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ABSTRACT

An approximate analytic solution is derived in this
thesis for the variables which describe a heliocentric low-
thrust trajectory. The two-variable asymptotic expansion
procedure is used. It is assumed that the thrust accelera-
tion varies as the inverse of the distance to the central body
raised to an arbitrary power «. Thus the value of o = 1.4
will represent a solar-electric propulsion system, and the
value ¢ = 0 will represent a nuclear-electric system. It is
also assumed that the mass of the spacecraft remains con-
stant and that the direction of the thrust vector is arbitrary
but remains constant. The results are compared to
numerical integrations and to other integrating low-thrust

programs.
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I. INTRODUCTION

Recent interest in low-thrust planetary missions created a
need for trajectory computer programs to be used in mission analysis.
The first level of such software was to develop an approximate, rapid
and economical program to be used as a first cut in searching for

(42)

opportunities to perform specific missions. Wesseling derived

an approximate solution to a low-thrust trajectory using the two-
variable asymptotic expansion procedure for the case where the thrust
varies as l/rZ, i.e., approximating a solar-electric spacecraft. In
actuality the thrust in a solar-electric system was found to vary as
l/rl' 4. In this analysis the general case where thrust varies as

1/r% is considered. Thus o = 1. 4 will reflect a solar-electric system,

@ = 0 will reflect a nuclear-electric system and o = 2 will parallel

Wesseling's solution.



II. A SURVEY OF LOW THRUST TRAJECTORY STUDIES

With the scientific exploration of the solar system becoming a
reality, the fields of mission analysis and space flight mechanics are
receiving tremendous attention, and an avalanche of studies, analysis
and proposals has been created. These studies concern themselves
with those portions of celestial mechanics, aerodynamics, ballistics
and the theory of rocket propulsion that bear upon the orbits or navi-
gation of artificial satellites and other vehicles beyond the earth's
denser atmosphere. More specifically, mission analysis is a term
representing studies that determine the most optimum parameters of
a specific mission, such as payload, launch date, flight time etc.,
within the constraints of a given system such as launch \}ehicle,
science desires, cost and others. One of the major elements of mis-
sion analysis is knowledge of the space trajectory, which also plays a
vital role in other fields of study such as space navigation and
guidance.

Basically, space trajectories may be divided into three main
categories:

a. Ballistic Trajectories. So far, all lunar and interplane-

tary missions that have been undertaken, such as the Rangers,
Mariners, Lunar Orbiters, Surveyors and Pionéers, have used bal-
listic trajectories. Such a trajectory implies that the spacecraft is
injected into a transfer trajectory to the target planet by the firing of
a short-burn rocket, after which the spacecraft coasts under the .

gravitational influence of the planets to its destination. Additional



similar rocket firings are performed for other maneuvers such as
mid-course corrections, insertion into an orbit around a target planet
etc. In mission analysis and trajectory design, these short-burn
rockets are considered as velocity increments applied impulsively.
This allows the use of the basic conic equations as a first approxima-
tion to the determination of a trajectory. In an actual mission study
however, very sophisticated and complex computer programs are
used, where the equations of motion are solved by numerical integra-
tion methods, and special perturbations are represented by constantly
improving mathematical models. The most important asset that bal-
listic trajectories now have is that they are in a highly developed
state, thus making a space mission possible at a minimum cost. Both
the 1969 and 1971 Mariner Mars missions will foilow ballistic trajec-
tories. The main disadvantage of ballistic trajectories comes about
in the exploration of far away planets. For example, a direct flight
to Neptune requires a minimum velocity of approximately 56, 000 fps

(1)

with a 30-year flight time This obviously creates great problems.

b. Low-Thrust Trajectories. With the shortcomings of bal-

listic trajectories for deep space exploration, spacecraft with low-
thrust devices received extensive investigation and research.
Low-thrust space exploration missions were found to be considerably
more complex than ballistic missions. This complexity arises in all
the interrelated fields of propulsion technology, trajectory analysis
and optimization, navigation, and guidance. The main advantage of
low-thrust trajectories is the remarkable increase in the delivered

payload weight.



c. Gravity Assisted Trajectories. The most recent

innovation in the exploration of far away planets is the use of what is
now termed ''gravity assisted' trajectories. These are trajectories
that use the gravitational field of a planet to accelerate a spacecraft
towards more distant planets. Swing-bys past Mars, Venus, and

)

Jupiter were investigated initially by I\/Iinovitch(2 . Using Jupiter for

specific missions in the 1970's was further investigated by Flandro(3)
who proposed the now famous '""Grand Tour Mission' for 1978 which
swings by Jupiter, Saturn, Uranus and Neptune. The remarkable
advantage of gravity assisted trajectories is the reduction in flight
time. For example, a fnission to Neptune requiring a 30-year flight
time by a ballistic trajectory, would have an 8 year flight time with a

(3). The difficulty associated with the use of

Jupiter gravity assist
such a technique is with the accuracy requirements of the on-board
navigation and guidance equipment required to ensure accurately con-
trolled swing-bys to the proximity of far away planets. It can be seen
therefore that each of the above mentioned categories for interplane-
tary trajectories has advantages and disadvantages. For the explora-
tion of far away planets the use of low-thrust or gravity assisted

(1)

trajectories is almost imperative. Stewart discusses these new
possibilities for solar system exploration. It should be noéed that
both low-thrust missions and gravity assisted missions are basically
ballistic in nature> and that the low-thrust or gravity assistance is

used to increase payload and decrease flight time. For example, an

optimized solar-electric low-thrust mission to Jupiter presentedbby



(4)

Flandro and Barber uses an optimized path where the complete

trajectory is split into coast phases and thrusting phases. Flandro(S)
even proposes solar-electric low-thrust missions to Jupiter with
swing-by continuation to the outer planets, thus using all the men-
tioned categories in a single mission.

The above breakdown was presented to show how low-thrust
interplanetary trajectories fit in the broad spectrum of space
exploration.

Thrusted space trajectories have also brought about extensive
research in the field of propulsion, which of course affects trajectory
studies since the behavior of the thrust must be known in order to
solve the equations of motion. To obtain the high exhaust velocities
needed for most planetary missions, it is evident that processes
basically different from the simple heating of a propellant stream by
chemical reactions or by solid-element heat transfer must be
employed. This brought about the use of electric propulsion. By
definition, electric propulsion is the acceleration of gases by electri-
cal heating and/or by electric and magnetic body forces. Three con-
cepts thus present themselves: electrothermal propulsion, where the
propellant gas is heated electrically, then expanded in a suitable noz-
zle; electrostatic propulsion, where the propellant is accelerated by
direct application of electric body forces to ionized particles; and
electromagnetic éropulsion, where an ionized propellant stream is
accelera;ced by interactions of external and internal magnetic fields

with electric currents driven through the system.



More specifically, the electrical rocket engine has three
important subsystems: the energy source, the power converter and
the electrical thrust device. The energy source required to generate
electrical power can be either chemical, solar or nuclear. Chemical ~
sources usually produce specific energies too low to be used effec-
tively in space missions. Solar energy, already demonstrated as an
energy source in numerous space missions, may be used. Although
relatively limitless in amount, solar energy is limited in rate, and
decreases as the distance from the sun increases. Nuclear energy
sources include nuclear fission reactors and radioisotopes. Although
still mostly in the development stages, they can produce large
amounts of energy at the high rates required for extended space mis-
sions. There exists a wide variety of power conversion methods that
may be used to generate electric power from these sources. How-
ever, they can be classified into four areas. Power can be generated
mechanically, thermoelectrically, thermionically or by magnetohy-
drodynamical principles. The electrical thrust device, more com-
monly called the thrust chamber can be either electrothermodynamic
(arc or plasma jet), electrostatic (ion or colloid), or
magnetohydrodynamic.

It can be seen, therefore, that the choice of a proper propul-
sion system in a spacecraft on an interplanetary mission is a fairly

(6)

complex task. Stewart presents an excellent evaluation of space
propulsion systems in the light of certain celestial mechanical prob-

lems. The thrust behavior will greatly vary depending on the choice



of the space propulsion system. This fact is instrumental in the
motivation that led to the present analysis as will be seen later.

Specifically now, the analytical work done so far in the analy-
sis of low-thrust trajectories will be presented so as to show the
ground work that led to the present study.

Investigators have generally used two approaches in examin-
ing low-thrust trajectories. These approaches are not alternatives
to one another, but are independent and justifiable pursuits. The
first approach which is also historically the first, was to attempt to
solve the equations of motion of the spacecraft analytically and thus
determine its path. Th’is involved the solution of non-linear differen-
tial equations using generally some kind of perturbation scheme. The
second approach was to solve the boundary value optimization prob-
lem (where the boundary values are the initial and final position and
velocity of the spacecraft for a specified mission), and determine the
optimal thrust programs to maximize certain mission parameters.
This generally involved the use of the calculus of variations and quite
extensive numerical techniques. The present study deals primarily
with the first approach to the problem.

(7)

Tsien in 1952 was the first to present a solution to the equa-
tions of motion of a space ship taking off from a satellite orbit by the
use of low-thrust. His original intent was to settle a difference of
opinion that existeid about the magnitude of the thrust required for a

space ship to take off from a satellite orbit. Some felt that, since

the gravitational attraction in a satellite orbit is completely balanced



by the centrifugal force, and the vehicle thus being essentially in a
weightless mode, it would only take a minute thrust (of the order of
1/3000 g's) for it to take off. Others, on the other hand, such as

W. Von Braun, believed a much larger acceleration, of the order of
1/2 g was necessary. It became important to settle this dispute since
each point of view supported a specific propulsion system. Small
thrust favored electric propulsion whereas higher thrusts favored
chemical rockets. Tsien computed the mass ratio or the character-
istic velocity for the take-off of a space ship from a satellite orbit
(circular) for the two cases of radial thrust and circumferential
thrust. He shows that in both cases an increase of the required mass
ratio and the characteristic velocity is obtained when the acceleration
is reduced. He also shows that the circumferential thrust is much
more efficient in that the required mass ratio is much less than for
the radial thrust.

It was after Tsien published his results that investigators
split into the above mentioned two approaches to the problem of low-
thrust trajectories. The optimization approach started here as an
attempt to answer the question that since Tsien had shown that cir-
cumferential thrust was so much better than radial thrust, would
such a thrust program be the optimum program in terms of achieving

(8)

maximum payload? Lawden had previously presented a solution to
the problem of transferring a rocket between two points of space by

consumption of the minimum quantity of fuel. In his paper he first

used energy considerations to show that by aligning the direction of



the thrust with the tangent to the trajectory, the rate of increase of
the total energy with respect to the rocket's mass is made as large
as possible. Since the object of an escape maneuver is fo raise the
total energy as rapidly as possible, then such a program of tangential
thrust will be an economical one. This explains why Tsien's circum-
ferential thrust case is more economical than his radial thrust case,
since for a rocket spiraling outward from a circular orbit, the tan-
gent of its trajectory will rarely differ in direction from that of the
perpendicular to the central radius by more than a few degrees.
However, Lawden further shows that even though the circumferential
and tangential thrust céses are good, neither one is the absolute opti-
mal solution. The reason is that it may be advantageous during the
early period of the thrust to purposely direct the thrust out of align-
ment with the tangent to the trajectory with the object of acquiring a
high velocity in the early stages of the maneuver, so that in the later
stages when thrust and tangent are made coincident, the velocity
takes a larger value than might otherwise have been the case, and
hence the rate of increase of the energy is further augmented, with
the augmentation so pronounced that it more than makes up for the
reduction in the rate of increase of the energy accepted in the early
stages. Lawden then proves this conjecture using the method of var-
iation of parameters and numerical methods. In a later paper(g),
Lawden further shows that for an optimal escape employing a small
thrust during the major portion of the escape trajectory, the direction

of thrust must bisect the angle between the direction of motion and the
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perpendicular to the radius, but ultimately the thrust direction must
be aligned with the tangent at the instant of escape, as required by
his theory.

It should be noted that the field of optimization of rocket tra-
jectories had been investigated initially for chemical rockets, the
basic problem being to determine the thrust program that would per-
mit a vertically ascending rocket to reach maximum altitude. These
and similar investigations primarily used the calculus of variations
in their analysis. ILow-thrust propulsion systems however, as men-
tioned before, derive their power from a separate power supply and
are therefore power-limitea. Optimization of low-thrust power-
limited trajectories was originally presented by Irving(lo). One of
his important contributions was the determination that for any given
power supply mass the terminal rocket mass and consequently the
payload mass may be maximized by minimizing (subject to the initial

and terminal conditions imposed on the trajectory) the integral

where a(t) = the acceleration due to thrust = thrust/mass. Note that
in optimizing chemical rocket trajectories, the equivalent free-space
velocity, fa dt (the speed which the rocket would reach in the absence
of gravity and drag) is usually minimized, and not the integral of the

square of the acceleration as found by Irving. The minimization of

T
J;) af2 dt since then has become the standard way to design optimum
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low-thrust trajectories. Subsequently, trajectory engineers, such

(11) 2) and many others, have used Irving's

as Melbourne , Sturrns(1
method to numerically evaluate trajectories for missions to various
planets. No further discussion will be made on the optimization
approach to the low-thrust problem; for further information refer-
ence(l3) lists approximately 65 computer programs for low-thrust
optimized trajectories with descriptions of the optimization
processes.

The first approach to the low-thrust problem, that of solving
the equations of motion analytically, involves the theory of non-linear
mechanics and specifically the solution of quasi-linear differential
equations. Tsien's initial analytic approach was relatively simple. In
the first case of purely radial thrust, a closed form solution was
obtained in terms of elliptical integrals of thé first and second kind.
For his second case of purely circumferential thrust, he found an
approximate first order solution by regarding the acceleration dzr/dt2
as small compared to the centrifugal acceleration and neglecting it.

(14)

Benney repeated Tsien's analysis for a different coordi-
nate system. In lieu of using the equations of motion in the radial and
circumferential directions, he used them in the tangential and normal
directions. He compares the tangential thrust case to Tsien's cir-
cumferential thrust case and shows that the mass ratio is less for

(8)

results. He again
2

tangential thrust, thus concurring with Lawden's
finds an approximate first order solution by neglecting the dzr/d_t

acceleration term in the equation of motion.
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The exact solution obtained by Tsien for the purely radial
acceleration exhibited an interesting phenomenon. He found that
when ¢, the non-dimensional thrust factor (the vehicles acceleration
divided by the planets gravitational acceleration), is exactly 1/8, the
mass ratio becomes infinite. The reason, he explains, is that at this
value of acceleration there is a radial position where the thrust force
is equal to the gravitational attraction and no further increase in the
energy of the vehicle can occur. This interesting result was further

(15) and later by C0pe1and(16). Copeland,

investigated by Dobrowolski
by examining the equation for the radial velocity, determined certain
roots for the radius where the radial velocity will be zero, which
brought out four different types of trajectories corresponding to:

€ <0, 0 <e<1/8, ¢ =1/8, and ¢ >1/8. He then examines these cases
for trajectories in heliocentric space, exhibiting graphs of their par-
ticular trajectories. Dobrowolski on the other hand makes use of the
elliptic integral solution for this radial case to get formulas for the
rate of precession of the line of apsides. It is interesting to note that
in Copeland's Fig. 2 he shows that the line of apsides advances rather
than regresses. This contradiction was later settled as will be dis-
cussed subsequently.

(17)

Perkins performed a stepwise integration of the classical
equations of motion for the case of constant tangential thrust. He
first integrated a reduced form of the equation for radial acceleration

in which the radial velocity r was neglected. A plot of altitude versus

time showed a steady oscillation about a mean path (straight line in
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the r-t plane). When the complete equation for radial acceleration
was used, including ¥, it was found that the results involved an expo-
nential damping coefficient, and that these oscillations actually damp
out as the trajectory progresses. The mean path in this case was not
a straight line in the r-t plane but one where the mean altitude
increased at an increasing rate. The oscillations were such that the
mean path and the oscillatory path intersected every half revolution
in the spiral. Perkins explained the physical reasons for these oscil-
lations as follows: ''The application of a small thrust along the flight
path increases its centrifugal acceleration over that of the gravity
acceleration; this causes the vehicle to move outward away from the
planet, and the resulting conversion of kinetic energy to potential
energy will reduce the vehicle's speed and consequently the centrifu-
gal acceleration below the opposing gravity acceleration. This will
cause a low-amplitude oscillation in velocity and altitude about a

mean trajectory, which will damp out in time. "

(18)

The graphical results of Moeckel , who also numerically
integrated the equations of motions of trajectories with constant tan-
gential thrust, also show an initial slight oscillation in the velocity
versus time plots. Carl Sauer (private communication) states that
these oscillations were also discovered by himself and Melbourne in
their early low-thrust optimization work, but that for optimization

purposes these oscillations were unimportant, and so they used the

mean path, which they obtained by energy considerations.
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All the above investigators used Tsien's direct method of
approach. The basic equations of motion being non-linear second
order differential equations attracted the use of certain non-linear
techniques. Lass and Lorell(lg) were the first to attempt a solution
to these equations in other than the direct method. They used the

method of Kryloff and Bogoliuboft'%%)

which was previously used for
handling problems in non-linear mechanics. The key point of this
method is the replacement of a slowly varing derivative by its aver-
age over one cycle of the independent variable where the dependent
variables are considered constant in the averaging process. Lass
and Lorell applied it to’the two cases considered by Tsien: the purely
radial direction and the transverse or circumferential direction. For
the radial thrust case they showed that the line of apsides advances,

(16)

results. They furthermore deter-

(15)

thus confirming Copeland's
mined the error made by Dobrowolski which when corrected also
shows that the line of apsides advances rather than regresses. It
should be noted that the variations of the elements of the orbit is an
important product of all averaging techniques used in this problem,
as will be noted later.

The averaging method of Krylov-Bogoliuboff proved to be very
fruitful when applied to various celestial mechanics problems. Fol-

(21)

lowing Lass and Lorell, Shapiro applied it to the case of tangen-
tial thrust, which was first solved by Benney using Tsien's direct

approach. Shapiro's interesting results showed that initially circular
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orbits remain circular to the first approximation while elliptical
orbits become less elliptic when the thrust is in the direction of
motion.

The oscillations about the mean spiral path of a vehicle under
the influence of low-thrust constant tangential acceleration discovered

(22)

by Perkins were then investigated by Zee using ‘;he Krylov-
Bogoliuboff method. In his paper, Zee derives analytic expressions
for both the oscillations and the damping effect on these oscillations.

King-Hele(23) presented a different approach for investigating
the variations of the elements of an initially elliptic orbit with low
eccentricity under the ihfluence of a small constant tangential thrust.
He uses Lagrange's planetary equations as given by Moulton(24)wh'1ch
give the resulting changes in the orbital elements (semi major axis
and eccentricity) due to an application of a force per unit mass
applied in the tangential direction. His basic assumption, besides
low eccentricity, is that the change in the orbit during one revolution
is small. He thus obtains an approximate expression for the varia-
tion of the semi-major axis with eccentricity and their variation with
time. He finds that the eccentricity is approximately inversely pro-
portional to the square root of the semi-major axis and that it
decreases almost linearly with time.

So far all investigators had used the special case of constant
thrust acceleratién, where the differential equations of motion are of

the autonomous type. Since acceleration is equal to thrust force

divided by mass, the variation of mass must be considered negligible
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in order that constant thrust signify constant thrust acceleration. For

the actual case of constant thrust therefore, the thrust acceleration

(25) (22)

varies with time. Zee repeats his previous analysis for this

variable mass case, where the equations now become nonautonomous.

In this analysis he uses the stroboscopic method in non-linear

(26)

, and brings out again the damped

(27)

mechanics as given by Minorsky
oscillatory nature of the spiral. Very recently Zee presented an
improved first order solution to both of his previous papers. Zee's
solution to the variable mass case was further expounded by Cohen(zg)
with slight improvements.

Russian investigators had also followed a parallel path in their
analysis of low-thrust trajectories. Although most of their papers
were never translated to English, it can nevertheless be noted from
their abstracts that their investigations were very similar to those
referred to in this section. For example a translated paper by

Evtushenko(zg)

presents an analysis of the influence of a small tan-
gential acceleration on the motion of a satellite using the method of
averaging. He presents a solution that is valid to the first approxi-~
mation for any elliptic orbit and valid to the second approximation for
the case of a circular orbit. He examines the behavior of the orbital
elements by studing the phase plane.

The thrust vector so far had been considered énly in the
radial, circumferential or tangential direction. Johnson and

(30)

Stumpf consider the case of low-thrust constant acceleration

where the thrust vector is maintained at a constant but arbitrarily
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chosen angle with respect to the radius vector. Their analysis yields
perturbation solutions for departure from an initially circular orbit.
In order to discuss the works of the next few investigators,
one must loock at the basic mathematical problem in more detail. In
Tsien's original approximate solution for the circumferential thrust
case, he neglects the acceleration dzr/dt2 as compared to the centrif-
ugal acceleration, thus reducing the equation of motion in the radial
direction (see for example, Eq. 10) from a third order equation to a
first order equation. In so doing only the initial condition r = ry can
be satisfied, whereas the initial conditions dr/dt = 0 and dzr/dt2 =0
cannot be satisfied. The error introduced by not satisfying these con-
ditions is of 0(¢) for dr/dt and of O(ez) for dzr/dtz, where ¢ is the ratio
of the thrust acceleration to the gravitational acceleration. Thus
Tsien's approximate solution can be viewed as the zero order solution
of an asymptotic expansion in powers of ¢, with a slow time ¢t as the
independent variable. The question now arises about the possibility
of obtaining higher order solutions. The higher order approximations
however, also yield equations of the first order and cannot satisfy all
the initial conditions. Also, for this problem, a straightforward per-
turbation expansion in powers of € using the fast time t as the indepen-
dent variable is found to be invalid for large times because of the
appearance of secular terms such as t sint or t cos t (see Sec-
tion V). One can immediately note now the analogy between this
problem and Prandtl's boundary layer problem or the oscillator with
(31)

vanishing mass , and thus the theory of inner and outer expansions
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32)

devised by Kaplun and Lagerstrom( shows up as a possible way to

(33) attempted this approach

solve the problem. Ting and Brofman
using Tsien's solution with the slow time ¢t as independent variable
corresponding to the zero order outer solution, and an expansion in
fast time t as independent variable corresponding to an inner solution
which fulfills the three initial conditions. However, they determine
that the process of matching the limit of the inner solution as t—wo to
that of the outer solution as ¢t —0 works for the zero order solution,
but breaks down for the first order solution. The reason is due to a
term sin t in the inner solution which does not possess a limit as t
approaches infinity. In order to extend Tsien's solution to a higher
order, Ting and Brofman therefore had to use another approach.
They first convert the equations of motion into an integrodifferential
equation for the radius in terms of t. They then split the expansion
for the radius into an oscillatory function of the fast time t and a non-
oscillatory function of the slow time et and then use the Bogoliubov-

(34)

Mitropolsky perturbation method which uses an expansion
procedure combining the features of singular perturbations and the
method of averaging.

Nayfeh(35) proceeding along the same line of reasoning, inves-
tigated two alternative methods to solve this problem. The first
method attempted was the method of straining of coordinates known
as PLK method (Poincaré—Lighthill-Kuo) as given by Tsien(36). This

involves expansions in terms of one stretched variable and thus

Nayfeh shows that it is inapplicable to this problem because of the
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existence of two distinct times, a fast time t and a slow time et.
Nayfeh's second approach used his derivative-expansion method(37).
He compares the results he obtains by the use of this method to those
of Ting and Brofman and to numerical solutions of the basic equa-
tions. He shows that for large values of t, his expansion is closer to
the numerical integration than Ting and Brofman's whereas for
moderate values of t the reverse is true. Both the investigations of
Nayfeh and of Ting and Brofman concerned themselves with the case
where the initial orbit was circular.

Shi and Eckstein(38) investigated the case of arbitrary eccen-
tricity using the two variable asymptotic expansion procedure.
This method is discussed in detail by Kevorkian(46) and is the
method used in this analysis. Later, Brofman(39) and Shi and

(40)

extend their initial analysis to the case of variable mass.

(41)

Eckstein
Shi and Eckstein also develop an approximate solution where the
singularity near the escape point, which predicts infinite radial dis-
tance at finite time, does not appear.

The above presentation attempts to give the history of the
investigations performed on the analysis of the motion of a spacecraft
taking off from an initial orbit by low thrust. To summarize, the
following points should be made:

The problem is basically twofold. One aspect is the mathe-
matical approach for solving two non-linear ordinary differential

equations. The other aspect concerns itself primarily with the prob-

lem of mission design, specifically the design of optimum
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interplanetary low-thrust trajectories using numerical integration
techniques and optimization processes. As each field was further
developed and expanded, the two approaches became almost com-
pletely independent fields of study. At the start of this section an
attempt was made to show that basically the study of low-thrust tra-
jectories was a tool to be used in the design and planning of space
exploration missions. From this point of view one can look at the
researchers in optimization techniques of low-thrust missions as
those who remained closer and concerned themselves more intimately
with the real problem of mission design. It would be unfair, how-
ever, to consider the applied mathematicians attempting to solve the
basic equations as being divorced from the main objective. Such
analysis has two great advantages. In the first place an analytic
investigation into the basic equations of motion gives great insight
into the general behavior of such trajectories, as for example, the
determination of the behavior of the osculating orbital elements as
shown above. Secondly, the computing time needed to obtain numer-
ical results from the approximate closed form solutions is appre-
ciably less than the time needed to perform numerical integrations
of the equations of motion, thus a computer program which gives
approximate results but is simple and fast would be an extremely
useful tool for the design of low-thrust trajectories if the approxi-
mate results are accurate enough. Thus, an analytic treatment of
the problem is certainly justifiable as a part of mission analysis.

(42)

Wésseling is probably the only investigator whose analysis was
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specifically directed toward becoming a tool for the mission analyst.
All the studies mentioned in this introduction considered the case of
constant thrust or constant thrust acceleration, i.e., approximately
a nuclear-electric propulsion system. However, the mission studies
presently under serious consideration for outer planet exploration in
the 1970's have solar-electric propulsion systems (e.g., reference
43). For this system, the magnitude of the thrust is a function of the
distance to the sun since the solar power decreases as the distance

(42)

to the sun increases. Wesseling considers, as an approximation,
the case where the thrust acceleration varies as the inverse of the
square of the distance to the sun in a heliocentric trajectory. He
uses the two variable asymptotic expansion procedure and obtains the
first three terms of the asymptotic series. A very interesting result
obtained for such a thrust behavior is that the eccentricity of the
osculating conic increases, whereas, it had been found that for con-
stant thrust acceleration it decreases. This exhibits the fact that the
behavior of the trajectory in general (such as the variation of the
elements) seemed to depend on the behavior of the thrust accelera-
tion. Furthermore, it was found that for a specific solar-electric
propulsion system(4 5), the thrust acceleration varied as the inverse
of the distance to the sun to the power 1.7. Later refinements
showed that this power is actually 1.4. It is concluded therefore,
that the thrust behavior can vary greatly depending on the propulsion

system used and that that in turn will effect the behavior of the tra-

jectory. The need therefore became apparent to study and investigate
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the trajectories of a low-thrust vehicle where the thrust can take
different histories.

This study investigates the general case where the thrust
acceleration can vary as the inverse of the distance to the sun raised
to some arbitrary power a. Thus, the value ¢ = 0 will signify con-
stant thrust acceleration, o = 2 will parallel Wesseling's analysis,
and o = 1.4 will reflect the solar-electric propulsion system pres-
ently under development for a proposed low-thrust solar electric
flyby mission to Jupiter in 1975.

The three dimensional equations of motion are first derived
starting with Lagrange's equations. Certain changes of variables
make it possible to uncouple the out of plane equation of motion under
specific conditions, thus making it possible to solve for the third
dimension once the reduced two-dimensional problem is solved.

The appearance of two time scales and the small parameter ¢ induces
the use of the two variable asymptotic expansion procedure already
demonstrated to be a powerful tool by Wesseling(42) and by Shi and
Eckstein(38). In Section IV, this procedure is applied to the differen-
tial equations of motion. In Section V, the first approximation solu-
tions for the reduced two dimensional problem are obtained for various
values of @ when no assumption of small eccentricities or initially
circular orbits are made. The variations of the elements of the orbit

under different conditions of thrust direction and values of « are
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presented and discussed. A second approximation valid for small
eccentricities is obtained in Section VI. In Section VII, the out of
plane equation of motion is analyzed and discussed. Finally, com-
parisons to numerical integrations and to Sauer's integrating program

are presented.
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III. DERIVATION OF THE EQUATIONS OF MOTION

a. Lagrange's Equations of Motion. Consider a space vehicle

of mass m moving in interplanetary space under the influence of the
gravitational attraction of a central body (considered as a point mass),
and subject to a thrust force F. The kinetic energy of the vehicle is

given by
1 2
T = >m Z v (1)
1
where, in rectangular cartesian coordinates:

}:viz =)'(2+§r2+i2
i

= the square of the resultant
velocity of the vehicle.

In spherical polar coordinates, r, ¢ and ¥ (see Fig. 1), we have

the relations:

x = r cos ycosd
y = r cos y sin¢ (2)
z = r sin Y

their time derivatives are therefore

T cos y cos ¢ - r{ sin & cos ¢ - rd cos Y sin ¢

e
)

T cos sind)-r@sin¢sin¢+r&>cos¢cos¢> - (3)

e
1

5 = t sin U + rdcos
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PROJECTION OF TRAJECTORY
ON ECLIPTIC PLANE

Y,

Fig. 1. Definition of the coordinate system (r, o, ¢)
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where the dot indicates the derivative with respect to time. Squaring

and summing, the square of the velocity becomes:

22

Zviz = 1"2 + rz cosZ LLJ&DZ +
i

so that the kinetic energy may now be written as
m [1"2 + r2 cos‘2 LJ,M‘;Z + rZCIJZ] (4)

The equations of motion of the space vehicle may now be

obtained using Lagrange's equations.

a {aeT\ 8T _

Note in numerous books the term ''Lagrange’s equations"
usually is reserved for the case where the system is conservative,
i.e., when the forces are derivable from a scalar potential function.
In a general sense however, KEq. (5) are often called Lagrange's

equation of motion where

qj = any curvilinear coordinates
T = kinetic energy expressed as a function of qj and qJ
Q. = the components of the "generalized force' defined as

al‘i
Q = }_;:Fl 3q; (6)
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To obtain the equations of motion in spherical polar

coordinates, Eq. (4) is differentiated and substituted in Eq. (5):

Thus
8L . mr(¢ cos? +4J2)
or
oT _
ECR
oT 2:2 .
FIi -mr ¢ cos Y sin Y
and
oT _ . oT _ 2 ; 2 9T _ 2.
5F - mr 8$—mr¢cos a—w—mrw
so that the equations of motion become
d . 2 2 2
Tt [mr} - mr[d) cos ¢+w] = Qr
d 2 2 B
T [mr & cos d)] = Q¢
_ccli—t [nrlr2 tlJ] + nnrzcifZ cos Yy sin b = Qq;

The components of the generalized forces are

QO -F _GMm

T r 2
T

Q¢:rcos¢F¢

Q‘P = rFLLJ
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where
F = radial component of the thrust
F¢ - transverse (or circumferential) component of the thrust
Fy = out of plane component of the thrust
G = universal gravitational constant

M = mass of the central body

The complete equations of motion are therefore:

% (mr) - mr(d‘>2 coszw + CPZ) = Fr - Gi/ém
Ed‘E (mrZ coszklﬂi’) = r cos y Fy (8)
ad_t (erL'P) + rnr2 cos Y sin chi:Z = err‘

It will now be assumed that the mass of the space vehicle m

remains constant, i.e., m is negligible, the equations reduce to:

il

£ figf e ]

dtz dt dt m rZ
a2 sy ()] - reosnt ©)
T |F cos 3t = s¥—
‘ 2 r
gf [rz (-(31—\,2'])] + r2 cos Y sin (—3—?) = r _r‘rq%
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b. Choice of Dependent and Independent Variables. The

above system of differential equations are highly coupled non-linear
differential equations. In order to reduce the coupling effect, it will
be assumed that the spacecraft will remain in the vicinity of the
ecliptic plane. It will therefore be assumed that the out of plane
angle Uy is initially small and will remain small throughout the domain
of validity of the solution. Substituting therefore ¢ for sin { and 1

for cos Y, the equations of motion become:

ol
2 7 7 |\dt dt
4 (2 de)

dt a) - °F

. 2
d [ 2 du 2 (de\©
—CTf (1‘ E) +r LP (E) = Tr

1

FrooMm
m = 2

r

3|

(10)

5|

To further simplify those differential equations, the following trans-
formation is performed:

Let

u=-—l- and k =
T

a8
PNE N

where

H, = angular momentum = ? dé/dt
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Using u and k as the dependent variables and ¢ as the independent
variable (instead of t), the equations of motion may be written after

some manipulation as:

2 2 F F
d“u d¢) _ k "y kdu-¢
E”Z+u[l+(ﬁ$ ] = GMk - > - =
- dé
2 F
dk K” T
W P T3 m (1)
u
a®y 1k kT
d¢2 2k dé do . u31rn

This is the same choice of variables used by Wesseling(42) and differs
slightly from Shi and Eckstein>®) who used k = 1/H¢.

c. Power Law Behavior of the Thrust. A general power law

behavior for the thrust will now be assumed, i.e., thrust proportional
to the inverse of the distance to the central body raised to some

arbitrary power «. The thrust components therefore may be written

as;

Fcb o
m

F
—m—l‘ = %0t (12)

Fy
o
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where

n2+éz+€2:1

and the constant of proportionality Q is

Q = £ %) (13)

It is also assumed that n,{ and § are constants i.e., the thrust
vector will maintain the same orientation with respect to the central

body. Substituting into the equations of motion:

2 2
51——121— + u\:l + (%) jl = GMk - ku(a—Z)Qé - ku(a_3) du Qn

dé dé
% - _2ktu@ gy (14)
2
déy 1 dk du L (@-3)
—_d¢2‘2kd¢d¢+5b‘ku Q&

d. Non-dimensionalizing, the Existence of Two Time

Scales and the Small Parameter €. It is convenient to make these

equations dimensionless, The initial distance to the sun T is the
. . 2
only unit of length that is available. The two accelerations Gl\/I/rO

and Q/rgZ give two time units, namely
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It will now be assumed that the thrust is very small compared

to the gravitational attraction of the sun. This signifies that

T)<<T,

Introducing the dimensionless variables

£ _ 5k _ t
U= urg and t = T
‘ 1
and letting

(2- )

2 2
au av\?] (@-2) 1 du
d¢2+u[l+<d¢)jl—k-eu k[é+n_ﬁd¢]

j_i = 2equl@-3)2 (15)

Ry

2
d _ (e-3) dy
d—d)'z' + QJ = €U k [g -n a—d;]

where for T1 << T2 we will have ¢ << 1,

e. Uncoupling the Out of Plane Equation of Motion. It is noted

that if the term (dkP/dcb)z is neglected in Eq. (15a) the u and k
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Eq. (15a and b) will uncouple from the equation for i (15c). This

means that the assumption (de/ddb)Z << 1 will have to be made. The

significance of this assumption will be apparent later when the § equa-

tion is solved. With this assumption, the u and k equation become:

2
_d_121_+ u = k - eu(a—z)k[é + M i%]
dé e
(16)
d - 2
d—l; = _Zenu(a 3)k

They represent the ''projection' of the trajectory on the
ecliptic plane (Fig. 1). k and u can now be solved independently of iy,
and once they are determined, the y equation may be solved to give

the elevation above the ecliptic plane.
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IV. THE TWO VARIABLE ASYMPTOTIC

EXPANSION PROCEDURE

A general discussion of the two variable expansion procedure
is given by Kevorkian in Ref, (46). The applicability of the method
manifests itself in problems that are characterized by the presence of
a small force or disturbance which is active for a long time, and where
the physical phenomena described by the equations reflect themselves
in the occurrence of two-time scales.

It was shown in the derivation of the equations of motion of a
space vehicle under 1‘o§v thrust (small force) that two time scales.
exhibit themselves. The gravitational pull of the sun causes a change
in the space vehicle's position in a characteristic time Ty whereas
the low thrust force causes changes in position in a characteristic
time TZ’ where TZ>>T1’

Kevorkian shows that for several differential equations of the
non-linear oscillator type, the two variable procedure gives a uni-
formly valid solution. However in this case, complete uniformity for
all times cannot be achieved, Wesseling (Ref. 42) has shown, however,
that the domain of validity using the two variable procedure is con-

siderably larger than the initially valid series which breaks down for

large values of ¢ (showing that the perturbation problem is singular).
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Introducing the two time variables:

¢ = fast time variable, associated with variables that vary
appreciably in time T, (Poincaré variable)

& = ¢ = slow time variable, associated with variables which
change only after time T2 (like the elements of the oscu-

lating conic).

The two variables ¢ and & in this procedure are treated as
distinct independent variables
u, k and Y are now expressed as explicit functions of ¢ and ¢ in

the following asymptotic form:

u= UG8 ¢) = 00,8 + vy, 8)+ Lulle, §)+ o)

1)

P
]

t

K4, 3, ¢) = K6, 8) + kMo, 5 + &P s,5) + 0(c°)

b= 26,3, 0 = ¥, 5+ W, 5+ Fe@g,8) o)

Substituting these expansions into the equations of motion, it is
noted that since ¢ and $ are treated as distinct variables, the total

derivative with respect to ¢ is

d _ 9 49
dé = a9d EYS

After the substitution, equal powers of ¢ are equated. Let sub-

script 1 signify the partial derivative with respect to ¢, and subscript?2

signify the partial derivative with respect to ¢.
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For the uncoupled u and k equations (Eq. 16) (the projection of
the trajectory on the ecliptic plane), the following set of differential

equations are obtained:

. O(1):
(0) _
K1 =0
(17)
o) 4y - )
Ofe)
K(ll) _ _Kéo) ) ZnU(O)&_BK(O)Z
(18)
Ugll) + U(l) — _ZUg()Z) + K(l) _ QU(O)Q"ZK(O) _ nU(O)a'3K(O)U§.o)
O(?):
K(IZ) — "Kél) - 21’]((}’ _ 3)K(O)ZU(O)Q'4U(1) _ 4T]U(O)a_3K(O)K(1)
@) @) Lu) o), @) 4U<o>a-2[K<1)+(a 2)U‘”K“”]
11 -7 12 7= “22 - - U(o)

] nu<°’“-3[z<‘”u<f) - kCIge) 4 gy

+ (o - 3)

y(Uglelylo)
5©)

- (19)
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For the ¥ equation (out of plane angle), the following set of

differential equations are obtained:

o(1):
7o)+ o) <o (20)
Ofe)
W) 91 - 5g0) gl @3y
o(<®):

(2) ) _ (1) (0) (0)a-3|,(1) UK
LA __2\1112_\1122+§U @ [K +(oz_3)___(_(_)_7_}

] nU(O)a'3{K(O)\1f(°) s 1@ g, (1) 40)

2 1 1
(1) .(0)
(o) UK

The set of differential equations for u and k will first be solved
(Section V). Once this is done, the ¥ equations can then be solved

separately (Section VI).
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V. FIRST APPROXIMATION SOLUTIONS OF THE
TRAJECTORY PROJECTION ON THE ECLIPTIC

PLANE FOR ALL ECCENTRICITIES

The solution to the first set of differential Eq. (17)(O(1)) may be

written as

(23)

ul®) = NG 1+ e(d) cos (6 - w(3))]

It is noted that if f(o), e and w were constants in Eq. (23),
they would represent the unperturbed motion of a satellite in an elliptic

orbit, where:

e = eccentricity of the ellipse.
w = argument of periapsis [(¢ - w) = true anomaly].
f(o) = the inverse of the semi-latus rectum

However, because of the introduction of two variables, it is
found that f(o), e and w can be functions of the slow variable <~i> This
means then that even though the solutions (23) are the first approxima-

tion solutions and the thrust term does not appear explicitly, it will be

(o)

felt once the values of £/, e and w are determined as functions of §,

since we would have an osculating conic and thus a perturbed orbit.

(o)

The functions f' ’/, e and w are determined by imposing the

(1)

"bondedness conditions'' on U“) and K This is an important feature

of the two-variable method discussed in References 46 and 42. It
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simply means that secular terms appearing in the solution of U(l) and
1) . .. .
K( )Wlll be set to zero, thus determining the variables that are func-

0)

tions of $appearing in the solution of U(O) and K The same thing

is done in determining higher order terms, i.e., variables that are
functions of & only appearing in the solutions to U(l) and K(l) are
determined by the boundedness conditions on the solutions of U(Z) and
K(Z); and so on. This shows how the first approximation reflects the
effect of the thrust since for determining f(o), e and w, the second
approximation has to be investigated inasmuch as to determine the
unbounded terms in its solution.

Substituting now the solutions of U(o) and K(O) on the right

hand side of the differential equation for K(l) [Eq. (18a)],

(o)
K(ll) SN an(o)a-l [1+ecos (¢ - w)

0%

]0-3

)Z

Direct integration gives for K(1
1y a£© (0)a- 1 o-3 (1),2
K' = - % ¢ - 2nf [1+ecos@ -w]™ " as +£ /@) (24)
O

It is now required to determine the unbounded terms in the
solution of K(l) [Eq. (24)]. The first term is obviously unbounded
since it grows linearly with ¢. The second term is not so obvious.
However things are simplified if the following is noted: if a function
is '"bounded, " then its integral from 0 to 2m must be zero, if it is
"unbounded'' then its integral from 0 to 27 is not zero and the value of

the unbounded part becomes the value of that integraldivided by 2.
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Thus the unbounded part of f¢[1 + e cos (¢' - w)]a_3 d¢' is
o

dé.

Setting the unbounded terms to zero therefore in Eq. (24) gives

1/2nw fOZW [1 +ecos (- w)]a_3

the first boundedness condition

ae(©) (0)a-1 o
o)o- a-3
3 :-%f J (1 +e cos (¢ - w)] dé
o
or
a-3
(o) , 2
dft’ " _ _an(o)a-l(l ) ez) P(a . 1 (25)
do - /l - eZ
where

P(a 3) = Pn = Legendre polynomial of the first kind.

Note n has to be an integer, thus Eq. (25) is good only for integer

values of . Equation (25) represents the behavior of f(o), and its

(o)

solution would give the variation of f as a function of &.

The integral

¢
f (1 + e cos (d' - w)]a—3 de'
0

appearing in Eq. (24) needs to be solved in order to obtain the com-

(1)

plete solution to K' ' and to continue to solve Eq. (19b) to determine
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U(l). No solution to this integral exists for general . There are
two ways however to deal with it:

(a) Specify a value for o, and obtain the value of the integral
for specific values of o using integration tables or modi-
fications thereof.

(b} Expanding the integrand in a binomial series, neglect a
certain order of e (the eccentricity) and integrate term by
term keeping o general,

Method (a) will give solutions to specific values of a for all
eccentricities and will be done in this section. Method (b) will give
solutions to general o but for linearized eccentricities and will be
investigated in Section VI.

The values of @ chosen are 0, 1, 1.5, 2 and 3. The value ¢ =0
signifies that the thrust remains constant and is thus equivalent to a
nuclear powered thrust engine. For solar powered engines it might be
assumed that thrust varies as 1/r2, however recent studies of solar
powered ion engines show a thrust behavior varying as 1/r1° 40 The
values @ = 1.5 and 2 were therefore chosen. @ = 1 and 3 are included
to complete a reasonable range for o.

It should be noted from Eq. (23), that the first approximation is
independent of ¢, i.e., @ does not appear in these equations. However

(o)

in evaluating the values of e, w and "7, o does come in causing the

first approximation solutions to represent the effect of the thrust.
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Constant Thrust Case (o = 0)

Substituting the value @ = 0 in Eq. (25), we get for the first

boundedness condition:

as©) (e +2)

as )1 _ o2)272

(26)

where for o = 0, n = -3 and we note that the Legendre polynomial

thus,

o]

3
_ 1
[(1 - %) ]

In order to compute the second and third boundedness conditions, to

(72

determine e(g) and w($), we need to solve Eq. (18b) for U(l) and set

the unbounded terms in its solution to zero. For a = 0, the differential

(1)

equation for U becomes:

< kol

@2 N G©)3 (27)

(1) (1) _ (1) (o)
ul/+u' = K -203) - ¢

This second order total differential equation is of the type:

2;(1)
d‘u 1

— +ult) = HE)
dé
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where H(d) is a function of U(O), K(O) and K(l) and their derivatives,

and may therefore be determined.

The homogeneous solution to this second order total differential

equation is
= A(&) cos & + B(d) sind

The particular integral can be obtained by the use of Green's
function. Note if G is the Greens function then

2
959, G <0 with boundary conditions Gc'ggg

do°

1o
(=]

will give G(¢} = sin o.

Thus the particular solution f(;d) H(®")G(d - ¢') dé' becomes:

¢
(]') - 1 . 1 1
Up'g ~ H(¢') sin (¢ - ¢') do
o}
where H(¢) is the right-hand side of the differential equation. Since
H(¢) involves circular functions of (¢ - w), it becomes very convenient

to put the particular solution in the following form:

¢
M) - sin (62 W) f H(o') cos (' - w) dé'

(o]

¢
- cos (¢ - w) [ H(¢') sin (¢' - w) do' (28)

o



44

For the case o = 0, H(4¢) is

K(O) K(O)Ugo)

U(o)Z - N U(0)3

- gl (o)
H(d)) - K - ZUIZ ’é

(o) ,
(Ze a;$ + 2f —g-%) sin (¢ - w) - Zef(o)g% cos (¢ - w)

4 N
- +
f(o)[l + e cos (¢ - w)]z f(o)[l + e cos (¢ - w)]3

L, 2 ﬁ - + M) 29)
ad f(o5 (1 +e cos (¢" - w)]3

Substituting Eq. (29) into (28) and integrating will give the par-
(1)

ticular solution for U In this solution we get terms that grow as ¢
sin (¢ - w) and ¢ cos (¢ - w). Disallowing this we get the second and

third boundedness conditions:

dw L
- = (30)
de f(o)Z(1 _ e2)3/2
and
de _ 3 Ne
de ~ 'Ef(o)z“_ez)3fz (31)
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Equations (26), (30) and (31) govern the behavior of f(o), e
and w to first order. By manipulating them algebraically, we can get

W, f(o) and ¢ as functions of e by integration. These relations are:

W = wo_%%log (—é%) (32)
2
(o) _ (o) (l - eo) e 4/3
b [(1 - ) (eo) 2
(0)2 z)z e
_2f I- 5/3
&= 0 ( €o e de (34)

8/3
3neo €4 VI - e2

where f(oo), e, and w, are the initial values of f(o), e and w.

Thrust Varying as 1/r (o = 1)

Repeating the same procedure as above for o = 1 we get the

boundedness conditions:

-2n (35)

e e

U E
LY
i
L

®

(]

—

1

¢}

(g

/ 2
4 1-vV1-e (36)

de  -n |1-V1-¢é%

d$

(37)
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The solutions are:

o= w, - Elog (i) (38)

(39)

- [E €% +2)V1 - &2 +-—21-e2]} (40)

3

Note that the very cumbersome algebra and calculus are not
shown for simplicity. The main integrations are given in the appendix

and were obtained with the help of Reference 47.

3/2

Thrust Varying as 1/r (o= 3/2)

As mentioned in Section II the thrust force in a solar electric

1.4 For this reason it was decided to solve

spacecraft varies like r~
the developed equations for o = 1. 5. If also turns out that this gives a
special case where de /dé = 0 regardless of the magnitude of the initial
eccentricity. Substituting o = 1.5, the integrals give rise to elliptic
functions of the first and second kind (see appendix). Again to simplify
the algebra, since @e only need the unbounded part of the integrals, we

integrate from 0 to 2w, If the value of this integral is zero, then the

function is bounded. If the value is non-zero, then the unbounded part
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is the value of that integral divided by 2n. In doing this, the elliptic
functions are reduced to 'complete elliptic functions' of the first and
second kind.

The resulting differential equations for the boundedness condi-

tions are:

a® an [O)_ Em 1)

de (1 -¢e)/l+e
do =26 L fggy - LEe (kg - B)] (42)
do - /f(o eyl +e
&€ -0 (43)
dé
where
K(k) = complete elliptic integral of the first kind
E(k) = complete elliptic integral of the second kind

k = modulus = V2e/(l + e)

These equations may be integrated directly since the eccen-

tricity remains constant, and we get:
e = e (44)

‘ 2
© n(l-eo),/l+eo
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(l-e ) l+e
= w4 E—E—%[K(k) - —2 (K(k) - E(k))Jlog[\/f(o) SR £ 219 N
o Me, ( e o Tf(l-eo) ,————1+eo

(46)
Thrust Varying as l/r2 (a=2)
For this case the boundedness conditions become:
d]E(O) ) _an(O)
T 2172 (47)
d¢ (1 -¢e7)
=0 (48)

D-nlSl
oHo

1

=3
| |

\ll_ez-(l-ez) (49)
eVl - ez

The solutions are:

W= w (50)

© o [( J_—)}

(52)

©-?
Al
-
f — !
o]
aQ
——
o
1
[¢]
oV
1
—
e e
+
ot
]
o
(3%}
1
[
i
]
oY)
e

(51)
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Thrust Varying as l/r3 (o = 3)

This case is interesting because it turns out that the boundedness
conditions remain the same for the case of linearized eccentricity as

will be shown later. For ¢ = 3, the boundedness conditions become:

o~
(@]

df {0)2
— = -2nf 53
a3 n (53)
(o)
dw f
— = ol 54
e (54)
42 = 3 et (55)
dé
direct integration gives the solutions:
~1-1 '
f(©) _ f(()o) [1 + anc()o)¢] (56)
vz - %%—log {1 + znf(()")?p] (57)
1+ 2nefelg)
e = e 1+ ZWfE) cb] (58)

Discussion of Results

Equations (32) to (58) represent the behavior of eccentricity (e),
(0))

argument of periapsis (w), and the inverse of the semi-latus rectum (f
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with respect to & the slowly varying angle (¢ = €d), to first order.

Note that the angle ¢ is related to the time by the variable k:

These behaviors are plotted in Figs. 2 and 3. Figure 2 is for
the case of tranverse thrust M =1, { = 0) and Fig. 3 is for the case
where thrust is inclined 45° (n = l/ﬁ, g = 1/\/2_). The same plots
are repeated in Figs. 4 and 5 for the linearized eccentricity case
developed in Section VI. Figures 6 and 7 show the difference between
the linearized and non-linearized case for eccentricity vs .

Some general remarks:

Behavior of Eccentricity

For the case where thrust has a tangential component (Figs. 2

and 3) (n positive non-zero) the rate of change of eccentricity de/d is:

a< 1.5

A

0 for O

1A

ge—=0fora’ 1.5

]

> 0 for a >1,5
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Fig. 2. Variations of e, w, f(o)- transverse thrust direction,

all eccentricity
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Fig. 3. Variations of e, w, f(o) - 45° thrust direction,
all eccentricity
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0.3 T I T T I I I I
LINEARIZED ECCENTRICITY
n=1.0
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o
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o 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.91.0

-

0 0.1 0.2 0.3 04 05 06 07 08 09 1.0

Fig. 4. Variations of e, w and f(o) - transverse
thrust direction, linearized eccentricity
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Fig. 5. Variations of e, w and £°) - 45° thrust
direction, linearized eccentricity
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Fig. 6. Difference between linearized and non-
linearized cases for e, = 0.1
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Difference between linearized and non-
linearized cases for eo = 0,5



57

This means that for a = 1. 5, the vehicle follows a path on which
eccentricity does not change (e = eo), regardless of the value of e,
(de/dd = 0 for both linearized and non-linearized eccentricities), to
first order.

For @ < 1.5, eccentricity decreases with time; this essentially
means that the orbit tends to become more circular. On the other hand
if o > 1.5, de/dé is positive, i. e., theorbittends to become more elliptic.
This can be readily explained by considering impulsive tangential thrusts.
An impulsive thrust performed tangentially at the periapsis of the initial
ellipse will tend to increase the eccentricity whereas, if it is performed
at the apoapsis, it will tend to decrease the eccentricity. Thus for con-
stant thrust (¢ = 0) it is clear the vehicle spends more time near apoapsis
so that the net effect will be to decrease the eccentricity. Once thrust
depends inversely on the radius, this effect diminishes untilo = 1,5, ~
where the effects cancel each other exactly and eccentricity does not
change. For o > 1.5, even though the vehicle spends more time near
apoapsis, the large radius gives rise to a small thrust enough so that
the net effect is to increase the eccentricity.

We also note from the equations that if the initial eccentricity
is zero (circular), the vehicle will follow a spiral on which eccentricity
remains zero, regardless of the value of a.

For the case where the thrust is radial ({ = 1, n = 0), de/dé = 0
and eccentricity does not change regardless of ¢ and the initial eccen-

tricity e,
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For o < 1,5, we have decreasing eccentricity, which means
that at a specific value of , eccentricity becomes zero (Figs. 2, 3).
This discontinuity simply means that the vehicle reaches escape, since

)

we note that at these values f(o — 0, i.e.,, the radius becomes infinite.

When eccentricity is linearized (Figs. 4 and 5) the behavior of
e, f(o) and wis still the same. Figure 6 shows the difference between
the linearized and non-linearized cases for the behavior of eccentricity
when e, = 0.1, We note that for ¢ = 1.5 de/d$ = 0 for both linearized
and non-linearized cases. Also we note that for @ = 3, the boundedness
conditions are the same for both linearized and non-linearized cases.
In Fig. 6, therefore, we note that for ¢ = 1.5 and 3, there is no dif-
ference between linearized and exact cases. For a = 0, 1 and 2 the
difference is found to be very small. This difference becomes larger
if the initial eccentricity e, is larger. Figure 7 is the same as Fig. 6
except the initial eccentricity e, = 0. 5.

By comparing Fig. 6 to Fig. 7, we note that for @ < 1. 5, the
eccentricity reaches zero faster when the initial eccentricity is higher.
This means that the more eccentric the initial orbit, the faster it
tends to become circular! This can be explained by remembering that
for e —~ 0, f(o)—> 0 and the vehicle reaches escape. This means, there-

fore, that the more eccentric the initial orbit, the faster the vehicle

reaches escape.
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Behavior of Argument of Periapsis (w)

For the case where thrust has a radial component ({ positive

non-zero), the rate of change of w is noted to be:

> 0 for O

1A
R
A
[\

dw _ N
E— Ofora

1
e

< 0 foro>2

The argument of periapsis can be thought of as the rotation of
the ellipse. Thus for o = 2, there is no rotation, for @ < 2 rotation is
positive and for « > 2 rotation is negative. Note that for @ <2, w — o
at the values for which f‘o)—>0, i.e., escape. Again, if we compare
linearized and non-linearized cases {(Figs. 3 and 5) the difference is
very small when e, = 0. 1.

We also note that for the case of transverse thrust (0= 1, { = 0),
(Figs. 2 and 4), dw/d$ = 0, i.e., w remains constant (no rotation)
regardless of the values of «, e, orw .

o))

Behavior of the Inverse Semi-ILatus Rectum Lf(

For the case where thrust has a tangential component (n posi-

(o)

tive, non-zero), the rate of change of f is always negative, i.e.,

f(o) always decreases. This of course signifies that r has to increase,

i. e., ascent from the initial orbit, which are the only cases considered

here.
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(). 0 at the escape points (Figs. 2 and 3).

Again for a< 2, f
Comparing the linearized to the exact case (Figs. 2 and 4) we note
that again the difference is very small,

From the above analysis we note the interesting case that for

radial thrust (n = 0, { = 1) and for the a = 2 case, we get

This means that the orbit doesn't change! To explain this we note that
the foregoing analysis is’only carried out to first order. Also
Wesseling (Ref. 42) has shown that for « = 2 and radial thrust, the
radius of the trajectory after one-revolution changes by an amount of

0(¢), which supports the above results.
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VI. LINEARIZING THE ECCENTRICITY

a. An Order of Magnitude Analysis. The original expansions

for u and k are:
w=0 oy Sy (59)

Kk K(o) + EK(l) + GZK(Z‘) 4 oaa. (60)

I

The solutions to U(o) and K(o) were found to be:
U(O)«: f(o)[l+ecos (¢-w)] (61)

K(O) - f(O) (62)

The values of f(o), e and w are found by imposing boundedness condi-

tions on U(l) and K(l).
(o)

For example, f is found from the boundedness condition on

K(l), which was:

¢
(o)
) d(§$ = unbounded part of an(o Ja- 1 J [l + e cos (b - w)]a_3 d¢
(o)

(63)

It is here that the assumption of linearizing must be used, by expanding

the integrand in a binomial series:

[1 +ecos (6- w)]a-S = 1+ (@-3)e cos (b- w) + -(q—:—?i)z—(g—:ﬂez cos;(cb-w)

' (o - 3)(03-_: 4)e - 5) e3 cos3(¢- W) F v (64)
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Integrating term by term w. r.t. ¢:

¢
J [1+ecos(¢-w)}a'3 = ¢+ (e - 3)e[sin (¢ - w) + sin w)

(&)

e 32)'(0_4) ez[f L 8in2(d-w) sir;Zw]+o(e3)

2 4
(65)
we note that
¢
J cos ¢ do is bounded
o)
&
J cosz¢ d¢ has one unbounded term
(o)
®
[ cos3¢d¢ is bounded
o
¢
j cos4¢d¢ has one unbounded term
o
and so on. Therefore, the boundedness condition on K(l) is:
as(®) (0)ac1f, (o - 3)a - 4) 2 4 6
3 = -2nf [1+ ) e  +0(e )+O0(e )+ - (66)
d
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. . . . s 2
Now linearizing in eccentricity, we assume e << e and thus

(o)
df~ - _qu(o)a-l 67)
d¢
. . (o) 2
Thus in calculating £/, terms of O(e”) are neglected.
This means, therefore, that Eq. (62) can be written as
k©) = k{4 ek 420V 4 (68)

where in this case (note subscripts here do not imply differentiation)

0) _ (o)
K = £'°

Kéo) =0 and eZKgO)

and higher order terms were neglected! The same linearization is

done in determining e and w and thus Eq. (61) can be written as:

)~ U o)y Pl -
where

U§O) = (o)

Uéo) = f(o) cos (¢ - w)

and ergo) and higher order terms are neglected.
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We would like to look now at Eqs. (59) and (60) in thé light of
this approximation, Thus express U(l), U(Z), -++, and K(l), K(Z) s
as terms of O(l), Ofe), O(ez) .+« as in Eqs. (68) and (69).

Examining first Eq. (59) we have: |

u = [U(lo)+eU£°)+eZUgo)+...]

+ € [U(ll) + eUél) + ergl) + ]

+ & [U(l?) + eUéZ) + eZng) + "']

+ 63[U(13)+eU£3)+e2Ug3)+"°] toeee (70)

In general when one linearizes the eccentricity (cfe Ref. 38),
the term of O(ez) in U(O) is neglected. Suppose now that the term of
Of(e) in U(l) and the term of O(l) in U(3) are neglected as we look at

higher order ¢ terms. We would then have:

u=[ulds eUg’)] + el (71)

We now must examine this approximation to make sure that the
neglected terms are very much smaller than the retained terms.
The worst case is that where a term of O(ez) was neglected and

a term of O(¢) was retained. This requires that

el << ¢ (72)
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Thus the domain of validity in this approximation is one in
which the eccentricity is much smaller than the \/e_ or, i.e.,

e = ofe!/?y.

Carrying the approximation one step ahead, i.e., if we were

to include terms of O(ez), O(ee) and O(ez), we will have:

u = [U(lo) + eUgo) + ergo)] + e[Um + eU(l)] + er(IZ)

1 2 (73)

Examining this now for terms neglected and retained we get for

the worst case:

O(e3)<< Ofce) and O(eez)<<o((2)

which both signify that

e <K€

Thus, the domain of validity remains the same. However, the

accuracy (i.e., comparison to numerical integration in the same

1/2
domain of e = ofe / )) will be much better since the approximation is

carried out to order 62.
The above applies also to Eq. (60).

In this section, the analysis will be carried out to O(¢), i.e.,
the values of K(o);and U(o) will be determined to Of(e), K(l) and U(l)
to O(1). Note that K(l) and U(l) will contain constants that must be

determined by boundedness conditions on U(Z) and K(Z) carried out to
O(1).



66

b. First Approximation Solution for General o. The solution

to the first set of differential equations (O(1l)) was found to be:

K(o) - f(O)
(74)
ulo) f(O)[l +e cos (¢ - w)]

To determine f(o), e and w we must solve for K(l) and U(l) (by
solving O(¢) equations) and imposing boundedness conditions on them.
Note f(0>, e and w are functions of the slow variable ¢ only.

Substituting (74) into (18a) we get:

5 (o)
w1 _ o

(o)a-1 a3
1 v 2nf [1+ecos (¢ -w)] (75)

We will now assume small eccentricity and neglect terms of

O(ez) as discussed in the previous section. Therefore,

[1+ecos (¢ - w)]a'3 = 1+ (a-3)e cos (¢ - w) (76)

and Eq. (75) becomes:

~(0)
K(1) _ _of } 2nf(o)af_l )

(0)a-1
1 ¥ - 3)'° e cos (¢ - w) (77)

integrating gives:

~.(0) (o)a-1
&) _ [_ dfw - 2nf ]qa_ 2q(a - 3)©)%- te[sin (4 - w)]: + f(l)($)

(78)
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The first boundedness condition is therefore:

ié—g-) = _angl0)a-1 (79)
whose solution is:
‘f(o)z_a ) f(()o)Z_a/[l } j(()z)i_c;)mg] for @ # 2 (80)
o
¢0) - féo) exp [-218] for o = 2 (81)
Equation (78) for K(l) Wiyll become:
K = ) 20 - 3ymef®  sin (¢ - ©) + sinw] (82)
If we neglect terms of O(e) in the expression for K(l), this
simply becomes
k(1) = (1) (83)

where f(l) will have to be determined by the boundedness conditions on

K(Z).

Solving (18b) for U(l) we have:

vl + ) = o) (84)
. . (o) (o) (1) . . .
where H(®) is a function of K'7/, U and K and their derivatives.

Note that we must obtain U(l) to O(e) because the boundedness
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condition will give us e and w and thus U(O) which has to be carried out
to O(e). Thus Eq. (82) for K(l) and not Eq. (83) must be used. We

neglect, however, terms of O(ez). H(¢) therefore is:

(o) ,
g o . 8 +(0) Lir (6 o) . 2 B9 o5 )
H(¢) = 2 Y e sin(d - w) + 2 d$ f sin (¢ - w) - 2 P ef cos (b - w)

£ 20a - 31 L e fsin (6 - w) + sinw] - gel0)1

(@~ 2)tfC1 e cos (0 - w) + e L sin (6. w) (85)
The homogeneous solution of U(l) is:
Uly) = A@) sin (& - w) + BE) cos (4 - ) (86)

The particular solution is obtained by the Green's function as in

Section V.

$
U,(Pl) = sin (¢ - w) J' H(¢') cos (¢' - w) do*
(0]

¢
- cos (¢ - w) J H(¢') sin (¢' - w) d¢'
(o]
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Substituting Eq. (85)and integrating, we get

(o) ¢-w ¢-w
(1) _ 2 4 0) o
Up’ = sin (¢ - w){ 5% [- cos ¢]_w + £1° 5—%[- cos ]

- ef(o) -g-%[¢'+% sin 2¢']f:w + f(l)[sin ¢ - w)]j

+ (@ - 3)nf(0)0/'l e [(coszti?')i’:w - sinw (sin d>')ib;w]

_ éf(o)a'l[sind)‘]d)-w (a - Z)Qf(o)a-l . [¢,+ 'Zl sin Zd)']ib;w

o (0) 1 é-

;+ (@) _52_?_ [¢ Ll 2¢]¢ ™4 el©) 9 [cos ¢]¢:u - f(l)[COS (@ - w)]z)

Qs
{}l

- (a- 3pelole-l

(0)a-1 o0 éf(o)oz_l[ Oscb]‘b-w

~W

+ 2(e - 3)f e sin w[coscb']

¢- ¢
N (af .2. 2) éf(O)CY-l e[cosztb’]_ww + _21_ nef(o) [4) -5 sin 24’] w}

(87)
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Setting the terms proportional to ¢ sin (¢ - w) to zero gives us

the second boundedness condition:

%%) - (oz 2 Z) éf(o)a-Z (88)

Setting the terms proportional to ¢ cos (¢ - w) to zero gives us

the third boundedness condition:

- (a ; %) negl0)a-2 (89)

Q..‘Q.a
oo

The solution to Eq. (88) is:

_ 18 2(2-a) -
w_wo-z—r—]log[l-qu_)], Q‘#Z
o N
(90)
=w , a= 2
o
The solution to (89) is:
3.2¢
4(2-a)
) 22-0a) -
e = eo 1-;6)—2_—071¢ s a# 2
o)
(91)
_eoexpz-mb s a=2

Equations (80), (81), (90) and (91) show the behavior of f(o),
" e and w to first order in the linearized eccentricity case. These are

plotted in Figs. 4 to 7 and are discussed in Section V.
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)

The complete solution to U(1 neglecting terms of Ofe) is

therefore

v < (1. cos ¢)[f_(” - éf(o)a'l] + A sin (¢- w) + B cos (¢~ w) (92)

Again A and B will be determined by the boundedness conditions on

u @),

c. Second Approximation Solution. So far we have determined

)

U(o) and K(O) completely (by determining e, f(o and w) to Ofe). We now
need to determine f(l), A and B by imposing boundedness conditions on
K(Z) and U(2 ). Since U(l) and K(l) need to be calculated only to O(1)
(and thus f(l), A and B need only to be obtained to O(1)), we will

neglect terms of O(e) in determining K(Z) and U(Z).

Solving for K(Z) [Eq. (19a)] and neglecting terms of O(e) we get:
ae(l)
k@) - . 9%.3;_. b - 2(a - 3m@2 [((1) _peClo=11 0 oin g

- 2(e - 3)“f(o)a-2[A cos (¢ - w) - Acosw - B sin (¢ - w) -~ Bsinuw]

- angl0)e-2,(1) g, ((2) (93)

Setting the terms proportional to ¢ equal to zero we get the

(1),

boundedness condition that determines {

ag(t)

T +2(e - l)nf(O)a/-an(l) - 2(a - 3)me(o)Za_3

(94)
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and K(Z) becomes:

<)

where

= 2(& - 3)1’]f(o)a—2 sin ® [f(l) _ éf(o)a' 1]
- 2{a - 3)nf(0)oz-2[A(cos (¢ - w) - cosw) - B(sin (¢ - w) + sin w)]
H (95)

Solving for U(Z) [Eq. (l9b)] and neglecting terms of Ofe), we get:

U(lzl) +uf?) - we)

(1)
H(¢) = _2[8_£$_+ 2(a - l)ér]f(o)za-?’] sind - 2%—%cos (¢ - w)
, , 2 (o)
+2%}§-sin (¢ - w) - zg—g[A sin (¢ - w) + B cos (¢ - w)] - aagz

+ 2.(0’ - 3)1‘]f(o)a-2 sin ¢[f(1) - éf(o)a- 1]

(O)a-z‘[A(cos (b - w) - cos w) - B(sin (¢ - w) + sin w)]

- 2(e - 3)0f
+ f(z) - éf(l)f(O)a’-Z . (Q’ - 2)§f(o)a-2[f(l) - gf(O)a-l

_ (f(l) _ }gf(o)a/-l) cos ¢ + A sin (¢ - w) + B cos (¢ - w)]

| ()
_ nglola-2 —aga) - nglede=2 (1) plede-dy i g

+ A cos (¢ - w) - B sin (¢ - w)] (96)
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Equation (96) can be written in the form:
H(¢) = R() cos ¢ +5($) sin ¢ + T ()

where:

R() = -2 Zg cosw - 2 dd% sin w - (2o - 5)Wf(O)Q-2 A cos w
- @o- 511 2R sinw 4 (@-2)e)-2(1) (452 (0)2e-3
(97)
S(é) = -2 _BTS sin w + 2 gi cosw - (20 - 5)‘1f(o)a_2A sin w
¥ 2a-5mi©1%2g5 05+ (6o - 11)n¢(0)a-2,(1) (10a - 23)tn£(0)2%-3
(98)
T(F) = -4(a - 1223 | 5o _ 33£©)-2 (A cos w + B sin w)
- (@ - gelele-2 () (@ - 2)¢8gl0)2a-3 5 2. f0)20-3 | (2)
(99)

Solving by the Green's function as before, and setting unbounded

terms to zero we get
R($) = 0 S(@) =

In order to reduce these to differential equations for A and B,

we form the two equations

R(3) cosw +S(3) sinw = 0 and  R(3) sinw - §(3) cos w = o
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These give us the differential equations for A and B:

2 4 ('2“‘22— 5) ne®2a = x@§) (100)
d¢

dB | (2@ - 5\ _.(o)a-2 -

—= + (=——|nf B=Y 101
2 (22-2) - @) (101)

where:

X($) = [—-——‘“5 2) gyloda-2ell) (o 2) 42f‘°>2"-3]cos o

X [(601 S 1])nf(o)0z-2f(1) i (ﬂ)ﬁ_z:_ié) gqf(")z"“?’] sin w

d
A
il

[a 2 2 tJf(o)cz/-Zf(l) _ (0’2- 2) ng(°)20'3:] sin w

) [(6&2 11) nelo)a-2,(1) _ (10&2_ 23) gnf(o)20-3]cosw

Equations (94), (100) and (101) are the boundedness conditions and
their solution will give f(l), A and B.

Solving for f(l) Eq. (94) we have:

(1)
df " 4 2(e - 1meIe-2(1) _ 5y 3ygngle)Ze-3 (102)

The homogeneous solution is:

fg) = afl0)a-1 (103)
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To obtain the particular solution we let

NO I
substituting in (102):
(1) dg dfg) (0)a-2 (1) (0)2a-3
fir .d_$+g—a-$—: -2(a - I)nf fry’ - g+2(e- 3)Enf
or
S—% = 2(a - 3)(n f—(f—;a——z (104)
substituting the values of f(o) we get
g = Z: g’ Q-él-ln [1 - 2(2 - a)nf(()o)"“ZE] at 2 (105)
and
g = - %_5 a =2 (106)
and thus the particular solution becomes:
fg) _ Z: ggf(o)a-l ln[l 202 - a)nféc’)o"?‘&i] a 4 2 (107)

fg) - '2‘3“3135 3 exp (213) o= 2 (108)
: |
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and the complete solution for f(l) becomes:

(1) 2 f(o)a'l[a +%: g; ¢ 1n (1 - 2(2 - a)nfé°)°"2$)] a 42

(D)

éexp (Zn$)[a - 2@1’\3} a =2
Equation (109) can be written in terms of u[see Eq. (90)]

(D) o glode1fy sl 3oy )], o 42

(109)

(110)

(111)

where a=constant of integration= fél )f<()0)(1_oz) and fél) = f(l) at ¢ = 0.

In a similar fashion we can solve Eqs. (100) and (101) for A

and B. The solutions are: fora# 2:

A= aof(o)(z"’"s)/4 [t +g]

(o]

where:

2(c - 3)n = 2(a- 3)(6a - 11)n° —
- A Y- (@ - 2)A 6

M= N— 2(a-3)n— . 2(a- 3)6a- 11)n% —
h=g=P-g-a-—% 5t (o - 2)A, \
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where
(o= 2 o -2 2
M—( 5 >§a+2(a-3)§nwo-(—2—)é
_[{6a - 11 10 - 23) 2(a - 3)(ba - 11) _2
N—( > )na-(—————-—z tn + @-2) N,
and
— w~
a = K > [e"'"’w (sin w - p cos w)] (@)
1+p “o
- i w(@)
B = K [e B (- sin w - cos w)]
1+ “o
— K - . -pw (“)(4;)
Y = > [we Hw(snlw_pcos w) + ° 5 ((l-pz)cos w+ 2 sinw)]
1+ 1+p W
_ ] -pe w(9)
6 = [we pw(_u sin w - cos w) + ° 2((1_p2)sinw_ZpCOSwﬂ
1 +n 1+ Wo
where:
Mwg
_ ;o) Ye -2
K = (o) Ye d =22 - ans®
no= Y(1 + c) Y = %

(6a - 7)

o 1 -
w(®) = v - olog(l-4d) €= IZ T a)
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a = constant of integration = A f(o)(5_2cr)/4 and A =Aatd=0
o oo o
b0 = constant of integration = Boféo)(S'zal)/4 and B0 =Batdé =0

for ¢ = 2, the differential equations for A and B [Eqs. (100), (101)]

become:

where now
lo2a-3 _ 4(o) o-2n9 1) - Fi’_’ [a - 20nF] 2
o

Therefore we have:

~ 2 ~ ~
dA 1 |1 na 2n¢ &n" ¢ 2né 3 (0) -2nd| _.
?_ZnA-[E——fo)e _F-a-yti)e +—2-§nfo e sinw
(o] o

2 - -
dB 1 lna 2né  tn” - 216 3, (o) -2nd
T_211B = [-Zf(o)e +f(o)¢»e -—Z-t_,r]fo e cosw

(o] (¢]



Their solutions are:

_ 1 1 (DY) .
CZ = -W (4§ +§fo ) sin w
o
_2 Ln .
C3 = —3-f(o) sin w
o
and
CO = constant of integration
Do = constant of integration

Initial Conditions
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A at o

B at ¢

)

The initial conditions for a standard satellite problem is:

att = 0:

d>O
b=,
r = r
(o]
r = r
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Due to our choice of variables, the initial conditions in this

case will be, at¢ =0

t(o) = 0
ufo) = u_ = 1
k(o) = k_

now
u =0l gy,
k= KO 4 ex) s,
let
ufo) = C, %(o) = C, k(o) = C,

therefore

1

u(o) f(()o) [1+ e, cos wo] + e[B0 cos w_ - A_ sin wo] + O(ez) = C,

ko) = £+ s 4 0(e?) = ¢
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% () = [U(lo) * ‘(Uém ¥ U(11)> * O(GZ)L:O
= f(()o) e sinw_ + 6[(-2Wf((30)(a_1)(1 + € cos wo)

3 (0)o-1 o- 2 (o)e-1 )
+ (a - 7) r\eofO cos w_ - (T) t”fo e, sinw_

+ A cosw + B sinw]+0(ez):c
o fo! o] o 2

Equating powers of e:

C :f(o)[lJre COSw] =1
o o o

O =B cosw_ -A sinw
O O o} (e]
c, = ©
3 o
o =
O
c, = e sino
2 o] o o]

O = (_an(()o)a_ l) (1 + e, cos wo) + (a - %)neoféo)(a_l) cos w_

a - -
- (———-—2 _2) i;f(o)a 1 e sinw +tA cosw +B_ sinw
o o o o o o o

from the above six equations, the initial conditions may be determined,

i.e., given C,,C,,C, we can determine f(o),e y W ,f(l),A and B .
17 72 3 o o’ 0o’ o o} o]
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VII. THE OUT OF PLANE EQUATION OF MOTION

In this section the differential equations governing the angular

variation out of the ecliptic will be investigated [Eqs. (20), (21) and

(22)].
The solution to Eq. (20) is:

g(°) - Al($) cos ¢ + AZ($) sin ¢ (112)

substituting in (21) we get

dA . dA
\I’(lll) + \I/(l) = 2 ,_,l siné - 2 —— cos ¢
¢ d¢
+ gf(o)a"z[l + e cos (- w)]a_3
+ Wf(o)a'z [1+ecos (¢- w)]a_?, [Al sing - A, cos ¢]
(113)
We now need to determine the unbounded parts in the solution of
\I!(l) In order to facilitate the understanding of Eq. (113), let us look

at a simple harmonic oscillator of the type:

[N
[\

ty = ()

o
o+

Let

f(t) = a, + a; cos 1:+bl sint+a2 cos 2t

+b,sin2t++++» +a cosnt+b sin nt
2 n n
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We note that the homogeneous solution to the differential

equation is
y = acost+bsint

It is clear that any forcing function (any term in the expression
for f(t)) that has the same frequency as the free oscillations, would
cause resonance, i.e., unbounded response. Therefore in order that
the response be bounded, ay and bl in the expression for the forcing

function f(t) must be zero.

With this in mind therefore we can examine Eq. (113). Let

£OV2 [} e cos (¢ - )] = a, ta;sing +b)cose +a, sin2¢

+b‘2 cos 2¢ + + - (114)

where the a's and b's are the coefficients that can be obtained by the
proper expansion of the L. H. S.

Substituting now in Eq. (113) we get

dA dA
\If(lll)+ \I/(l) = 2 gsind - 2 —=— cos ¢
+ é[ao +a, sin ¢ + b cos ¢ + a, sin 2¢ + ]

+ n[ao+alsin¢>+ blcosd>+a2 sin 2¢ + »oo][Alsirub-AZ cos¢]

(115)
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Now, as we have seen, in order to set the unbounded terms
to zero, we must let the coefficients of cos ¢ and sin ¢ to zero.

Therefore the boundedness conditions that must be satisfied aré:

dA1
Z—d—gj—'l'T]aOAl +§a1 =0
(116)
dA
2 0

Z——Eﬁ-ﬂaoAZ - gbl =

We now have to go back and recall that in Section III when the
u and k equations were uncoupled from the yequation, the assumption

was made that dy/dé = Ofe).

Now
oo 2@y g,
therefore
% = \1/(10) + e(\l/éo) + \If(ll)) + O(e?)
Then if dy/dé = O(e)/we must have \1/(10) = 0, i.e.,

\I/(O) - \I/(O)(a‘))
but we found that

\I/(O) = Al($) cosd + AZ($) sin ¢
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Therefore in order to satisfy the assumption that dy/dé must

be of O(e) and not larger, we must have

Looking at Eq. (116) we see that A; = A, = 0 can only be satis-

2

fied under the following two conditions:

(a) If a, = b, = 0. From Eq. (114) we note that lettin
17 °1 g

aj = b, = 0 signifies linearizing in eccentricity!
(b) If £ is of a higher order, i.e., Of(¢) smaller thann and {
so that it wouldn't have appeared at all in the differential
equation for \I/(l) [Eq. (113)].

The above results can be easily explained by physical inter-
pretation. Consider a three dimensional orbit that is slightly out of
the ecliptic. The assumption was made that ¢, the out of ecliptic
angle, must be small and remain small. Now if the orbit has a low
eccentricity, then the torques created by the out of plane thrust tend
to almost cancel each other since the orbit is near circular. Thus if it
is initially small it will remain small. However if the orbit is highly
eccentric, the spacecraft spends much more time on one side than the
other and thus the torques do not equalize each other, and therefore
even if | is initially small it will grow to be very large. Of course if
the thrust component in the ¢ direction is one order of magnitude less

than the components in the other two directions, it is clear that | will

not grow to be large.



86

VIII. COMPARISON WITH NUMERICAL INTEGRATIONS AND TO

THE MELBOURNE-SAUER INTEGRATING PROGRAM

In Section V, the first approximation solutions of the trajectory
projection on the ecliptic plane were obtained without linearizing in
eccentricity. These solutions were determined for values of ¢ of 0, 1,
1.5, 2 and 3. In order to determine how close these solutions were to
the numerical integration of the equations of motion, Fig. 8 was
plotted. The figure shows the trajectories for the case where o = 2,
{=n=1//2, e =0.10, v =0, f(()°)= 1.0 and ¢ = 0. 05.

The second approximation solutions for linearized eccentricity
obtained in Section VI were plotted in Fig, 9. Three curves show the
trajectories for « = 0, @ = 1.4 and @ = 1.9. The other three curves
show Wesseling's case with a thrust that varies like l/rz, and two
versions of the Melbourne-Sauer integrating program that consider
variable mass,however one has a thrust varying like l/rz and the other
shows the exact behavior of the thrust, These three curves therefore
show the errors‘ introduced by the assumptions of constant mass and
thrust varying as l/rz. In order to run a case similar to the
Melbourne-Sauer program, the initial conditions used were e, = 0.1225,
wo = -27.155°, and féo) = 0. 89087. Again ¢ = 0. 05 in these cases and

the thrust direction was at 45° to the radial direction, i.e.,

tL=n=1//2.
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By comparing the different trajectories in Fig. 9, the following

is noted:
(a) The assumption that thrust varies as l/r'2 is more severe
thanthe constant mass assumption.
(b) The @ = 1.4 case takes care of the thrust behavior effect
but the constant mass assumption is still apparent.
At present the Jet Propulsion Laboratory is including the
analysis performed in this thesis in their ASTRAL(48) computer program

which uses the Wesseling solution to determine optimized low-thrust

solar electric interplanetary trajectories.
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APPENDIX A

TABLE OF SPECIAL INTEGRATIONS

¢ i,
fsin (¢' - w)cos (¢' - w) do' = [- 'Zl cosz¢']¢ ¢

f) (¢' - w) do' = [%I v 2R T ’

(o]

¢
fcb' cos (¢' - w) dé' = cos (¢ - w) + ¢ sin (¢ - w) - cos w
o

ftb' sin (¢' - w) d¢' = sin(d - w) - ¢ cos (¢ - w) + sinw
o

¢ de' [ (4 - eZ) + 3e cos ¢'
-e sin ¢'

o [l+ecos (¢' - w)]3 2(1-e2)2(1+ecos ¢')2

2‘.+e2 14/1-¢e ¢'

+————2—)57——tan mtan—é—



10.

91

cos (' - w) do' -
A [1+ecos(o- w)]Z

+

-2e -1 ( 1 -e %'
tan tan %
(1 - e2)3/2 L+e 2
-w
1 sin @' ]¢
T
1_e2(1+ecos¢ w

1

¥sin (6 - w)cos (&' - ©) do! - [

j(; [l+ecos (' _w)]3

¢
sin (¢' - w) do'

ez(l + e cos ¢')

1 b
Zez(l + e cos d>')2 —w

A [1 +ecos('- W)]Z

sin” (' - w) dd'

- [e(l +

1 ]¢‘@

e cos ¢') ).,

sin ¢'

o [1 +ecos (@ - w)]’

) [Ze(l + e cos ¢')2

1 sin ¢'

2ef

¢
1 1 [l-e %'
t 75 tan (V 1+eatan'§)]-

1. eZ) (1 + e cos &)

(1 -¢e7)
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¢ : d¢,1
11, f 3( Cos (&' - w) do' =
5 o i:l+ecos (¢l-w)]

4 - eZ) + 3e cos ¢
2(1 - ez)z(l + e cos d>’)2

sin'2 ¢!

- €

e

, 2+ e%) sin g can ( 1-etangg_>_ 1 e
(1 - (3‘2)5/'2 L+e 2 2e({l + e cos 4)')Z W
¢ ' d¢1
12. s (sin (' - @) dd' =
o A [1+ecos (cbl—c.o)]

(4 - e2)+ 3e cos ¢ +

2(1—e2)2(1+ecos 4)')2 Z(I-ez)(1+ecos ¢')2

sin ¢'

[e sin ¢' cos &'

2 . . 2 \
(2 +e7)cos o tan-l( l-etan%)Jr 2e2 sin ¢
(1 -e ) (l +ecos d')

3e 1 1-e ¢! sin ¢' -
- tan” ~ — tan =] +
— = \/
2yo/e Lte ™ 2] 201 e®)’(1+e cos 6') |_,

e sin ¢' }‘b—w

] (1 - ez) (1 +e cos ¢')



¢
14, f
O
d
15. f
(o]
¢
o |
(o]
¢
1. f
O
18. f

cos (¢' - w) do'

I +ecos (¢ - w)

sin (¢' - w) cos ($' - «) do' _ [ -1

sin (¢' -~ w) d¢'

[l + e cos (' - w)]z

1+ecos(d - w

sinZ(Cb’ - w) do’

1

$
o{o

[l + e cos (¢! - w)]z

f‘

d¢l

&

_ sin ¢' o'
" Je(l+tecos &) 2

+~————2—~————tan'1(
2 2
e l.e

[l + e cos (' - w)]2

}cos (d' - w) do' =

2 sin ¢' tan"
———=7
(1 - e2)3 2

e sin'2 o'

_—zlog (1 +e cos 4)')]
e

ez(l + e cos ¢')

b-w

~W

j = [- -él- log (1 + e cos d)')]i;w

(1 - ez)(l + e cos @') e

1
1+ ecos d')



_:______7.__

(l-e2)32 1+e 2
e sin ¢' cos &' 2e -1 1-e o'

+ - 2 372 tan ( T+e 37

(l-ez)(l+ecos ') (1 -e7)

b-w
1 sin ¢'
eZ (I + e cos ¢")

f¢ s b-w
do' _ 2 T Y - '

2.0. = tan tan —=-

1+ e cos (' - w) [ ( 1+e 2)]

0 Vi1 - e2 -

e

* $
sin (&' - w)cos (¢' - w) do' _ 1 : cos ¢'
f 1+6C0s(¢'_w) —l:—zlog(1+ecos¢)__e_]_

o

¢ 2
sin (cb' - w) d¢’ 2 e -1 -1 l - e ¢
= tan tan 5
1+ e cos(¢'- w) |:r——— 2 ( I+e 2)
fo 1- e2 ¢
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23 / {f 1+ e cos (d)l—w)}cos (6" - w) dot _

@] O

b-w
Ll- log (1 + e cos ¢') L 2sing tan_l ( 1- e tan 91—)]
2

1. e

o o dé, | | |
24. 1+ e cos (d:l_w) sin (¢! - w) do' =

[¢] (o]

¢
25, f cos (¢' - w) [l + e cos (' - w)] do' =

o]

[sin ¢' + ¢'—§—+

¢ —w
26. f sin (¢' - w) [l + e cos (' - w)] do' = [_ cos ¢' - -;— cosz‘b']_w

(o}
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Note: For the following integrals

_ 2e _/ 2 .2,
k_\/____l+e A = 1-k™ sin ¢

2T
27. f do’ .2 fﬂ d¢’
. (VTtecos o) (1+e)? AR WA Sin3¢,)3

_ 4E (k)
(1+e)3 4 te

2T

i ™ >
>8 cos &' do¢' - 2 f ddé' ) 4 / sin” ¢' d¢'
° \/l+ecos<b' \/1+e 5 a \/l+eo a

-4 [K(k) _ % (K(k) - E(k))]

1 +e
2w T
29 j sinztb' do' _ 8 f sin2¢' coszdb' de¢'
o (,/1+ecos ¢)3 (1+e)3/2’ A A3

2
_ 8 22 - k%) 4 ]
= k) - — E(k)
(1 +e)3/2[ k4 k4
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0 fﬂ F ! in ¢' do' -
. sin @' "=
o o <\/l+ecos ¢1)3

4 E(k) 2E(k) , 2K(K)
1+e)/2 1 k2 &l 2

2m
- 1 1
31 f sin 91 dé . g

V1 + e cos ¢!

2
32, f sin ¢' cos ¢ d¢3‘ _ 0
(\/l + e cos ¢')

o
1
2m ¢ d¢1
33. 3 (oS ¢! do!' = 0
o A (\/1+ecos ¢’l)
Note: K(k) = Complete elliptic integral of the first kind

E(k) Complete elliptic integral of the second kind
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