2.26)
[+3 (B -;;F) wo '} (.A)4 -(.004

Defining k as in (1.10), we have from (2.26)

|

u, 2
u = T L log [ + {—) +1} } (2.27)
O

Equation (2.27) gives u in terms of w and cannot be presented
explicitly in terms of elementary functions of y. However, the

behavior of u near the wall y = L. can be obtained using asymptotic
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expansions valid near the wall, For large w, (2.27) can be written

\1* ;; 1 1
u= 4 [log vs " Blofwg? + tnV2 + O(m):} (2.28)

Also using (1.9), for small L - vy,

R k7

u

*(L- Y)+ o( Y) (2.29)

1
Wg

sle

Equation (2.29) can also be derived directly from (2.23) from
which it can be shown that the second term is of order (L-y)*. Use

of (2.29) in (2.28) yields

u _ 2
u = [ g(l 31 —L_?) * O(L—LY)] (2.30)

u,, the friction velocity at either wall can now be related td
the velocity of either wall, U, using the law of the wall which states

that near the top wall, assumed smooth,

u, u, (L-y)
b **
u~ U - = l:log — t 2.4:| (2.31)

From (2.30) and (2.31)
u, u, L, J"
- X _x 2
U = k [1og o, t logl 31 2. 4:\ (2.32)

Another result of interest is the velocity gradient at y=0,

From (2.18) we have
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1.31 u,

5 u L (2.33)

du

dy
0

Robertson (1959) conducted some experiments on the present

type of flow using a moving belt apparatus, His results, together

with the results of the present analysis are presented in Fig. 2.3.

2.4 Channel flow,

For the flow through a channel with walls at y=-D and y=+D,
the mean velocity of the fluid u(y) is parallel to the walls and is a
function of y alone. Let u, be the friction velocity at either wall,
u, is relalted to the pressure gradient along the channel (i.e. u, =
(- %%XE)Z ). The model equations, after some simplification, are,

for y> 0

edu . 2 X
w dy ~ * D
1 d (e de *o(dnY | o
2 dy \ w dy @ (dy) i
1. d (e dw?)_ o, du 3
Zdy(w o) = @o (dy>+ﬁw (2.34)

By defining
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y=yD
u:‘: —
u = Tc_ u
e = « uz*e
%
) @ u, _
W = )
2 *_
- Beca (2.35)

the first of the model equations, (2.34), becomes

edu_ _§ (2.36)
w dy
We can eliminate %—3— from the last two of (2.34) using (2.36).

The resulting equations written in terms of the new variables defined

in (2.35) are, for ;> 0,

AT
Z?-EZ+%*¢—(§;(§ d—i):o (2.37)
w dy

where p = a/oz*. The equations (2.36), (2.37) together with the
p—} — 1 —
symmetry conditions e (0) = @ (0) = 0 and the wall conditions at y=1

determine a complete solution.
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One way of obtaining such a solution is to start a series
solution from the wall and continue it towards the center ;: 0 using
a numerical method. As an illustration, we consider a specific case
when p = 0.5 and B = 2. Defining £ = 1-y, we find that (2.37) permit
a series solution near ;:1 of the form:

TN N N W LW IOW A W L L

e
4 4
+ AgE InE + Agf + - --

o= (14 Byt +B, £ 34 B, £ + B, e2V8/3 B, £+ B, £ 2V8/3, b, (2483

+B3§41n§+B9§4+ ) (2.38)

We find that A, and By are arbitrary and all other coefficients
can be determined in terms of these, In principle one can determine
the constants A, and By by extending the series solution by a
numerical method and applying the two symmetry conditions :a-': c—o-l= 0
at £=1, For sufficient accuracy we have to keep terms in the series
up to at least one power higher than the term where the second
arbitrary constant occurs., This means that we have to keep at
least fifteen terms in each series., After considerable effort this
approach is given up because the chances of algebraic error are
extremely large and it has not been possible to obtain the required
solution., It may be remarked here that the index of the first

fractional power in the above series depends on p and is «/472~p.

An alternative is to shoot from the center towards the wall ;r.= 1.
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Following this approach we consider series solutions of (2.37) near

y = 0 of the form:

o |
I

= Co(1+ C,y2 + C,y* +)

€|
0

DO(I + D,y2% + Dyyt + -+ ) (2.39)

On using (2.39) in (2.37) we find that C,, D, are arbitrary
and other constants are related to them. We can integrate equations
(2.37) using (2.39) to provide the initial values, For arbitrary
values of C, and D,, the solutions of (2.37) are divergent. At some
;, w tends to +w while e tends to + or - o at the same point. By
trial and error we can find a close pair of values for C, and D,
such that the solutions so obtained are such that @ — + o as ;—> 1
and e — + oo for the first pair of values and - © for the second pair
as ;—» 1. When the pair of values for C; and D, are sufficiently
close we have a good approximation to the required solution of (2.37)
away from _3; = 1. Though the procedure discussed earlier is
potentially more accurate than the one considered here, the present
procedure has the great virtue of being practical. This procedure
was applied to the Couette flow of the previous section for which the
analytical solution is known and satisfactory accuracy was obtained
thus establishing the feasibility of this scheme,

Once g, w are determined, we can find u by integrating (2.36)

as below,

W(y)=U- [ ¥ gy (2.40)
e
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U = 1—1-(0) is the dimensionless form of the velocity at the center of
the channel U, to be determined such that u satisfies the law of the
wall at y = 1 which is, with £ = 1-y,

— u:}:D
ulf) = logé + 2.4 + log —— (2.41)

It is not convenient to determine U by directly comparing

(2.40) and (2.41). We proceed by considering the integral I below.

As %—g— is no more singular than L the integral exists as € — 0,

g’

-t
1]

1 —
[ 3 (6 G) tost e

1
1

du
e ") gt

logt & G

-loge (g %) - U + u(e)
€
E(e) is eliminated using the law of the wall (2.41) to get

u,D

>

I = -loge (z_’; %lé') -U + loge + 2.4 + log (2.42)
€

v

Comparing terms of equal orders in ¢ in (2.42), I being of order 1,

we have

— u:‘:D
U=24+1log— -1

and

(g g—g)(): 1. (2.43)
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The second of (2.43) is already satisfied by the solution as

can be easily verified from (2.36) using (2.38), The first of (2.43)

is the required relation between U and u,. The integral I |is

evaluated as below

P~
1]

1d(,
Ty =(1-£&)) 1 d
{dg(‘i; £)) log £ dt

0.1

S e

€1

ofl€]

i
(1-§)) logg dt + [ 31 (6 201-8)) logt at
[+)

1 e
We evaluate the first part of the integral using only the first

two terms of the series (2.38) and the second part using the numerical

solution already described. We find that I =~ 0.2. Thus, the first

of (2.43) written in original variables becomes

U.* u>’<D
U = B {log

+ 2.20)

This should be compared with experimental observations (Hinze 1961)
which give

u:k u*D
U = (log — + 2.4 + C)

where C is a positive constant whose magnitude is somewhat un-
certain, C lies in the range 0 tol with a probable value of around
0.25., The analysis implies a C equal to -0.2. The disagreement
between analysis and experiment is quantitatively small and we do

not consider it to be very significant,
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2.5 Discussion,

In the previous sections we considered some simple flows
involving either solid walls or free boundaries, In all cases the
broad features of the flows are well represented by the model
equations. Quantitative agreement with experimental results is fair.

In the case of free turbulent flows, the model equations were
solved assuming the turbulent-nonturbulent interfaces, which are
always sharp, to be steady. Experiments indicate that the interfaces
are sharp but unsteady on a time scale large compared with that of
the turbulent fluctuations. When velocities averaged over a long
period of time are considered, the unsteadiness is lost and we
obtain a smooth transition from the turbulent to the nonturbulent
regions. Thus, when the velocity profiles derived from the model
equations with the assumption of steady interfaces are compared
with the long time mean velocity profiles obtained from experiments,
we find poor agreement near the free edges as in Fig. 2.2,

If the model equations are to describe the unsteady nature of
the observed flows, two possibilities exist,

(1) The model equations permit unsteady interfaces in the
problems considered. This would imply instability of the steady
solutions of the previous sections,

(2) The model equations, as presented, are inadequate so
that they need modifications to describe the unsteadiness of the flows
considered,

At present it is not obvious which of these possibilities is

the right one. An analysis of stability of the steady flows obtained
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in Sections 2.1 and 2.2 is of interest in this connection. It is
interesting to note that if the steady wake of section 2.1 is assumed
to oscillate with the point of velocity maximum distributed uniformly
in -0.8 < n/n% < 0.8, the mean velocity profile so obtained fits the
experimental results much better as in Fig., 2.2. Also, we can
estimate the distribution of intermittency based on the above
assumption. For convenience in comparison with experiments, we
define the edge of the wake as the point at which the velocity defect
falls to 0.5% of its value on the axis. We immediately see that the
oscillations assumed above lead to a distribution of the intermittancy
factor of unity from the axis to a point 0.4 of the distance to the edge.
Beyond this point, the intermittency factor falls linearly to zero at
the edge., A good approximation to the measured distribution of the
intermittency factor (Townsend 1956) is found to be unity up to a
point 0.4 of the distance to the edge. Beyond this point, the inter-
mittency factor falls roughly linearly to zero at a point slightly
beyond the defined edge.

A similar oscillation of the jet of Section 2,2 with amplitude
0.6 n/n% leads to good agreement of the mean velocity profile with
experiments as in Fig, 2,3, The intermittency factor based on these
oscillations is unity up to 0.52 of the way to the edge and falls off
linearly to zero beyond. A good approximation to the distribution of
the intermittency factor obtained from experiment (Bradbury 1965) is
unity up to 0.55 of the distance from the axis to the edge and falls
roughly linearly to zero slightly beyond the defined edge.

The above agreement is sufficiently good to suggest instability

of the steady solutions of Sections 2.1 and 2.2 to be more likely than
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the inadequacy of the model equations,
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3. The Turbulent Trailing Vortex,

3.1 Introduction,

The flow some distance downstream of an aircraft wing
consists of two nearly axi-symmetric contrarotating vortices and a
wake extending across the span, The trailing vortices are invariably
turbulent and persist for a long distance downstream of the wing., It
is useful to know the flow field due to these so that their effect on
other aircraft that might accidentally penetrate them can be assessed.

In the zone of interest, it is observed that the diameter of
each vortex is small compared with the distance between them. Thus
it is possible to study each vortex in isolation. Dimensional reason-
ing indicates that:a similarity type. of solution is possible for each
vortex, Such a solution can be written in the form

r
T 0
Fo = f(n;—v ) (3.1)

where

r
S —— (3.2)

VIoZ/U
In the above, I is the circulation of the vortex at a radial distance r,
Ty, the circulation as r — o, is independent of the axial distance, Z,
measured from a virtual origin close to the position of the wing, U
is the free stream velocity. Iy/v is a Reynolds number and is in

6 7
the range of 10 to 10 for typical aircraft, Incidentally, % represents
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a time. Denoting it by t, we note that the equations (3.1) and (3.2)
also represent the form of solution for the growth of a line vortex
in time,
Lamb (1932) solved the problem of diffusion of a laminar line

vortex and his solution in the present notation is

2
M

4(r—”0)

=1 - exp (3.3)

L

To
This solution shows a region of rigid body rotation close to the
center n = 0 where the tangential velocity, u, increases linearly with
radius, With further increase in m, u reaches a maximum and then
decreases to zero as "%as n—o. If we define a 'core circulation'
I"; and a 'core radius' r; as the circulation and the radius where
the tangential velocity is the maximum, we have, from (3.3),
Ir,/Ty = 0.716,

Turbulent trailing vortices have been studied experimentally,

Full scale experiments to estimate the maximum velocity in the
trailing vortex of a large airplane were conducted by Rose and Dee
(1965). A small airplane equipped with an incidence meter (i.e. a
pivoted vane) was flown through the eye of the vortex (made visible
by the use of smoke) shed from a large airplane. Estimates of the
maximum velocity in the vortex at various distances along the axis
were made using the incidence data from the small airplane. It
was found that the maximum velocity fell like 1/VZ in agreement
with equation (3.1). Further, the maximum velocity was found to be

correctly estimated by equation (3.3) if v in it was replaced by an
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eddy viscosity v, such that vt/v ~ 2000, McCormick et al (1968)

t
studied the flow in a vortex shed from a small airplane by using an
instrument labeled the vortimeter, The vortimeter, consisting of a
vertical array of horizontal cylinders mounted on strain-gauge
flexures, was mounted at a suitable height above the ground, By
flying the airplane to one side and suitably above the instrument, it
was possible to arrange the vortex to sweep across the instrument,
this being aided visually by a tuft grid mounted suitably close by.
From the strain gauge data it was possible to estimate the wvelocity
and hence circulation distribution in the vortex at various distances
from the airplane, These estimates agree with the similarity form
(3.1) with T, roughly 45% of the maximum circulation on the wing
of the airplane calculated on the basis of its speed and weight, This
indicates that in the process of roll up of the nearly plane vortex
sheet behind the wing into the trailing vortices farther away, only
about 45% of the total circulation is concentrated into the vortices,
the rest being diffused into the wake,

Following Squire (1954), McCormick etal compared their

estimates of the circulation distribution with a solution obtained by

replacing v in Lamb's solution by an eddy viscosity v, as:
r 2
= - - s
T, = 1 exp (43,) (3.4)
T

where a = ve /Ty is some function of Reynolds number - Equation

1 = 0,716 while the estimate from the experiments

(3.4) implies a _I—‘;

is 0.365 indicating poor agreement between the two circulation profiles.
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Dosanjh etal (1962) conducted some experiments on turbulent
trailing vortices in a wind tunnel. A wing of rectangular plan form
was mounted normal to a side wall of a wind tunnel, Measurements
of flow inclination were made in the trailing vortex using a five hole
flow direction probe. From the flow direction and total pressure
data, the axial and tangential velocity distributions were calculated,
The circulation distribution so obtained agreed with the form (3.1).
Further, the circulation of the vortex, I';, was found to be about
58% of the value at the root of the wing producing the vortex. This
is not too far from the flight test data of McCormick.

Results from other similar experiments (see Table 3.1) also
indicate agreement with the form (3.1). The growth rate of the
vortices as indicated by a vt/I‘o obtained by equating the estimated
maximum velocity in the experiments with that given by equation (3.4)
is shown in Table 3.1. It is seen that there is reasonable consistancy
among the results of various experiments, As I'y/v increases,
vt/I"0 steadily decreases and we expect its value to reach a limit
independent of I'j/v for a sufficiently large value of the same. Rose
and Dee obtained the vt/I“o in the table by assuming that the maxi-
mum circulation at the wing was equal to the circulation of the
vortex, In the light of experimental results already quoted we re-
calculate its value assuming that the circulation of the vortex is one
half that at the wing and find vt/I“o =14X 10—4. This reduces some
of the disagreement with McCormick's data shown in the table, The
considerable disagreement which still persists between these sets of

flight data is still unexplained, It is to be noted that though the
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value of v, is based on the profile given by equation (3.4) which

does not fit the profiles from experiments, this v, still indicates a

measure of vortex growth and is a valid basis for comparing the

results from various experiments.

Table 3.1
Fo v rl
Experimenter — a=—+ =
v ro ro
* 7 -4
Rose and Dee ~ 10 2 X10 -
* 7 -4
Rose and Dee ~ 10 1.4 %10 -
(corrected)
T . 3 -3
Dosanjh, Gesparek 2X10 5X10 0.6
and Eskinazi
4 -
TNewrna.n 2X10 2x107° 0.5
4 -
T emplin 5%10 1.4x107° —~
T 4 -3
Maybey 5X10 1.5X10 =
* 6 -4
McCormick, ~ 10 0.6X10 0.37
Tangler and Sherrieb
Flight results. f Wind tunnel data.

Hoffman and Joubert (1962) present an analysis of the turbulent
line vortex. They derive a universal law for the distribution of
circulation valid in some region including the center mnear which
circulation increases as the square of the radius and corresponds to
rigid body rotation. In some region away from the center the

universal distribution gives a logarithmic variation as

I _ 1 I
I, ° H loglo(rl)+1 (3.5)
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I"'y, r; are the core circulation and core radius respectively.
% is a constant which they find by comparison with their own
experiments to be 2.14. We note that f:—lI— should be log,10(=2.303)
for equation (3.5) to satisfy the definition of r; (i.e. tangential
velocity should be a maximum at radius r;).

Hoffman and Joubert obtain (3.5) bg two methods, The first
involves the following assumptions,

(1) Turbulent shear stress can be estimated by a mixing
length hypothesis, If small lumps of fluid are assumed to be trans-
ported over a small radial mixing length maintaining their angular
momentum, it is easily shown that the shear stress Ta ;1 %Xfl .

(2) In the region of interest the inertia terms in the tangential
momentum equation can be neglected so that shear moment transmitted
(oc 'né) is a constant,

The first assumption describes some free turbulent flows well
and may do so in the present case. The second is exact at the
point where tangential velocity is a maximum and is likely to be
reasonable in some neighborhood of this point,

The second way of deriving (3.5) in effect assumes that the
flow inside the core follows a universal form independent of the
conditions farther out so that ']':]‘:.,i‘ is a unique function of rLl . Further,
it is claimed that % should be independent of r; which immediately
leads to the form (3.5). The explanations provided by Hoffman and
Joubert to justify this claim are very unconvincing,

Comparison of results from experiments already described

with equation (3.5) shows good agreement throughout the vortex
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though there seems to be some disagreement near the outer edge of

the vortex., A typical comparison is shown in Fig, 3.1, However,

Fig. 3.1 also shows that equation (3.4) corresponding to constant
eddy viscosity also satisfies (3.5) throughout the core
(i.e. r < r;)and some distance beyond. Thus good agreement
between the form (3.5) and experiments does not necessarily imply
the correctness of the hypotheses of Hoffman and Joubert, As the

agreement is good, we accept equation (3.5) as an empirical result

valid throughout the vortex with the exclusion of small regions near

the center and outer edge, We can write (3.5) in the form:

r
Ir _ 11 x
T = T, H(log 07+ 1) (3.6)

which indicates that the slope of circulation profile plotted as a
function of logr depends linearly on I‘I/I‘o. As already noted,
I,/T, is considerably different for laminar and turbulent vortices
and hence their profiles disagree in this plot.

Another aspect of vortex flow is the variation of a with
Reynolds number I‘o/v. Owen (1964) presents an analysis using an
integral method to explain the observed variation of a with I/ v.
But his analysis has a significant algebraic mistake and his conclusions
are invalid. We do not study this problem here,

An interesting secondary effect of the trailing vortex flow is
the generation of an axial pressure gradient, Low pressure is pro-
duced near the axis of the vortex due to centrifugal acceleration of

fluid in it, As the tangential velocity in the vortex decays with axial



-67_
distance, suction near the axis of the vortex is reduced and thus we
have a positive axial pressure gradient in the core of the vortex,
This pressure gradient induces an axial velocity defect very much
resembling an ordinary wake. Batchelor (1964) studied the develop-
ment of axial velocity defect in a laminar trailing vortex assuming
that the perturbation of axial velocity is small compared with the
free stream velocity. This assumption is satisfied in the later
stages of vortex growth. In the early stages of growth, the axial
velocity defect is not small compared with free stream velocity and
may significantly affect the development of the vortex itself,

In what follows we treat the problem of flow in a fully tur-
bulent trailing vortex on the basis of the model equations to see
whether they predict the growth of the trailing vortex satisfactorily.
We also consider the details of axial flow using linearization of the

axial momentum equation,

3.2 Analysis Based on Model Equations,

For the flow in a turbulent axisymmetric trailing vortex, let
r,z,$ be the radial, axial and tangential coordinates. Let the

corresponding velocities be u.,, u and u,. Let U be the free

4 $
stream velocity and p the pressure at any point. The model
equations under the boundary layer approximation (8/0r >> 8/8z) with

the additional assumption of small axial velocity defect (qu-U|<<U)

become:



u.2
S _1
r ~ p or
y X _ 18p, 1 2(e 3“Z)
9z =~ p 9z r 9r \w or
ou 3
_¢ _ 1 8(e 0/ ¢
Dk D)
zZ or\w ar\ r
r
du
w2179 3,1 8 (re 8
u 9z - %Y | Tor ‘3w+r ar(Zw r)
de 3 ui 198 (rede
U 9z =© 2 er B—(r) -ew+;5?(z;5—r-) (3.7)
We note that the last three of (3.7) determine u¢ ,e and w while
the first two determine p and u when u¢ ;e and w are known,

This uncoupling of tangential velocity is due to the assumption of
small axial velocity defect and is valid for sufficiently large z.

Equations (3.7) permit a similarity solution for u,,e and w

¢
of the form
I,U
u¢ = —-g— F(n)
e = %_11 J(n)
o = L K@) (3.8)
with n = rU/+ I,z (3.9)
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Iy is the circulation of the vortex outside the turbulent region
which extends from n =0, the center of the vortex, to n= 1\, the
turbulent-nonturbulent interface, In the similarity variables

equations (3.7) yield

1 § 1
Fa%{nk‘l(nF-F)}+%(F+nF)=0

1 d [ 2 ] 3 2 1
-ﬁa(nJK)+aK|F|-ﬁK+2K +KKn =0

1 d/mJJ d F 7'

1 dmiy x td F.|._ In_
ndn(ZK)an‘dn(n)‘ JK+T+51=0 (3.9)

We seek the solution of this set of equations which is non-
singular as n— 0 and has a sharp interface at some A\, It is

convenient to define new variables and parameters as below:

n=2Xxn
3k -]
q = a Agh
no= afa (3.10)

Ay is a constant still undetermined. In the new variables

(3.9) become:



L 4l OFF} + H{F+aF } =0
n? dn K
1 d — e ——f — —f — -— OV, o
—~ — (MJK)+q{pK?|F|-BK3} + 2K2+KKn=0
n? dn
RN — — e § e
l__.ii:(xL-I_J__) +q{n l-—d_—(g_-‘)l -JK} +3+i2—’—1= 0 (3.11)
n dn

Near _1{= 1, the interface, equations (3.11) have the structure,

with § = 1-;, as below,

F~1+A,t4nt +Az§+A3§21n§ + A4§2
2 3 3
J~Bo(E +B§ £n§ + B,£ )

K ~ 2Bo (£ + Cy £ 4n + CyE ) (3.12)

Use of (3.12) in (3.11) leads to recurrence relations among the
various coefficients, We find that A, and By are arbitrary and
given these all the others can be calculated. Thus for any given set
of A,, By and q, a unique solution of (3.11) can be found by numerical
integration of (3.11) using (3.12) to provide the initial values at some
H near unity. Such a solution is, in general, singular as _1:)-—-> 0.
The solution we are after, which is nonsingular at E= 0, also
satisfies symmetry conditions %‘—(0) =7 (0) = K'(O) = 0. To get the
required solution we choose, by trial and error, a set of values for

A;, By and g such that the symmetry conditions are satisfied to a

reasonable degree of accuracy,
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Execution of the above scheme determines —f, J and K. F,
J and K can then be found using (3.10). The only unknown in these,

Ay, is found by equating the circulation at n = A to I} as below:

Circulation at any radius r is

H
I

27ru¢r = Z7r1“oF17

2n Ty Ag\F 7 (3.13)

rI‘\hus I' =T, at ﬁ= 1 implies

2rAg\ = 1 (3.14)
Also, by definition,

q = oA /N (3.15)

From (3.14) and (3.15) we have

q
Ay = 2 A= [E (3.15)
2T Zmrq
u¢ , € and w are now given by (3.8). Fig.3.2 shows the

circulation distribution so obtained. It will be observed that at
first T increases as 7 increases from zero and overshoots I, by
about 40% before it decreases to I, as 7 approaches N\. The
presence of this overshoot can easily be demonstrated from (3.12).

Substitution of (3.12) in (3.11) shows that A= -2 and thus from (3.13)
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r=I,Fn

2

To(1 - 2€ 4n§)(1-£)

Thus for small §, I'>TI,. This behavior is in accordance with the
structure of solutions of the model equations near a tu;'bulent-non—
turbulent interface already discussed in the previous chapter,

We now proceed to evaluate u, and p from the first two of
(3.7). By defining P(5)) by the equation

pUI,
p= P(n) (3.16)

we have the equation for P(n) from (3.7) as:

4P
an

z
F
— (3.17)
n

We can, without loss of generality, take the pressure at infinity to
be zero. Since circulation for 11 >1, is constant and equal to I},
we can integrate (3.17) for 5 > \ and find that

2
AO
P(\) = - —

(3.18)
P(m), for n <\, can be found by numerically integrating (3.17) using
the boundary condition (3.18), The numerical integration is best
performed in the new variable, E(H) = P(n)/As, in terms of which

(3.17) and (3.18) become
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aP(n)

2 _—
= .1_7_; ; P(1)=- . (3.19)
dn U]

We can now determine u, starting from (3.7). We write the

equation for u, in the independent variables 7,z, thus:

"o "(K"“a?) ? 2 an(P") (3.20)

Equation (3.20) is a linear diffusion equation for u_ .
Batchelor (1964) studied the properties of a similar equation in
connection with axial flow in a laminar trailing vortex, A study of
his solution indicates that the above equation has an asymptotic
solution, valid for large z, of the form

oo Uz To
Z

u = U - lnﬁ QM + 5t Qam) (3.21)

V4

Ordinary differential equations for Q; and Q, are obtained by using

(3.21) in (3.20) and equating terms of equal powers in z. They are:

dQ
', L dygJd 7y _
Q, +2Q1+ndn(Kn an =0
aQ,
1 i1.d I
Q +dat i (k05 )= 5P (3.22)

As uZ-U=O for n2> N\, we have Q;(A\) =Q,(\) = 0. Also, Q; and Q,
must be bounded as 1 — 0, These conditions along with (3.22) are

sufficient to determine Q, and Q,. We integrate the equation for
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Q, once and choose the constant of integration so that Q,(\)=0 to

get

dQ,
— _ _nkK
an - 57 Q1 (3.23)

(3.23) is a linear equation for Q;,. A numerical integration deter-
mines Q, but for an arbitrary constant factor,
We perform an integration of the equation for Q, and choose

the constant of integration such that Q, is nonsingular ‘at n= 0 to get

2 Z N
Qen  ; dQ, En
2 PR T Qo B.24
0

The left hand side of (3.24) tends to zero as 7 tends to zero
for nonsingular Q,. Thus the right hand side must also be zero and
the choice of the arbitrary constant satisfies this requirement. Also

we have Q, (\) = 0. As 3 =0 at n =\, we have from (3.24)

K
2
Poox M
ST - f Qndnp =0 (3.25)

Equation (3.25) determines the arbitrary constant factor in Q,.
Equation (3.24) can then be integrated to get Q,. (3.24) is a linear
first order equation and its solution contains the complimentary
function with an undetermined coefficient. This function includes any
wake which may be present due to an initial momentum defect. How-
ever, for the sake of definiteness, we can choose the constant so

that Q,(0) = 0. We can then add any u distribution corresponding
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to the initial defect of momentum separately. This wake profile
has the same form as Q, but decays as 1/z. As u, associated with
Q, decays more slowly (as log z/z), for sufficiently large z, it
dominates the u, associated with Q, or any initial momentum defect,

For convenience in numerical work we define

2 - —
Qi) = Ay Qi(n)
2 — -
Qz(n) = Ay Qa(n) (3.26)
to get
aQ = =
1 _ _.1K7
dn J
= _a8, Q¢ Pm M _ _ _
—_- n——+ > = > - Q,ndn
K dn 0
1
[ Qndn= 3% (3.27)
0
Some results obtained by numerical integration are shown
in Fig. 3.3.

3.3 Discussion,

The circulation profile corresponding to the present analysis
is compared with the profile derived from various sources in Fig, 3.2,
McCormick's profile was derived from the vortimeter data already

mentioned, Rose and Dee's measurement of maximum velocity in
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a vortex locates a single point in the profile. The profile shown
in the figure was obtained by assuming that it follows the logarithmic
form of Hoffman and Joubert and using a I,/I, = 0.37 and a I, one
half its value at the wing root corresponding to McCormick's data.
The profile for constant eddy viscosity was derived from equation
(3.4) with a chosen to be 2><1()-4L roughly in agreement with the
value quoted by Rose and Dee. For any other a, the profile is
laterally shifted, but unaltered in shape. We immediately notice
considerable differences among the various profiles,

Rose and Dee's data imply a radius of the vortex (defined
as the radius at which circulation reaches 95% of its value at
infinity) roughly twice that of McCormick's, The present analysis
yields a radius for the sharp turbulent-nonturbulent interface roughly
three times the radius of the vortex as estimated from the data of
Rose and Dee, But the present solution has another radius at which
circulation is equal to its value at the interface and beyond. If we
compare the radius of the vortex corresponding to the smaller value,
the disagreement is much reduced,

We also note the flatness of McCormick's profile as compared
with the present solution or that for constant eddy viscosity, Further,
the model equations predict a circulation profile with an overshoot of
about 40% above the circulation at infinity., Experiments do not
indicate the presence of any significant overshoot. Thus the cir-
culation profile as derived from model equations is not satisfactory
in this respect. Also, we know (Rayleigh 1916) that inviscid vortex

flows with circulation decreasing with radius are unstable. This
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strongly suggests instability of the present solution,

It is obvious from the above, that the model equations, as
they are, do not explain the growth of a vortex sufficiently well,
The most significant shortcoming is the indication of a large over-
shoot in the circulation profile. It is possible to remedy the
situation by modifying the model equations., Evidently, it is most
convenient to make such modifications as will leave the results
obtained in Chapter 2 unaltered. Since vortex flow is the only one,
so far, with streamline curvature, addition of terms in the model
equations depending on it are satisfactory in this respect. One such
possibility, suggested by Saffman, is to include a term c«/f%l-;'—z in
the last of (3.9). It will be seen that the new term has the right
dimensions and still permits a sharp interface. Also, near a
turbulent-nonturbulent interface J is small so that VJ dominates J
and thus the additional term is likely to modify the solution near an
interface considerably. It looks possible to choose the constant c in
the additional term so that the overshoot in the circulation profile is
eliminated or at least very much reduced. The feasibility of this
scheme is still unverified,

Now, some comments about the experimental studies of the
trailing vortices are in order. As the Table 3.1 indicates, wind
tunnel studies of the vortices are for a Reynolds number (i.e. I;n)
in the range 103 -105 while the flight tests are for a Reynolds
number in the range 106—107, From the table it is seen that the

vortex growth rate as indicated by a in the table is significantly

different for the flight tests and the wind tunnel experiments. This
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difference, barring experimental errors, can only be attributed to
the effect of Reynolds number, It is interesting to note here that
the vortex growth rate indicated by the analysis using model equations
roughly agrees with the wind tunnel data at the highest obtained
Reynolds number.

The data about vortex growth at the higher Reynolds numbers
come from the only two flight studies to date, The flight studies
are difficult and the accuracy of this data is not known. Wind
tunnel studies available do not cover the range of Reynolds numbers
105 --107 . It looks desirable to conduct accurate studies of the vortex
at these Reynolds numbers in a wind tunnel,

Such a study of the trailing vortex in a wind tunnel can be
conveniently carried out using a wing spanning the test section such
that one half of the wing has an angle of attack equal and opposite to
the other. The vortices from the two halves of the wing merge to
form a single vortex from the centre of the wing. Based on experi-
mental results already quoted, we may assume that the strength of
the vortex is half the sum of the circulations of the two parts of
the wing. From this we have an estimate for the vortex Reynolds
number, _1";9 , and the radius of the vortex, r, (i.e. the radius at

which circulation is 0.95 I'y) as:

C.,cz
ry = k/ = (3.28)
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CL is the lift coefficient of either half of the wing of chord c¢. k is
a constant whose value from Rose and Dee's data is about 0.1. Wind
tunnel data of Table 3.1 indicate a k of about 0,3, The axial dis-
tance z, in equation (3.28) is assumed large compared with the dis-
tance required for vortex formation. At the present time, no
reliable data about the axial distance required for the roll up of the
vortex sheet into the vortices and their approach to similarity form
exist. McCormick (1968) found that, in his full scale experiments,
the roll up was nearly complete in a distance of about one chord
length behind the trailing edge of the wing., The dependence of this
roll up distance on other dimensions of the wing and the free stream
velocity is not known. In general, we expect the roll up process
and the approach to similarity form to occupy an axial distance of a
few chord lengths behind the wing. Thus it looks desirable to study
the vortex in the range of at least 5 to 50 chord lengths downstream
of the wing.

For studying the vortex at a Reynolds number of about 106 ,
the above considerations indicate a wing of chord about 2.5 feet in a
stream of 100 feet per second. The radius of the vortex so formed
is about 1 foot at 10 chords {25 feet) behind the wing., Some wind
tunnels in existence have test sections big enough to generate a
vortex of this size, But these test sections are not long enough for
a study extending to 50 chord lengths (125 feet) downstream of the
wing., It looks feasible to study a vortex at a Reynolds number of
105 which can be produced by a wing of chord é inches in a stream

of 50 feet per second. This vortex has a diameter of about 6 inches
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at an axial distance of 50 chords (25 feet), Even this study is

likely to provide valuable data about the trailing vortices,

3.4 Concluding Remarks,

It is clear that the model equations have some shortcomings
which are to be eliminated before we have a reliable method for
treating turbulent flows. The shortcomings can only be eliminated
by the trial and error procedure of modifying the equations so that
solutions obtained using the model agree with experiments in a
variety of flow situations. This procedure is expensive in terms of
time and effort because of the complexity of the equations. Thus
much work needs to be done before we can meet the demand for a
method capable of application to novel situations without the aid of

experiments,
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Appendix I.

We can obtain a structure for the interface considered in

Section 1,4 by formally introducing an index of viscosity, v, into

equations (1.12). For simplicity we retain only the leading terms of

(1.12) and we have

ox x| 2w x
9 ; 9 9 :
w_ _ 0|, e w
Y 9% T ox [(2w+v) x} (A.1)

For analytical convenience we restrict our attention to a
similarity type of solution of (A.1l) which has the form

at (A. 2)

v = F(x)ea’t ; e = J(x) eat; w=K(x) e

where @ is a real constant. Then (A.l) implies

2
I 4 [e K
dx ~ dx 20" V) Tax
4 _ d |, e aJ
% dx T dx [(Zw+v)dx:| (A.3)
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The interface conditions of Section 1.4 imply that as v-— 0

F=vg; J=0 ; K=0 for x<0
2 box
F=-ajgta;xinx+ a,x + o(x) ; J=box;K=—u—f0r x>0 (A.4)

ua
with a, =—;1 . bg and a, are arbitrary constants,

For small v, not equal to zero, we can consider (A.4) as
the outer solution of (A.3). The inner equations are easily obtained

by introducing the scaled variables
_ 2 —
F(x) = F(x), J(x)=v J(x), K(x) = vK; x = =~ (A.5)
(A.3) in the scaled variables, with E = E/—IE, are

2[5 E) . 27, E
dx

<o L Egd]

dx dx dx

® .4 [(%H)él{_—z} (A.6)
dx dx dx

E—*O,K—f'O as X — -
- by — — by — —
J-'-E% x? K=a-g' X as X— + o0 (A7)
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are implicitly given by:

T=4; K
— 2 2 —
2log =2+ &£ =% (A.8)
4] 0
(A.4) implies an F of the form
F(x)=ay +vinv F (x) + vF (x) + o(v) (A.9)

Using (A.9) in the first of (A.6) we have equations for F,; and F, as

g [— dF;q dF,
dx _( E+l) —3¢ 17 dx
I b(E+1) ax | T t % (A.10)
Boundary conditions for F; and F, are obtained from (A.4) as
F, -0, F, =0 as x— -w
a;x a;x x 22
Fy—=—— , Fp> — “E*a_l) (A.11)

as:

(A.12)
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Solution for F, is easily obtained by the method of variation

of parameters and is

a, aga y dy
F, =F |- +— [ ——= (A.13)
41 ¢ {Em+1 Fi()

The integral in (A.13) behaves like log; for large x and thus satisfies
(A.11).

Saffman (1969) considered the problem of a turbulent front
with viscosity moving into stagnent fluid, This corresponds to the
present solution with @« = 0. Thus the above analysis can be considered

a generalization of Saffman's solution.
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