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SUMMARY :

Experiments on wiﬁgs have shown that a very
different kind of flow takes place for very small
aspect ratios than for large aspect ratios. The 1lift
curve continues up to about 45° before stalling occurs.
During this range it has a concave curvature upward
rather than downward as the lifting line or lifting
surface theories predict. No theoretical explanation
of this effect has yet been given since it was generally
supposed to be a stalling phenomenon and thus not
adaptable to perfect fluid theories. The present paper
shows that this curvature effect is due to the fact that
the trailing vortices leave at an angle & to the plate.
For the limiting case of a plate with finite span and
infinite chord it is shown that the bound vorticity and
induced downwash are constant across the span, and the
trailing vortices leave the wing at the half-angle of
attack, « = _g_ . These resulits are carried over into
the assumptions for the analysis of the finite rect=
angular flat plate of very small aspect ratio. A surface
distribution of vorticity over the plate is assumed,
constant across the span, and varying according to the
formula =7, w/%;”—— along the chord. Straight traile-

?2 +x

ing vortices are assumed leaving the plate at an undet-

ermined angle « . The boundary condition assumed is that



the mean value of the induced velocity along the center
line of the span is equal to the normal component of the
free-stream velocity. This determines the constant 7,
and thus the norxh‘al force coefficient C,v as a function
of @ , The parameter o is still undetermined; however,
its limits are given. For very small aspect ratios «x= -ZQ,
for large aspect ratios it approaches 8. Vinter's exXper-
iments on a wing of aspect ratio A= 315 are checked
very closely by this theory assuming &= -ZQ . At

larger aspect ratios up to about A=1 the experimental
curves lie betwesn the theoretically predicted curves
corresponding to & = g— and «=6, moving toward the

latter limit at AR=1.
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A. INTRODUCTION:

The theory for flow about a wing of large aspect

ratio ( M= P2 - L ) yag been worked out guite
chord t

completely by Prandtl and his pupils. This is the flow |
which is of principal interest for the main lifting
surfaces of present .day airplanes. However, for some
unconventional airplane wings and especially for the
control surfaces of dirigibles the lifting surfaces have
generally a very small aspect ratio, and the present
theory is inadequate to give either the magnitude or
the distribution of the forces correctly. It seems ad-
visable therefore to extend the range of validity of
this theory.

Let us consider the present status of the problem:
The limiting case of a wing of large aspect ratio is

one of infinite aspect ratio. The flow past such a Wing

with a constant profile is two-dimensional and thus
enormously simpler than that in the general case.

In the casé of infinite span it is possible to use the
method of conformal transformation to calculate the
flow past airfoils of arbitrary shapes. The simplest
example, which however, already gives the characteristic
laws of 1ift is that of a flat plate, and since in this
investigation we are principally concerned with the ine-
fluence of aspect ratio we shall restrict ourselves to
flow past a flat-plate wing. The complex potential func-
tion w for flow past an infinitely wide flat plate

without circulation is easily shown %o be
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where ¢ = potential function //”’"“T‘“‘
¥ = stream function \\\\~“4f<7;::>
V = normal velocity to j
plate at infinity Yoo
\ .
[ = chord of plate —
%
z = x+iy = complex " ;
coordinate of plate ( Using
€ ‘Uewso

This gives for the potential on the plate y = o

=V /(gJ;_ 2

and for the velocity along the plate

80 _ V. %
2

= I
This velocity is infinite at =« = * —;— i.e. at the
leading and trailing edge of the airfoil, The infinite
velocity at the leading edge will vanish if we consider
a finite radius of curvature of the leading edge. In
order to avoid infinite velocities at the trailing edge
we must superimpose a circulation about the wing and
adjust its strength until the infinite velocities at the

trailing edge are cancelled. This gives a circulation

=1Vt
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If the velocity V= U.-sin® i.e. is the normal cone
ponent of the free stream velocity, then we get a
resultant lift-force normal to the resultant velocity

U given by
LQkUrsfﬁﬁﬁUthI =2W5me'%PUat

and a lift-coefficient

I

q: y Lz 27 s/in ©
3 pPUL

The next logical extension of the theory was to cone

sider a wing of finite but large aspect ratio. Conditions

over the greater part of the wing must be similar to the
two-dimensional case, i.e. we have a circulation 7’
about the wing near the middle, and the velocity of the
free~-stream normal to the wing is approximately V=U sin6 .
The circulation can be thought of as originating from

a bound vortex lying in the wing. By the Helmholtz vortex
theorems the voritex cannot end at the tips of the wing.
It therefore separates from the wing and follows the
fluid particles downstream. We have thus as the simplest
eguivalent of the finite wing of large aspect ratio a
single horse-shoe shaped vortex system. These traliling
vortices correspond physically to a flow from the lower
side of the wing around the tips to the upper Side due

to the exgisting pressure difference. The effect of these
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trailing vortices is

now to induce down- . o R

velocities w all

along the wing. Thus

the effective velocity

normal to the wing is
now not V=(.s/in6
but V-w where the

induced velocity w

is obtained from the

Biot=Savart lLaw.

W = 7_' / + !

The effective angle of attack of the wing is thus re-

U i
lift-coefficient is reduced to

duced from Zg to é{-“’ and correspondingly the

CL_""" 27 sin(e-["j‘?

The above assumption of a uniform voriex running across
the wing is evidently not applicable anymore since the
induced velocities and hence the 1lift now vary across
the SPan. The next step was therefore to assume that
the line vortex lying in the wing had a variable in-

tensity TY%/ across the span and was thus shedding
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trailing vortices dar continuously. This left a vortex
sheet in the wake behind the wing. The intensity of the
vortex distribution was then obtained as the solution

of the integral equation

e effective 6geome“l:r:lcal - U
or +%
Ty~ e / ) z _
—_— = eometrica
TnVit & :m'u y
2

The 1ift coefficient of a sirip of width dy is given then

as beforeas (C = 2m - sin @

L iz s the total 1ift is

obtained by integrating these strips over the span.

‘The wing theory in the above form is ordinarily
'used,and for R > 3 or 4 it gives quite good agreement
with experiment when a multiplicative correction factor
n is introduced in the formula for the 1lift coefficient,
i.e. if we write C' = 27n - sin Gy . The value of 4
lies ordinarily between about .85 to .95. It is a
correction factor for the reduction of the circulation
about the wing due to viscosity.

If we consider the approximations involved in the
above theory, namely that we can replace the wing by a
single lifting line it becomes evident that this cannot

hold for gmall aspect ratios. It becomes necessary to

consider the actual distribution of vorticity along the

chord of the wing. This problem was first solved by



Bignb@ggl) for the two-dimensional

case, and then extended by 1.2] e
[ 4

Blensz to the wing of finite ; ;;r-~ e -
I IR B S
Span. : . ( - —
. : - . €— —
Blenk did not use any ! o

- . C .
efficiency factor n in his -t -

calculations. In sbite of

this fact when he tried to

compare his theoretical

lifts with experiment he
found that they were still Blenk's Vorlicity Dislribulion
too low. He ascribed this

to having chosen the mean camber line of this wing of fine
ite thicHness through the center line of the profile. He
‘found that by shifting this up to 2/3 height between the
upper and lower side of the profile he could get good
agreement between theory and eXperiment for aspect ratios
down to 1 - at least for the initial tangent of the 1lift
curve. His curves show that there is a curvature of the
lift-curves which is not given by his theory. Concern-

ing this he says "Offenbar spielt aber hier noch ein
anderer in der Theorie bisher unberlicksichiigt geblieb-
ener H®influss herein, der die Krimmung der Kurven

verursacht und besonders bei kleinen Seitenverhdiltnissen

von Bedeutung zu sein scheint. bDiesen Zinfluss mit dexn



bisherigen Mitteln der Tragflligeltheorie zu erfassen,
dirfte wohl nicht mbglich seih, da diese im wesentlichen
eine lineare Theorie ist."

Further experiments by Fllgel(3) and Zimmermann(4)

and especially the extensive investigation by Winter(5)
indicate that some additional influences must be enter-
ing which the theory has so far neglected. All of these
investigators believed with Blenk that these additional
influences could not be treated theoretically since
they were thought to be essentially stalling phenomena.

| It is the purpose of the present thesis to invest-
igate this gquesticn and to try to formulate the outline
of a theory which holds for the region of aspect ratios
from 1 to 0.

For the wings of large aspect ratio the starting
point of the analysis was the wing of infinite aspect
ratio. Similarly it is suggestive 1o start the present
investigation with the opposite limiting case, namely
the wing of M=0, that is finite span and infinite chord.
¥For very small aspect ratios, then, we would expect a
flow of similar nature about ithe middle part of the chord
with possibly some deviations as we approach the leading
and trailing edges of the wing. As we approach aspect
ratios of the order of 1 the theory should agree with

the Prandtl-=Blenk theories.




B.WING OF INFINITH CHORU - ZERO ALPECT RATIO

Consider a plate of span b and infinite chord moving
through a fluid with the velocity U at an angle of attack 0
By the principle of relative motion we get the same cone
ditions if we assume the plate fixed and the fluid moving.
An equivalent picture is then obtained by resolving the
flow U into two compon-
ents, namely

(1) A uniform rect-

ilinear flow with

velocity U-cos € o
parallel to the u f/,fu o

plate, and

(2) A flow normal to the plate with velocity w = U sinf

at minus infinity.
The normal flow (2) must be of a type such that there is
no flow through the plate., The potential flow which we
discussed on page 5 satisfies this condition. It gives

a potential

¢ = &{—LU-SM 9'}/22— (—f—)z R

We shall designate this flow : <

hencefoerth as the“diSPlacement

Usind o
o . u N AN
flow wy. This flow , however, S N
u 2
will actually not occur because : \\\\ ©

< \
the fluid separates at the sharp ] -
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edge and gives rise to the formation of vortices,

The vortices formed at the sharp edge of the plate
will be carried in some way down-stream with the fluid
particles. It would be very difficult if not impossible
to find an exact solution of this complicated motion.
However, it can be assumed that a good approximation can
be obtained if the vortices are replaced by a straight
vortex lines lying in the two vertical planes through
the edges of the plate., This flow-picture suggests that
our plate is more nearly equivalent to an infinite
lattice of airfceils of finite span. As we let the gap
between the airfoils tend to zero, we get a distribution
of bound vortices of strength y per unit length along
the plate with trailing vortices leaving at some angle
with respect to the plate. The angle o« at which these
vortices leave is determined by the condition that the
vortex lines follow the fluid particles, at least as far
as the components in the plane of the vortex sheet are
concerned. If we now determine the sirength of the vor-
tices vy, by the condition that the normal component of
the induced velocity due to the vortices just cancels
the component U sin © of the uniform flow through the
plate, we have another type of normal flow which satisfies
the boundary conditions at the plate. It is made up of a
uniform flow U.8in6 perpendicular to the plate plus the
normal flow due to the vortex system. We shall designate

this flow henceforth as the induced flow wo,



Because of the two scolutions there is & degrse
of indeterminacy left in our problem, for theoretically
there are an infinite number of combinations of the iwo
flow type%which satisfy the condition of no flow through
the plate. Both types satisfy the condition that the
velocity of the undisturbed flow is not changed by the
presence of the plate at minus infinity. At infinity
behind the plate the displacement flow does not give
any finite contribution to the velocity. The pure in-
duced type of flow gives at infinity in the wake twice
the value of the induced velocity at the plate, i.e.
2U sin @ normal to the plate. For every combination
of the two types of flow the flow at infinity behind the
plate varies between no deflection for the pure displacement
flow, to a deflection twice that immediately behind the
plate for the case of pure induced type of flow.

The pure displacement flow which does not result
in any forces acting on the moving plate can be disre-
garded. We know that it physically cannot take place and
in any case vortices are formed which come off the sides
of the plate. In the appendix a combination between
displacement and induced flow is discussed, which is
characterized :by the condition that the flow in the wake
at infinity is parallel to the plane of the wing. This
is the sort of effect one might expect from an infinite
lattice. In this case the two flow types contribute equal
portions to the component U sin © normal to the plate

at minus infinity. We find as a result of the calculation
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however, that the resultant normal force is zero for
this combined flow the same as for the pure displacement
type flow. Moreover, this combination of induced-type
flow and displacement flow was arrived at by the
condition that the flow at infinity behind the plate
be parallel to the plate. No such condition will
characterize the wing of small aspect ratio even if

it has a very long chord, i.e. there is a discontinulty
between the wing with truly infinite chord and the
wing with very large but finite chord. Ve are thus

led to consider the pure induced type of flow which we
know holds in the ordinary range of aspect ratios.

We shall consider flow of the pure induced type
past a wing of very small aspect ratio (k =0). The
wing is assumed to have a real leading and trailing edge
near plus and minus infinity, so that when we come
to calculate the forces we may assume the region
possesses the same Bernoulli constants inside and
outside the vortex wake. As far as the calculation of
the down-wash in the vicinity of the middle portion of
the wing is concerned, however, this is essentially
the same as for the infinite wing. This analysis leads

to the result that the normal force coefficient is
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CQ= 2sin"6 - T+ cos © The extrapolated experimental
value was given by Fllgel and Winter as (, = 2 sin*6 .
These two results do not differ very much within the
working range of the angles of attack., Moreover,

the curve of C, vs. 6 for the smallest value of
aspect ratio (k = 1/30), on which the extrapolated
value is based,is checked very closely by the present
theory for the finite wing.

Let us consider now the velocity field for the
vortex system corresponding to the abovs caée, i.e.
that éf pure induced flow. Ve assume a uniform distri=-
bution of bound vortices of length b placed along
the span of the plate. The strength per unit length
of the plate is Y, - From the ends of the bound vortices
vstraight trailing vortices pass off at an angle «
to the plate. The induced velocity due to this system
of vortices at any point on the plate can be written
down at once, for evidently the contributions of the
bound vortices normal to the plate cancel at every
point. The induced velocity tangential to the plate
is +% on the upper surface, and -% on the lower

surface.
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The contribution of the trailing vortices is evidently
the same as if they were arranged as starting from a ver=

tical plane through

\ c
the origin, and had : )
, T |
a strength per unit AT ; 3ﬁ\i RSP
height of - . e VAU
sino ~ Oy v ' ~
1 T T T ]
For, the contribu=- LT
A.L_-____::s/\ﬂ\
tion normal to the ' ‘,f B
wing of a vortex Actual VOFTEX‘EiYSfern
segment AB is eX-
7z %
actly the same as , AP
¢
if it were placed L o
TR
along A'B' . Thus ; L
3 // k&
we get the equival- S
ent trailing vor- Equivalent Vorlex Sysfem
tex system shown,
consisting of two g e o b ¥: 
e B R
semi-infinite T e
walls of vortices. -
e . F

The down=wash due _
to this semi-infin- DOUb/}‘;]hff‘niwfe Wall of Vortices
ite system of vor=

tices at any point

between them is

just half that of

a doubly infinite

system.
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This latter has a uniform down-wash é%r; everywhere
between the two walls of vortices, and zZero ocutside.
Thus the trailing vortex system of our wing has a
uniform down-wash at every point of the span. This
down-wash 1is perpendicular to the vortices, and thuas
the component of the induced velocity along the plate
is u= Y .sin« = %? , the component normal

2-sin o

to the plate is w= 2, col «
2

The velocity field due to the above vortex system
in a cross-section perpendicular to the wing is then
as shown below. The calculations in the appendix on page b5

give the following results for the induced velocities.

we —xeolx [T+ tan_Z 4 tan _Z | for |4t
t 2 0 b/2+lj/ 1':»/2 - y, 2
W, = -y cof ot tqn-l _z  _tan __Z for /7} 7-2‘1
2 7T Iyl + Y Il — %
v = Zecol & /09 V(%'?’)z"' z*®
2T 'JYEQ+%P+-L;\‘ Thus the velocity normal to

the plate is

at z = oo l«#[ <§ w=7 . col o
ol ke

~col

at z=0 H,/<12_0_ W_ZZ"“
[yl > 2 w=0
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In any cross-section parallel to the plane of the wing

we have the following velocity field

] for 2 >0
a0 [T <= ll< % wey
Tl
}%/ > by wu=0
- - - 4 for 2z < O

[4] <%  «=0

x
Wow if in order to satisfy our boundary condition
of no flow through the plate we superimpose a unifomrm
flow U-8in 6 normal to the wing we have
U:-sin® = %‘_ cof o

or

v Y 2U +sin @ Tan «

It

There is, of course, also another component of the flow U
parallel to the wing, namely the uniform flow U cos € .
The resultanﬁ velocity field of vortex flow and uniform
flow U at an angle 6 gives us then the resultant flow
picture shown below,

In the shadow of the plate the u-component of the
velocity is constant and equal to U-cos € +), . The
w-component of the velocity varies from w=-U-sin 6 af z=o
to‘vv=0 at z=0 , There is thus a constant influx of
fluid from =z=90 which flows oult over the sides of the

vortex sheet as sbown below.
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W.—:meeﬁn

; L

2 u=Ucos6 +,

 NN%U$ﬁf9T

The angle « is determined by the condition that
the vortex lines follow the stream-lines. (This does not
apply to the components perpendicular to the voriex sheet.
These components are small except in the immediate neighe
bourhood of the plate.) In the wake near to the plate
we find w = 0 inside the vortex system and w = U sin
outside. The vortices thus move with a mean velocity
ﬁ:Uﬁgggjg At a great distance behind the platie the
grvelocitieé inside and outside the vortex sheet are equal

and opposite and thus the mean w-velocity of the vortices

T
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is zeroe The mean w-velocity at any point is cbtained

a8

, » _
w= WitW, L Usn6 = ’_Lé_i;?fﬁ,[n— + 2 tan %‘]—r U-sin @
2

3
i

—U~s/n6,[/ + .Z_.tan"zj.r U sin ©
T b

2
Il
Ly
DI
<
G
r\‘\‘
|
|N
N
S,
wh
—

Similarly the velocity u = U cos O + ), inside the vortex

[

system, and u = U.cos0 outside. This holds true for
all distances 2z above the plate. Therefore the mean
velocity is u = U-cos6 + %; . The mean angle o at which
the vortices leave is thus

u. sine [i- % ta'z|

U- cos ® + U-sinB-tan «

tan o« =

£113)

0 an inclination

i

This gives at z
o(:% and at 2z = o , &=0, The
trailing vortices thus are not
actualiy straight lines but lie
along curved paths. This contra-
diction to our original assumptions

arises out of the fact that we

have in part violated the

Helmholtz condition that the

vortices follow the fluid particles.



It will be remembered that the_Prandtl wing theory
which assumes the trailing vortices to be carried
along the direction of the undisturbed flow
similarly violates the Helmholtz conditions. It
thus seems justifiable to retain the assumption
that our trailing vortices follow straight lines
at some effective inclination « with respect to
the plate. For this effective inclination we shall
choose u=L§, the inclination near z = 0 since
the vortices near the plate are the most effective
in inducing the normal velocity at the plate,.

The normal force acting on the wing can now
be determined from the formula for the force on a
vortex. We consider our wing of infinite chord as
the limiting case of the wing with finite chord

*
and so this formula is applicable., It gives

N = (U‘COS 6 + up)-}’,'b

N = ,o(U-co_sG + U~U-c056)-2_lj'(/-cos @)'b

C = /Z = 4% (1 —cos 9)
v -Zi/ou - b

C = 2 sin” 6. 2

N /] + <cos 6

- The important results of the analysis of the wing
with infinite chord k¥ = 0 are the following:

(1) The bound vortices have a constant strength

across the span. Such a distribution gives a constant

down-wash across the span. When considering finite

* If we consider the win3 as Tmly infinite ,the Bernoulli constants within and oufside

the vorfex wake ave 4ifferent. As a resall zero normal force would again be obtained.
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wings of very small aspect ratio it should therefore

be a very good approximation to assume a uniform

strength of the bound vortices and to calculate

the induced velocities say at the center of the

span, considering this as a constantbover the span.
(2) The angle at which the vortices leave is

approximately A = -ZQ

(3) The normal force coefficient is

C = 2 sin®6. 2
v | + cos @




C.RECTANGULAR WING OF IINITE CHORD - BMALL ASPHECT RaTIO:

l. Assumptions and ¥ethod of Calculation:

The wing of finite chord with small aspect ratio
will now be treated upon making certain assumptions
suggested by the analysis of the wing of infinite
chord. These assumptions are:

(1) The 1ift is constant across the span. This
corresponds to bound vortices of constant
strength across the span.

(2) The down-wash is constant across the span.
Therefore we shall assume it to be equal
to the value at the middle.

(3) There is no displacement flow. We assume
the induced velocity normal to the wing to
cancel the normal component of the free
stream-velocity, i.e. U sin 6

(4) The vortices leave at some angle & to thé
wing.

Our first problem is to calculate the induced
velocities normal to the wing along the center
line of the wing y = 0 at any point X along the
chord. We have therefore again a similar system
~of horse-shoe vortices as for the wing of infinite
chord except that now the intensity of the dis- |
tributicn of the vortices along the chord is var-

iable and is given by y(}).



Let x and y be the

variables along the u///

chord and span res- \{///

pectively, and § and

n the current vari- oy

akles in the same dir- —
ections. Let us place \<;::>;““_
the origin O in the

center of the wing. Then we obtain the induced
velocities normal to the wing Wz, and sz due to
the bhound and trailing vortices respectively as
follows:

Normal Component of Induced Velocity due to Bound
Vortices

A single bound vortex

gives us
W=l—-—’——-(cose +cos@) %
=z 4T h ! 2
b
w. = 7Y / 22

A Y
Let the origin O be at the middle of the wing, then

we have to integrate the effect of such vortices

from §=-_2t 1052*%

+

w, = _'_/ v(5) % 4%
LT 2 E e (x-9)

Nies

o

v
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Introducing dimensionless coordinates X —u x

— & = aspect ratio

o~

+/
w, = __"l__/ 7(§) dE
: 2#4 (x~%) VA% + (x-§)*

3. Normal Component of Induced Velocity due to Trail-
ipng Vortices:

A single trailing vortex

gives

w, = (wi_-sin&). cos o

) k / e ‘s
=.Z_._L./cose+l)-sm5'coso(; :

P
where Y,
- sind = -

cos 0= (x - §) cos a

V(%) + (-8*

As the integral of the

trailing vortices from E £ e

both ends of the span we

get: . i e e

N+

WZ = cos q/+ 27(§)d1§'_ L (x-g). COoS K + {/
2 2T (%) + (x~F) sin'a 1/(‘7,_)"—!—("‘?)?7

-t

)]




And again introducing dimensionless coordinates

)
w, = R cos yI(E) 4% [ (x-§) cos « -+ I]
2 21 RE + (x—g)'t sin‘a —‘f,}{z + (= -%)*

Derivation and Solution of Integral HEouation:

Bxpressing the fact that the induced velocity must
equal the normal component of the free sircam-vel-
ocity we get an integral ecquation for the deter-

mination of (§):

W, (x) + W, (%) = U sin ©

or
+1 ‘ +/ 41
R () d§ 4 £ H§): cos = dE L k| 20 cosa A (“”E’)
2w [ (x-§) KT+ (x-5) 2T Ky (x-%)sina BT [ lpe, (§)2sita]- [R*+ (-5
=~/

-1 ~/

= sin €

In order to get the pressure distribution over the
wing it 1s necessary to solve this integral equation
for vy (%) . In the present investigation we

shall restrict ourselves to finding the total force
alone. This makes it necessary to satisfy the
integral equation only in the mean. We assume

some reasonable distiribution for the vorticity

over the chord such as 7(;)2,,n_\/:3“§
2 +

and then use the integral equation to determine

the constanta)k



Expressing the fact that the mean value of
the induced velocity over the chord is equal to
the normal component of the free-stream velocity
we get

+{
_‘_/ (W(y&) +W(x)).a/x = (/ sin O
2 = %

=1

or interchanging the order of integration of » and }

*/ ! + +l

.Z(-« od dx + R 7,(;) 05 & 6{; . dx —
. 1/771 7/(2) ?/ (x*?) K* + (""%)z 4T R* + (x~§)~sm «
< —

= <L . - = o

1 (5) | | (%)

+{

i x-§) d= U-sinb
+ £ Y(§). cos™a-d% ( %) -
5] o / EET= R e
4 W
I, ()

prj dx ! L7[*<++W+0+9_Ifgj

{1

R+ R+ (- [+

+! : .
= dx = ; tﬂ . __—-——————-(’-fg)' s D‘} —+ taﬂ (’ ;) SIna( }
Ia (¥> ] R o+ (-9 sin’« Rosin a [ 4 ( R

-1

I(?)_ +! (x -}) dx - [tqn {tqnd (H‘é}
’ [ P (x-3) sin d]“{ R+ (=-8)° K. sina . cos«
_tqn-l{ tan o 'inz'-r(/-g}?‘}
R
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Now substituting these values in the above equation

and letting Y =7, /%

PR

1+ %

we get

fj o {/"5 Ay SR Do) oy (28 }'”’5
*

/ A+ K+ (-8 (-3
< _
)
+ Yo €OS o (- §) ) Tan”[ (1+§) sino( fan[ (r— 5) s/ a ]}Jf(
4T sin o (/+E) A
il s

F (R,
B .cosdj /I-§ fqn fanot R+ (1+E)* «fan[*“""‘m]} ;

4T SIN o I+§/

L /

hal

| F (&, )
= U-sin @

i.e., solving for vy, :

7/ — 6&77"(/-5/';76‘
" F(R) + ol E(R«) —cofa- F(#,4)

The problem is thus reduced to solving the three
integrals F (R) , F (R «) and E (K «) .



5. Discussion of F (R). F(R)= ]// £ Jog £+ LR+ (145) ../ogiiid§
[+£ 4’{+«Jﬂz+(l I-%

The second of the above integrals is integrable
by elementary methods. However, the first cannot
be integrated by any of the elementary methods
nor does it adapﬁ itself to solution by contour
integration or by a differential equation. Some
method of expansion was thus the only alternative.
The first attempt was to eipand the radimal in
the domains (/r§) < A and (1+% > K
and then expand the logarithm and integrate. This
was carried out. However, the result was very long
and the convergence of the series rather doubtful.
A better method of eXpansion was found to be the
following: As a first approximation since A << 1
we can write (letting u =1-+§f )

/og{Rﬂ-m} = Jog {70\’1—14}

This approximation is good if k « u over most of
the domain, but it does not hold near u = 0 i.e. £=-1
(the leading edge). Since the weight function 7(§)
becomes infinite in that vicinity, however, it.is
necessary to have a good approximation there, A

better approximation can be obtained by letting

/og{ # —rm} =Jog (k+u) + g
where constants a and ) are determined to fit the
difference curve of[bg{m+ﬁF775 —-hg(ﬂ+aﬂ at u= 0
and u = k. The exact and approximate formulae are

—



f(«)

“30-

plotted up below for the case k = .2 and show a

very close fit indeed. It was found possible to

integrate the new functions. The first came out

in terms of elementary functions, the second in

terms of the Bessel function with imaginary argu-

ment of the order of 1, I, (%) . The result of the

analysis which is given in the appendix on page /7 is:

F(R)= _2T*#

f R+ 2

/Oy (/? + VF%:“:)

-Au

Jog [Rra) + ae




w2l

6. Discussion of F, (R 4

7.

I:z (&, o() —_—I' ]/II_:; {fqn'[ ("*ii' s:mx] + ran'[(l-\g;s/nd]]‘dg
This integral can be evaluated exactly using the

method of contour integration as shown in the

appendix on page 8/ . The result is

Fz- (‘k c() = 277.'1‘0;/;’{ 2 5/-)13(} 8T ‘fan-‘ sin (_é Tan-‘ 2 sm d])
' ®

—7/ + (_2_-__5{7%3__01)2 . Qos(-é tan [&_5}{1_'1_‘1‘])

This expression can be reduced 80 as to involve

2 sin o

only one parameter, namely M= X

Then

F (& «) = 2#~hﬁ)¢ —9ﬂ-hﬁ{4 sM(éwaﬂ)
V1 +pm® 4 cos ( fan )

Discussion of F(&. %) .

5(&4):/ ///;5 {,cqﬂ"[_t%%_l [ &+ (/+§/z—fan-'[_f_“_%9£ m‘]}‘g
2

This integral like the first one cannot be exact-

ly calculated by any of the conventional methods,.

 However, it is again adaptable to the same method

of expansion as FMnamely we write (letting (1+9= « )

far'| fane Kru*| = tan' [.fi'lﬁ'u] ’ aegau
A * v




the constants o and A being again adjusted to
fit the curves at u = 0 and u = k. The exact snd
approximate formulae again showed very close
agreement when plotted for the case k = .2.

The term involving ‘tan‘,[ -"_“,7‘%1 ~u] could
again be evaluated by the method of contour
integration similarly &0 FE[A). The term involving
ae‘zu again came out in terms of the Bessel |

function I (). The result of the analysis shown

in the appendix on page 8% is

‘ - n ta c o fa ~! 2tan -~
E(‘ﬁ’,a): 4T —L[l _ cos(z Tan 31%_! -+ 2___‘§24-s>(.‘5m(2 tan 2,4 d7+2ﬂ“,e .I'(Z)

T1e ()

-1
- — -'[_ ,@o Tan (ﬁ_ fﬁ“ 4)
The first half of this can be reduced in terms of

the parameter 2= —Z—Z_;;;'—i. Then

F(# d) - lfﬂ'[—!——— 1 cos(%far;,’W) _ sin(éfan"v) -rZTTo(-e‘a‘].;{A)
) v v

> -V/—.;-_—;;T -“’//—r 2*

Now

4m U -sin @
F(f) + cof «- E (R, «) ~cota . F(H«)

Yo =

Since each term in the numerator and the denominator

involves the factor 27 we shall divide through by



it and obtain the new expressions letting

E(ﬁ) = E‘{k) Rk _ A F(k«)= —Blz) + «-C(a)
X R = Al 5277,_)
where L .,
B(») = | - j - % cos (3 Tan 2 . 2 _sin (4 tan » ]

5 ey G
Vi+2* > N+t

2 U -sin @

then
F'(R) + cofov[Ap«)d‘B(w) ~a. C(2)]

Yo =

®
Calculation of Induced Velocity Tangential to Plate

In the ordinary wing theory which assumes
small angles of attack the effect of the induced
velocity tangential to the plate is neglected.
Zince the angles of attack which wings of small
aspect ratio reach before stalling may run up to
45° it is necessary to comsider this velocity in
the calculation of the forces acting. The
bound vortices induce a velocity tangential to
the plate which is +@?at the top of the wing and

*lgd at the bottom. Their mean value at the wing
is therefore zero. The trailing vortices, however,
induce a velocity which has a component along the
wing equal to w.=w'sina = w;, -fan « . The

o8

mean value of 5%.OVer the chord is then given as

wr = Z [Fzm,a) —F;(ff,d)] = .;__o[A(/«) + B(v)-q-C(”)]



9.

and since

%[ Ap) + B(#) - ox.cm)] = Usin @ fana ~ EUR): tana .y,
2 -

wr

- Usin8 tan o« — F'(R) Tan « %
2

Calvulation of Normal Force:
By applying the formula for the force on a
vortex we can calculate the normal force N acting

on the wing as

N= p(Ucse+w) T b

where

UM

/tlz *{/1. q E
7(§)- 4§ 2%/1/ 2 dp = Tyt
/o, +%

Ztp

w_ = U-sin 6 fan « — [ilﬁ&tzigzLﬁ Y

1
"

2 U sin®
E'(k) + cof a[ALu)-r B[?/)—o(.C(a)]

7/°='.

it

p(Lﬁwse + U-sin 0 fan a —lffﬂk-hna-é)lfﬁ.ﬂiﬁ
2 v u 2

I

CN _élouz-bt



CN= M Y| cos ® + sin 6 -tan « — F'(R)-tana %
v 2 v

If a=0 tan .o = (1 — cos B)
2 sin @
cos@ -+ fan a- sin O = cos 6 +_(/_:f_°i_9—).sin 6= 1
sin @
CN= T |1 - %. F(R)- tan «
v v 2
If =€ cos O + sin @ . tana = 52_219_1_5'_'!2-:3,—. !
cos @ cos @

Ce Ty | 1 _ 5 FE#)fane
v U | cos @ U 2

The term in (%)2 is small for small aspect
raiios. Its value is less than 10% for k < 1 and
e < 40!

The angle « at which the vortices leave the
plate is so far undetermined. We have found that
for very small aspect ratios AR=0 they leave
at the half angle of attack, that is, « = 2 .
For large aspect ratios on the other hand, they
leave at the full angle of attack, i.e. x= 6 .,
For the intermediate range we can thus fix the limits

€ « x < @ . The true angle at which

they leave is really determined by the Helmholtez



10.

G

vortex law that vortices follow the fluid particles.
The application of this law involves, however,

considerable mathematical difficulties.

Summary of Formulae and Auxiliary Graphs for
Calculation.

Summing up the formulae for the calculation

of the normal force coefficients we have:

X = = C = T. 2% .|]cos & + sin O -tan « —-E'{"f)'i’ana'z’g
v v z U
- © - A — 7% F'(R) fan «
a= £ G, = W7 [ 1 Z > ]
= 6 C/v = M. % | %, F,"(f{)'fana]
U | cos & U 2 ]
where Yo = - 2 sin @
v F(R) + coTac.[AL“)f 3(,,)-0‘((0%]

_ 1302
Fm)=_%_ , 2 .1/ R__ VRrz *2 _}_/gjz.e—k‘:[(uo_z) Graph 1
! R+2  Kt2 R+ 2 1/—7 PG e TR
( £+2 * )

A,‘“): tan.'/“- - 2 f'an-'{ 5""(% tan_m } Graphs 2+3

'v 1+ pm* + cos(4 fan;ld)

Br)= - 2 + 2 o2l tan's) 2 sin(stan®)  Graph 4

v v i+ Vi+v*

C(2)= j”l,(a) Graph 5§



i1,

= -1 f‘an‘.(‘f{h“ °‘) Graph
/‘-— R Iag{ ~ — /} rap

The five functions have been plotted in terms of
the parameters K, d, 3,/ﬂ,‘V in the graphs
designated above. The parameters u and ¥ have been

defined as

- 2-s8ina
M7 R
2 tan &
y=-£ 1272
R
For the limiting case k = 0 we have F (%) =B()= C(2)=0
A=T , a=2 and therefore % - 2 sinf _ 4 _sin’0_
U T . cot ot w |+ cos O
2
C = Ty _ 2 siné 2
v U /+ ¢cos O

which agrees with the previocusly derived result.

Comparison with exXperiments:

The most extensive investigations of the
character of the flow about wings of small aspect
ratios were made by H.Winter5)‘ at Danzig. His

pressure distribution measurements across th

i4

span
for a square plate confirm quite closely the
assumption made that the vorticity distribution

is constant across the span rather than ellipiice

al. This was derived in our theory for a wing of
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this still holds guite well K

at k =1 justifies the assump- -~
,‘Exparlm'enTaU

20
\

tion for the entire range of as ,

pect ratios considered, i.e. 3

i
- b/a Span o

0< R <1
Similarly the assumption of a ¢hord distribu-
. _ 2 —X P, \ T4
tion y =7, E7A appears reasonable from his

experiments. The actual peessure distributions show-
ed very great suction peaks at the leading edge
as postulated by the theory. In addition they
showed,however, smaller peaks near the sides and
at the trailing edge which have not been included
in the theory. The measured pressure distributions
indicated & considerable variation with the angle
of attack. This has not been taken into account
in our theory. It indicates that the true solution
of our integral‘equation for «(g) is probably
gquite complicated. For this reason the assumption
of a mean distribution function 7=n-Vﬁ%§%; is
probably as good an approach as can be made
theoretically.

Winter also studied the character of the
flow by means of flow pictures. It is interesting
to consider his description in some detall to sece
within what limits of aspect ratios and angles of

attack the present theory could be expected to hold.



(1) Aspect Ratio k>2.0

(a) Small

(p) Large

angles of attack: Well known flow
about airfoil of type postulated

by Prandtl theory of lifting line.
angles of attack to 90°: Well defin-
ed separation takes place with vore
tices leaving parallel to undisturbed

flow directione.

(2) Aspect Ratio between limits 0./ < &K < 2.0

(a) Small angles of attack: Smooth flow along

wing as above. With decreasing aspectd
ratios the region of angles of attack
within which this flow takes place

decreases.

() Larger angles of attack: Very stirong flow

over the sides of the wing with
formation of tip vortices of the type
postulated in the present theory.
Over the middle part of the span the
flow separates from the wing. With
decreasing aspect ratio and increasing
angles of attack the tip Ilow
dominates the flow over the middle
and a real separation of the main
flow is prevented until very large

angles are reached.

(c) Very large angles of abttack up to 90%: Well



defined'separation of the main flow
takes place analagously as for 1 (b)
(3) Aspect ratio between limits 0<k< 0.l

(a) Very small angles of attack: A smooth type
of flow along the wing of the typse
2(a) and 2(a) takes place with the
tip vortices clinging to the wing
along the entire length. This {ype
of flow is resticted to very small
angles of attack. It also takes
place over the forward region of the
wing for larger angles, the region
decreasing with decreasing aspeci
ratio.

(b) Larger angles of attack: The tip vortices
follow the plate for a small distance,
and then bend off rather sharply
approximately in the direction of
undisturbed flow. With increasing
angle of attack the location of this
point at which the vortices bend
away moves forward lying, for instance
at 40% of chord for ©=16°. Our
Theoretical deduction that all of
the vortices leave at the half-angle
of attack gives about the same effect

as that described above.



A

(c) Very large angles of attack to 90°: Flow
separétion takes place at about 45%
At large angles Winter believes a
Karman vortex stireet is formed in
the wake.

Judging from the above description of the actual
flow we would expsct our theory to apply to the
regions 2(b) and 3{b) described above. For small
angles of attack we would expect the initial
tangent to follow the Prandtl lifting line formula.
A comparison of the experimental results with the
calculated values of C, vs. € is given in the
following series of graphs and shows that such is
the case. The experimental points for 0< k<« 1 lie
between the limits given by the curves correspond-
ing to o =/9 and o= g., except possibly for the
initial tangent. At k = 1/30 the theoretical curve
for a= g follows the experimental curve very closely.
For larger aspect ratios k = .134 and k = .20 the
experimental points lie between a:ag and a«=6
moving towards «=0 as k increases. This tendency
increasss for kK = .35, k = .50, and k = .66,and
- the initial tangent is somewhat smaller than the
theory indicates following more nearly the Prandtl

lifting line curve. At k = 1 and k = 1.25 the ex-

perimental points fall about half-way between our



theoretical curves and the lifting line curves,
while at k = 2 the Prandtl lifting line curve
already gives the results quite closely. It

should be noticed that in the above comparison no
account is taken of the viscosity effect in reduc=-
ing the actual circulation about the wing. This
may amount to 10%-15% for wings of large aspect
ratio. If we assume that a similar reduction is
effective for wings of small aspect ratio the ex-
perimental points are brought into the region be-
tween the curves «=0 and asg for all aspect ratios
below 2.

Conclusion:

From the above comparison with exXperiments
it appears thsn as though the present theory
suééeded in giving at least a qgualitative explan-
ation for the peculiar curvature of the curve of
C, vs. © in the fact that the trailing vortices
leave the plate at an angle o . The theory also
agrees guite well guantitatively in the region of
aspect ratios k<1, which is the range intended
to be covered by it. It has not yet been found
possible to determine theoretically the exact
curve C, ». @ Tbecause in general the angle & is
unknown. However,; the limits within which it

should lie have been specified since.§<q‘<6 .



In one limiting case, however, namely k = 0 we do
know the'angle o« from our theoretical considerations
as o¢=_ZQ . This angle must also hold approximately

at extremely small aspect ratios such as k = 1/30
for which experiments have been made. A comparison
between theory and experiment for this case

showed very good agreement.
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D, Appendix:

1) Wing of Infinite Chord - Zero Aspect Ratio -
Asguming the Flow at Infinity Is Parallel to the Plate:

The flow past a wing of infinite chord treated
in section B was considered to be of the pure induced
type. This gives a flow at infinity in the wake behind
the plate which is inclined at twice the angle as the
plate itself and thus corresponds to a sort of inflow
from above. A wing with a leading edge out at infinity
might be‘expected to correspond to this type of flow,
If we cousider the plate as the limiting form of an
infinite lattice, however, We should expect a flow at
infinity which is just deflected parallel to the plate.
This is the case which we shall consider now.

We shall again consider a similar vortex system
as before consisting of

(a) A uniform distribution of T
bound vortices of lengthb VA~

placed spanwise along a

Usind. N A ) -
plate. We shall denote A N T
u N
their strength per unit : 5\\<f/ \\\
length of the plate as y,. . o "jf\\

(v) Straight trailing vortices
passing off from the bound vortices in the plate
at an angle & . Their strength is thus 7=?5%;—per

unit height measured in the direction normal to them.



=B -

It is possible to split the trailing vortex system
(b) into two components: a component parallel to the
plate =y-cosa = y.cof « and a component perpendicular
to the plate = y-sina = 7, . Thus an eguivalent vortex
system to the above is
(a') A system of bound vortices of strength 7, per
unit length.
(b') Their trailing vortices in the direction normal
to the plate.
(c') A system of vortices =~~~ -
of strength vy, cof «
running parallel to
the plate, and lying

above the ends of the

spam.,
We can easily calculate the
induced vélocities due to the above vortices by an
application of the Biot-davart law. Let us use the same
notation as before namely:

X = chord direction along plate

y = span direction along plate. Origin at center
of plate

z = direction normal to plate

u = induced velociiy along X
v = induced velocity along y
w = induced velocity along z



(a') Induced Velocities bue to Bound Vortices:

The induced velocity at a point X,y,2 due to a

single vortex 7yat x=§ is

= Y 1| cos 8 + cos @

and

u, = qa~sin d
v, = (0
Wq= qa-cosé
where
h= ﬁ%‘5)2+ z*®
cos €= % *% ‘ sin § = Z_
V(e n* ’
cos § = % ¢ cos & = ~-%
V(5-4)"+ h* g

Due to all the bound vortices between §=-~and § = +

§=+no

] z . % +4 . % -4 dE
fe- B+ 25 gD 2t (g P

R
-
S

o= 2 [ o’ (54 4 tar” (%zm]

o
= 0
Ya

w - O By symmelry
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(b') Induced Velocities Due to Normal Component of Trailing
Vortices:

This system of vortices again only induced velocities
in the direction x. We can write down the eXpression

for u at once from the previous investigation by letting

b~y — = for vortex sheet at Yy = * %

% + %, —_—r 0O e N

z -——-r,%?%

Due to vortex sheet at y = by,

u =% tan _z +tar;‘_1'>-}
Y by -y Y-y

U = _Z_[ tan-’ Z + Zz_l' ] if Yy £ .% - ":L;,, I _

b 2w -y
u = -xltan =z __ + ﬂ] if > £
Q 21([ 4 - }72 2 % 2

U, = 2| tan _Z T f > -5
bz 2#[ an b/2+«3, -+ 2] i Y 2
= -7 ;_z T f — b
L(bl 2_77_1_[ tan b/2+% + 2] i ¥ < /Z
Thus
for /%/ < b u = 2 tan-l z + fan—, z <+ TI ]
2 b 27 b/z-l'% %_g’
> £ w =-z[-tan_z__ 4 tan _2
/?/ 2 b 55 7 e
*r =0
b
w =0
b




BB

Notice that for

H/[<.2‘2 ua+ub=27___7r tan b’z + tan _z ) /tqn féli+fan /2‘“#/: A

Z_T iy
2 2

% ~ 4 AR
;‘_V__’__,-_,
-1 7

2 2

J4l >2b~ Uty = 22.% (tqu-l ﬁz;z - tan_'bé ) + (fcm—l "/22‘_'% + tan—l,z_}]: 19

(c') Induced Velocities bue to Tangential Component of Trail-
ing Vortices:

This system of vortices
induces velocities in the
directions y and 2.

Due to a single vortex at

z=-§ we get an induced

. Y%
vslocity at P(x,y,z): !

n

3l

where

9.

[~

Vo= qc's/y;J . sin d = z -
h
Wc. =-qc- cos & cos & = ._f/z_;':l_

Due to the two vortex sheets at y=+£ and y=-2

v = ‘Z:'a’fd _joo (z—}) -dF ) )p[dg
e | ) By - (g O

Vc; -7, col o /07 /(92/___‘3,)2—1- zZ

2w v (4 ) + 2P




Due to the vortex shect at y = b,

] for Jy] <
] for Iy

VVC = —MS‘ (9?_ _%) d} = —7-C0td . Qn."b i
' am (% ~4) + (z-§)° am %27 ¢
W, -y e [T tan _z for <L
= T/ s an L=
) Cl, > I 2 + % . ‘J’ % 2
_ y cof a -z > b
w o= i b
C' [ % _ 9,2] % 2
Due to the vortex sheet at y == ﬁ
= _Y.C_Of._d T fan for Pdind %
\'VCZ 27 [ * b/z -+ g« %
W = cofol T ¢ <-¥%
c RASGLALS [ + tan %+ , ] e %
Low = 2o« v oty 2, tan —_Z
: 29T b -y Y% +y4
W= _Z__C_af_f‘[ tan _z__  _ tam _Z___
© 27 9 Iyl + 4
wso LU wso
The velocity field of the above uzy,
S
potential motion thus consists of "t
(1) A uniform solid body flow |
u=7, in the wake of the b %ty
plate |y[ < £ , with o
x

= 0 everywhere outside
b
the wake [y] >2
(2) A flow in the y dirsction
which is symmetrical about

the xz-plane.

-
TR ]

b
z
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d,

A

J by -y)*s 22

v = 7 cola o (% +2*

e g
ey

dZ
v =0 al z=o00 for all y
v =0 qt y = 0 for all =
v =400 af 220 %=1%

(2) A flow in the z-direction which is symmetrical

about the xz-plane.

w = —X‘C"f“. Y/ ta”;I—E——— -+ tai’)-’ Zz for /7/ <—-‘2?-
i T l’/z"‘j' g, -y
) s b
w = -, -col « . tan _ 2z _ tan % for /7/ > 2
’ 2m [ lyl+ %2 Iy] - % z
2200 |
At z= e w=-%-col « [yl < % w=0 1 w=-y cota w=0
j'V:O SRV vz0
- b ‘ :
w= 0 lt}l 7,2-
. z= O w= "y-Cch‘ I‘}} <Eb
z .
b "\
W = 0 I‘jyl 7-2..
z=-0 w= 0 all Y
. 170' w= ) down 1?14%
w= ) up [y 7%
z < 0 w=(—) down all y

B =00
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In order to satisfy the boundary

éonditions of our problem it is SR SRR R AR ER RN N =
. w o= 1 Cofx
necessary to superimpose on the oo !
above flow
(1) A uniform flow of velocity '
wzycldto satisfy the condition
z !
of no flow through the plate. ;
This leaves a flow w:—y'c;o'fa( !
at 2 = + oo and a flow ‘ :
wo yeota 8t ze-w and AT It
-.—-—’—‘2 = 7/'9"%0(
z

zegro flow through the plate. ) : R
(2) A gisplacement type flow
around the plate with

velocity at o , w,- 7, col «
3 . -
|

—iw = — 7 cola ' (y+:2) 'L

2 ) - (yrid)

This gives us w = 0 at z=+ % gg ‘
reqguired by our boundary conditions
and a flow wW=W + W, = 7 col«

!

at 2 = -




If we now consider the w-velocity
at 2= - to be the normal compon-

ent of a velocity U i.e. w=U.sn ©

Then

Y, = Usin@ tan «

e
e\,

It still remains to determine
the angle o« at which the vortices , U cos
S U-sin®
leave the plate. As before we shall iu
assume that they remain in the pdanes S
passed through the esdges of the plate but follow the
mean u and w components of the flow in these planes.

et us consider ths flow picture which we have below:

?{ —_—

" U cos 6 +7,

iy

U-cos B
w=U-s/n 6 w=0 w= U siné

/

!
" | !
2
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There iz some flow v and

w in the wake immediately behind

the plate. Along y = 0, for instance, the w-velocity

is

WJ?W

induced uniform drsplace ment
= |-~y -cota _ y.cofa ta oz A Co_fﬂ(]
[ 2 2z'rr_' ! "/z] ’ [ z
+[ 7, cot , = ] 3 m’? z
3 Z
l(%)l + Zz //Gr ”/2
and since : / '
);-cofex =U.sin@
€ 4
U [ " z/ty and
WJ = -5in@ | -2 tan =z + 2
= 2 b, 2
27 ‘ V(TZZ + 1 A A2
10 T
w} =Q;_SLLQ[__":J+ sin 5] :
2 m i’
el ~—— 1
writing &= tan 2z_
e z=0 z=l2/ & zzw
where A= sind- Z $ is a positive increment which
vanishes at 2 = 0 and 2z =, There is thus an influx
over the vortex surface near the plate and the stiream-
lines have an inclination with respect to the plate.
This inclination which is zero right at the plate in-
creases to a maximum at cos §= Z which is =z . T, .2
by 4

At that point dJ=50° and

w] = 107 U-siné,
g=0

For greater 2 the inclination decreases again approaching

zero at 2 =00 ,




Qe

We can similarly determine the mean w-velocity

along y=%. We have

-2——0
W_L=k = Vvimluced * M{anifarm t %Iisp/acemcn‘l
z
where
W] - VVL*‘M{) = —y.cofd . T+ 2 t’an'%“w
indu ced 2 21 2 J
-1 z,
= =Usino] L 4+ 1. . tan 7%
y 21 Z
W] = Y-cof & _ U sinB
uni form 2 2
w] = —-:0(.9-[—‘~U-sine, j,z——(%)z] ) where ;= Yyt+iz
displacement %% z - b
4" 2
2 2 b)*
V5 - ¢f
_ U sine R ! = Usin® R __! B}
2 T /e
[%+ (rria)
/3
where = Z
'z b/z
Re - = (Hrlz) . cos(-—’- tan—l_z___)
2 2 n’+3n




This curve is plotted below. It shows that ‘——E;_ET
=y

approaches the asymptotic value 1/2 very rapidlyi

We shall use this value in calculating the effective

angle. The mean value of the u-velocity at 4= 4%

is u=Ucos 6 + % . Thus the effective angle of

inclination of the vortices is

U:sin @
- -
«=tan w = tan 2
u U cos ® + U sinB- fan=
2
. e S
%= 8
3 ; .
.00}
w
U-sing
- j(7‘\sympfof;'<: Value
O i ]
Q 2 z.
In order to calculate the , b5
normal force acting on the
wing it is now necessary :mk 2 w.usine
] s i ' : w"l 8 u=llcos® |
to apply Bernoulli's equation. _
| -~
!
The Bernoullli constant H at a
point A is the same as that at
"
B, i.e. <

|
|
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At a point just inside the vortex sheet the pressure

is the same as outside and thus
HZ-_- p + --éIaUz

since 7I=U-sin 9-tqn.§ = U-(I-cos@}
H2= +-2’—IDU2'-(cose + | - cos 9)=P+-éIDU1=Hl

The Bernoulli constants H, and H, are thus the same
for the region inside and ouitside the voritex wake. The

pressure difference op between upper and lower surfaces

of the plate is thus

‘ 2 2 2 2
AF=-2'f7[U“+V“ -Mz -—li

U - U-cos 0 v = Vv +V

? (2 induced displace ment
= U- o +

u, = U-cos 7, vV = v -V

“ induced displacement

where

y, = U - (1-cos 6)

Vo= sin@  Jog %%
induce 2 1T b vy

) '/
v == U Sin _Q. /b/z
displacement 2

V- @



-72u

Thefnormal force N per unit length is then obtained

as the integral of ap over the span.

-+

+ 4 2
N=/ Ap - dy =-2i/o/ {[{wlja——[U'cust’Q]}d?
u

%

*b/z 2 2
s . -V -
* Zf {[Vmaluced dis;:l,] [Vl'nduced * Va{isf/.] d?
“1"'4_

Pie

o

[N

+h
2z . - . .
U -sin*@- dy =+ E‘/’/ [ T Y duced ‘;Iisf/.] a/?
o]

N= z‘/’ U sin* @ -b —_ —éfuz'sinze b

‘fm/y
N= 0O t.e. the normal force acting on the wing af\/infin/Te

chord is zero for the combination of induced type Flow and displacemen’t

Ty pe flow exactly as for either of these flows alone,



- 3. Conversion from Normal Force Cgefficient to Lift
and Drag Coefficient.

The principal force acting on a Wing‘of small
aspect ratio is the force N normal to the wing. ¥or
the region below the stall the only additional forces
are the skin friction ¥ acting to the rear and the
suction force £ acting forward on the wing. The

magnitude of F can be estimatéd from the formula
RN

where CF is the coefficient of
skin friction for flat plates6
which in the range of Reynold's

numbers concerned is about

q £.003 , The suction force should

be about the same as for the plane wing since we assumed

the same formula for the vortex distrivution as for the

. . . -
latter. Our vortex distribution was y = 9, 12+: .
For X near to -% this reduces to 7] = p 1t ¢
xg"%_ G rx

7) .

Von Karmén shows that the suctional force for such

2 distribution is
. Hth g g 2
o+ Tp 2= = L. (2 fpl bt

‘f

N———
2
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The 1ift and drag forces thus become,
L= Ncos @ +(S-F)-sin®

D= Nsin@ = (5-F) cos 6

Assunming
= %) = C = z
o 9/2 (_U_) = cC, = gn(
« = 6 (7{,):: Cn . cos O (,;—5 _CAZ.cosé
u T 2

The 1ift and drag coefficients become

for o= _g_ C:_ = CN-cos 6 «+ (—2%,; ..,ooéy. sin O
C.= C, sin — (C 2_,006). cos O
om Grsimd — (&

for a= 0 q_ = C, cos 6 + (_%.casefooé)' sin 6
G = CN- sin 6 - (.ic_;;-c059~,006)'c05 o

The frictional force is negligible compared to the

other terms and thus

for == 2 C=Geoso + %ﬁz‘ sin O
Co= C,sin@ ~ Eg#z. cos O

for == C = GyeosO+ G sin 6 cos 0
Cy= Cysiné — _g%: cos™ @

By means of these formulas the theoretical curve



of C,, vs., © was transformed into curves of C, vs. e
and C, vs. ( for the plate with aspect ratio
k= 1/30 and «: £ . The result is shown in the
graph on the next page.

The angle of down-wash €  1is defined as the
angle between the resultant force and the direction

perpendicular to the undisturbed flow. This can

be written at once as

‘ N
S~ 06
for «= £ =6 - _2r
2 L C
v
C,\,l-c.as.z 006
and for o= @ 6.=6 - 27

respectively.



: ‘—‘-J“' :_Q
for aspect ralio k=35 and .

Theorefical Curves of C, vs. © and C vs G

(Agreement with experiment shown on page 50)

mgi‘-
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3. Mathematical Parf — Solution of Integrals
a) FI(&) :

ﬁ 'A’f-{/fg/ /~ JE
)]Vn; L?ﬁ/mz &7’/1‘5}5

Let E= cos 26 |, then

z
/— df, - sin® . fog tanb d6
j V i+ /+§, / I

o

= 2/ (/—cosr).(/o_q sinT f-/aj (Ifcosf)}.d'f ggég
[}
T , T T |
- Zf /05 sinT-dT - Z/cos'l’-/aj sinT-dT — 2/ /aj (/+cas T)-df
C— 2 7 o
~T-log 2 r O by symmelry _,_F?qu

+ Z/ cos T /aj (I+cosZ')-o/'C

(]

T

L
= Z{Sinf-/og(lfcost')] +2] sin®T -dT

| + ¢os T

(] (-]

W

2] (l-r.os’l.')-dt' = 217

/.]/L:_E log (“F) df = 2T
/ I+E (1+E)




el "
j-‘/ ZE . log AHAR s (0 df -/]/::_;. log Re A (-5F dF
i1+5 1+ ¥
2 J
2 2
=] _tﬁ-./aj{'k-f'Vﬂz-fuz}-du -.../ «, /Og{'k—# /ﬁl*u,}.du
‘ b u |/Z-u
° (-]

2
_:j {2"2«4) ./Og{k'f‘/ﬁz-fuz(-du
A \[:‘VZ-L(
~Adu

Liet log {I(-rVﬁ‘fu"} = log ('ﬂ'+u) + aqe

AT w =0 log 2 R

i

leg & + a

a = /03 2 =.69315
¢

At u= K /"3{*"'”7*}-’ /05 2k + /og 2-,53*

~a 4
2 ‘/052— /oj /*212
- 1+ Y2
LA* /03
loeg 2
/ / 1+ 92
A= —__ /03 o9 2
log 2.




/og R+ R+u® = /03 (A’+u} + /09‘2- e'a“ . with A= _’_'_;;_‘.’_‘5

?
// f zo? k+~/ﬁ + (1+§)f .d} = 2/ (1-u)-loq (ﬁ“)"(“
/+% R+ { &+ (I- i) / f:~v2_“
-Au

+ 2.103'2. !}__“) [ 4 cdu
2~

[-]
2 iz ;
(l-u). Io_’ (*fu)~d¢ =2 {1-1,"). /o’ (*fv‘)-a/v' w= v
.{‘: .J-z-:_‘: 1/2-1r" v=V2.5in0
o ©
=26

T

j (,-zma) /oj(k+z s:ne) de -’-/cos'l' /og(*fl-cas‘t) dT

(4

!

m T
= [ sinT - /0_9 (*fl - casT)] ___/ $in’T - dT Jet x= lan %
R+] —cosT
—— e o A
o KR+2

x, dr - -8 dx _ b’- dv
R*Z (/+x . ..__- +x} AR+2 (1 + )P (l+x‘}2-(b'+x‘/
] (]

The indefinite integral of fthe First gives :

00 L%
da — = _x + AL fm;'w = Ir
(;+:t‘)z 2 (7+x% z 4

[+

©

The definite a'nfe,ral: j dx - (Edwarl;e)

13

(a‘+x2)(61-rxt} Z ab (a+ ) p- 217 )

Differentialing this with resped to a , and then setting a-=1

e 2+ b

o~ = T .
j (]4-::)‘(514:(‘) ¥ b (1 + b)
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2 A
2| (1=w) - log (R+e) - duw _ _qm 4w [ A Az T2
-\lu .42-44 - R+2 A+2 R+2 ) 2
A : "l/r +
+2

3 V2 z ';2. N
cAu . ~Av . ~23:3in €
(i1-u). e cdu = 2 (/—v)-e dv - 2 {/-2.,,’,, 3}.5 d@
'J“ . -Jz-u Y2 -vt
[/] (] (2]
T u:vz
<A s A-cosT -A A-cosT
= € cos T - ¢ -dT - 2 - ‘S?_ e ran V:J_Z-'sfne
A
= C
° ° ¢ z
x= cos C

Where I°(3) is the Besse| Funcltion wilth imaginary argument

of ordev zere . (Macrohcrfq))

And  since aaI;(h) = II (A) Reference /0) p- 20

2
-Au -2
2 Jog2- 1(,'_:“)'3 - du = 2m-[og2 - e .l:(a)
wu -*Jl—u
P - 1302
E(ﬁ)-': 3_77'_3. -+ nJLLAN k R+2 e + zﬂ'./ogZ._e_ *.1(1.302)
R+2 R+2 J*x+<2 x 2 , &
o + [ ,

and
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b) R (R <)

F(la)j /; (1#f) aomea """"‘ Jf-f—j //; °'{" }alg

Lef (11§) sme - u? and (1—f) ssmo _ w® respectively

# A
and Z'Mel-.;__ az
R
Then  a en
-t 2 . et '-’u_
F;-('k,“)= & Tan « - du _ ‘lt«muz.mg_ _ 8| e g du
_ut a [+ u”
Ya*—«
° “u=g o
z
-t
= 2T tan a® — 4a” | 2t et cot dt = e

| + a? sen”t
(o]
[~ =]

2T w"a‘-ya‘/ x - arclow x - dx

i

(1+ ’f')z -+ a"x"
-—

Consider fthe complex infejra/ z. Loy (1-¢2) - dz where z= xtiy

(l'fl )2 "l L

around ‘the contour C shanm.bg/ow. The /nfegrand has tThe
fo //owv'ng singulavi fes :

u) A bmnch-paiu‘l af z=~¢ , This poivl lies

oulside of our confour E' l’lowereo; and

thus has wuo efTect. R = -0

zZ X

l
|
I
[
|
I
|
}
!
3 |

p2i

(2) Four simple poles at ﬂte zeros of  (1+ zl)‘ va'z It will be
shown that two of ﬂtCSey in the uppev half- plane and fwo in
the fower . Only the first two will confribute to the residues

whith we desive.
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Thus

R - ’
z- lo-,_z(l-;l)-dz. - -an.-:ta—qxd;‘- - Rete. ! (/‘(,Re"a)q_ﬁc"e.da
) (I+7.‘) +a'z" J (1+x%)* + a¥x" ) (1+R ez‘-g)z . a" Rqeucé

sewi-civcle fen‘/s 1o oo it can be shown
s

As the radius B of the
that (the [ine -inlegral along The semt/-circle vanmishes as it is of ,,,,le;(#).

the integral along the real axis qpproaches the

x= —o0 fo rs tao |,

Af fhe Same f/'mt
desived /'n)'egm/ which exlends from

Theorew we then ge?

f“ x . awclon x.dx _ 2| Reo 'f(zzl + a-w'/’[zf]

By Cauchy's

(1+x%)* + a¥ x" z, z,
- 00
, . .
The poles are the rods of a'z’ + (1+2%) =0
1 Oe 2 2 13L&
(/fz"):: z'a ¢ * or (/+z‘)= zZ a e?*
; z (1+a%) 2 ~(1- a*é)
o Either z = - a or z
I+ a” /+a”
L(I[+J- arclan a7 ( ‘4 arctan a®
22 ¢ 'g‘. -3
= e e
2' & o z! = [
I+ a -,/—I-o- a’
‘(1{! +i’arcfana') '-("ia.-' J arcfﬂn‘.'!)
£ z = e

2 P p”
/I + a |+ a

B)' arclan a® we vefer to the principal value /yinj belween Oand]if

The residues al the poles z, aud 2z, which Iie within the contour ave:

. -
'é‘= . tam “l

. ; e
ﬂwf(zi: oy () =T:’.£°7(/ * Vi +a® )

Z~>2,

. e
s ‘{.(2)] - Lrvw (l~23)'f(2)=-:—:-_—" ,e,}() -+ € )

z, -7z,



8P

A;tam:'a
"" e
There fore -1 x -arclan « - dx _ - J+ Torod
. (lfxi)i*qvxw Za® YR
- [+ S
i+ a”
—_ Z o t,
- 2at ct
.t ' f;C * fu
But pe P, t |
“ L’ X3 ='e'7"’*"(t’l-t) 1 .
‘ fze.z fz <

By inspection of the vechir diagram  p=p, and t,=-t,

. Aoy z_ii = 2it = 2 tan [ (Gt
f‘e‘e‘ 17'—:;:*‘“(-; t“;'a‘)

00
x-arclanx - dx _ Tt =t (i tow ' a*
('*"")2 r a¥a’ a® Viva® + m(’i foo:'al)

- o0

CFIkQ= 2T t‘n{zi::_} . x-m{ (3 T2
W1+ m(;‘ tat'[ Zr‘])
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c. {(R«)

5(*,.‘):/*’)//% {t‘w[ %im— uw[_&i_g a%(/—;)j]fd;
<1
+2

= 2] 07 tan') teme SR 4
fu {z-« R
(v
Now let b,.:'{t‘ud -/R'v-u"f—_'_— ta,,,_"{ Ca«;aa u} + a-e—z“
R

Al u=0 Cvu-,{t‘usa(} = Q or a= &

- 2R
At u=R ta«n.{tmu-E} = oK + ot-e

iy

e

g‘.
R
]

Then

2

2
’ [ -Au
HiRa)= 2| _tim«) | taw { tam o « }.du 4 2af f1mu) e du
-Ju-\jz—u A Ju {2-u

° °

The first infegral we shall obtain by a contour integralion. The

secomd inTegra/ we have a/rcad)' shown To be

2 o o2
2 o- ("“)'ea'd“ - 2T - e I,(A)
Ve Az«
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2
-1 &"1‘ t -t 2
(1—u). lan { * ug du - 2 (” ‘z_'z) law t°. dt % lLame
Yu - v2-u a-t?
° al,_ 2 lan o
, a - < R
c 2| t SOttt _af _tye -t At pigene
al , at / -+ te
= s} ~ E e x:tma
o ;
i B - a cmO . a col-db _ _—ya*| x* _ else ‘
1+ a’l a8 r+ xt (’v’f*_‘)zk’-t a’x"

ao
(8
. _2al x . dx
1+ x* (1439 + a¥x"

2
Consider f z" - Az around the same contour C  as before.

/ (wzf)[(mz')l + a"z']

The po/e; of this funclion gre al Ze#C, zz-C z=Z 232, ,z:z,rqud z:=2,

’ ’

The last four ave The samwe as in the preceding case. Also the integral
q/on’ the infinite sewi-crrcle agan vanishes A/ang the veal anxis 7

reduces to our desired infcgm/. By (aac/x): 'y Theorem e Then 5c7=

x . dx = 2| Res f(z + Aeo f(?lg + Reo -f(z)]
/ (I+ Xz)[(lw‘?(‘}l'f av’(‘I] [ jz:i. z

z, 3
- 00

since the eonly po/es included by the contour are z:-: t'—l z, and z, where

3
. -t
—&tamaz
e
= ““
I+ a”
. _%'ta.."a!
z. = L e
3 o
"
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The residues al these poles are

ﬁh {(ly = Ao (z-i).f(t) = __é._q
Zei - 2a

(Rmf{z)] = Aam (z-z)fG) = q—i.c

z22 & v
; : 1//+a : 4a

L tam'a’
) 2 .
Ruf(z)] = Lo (z-2,)10)= ;L.e (14 i a?)

Z =% W' 4q”

Lel 6= T‘“‘;‘Sz then

/

Bus F6] ¢ Rua 5] + s f(zg

Z,

i
[
s"‘
£
m——
Dl
i
FINa
~}s
+
2
<l B
s
%
Ll B
<}
~
+ 13
»
t}mv
-
Qy
I\_‘

—— L [ J 41 MJ
") I'— 3 - ’
2 a J+ a’ I+ a
w .
% dx N YR 8 ot M L Lty
(l'xt)'[(lf’(‘)1+ a"x"] a’ -\/“ I+a” ':J/+ a’

2 -t t‘,ﬁ ' ’
2[ (-t { Bt a it T — a® o (4 tana?)
° 'J“‘ ) ‘Iz"“ a’ 3

i

-A
-+ £ o e _T’(A)

where Azwﬁ e,}{ M'(‘rz—‘a‘““) _I}

of
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