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ABSTRACT

Of several devices introduced to study combustion instability
in solid rocket propellants, one, known as the '""T-burner, ' has be-
come the most widely used. With this device the response of a burn-
ing propellant to a small pressure disturbance can be measured.

Such information is vital both to the understanding of unsteady com-
bustion processes as well as to the assessment of the stability char-
acteristics of solid rocket motors.

Although the T-burner has been used for several years, sev-
eral questions concerning the device have arisen and, for the most
part, have remained unanswered. Moreover, little effort has been
given toward showing the relevance of T-burner data to predictions
of instability in rocket motors.

The present investigations, comprising over 400 test firings
in T-burners of various lengths and diameters, were undertaken
with the major objective of gaining a better understanding of the T-
burner itself in order to answer some of these unresolved questions.
Another objective was to compare T-burner predictions of rocket mo-
tor instability with actual observations made in a previous study.

Among the investigations was a comparison of several ignition
procedures which showed clearly that a poor, uneven ignition can

seriously affect the test results. Included among the ignition studies

were tests conducted in transparent chambers to permit high-speed
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motion photography of the firings. These tests confirmed the com-
mon assumption that the T-burner is basically a one-dimensional
device.

Tests using burners of different diameters showed that al-
though the acoustic losses of the T-burner are nearly independent of
diameter, the limiting amplitude of the oscillations is strongly de-
pendent on the latter. The dilemma raised by these observations was
resolved by measurements which indicate that the heat transfer from
the combustion gases to the burner wall is strongly dependent on the
amplitude of the waves. From these measurements emerged a non-
linear description of the damping in the T-burner which accounts for
both the behavior of the losses as well as that of the limiting ampli-
tude.

When two independent T-burner methods were compared, the
results obtained were initially in very poor agreement. However,
when the T-burner losses were assumed to be non-linear as men-
tioned earlier, excellent agreement was observed.

Finally, the T-burner predictions of instability in rocket mo-
tors were in rather poor agreement with direct observations made in
a previous study. Although this lack of agreement is not understood,
it is doubtful in the light of the present investigations that the major
error lies in the T-burner measurements, for these should be rela-

tively accurate. Moreover, these results indicate the need for
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more comparisons of this type in order to determine the usefulness

of the T-burner in predicting combustion instability in solid propel-

lant rockets.
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I. INTRODUCTION

For a number of years, combustion instability has been recog-
nized as one of the most serious problems encountered in the develop-
ment of solid propellant rockets. Because of the coupling between the
combustion of the propellant and the conditions within the rocket mo-
tor, small pressure disturbances are often driven to large amplitude
oscillations which frequently produce dramatic, and even catastrophic,
changes in the motor's performance.

For this reason, considerable attention has been given in re-
cent years to gaining a better understanding of this problem. Pre-
sumably, a thorough understanding would eliminate combustion insta-
bility in motor development programs through careful motor design
and propellant selection. Because of the many complexities involved,
however, such a complete understanding is still lacking, and the
rocket engineer must content himself with trying to eliminate the
problem if it arises in his particular program. Acoustic baffles and
resonators placed at strategic locations inside the motor are often
used for this purpose along with changes in the propellant composi-
tion. By increasing the acoustic damping of the chamber, all of these
tend to stabilize the motor. While usually successful, such methods
are also costly in time and resources.

The considerable progress'made in the past few years toward

understanding and eliminating combustion instability is certainly due
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in part to the recognition of the similarity between the unstable pres-
sure oscillations and the classical acoustic modes of the rocket cham-
ber. The problem of determining the stability characteristics of
solid rocket motors reduces to an elaborate acoustics problem in
which account is taken of the mean flow and the fact that the chamber
walls are not rigid and are therefore capable of exchanging energy
with the acoustic field. The burning propellant surface, which forms
the major part of the chamber walls in an internal-burning motor, is
characterized by an acoustic admittance and therefore enters the
problem as a specified boundary condition. The rate of energy trans-
fer to the acoustic field from the burning propellant is related to the
real part of this complex acoustic admittance. Because of this, the
admittance, and particularly its real part, can be regarded as a
measure of the propellant's ability to drive pressure oscillations.

Treating the problem in this way, Bird, McClure, and HaLrt1
and somewhat later, Culick2 , examined the stability of acoustic os-
cillations in solid rocket motors. From the latter analysis came an
expression for the growth rate of the oscillations in terms of proper-
ties of the mean flow and the real part of the propellant admittance.
An equation for the stability boundary resulted from setting this
growth rate equal to zerc. If the nature of the flow field is known,
then this equation permits calculations of the motor's stability char-

acteristics from knowledge of the admittance alone.
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Somewhat earlier3’ 4 a device had been introduced as a means
of studying combustion instability on a laboratory scale. This device,
which later became known as the '""T-burner" beca‘use of its appear-
ance, consists of a tubular acoustic cavity in which solid propellant is
burned. During the firing, oscillations spontaneously appear in the
burner and are driven to appreciable amplitudes' by the burning pro-
pellant. By measuring the growth rate of these oscillations, one can
infer the real part of the admittance. In principle, these values
coupled with an analysis of the rocket motor such as that mentioned
above should enable one to make predictions of the stability charac-
teristics of a given motor design. In practice, however, this has not
become the case for several reasons.

First is the fact that little attempt has been made t;) establish
firmly the relevance of T-burner measurements to such predictions.
Naturally, until such attempts are made, the skepticism which ac-
companies most new methods will remain with the T-burner. Equally
important is the fact that, although the T-burner has been involved in
many studies, ranging from efforts to detect '"entropy waves" leaving
the burning surface5 to investigations of the effects of compositional
variables on the propellant responseé, several questions concerning
the T-burner itself have arisen and have remained unanswered for the
most part. Thus, the aforementioned skepticism is somewhat justi-

fied.
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One notable attempt to resolve some of the conflicting opinions
concerning the T-burner became known as the ""Round Robin'' studies
and is discussed in detail in reference 7. Those studies, which in-
cluded some of the present investigations, compared results obtained
in T-burners of various configurations by different laboratories using
the same propellant but different techniques. Although the Round
Robin series did little to answer some of the questions concerning
the burner, it did bring into focus the need for further investigations
in several areas. First, the effects of chamber size needed to be ex-
amined along with those associated with different ignition techniques.
Since there are two common methods of conducting T-burner tests, a
side by side comparison of these was needed. In addition, it was ob-
vious that a good understanding of the acoustic losses in the T-burner
was lacking.

The present investigations, therefore, were undertaken with
the objective of gaining a better description of the T-burner itself in
order to answer these and other questions about the burner. A second
goal of the studies was to show the relevance of T-burner data to pre-
dictions of instability in rocket motors.

In all, over 400 test firings were conducted in a variety of T-
burners under a variety of conditions. In some of the early tests it
was recognized that ignition procedures can have a significant effect

on test results. The reasons for such effects were made clear by
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tests conducted later in transparent chambers to permit high-speed
motion photography of the firings. By examining the photographic
records obtained from these tests, it became obvious why one of the
four ignition procedures compareﬂ consistently provided better test
results. In addition, the transparent burner firings showed very
clearly that the T-burner is a one-dimensional device for the most
part. Since this is one of the basic assumptions of the analysis de-
scribing the behavior of the burner, it was encouraging to have it con-
firmed so vividly.

The aspect that received the greatest amount of attention in
the studies was the nature of the acoustic losses in the T-burner.
Since the validity of the entire T-burner technique rests on assump-
tions made regarding these losses, it is imperative that they be un-
derstood as fully as possible. Tests conducted in burners of different
diameters showed that the losses are nearly independent of chamber
diameter. Since it had been expected that the losses would vary in-
versely with diameter, this presented a dilemma which remained un-
resolved during most of the investigations. However, later measure-
ments showed that the heat transfer from the combustion gases to the
chamber wall is dependent on the amplitude of the oscillations. From
these measurements emerged a non-linear description of the T-burner
losses which is supported by several independent sets of observations.

Not only does this description account for the observed losses, but it



-6-
also offers an explanation for the nature of the limiting amplitude of
the oscillations. When two independent T-burner methods were com-
pared, the test results initially agreed very poorly. However, when
the T-burner losses were taken to be non-linear in the way proposed,
excellent agreement was found. Thus, the losse\{s: inferred during
these studies appear to account for a number of heretofore unex-
plained features of the T-burner.

Finally, T-burner predictions of instability in rocket motors
were found to be in poor agreement with direct observations made in
a previous study. This lack of agreement is not understood, but it is
doubtful if it is due to large inaccuracies in the T-burner method.

In any case, it underscores the need for more comparisons of this
type in order that the T-burner's role in such studies can be defined

more clearly.
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II. DESCRIPTION OF THE T-BURNER AND ITS PRIMARY ROLE

The T-burner, shown in cross section in Figure 1, is basically
a centrally-vented cylindrical chamber with disks of solid rocket pro-
pellant bonded in the ends. Shortly after ignition of the propellant,
pressure oscillations appear in the burner and grow until a limiting
amplitude is reached. Remaining at this amplitude until burn-out oc-
curs, they then decay because of losses present in the chamber. The
frequency of the oscillations, corresponding closely to the lowest
acoustic frequency of the chamber given by

f = a/2L (2.1)
where a is the mean speed of sound, is varied by changing the cham-
ber length, L, from test to test.

Later it will be shown how the real part of the propellant ad-
mittance can be inferx;ed from measurements of the rate at which the
oscillations grow. As mentioned earlier, the admittance is a measure
of tﬁe propellant's ability to drive the pressure oscillations. It is de-
fined as the complex ratio of the perturbation in the gas velocity nor-
mal to and at the burning surface to the pressure fluctuation there.
Normalized with respect to the mean chamber pressure and speed of
sound at the burning surface, the admittance is

1
A =X n (2.2)
b a_ P

From this it is apparent that a component of the velocity fluctu-



PROPELLANT
CHAMBER

s

ﬂ

' /"'"/\\\'\\

END CAP

PRESSURE
TRANSDUCER

NN NN RNNN

/

NN NN NN

VENT

Figure 1. Typical T-burner Configuration.
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ation is in phase with the pressure fluctuation. If phases are meas-

ured with respect to the pressure, then the in-phase portion of the ve-

r

locity is proportional to Ab )

the real part of the admittance. The
rate at which mechanical "p-v'' work is done at the burning surface is
equal to the time average of the product of the in-phase velocity and
pressure there, and is therefore proportional to the real part of the

8 .
admittance also. In fact, it is easy to show that this mechanical

work rate per unit area of burning propellant surface is given by

1
- 2yP r 2
mech ab Abp (2.3)

By the same token, the mean flow can perform work on the
waves, and the total rate of energy addition to the acoustic field is the
sum of the two effects. At the same time, however, losses such as
viscous and thermal dissipation near the chamber walls remove energy
from the waves. Naturally, in order for the oscillations to grow, the
gains must exceed the losses. In the T-burner this is often the case,
since the losses are relatively small.

Besides the admittance, another quantity of interest in com-
bustion instability studies is the response function of the propellant.
Defined as the ratio of the change in the propellant burning rate to

a fluctuation in pressure, the response function in normalized form is

1

R = - (2.4)

b

CARL
Lol 1
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Since the mass flux at the burning surface is related to the burning
rate by

(2.5)

where Pq is the density of the propellant, the response function can
also be written as

m'!

pl

Rb:

31|

(2.6)
Like the admittance, the response function is also complex since the

fluctuations are generally not in phase.

The response function, rather than the admittance, is of par-

ticular importance to theoretical models of the combustion zone, since

these are concerned with the unsteady burning rate as a function pres-
sure at the propellant surface.

The steady burning rate of many solid propellants is given

quite well by the familiar '""burning rate law, "’

r = alp
where a

(2.7)
1

and n, both empirical constants for a particular propellant,

are the burning rate coefficient and burning rate exponent, respectively,

From this it is easy to show that

H

]
= n&
P

HI[

(2.8)
Combining this with equation (2.4) reveals that in the limit of zero fre-

quency, the response function is
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(R, ) = n . (2.9

This relation is often used to eliminate one of the arbitrary
constants appearing in the combustion models. As a result, most
theoretical descriptions of the combustion zone include the steady
burning rate exponent as a parame'cers. In fact, usually the response
function predicted by these models is proportional to the burning rate
exponent, with the constant of proportionality depending on such fac-
tors as the temperature of the burning surface. Thus, the steady
state behavior is woven rather intimately into the descriptions of the
unsteady burning.

The response function becomes of interest in T-burner studies
when its relationship to the admittance is realized. The mass flux at
the burning surface is given by

m = pu , , (2.10)
where p and u are the density and velocity of the combustion gases.

From this it follows that

m'

- x (2. 11)
m p u
Combining this with the definitions of the response function and admit-
tance results ir% the following:
Ab ‘p'/F

R, = + £ ,
bp/P

(2.12)

where Mb is the Mach number of the mean flow at the burning surface.



-l2-

If the oscillations are isentropic, then

%' _1p (2.13)
P

and the former expression reduces to

1
Ry = YM, (Ay

+ Mb) . (2.14)

In general, however, the oscillations are not isentropic. In
fact, considerable effort has been spent in proving the existence of
"entropy waves'' leaving the burning surfaces. Nevertheless, for the
present purposes, it will suffice to assume that isentropic conditions
prevail and that equation (2. 14) is valid. In that case, T-burner meas-
urements of the admittance may be interpreted as measurements of the
response function, thus broadening the T-burner's role.

Since several analyses of the linear behavior of the T-burner

7,9

have been given elsewhere , only the general approach and final re-
sults will be discussed here. More details are given in Appendix B.
One of the basic assumptions of these analyses is that the gas-
dynamics within the burner can be adequately described by the linear-
ized equations of motion. Of course, this is valid only for sufficiently
small amplitudes of oscillation. Within this range of validity, the
equations of motion are the usual equations of linear acoustics with

""source'' terms present to allow for the mean flow. Equation (2.2),

defining the propellant admittance, is used to relate the acoustic ve-
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locity and pressure at the burning surface.
Upon carrying out such an analysis, one finds that ideally the
amplitude of the oscillations should grow exponentially in time as

ot~ (2.15)

where the '"growth constant, '' o, is related to the admittance by

2a. S
b

b T
- 2 2.
a —— SC (A +M. ) (2.16)

in which ay is the speed of sound at the burning surface and Sb/SC is

the ratio of the burning surface area at each end to the chamber cross-
sectional area. Normally, this ratio is unity, but in one modification
of the basic T-burner method it is varied from test to test.

Opposing the growth of the oscillations, however, are the
acoustic losses of the chamber which, when the driving by the propel-
lant ceases, cause the oscillations to decay in time as

-0t

pl o~ e & (2.17)

where s defined here as a positive number, is the chamber '"decay

constant. "

The observed growth constant, o,g, is presumably the net re-

sult of the two opposing effects:

2
L . b
g L

r

(A

(2.18)

mlm
o

c
Rearrangement of this equation shows how the real part of the

admittance is inferred from measurements of the observed growth
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and decay rates and knowledge of the mean flow Mach number:

r L Sc
= e + - . 2.19
Ab Zab Sb (ong ond) Mb ( )

The mean flow Mach number can be related easily to known

propellant properties. By definition,

u
Y 2 (2.20)
°p
but, by continuity,
pU. = P_T (2.21)
and for a perfect gas,
P
Py = 'Y"E . (2.22)
°p
Thus,
o Ta
M, = SYPb . (2.23)

Because of heat losses at the chamber walls, the mean speed of

sound in the chamber, a, is lower than that at the burning surface.

Generally, values for a, based on theoretical flame temperatures are

b
sufficiently accurate for use in reducing T-burner data. Thus, the
real part of the admittance is completely determined once the T-burner
data are obtained.

In addition, if the oscillations are assumed isentropic, the

above relations combined with equation (2. 14) provide the following ex-

pression for the response function:



S
2
RT - —2 2Ly 14 )=S . (2.24)
b - a g d S
4psrab b b

Were there no heat losses to the wall, the speed of sound would
be constant throughout the chamber, and by equation (2. 1) could be re-
lated to the frequency. In that case, the above would reduce to a form

presented quite often in the literature as the basic T-burner equation:

o +a., S
R - £ & d ¢ (2.25)
- f S
4psra b

From the preceding discussion, however, it should be apparent that
this equation is valid only under very special circumstances. Equa-
tion (2.19), on the other hand, is quite generally valid, which empha-
sizes the fact that the primary role of the T-burner is to measure the

real part of the admittance and not the response function.
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III. DESCRIPTION OF EXPERIMENTAL EQUIPMENT
AND PROPELLANTS

Hardware

From the standpoint of hardware the T-burner is a very simple
device, consisting of little more than a chamber with caps on the ends
and a vent in the celnter. Although simple enough in concept, the T-
burner hardware has nonetheless been approached in perhaps as many |
ways as there are laboratories using the device. Some of these ap-
proaches are described in reference 7, which presents T-burner re-
sults and suggestions obtained from a number of studies, including
some of the present investigations. Among these various approaches
are different end cap arrangements. Some investigators have bonded
the propellant into the cap itself rather than into the chamber, as was
done in the present studies. Also, to reduce possible asymmetric ef-
fects near the vent, multiple vents have been used. In the present
case, however, only a single vent located at the center of the chamber
was employed. The vent diameter was 0.4 inches in the great major-
ity of the tests, but, to see if this had any effect on the data, a few
tests were conducted using 0.25-inch diameter vents. The fact that no
differences in the data were observed supports the generally held be-
lief that the vent , located at the pressure node of the oscillation,

plays little, if any, role in the T-burner tests.
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Because the frequency is determined essentially by the chamber
length, burners of varying lengths must be used to cover the frequency
range of interest. To increase the number of lengths available from a
given set of hardware, several short chambers can be coupled together
to form longer burners. The present tests used T-burners varying in
length from 3.25 to 43.5 inches, covering a frequency range of from
0.3 to 6.4 kHz. The burners longer than 10 inches consisted of at
least two, and as many as four, short sections. In Figure 2 one of
these longer burners is s.hown disassembled.

For these low-frequency burners, the threaded end cap shown
in the figure was used. However, since this required a 2. 5-inch
threaded section on each end of the chamber, it was unsatisfactory
for burners shorter than 7.0 inches. In Figure 3 one of the short,
high-frequency burners is shown, along with the bolt-together end
caps used with these chambers. The bolts, extending the length of
the burner, were used to pull the caps toward one another until these
were tightly seated on the chamber.

The majority of the tests were done with chambers having an
inner diameter of 1.5 inch. However, to examine the effects of cham-
ber size, a number of tests used burners with diameters of 1.0 inch
and 2.5 inches. Most of the T-burners in use today at various labora-
tories fall within this range, with notable exceptions in the 5. 5-inch

and 8.5-inch diameter burners used at the Naval Weapons Center
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Figure 3. A Disassembled High-Frequency T-Burner Using Bolt-
Together End Caps. The Pressure Transducers Used Are
Shown Alongside the End Caps.
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and Allegheny Ballistic Laboratoryll, respectively.

Depending on the end cap arrangement and the chamber diame-
ter, the wall thickness varied from 0.5 to 1.0 inch. Although practi-
cally any material can be used in fabricating T-burner hardware, the
type 304 stainless steel employed for the present burners proved
very satisfactory in withstanding repeated firings.

Besides frequency, the other main independent test variable is
chamber pressure, which should be constant during the firing. Of two
popular ways of controlling this variable, the firstfj is to attach a sonic
nozzle to the vent, allowing the burning propellant to establish the
pressure as it does in a rocket motor. The principal objection to this
approach is that vital information may be lost because of the pressure
transients at the beginning and end of the test.

The second method, and the one adopted here, uses a large
surge tank attached to the vent. Before each firing, this tank, and
hence the chamber, is pressurized with nitrogen gas. The mass of
nitrogen in the tank being much greater than that of the combustion
gases evolved, the pressure rises only slightly during the firing. An
estimate of the pressure rise can be given by assuming the combustion
gases, at temperature Tc » mix completely and adiabatically with the
nitrogen at the initial ambient temperature, Ti . Letting Mi and m
denote the masses of the nitrogen and propellant, respectively, and

Tf the temperature of the final mixture, a simple energy balance
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shows
CviMiTi + CvcmpTc = (Mi +mp)CViTf , (3.1)
where it has been assumed that the specific heats of the mixture are
equal to that of nitrogen. For a large tank, Mi will be much greater
than m , and this equation, after rearrangement, becomes approxi-

mately

Tf ve m c
—_ P _£ . 3.2
Ti 1+ Mi T, ( )

Since the process occurs at constant volume, the perfect gas

equation shows the ratio of final to initial pressure is

P M. +m T

£ __i p _f (3.3)
P, M, T,
1 1 1
or
T,
.- Ut )T (3.4)
1 1 1

With equation (3.2), this becomes approximately

C T

Pf EE ve T
E:1+M.(1+C.—f). (3.5)
i i vi i
Of course, for a perfect gas,
R
Cv = 7o (3.6)

where R is the universal gas constant divided by the molecular weight
of the particular gas. Since the average molecular weight of typical

combustion gas mixtures is close to that of nitrogen, we find
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C v.-1
ve _ 2 (3.7)
C

-1
vi Yc

where Y; and Y, are the specific heat ratios of nitrogen and the com-

bustion gases. Thus, the pressure rise is approximately

m Pi yi—l
p, xR ilT 4 T . 3.8
Pf Pi MiTi [Ti yc—l c ( )

But, by the perfect gas law, if the chamber volume is neglected in
comparison to the tank volume V,

PV = MR T, , (3.9)

where R.g is the gas constant for the pressurizing gas, in this case
nitrogen. Combining the last two equations gives the following ap-

proximate expression for the pressure rise:

m R y.-1
p-P, * —EBE& (7 + 21T ). (3.10)
f i VvV i 1 ¢

c
Thus, the rise depends on the amount of propellant burned as well as
the volume of the tank and is essentially independent of mean pressure.
Because of this latter fact, the relative pressure rise, which is usual-
ly the factor of concern, is obviously inversely proportional to the
initial pressure. Thus, a given tank may be suitable for high mean
pressures but almost useless for low pressure work, since the rela-
tive pressure rise in the latter case would be intolerable.

In the present tests, the volume of the surge tank was seven

cubic feet. For the majority of the firings, the mass of the two pro-
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pellant disks totaled about 25 grams. If, for the combustion gases, a
temperature of 2000°K and a specific heats ratio of 1.25 are assumed,
then the above equation predicts a pressure rise of about 20 psi, which
is surprisingly close to observed values. In some tests, however,

the rise was somewhat less than this, probably because of heat losses
to the chamber walls. Thus, with a seven cubic foot tank and a typical
mean pressure of 300 psig, the pressure was constant to within about
five percent during the entire test. In Figure 4 is shown an assembled

T-burner atop the surge tank used.

Instrumentation

Like the hardware, the instrumentation system was simple in
principle. Shown in schematic form in Figure 5, it consisted of
piezoelectric pressure transducers mounted in the ends of the burner,
appropriate amplifiers and filters, a tape recorder, recording oscil-
lograph, and a storage oscilloscope. Although not represented in the
figure, thermocouples and their associated electronics were also em-
ployed in a few tests.

The most essential components of the instrumentation system
were the Kistler 603-A piezoelectric pressure transducers mounted
Behind, but in contact with, the propellant. By using two transducers,
both the amplitude and relative phase of the oscillations at the two ends

of the chamber could be compared. In general, the oscillations were
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Burner Mounted on the Surge Tank.

Assembled T

Figure 4.
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equal in amplitude at the two ends and approximately 180° out of
phase, in agreement with the acoustic description of the oscillation
mode.

Placement of the transducers behind the propellant, which is
common practice in T-burner tests, afforded maximum protection for
the transducers in addition to excellent observations of the oscilla-
tions. In order to be certain that the pressure signals were not being
distorted or attenuated while passing through the quarter-inch thick
propellant disks, some tests were conducted using a transducer
mounted also in the chamber wall just ahead of the propellant. The
data obtained at the two locations were in excellent agreement, con-
firming generally held opinions. This agreement.came as little sur-
prise, however, since tests conducted in the normal way had shown no
transducer signal change as the propellant thickness grew smaller
during the test.

A 0.020-inch thick layer of General Electric RTV-580 silicone
rubber covering the transducer face provided considerable protection
against the high temperatures. Nevertheless, a slight drift of the
transducer signals, arising presumably from thermal effects, was
observed during the early tests. This was later compensated by pass-
ing the signals through coupling transformers having a flat frequency

response between 0. 05 and 15.0 kHz.

To assure good contact between transducer face and the rear
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of the propellant, Dow Corning DC-11 silicone grease was applied to
the latter before the end cap, containing the transducer, was attached.
Excess grease was removed through a small bleed port as the end cap
was seated into place.

Although the principal data came from the tape playbacks onto
the oscillograph, the storage oscilloscope records were particularly
useful in observing qualitative trends. These, of course, were con-

siderably less apparent in the rather lengthy oscillograph traces.

ProEellants

To distinguish between those effects arising from individual
propellant peculiarities and those inherent in the T-burner itself, four
different composite propellants were used. A lengthy search for suit-
ably unstable propellants was avoided by selecting only those which
had exhibited combustion instability in prior studies. In Table A are
found some of the pertinent properties of the propellants chosen. Al-
though not mentioned in the table, none of the propellants contained
metal powders. Since it has long been known that the presence of
solid particles in a gas can lead to large attenuation effects, it was
decided to use only non-metallized propellants in order to study the
damping characteristics of the burner itself.

The first propellant listed in the table, A-13, was generously

supplied by the Naval Weapons Center at China Lake, California.
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TABLE A. Pertinent Properties of the Four Propellants Used.

Propellant A-13 T-17 - 540-A A-35

Binder/Oxidizer PBAN'/AP? Ps®/AP PPG*/AP PU®/AP

Specific Heats
Ratio, vy 1.28 1.25 1.22 1.25

Density (gm/cm3) 1.56 1.58 1.63 1.58

Burning Rate at
300 psig (cm/s) 0.48 0.78 0.50 0.46

Burning Rate
Exponent at
300 psig 0.42 0. 38 0.15 0.0

Flame Ternpoerature
at 300 psig ( ' K) 2100 2050 2900 2160

-

Polybutylacrylonitrile acrylic acid
Ammonium perchlorate

® Polysulfide

4 Polypropylene glycol

® Polyurethane
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Having been chosen for a number of prior T-burner studies, this pro-
pellant was an obvious choice. Among the propellants used, A-13 was
the most unstable by almost any standard.

A decade ago, the second propellant, T-17, had been used in
the most comprehensive study of combustion instability in actual
rocket motors. By carrying out T-burner tests with this propellant
it was intended to show the relevance of T-burner data to rocket motor
stability predictions.

Previous instability studies at the Jet Propulsion Laboratory
had included investigations of the third propellant selected, 540-A.
During the present experiments it was realized that this propellant
offered a particularly interesting feature, as far as instability con-
siderations are concerned, since its burning rate is almost constant
for pressures between 500 and 1250 psig. From equation (2.7) it is
seen that this requires a very small burning rate exponent over that
pressure range, which, according to most combustion models, im-
plies that the propellant is stable. The fact that the present T-burner
investigations found 540-A to be far from stable in this pressure re-
gion indicates again the lack Nof a thorough understanding of combus-
tion instability in solid propellants.

Finally, the fourth propellant, A-35, was also supplied by the
Naval Weapons Center, and, like the 540-A propellant, exhibited a

near zero burning rate exponent over a moderate pressure range. In
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comparison to the other three propellants, A-35 was only weakly un-

stable and was therefore used in only a few firings.
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IV. DATA REDUCTION METHODS

During the Round Robin T-burner tests7 mentioned earlier, it
became clear that different interpretations of the same test record
could account for significant variations in data reported by various
investigators. In fact, one of the main results of the Round Robin
series was a set of standards for intérpreting T-burner tests in a
uniform manner. For tests that produce near ideal records, such
standards can be applied easily and minimize the amount of interpre-
tation possible. Unfortunately, not all records are so ideal, and the
problem of test interpretation reappears.

Since most of what follows is concerned with information ob-
tained from test records, two such records will be discussed and the
methods used for deriving and reducing the test data described. Ob-
viously, these two cases cannot begin to cover the spectrum of fea-
tures observed in the many firings, but they do illustrate the typical
test characteristics as well as some of the less common features.

In Figure 6 is shown a condensed oscillograph record for a
near ideal test. The oscillatory pressure is given as a function of
time, which increases from left to right. Due to the extensive com-
pression along the time axis required for presentation here, only the
envelope of the waves is apparent. Naturally, in the full-length

records, the individual oscillations were clearly discernable.

In this test, the oscillations begin very soon after ignition,
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but almost 0.2 second elapses before the amplitude is large enough
to be measured accurately. By statically calibrating the pressure
transducers prior to each set of tests on a dead-weight tester, the
amplitude could be determined to an accuracy of two to three percent.
For this particular test, the waves grow until a limiting amplitude,
_I;' , of 25 psi is reached at about 0.45 second into the test. The am-
plitude remains essentially constant until burnout, which occurs at
0.82 second. Then, because of losses in the chamber, the oscilla-
tions decay and finally disappear during the next 0.1 second. Thus,
less than a second is required for the entire firing.

For a variety of reasons, one is interested in measuring the
mean burning rate of the propellant. Since the propellant thickness
was known very accurately, the mean burning rate was determined
with an accuracy of about three percent by dividing this thickness by
the observed burn time.

Frequency measurements were obtained by counting the num-
ber of oscillations occurring in a short interval of time. By including
a 1.0 kHz reference signal on the tape recordings, the accuracy of
these measurements was very good.

The most important T-burner measurements are those of the
growth and decay constants of the oscillations, since the admittance

is determined from these. Unfortunately, they are also among the

most difficult data to obtain accurately because they involve consider-
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able test interpretation and data reduction.

As a rule, growth constant data show less scatter than do
those obtained for décay constants. A probable reason for this is that
chamber conditions are changing rapidly during the decay, and hence,
the decay rate may vary with time. Considering this, it is surprising
that the decay rates observed in most of the tests remained as con-
stant as they did.

For a majority of the tests, the growth and decay constants
were determined to an estimated accuracy of five percent. These
measurements were made by plotting the amplitude during growth and
decay semi-logarithmically against time. By fitting the best straight
line to the plots and calculating its slope, the appropriate constant
was determined. As an example, if p'1 and p'2 é.re the amplitudes at
times t1 and tz on the straight line portion of the semi-logarithmic

growth plot, then the growth constant is

ta(py/p})

G- =
g t-Y

For the test of Figure 6, the amplitude versus time plots,
al;)ng with the calculations for the growth and decay constants, are
shown in Figure 7. In the upper plot, the time origin has been taken
as that instant when oscillations first appeared. In the lower plot,
burnout has been taken as the origin in time.

The growth and decay frequencies were defined as those values
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falling approximately midway along the straight line portion of the
plots. In Figure 7 these are indicated as 3.36 and 2.85 kHz, respec-
tively. As a rule, the frequency did not vary greatly during growth,
although a slight decrease was usually observed. During decay, how-
ever, decreases of up to 25 percent were often present, due to the
rapid cooling of the gases.

Although a majority of the tests resulted in records similar to
that shown in Figure 6, a number produced less satisfactory results
for one reason or another. One such case is shown in Figure 8 where,
among other things, it is apparent that the oscillations do not reach a
well-defined limiting amplitude. Instead, upon reaching what appears
to be a limiting value at about 0.4 seconds after ignition, the waves
continue to grow slowly during the remainder of the test. In such
cases, the limiting amplitude was taken as the average value observed.
What is meant by '""average value'' will become more apparent in Sec-
tion X, which discusses the nature of the limiting amplitude in greater
detail.

A second feature of this test is that the oscillations appear al-
most immediately after ignition, then decay, and finally start to grow.
This behavior was observed often in tests, such as this one, conducted
at frequencies of less than 1 kHz. The response of the propellant is
very high at low frequency, which means that any disturbance, such as

the ignition pressure itself, is significantly amplified. However, be-
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cause a short interval of time elapses before the propellant is burning
over its entire surface, the chamber losses overcome the driving,
and the waves decay. The ignition transient is soon over, and then the
burning propellant does indeed begin to drive the waves.

Naturally, under circumstances such as these, the growth is
not exponential at first. However, after a short transition period, the
waves do grow exponentially, and the growth constant can be calculated
as before.

The most curious feature about this particular test is the decay,
which, as shown in Figure 9, occurs in two distinct stages. Immedi-
ately after burnout, the amplitude decreases with an initial decay con-
stant, Oy of 11 s-1 while the frequency drops from .68 kHz to .52
kHz. Then, a distinct change in the decay rate occurs, and the final

decay constant, @ is only about half the initial value. Likewise, the

df’
rate of frequency decrease is much less during the second stage.

This behavior was observed often in low frequency tests, par-
ticularly in those using 540-A propellant, and was quite reproducible.
It is decidedly different from that caused by poor ignition procedures,
which will be described in Section VI. It presumably arises from the
fact that chamber conditions change significantly during decay. In the
longer chambers the gases, even during burning, are relatively cool

over a large portion of the chamber because of heat transfer to the

walls. In addition, because the losses are fairly small at low fre-
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Figure 9. Decay Plot for Test Shown in Figure 8.
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quency, the decay period can be quite long. Thus, the gases become
even cooler during the decay, and, conceivably, can begin to condense
on the walls. As a result, the decay rate changes significantly.

Naturally, it is in firings such as this that test interpretation
becomes very important. All of the various T-burner analyses7’ 9,
including that outlined in Appendix B, assume linearized behavior in
the burner. Thus, to be valid, measurements of growth and decay
should be made while the amplitude is very small. For the growth
constant, this presents no particular problem. However, for the de-
cay constant, the situation is more complex. There, because of
rapidly changing chamber conditions, if one waits until the amplitude
is small, he may measure chamber losses under conditions quite
different from those present during growth. On the other hand, by
taking measurements immediately after burnout, the assumptions of
linear behavior may be violated. Obviously, compromise is the only
way out of this predicament. As a result, decay constants were ob-
tained by observing the waves while their amplitude was between 70
and 5 percent of its limiting value. For tests showing two distinct
decay rates, the initial rate was used to calculate the decay constant
on the basis of the argument presented above.

By examining the test records in the manner outlined here, the

data presented in the tables of Appendix A were obtained. A number of
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tests were exploratory in nature and involved rather singular test con-
ditions and, hence, could not be included in the tables. However, in

such cases where significant results were obtained, the individual

test will be discussed in the text itself.
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V. SOME T-BURNER PROPERTIES IN
NON-DIMENSIONAL FORM

Like the properties of many other devices, those of the T-
burner can be presented perhaps most clearly in terms of non-dimen-
sional variables. In addition to providing a better feeling for the
various quantities involved, such groupings also lay the foundation
for discussions that will follow. Most of the features of the T-burner
are associated with either the mean flow or the oscillations. Thus,
it is appropriate to characterize these two aspects of the burner in
terms of non-dimensional variables first, and then relate the other
properties to these.

The mean flow itself is best described by the Mach numbers at
the burning surface and vent. These represent, respectively, the
minimum and maximum values attained by the flow. In Section 1I, the
Mach number at the burning surface was found to be

ps?ab

Mb = yP (5.1)

Taking the following values as typical of those encountered in T-burner

tests,
py = 1.5 cm/cm Yy = 1.28
- 7 2
r = 0.5cm/s P = 2X10 dynes/cm
5 (300 psia)
a = 107 cm/s

we find by the above equation that the Mach number at the burning sur-
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face is only about 0.003. Multiplying this by the speed of sound, a
we find that the velocity there is typically 3 meters/sec.
Because the flow area at the vent is considerably smaller than
at the burning surface, the Mach number there, denoted as Mv’ is

substantially greater. For one-dimensional isentropic flow, the mass

flow per unit area, expressed as a function of the Mach number M, is

+1
) 2(y-1) :
m = P_ /1ﬁY— M(———T_—I——Z—> , (5.2)
o) 1+——2——M

whgre Po and To are the stagnation pressure and temperature. If
the flow in the burner is taken as steady, the total mass flow at the
vent, mVSv, is equal to the sum of the total mass flows at the two
ends of the burner. Applying equation (5.2) at both burning surfaces
as well as the vent and taking the preceding condition into account, it

follows that

_Yytl
S M., 1 32ty 2 20y
v b< 2 v ) (5. 3]
ZSb Mv 1 +l——;l sz

where, of course, SV and Sb are the areas of the vent and the burning

propellant surface, respectively. For a propellant diameter of 1.5

inch and a vent diameter of 0.4 inch, SV/ZSb = 0.036. Assuming the

value for Mb found earlier, this equation shows that the Mach number

at the vent is about 0.08, considerably greater than Mb but still far
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from unity. With a speed of sound of 105 cm/sec, the flow velocity
at the vent would be 80 meters/sec. Thus, the flow never approaches
choked conditions within the burner or vent. Naturally, when a surge
tank is used to provide the pressurization, the vent diameter is cho-
sen to assure subsonic conditions there.

Just as the mean flow can be described in terms of appropri-
ate Mach numbers, so can the oscillations be chafacterized by an

oscillatory Mach number, defined as

M! = _LU;'_L s (5.4)

a
where |u'| is the maximum magnitude of the velocity oscillations.
For a sinusoidal wave it can be shown that |u'| is related to the pres-

sure amplitude, p', by

lw] _ pU (5.5)
a yP

where P is the mean pressure. Thus, the oscillatory Mach number is

i
M o= Bo | (5.6)

Since the oscillations grow and decay during the test, this number
obviously varies from zero to some maximum value determined by
the limiting amplitude, ;' . Often the limiting amplitude reaches 15 to
20 percent of t‘he mean pressure. Under such conditions, equation
(5.6) indicates an oscillatory Mach number on the order of 0. 1. This,

in turn, implies a maximum velocity of 100 meters/sec, some 30

times greater than the axial velocity of the mean flow. Naturally,
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when the oscillatory velocity is greater than the mean velocity, the
flow will undergo reversal in direction twice each cycle. Since the
acoustic velocity all but vanishes at the ends of the chamber, it is ap-
propriate to determine, for a given amplitude of oscillation, over what
portion of the burner length does this reversal occur. If |u'| denotes
the maximum value of the acoustic velocity, then the oscillatory ve-
locity along the chamber is approximately

u'(x) = ‘u’lsin% ) (5.7)

where x is the distance from one end of the chamber and L the
chamber length. For flow reversal to occur, u' must equal the

mean velocity, ‘1;, which, by definition, is just aM With equation

b
{5.5) and the above, we find this condition is met when

.
% sin-T;,_J—X = Mb . (5.8)

Taking p' as five percent of the mean pressure and M, as 0,003, we

b
find from the above that

x/3L = 0,05
Thus, for a wave of only 5 percent of the mean pressure, the acoustic
velocity exceeds the mean velocity for more than 95 percent of the
chamber. For all practical purposes then, it can be assumed that the

flow undergoes reversal all the way from the burning surface to the

vent.
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The number of reversals for a particular fluid particle is ob-
viously the length of time required for the flow to travel half the
chamber length multiplied by twice the number of cycles per unit
time which, of course, is the frequency. If u is the mean flow ve-
locity and N the number of reversals for each particle, then
2L

u

N = 2 f . (5.9)

However, by equation (2.1), a = 2Lf; and by equation (2.20), u = aMb .
With these relations, the above expression becomes

N = o7/ . (5.10)

Taking Mb as 0,003 again, we find that a given fluid particle under-
goes approximately 160 reversals in flow direction before it reaches
the vent. Needless to say, with such processes occurring, it is
doubtful if a normal mean flow boundary layer develops on the wall of
the burner. This point will be taken up again in the discussions of the
acoustic losses of the T-burner.

However, with regard to boundary layer considerations and,
in particular, to heat transfer processes, it is appropriate to esti-
mate the Reynolds number associated with both the steady and oscilla-

tory flow. For the former, the Reynolds number based on chamber

diameter is

Re = . (5.11)



-47 -
However, it was shown in equation (2.21) that by continuity pu = ps-;,
where P is the solid propellant density and T the steady linear
burning rate. Using this relation, the mean flow Reynolds number

becomes

Re = —> ) (5.12)

For typical mixtures of combustion gases, the viscosity coefficient,
M, is approximately 4 X 10_‘4 gm/cm-sec for temperatures in the
range of 1000 to 15000K. Using the previously assumed values for
the other terms, this equation shows that the Reynolds number for the
mean flow is typically 7500. If the flow were steady, one would ex-
pect it to be turbulent on the basis of this Reynolds number.

Of course, as was demonstrated earlier, the dominant velocity
in the T-burner is generally that associated with the oscillations. If
one uses this velocity to calculate an '"acoustic Reynolds number, "

Re , then
a

Re = 29D (5.13)

where again the characteristic length has been taken as the chamber

diameter. With equations (5.4) and (2.20) it is easy to show that

1
R_ea = Re—l\l\'//—i- . (5. 14)
b

Using previously determined values for the quantities on the right
side of this equation, we find that the acoustic Reynolds number is

about 105. Although the relevance of this acoustic Reynolds number
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is not presently apparent, it will later be shown that it is indeed sig-
nificant with regard to the surface heat transfer in the burner.
Despite the fact that the oscillations often attain large ampli-
tudes, the energy associated with the waves is still very small com-
pared to the thermal energy of the combustion gases. This is easily
demonstrated by realizing that for a standing sinusoidal wave of am-

plitude p', the acoustic energy per unit volume is
2

!
e, = ';?E_Z . (5.15)
pa

Likewise, for a perfect gas at temperature T, the internal energy
per unit volume is

eT = pch . (5.16)

2
Dividing, and realizing that for a perfect gas a = yP/p, P = pRT,

and R = (Y-l)cv, we find

e o' 2
—1;-) . (5.17)

|
<
]
fown

Taking the amplitubde‘ as 30 percent of the mean pressure, which is
about the maximum observed, we find that the acoustic energy is at
most only one -half of one percent of the mean thermal energy.
Thus, if even a very small fraction of the energy of the combustion
gases becomes coupled with the acoustic field, very sizable oscilla-
tions can result. It is precisely because of this fact that the propel-

lant, despite its small acoustic admittance and low mean flow velocity,

can drive such large oscillations in the T-burner and rocket motors.
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VI. A COMPARISON OF VARIOUS IGNITION PROCEDURES

Since an instantaneous ignition and burnout are implicitly as-
sumed in the T-burner theory, a poor ignition resulting later in a
slow, uneven burnout of the two propellant disks could certainly have
an adverse effect on the test results. Consequently, during the studies
four different ignition techniques were tried and their effects on the
data compared.

In all four cases, a pyrotechnic "ignition paste' was used to
some extent, the major distinction among the four techniques being the
type and amount of paste used. Applied to the propellant face, this
paste was ignited by passing a 28-volt d. c. signalﬁthrough a half-inch
length of 34-gauge Nichrome wire. Copper leads, fed through a con-
nection in the vent and passed along inside the burner to the propellant,
connected the power supply to the Nichrome '"hot-wire.'" The paste,
burning rapidly with a hot flame, ignited the propellant in turn. Tests
conducted in transparent burners showed that the entire process oc-
curred in a few hundredths of a second.

Of two types of ignition paste used, the first, supplied by the

Naval Weapons Center, was denoted as X-225 and consisted of

polyisobutylene 6.0 wt. percent
boron powder 6.9 wt. percent
titanium powder 14. 8 wt. percent

potassium perchlorate 72.3 wt. percent
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Because of concern over possible attenuation effects arising
from metal particles in the combustion products of this paste, another,
denoted as CIT-1, was also used and contained the following:

polyisobutylene 10.0 wt. percent

ammonium perchlorate 90.0 wt. percent
The four ignition procedures are briefly described below. In
all four cases, Carter's Rubber Cement was used to attach the hot-
wire, or tablet containing the hot-wire, to the propellant.
Method 1: X-225 paste was applied to the entire propellant face,
forming a layer approximately 0. 01 inch thick. To this layer
was attached a small tablet of X-225, weighing roughly 0.5

gram, containing the hot-wire.

Method 2: X-225 was applied as above to the propellant. The
hot-wire was attached directly to the layer of paste with no

tablet being used.

Method 3: X-225 was applied only to a small spot in the center
of the propellant face. The hot-wire, which had been coated
with X-225 paste by dipping it briefly in the paste, was at-

tached to the spot of paste.

Method 4: CIT-1 paste was applied to the entire propellant face.
To this was attached the hot-wire, coated with X-225 as in the

previous case,
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Of the four methods the first was definitely the best, accord-
ing to the test data. It produced burn times that were not only highly
reproducible but also consistent with known strand burning rates. In
tests using this method, the frequency generally decreased almost at
the instant when the amplitude started to decay at the end of the firing.
This was interpreted as an indication that burnout had occurred not
only rapidly, but also very evenly over the entire propellant face.
Transparent burner tests showed that the tablet of X-225, upon being
ignited, sp?ayed burning particles over the propellant surface, ignit-
ing the paste wherever contact was made. Since this occurred quickly,
so did ignition of the propellant face.

Method 2, while yielding fair test reproducibility, was judged
generally inferior to the first method. The burn times were, on the
whole, longer and the decays less well defined, indicating probably a
slower burnout. Again, the transparent burner, to be discussed more
fully later, proved most useful in understanding the quality of the sec-
ond method. The paste near the hot-wire ignited very soon after the
firing command had been given. However, a considerable time often
elapsed before ignition of the entire surface occurred. Without the
igniter tablet used in the first method, ignition depended more on the
flame spread speed of the paste itself, which apparently is reasonably
slow. There were instances, however, when a rapid ignition was ob-

served using this method, but this appeared to be somewhat random,
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depending on burning particles bouncing off the chamber wall and
other particles back onto unignited regions. Clearly, the igniter
tablet of Method 1 produced a more dependable spray of hot particles
across the propellant surface.

Of the four methods, the third was by far the worst, resulting
in long burn times and very poor decays of amplitude and frequency.
In general, the oscillations were delayed for a considerable time and
grew slowly in tests using this method. Although no transparent
burner tests were obtained with this procedure, it is clear that igni-
tion in this case depended on the flame spread of the propellant itself,
which, with no flow parallel to the propellant surface, was probably
very slow.

Finally, the fourth method provided data comparable to that
obtained from tests using Method 2, indicating the absence of effects
arising from metal particles in the ignition paste. The transparent
burner studies showed that most of the products of the ignition paste
are flushed out of the chamber by the propellant gases before the os-
cillations begin. This would explain the lack of influence of the metal-
lized ignition paste on the test data.

In Figure 10, the oscillatory pressure and frequency are
shown for two tests which differed only in the ignition procedure fol-
lowed, the upper test using Method 1 and the lower Method 3. From

the preceding remarks it is clear that the tests represent the two ex~
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Figure 10, Comparison of Two Tests Which Differed Only
in the Ignition Method Used.



~54.
tremes as far as quality of ignitionvis concerned. Using A-13 pro-
pellant at a chamber pressure of 300 psig, the tests were conducted
in 1. 5-inch diameter chambers measuring 7.0 inches in length.

Of the many differences observed in the two test records, a
few are readily apparent. First, in the upper test, using Method 1, '
the oscillations appear approximately 0.2 sec after ignition, but in
the lower test almost 0.8 sec elapses before an;r oscillations develop.
This is presumably because in the second case a considerable llength
of time is required before enough propellant is burning to drive the
waves. Burnout occurs at about 1.35 sec in the upper test and at
1.55 sec in the lower, if burnout is taken as that instant when the
pressure amplitude begins to decay. Clearly, the frequency does not
decrease in the lower test until the oscillations have all but disap-
peared. Apparently a portion of the propellant continues to burn long
after the rest has burned out. In the upper test, however, the fre-
quency decreases immediately after the oscillations start to decay.

These qualitative differencés take on greater significance when
their quantitative effects become apparent. Below are some of the
data derived from the two tests of Figure 10:

Upper Test Lower Test
(Method 1) (Method 3)

burn time, t, (s) 1.35 1.55

b
delay time (s) 0.2 0.8
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Upper Test Lower Test
(Method 1) (Method 3)

-1
growth constant (s ) 33 17
-1
decay constant (s ) 20 10
limiting amplitude, p' (psi) 49 43

T

. 0035 .0014
b

admittance real part, A

From these results it is apparent that ignition procedures alone can
account for errors on the order of 100 percent in measurements of the
growth and decay constants, leading to even larger errors in the val-
ues inferred for the admittance. This certainly emphasizes the im-
portance of establishing a rapid and even ignition, and indicates that
much of the disagreement between various laboratories conducting T-
burner tests may arise from significant differences in the ignition
procedures followed.

Since ignition plays such an important role in T-burner tests,
it is fortunate that faulty ignitién procedures can often be detected
from certain aspects of the test records. By far the easiest means of
detecting a poor ignition is to examine the record after burnout has
supposedly occurred. The first indication of poor ignition is the ab-
sence of a frequency decrease accompanying the amplitude decay.
This can only mean that some propellant is continuing to burn, since
otherwise the gases would cool very rapidly.

Of course, a frequency decrease accompanying the amplitude
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decay still does not signify a good ignition; it simply means that the
ignition was at least fair. In the present tests, the qualitative be-
havior of the amplitude decay seemed to be the best indicator of ig-
nition quality. Examples of this are afforded by Figure 11, in which
the decaying oscillatory pressure of the two tests in the preceding
figure is plotted semi-logarithmically against time. Clearly, in the
upper test, using Method 1, the pressure decay begins very rapidly
and continues at a constant rate for the entire period of time shown.
In the second test, on the other hand, burnout is not at all obvious
and never does the decay become truly exponential with a constant
decay rate. Instead, the decay rate increases slowly with time,
probably as a result of more and more propellant burning out. But,
even after a significgnt length of time, the decay constant of the sec-
ond test is still only half that observed in the other case. This is
despite the fact that the only difference between the two firings was
the ignition method used. This ""rounded' decay exhibited in the sec-
ond test is typical of that observed in tests where poor ignition oc-

curred and is probably the best indication of such ignition faults.
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VII. TRANSPARENT T-BURNER STUDIES

Since certain aspects of the T-burner, such as the nature of
the flow field, are difficult to determine from the usual test records,
a few firings were conducted in transparent Lucite chambers to permit
high-speed cinematography of the tests. The latter was provided by a
Hycam Model 400 motion picture camera operating at a rate of 8000
frames per second, which, since the oscillation frequency was on the
or&er of 1 kHz, permitted several frames during each cycle. The
Lucite chambers had an inner diameter of 1.5 inch and a wall thick-
ness of 0.25 inch. Their lengths ranged from 7.0 to 13.0 inches.

Lucite was selected after initial attempts to use Pyrex had
resulted in problems associated with providing an adequate pressure
seal between the chamber and vent. Because the Lucite performed so
well, further attempts to use Pyrex were abandoned. The only prob-
lem found with the Lucite was a tendency for the inner walls of the
chamber to become frosted during the test. However, this occurred
very slowly, and the rugged nature of this material far outweighed
this one disadvantage.

One of the transparent burners used is shown in Figure 12.
For this particular test, the chamber length was 10.0 inches and
Method 2 ignition procedures were used. As can be seen, bolt-

together end caps were used as was a saddle arrangement for the vent

connection.
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The main difficulty encountered was the tendency of most burn-
ing propellants to form dark deposits on the chamber walls during the
test which, of course, obscured the view considerably. Fortunately,
T-17 propellant is very clean burning and exhibited none of this be-
havior. Consequently, it was used for most of the tests. Besides
being clean burning, T-17 also was unstable enough to drive sizable
pressure oscillations. Often the limiting amplitude exceeded 20 per-
cent of the mean pressure, which was arbitrarily chosen as 115 psia.

There was some initial concern that the Lucite chambers,
being less rigid and having thinner walls than their steel.counter-
parts, might adversely affect the test results. These fears were
soon allayed by comparisons of data obtained in both types of cham-
bers. Below are the results of one such comparison. For these two

tests, the chamber length was 13.0 inches and the propellant was T-17.

Steel Lucite

Chamber Chamber
growth constant (s_l) 22.2 22.9
decay constant (s 1) 10.5 10.0
mean frequency (kHz) 1. 06 1. 04
limiting amplitude (psi) 29 26

The excellent agreement observed here is representative of that
found in other comparisons and indicates that the transparent burner

is as useful a device for normal tests as is the steel T-burner, ex-



-61-
cept, of course, at high pressures where the former obviously cannot
be used.

Naturally, the real value of the transparent burner lies in the
motion pictures obtained from tests conducted in it. Because of the
many frames involved to cover even a short span of time, these do
not lend themselves well to display here. However, Figure 13 shows
a single frame obtained during one test, which demonstrates rather
clearly the important finding that the flow in the T-burner is essenti-
ally one dimensional, as assumed. Naturally, near the vent, three-
dimensional effects appear, but this region comprises a relatively
small portion of the burner. This particular photograph was obtained
shortly before the oscillations appeared. Although the flow under-
went reversal after the onset of oscillations, it still remained basi-
cally one dimensional. No circulating secondary flows were observed
at all. Pulsations of light, out of phase at the two ends of the burner,
were clearly visible and presumably arose from temperature oscilla-
tion.

In addition to providing these interesting observations, which
certainly helped to establish the validity of several assumptions re-
garding the burner itself, the transparent burner proved most useful
in comparing and evaluating the various ignition procedures discussed

in Section VI. Some of the differences between the methods are

rather subtle and would have been difficult to understand without the
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.

Figure 13. The Transparent T-burner During a Firing.
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photographic records. For instance, it was abundantly clear from
the motion pictures that the igniter tablet used in ignition Method 1
provided a very rapid and reliable ignition by spraying hot particles
across the propellant face. From the films it also became apparent
why Method 2 sometimes produced a good ignition and sometimes did
not. If hot particles of burning paste happened to collide just right
and bounce back onto unlit portions, then a rapid ignition could be
oi;tained by this method also. Because of the random nature of this
process, this method proved less reliable than the former. Thus,
with the transparent T-burner,not only the effects of the various ig-
nition procedures could be observed but also the causes behind these
effects.

These observations and comparisons, while important in
themselves, serve only to indicate the many applications which exist
for a burner of this type. Of the many studies, those conducted with
the transparent T-burner certainly provided some of the most inter-

esting and enlightening insights into the nature of the burner.
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VIil. HEAT TRANSFER IN THE T-BURNER

It has been mentioned several times in previous sections that
because of heat transfer to the chamber walls the combustion gases
are considerably cooler by the time they reach the vent than they
were upon leaving the burning surface. Although a few direct tem- -
perature measurements were made, this is usually inferred from the
fact that the observed frequency is lower than would be expected from
calculations based on the adiabatic flame temperatures of the propel-

lants used. Since the frequency is related to the mean speed of sound

by
f = a/2L , 8.1)

where L is the distance separating the burning propellant surfaces,
measurements of the frequency can easily be interpreted as measure-
ments of the mean speed of sound in the burner. Since, for a perfect
gas
22 = yRT , (8.2)
these latter values can be used to determine the mean temperature of
" the combustion gases present.

In Figure 14 the mean speed of sound, as inferred from such
measurements, is shown as a function of chamber length for A-13
propellant at 300 psig in 1.5 inch diameter chambers. Clearly, the

mean speed of sound, and hence the temperature, decreases with in-

creasing chamber length. Far more interesting, however, is the fact
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that the speed of sound is considerably lower than would be expected
from heat transfer calculations based on the mean flow. The latter
values are shown as the solid line near the top of the figure and will
be discussed more fully somewhat later. Such significant differences
can only imply that the heat losses from the gases to the chamber
walls are considerably greater than would be expected. With the
large oscillations being a distinctive feature of the flow in the T-
burner, it was decided to investigate the heat transfer as a function of
the oscillatory amplitude.

Although other studies1 2 have been made of heat transfer
under oscillatory conditions, very few have dealt with oscillations as
large as those encountered in the T-burner,where the oscillatory ve-
locity is often one to two orders of magnitude larggr than the mean
velocity. In bne case1 , however, the T-burner was actually used
to calculate heat transfer rates in the presence of such large oscilla-
tions. Although that study involved a completely different approach
from the one which follows, and interpreted the results in a signifi-
cantly different way, it did conclude that in general the oscillations
inc-rease the heat transfer to the walls. The present studies certainly
support this conclusion and, perhaps more importantly, have resulted
in a good correlation between the heat transfer rate and the amplitude
of the oscillations. Consequently, it now may be possible to predict

the increases of heat transfer in rocket motors which have long been
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known14 to accompany combustion instability. In fact, it is conceiv-
able that the T-burner could become an important tool for studying
heat transfer under such conditions and thereby assume an even
broader role.

In the past, considerable attention has been given to the prob-
lem of determining the heat transfer from gases flowing inside tubes.
The heat transfer is often characterized by a convective heat transfer
coefficient, h, defined by

h = ——— , (8.3)

where qw is the heat transfer rate per unit wall area and T and Tw
are the temperatures of the gas and wall, respectively. In general,
h depends on the geometry involved as well as the nature of the flow.
In Section V it was noted that the Reynolds number based on
mean velocity and chamber diameter is about 7500 for the flow inside
the T-burner. Likewise, the Reynolds number based on the acoustic
velocity was found to be about 105. A steady flow with either of these
Reynolds numbers would most likely be turbulent, For fully-developed
turbulent flows, many attempts have been made to correlate observed
values for the heat transfer coefficient with the various fluid dynamic
variables. Perhaps the best known, and certainly one of the most

. . !
satisfactory, correlations is

0.8 0.4
%{9 = o.oz3<ﬁ:79> (E;E) . (8.4)
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The dimensionless combination hD/k is recognized as the Nusselt
number, puD/u as the Reynolds number, and u.cp/k as the Prandtl
number, where k is the thermal conductivity and u the viscosity co-
efficient. Using these dimensionless variables, the above can be
written more simply as
Nu = 0.023 Reo' 8Pr0'4 . (8.5)

In rocket motors, very large temperature differences usually
exist between the hot combustion gases and the cool chamber walls,
Consequently, the fluid properties can vary greatly, depending on
what temperature is used to evaluate them. Quite often, the arith-
metic mean between the gas and wall temperature is used. As an
example, Bartz14 found the following semi-empirical equation de-

cribed rather well the heat transfer coefficients determined in one

series of rocket motor firings:
0.2
e ( u)o'8 Pamy\/HMam
h:0.026< o}g>poz( W=22Y. 0
Pr° D’ P Mo

Here, the fluid properties with the subscript 'am' were evaluated at

the arithmetic mean temperature.

Since the T-burner in many ways resembles a rocket motor,
it was initially felt that the above equation might also apply to the heat
transfer in the burner. Of course, for the most part, only indirect
measurements were available for the temperature of the gases in the

chamber. However, by the following analysis it will be shown how
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these measurements were able to establish not only that the values
predicted by the above were far too low but also what the appropriate
correlation is for the heat transfer in the T-burner.

To determine the heat transfer coefficient for the gas flow in
the T-burner, consider a gas flowing at temperature T and velocity
u through a tube of diameter D whose wall temperature, Tw’ is
constant. For simplicity, assume that the temperature is a function
only of the distance, x, the gas has traveled since entering the tube
at temperature TC . As the gas flows a distance dx, an amount of
heat dq is transferred per unit time to each unit area of wall surface.
For a cylinder of diameter D and length dx, the wall area is obvi-
ously mDdx. From equation (8.3) then the rate of heat transfer, dq,
is

dg = h(T-Tw)n'Ddx. (8.7)
Naturally, this transfer of heat results in a decrease of the gas tem-
perature. The principle of conservation of energy applied to the
cylindrical control volume used above shows that

df = -puc S = dx , (8.8)

where cp is the specific heat of the gas and Sc is the cross-sectional
area of the tube, which in the present case is simply -i- ﬂ'D2 . Com-

bining the two preceding equations, we find
ar _ _4h

dx - pchp (T-TW) ) (8.9)
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If h is approximated by its mean value along the length of the

tube, h, this equation can be integrated directly to give the tempera-

ture as a function of distance:
T(x)-T
w

e—x/x
T -T
C wW

. (8.10)

Here, the condition T(0) = TC has been applied, and the length con-

stant, A, is defined as:

puDc
n = —PB (8.11)

—

4h
For the T-burner, A\ can be expressed in terms of propellant proper-
ties by noting that pu = ps.x.? by conservation of mass, as was shown in

Section II. Thus, for the T-burner,

o rDc
A o= ——L8 (8.12)

4h
If the mean temperature in the chamber, ?, is taken as the

mass averaged value, then this implies

L/2
el T(x)dx
0
" L/2 ’
[ p(x)ax
0

T

(8.13)

where the integration is taken only to x = 3L, since that is the dis-
tance the gas flows in the burner before reaching the vent. For a
perfect gas, the product p(x)T(x) is directly proportional to the mean

pressure P(x), which, for the very low Mach numbers involved, is
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essentially constant. Likewise, the integrand in the lower integral is

proportional to 1/T(x), and hence the mean temperature is
L/2

‘f dx

0

- ’ (80 14)
L?Z dx
) T(x)

which, after using equation (8. 10) and carrying out the integrations,

becomes
_ T
T = hid , (8.15)
1 +¢
S U “L/2X
1+ cle

where the constant <y is defined as (TC—TW)/TW. Thus, if the pro-
pellant prOpertie's are known and a value for the mean heat transfer
coefficient assumed, the mean temperature in the T-burner can be
calculated. |

For A-13 propellant at 300 psig, the combustion temperature
TC has been calcula.ted16 as ZIOOOK, and the specific heats ratio, vy,
as 1.28. The density of the solid is 1.54 and the mean burning rate is
0.49 cm/sec. By assuming a wall temperature of 450°K and using
the heat transfer coefficient predicted from equation (8. 6), values for
the mean temperature and hence the mean speed of sound were calcu-
lated for various chamber lengths. Naturally, since the heat transfer

coefficient depends on the temperature, an iterative approach had to

be used. The results are shown as the solid line in Figure 14 re-
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ferred to earlier. Clearly, the values predicted on the basis of mean
flow heat transfer coefficients are much higher than those observed.
As mentioned earlier, since the main difference between the flow in
the T-burner and that present in other long tubes is the oscillations,
one is inclined to feel that the latter are responsible for the increased
heat transfer. Considering that at times the mean flow velocity is
only a fraction of the oscillatory velocity, it is not particularly sur-
prising that this could be the case.

Since measurements of the mean speed of sound in the burner
can be related to the mean temperature by equation (8.2), the former
can be used to infer values for the mean heat transfer coefficient by
working backwards with equation (8.15). Again, because of the na-
ture of the latter equation, iterative approaches must be used to solve
for h once T and the various propellant properties are given.

When such calculations were performed, it was found, as ex-
pected, that the heat transfer coefficients in the T-burner are indeed
much greater than would be predicted from mean flow considerations
alone. In fact, the inferred values were often 10 to 20 times greater
than would have been expected. The most interesting feature was the
fact that the calculated values for h showed a definite dependence on
the amplitude of the oscillations. This is demonstrated quite clearly
in Figure 15, where h is shown as a function of oscillatory amplitude

for several propellants and chamber diameters. All of these tests
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were conducted at a mean pressure of 300 psig. Although the tests
covered a frequency range of from 0.4 to 3.0 kHz, the rnean heat
transfer coefficients showed only a dependence on the amplitude of
the oscillations.

The value prgdicted on the basis of the mean flow velocity by
equation (8. 6) is also indicated in the figure. Clearly, as the ampli-
tude of the oscillations goes to zero, the heat transfer coefficient
tends toward this value, as one would expect.

Similar results were obtained at other mean pressure levels
and are presented in dimensionless form in Figure 16. Here, the
mean Nusselt number, N’G, is defined as ED/k where k is the ther-
mal conductivity of the gas evaluated at the mean temperature. The
acoustic Reynolds number, Rea, is defined as pu'D/u, where p and
i are the density and viscosity coefficients of the gas, again evaluated
at T. The acoustic velocity, u', was obtained from the limiting pres-
sure amplitude, ;' , by assuming that the waves were isentropic and

sinusoidal. Under these assumptions, u' is

. _ B =
u—YPa. (8.16)

From the figure it is apparent that the data are correlated

very well in these dimensionless variables by the following;

. 4
for 2.5%X10 <Rea<2.5>(106

Nu = 1.25 Reao's ) (8.17)
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Although the form of this equation differs from that of equation (8. 5),
the values predicted by the two agree reasonably well if the acoustic
velocity is used in place of the flow velocity in the latter. This is
shown in the figure, where equation (8.5), using the acoustic Reyn-
olds number, is represented by the dashed line. This reasonable
agreement is somewhat surprising since equation (8.5) applies nor-
mally to fully-developed, turbulent flows. Certainly, the high fre-
quency oscillations present in the T-burner could lend turbulence to
the flow. Also, the heat transfer should depend on the speed of the
gases and not on their direction. Hence, it is possible that the oscil-
lating flow in the T-burner resembles a high-speed turbulent flow in
one direction. In any case, the results obtained by this indirect ap-
proach indicate that the heat transfer coefficient depends on the am-
plitude of the oscillations in a definite and prediétable way.

Despite the convincing nature of these results, they were ad-
mittedly obtained by indirect means and involved several simplifying
assumptions. For this reason a .second, more direct, approach was
also taken in an attempt to support the earlier findings. This second
approach consisted of temperature measurements of the inner wall
of the chamber during the firing. From these, the heat flux into the
wall as a function of time was determined and, in turn, the heat
transfer coefficient itself,

To obtain these measurements, a thermocouple probe manu-
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factured by the Nanmac Corporation was used. This device, de-
scribed in reference 17, uses two thin ribbons of dissimilar metals,
in the present case Chromel and Alumel. These ribbons are sepa-
rated by an even thinner layer of mica insulation. Upon grinding off
the end of the assembly, many tiny junctions are formed. For the T-
burner tests a Nanmac Model G thermocouple probe was used, which
had a main body assembly fabricated from 0. 125-inch diameter stain-
less steel tubing. Upon being inserted into a hole of the same diame-
ter in the T-burner wall and soldered into place, the thermocouple
body became an integral part of the wall itself. Being of the same
material as the chamber, it presumably caused only a small dis-
turbance of the thermal environment surrounding it. After being
seated in place, the end of the thermocouple was ground off flush
with the inner wall. Generally, the thermocouple was mounted mid-
way between the ends of the burner and at right angles to the vent.
In a few tests, however, other axial locations were chosen. The
former location, of course, placed the thermocouple at the anti-node
of the oscillatory velocity, the site of maximum heat transfer if the
indirect measurements have been interpreted correctly.

To transform the temperature measurements into heat flux
rates, the analysis suggested by Howard18 was used. This proce-
dure, based on a set of heat balance equations, employs a finite dif-

ference computing technique. The wall is assumed one-dimensional
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and is divided into a number of thin blocks. A set of equations can
then be written to take into account the amount of heat entering, leav-
ing, and being stored in each block during each interval of time. With
initial conditions and the wall temperature as a function of time given,
this set of equations can be solved to obtain the heat flux at the wall.
By assuming a value for the gas temperature, the heat transfer coef-
ficient itself can be determined from equation (8.3). Naturally, the
results obtained will be sensitive to the value assumed for the gas
temperature. However, since the purpose of these tests was to pro-
vide only approximate values for the heat transfer coefficient, this
presented no particular problem. Rather than use the adiabatic flame
temperature, the value indicated by the mean speed of sound measure-~
ments was used for the gas temperature. For the finite difference
computations, the wall was divided into twenty sections whose thick-
ness Varied from 0.01 cm at the inner side to 0.1 cm at the cold side
of the wall. Taking very thin sections at the inner wall provided bet-
ter accuracy in this region of large temperature gradients.

Since the heat transfer coefficient determined in this way
represented a local value, as opposed to the average value obtained
in the indirect measurements, it would obviously depend on location
along the chamber wall. As mentioned earlier, most of the tests
were conducted with the thermocouple located at the oscillatory ve-

locity maximum, where the velocity is |u! |. 1f the spatial dependence
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of the acoustic velocity is assumed sinusoidal, then the mean value

over each half-length of the chamber is obviously

L/2
(u') = %I'u'lsin% dx = %‘u'|. (8.18)
0

If the indirect measurements are indeed valid, then by equation (8.17)
the heat transfer coefficient should vary approximately as the square
root of the acoustic velocity. If hd denotes the value obtained di-
rectly for the local heat transfer coefficient at the velocity maximum
and Ei the value obtained indirectly for the mean coefficient in the
chamber, then from equation (8.17) and the above we would expect

hy, = /m/2 h, (8.19)
if, again, the indirect measurernénts are correct.

In Figure 17, values for h, obtained from thermocouple

d
measurements are plotted against the indirect values, Ei’ inferred
for the same tests. The values clearly agree with equation (8.19)
very well, indicating that the indirect method discussed earlier is a
valid means of obtaining the average heat transfer coefficient.
Values for hd obtained at other axial locations indicate that
the local heat transfer coefficient decreases as one proceeds toward
the acoustic velocity node. This, of course, supports the contention

that the acoustic velocity is responsible for the observed heat trans-

fer increases.
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Thus, by both a direct and indirect approach, the heat trans-
fer coefficient in the T-burner has been related to the amplitude of
the oscillations. Naturally, to understand more fully the observed
increases in the heat transfer, additional measurements of the local
transfer rate would be desirable. However, the present results cer-
tainly indicate in a most quantitative manner the reasons why com-
bustion instability is usually accompanied by increases in heat trans-
fer to the rocket motor. If the amplitude of the instability can be
estimated, then the present results should provide quantitative esti-
mates of these heat transfer increases. Because of this, the T-
burner may, in time, become a useful tool in the study of heat trans-
fer in rocket motors under oscillatory combustion conditions. More
important, however, is the fact that in subsequent sections it will be
shown that the results discussed here help explai;i several observed

features of the T-burner itself.
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IX. THE ACOUSTIC LOSSES OF THE T-BURNER

Long before the present studies, it was realized that the
acoustic losses of the burner could play an important role in the tests.
It will be recalled from Section II that one of the essential assumptions
of the basic T-burner method is that the losses measured after burn-
out are the same as those present during growth. Naturally, if the
losses change during the test, this assumption is incorrect and the
values inferred for the admittance are wrong. To avoid some of these
difficulties, another’T-burner method, described in Section X, was
introduced which uses only growth rate measurements. However, like
the original method, it too depends on assumptions made concerning
the damping in the chamber. Thus, it is obvious that a thorough un-
derstanding of the T-burner is dependent upon a proper understanding
of its acoustic losses.

For this reason, considerable attention was given in the pres-
ent investigations toward obtaining a better understanding of these
losses. In fact, probably no other feature of the burner was examined
more closely. However, it appears that this effort was well justified,
for in examining the chamber damping, several important results
emerged. The first is that, contrary to common opinion, the losses
of the T-burner now appear to be non-linear. If this is true, then the
present interpretation of T-burner data obtained by the basic '"growth-

decay'' method is incorrect, since the wrong value is used for the de-
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cay constant. In the next section it will be shown that this generally
produces large errors in the values inferred for the admittance. An-
other important consequence is that on the basis of these non-linear
losses, the behavior observed in the limiting amplitude of the oscilla-
tions can be explained reasonably well. Section XI will deal more spe-
cifically with this point. Consequently, it appears that the losses play
an even more important role than was first thought. Indeed, they
seem to be responsible for a number of observations which have here-

tofore gone unexplained.

Experimental Observations of the Losses

In Section IV it was shown that the losses are measured in
terms of a decay constant, which is a convenient way of expressing
the decay rate observed after burnout. In Figure 18 decay constants
measured using A-13 and T-17 propellants at a pressure of 300 psig
are shown as a function of frequency for different chamber diameters.
Two important aspects of the T-burner losses are apparent from these
results, which are typical of those obtained under other chamber con-
ditions. First, the decay constant varies as the square root of the
frequency, as indicated by the straight lines péssing through the data.
Second, the losses measured after burnout are nearly independent of
chamber diameter.

Of course, one is interested in the losses, mainly because of
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their effects on the growth rates. In Figure 19, growth constants for
A-13 at 300 psig are shown as a function of frequency for the three
diameters used. Like the losses, the growth constants show little
dependence on diameter. This same observation was made in at least
one other instancelg. One possible explanation for this behavior is
that the losses remain constant during the entire test. Since the re-
sults of Figure 18 showed that the losses present at the end of the
test are independent of diameter, then, if the damping is constant, the
growth rates should also be independent of chamber diameter. This
commonly held opinion is the basis of the '"growth-decay' T-burner
method which was outlined earlier, and will be described more fully
in the next section. However, another explanation for the behavior of
the growth constants is that the losses present during growth are too
small to affect the growth rate seriously. For reasons to be given be-

low, this latter interpretation appears to be the correct one.

The Acoustic Boundary Layer and T-Burner Losses

The square root dependence of the losses on frequency shown
in Figure 18 is strongly suggestive of the wall losses normally asso-
ciated with acoustic waves traveling through tubes. It has long been
known that the major source of acoustic damping in tubes is the vis-
cous and thermal energy dissipation occurring in a thin region, known

‘as the '""acoustic boundary layer, ' next to the tube wall. It can be



~-86~

60
[ DIA. A-13
50 a 10" , 300 psig
| o 18"
a 2.5"
40 -
. 0 o & o)
T F o ©
v B © ©
~ 30l )
30 a &£ o &
&8
20+ 0] 4
R E‘A;b
A
oF - &
AO‘!G
- [-)
b
O ] i | I 1 1 1 i ] 1 1 1
0 | 2 3 4 5 6

fy (kHz)

Figure 19. Growth Constants Measured as a Function of
Frequency for Different Chamber Diameters.



-87-

shown thatzo the thickness, 6, of thlis layer is approximately

5 = (;T\-’f)E , (9.1)
where v is the kinematic viscosity and f the frequency. For a 1 kHz
sound wave traveling through a tube filled with air at ambient condi-
tions, the acoustic boundary layer is less than a tenth of a millimeter
thick. The amplitudes of both the acoustic velocity and temperature
vary from their full values at the outer edge of this thin layer to zero
at the wall. The energy dissipation results from these steep gradi-
ents in velocity and temperature.

If the mean temperature of the gas and wall are equal, then

the decay constant associated with this dissipation in a tube of diame-

.21
ter D 1is

— -1\ WE
a, = 24mv (1 +% — (9.2)
)

where Pr is the Prandtl number of the gas. Considering again a
1 kHz sound wave traveling through a tube filled with air at ambient
conditions, we find the decay constant for a 1. 5-inch diameter tube
is 16 s—l. This means that in 1/16 of a second, the amplitude of the
wave decays by a factor of 1/e.

Returning to Figure 18, we see that the decay constants at
300 psig for A-13 and T-17 at a frequency of 1 kHz are 16 s”l and

21 s , respectively. Although T-burner conditions are far from

ambient, the similarity in numerical value and frequency dependence
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between the T-burner decay constants and those arising from acoustic
boundary layer dissipation certainly raises the possibility that the
two are one and the same.

Because of the observed frequency dependence, this possibility
was suggested early in the investigationszz. However, the weak de-
pendence on diameter found in subsequent tests seemed to rule out
this explanation and presented a dilemmma regarding the true nature of
the damping in the burner.

However, to explore the possibility of wall damping further,
and to examine the T-burner losses under ideal conditions, measure-
ments of the decay constants were obtained under cold chamber con-
ditions. By ''cold" it is meant that the T-burners contained neither
burning propellant nor a mean flow; they were used simply as passive
acoustic cavities. Oscillations were maintained in the chambers by
an external sound driver linked to the burner interior by a small hole,
packed with steel wool to provide a high acoustic impedance, in one
end cap. At the opposite end was a quarter-inch diameter type 4136
Bruel and Kjaer microphone. By turning off the driver very quickly
and watching the decay of the waves on a storage oscilloscope, the
decay constants were determined. The tests, conducted at ambient
conditions, used chamber lengths ranging from 3.5 to 31.5 inches and
diameters of 1.0, 1.5, and 2.5 inches. Decay constants were meas-

ured only for the first mode oscillations, which are generally the only
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ones present to any extent in the T-burner.

The results of these cold acoustic tests are shown in Figure
20, where the product Dad is given as a function of frequency. By
multiplying the decay constant by D, the;dependence on diameter
suggested by equation (9.2) is removed. The values predicted by this
latter equation are shown as the solid line and fall about 30 percent
below the observed values. This lack of numerical agreement is not
particularly disturbing since other investigator523, using very care-
ful experimental techniques, have found the observed wall losses to
be higher than theory indicates. More important is the fact that the
decay constants show the predicted dependence on both frequency and
diameter. Thus, under these ideal conditions, the T-burner losses
are definitely due to dissipation within the acoustic boundary layer.

To study possible contributions by the vent to the chamber
damping, additional cold acoustic tests were conducted using vents of
different diameters. In one series, the vent was completely closed
off. Just as in the case of actuai test firings, mentioned in Section
III, no effect whatsoever was observed upon changing the vent size.
Thus, it may be assumed that the vent plays a very small role in the
T-burner losses. One possible exception will be given in Section XI
with regard to lthe sinusoidal appearance of the waves.

Although these tests demonstrated that under ideal conditions

the losses of the burner are easily explained, they did nothing to re-
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solve the dilemma presented by the lack of a dependence on diameter
observed in the decay constants measured in actual test firings. One
important clue, however, was provided by the analysis of Cantrell,
McClure, and Hart24, who considered the acoustic damping in cavities
that contain a mean flow with a temperature considerably different
from that of the walls. The basic assumption of that analysis was
that the acoustic boundary layer is at least an order of magnitude
thinner than the boundary layer due to the mean flow. Consequently,
the temperature of the former was assumed to be the same as that of
the wall. Under this assumption, the dissipation occurs in a region
whose temperature is TW . Since the major part of the acoustic ener-
gy is associated with the central core of the gas at temperature T,
the decay constant, obtained by dividing the energy dissipation by the

total energy, was shown to be

— T 1 \Wf
oy = 2um_ (= +—y:":)"5 (9.3)
w T VPr

where \)W is the kinematic viscosity evaluated at the wall tempera-
ture, TW. Obviously, if TW increases with diameter, the dependence
of the decay constant on the latter will be lessened. It was in recog-
nition of this fact that the heat transfer studies described earlier

were begun. However, from the thermocouple measurements of wall
tem!perature obtained during those investigations, it became apparent

that observed wall temperature variations were insufficient to account
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for the behavior of the losses. The wall temperature was observed
to rise at most to only about 500°K from an initial value of 300_0K.
Since some rise always occurred, obviously the variations between
tests using different diameters could not be very large.

In addition, for such cool wall temperatures, the values pre-
dicted by equation (9.3) are almost an order smaller than those ob-
served. For example, asémne a wall temperature of 500°K and a
mean flow temperature of 1500°K. For A-13 propellant, the mole

fractions of CO, H,, H.O, HCL4, N_, and CO

51 iy 2 , in the combustion gases

are approxinflately16 .30, .27, .19, .14, .06, and .04, respectively.
By the methods described in Appendix C, the kinematic viscosity at
the wall can be shown to be approximately 0.02 cmZ/s at a pressure
of 300 psig. Ifa y of 1.28 and a Prandtl number of 0.73 are as-
sumed, then according to equation (9. 3) the decay constant for a 1 kHz
wave in a 1.5-inch diameter tube is 2 s—l , compared to the observed
value of 16 s-1 .

Thus, it is clear that either equation (9.3) is incorrect, or
the T-burner losses arise from a mechanism other than acoustic
boundary layer dissipation. Since that equation was derived under the
assumption that the acoustic boundary layer is at the wall temperature,

it is interesting to see the results of relaxing this restriction. In

Figure 21 the decay constants observed for A-13 at 300 psig are
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shown again, along with values predicted by equation (9.3) where, in-
stead of TW, the temperatures indicated were used to calculate the
properties in the acoustic boundary layer. In both cases, the mean
flow and acoustic boundary layer were taken to be at the same tem-
perature. The kinematic viscosity was calculated using the gas com-
position given earlier.

Clearly, the values for a temperature of 1700°K agree very
well with those observed. The decay coﬁstants for a temperature of
1100°K fall 30 percent below the experimental values and correspond
to the relation found in the cold acoustic tests between theory and ex-
periment. Both of these temperatures, while far above observed
wall temperatures, are still well below flame temperatures, which
were shown earlier to be between 2000°K and 3000°K for the propel-
lants used. Consequently, they are physically possible.

From these calculations we see that if the acoustic boundary
layer is at a sufficiently high temperature, the dissipation occurring
there is large enough to account for the T-burner losses. In addition,
if this temperature increases for some reason with chamber diame-
ter, then the losses of the burner will show a weaker‘ dependence on
the latter than would be expected. Thus, the analysis of reference
24 provided a possible mechanism for explaining the T-burner losses

if, instead of the wall temperature taken there, a much higher value

is assumed for the acoustic boundary layer.
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The heat transfer measurements described in the previous
section provided the first indication that the acoustic boundary layer
might be at a significantly higher temperature than the wall. The
high rates of heat transfer found there were taken as an indication of
very steep temperature gradients in the gas next to the wall. De-
pending on the size of these gradients, the acoustic boundary layer
temperature could vary considerably. If such a variation depended
in just the right way on chamber size, then the losses would be inde-
pendenﬁ of diameter. In the following analysis, it will be shown that
this now seems to be the case, with fhe temperature variation arising
from changes in the oscillation amplitude with chamber diameter.

If ciw denotes the average rate of heat transfer to the wall,
then we know it is related to the mean radial temperature gradient in

the gas at the wall by

. dT
q, = -k (55) (9.4)
w\ dr
w
where kW is the thermal conductivity of the fluid next to the wall.
Because the acoustic boundary layer is so thin, it is reasonable to
assume that the temperature gradient remains constant through it.
Under this assumption the temperature midway through the acoustic

boundary layer, T is approximately

BL’

T = T

1
L ” Wtz O (9-5)

P

where 6 is the thickness of the acoustic boundary layer given by
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equation (9.1). Obviously, if the heat transfer rate is large enough,
TBL can be much higher than Tw. Thus, by prescribing a value for
élw and TW , the above equation can be used to calculate the acoustic

boundary layer temperature. Since § depends on TBL’ iterative

methods must be used.

Once TBL is determined, the acoustic losses can be calcu-
lated using equation (9. 3) with Tw replaced by TBL . Thus, the de-
cay constant should be given by

T —
%q ~ 2“/"VBL( 2Ll €, (9.6)
T NPT
where Ve, s the viscosity evaluated at TBL'

To compare the values predicted by this equation with those
observed, an expression relating the heat flux at the wall to the other
test variables must be given. In Section VIII it was shown that the
heat flux could be correlated very well by equation (8.17). Noting
that the heat transfer coefficient is defined in terms of ciw by equa-

tion (8. 1), the correlation can be written:

ciWD 'Eu'D%
m = 1.25( " ) . .(9.7)

Using equation (5.5) to relate u' and ;‘ , and assuming that aZ:yP/p,

the above becomes

— 1
. = P ¥
q, = 1.25k(T-TW)(uaD) ' (9.8)

Clearly, if the wave amplitude increases sufficiently with di-
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ameter, then the heat transfer to the wall, and hence the temperature
of the acoustic boundary layer, will also increase with chamber size.
This, of course, is exactly the behavior required to produce the ob-
served losses.

To carry out the calculations, a wall temperature of 450°K
was assumed. The mean temperature of the gas in the chamber was
found from the speed of sound measurements discussed earlier. For
the gas composition given above, it is shown in Appendix C that the
viscosity should vary with temperature approximately as

W= 3.2><1o'6 TO‘7 , (9.9)
where the temperature is in degrees Kelvin and the viscosity in
gm/cm-s. Likewise, for the wall temperature assumed, the thermal
conductivity of the gas at the wall should be approximately 1.1 X 10"4
cal/cm-s-°K.

Using these values along with observed values of the limiting
amplitude, E' , the temperature in the acoustic boundary layer was
calculated for a number of tests and used to determine the theoretical
chamber losses indicated by equation (9.6). The results are shown in
Figure 22, where the predicted decay constants are plotted against
the observed values. Despite the scatter, which, considering the ap-
proximations made is not excessive, the predicted values correlate
reasonably well those observed. The solid line passing through the

points represents simply the best fit and shows that the predicted
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values are about half the size of the experimental values. However,
recalling that even in the cold acoustic tests the theoretical values
were only about 70 percent as large as the measuréd decay constants,
the present lack of numerical agreement is not surprising. The re-
lation found in the cold acoustic tests between theory and experiment
is indicated by the dashed line.

More important than the absence of good numerical agreement
is the fact that these results show that the observed lack of a ciepend-
ence on diameter is expected for losses arising in this manner. In
addition, since the tests shown in the figure covered frequencies
ranging from 0.5 to 3.0 kHz, we see that the observed frequency de-
pendence is also predicted. The following comparison of values cal-
culated for two tests which differed only in chamber diameter will
make it even clearer that the proposed loss mechanism does produce
decay constants which are essentially independent of diameter.

The two tests used A-13 at 300 psig in chambers 10.0 inches
long. In the first test, conducted in a 1.0-inch diameter chamber,
the mean frequency was 1.52 kHz and the wave amplitude 17 psi. In
the second test, which used a 1.5-inch burner, the values were 1.50
kHz and 51 psi, respectively. Using this information, the following

values were calculated:
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Test 1 Test 2
(1.0' dia.) (1.5'" dia.)
o (o)
T ( K) 1120 1090
T (°K) 770 1000
BL
Predicted oy (s'l) 11.1 11.5
Observed a (s'l) 20.0 19.5

The 30 percent higher boundary layer temperature in the second case
just exactly offsets the effect of diameter. In Section XI we shall see
that this is no coincidence, but that, in fact, the decay constant
measured at the end of the test should be essentially independent of
diameter, for it is precisely because of this fact that we observe the
amplitude limitation that we do.

Although equation (9. 8), which related the heat transfer at the
wall to the wave amplitude, was obtained from steady-state measure-
ments, there is no reason to assume that it does not apply equally
well to cases where the amplitude is changing slowly compared to the
period of the oscillations. This, of course, would mean that the
losses increase with the amplitude of tile waves. Because of the na-
ture of equations (9.5) - (9.8), a simple and yet accurate expression
for ay asa function of p' cannot be given. However, it is obvious
that the decay constant should increase with amplitude.

Naturally, if the losses are non-linear, then several conse-

quences must follow. The first is that the decay constant measured
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after burnout is different from that present during the growth of the
oscillations since the amplitudes at fhe two times are different. A
second result is that eventually an amplitude will be reached where
the losses just equal the gains provided by the burning propellant.
Thus, non-linear losses offer an explanation for the observed behav-
ior of the limiting amplitude. In the following two sections it will be
shown that experimental evidence indicates that both of these effects
are, in fact, observed and that, therefore, the losses described here

can account for a number of other observations.
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X. A COMPARISON OF TWO COMMON T-BURNER METHODS

The method outlined in Section II is one of two conventional
ways of conducting T-burner tests. Because it involves measure-
ments of both the growth and decay rates of the oscillations, that
technique is usually referred to as the '"growth-decay' T-burner
method. Another approach, known as the '"variable-area' method,
uses only growth rate measurements and derives its name from the
fact that the propellant area is varied from test to test. Presumably,
by measuring the growth rate as a function of this area, the real
part of the admittance can be determined.

Despite their many similarities, these two techniques have
nevertheless been the subject of a continuing debate for a number of
years. Unfortunately, few experimental compafisons of the two
methods have appeared. Since differences in experimental proce-
dures, such as the ignition techniques described earlier, can defi-
nitely play an important role in the test results, only a direct com-
parison using the same procedures for both methods may be meaning-
ful.

For this reason such a comparison was undertaken, maintain-
ing, insofar as possible, identical experimental procedures. The
comparison revealed among other things that with the usual interpre-

tation of growth-decay data, the two methods produce results which
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agree very poorly. However, if the T-burner losses are assumed to
be those predicted in Section IX, then the two methods agree extreme-
ly well. Although these results cannot be taken as proof of the va-
lidity of the arguments given in that section, they certainly support it
and possibly explain why results obtained by the two methods have

been in disagreement in the past.

Description of the Two T-burner Methods

In Section II it was shown that if the T-burner were free of
losses, the oscillations would grow at a rate proportional to the sum,

r .
Ab JrMb . Because of losses present, however, the growth rate is

less than this ideal figure. If the propellant completely fills both
ends of the burner, then by equation (2.18), the observed growth con-

stant, & , 1is
g

- 2a
_ b r
g’g - L (Ab

- H
+Mb) c,d . (10.1)

where aa represents the decay constant that would be observed if the
propellant instantly burned out. In reality, of course, the propellant
continues to burn for some time after the initial growth period. Dur-
ing that time the oscillations reach a limiting amplitude which is
often five to ten times larger than the amplitude present when the
growth constants are measured. Finally, burnout occurs, and the

waves begin to decay at a rate measured by the observed decay con-

stant, U’d . As discussed in Section IV, this value is usually obtained
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immediately after burnout, since if one waits for the amplitude to be-
come very small, chamber conditions will have changed drastically
as a result of the rapid cooling of the gases.

The crucial assumption of the growth-decay method is that the

losses remain constant during the entire test, which means that 0,:1 =

ad . With this assumption, equation (10.1) can be rearranged to pro-

vide the following expression for the sum, A;+Mb’ in terms of the

observed growth and decay constants:

U,g'f'CLd

— 0.2
. (10.2)

r
ATHM, =
b ™M

O}”|wl

where equation (2.1) has been used to relate ; to the frequency.
Since Mb and a, can be calculated from known pl;opellant properties,
(10.2) is essentially an equation for calculating the real part of the
admittance.

If the losses are linéar in the wave amplitude, then the as-
sumption that they are constant during the test is reasonably valid.
Naturally, since the growth and decay frequencies differ, one might
expect the losses to vary some even if they are linear. However, such
effects should not be extremely important and, in any case, can be al-
lowed for7.

On the other hand, if the losses are non-linear, this assump-

tion would be completely wrong, since the amplitudes present when

the growth and decay constants are measured are usually quite dif-
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ferent. In particular, if the arguments developed in Section IX are
basically correct, then the normal interpretation of T-burner data
obtained by the growth-decay method is wrong. Fortunately, even if
this is true, the method can still be used by calculating the losses
present during growth theoretically and using those values instead of
the observed growth constant. It will later be shown that generally
the theoretical losses based on the discussion of Section IX are rather
small, and hence theoretical inaccuracies should not strongly affect
the results.

To avoid completely the problems associated with the growth-
decay method, the variable-area technique was introduced25. In this
method, the ratio of propellant area to chamber cross-section area is
varied from test to test. This ratio, denoted here by Sb/SC , is usu-
ally less than one, which means that the propellant does not complete-
ly cover the ends of the chamber. However, through use of cup-
shaped propellant samples25, values greater than one have been em-
ployed. This latter procedure, which, of course, could also be used
in growth-decay tests, is particularly useful in testing metallized
propellants, which often oscillate weakly at best in the usual T-burner
configuration.

Since the propellant is the driving mechanism for the oscilla-
tions, the greater its area, the greater the rate of energy input to the

acoustic field. Naturally, this implies higher growth rates for larger
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area ratios. In equation (2.18), it was shown that the growth constant

is related to the area ratio by

2a S

b r b
= A — - a' 10.3
q.g T ( b+Mb) SC ay ( )

where again 0.('1 is the decay constant which would be observed if the
propellant instantly burned out.

According to this equation, if aa is independent of area ratio,
then a plot of cxg against Sb/sc should result in a straight line whose
slope is proportional to A;+Mb . Since growth constants for the dif-
ferent area ratios are all obtained while the amplitude is very small,
then even if the losses are non-linear, they should not seriously af-
fect the results of this method. Thus, the variable-area method is

less sensitive to the nature of the acoustic losses, which is certainly

a desirable feature.

Experimental Comparison of the Two Methods

For the experimental comparison, A-13 propellant was used at
a mean pressure of 300 psig. Chamber lengths ranging from 3.5 to
25.5 inches were used in the growth-decay tests along with diameters
of 1.0, 1.5, and 2.5 inches. All of the variable-area tests were con-
ducted in 1.5-inch diameter burners. For the latter tests, only three
chamber lengths, 19.0, 10.0, and 5.5 inches, were used since sever-
al firings had to be conducted at each frequency to establish the

growth constant versus area ratio plot. At each chamber length, a



-107-

minimum of two tests were conducted at each of the three area ratios
of 0.43, 0.72, and 1.00. The first two ratios were obtained by bond-
ing 1.0~ and 1.3-inch diameter propellant disks into stainless steel
rings which were in turn bonded to the chamber walls.

The results were first calculated using the normal interpreta-
tion for the growth-decay data; that is, the observed decay constants
were used in equatior; (10.2). These results are presented in Figure
23, where the inferred values for A;JrMb are shown as a function of
frequency. Two important conclusions can be drawn from these re-
sults. First, the values obtained by the growth-decay method are
independent of the chamber diameter. This, of course, is a direct
consequence of the observations discussed in the previous section
that the growth and decay constants show no dependence on diameter.
However, it is a most encouraging finding, since any other result
would case doubt on the entire T-burner method.

A second conclusion is that the values obtained by the growth-
decay method are considerably higher than those found from variable-
area measurements. The bars on the latter data indicate the range of
values which could be inferred since the growth constant plots did not
give straight lines. However, the spread is not significantly greater
than the scatter in the growth-decay data. More importantly, the two
methods agree very poorly in predicting the admittance. Since the

two are reasonably independent, good agreement would lend support
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to the validity of both methods. Thus, the observed lack of agree-
ment was received initially as a very discouraging result.

However, when evidence began to mount that the losses might
be non-linear, it was realized that this lack of agreement could be due
to incorrect interpretation of the growth-decay data. Consequently,
the latter values were recalculated, this time using the theoretical
decay constants predicted by equation (9. 6) with an assumed boundary
layer temperature equal to the initial wall temperature. The latter
assumption was based on the fact that initially the boundary layer is
still very cool. Only after the oscillations appear does the heat
transfer to the wall begin to raise the boundary layer's temperature.

These results are shown in Figure 24 where, again, A;~&-Mb
is plotted against frequency. Clearly, the results obtained by the two
mefhods are in very good agreement if the predicted, rather than the
observed, decay constant is used in equation (10.2).

In general, the decay constants predicted by equation (9. 6) are
small if the acoustic boundary layer is assumed to be at the wall tem-
perature. This point was also made in the previous section. Typical
values lie in the range of 1 to 4 s_l. Usually, the growth constant is
considerably greater than these values. Thus, as a first approxima-

r
tion, A, +M

b p Can be calculated from equation (10.2) by neglecting the

decay constant completely and using only the observed growth con-
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stant. Naturally, if ag is very small, this would not be a very ac-
curate procedure. Another exception is in the case where metallized
propellants are used. There, the losses may be due to particles
present in the combustion products rather than to the wall dissipation
assumed here. In such instances, account will have to be taken of the

observed damping.

Conclusions Regarding the Two Methods

Naturally, the results of Figure 24 cannot be taken as proof
that the usual interpretation of growth-decay data is incorrect. Like-
wise, they do not establish the existence of non-linear losses. How-
ever, they do support both contentions and provide an explanation of
why growth-decay data often lie above variable-area data. Thus, the
arguments presented in Section IX not only account for the observed
losses reasonably well but also bring about a very good agreement
between two indepekndent T-burner methods which heretofore has been
lacking. In the next section it will be shown that these same argu-
ments can also be used to predict the limiting amplitude.

With regard to the methods themselves, there appears to be
no real advantage of either method over the other, if the predicted
losses are used in place of the observed ones. The accuracy of the
two appears to be approximately the same. There is one point, how-

ever, which, depending on the situation, could be important. Under
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ideal conditions, the variable-area method requires more experi-
mental effort. Ideally, only one growth-decay test needs to be per-
formed to determiné the admittance. However, since the variable-
area method depends on determining the slope of a line, a minimum
of two tests are required. Naturally, in both cases, more than the
minimum number of tests would be done in most instances. However,
there are occasions when the extra effort required by the variable-
area method might be considered a definite disadvantage.

Perhaps the best approach to T-burner testing is to conduct
at least two tests at each frequency. The first, using an area ratio
of unity, naturally provides data for both methods. The second, con-
du;:ted at a ratio different from unity, also provides data for both
methods if equation (2.19), using the theoretical decay constant, is
used to calculate the results from the growth-decay method. In this
way, three data points are obtained, two by the growth-decay and one
by the variable-area method. If careful procedures are followed,
then the results shown in this section indicate that good agreement

should be observed in the three values inferred.
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XI. THE LIMITING AMPLITUDE OF THE OSCILLA TIONS

Of the many aspects of the T-burner examined during these
studies, certainly one of the most interesting is the nature of the limit-
ing amplitude of the oscillations. In nearly every test the wave ampli-
tude reached a limiting value which was as reproducible as any other
feature of the firing. The only exceptions were those few tests con-
ducted at very low frequencies where the growth rate was so low that
the amplitude increased throughout the test without ever reaching a
very large value. These, however, comprised a small fraction of the
total number of firings.

Despite the fact that the limiting amplitude must reflect certain
non-linear features of the T-burner or the propellant admittance, this
particular aspect has received very little attention in the past26. Dur-
ing the present studies, however, it was examined as a function of fre-
quency, chamber diameter, and mean pressure for the different pro-
pellants. From these observations it is now apparent that the amplitude
limitation results mainly from non-linear losses in the burner rather
than from non-linearities in the response of the propellant. Moreover,
it will be shown also that the acoustic losses described in Section IX
can account very well for the observed behavior of the limiting ampli-
tude. Thus, additional support is given the arguments presented there.

General Aspects of the Limiting Amplitude

One characteristic of the waves in the T-burner is that, despite
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their large amplitude, they are generally very sinusoidal in appear-
ance. This behavior is quite different from that observed when large
acoustic waves are driven by a piston vibrating in the end of a closed
tube. There, shock waves are generally encountered when resonance
is approached27.

Figure 25a shows a waveform which is typical of that observed
in the majority of the tests. Clearly, the wave is very sinusoidal. Al-
though for this particular test the limiting amplitude was only about 5
percent of the mean pressure, a similar behavior was observed in
cases where the amplitude reached 10 to 15 percent of the chamber
pressure. At still higher amplitudes, however, the waveform became
distorted, as shown in Figure 25b. Nevertheless, even in these cases
the harmonic content of the waveform was relatively small. As an
example, for the wave shown here, where the amplitude is 23 percent
of the mean pressure, by graphicai procedures it has been determined
that the amplitudes of the second through the fifth harmonics total less
than 31 percent of that of the first harmonic. For a sawtooth wave-
form, the amplitude of the nth harmonic is proportional to 1/n.

Thus, the amplitudes of the second through the fifth harmonics total
about 128 percent of that of the fundamental. Clearly then, the waves
in the T-burner, even in their most distorted form, are far from be-

ing sawtooth-shaped shock waves.



A-13 propellant
p' = 34 psi

P = 600 psig
f = 1.36 hKz

Figure 25a. Example of the Nearly
Sinusoidal Waveform Observed in

the Majority of the Tests.

A-13 Propellant
i;' = 72 psi

P = 300 psig

f = 1.44 kHz

Distorted Waveform
Observed in a Few Tests Where
the Amplitude Was Very Large.

Figure 25b.
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The sinusoidal nature of the T-burner oscillations is probably
the result of several effects. First, for all of the even harmonics,
the vent is located at a pressure anti-node and, therefore, damps
these modes strongly. Second, the acoustic losses of the burner
definitely increase with frequency, which again implies large damping
for the higher harmonics. The effects of damping were very apparent
after burnout, when even the most distorted waveform quickly re-
turned to a nearly perfect sine wave. Finally, the response of the
propellant itself decreases at higher frequencies. Thus, the higher
harmonics are both more heavily damped and less effectively driven,
with the result being a waveform relatively free of harmonic distor-
tion.

Two other characteristic features of the limiting amplitude are
evident in Figure 26, where results obtained from tests using A-13
propellant in chambers of different diameters are shown. For a given
diameter, it is clear that the limiting amplitude reaches a maximum
for a frequency in the range of 1 to 2 kHz. Crould26 observed a simi-
lar dependence on frequency. In addition, a similar behavior was ob-
served with the other propellants examined in the present studies.
Another feature obvious from the figure is that, for a particular fre-
quency, the limiting amplitude increases with chamber diameter.
This, of course, mﬁst be related to characteristics of the burner it-

self and indicates that non-linearities in the propellant response alone
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cannot account for the observed amplitude limitation. Thus, non-
linear losses dependent on diameter must be present in the T-burner.

The final aspect examined was the effect of chamber pressure
on the limiting amplitude. Results obtained are shown in Figure 27
for a chamber diameter of 1.5 inch. For a given frequency, we see
that the limiting amplitude reaches a maximum near a pressure of
300 psig. A similar behavior was observed with T-17 and 540-A
propellants, although in the latter case the maximum occurred near a
mean pressure of 500 psig.

The nature of the limiting amplitude is similar to that of the
propellant response, which also passes through maxima with respect
to frequency and pressure. Thus, qualitatively, the behavior of the
limiting amplitude is probably just a reflection of the propellant's
ability to drive the oscillations. However, we see that the actual
value attained by the amplitude is strongly dependent on the diameter
of the burner. Thus, although one can say that, in general, the limit-
ing amplitude will be large when the response is large, a quantitative
description requires knowledge of the effects of the burner itself.

Predictions of Limiting Amplitude Based on Non-linear Losses

It was mentioned in Section IX that if the losses are non-linear,
then a possible explanation for the limiting amplitude is provided.

Obviously, if the losses increase sufficiently with amplitude, then as

the oscillations grow, a point will be reached where the losses just



-119-

80

60

20F

P DiA.

Figure 27,

F (kHz)

Limiting Amplitude for Different Chamber

Pressures as a Function of Frequency.




-120-
balance the gains provided by the propellant.

For small amplitudes, the acoustic losses described in Sec-
tion IX are almost negligible compared to the driving by the propel-
lant. The initial growth rate is therefore nearly equal to the ideal
value given in equation (2. 16). With non-linear losses present, the
growth rate decreases as the waves grow until finally it becomes zero
when limiting amplitude is reached. If the propellant response is
linear, then obviously the difference between the decay constant at
limiting amplitude and its value at zero amplitude must equal the
initial growth constant. As a first approximation, the decay constant
at zero amplitude can be neglected. Also, the decay constant ob-
served immediately after burnout is essentially that present at limit-
ing amplitude. ‘Thus, if the amplitude limitation arises completely
from non-linear losses, then the observed growth and decay constants
should be equal. In Figure 28, growth and decay constants obtained
for the same test are plotted against each other for a variety of
chamber conditions. Clearly, for most of the tests, a,g and d.d are
nearly equal. The latter observation is not new, but in the past it
has generally been viewed as a matter of coincidence. Now, however,
we see that it provides evidence that the amplitude limitation arises
primarily from non-linear losses and not from non-linearities in the
admittance. In addition to its importance to the present considera-

tions, this conclusion has other significant consequences, among which
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is the fact that apparently the linear description of the admittance is
valid even for reasonably large amplitudes. Since most descriptions
of the admittance are based on linear approximations, it is encourag-
ing to find evidence that they may be valid over a larger range of
amplitudes than has generally been assumed.

Having shown that the amplitude limitation appears to arise
from non-linear losses, the next step is to determine if the acoustic
losses described in Section IX can account for the observed behavior.
It was mentioned in that section that a simple, and yet valid, expres-
sion for the decay constant in terms of the amplitude could not be
given. Consequently, an equation explicitly relating the limiting
amplitude to the other test measurables cannot be obtained. How-
ever, this does not prevent numerical calculation of the limiting
amplitude.

From Section IX it will be recalled that by specifying the wave
amplitude, the heat flux at the wall can be calculated. From these
calculations follow a value for the temperature of the acoustic bound-
ary layer which, in turn, permits determination of the decay constant
through equation (9. 6). By following this procedure for various am-

plitudes, &, can be determined as a function of p'. Ideally, for a

d

given test, the limiting amplitude is obtained by finding that value of

p' where the change in qd from its value at zero amplitude just equals
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the observed growth constant. However, it was shown earlier that the
predicted decay constants are only about half the magnitude of those
observed. Hence, to be consistent, the predicted decay constants
should be multiplied by two. With this condition, the limiting ampli-
tude is given when

o (p') -« (0) = %ag ,
where the decay constants are calculated from equations (9.5)- (9. 8)
and o is the observed growth constant.

This procedure was followed for a number of tests and the re-
sults are presented in Figure 29, where the predicted limiting ampli-
tude is plotted against the observed value. TFor the calculations a
wall temperature of 375°K was assumed, which is halfway between
the initial wall temperature of 300°K and the typical final value of
450°K. From the figure it is apparent that the predicted and ob-
served values agree very well. In fact, the agreement is better than
* 10 psi for over two-thirds of the tests. Considering the approxi-
mations made and the fact that, as mentioned in Section IV, the limit-
ing amplitude itself was not always a well-defined quantity, the agree-
ment is remarkably good.

Thus, we see that the behavior of the limiting amplitude over
a wide range of frequencies, chamber diameters, mean pressures,

and propellant formulations can be predicted rather accurately on the
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basis of the acoustic losses described earlier. Since considerable
experimental evidence supports the description of those losses, there
can be little doubt but that the arguments presented there are at least

basically correct.
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XII. T-BURNER DATA AND ROCKET MOTOR INSTABILITY

Although the T-burner has been involved in many prior studies
of solid propellant instability, little effort has been given to establish-
ing the relevance of T-burner data to predictions of combustion insta-
bility in rocket motors. Ideally, for a given motor design, one would
like to be able to construct a stability map based on T-burner meas-
urements and other pertinent factors, such as the nature of the flow
field and the various damping mechanisms present in the motor. Even
a crude prediction of the stability characteristics would be an im-
provement over the usual approach.

The most comprehensive study of solid rocket instability is
that of Brownlee and Marblezg, which involved over 400 test firings of
cylindrically perforated, case-bonded motors using a single propel-
lant formulation. The instability, occurring as the first tangential
mode of the chamber whenever it appeared, was examined as a func-
tion of motor geometry, chamber pressure, and initial grain tempera-
ture.

Those studies produced a s\tability map for one propellant
operating in such a motor configuration. The stability map was pre-
sented in several ways, most often in the Kn—Dp plane, where Kn is
the ratio of initial burning area to throat area and D the initial di-

ameter of the grain port. Since Kn is related to the chamber pres-
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sure and Dp to the frequency of the observed mode, the stability map
is easily transformed into the P-D and the P-f planes. For discus-
sion of T-burner data, the latter form is probably the most useful
since pressure and frequency are the usual T-burner test variables.

The feature of most interest in the stability map was the sta-
bility boundary itself, which separated the region where small oscil-
lations would grow from that where they would decay. Although sever-
al chamber lengths were used in the Brownlee-Marble studies, the
majority of the motors were 31.0 inches long. For these, the stability
boundary was given quite well over a wide range by

Kn = 66.1 Dp R (12.1)

with the stable region lying above this line. The stability boundary
shifted downward in the Kn- Dp plane as the motor length was de-
creased. Since in the Kn-Dp plane a given firing would proceed along
a straight line whose slope depended on the throat diameter, the
boundary given by the above equation indicates that the motor's sta-
bility characteristics depended very much on the throat size.

Subsequent to those studies, the stability of acoustic oscilla-
tions in solid rocket motors was examined analyticallyz, and the fol-
lowing expression was found for the growth constant for small pres-

sure disturbances, where the present notation has been adopted:
r

Ay 2a
_ ag = <———-——-2— - MbA>—5— - {p+o) . (12.2)
l-ml P
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The term Mb/\ , where A depends on the nature of the flow, repre-
sents the contribution of the mean flow to the driving of the waves. It
will be shown that for the first tangential mode A is negative. From
the above equation it is apparent that this implies that the mean flow
tends to drive the waves. Thus, even if the admittance is negative,
oscillations may still be unstable if the mean flow contribution is large
enough. This, of course, is not particularly surprising, since it is
also true in the T-burner where equation (2. 18) corresponds to the
above equation. However, it is important to realize that the stability
of a rocket motor depends on both the mean flow and the propellant
response.

Returning to equation (12.2), B and 0 represent attenuation
effects arising, respectively, from losses in the’gas phase and at the
head end of the chamber. The former are presumably due to the
presence of solid particles in the combustion products and the latter
to viscous dissipation at the head vyall of the motor. Finally, rn1 is a
mathematical constant, approximately equal to 0.543, and is related
to the mode shape.

If the growth rate is set equal to zero, then (12.2) is an equa-
tion for the stability boundary. From this results the following ex-
pression for the admittance at the stability boundary:

2
- (1-m1 YB+o)D )
A = P +(l-m M A (12.3)

b 2a
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For given chamber conditions, if the admittance is greater than this
value, the motor will presumably be unstable. Obviously, by increas-
ing the damping, larger values for the admittance are acceptable,
The term A has been caLlc:ulated29 for the potential flow field in

the motor as well as for a rotational field. For these two cases we

have, 5
m,
= - 2.4

Apotential 2 (1 a)
l1-m
1

Trﬁr
= —— ; 2.
Arotational Apotential +( 2 1> (12.4b)

where B is an integral expression evaluated in reference 29. For
r

numerical purposes, these two values are

= -0, 2.
Apotential 418 (12.52)

rotational -0. 154 (12.5b)

for the first tangential mode of the motor.

Returning to equation (12.2), it is obvious that the stability
boundary of a rocket motor is reached when the contributions from the
combustion, mean flow, and chamber damping just balance. Since the
contribution from the mean flow is positive, this balance can occur
for either positive or negative values of the admittance, depending on
the amount of damping present.

For non-metallized propellants it has been a.rgued2 that the at-

tenuation from solid particles in the exhaust, represented by B, can
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be neglected since the only particles present are smoke particles,
which contribute very little to the damping. The transparent T-burner
revealed that the T-17 propellant used in the Brownlee-Marble studies
produces very little smoke. Thus, for this propellant it can be as-
sumed that § is zero. Naturally, for metallized propellants, this
would be an invalid assumption. In such cases, explicit attention
would have to be given the solid particle attenuation effects.

If 0 is assumed to arise from viscous effects at the head end
of the chamber, then by a simple ca.lc:ulation2 it can be shown that

- 21.4 . (12-.6)

LD
p
where 0 is expressed in s'-l and both L and D in inches. This re-
sult follows from dividing the energy dissipated at the head end by the
total energy in the chamber and corresponds to that given in equation
(9.2) for the wall losses in the T-burner.

Using this expression and the assumption that p is zero, equa-

tion (12.3) becomes
. 6.54/D
A~ = 0.705M A +—-PE— | (12.7)
b b -
al,
where the value for m, given earlier has been used.
In the Brownlee-Marble investigations, Dp was at most 5.5

inches, the diameter of the motor case itself. If L is taken as 31.0

inches and a is 3085 ft/sec, the second term on the right hand side of
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. . -5 .
this equation never exceeds 1.3X10 ~. Using the larger of the two

values given for A in equation (12.5) and assuming M, is 0.003, as

b
found in Section V, the first term on the right hand side is equal to
3.0X lO-4 . Thus, the attenuation effects are at least an order of
magnitude smaller than the contribution from the mean flow. If the
former are neglected, then the stability boundary takes on a very

simple form indeed:

- :
= 0. . 12.8
Ab /Mb 0.705 A ( )

This equation predicts the stability boundary when damping effects
are small, or, more specifically, when
(B+o)D
— << 1 . (12.9)
ZaMb/\

To compare the stability boundary predicted by equation (12. 8)
with that observed, the admittance of the T-17 propellant used by
Brownlee and Marble was measured at chamber pressures of 200, 300,
and 400 psig over a frequency range of from 0.5 to 6.0 hKz. The tests
were conducted in T-burners of 1.0 and 1.5 inch diameter. An initial
temperature of 1600}?‘, corresponding to that used in the Brownlee -
Marble studies, was closely achieved by conditioning the assembled
burners overnight in an oven maintained at 170°F.

Because T-17 is not sufficiently unstable to drive oscillations

well at reduced area ratios, the variable-area method could not be
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employed. Therefore, the growth-decay method was used, but the ad-
mittance was calculated by assuming a theoretical decay constant in-
stead of the observed value for the reasons given in Section X.

The results obtained at a pressure of 300 psig are given in
Figure 30, where the ratio A}:/Mb is shown as a function of frequency.
The solid line is simply a curve fitted to the data. The dashed lines,
however, correspond to equation (12. 8) for rotational and potential
flows. The stability boundary for the rocket motor at 300 psig should
be given by the points where the solid and dashed lines intersect. For
a rotational flow field, we see from the figure that this occurs at a
frequency of 2.8 hKz, and for the potential flow at 3. 8 hKz.

From similar plots obtained at the other pressures, the sta-
bility boundaries shown as the dashed curves in Figure 31 were deter-
mined for the two flow fields. The solid line is the boundary observed
by Brownlee and Ma.rble and clearly lies well above the predicted
curves. Obviously, the agreement is too poor to make quantitative
predictions of the motor's stability characteristics on the basis of the
T-burner measurements. At best, the latter provide only a crude es-
timate of the actual stability boundary.

Although the reason for this lack of agreement is not clear,
there are several possibilities. FIirst, there is no certainty that the
T-17 propellant used here was identical to that used in the motor fir-

ings. The batch to batch reproducibility of this propellant is not as
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good as one would like. In fact, the propellant used in the T-burner
tests had to receive additional high-temperature curing before it
hardened sufficiently to use. The effects of this extra curing on the
propellant response are unknown, but could be responsible for the ob-
served behavior.

Another possibility is that the analysis of reference 2 is in-
complete in some way. As an example, that analysis, which resulted
in the equation for the predicted stability boundary, neglected effects
on the propellant response arising from acoustic velocities parallel to
the burning surface. Although in the T-burner the acoustic velocity is
normal to the propellant surface, in the rocket motor the velocity of
the tangential mode is parallel to the combustion zone. Thus, the ad-
mittance inferred from T-burner measurements may be different
from that associated with the propellant in the motor. However, since
little is known about the effects of ''velocity coupling, '" no quantitative
estimates of the errors involved in neglecting them can be given.

Finally, one cannot overlook the possibility that the T-burner
measurements themselves are incorrect. For instance, if the ob-
served decay constant had been used in reducing the data instead of the
theoretical values, better agreement between the predicted and ob-
served stability boundaries would have resulted. However, good agree-
ment would still have been lacking, and from the arguments presented

in Section X, it appears that the use of the observed decay constants is
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incorrect. In any case, it is doubtful if the errors in the T-burner
measurements are large enough to account for the observed disagree-
ment since the present studies have shown that most of the basic as-
sumptions of the T-burner method are valid.
At present, the only conclusion which can be drawn is that
more comparisons of this type are needed in order to determine the

role of the T-burner in studies of instability in rocket motors.
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XIIl. SUMMARY OF MAJOR CONCLUSIONS

Because of the length of the previous sections, it seems ap-
propriate to summarize briefly the major conclusions drawn from the
investigations.

Certainly, one of the most significant findings is that, on the |
basis of a number of different observations, the acoustic losses of the
T-burner appear to be non-linear. As a result, the losses measured
after burnout are larger than those present when the waves first be-
gin to grow. This, in turn, implies that the usual interpretation of
the growth-decay T-burner method is incorrect. Instead of using the
observed decay constant, one should use a theoretical value based on
the amplitude present when the growth constant is measured. Since,
for low amplitudes, the theoretical losses are small, a first approxi-
mation for the admittance can be obtained by neglecting the losses
completely. In any case, agreement between the growth-decay and
the variable-area T-burner methods is not obtained when the observed
decay constant is used, but is observed when the theoretical value is
employed.

By both direct and indirect means, it was found that the heat
transfer from the combustion gases to the chamber wall is dependent
on the amplitude of the oscillations. In addition, a good correlation
was obtained from the heat transfer data.

From the transparent burner studies it is clear that the T-
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burner is basically a one-dimensional device with three-dimensional
effects confined primarily to a small region near the vent.

The ignition studies provided further evidence that a rapid,
even ignition is essential to obtaining reproducible and meaningful test
data.

Finally, predictions of rocket motor instability based on T-
burner measurements were found to be in poor agreement with actual
observations. Although several possible reasons for this disagree-
ment were offered, it is apparent that only through further such com-

parisons can the role of the T-burner in such studies be defined.
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LIST OF SYMBOLS

speed of sound

burning rate coefficient

admittance of burning propellant
(TC—TW)/TW

specific heat at constant pressure

specific heat at constant volume

chamber diameter

port diameter of rocket motor grain
acoustic energy

thermal energy

frequency

heat transfer coefficient

directly determined heat transfer coefficient
indirectly determined heat transfer coefficient
thermal conductivity

ratio of propellant area to nozzle throat area in rocket
motor

chamber length

mass flux

constant related to mode shape
mass of propellant burned

Mach number
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mass of nitrogen in surge tank
burning rate exponent
number of flow reversals
Nusselt number
acoustic pressure
limiting amplitude
mean chamber pressure
Prandtl number
heat flux at wall
burning rate

gas constant

response function of burning propellant

Reynolds number
acoustic Reynolds number

area of burning propellant

cross-sectional area of chamber

cross-sectional area of vent
time

burn time

temperature

combustion temperature

temperature of acoustic boundary layer

wall temperature
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u velocity

u' acoustic velocity

A% surge tank volume

w work done by burning propellant on the oscillations
ey observed decay constant

Q.:i instantaneous value of decay constant

ag observed growth constant

B measure of acoustic losses due to solid particles
Y specific heats ratio, Cp/cv

) thickness of acoustic boundary layer

A defined in equation (8.11)

A contribution of mean flow to the acoustic driving
u viscosity coefficient

v kinematic viscosity coefficient

P density

P density of solid propellant

o acoustic damping due to viscous attenuation

SubscriEts

() arithmetic mean
am
( )b evaluated at burning surface
( )BL evaluated at temperature TBL
() evaluated at combustion zone

C
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() £ final value
( )g pertains to combustion gases
( )i initial value
( )o stagnation value
() value at wall
w
Superscripts
( )1 imaginary part
r
( ) real part
(‘—) mean value of steady quantities, limiting value of fluctu-

ating quantities

() fluctuating part of
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APPENDIX A. Data Tables
In the following tables are found data obtained from many of
the tests. Unless rﬁentioned explicitly in the table heading, the area
ratio Sb/Sc is unity. The tests using T-17 propellant had an initial
grain temperature of 160°F. All other tests were conducted at 80°F.

Below is a list of the tables, giving the major variables.

Table Propellant Pressure Diameter Area Ratio
(psig) (in. )
1 A-13 100 1.5 1.00
2 A-13 300 1.0 1. 00
3 A-13 300 1.5 1. 00
4 A-13 300 1.5 0.72
5 A-13 300 1.5 0.43
6 A-13 300 2.5 1.00
7 A-13 600 1.5 1.00
8 T-17 300 1.0 1.00
9 T-17 300 1.5 1.00
10 T-17 300 2.5 1.00
11 T-17 400 1.5 1. 00
12 540-A 500 1.5 1.00
13 540-A 750 1.0 1.00
14 540-A 750 1.5 1.00
15 540-A 1000 1.5 1.00
16 540-A 1250 1.5 1.00
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APPENDIX B. Linear T-burner Analysis

The following analysis of the T~burner is essentially that given
in reference 7, although some slight changes have been made. There,
it is shown that by writing the pressure and velocity as

P +p'

P
u = u+u
where P is the mean pressure, U the mean flow velocity, and p' and
u' the fluctuations in pressure and velocity; the one-dimensional con-
servation equations become

o

1 ept 0 —,

Py + = % - " ox (au') , : (B. 1la)
P

ap' du' - 3p! du

— - orme— - - et . .

ot Y 5% (v 55 TYP' 37 (B.1b)

By differentiating the first of these with respect to x and the second

with respect to t and subtracting, we find

A 2 — 2
- ) — 9p! —
z22p 2p_ 8 gl du, 520 Tuy. (B.2)
2 2 ot ) dx 2
ox ot ox

where ;2 = yP/; is the average speed of sound in the chamber.
If the fluctuations are assumed harmonic, then the time de-
pendence is exp(i(it) where Q is the complex frequency given by
0= w-iq . (B.3)
Here, ® is the actual frequency and @ the '"growth constant' of the

oscillations. Under this assumption, equation (B.2) becomes



2
' 2
S 41 = h, (B.4)
dx
where
k = Q/a (B.5)
and
— dZ — k — dp! du
h = -p 2= (Uu')+i— (02 +yp' ==) . (B.6)
dXZ : dx dx

To obtain the growth constant of the oscillations, equation (B.4)

must be solved subject to the boundary conditions given by equation

(B.1a):
!
_(12_ = -f at x::O,L R (B.?)
dx
where
£ = ikpau +p—— (Tu') . (B.8)
dx

To find the values of k that satisfy the above, consider the
problem of acoustic waves in a closed tube containing no mean flow.

For that problem the equations corresponding to (B.4) and (B.7) are,

respectively,
C2
Tdixly = 0 (B.9)
o
dx
and
%;% = 0 at x=0,L . (B.10)

Multiplying (B.4) by ¥ and (B.9) by p', subtracting the two

resulting equations, and integrating over the chamber, we obtain
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L L

dpr 4%y 2 2

b -p dx - [yhdx + (k"-k *) [p'yax = 0 .
g[ dxz dxz:l 0 ° 0

The first integral can be integrated by parts, and after using (B.7)

and (B. 10), we find

L L.
K = kP e { [hpax+tnl }, (B.11)
° E° "o 0
where
, L
E° = [ p'yax .
0

2
To obtain k to first order, it is valid to replace p' and u' by

their unperturbed values on the right hand side of (B.11).

Thus,
P' ¥y = cosk x (B. 12a)
w ¥ — %‘k (B. 12b)
. pak x
[0}

where ko = nw/L for the nth mode. With these substitutions, we find

L
2
EZ T fcos k xdx = L . (B.13)
0 o 2

Also, the integral in (B. 11) can be written

L L
- i a® dy 2 du
hydx ¥ - —— [y =5 (u<t )dx+ ay <L axct H
J(l) akog dx {I dx }

The first integral can be integrated by parts twice, and, after

(B.9) and (B. 10) are used, becomes

L L L

¢ —ay 27— ay
‘J/"‘"‘ )-— ‘lf“'—'(u )i -k uy ——dx .
'1(; 1 [ ]O og dx
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Thus,
L 2ik L L }
o — dv o 2 du 1 d —d
[hoax = —2 [Ny Z+—=2 (" Tax - v = @]
0 s o & 0o ¢ ak_ dx © - dx T,
But,
L L 2 L L —
dy L= dy L= 2 L p. 2 du
Jav s ax = $fus-ax = 30W°) - 3fV" S ax .
0 " ax 0o ¥ o o %
Therefore,
L ik
2 du
th;dx=—-[u¢] - )]+——(-1)H —=
0 a
Now
u 0<x<L/2
-_ b
u(x) =
—ub L/2 <x <1,

where u is the speed of the gases leaving the burning propellant.

Thus,

since du/dx is zero except where { vanishes. Hence,

L L
[hydx = -2ik —-_—‘9 éﬁ - [\p ] , (B. 14)
0 a 0

O

where the factor Sb/S is included to take into account the fact that
c

the propellant covers only a partion of the chamber ends. Now
L L L
o - d — L~ Yy — L d —dy
(4] =ik palu'y] tplv 7= (wu')] ¥ik palu = — (=]
0 0 0 0 ako 0

But u' is related to p' at the burning surface by the admittance:
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x =1
- ;{-__.
v B A P { -0
Since p' ~{ we have
L a S S
~ b 2 2 b b b
, ~ _b } - 2. 222 ,
(u'y] ypAbH’(L”"O”s P35 %

0 C c

reflects the fact that the propellant

where, again, the factor Sb/SC
covers only a portion of the chamber ends. Thus,
L a L
[8y] = -2ik —2 A 2 <] . (B.15)
o— bS
a 0
Combining (B. 14) and (B. 15), we find
L L ab Sb
[hydx + [£¢] = -2ik — = (A_+M ) (B. 16)
o — S b b
0 0 a c¢

Thus, by (B.11) and (B. 13) we see that

where M Eub/ab
4
1ko a _S—}z
S

b
(B.17)

(Ab + Mb)

From (B.3) and (B. 5) we find that if the growth constant is small com-

pared to the frequency, then

k2 ~ _u)_z_ 2iow
T=2 —2
a a

Taking real and imaginary part of (B. 17) we find

2 4ik a S
W2 o % b i
Los e 2 Al (B.18a)
a a C
2a. S
b B p* ). (B. 18b)
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APPENDIX C. Transport Properties of the Combustion Gases

30
According to Hirschfelder, Curtiss, and Bird , the viscosity

of an N-component mixture is approximately

2

N X!
U= 2 > L , (C.1)
i=1 x. N XX M
2 +2.308 D Alk +1vi<
by k=1 it MitMy
k#i

where Xi’ p.i, and Mi are the mole fraction, viscosity, and molecular

weight, respectively, of the ith component, Aik is a tabulated function

related to the molecular collision processes. The individual viscosity

coefficients, expressed in gm/cm-s, are given as a function of the

temperature in degrees Kelvin by

1
2
5 (MiT)

W, = 2.67X 10” , (C.2)

o'iZQ(T/Tf)
where o, is the ""collision diameter' for the ith component and T,* is
a reference temperature related to the intermolecular potential. Also,
(1 is another tabulated function associated with the collision processes.

The Mg in equation (C. 1) is the viscosity obtained from equation (C.2)

for a hypothetical gas whose properties are:

ZM. M
i

_ Kk
M = M.+M
i k
= 1
On = z(0jto)
*o_ g KK
Ty = 2(T 4T )
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where i and k refer to two components in the mixture.

Below are values given in reference 30 for the o, and T: of
the main components present in the combustion gases of the propel-
lants used. Also included are the approximate mole fractions for the
various species present in the exhaust gases of A-13 and 540-A. The
latter were obtained from the normal computer programs used to pre-

dict the theoretical performance of the propellants.

ofe
T

Species o, Ti Xi Xi
(&) (°K) (A-13) (540-A)

co 3.7 88 .30 .16
H, 2.9 38 .27 . 09
H,O 2.8 230 .19 .37
HCL 3.3 360 .14 .15
N, 3.8 80 .07 . 08
co, 3.9 213 . 04 .09

Using these values along with those given in reference 30 for

Aik and (), the viscosity was calculated as a function of temperature

for the combustion gas mixtures of A-13 and 540-A propellants:
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T Ma-13 H540.A
(°K) (10'4 gm/cm-s) (10-4 gm/cm-s)
500 2.55 2.59

1000 4,23 4,41
1500 5,53 5.79
2000 6. 65 6.97
2500 7. 66 8. 00

Clearly, the values for the two mixtures are very nearly
equal. This is mainly because the viscosity coefficients for the indi-
vidual components do not differ greatly. By plotting the above values

against temperature, it was found that the viscosity is given very well

by
o= 3.2 x 107° o7 , (C.3)
where U is expressed in gm/cm-s and T in degrees Kelvin.
To calculate the thermal conductivity, the Eucken relation
was used. This relation, which applies rather well to a single poly-

atomic species is

C
15 4 v 3
= == —_— =
k= T R(E R EM
where R is the gas constant and Cv the specific heat at constant vol-

ume. For a perfect gas, R = (y—l)CV . Thus,

9y -5
k = —— . .
A(y-1) Ru (C.4)

It was assumed that this relation applies reasonably well to the

gas mixtures. Assuming a y of 1.25 and an average molecular
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weight of 25 in the mixture, equations (C.3) and (C. 4) indicate that

the thermal conductivity is given approximately by:

- O.
k = 1.6X106T 7

. . o
where k is expressed in cal/cm-s- K.

(C.5)

It is interesting to note that reasonably accurate values of the

viscosity can be obtained simply by averaging the viscosities of the

various components with respect to the mole fractions.

T 2

Thus,

(C.6)

where the M, are given by (C.2). Below are values obtained in this

way for A-13 at several temperatures:

T

gm/cm-s)

0]
(°K) (107
500 2.32

1000 3.60

1500 4,98

2000 6.02

Comparing these with the values found earlier, we see that (C. 6)

agrees with (C. 1) to an accuracy of 10 - 15 percent.



