PART I. THE NUMERICAL SOLUTION OF
HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

PART II: COMPOSITE OVERLAPPING GRID
TECHNIQUES

Thesis by

William Douglas Henshaw

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1985

(Submitted May 23, 1985)

Acknowledgements

I would like to thank my advisor Heinz-Otto Kreiss for all his help and sugges-
tions. My stay as a graduate student has been both exciting and fun. I would also
like to thank my friends at Caltech. Special thanks are due to Michael Naughton
who worked with me on a section of this thesis, and to Geoff Chesshire (Mr. Geoff).

Support for this work has been in the form of teaching assistantships and fellow-
ships from the Institute. In addition, research assistantships have been provided by
the National Science Foundation under contracts DMS-8312264 and ATM-8201207
and the Navy under contract N00014-83-K-0422.

The computations in this thesis were made on a variety of machines. At Caltech
work was performed on the Fluid Dynamics Vax 11/750 in the Applied Mathematics
Department and on an IBM 4341. The computational facilities at the National

Center for Atmospheric Research in Boulder Colorado were also utilized.

Most of all T would like to thank my parents.

- iii -

Abstract

Part 1

A method is described for the numerical solution of hyperbolic systems of
conservation laws in one space dimension. The basis of the scheme is to use finite
differences where the solution is smooth and the method of characteristics where
the solution is not smooth. The method can accurately represent shocks. Results
are presented for the solution of the equations of gas dynamics. The examples
illustrate the accuracy of the method when discontinuities are present and the code’s

performance on difficult problems of interacting shocks and shock formation.

Part 11

Techniques for the numerical solution of partial differential equations on com-
posite overlapping meshes are discussed. Methods for the solution of time dependent
and elliptic problems are illustrated, including a discussion of implicit time stepping
and using the multigrid algorithm for the iterative solution of Poisson’s equation.
Two model problems are analyzed. The first gives insight into the accuracy of
the solution to elliptic equations on overlapping meshes. The second deals with
the numerical approximation of boundary conditions for vorticity stream function

formulations. Computational results are presented.

-1iv -

Table of Contents

Acknowledgements O |
Abstract e e e e e e e e S 1
Table of Contents R
List of Figures e e e e e e e e e e . . .vii

Part I: The Numerical Solution of Hyperbolic Systems of Conservation Laws . 1

Introduction 2
Chapter 1 Background . 3
1.1 Theoretical e e e e e e e e e e e 3
1.2 Numerical . 7
1.2.1 Introduction 7
1.2.2 Shock Capturing Methods 8
Chapter 2 Description of the Scheme19
2.1 Grid Structureo o010
2.2 Finite Differences &
2.3 Solving the Characteristic Equations24
2.4 Discontinuities A
2.4.1 Fitting a Single Shock3
2.4.2 Shock Interactions3
2.4.3 The Riemann Problem4
2.4.4 The General Riemann Solver4
Chapter 3 Computational Results47
3.1 The Equations of Gas Dynamics47
3.2 Example 1 Shock Tube48

3.3 Example 2 Shock Collision92

3.4 Example 3 Shock Formation

3.5 Example 4 Interactions

References

Part II: Composite Overlapping Grid Techniques

Chapter 1 Introduction
Chapter 2 Composite Meshes
2.1 Notation Coe e
2.1.1 Composite Meshes
2.1.2 Composite Mesh Functions
2.1.3 Composite Mesh Operators
2.2 A Two Component Composite Mesh
Chapter 3 The Ocean Equations and Time Marching
31 Scaling
3.2 Approximate Solutions and Coordinate Stretching
3.3 Time Marching
Chapter 4 Poisson Solver
4.1 Direct Solution of the Mesh Equations
4.1.1 Interpolation Equations
4.2 Iterative Solution of the Mesh Equations
4.3 Multigrid Solution of the Mesh equations
43.1 Notation
4.3.2 Multigrid Algorithm on Composite Meshes
4.3.3 Composite Smoothers, Restrictions and Prolongations
4.3.4 Choosing the Cycle and Parameters
Chapter 5 Model Problem Analyses

5.1 One Dimensional Overlapping Grid . .

.....

.....

........

.....

.....

........

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

. 83
. .93

63

. 66

. 67

71

.. 11
.72
.72
. 73

.. 14

N 4
N
.. .19
. 81
.. .86
. 87

.. 87

.....

.....

ooooo

.....

.. 87
. 90
. 91
.91

. 94

.....

. 97
. 99
.. 99

-vi-
5.2 Boundary Conditions for the Stream Function Vorticity Equations
5.2.1 Introductiono oL
5.2.2 Asymptotic Expansion of the Single Time Step Model
5.2.3 Discrete Approximation of the Single Time Step Model
5.2.4 Asymptotic Expansion of the Error
5.2.5 Asymptotic Expansion of the Discrete Single Time Step Model
5.2.6 Numerical Examples
Chapter 6 Numerical Examples
6.1 Multigrid e e e e e e e e e e e
6.2 Comparison with a Rectangular Model

6.3 Run on a Large Ocean

References o000 e

106
106
113
118
121
125
139
146
146
151
164

169

- vil -

List of Figures and Tables

Part 1

Figure 1.1 Leap frog Solution
Figure 2.1 Grid Structure
Figure 2.2 Solving the Characteristic Equations
Figure 2.3 Recognizinga Shock
Figure 2.4 Shock Fitting
Figure 2.5 Shock Interactions
Figure 2.6 Form of the Solution to the Riemann Problem
Table 2.1 Results from the Riemann Solver
Table 3.1 Shock Tube Initial Conditions
Figure 3.1 Shock Tube e e e e
Figure 3.2 Shock Tube - Time Evolution
Figure 3.3 Shock Tube - Comparison to Exact Solution
Table 3.2 Shock Collision Initial Conditions
Figure 3.4 Shock Collision

Table 3.3 Initial Conditions for Shock Interactions . . .
Figure 3.5 Shock Collision - Time Evolution
Figure 3.6 Shock Collision - Comparison to Exact Solution
Figure 3.7 Shock Formation - Time Evolution
Figure 3.8 Shock Formation - Comparison to LW Solution
Figure 3.9 Shock Formation - Comparison to LW Solution
Figure 3.10 Shock Interactions

Figure 3.11 Shock Interactions - Time Evolution

Figure 3.12 Shock Interactions - Comparison to LW Solution

........

.........

......

......

......

......

......

......

......

......

........

.......

......

......

......

......

.....

......

.....

......

.....

. 25
. 30
.32
.37
. 44
. 46
. 48
. 49
. 50
. o1
. 52
. 92
. 93
. 54
. 955
. 56
. 97
. 58
. 99
. 60
. 61

- viil -

Figure 3.13 Shock Interactions - Comparison to LW Solution 62
Part I1
Figure 1.1 Overlapping Grids 68
Figure 2.1 Transformation 74
Figure 41Fine Grid M* 92
Figure 42 Coarse Grid M? 92
Figure 5.1 Composite Mesh for the Model 1D Problem 99
Table 5.1 Error Comparison « . o ... 105
Table 5.2 Normalized Errors for Example 1, e=10"% 141
Table 5.3 Errors for e =10~% 142
Table 54 Errors for e =10"2 143
Table 5.5 Errors for e =10"% 143
Table 5.6 Form of Boundary Errrors for Higer Order B.C.’s 144
Table 5.7 Errors for Third Order B.C.’s and e =10"* 144
Table 5.8 Errors for Fourth Order B.C.’sand e =10"%* 144
Table 5.9 Errors for Fourth Order B.C.’sand e =10"Y 145
Table 6.1 Convergence Rates for 2Levels 147
Table 6.2 Convergence Ratesfor 3Levels 147
Figure 6.1 Composite Mesh for Multigrid Example 1 148
Figure 6.2 Composite Mesh for Multigrid Example2 149
Table 6.3 Convergence Rates for 2Levels 150
Table 6.4 CPU times in seconds 151
Figure 6.3 Meshes for the Comparison Runs 153
Table 6.5 Errors on Composite Meshes 155
Table 6.6 Errors on the Rectangular Grid 155

Figure 6.4 Accuracy Test - Grid1 157

Figure 6.5 Accuracy Test - Grid 4

.....

Figure 6.6 Comparison Run - Time Development

Figure 6.7 Comparison Run - Grid 1
Figure 6.8 Comparison Run - Grid 2
Figure 6.9 Comparison Run - Grid 3
Figure 6.10 Comparison Run - Grid 4
Figure 6.11 Big Ocean Run

Figure 6.12 Big Ocean Run (continued)

Figure 6.13 Big Ocean Run (continued)

.....

.....

.....

ooooo

.....

.....

.....

......

.......

.....

.....

......

......

Part I: The Numerical Solution of

Hyperbolic Systems of Conservation Laws

-2.

Introduction

We consider the numerical solution of the initial value problem for hyperbolic
systems of conservation laws written in the form

{ u; + f(u)z =0
u(z,0) = ue(z)

Such problems can be difficult to solve numerically since the solutions exhibit discon-
tinuities. However, there are many problems which can be cast into the above form
and thus it is of some importance to develop good numerical schemes. The approach
taken here is to use a hybrid method which combines finite difference methods with
the method of characteristics. Finite differences are easy to implement and accu-
rate when the numerical solution is smooth. The method of characteristics is more
difficult to implement but is accurate when there are discontinuities present. The
idea is to combine the methods, using finite differences where the solution is smooth
and using the method of characteristics otherwise. The finite difference method is
applied on a fixed grid. The method of characteristics is used on points which move
through the fixed grid. The position and number of these characteristic points may
vary with time. Shocks appear as perfect discontinuities. They are recognized by
the crossing of characteristics and are fitted using the shock relations. Interactions
between different shocks are handled in a uniform manner by the use of a Riemann
solver.

There are three chapters. Chapter 1 describes the notation that is used and
gives background information on the problem. It includes a description of some of
the other methods that have been devised to solve the initial value problem. In
chapter 2 some of the details of the scheme are presented. The results of some
numerical calculations on the equations of gas dynamics are given in the third

chapter.

Chapter 1

Background

The background material has been divided into two sections. The first section
discusses some of the theoretical background associated with hyperbolic systems of
conservation laws. In addition some notation is introduced and some definitions
are made. The second section is mainly concerned with giving an overview of the

various other numerical schemes that have been devised.

1.1 Theoretical

A system of hyperbolic conservation laws in one space dimension can be written in
the form®t

u; + f(u), =0 (1)
Here u : R x [0,00) — R™ is a vector with m components, each component being
a real valued function of z and ¢. f is called the flux function, f : R — R™. In

terms of their components u and f will be written
Uy J1
Ug J2
u= . f = .
U, J Jm J

The transpose of a vector u will be denoted as u”. The system (1) is said to be

hyperbolic if the eigenvalues {¢;{u)}2, of the Jacobian matrix
af;
J =f, = |-
() =1, [Buj]

+ Within each section the equations are numbered consecutively beginning with
(1). When reference is made to an equation in another section the section number
is prepended to the equation number. Thus equation (2.5.2) refers to equation (2)

of section 2.5.

-4-

are real and there is a complete set of eigenvectors. It will be assumed here that

the eigenvalues are distinct and can be ordered
0 <ecg<ceg < < ¢y
A simple example of a nonlinear hyperbolic equation is the scalar equation
1,
ut+(5u)2=0 (2)

or

us + nu, =0

Notice that along the line dz/d{ = u (the characteristic curve) the equation reduces
to the ordinary differential equation du/dt = 0. Similarly in the case of the system
of equations (1) there are curves in # — ¢ space along which the partial differential
equations reduce to ordinary differential equations. Such curves are called charac-
teristics and the resulting equations are called the characteristic equations. These
characteristic equations can be determined as follows. Let a;(u) denote the left

eigenvector of J corresponding to the eigenvalue c¢;.

a1 (u)

ai(u) = aiz(1)

aim.(u)

The eigenvector satisfies the eigenvalue equation

al'J=cal (3)

5
Multiplying the conservation equation (1) by a;(u)” and using the eigenvalue equa-

tion gives
. 0u Ju

a; |— —cilu)—| =0
P ot 4)8;1:]
Each of these equations reduces to an ordinary differential equation along the char-

acteristic curve C; whose slope in z — ¢ space is ¢;(u).

d d
T—Ezo along Ci:——x-

T i ciflu) i=1,2,...,m (4)

or written out in components

m

;afi(u)% =0 along C;: -C;—:: =¢fu) i=12,...m
These are the desired characteristic equations.

If f is a nonlinear function of u then in general classical solutions to the initial
value problem do not exist for all time. Derivatives of u can become infinite in
a finite time even for smooth initial data. Often systems such as (1) describe the
limiting behaviour of a physical process as some parameter goes to zero. For example
the equations of gas dynamics to be discussed later are the limiting equations as the
effects of viscosity and heat conduction go to zero. The breakdown of the solution
may then be related to the breakdown of some of the assumptions under which
the equations were derived. To obtain the physically meaningful solution one could

solve a new set of equations which includes those effects that are now important.

For example one often really wants the solution to a related viscous problem

u; + f(u); = ¢(B(u)uy); Blu) >0

as the viscosity € tends to zero. Solving these equations accurately can be much
more work since one must resolve the shocks. In many cases the structure through
the shock is not required. As an alternative it is possible to patch up the current set
of equations by extending the notion of what is meant by a solution. This is done
by allowing the solution to have discontinuties. At a propagating discontinuity, on
either side of which the solution is continuously differentiable, one can appeal to the
integral form of the conservation laws to obtain the equations which describe how
the discontinuity or shock is to be propagated. These are the Rankine- Hugoniot

shock relations
[f] = Ulu] (5)
[f] = (f(ur) —f(ur))

[u] = (up —ur)

-6 -

U is the speed of propagation of the discontinuity. ug and uy are the states to
the right and left of the shock. One way to mathematically define a solution to (1)
which allows for discontinuities is to introduce the concept of a generalized solution.
We call u a generalized or weak solution of the system (1) with initial conditions
u(z,0) = uo(z) if for all smooth test functions ¢(z, f) of compact support

00 poo oo

] / (e + F(u)o,]dedt — / wo(2)8(z, 0)dz = 0 (6)

t=0 Ja=—00 z=—00
This expression can be formally obtained in the following manner. Multiply the
conservation equation (1) by ¢ and integrate over time and space. Integrate by
parts to remove the derivatives from u and f and place them onto ¢. This gives
equation {6). Any classical solution of the conservation equation will thus be a
generalized solution. The converse of this statement is not true. Having extended
the solution space in this manner we run into the trouble that too many solutions
are now allowed. We must use other criteria to determine which weak solution is
the physically relevant one. This extra condition is called the entropy condition.
For our purposes the entropy condition is simply the geometrical statement that
the characteristics on either side of the discontinuity must run into (and not out

of) the discontinuity. This means that for some index j
cj(ur) > U > ¢;(ug) (7a)

We further require that not too many characteristics run into the discontinuity so
that
ci{ug) > U > c¢j—1(ur) (7b)

and

¢yr(ur) > U > c;(ug) (7c)

These conditions ensure that there are the correct number of equations to deter-

mine the evolution of the discontinuity. A propagating discontinuity satisfying the

-7-

entropy condition (7) will be called a shock. If a discontinuity satisfies (7) with the
inequalities replaced by equalities then it is called a contact discontinusty. There
are alternative ways to define an entropy condition in terms of an entropy function,
Lax [1972].

There are a number of good references for further details of the material pre-

sented here, for example Lax [1972] and Whitham [1974].

1.2 Numerical

1.2.1 Introduction

In this section we outline some of the numerical schemes that have been devised
to solve nonlinear systems of conservation laws. We only discuss methods which
suppose that the detailed structure of the solution through shocks is not required.
If the shock profiles are of interest then the method of choice might be an adaptive
type algorithm such as those developed by Berger [1982], Brown [1982] or Brackbill
and Saltzman [1982], in which grid points are positioned so as to resolve rapid vari-
ations in the solution. Such methods often are trying to solve the viscous problem
which is related to the conservation laws. Methods which use many grids points
to resolve shocks suffer from further complications introduced by time stepping re-
strictions. The objective of the methods described here is instead to generate sharp
shock profiles with as few grid points as possible. Since the solutions to be com-
puted are only weak solutions possessing discontinuities and since the conservation
equation does not specify which weak solution is required, some care is required in
the choice of numerical method. There are a number of ways to classify the myriad
of methods that have been developed. One classification divides the methods into
the the two groups of shock tracking and shock capturing schemes. Shock tracking
methods partition the computational region into intervals separated by shocks, or

other discontinuities. The shocks are propagated using the jump conditions. The

-8-

solution between the shocks is calculated using the partial differential equations,
using a standard finite difference scheme for example. The basics of shock tracking
are discussed in Richtmeyer and Morton [1967]. A good discussion of shock track-
ing and more generally interface tracking can be found in Hyman [1984]. Other
references of interest are Plohr, Glimm and McBryan [1983], Lotstedt [1982] and
Ni and Wu [1982]. The shock capturing schemes do not explicitly propagate shocks
but rather use a method that will behave correctly when a shock is present. There
are basically two categories of shock capturing methods, those methods which use

a Riemann solver as a basic building block and those methods which do not.

1.2.2 Shock Capturing Methods

In the basic finite difference approach to the solution of partial differential equations
the domain is covered by a grid or mesh. In one space dimension the computational
interval is often discretized into a set of grid points {z;} with the grid spacing
Az; = z; — x;_ either constant or varying in such a way so as to put more grid
points where they are needed. The partial derivatives in the PDE are replaced by
finite differences. These difference approximations are accurate to some order in
the mesh spacing, for functions which are smooth with respect to the chosen mesh.
Provided the scheme is stable (at least for the linearized problem) and there are
enough grid points to resolve the solution we expect to obtain a numerical solution
which closely approximates the true one. The application of this procedure to the
solution of nonlinear systems of conservation laws can lead to disastrous results.
First of all the solutions are not smooth with respect to any mesh in which the
mesh spacings are restricted to be greater than zero. Second, there is no reason
to believe that the numerical solution will converge to the physically desired weak

solution as opposed to other possible weak solutions. Consider for example the

-0-

Leap Frog t = 0.50 n =101 At = .0075

L.¢ —mm——r—r—r—r—r—r—rT—r—r——r—rr—r—r—r—

RS ﬂ -

L2 b | j
,.o'ﬁuﬂ.ﬂﬁr\‘ nnn
AU :
= } |]
A
_ :]

Figure 1.1 Leap frog solution

numerical solution of the scalar problem

Uy + f(u)x =0
f{u) = b2)

on the interval [0, 1] with piecewise constant initial data

1 2<%
u(z,O):{O z>.5

A common method for the solution of hyperbolic PDE’s is the leap frog scheme

which in this case takes the form

At
o =0Tt = S (f(0) - £(0y)

where v! is an approximation to u({Az, nAt). For simplicity a constant mesh size
Az will be assumed. The method is two levels in time and so requires extra initial
conditions. The true solution at times 0 and Af are used to get the procedure
started. In figure 1.1 the numerical solution from leap frog is plotted against the

true (weak) solution at time ¢ = .5. (The true solution is a step function.)

- 10 -

Leap frog is clearly not giving a satisfactory answer. The oscillation which is
present is a common numerical artifact for many difference schemes. Obtaining an
accurate scheme without such oscillations is the main goal of those attempting to
devise good schemes. Leap frog behaves badly despite the fact that it is conservative
in the sense that (neglecting boundaries)

a4+l n—1
E i/i = E ?Ji
1

t

For one level schemes the term conservation form refers to methods which can be

written in the form

At
Pl =uf - o D+eluiputuly,) 2)

“ A

g is the numerical flux function which depends on the solution at various grid points.
D, is the forward divided difference operator. We will also use the backward divided

difference operator D_.

Uj+1 — Uy
Dyuwi ===
U; — U;—y

Consistency of the method implies that g(...,u,u,u,...) = f(u). Such a scheme
possesses the conservation property
q q
Ai
+1 __

Youtt = ur - o8l v)~ gl)

i=p i=p
This property of conservation is often sought in a difference scheme. A good reason

for this stems from a theorem due to Lax and Wendroff [1960].

Theorem (Lax and Wendroff). Assume that as Az and Af tend to zero with
A = At/Az fixed, the solution to a consistent scheme in conservation form (2)
converges boundedly almost everywhere to some function u(z,t). Then u(z,t) is a

weak solution of

u; +f(u), =0
{u(x,m = uo(%) 3)

- 11 -

One of the first approaches to the problem of obtaining a shock profile without
the unphysical oscillations is the method of artificial viscosity , Von Neumann and

Richtmeyer [1950], Lax and Wendroff [1960], and Lapidus [1967]. The artificial
n-+1

viscosity proposed by Lapidus can be added on to the solution u; ™" determined by

other methods. This results in a corrected solution &;"H

3 At
B = w4 (£0)(A2)° DD D ul]

In smooth parts of the flow this artificial viscosity is O(A¢(Az)?) provided that the
parameter v is O(1). However, where the solution varies rapidly it has the effect
of smoothing the solution. This is suggested by the observation that the artificial

viscosity step is a fractional step in the solution of the diffusive equation

w = V(T A0 sl

Boris and Book [1973] developed a flux corrected transport algorithm (FCT) to try
and keep shocks sharp. Their two stage method consists of a transport (convective)
stage followed by an antidiffusive stage. The antidiffusive step essentially involves
solving the backwards heat equation for one step. Thus the correction to the first
stage is of the form

vt = o™t —p(Az)? DD _ult!

1 €

=o't —p(Az)? D, im1 (4)

H
where f;_, = D_ult!
The ient is to remove the smoothing introduced by the transport step. The changes
introduced by the antidiffusion are restricted so as to not introduce or accentuate

extrema. Thus instead of the flux given in (4) a corrected flux fic+l is used.
2

artt = 't —vAZ’DL S
2

z i
ff+% =sgnl ;1 max(O,min(A]~_%sgnA]-+%ViA]~+%], Ajyss2sgndiy 1))
— +1

+1 ifz>0

Sg"”z{—l ifz<0

-12 -

Further work on the flux corrected transport algorithm was performed by Zalesak
[1979]. The algorithm is stated in a more general form in which it closely resembles
the hybridization technique of Harten and Zwass. The hybrid method utilizes a low
order scheme which hopefully given monotone shock profiles together with a high
order scheme. The hybrid scheme switches from the high order method which is
used when the solution is smooth to the low order method when the solution varies
rapidly. The details of the switching distinguishes the flux corrected transport algo-
rithm from the hybrid method. Harten [1977] developed the artificial compression
method (ACM) to prevent the smearing of contact discontinuities and improve the
resolution of shocks. Contact discontinuities are especially difficult to handle nu-
merically since unlike shocks where the characteristics point into each other, at
contacts the characteristics are parallel. In the scalar case the following equation is

solved

up + (f(u) + g(u,t)), =0

where the artificial compression function g(u, t) is chosen to cause the characteristics
to point into contact discontinuities and to point more sharply into shocks.

Another approach which has met with some success has been the upwind differ-
ence scheme. For the scalar problem (1) the basic upwind difference scheme takes
the form

Pt =0l - At

D_fr if f'(w) >0
Dyfr if f'(v) <0

The upwind difference approach is essentially an approximate method of characteris-
tics; the spatial differencing is taken in the direction from which the characteristics
are propagating (upwind). For the scalar problem, the main difference between
the upwind schemes is the manner in which the formulas switch at a sonic point

(f'(u) = 0). The Engquist Osher scheme is one approach, and is given by

up ¥t = uff — At(Dy f-(uf) + D fy (uf'))

- 13-

where

II

H

é‘\sé‘**»

) (s)ds

H

{ if f'(u

if f'(u
In this definition it is assumed that f has been transformed so that f(0) = 0 and
hence f = fi + f—. If f' is of one sign in a region the method reduces to an upwind
scheme. The Engquist Osher scheme has the desirable feature that it is conservative,
while the simple upwind scheme is not. A major difficulty with the upwind difference
schemes is the manner in which they are extended to systems. If all eigenvalues
of the Jacobian matrix f, are of one sign the extension is straightforward. If,
however, the eigenvalues are of different signs then information is propagating in
both directions and there is no longer a single upwind direction. Extensions to
systems thus requires some care, Engquist and Osher [1980], Osher and Solomon

[1980], and Harten, Lax and van Leer [1983].

The Scalar Problem

Much more is known about weak solutions to the scalar conservation law than
solutions to systems of conservation laws. An understanding of the scalar equation is
helpful to understand the more general case. Many methods are initially developed
for the scalar problem. There are then ways to extend the method to systems. It is
probably fair to say, however, that many methods do not work as well for systems.

Consider the scalar nonlinear hyperbolic initial value problem.

ut+f(u)x=0

u(z,0) = uo(z)

The equation indicates that u = constant along the curves dz/dt = a(u) where

a(u) = df/du. The characteristics are thus straight lines. The solution breaks

- 14 -

down when these characteristics cross. The weak solution of interest is often the

limit solution of a related viscous equation as the viscosity € tends to zero.

u+ f(u)e = e(B(wuse) >0

Weak solutions of the scalar conservation law possess a monotonicity property
in the sense that local maxima (minima) do not become larger (smaller) and no
new extreme points can be generated. These weak solutions are total variation
non-increasing (TVNI) in time. The variation of a function u of compact support

can be defined as
TV (u) = Slfl’p Z lu(a;) — u(ai—y1)]

where P is the set of all partitions {a;} of the interval. Thus we have that a weak
solution u satisfies TV (u{t3)) < TV (u(t;)) for all ¢, greater than ¢,.

Since the weak solutions satisfy these monotonicity properties it seems like a
good idea to try and develop numerical schemes which possess similar properties.
Reference for example Harten, Hyman, and Lax [1976], and Harten [1977]. Consider

a finite difference scheme

n+1 __ n n n
vy = H(v}_1, 07 kq1s- o Vi)

which can also be written in the form

\ARREFAS

where V is the vector with components v;. The scheme is said to be monotone if H
is an increasing function of its arguments. The method is monotonicity preserving
if V**+! is monotone whenever V™ is. The scheme is total variation nonincreasing
if TV(LV) < TV (V) where the total variation for a discrete function V is defined

to be

TV(V) = Z |vigr — v

- 15 -

Harten has shown that monotone schemes are TVINI and that TVNI schemes are
monotonicity preserving. It was shown in Harten, Hyman and Lax [1976] that
solutions to monotone schemes in conservation form converge to the physically

correct weak solution. These schemes solve a viscous equation

ur + fu): = At{B(u, Nuz), B{u,A) 20

to second order accuracy. The diffusion term involving § is generated from the
truncation error terms in the scheme. Hence the overall order of accuracy is only
first order. Second order accurate TVNI schemes have been developed by Harten
[1982]. They are necessarily nonlinear in nature since linear TVNI schemes are at
most first order accurate. Harten’s method is in the spirit of a defect correction.
The solution given by a first order accurate scheme solves a modified conservation

law to second order accuracy.

ug + (f(u) — At g{u, X)), =0

glu,A) = B(u, A)u,
Thus if one solves instead the equation
u + (f{u) + Atg{u,A)), =0

with a TVNI scheme, then the resulting scheme, which has a spatial bandwidth of
5, is second order accurate where the solution is smooth. The method is thus seen
to be similar to the anti-diffusion schemes.

One difficulty in this whole line of approach seems to be the fact that solution
to systems of conservation laws do not possess these monotonicity properties. New
extrema can be generated. (See for example the shock interaction problem which
is solved in the section on numerical results.) To force the solutions to systems to

be monotone is incorrect. Numerical schemes, however, tend to generate spurious

- 16 -

wiggles (local maxima and minima) which one does want to remove. Hopefully the
application of schemes, which are monotonicity preserving or TVNI for scalar prob-
lems, to the solution of systems will give results without as many spurious wiggles.
It would seem that care must be taken in enforcing monotonicity constraints in the

system case as is done in a number of algorithms.

Methods Based on Riemann Solvers

A major class of shock capturing methods are based upon a Riemann solver.
The first method of this type was developed by S.K. Godunov [1959]. In Godunov’s

method the solution at each time step is approximated by a piecewise linear function.
for z; <z < iy

At grid point ; the solution jumps from v;_3 to v, 1. Let w;(z,t) denote the

solution to the Riemann problem which has this same jump for initial conditions.

(Wi)i + f(wi)e =0

vi, forz<u
. _— 2
wi(z,t) = v:’+L for z > z;
2
For small enough times the solution to the initial value problem with initial condition

v"(z) can be constructed as a union of the solutions w;.
w(z,t) =wi(z,1) for z,_y <z<z4yy (5)

The time restriction is determined by the condition that the solutions from the

different Riemann problems do not interact.

At max(c;) <

AL (6)

DD | b

The approximate solution at time ¢ 4+ Af is then defined as a piecewise constant
function whose value over the interval (z;, z;+1) is taken as the average of w(z, ¢ +
At).

vt = L o w(z,t + At)de
+3 Az ’

Zi

- 17 -

This expression can be rewritten in the standard form of a difference approximation
by using the fact that w(z,) is composed of solutions to Riemann problems. The

integral simplifies to

At
it = v:‘+% - —A-—x—(f(w(le, t + At)) — f(w(z;,t + At)))

Since w(z;,t + At) only depends on w,_y and w;,_ 1 it can be seen that Godunov’s
method can be written in conservation form.

Godunov’s method by itself tends to smooth out the solution quite a bit and
is only first order accurate Richtmeyer [1967]. The method can be extended to
higher order. Reference, for example, the work of van Leer [1979] and the psece-
wise parabolic method of Woodward and Colella [1984]. A variation on Godunov’s
method was created by Glimm [1965] and is known as Glimm’s method or the
random choice method. At each time level the solution is taken to be piecewise
constant. The grid is staggered from one step to the next; the positions of the pos-
sible discontinuities being either at the grid points z; or the half grid points Tyl
Suppose at time ¢ = nAt the solution is given by the piecewise constant function
n

v

for z; <2< 749

As in Godunov’s method the exact solution to the conservation laws for the initial
condition w(z, t) = v"(z) can be obtained by solving a sequence of Riemann prob-
lems. This exact solution is w(z,t) as given by (5) and (6). The solution at time

t + At is given by a piecewise constant function with discontinuities at Tiyl

vt (z) = vith for z_y <@ <y

The solution value in each interval is given by v**! = w(#;, t + At) where Z; is cho-
1

sen at random in (:ci_%, xi_{_%). Glimm was able to obtain some weak convergence

results for his method in one space dimension for initial data which are close to a

- 18 -

constant state [1965]. The method was adapted for practical use by Chorin [1976]
for use in the problems of gas dynamics.

Since much of the information from the Riemann problem is lost in the averag-
ing step of Godunov’s method Roe [1981] suggested the use of approximate Riemann
solvers . Instead of solving the full nonlinear Riemann problem Roe solves a lin-
earized version of the equations. The linearization depends on the states u; and ug
and is chosen to have certain desirable features. Thus instead of solving a nonlinear

Riemann problem one can solve a linear problem of the form
Uy +fi(uL,uR)uI =0

The matrix A is chosen to have property U, which means it satisfies the four con-

ditions

~

(i) A is a linear mapping
(i) as ur —ug A(up,ug) —fu

(iii) for all uy and ug f{(uL,uR)(uL —ug)=fu(ur) — fu(ug)

)
(iv) The eigenvectors of A are linearly independent.

This linear problem is much easier to solve since no iterations are required.

-19 -

Chapter 2

Description of the Scheme

The basic idea of the scheme has already been outlined in the introduction.
In this chapter we proceed to give a more complete description. In section 2.1 the
structure of the computational grid is discussed. By computational grid we refer to
an underlying fixed grid together with extra grid points, called characteristic points.
The number of and positions of these extra points varies with time. The concept of
a group of characteristic points is introduced and explained. Later sections describe
how these groups of points are advanced in time. This involves a discussion of
the method of characteristics, shock fitting, shock interactions and the Riemann

problem.

2.1 Grid Structure

The computational grid first consists on an underlying fixed grid. Points on the fixed
grid will be denoted by z; and the corresponding solution values by u(¢). For sim-
plicity this grid is taken to have a constant mesh spacing h so that z;4; = z;+h. In
addition to this uniform mesh there are also some extra points which move through
the fixed grid as the solution develops. These extra points will be called charac-
teristic points since they will be the points where the method of characteristics is
applied. They will be located in regions where the solution is not smooth such
as around discontinuities. Denote their positions by z.(i). The solution value at
z.(i) will be called u.(f). The characteristic points are not restricted to lie on any
grid. Their positions are variable. In fact, when a shock develops two characteristic
points will occupy the same location. One of these points will carry the information

for the state to the left of the shock and the other holds the state to the right of

-20 -

the shock. This allows shocks to be represented as true discontinuities. Figure 2.1
shows what the computational grid and a component of the solution might look
like. The solution is the shock tube example of section 3.2 and consists of two dis-
continuities, a shock to the right and a contact discontinuity in the center. There
is a expansion fan to the left. The characteristic points and their solutions values
are marked with circles. Notice that there are two characteristic points located at

the position of the shock and at the position the contact discontinuity.

1.1 T T T T Y T T T Y T T T T T T T T T Y

Density

Characteristic point © -

Fixed grid point = ‘ .

[AV]
i

Figure 2.1 Grid Structure

Much of the complexity of the method is associated with the problem of keeping
track of the characteristic points as they move through the fixed grid. Here is an

outline of how this problem was resolved. Characteristic points will tend to cluster

-921 -

in certain locations, such as around shocks or around discontinuities in the first
derivative. (In figure 2.1 there is a discontinuity in the first derivative at the edge
of the expansion fan.) Such a cluster of characteristic points will be identified as a
logical entity and will be called a group. Each group is separated from other groups
by a smooth portion of the solution. Let g; denote the i** group. It consists of a

number of characteristic points
g,:{zé(y) j=1,...,n;}

A superscript ¢ has been added to the characteristic point to denote that it belongs
to group i. The smallest and largest values of z'(j) in any group define the extent
of the group. Fixed grid points which lie underneath a group, that is within the
extent of the group, will not be used. Such points will be called iractive, as opposed
to active fixed grid points which lie under no group. In figure 2.1 there are three
groups, one around the shock, a second at the contact and the third around the
corner of the expansion fan.

To advance the solution from one time step to the next the method of char-
acteristics is applied to each group separately. Solution values outside the extent
of the group may be needed. These can be obtained from neighbouring points on
the fixed grid. The numerical implementation of the method of characteristics is
described in section 2.3. The fixed grid points are advanced using a finite difference
method which is described in section 2.2. The computational grid is monitored to
make sure that all groups and all active fixed grid points satisfy certain conditions.
The groups can be constantly changing in size and position. The following lists

some of the operations that may be applied to a group or pair of groups.

(1) Merging - if two groups are too close together they are joined to form one
new and larger group.

(i) Splitting - if there is a smooth region in the interior of a group, the group

-922 .

is separated into two groups. Points on the fixed grid which lie in this
smooth region become active points.

(i) Liquidation - groups may disappear if the solution becomes smooth at all
the points which make up the group.

(iv) Trimming - if there is a smooth region on the end of a group characteristic
points will be taken away.

(v) Addition - Two adjacent characteristic points in a group are not allowed
to get too far apart. Extra points may be added to prevent this from
happening.

(vi) Creation - when the solution on the fixed grid becomes rough a new group

may form. (Described in more detail below.)

New groups may appear spontaneously when the solution becomes rough. The
smoothness of the solution on the fixed grid is measured by a normalized second
undivided difference quotient. A point ¢ on the fixed grid will become the location

of a new a characteristic point if

max L) = 2u5(20) + uy(zi)|
1<7<m [y]|

> 6 (1)

Here 6 is a predetermined constant which will depend on h. u;(z;) is the ji*
component of the solution at position 2; of the fixed grid and ||u;|| is a global
measure of the size of the ji* component of the solution. The left hand side of
(1) will be O(h?) where the numerical solution is smooth with respect to the grid.
If this quantity becomes large compared to h? then the finite difference method
is likely losing accuracy and it is time to switch to the method of characteristics.
There are alternative ways to define a measure of the smoothness, see for example
the discussion in Berger [1982]. The measure that one uses should be related to the
accuracy of the finite difference method which is being used. A similar measure to
(1) is used to determine when the numerical solution within a group is becoming

smooth.

- 23 -

Programming is considerably simplified when the the correct data structures
are used. The data structure for holding the groups is straightforward in nature,
consisting of pointers and lists. It is convenient to keep the characteristic points
ordered by their position so that neighbours are easily found. A useful array to
have, which simplifies many group operations, is one which indicates the status of
each point on the fixed grid. The status will indicate whether the point is active or
not and for inactive points will indicate which group it lies underneath of. Denoting
this array by istatus(i), say, then

istatus(i) = 0 if fixed grid point ¢ is an active point
| k if point ¢ is inactive and sits below group k

Using this array it is easy to check whether two groups are getting close together.
Groups are merged when they are less than a few mesh widths apart. In addition the
array acts a system of pointers from the fixed grid to the data structure containing

the groups.

2.2 The Finite Difference Equations

The numerical solution on the fixed grid is advanced using a finite difference method.
The method that is used is the second order Lax Wendroff scheme. When written

as a two step process this scheme takes the form

n P 1 n (At 2 n n
ui-;}-ll//2 = Z[ufy, +uf] - h/)[f(ui-H) — f(u})]
n k42 At n n
Wit = up — [- fai)

where

ll? = u(l’o + ih, lo + nAt)

Special forms of the difference equations are used where the fixed grid points meet

the characteristic points. Here the grid spacing is not uniform and we use

2 1. . (A2 n " .. .
Ay _[uj+1 + uj] - h]/)[f(uf+1) - f(u]-)] J=i-1.

Usti/2 = 3
(A1/2)
hi +hiy

u:z+l/2 —

Hury, 4wt) - 8 e) pgur)

-24 -

At h:
ntl _yn o L o nH1/2) g 12
a a 7 (R +hi+l)[h; (F(u,)= f(u;ly0))
hi n+1/2 n+1/2
t it (flu [y) —flu ™ "7))]
where

hi =z; — 2,

Other difference schemes could be used. Since the scheme is only applied where

the solution is smooth, higher order methods might prove to be useful.

2.3 Solving the Characteristic Equations

In this section we discuss the numerical solution of the characteristic equations

which were derived in chapter 1.

o

d
aiT—?zo along C{IE‘;:W(U) i=12,...,m

These equations are a coupled system of nonlinear ordinary differential equations.
The system is not, however, in the standard form dy/dz = f(z,y). Each character-
istic equation only holds upon a curve whose position depends upon the solution.
Given the solution u everywhere at time ¢ the objective is to calculate the solution
u for a particular point (2, {+ At). In the simplest case, when there are no shocks,
there will be precisely m characteristic curves which intersect the point (=, + At).
These characteristics emanate from some (unknown) points (z;,¢). These m char-
acteristics carry enough information to determine the m unknown components of
u(z,t + At).

To solve the equations numerically we proceed as follows. Suppose we know
an approximation to the solution at all grid points at time t. Let v(z,t) denote the
function which equals this solution at each grid point and varies linearly inbetween.
Consider the task of determining the solution at some point z at time { + Af by the

method of characteristics. To do this the following implicit approximation to the

characteristic equations is solved.

a,-(%(v(z, {4 AL+ v(ze,)T (v(z £ + Al) = v(2i, 1)) = 0
) i=12..,m (1)
z—;= c,-(—2—(v(z,t + At) + v(z;,1))) At

This will be called the midpoint rule approximation. These nonlinear equations are

solved by iteration. There are 2m equations for the 2m unknowns

v(z,¢+ At} m unknowns
z; i=12,...,m

z v(z,t+At)

t+At

A 4

Xm X Xy
V(X ,t) v(x,;.t) v(x,,t)

Figure 2.2 Solving the Characteristic Equations

In practice we may also want to solve the same equations when the initial
position z; of one of the characteristics is known and z is unknown. The midpoint
rule approximation is a second order accurate approximation to the characteristic
equations. Notice that there is not the common type of stability restriction on the
ratio of the time step to space step. This restriction is usually called the CFL,
Courant-Freidrichs-Lewy, condition. The physical idea behind the CFL condition

is that the domain of dependence of the solution to the difference scheme should be

-2 -

at least as large as the domain of dependence of the actual solution. This results
in a restriction of the form At/Az < constant. The domain of dependence of
the numerical solution of the characteristic equations, however, naturally grows or
shrinks depending on the value of Af.

The the iteration we use to solve the equations (1) is of the following form
1
a:(5 (W® +v(z",) (W —v (M, 1)) = 0 (2a)

25D = (S (W + v() 1)) At (2b)

DO | et

where w(¥) ~ v(z,¢ + At) and 2{*) ~ 2; are the k'" iterates. We now consider
the question of the convergence of this iteration. To simplify the discussion the
unknowns z; will be effectively eliminated. This can be done by assuming that we
iterate (2b) to convergence for each w(¥). This defines z; as a function of w(¥),
z; = z;(w®)). For fixed w(¥) it can be shown that the iteration (2b) will converge
provided At is sufficiently small and ¢; and v(z,) are smooth enough. (We will
think of v(#,1) as being a smooth function even though in practice it is piecewise

linear.)

The problem is now reduced to solving
ai(%(w(k) +vi(WwEOMT (WD v (w) =0 i=1,...m

where

vi(w®) = v(zi(w®), 1)
In matrix form these equations are
AwE WD = |a(Hw®) +vi))Tv: | = G(wk)
or

= F(w)

-27 -

To show the convergence of the iteration (3) we use the contractive mapping theo-
rem. Before stating this theorem we first define B,(w(®)) to be the ball of radius p

about w(0),

B,(w(¥) = {w]|[w - w|| < p}

Theorem (Contractive Mapping). Suppose F : R™ — R™ and that the fol-
lowing two conditions hold

(i) |[F(w(®)-wO||<(1-08)pforp>0and0<§<1

(i) ||F(u) - F(v)|| € 8|lu—v]|| forallu, v e B,(w®)

Then the sequence of iterates w(®) w1 w(®) . . defined by the iteration w(**1) =

F(w(¥)) converges to a solution of w = F(w). Moreover, this is the unique solution

found in B,(w(%).

Proposition. Assume that the eigenvectors a; are linearly independent and that
all the functions a;, ¢; and v(z,t) are smooth. Then the iteration (3) to solve the

characteristic equations will converge provided the time step At is sufficiently small.

The initial guess for v(z,¢+ At) will be chosen to be w(®) = v(z, t). It follows

easily that
G(w?) = Aw)w® + 0(AY)

= F(w9) =w® 4+ 0(At)
Whence
I (w®) - w| < KAt

for some constant K. Now consider any two vectors u and v in B,(w(®)). Then
F(u) - F(v) = Fu (W) (u = v) + O(plju — v|)
= |IF() = Pl < (exo + [IFuw(w)]) flu = vl]

We now show that ||Fy, (W(?)|| < e At. Differentiating the equation

- 98 -

and evaluating at w = w(®) gives
Aw(WOF(W?) + AW, (W) = Gy, (W)

Now
Ay (WOYF(W) = Ay, (W)W + 0(Al)

Thus
Fu(w®) = A, (w(®)~1 (Gw(w(o)) — Ay (WO)W(O))

Since the eigenvectors are linearly independent ||A (w(®))~!|| can be bounded
independently of At. Thus it will suffice to show that G, (w(®) — Ay, (w(?)w(®)

is O(At). The ij" elements of Ay, (W(®))w(® and Gy, (w(?) are

T
[Aw(w)wo®] = [f’;] wl®
L] Wi Jw(o)

t7

and 5
Gy (Wl¥ = [——— a7 v }
[()Lj dw; (M (w)) w(0)
ov;
— AL (WO VW] 4 (wO)T [___]
[(w)w Lj-i—a(w) Ow;]y o)
But
e
= O(Atl)
since
[?fi-] = O(Al)
dw; |, (o)
Hence

[F(u) = F(v)l| < (crp+ c2At) |Ju - v]]

For p and A{ small enough 6 = ¢yp + co At can be made less than 1. Then by

choosing Af even smaller one can ensure that

KAt <(1-c1p—c2At)p

-929 -

and the requirements of the contractive mapping theorem are satisfied.

As mentioned previously, each group of characteristic points is advanced as a
unit. The steps to advance a group to the next time level (once shocks have been
fitted) are as follows :

(i) Calculate v(z,t+ At) as outlined above where z lies at the end of the j*"
characteristic curve which begins from a given characteristic point. Do
this for each for each characteristic (j = 1,2,...,m) and for each point in
the group.

(i) Each characteristic point at time t has spawned m new points at time
t + At. These points are not all kept; points are removed where the

solution is smoothest.

2.4 Discontinuities

The solutions to hyperbolic system of conservation laws can possess discontinuities.
These may be present from time zero if the initial conditions contain jumps. The
discontinuites may also develop in time if the system is nonlinear. Discontinuities
are treated in a special manner by the program.

Consider an isolated discontinuity which is propagating through the flow. The
states on either side of the discontinuity are assumed to be smooth. The speed of the
discontinuity, U, is then given by the jump conditions [f] = U[u]. The discontinuity
is assumed to satisfy the entropy condition. This condition was given in section 1.1.
In words the entropy condition states that there is one and only one extra charac-
teristic running into the discontinuity. We will usually call a discontinuity which
satisfies the jump conditions and the entropy condition a shock. The numerical
procedure for advancing a shock (shock fitting) is described in section 2.4.1. We
will see that the jump conditions and the one extra characteristic equation provide

enough equations to determine the shock speed and the states to the left and right

- 30 -

of the shock.

Another type of discontinuity can exist at a given point in time. This discon-
tinuity does not satisfy the jump conditions. It may arise in initial conditions or
when two shocks collide. In order to determine the solution at the next time level
a more general Riemann problem is solved. The discontinuity will then be resolved
into shocks and expansion fans.

There is a good chance that there will be a shock in any given group of charac-
teristic points. Before the characteristic points are advanced to the next time level,
the group is first scanned for the existence of shocks. Shocks are indicated by the
crossing of two characteristics of the same family (i.e. lying on the same numbered

characteristic).

t/\

t+At

A 4

Figure 2.3 Recognizing a Shock

The program considers two cases when characteristics are found to cross.
(i) Most often the crossing has occurred where a shock has been previously
fitted. In this case the states on either side will not be arbitrary but will

satisfy the shock relations

[f] — Ulu] = 0

-31-

(Actually since the shock velocity U is not known, the ratios of the jump
in f; to the jump in u; are checked to see if they are the same. This also

gives a good initial guess for U.)

(ii) If the conditions of (i) are not satisfied (as might be the case when shocks

collide or with discontinous initial conditions).

In case (i) a single shock is fitted to determine the solution at the next time
level. This shock fitting procedure is discussed in the next section. In case (ii) the
more general Riemann problem must be solved. (Actually shock fitting is just the
solution of a special Riemann problem when only one shock appears in the solution.)
A numerical technique for the solution of the Riemann problem is given in section
2.4.4. Before describing the procedure, we first discuss shock interactions (section

2.4.2) and give some background material on the Riemann problem (section 2.4.3).

2.4.1 Fitting a Single Shock

Suppose the shock occurs on characteristic k (a k-shock). The shock fitting problem
requires the determination of the states to the left and right of the shock at the next
time level as well as the shock speed. The appropriate characteristic equations to use
in determining these values are those which correspond to the characteristic curves
which do not cross the shock. Hence for a shock occurring on the characteristic
family k (called a k-shock) there will be equations for characteristics 1 to k coming
from the right of the shock and equations for characteristics k to m coming from

the left of the shock.

-32-

t+At

Ym pee Yk X °°° Xp Xy X

Figure 2.4 Shock Fitting

There are 3m + 2 unknowns

uy,up states to the left and right of the shock
U shock velocity
Z1,%2, ... 2k, Yk, Yk+1,- -+, Ym initial positions of the characteristics

The 3m + 2 equations which must be solved are

a,-(—lz—(uR—l—v(x,-,t))T(uR vz 1) =0 i=12,....k (1a)
1 .
a,-(E(uL +v(y,) (ur = v(yi, 1)) =0 i=kk+1,...,m (1b)
[f(ug) —f(ur)] - Ujugr —ur}=0 (m equations) (1c)
1 .
:cs—z,-zq(g(ug + v(zi, t))) At i=12,...,k (1d)
1
:cswyizc,-(—z-(uL + v(yi,t))) At i=kk+1,...,m (1e)

The position of the shock at { + Al is z,.
— .0 1 (0)
$S:ZS+E[U+U }At

In this last equation z? is the shock position at time t and U(©) is the shock velocity

at time t. U(®) can be determined from the jump conditions. These equations are

-33.

solved by a quasi-Newton method. By which to say that only the first 2m + 1
equations and variables are used in the Newton step. The variables z; and y; are
updated after each Newton step from the equations which describe the position of
the characteristic. This was done for simplicity.

We now derive some conditions under which the iteration to solve the shock
fitting equations (1) will converge. We assume that at time t the solution v(z,1)
is smooth in the neighbourhood of the shock, z2, except for a jump at z0. As in
section 2.3 we first reduce the number of variables by assuming that the z; and y;

can be determined, from equations (1d) and (le), in terms of the other unknowns

ug
One must be a bit careful in this case since the solution v{z,t) is discontinuous at
z = z0. Thus we must assume that w € B,(w(%)) where w(®) is the solution when
At = 0. Then if p is small enough and the entropy condition is satisfied it is not
hard to show that any jump in v(z,t) is not a factor since z; and y; will always
stay on the proper side of the discontinuity.
The iteration thus reduces to a Newton iteration to solve the nonlinear system

Fi(u)

iy
£
I
<
=
Ea
]
)

Fymyi1(u)
where the first m —k + 1 components of F are equations (1a}, the second m compo-
nents are equations (1lc) and the last k components are equations (1b). Assuming

that the initial guess w(9) is good enough the Newton iteration

(k)
u
wik+D = Wik _ (W(k))F(W(k)) : wk) = U(%:))
Up

will converge if we can show that

IFSHw)] < M

-34 -

for some constant M (independent of At).

The Jacobian Matrix FY) = F,, (w(©) is

| al (L) 0 0---0]
al (L) 0 0---0

FO = [f,(2) +UOT —[u] fu(R)-UOT
0---0 0 al(R)

0---0 0 al(R) |

where we have used the shorthand notations
a:(L) = a;(ul’,U®) £,(L) =fu(u)
a:(R) = a;(uf),U®) fy(R) = fu(uf))

and
] =) — u?

Recall that a; is a left eigenvector so that

and

These facts will allow us to determine some conditions for the nonsingularity of
FQ). The procedure to determine these conditions is to transform F@, by taking
linear combinations of the rows, to a new matrix. If this new matrix is nonsingular

then so is FQ). Let Arp be the matrix

ALr = T (L)

-35-

We multiply Ap g into middle rows (m —k +2 to 2m —k +1) of FQ). Then we use

the fact that
" af (R)(—fu(L) +UOI)]

aj (R)(~fu(L) +UOJ)

ALR (—fu(L) + U(O)I) R ce+1(L))ag 4, (L)

(U — cp(L))aZ(L) |

There is a corresponding result for
Arn (U1 -1,(1))

Using these results the following proposition can be shown.

Proposition. The Jacobian matrix for the Newton iteration, FES), is nonsingular

if

(i) al (R)(~fu (L) + UODNa;(L)#0 i=1,...,k—1,
(i) ag(R)T(uY —ul®)#£0 and
(iii) a7 (L)(fu(R) - UONa;(R) #0 i=k+1,...,m

To see that these conditions might be reasonable consider the case when fy is

symmetric. Then the first and last conditions reduce to

(ci(L) -UYal (R)a; (L) #0 i=1,...,k—1
and

(ci(R)-U®)al (L)a;(R) #0 i=k+1,...,m

Now by the entropy condition ¢i(L)=U© #£0and ¢;(R)~U® # 0fori # k. Hence
we are left with a condition on the eigenvectors. Condition (ii) is not unreasonable

since for a weak k-shock the jump in u is in the direction of a;.

At a true contact discontinuity the characteristics which form the discontinuity

(the characteristic numbered k£) do not point in to the contact but are instead

-36-

parallel to it. Computationally the characteristics may point slightly in or out. The
program recognizes such a situation as a possible shock. Thus contact discontinuites
can be treated like shocks, except in the following regard. It was found that any
initial errors in the contact did not disappear. At a shock, where the characteristics
point in, the errors get washed into the shock. It is the more global behaviour of
the solution which determines the states in the immediate vicinity of the shock. To
improve the values at a contact the two parallel characteristics were made to point
slightly inward. This procedure is in the spirit of the artificial compression method,
Harten [1977]. Actually the program just makes sure that the k characteristics on
either side of any discontinuity must point in at least a small amount. For normal
shocks no change is made. For contacts, the point at which the k characteristics

originate are moved slightly away from the discontinuity.

2.4.2 Shock Interactions

The shock relations describe how isolated discontinuties propagate. However, this
information does not yet completely specify the solution. For what happens when
two shocks merge or collide? Further details must be given to indicate how the in-
teractions between discontinuities are to be handled. Below we describe the manner
in which shock interactions proceed. It is then shown that this description describes
a weak solution.

Consider the situation when two shocks collide. Let u;, u,, and u, be the
states in the smooth regions between the shocks. The subscripts are to refer to left,
middle and right. The speeds of the shocks are simply determined by the states
immediately in front of and in back of each shock. The shock speeds are given by the
Rankine-Hugoniot relations. The shocks will continue to move together until the
section between them vanishes. Now the states on either side of this discontinuity
will not in general satisfy the jump conditions for a shock. This problem must then

be considered as a general Riemann problem to be solved. The solution to this

- 87-

Riemann problem should generate the appropriate shocks, contacts and fans that

result from the collision.

uy

Figure 2.5 Shock Interactions

To show that the above procedure is reasonable one can show that the scenario
given above for the collision of discontinuities describes a weak solution to the

conservation laws.

Proposition (Shock Interations). Let Uy(t) > 0 and Uy (t) < 0 be the speeds
of two shocks which collide at time t = 0. The positions of these shocks fort < 0

are denoted by £,(t) and &(t) and given by

d
:%‘=U1(t) £(0)=0
%ﬁ —Uy()) &(0)=0

Let u;(z,t) , um(z,t) and u,(z,t) be solutions of the system of conservation laws

-38-
for t < 0 in the regions between the shocks,
() +flw), =0 —o00 <z < £ (1)
(Um)t +f(um)e =0 &(t) <z < &(0)
(up)s +f(u;)z =0 &(t) <z < o0
which also satisfy the jump conditions
(f(um (&1(2), 8) — F(w(&(2),1)) = Ur () (um(£1(8), 1) — (&), 1))
(F(ur (&2(1), 1)) = £(um (&2(2),1))) = Ua () (ur (&2(1),1) = um(&2(2), 1))
Let v({z,t) be a solution to the initial value problem which results at the instant

the shocks collide.

Vi +f(v)x =0 (1)

wiz,0) z<0
v(x’o)z{u,((z,())) xiO

Then the following function defines a weak solution to the hyperbolic system of

conservation laws

uy xz<¢é (t)
uz{um gl(t)1<x<£2(t) for >0
U x>€2(t) for t>0
u=v(zt)

Proof.

We need to show that the following expression is zero for all smooth test func-

tions ¢ with compact support.

I= /t:ioo /j—oo{ugzbg + f(u)p,|dzdt

First split the integral in time into an integral from —oo to 0 and an integral from

0 to co. Denote the first double integral by I; and the second by Is.

0 o0 o0 oc
I= f f [ug; + £, |dedt + / j [ug; + o, |dedt
tm—00 v z=—00 t=0 Jr=-o00
= Il + Ig

-80-

For ¢t < 0 the solution u is formed from u;, u,, and u,. Substitute u;,u,, and u,
for u in the first integral.

0 &1 €2
I = / e twodda+ [t + f(un)oulde

= =00 z=£€,

+ /OO [u,d: + f(u,)z]da}dt
z=¢§2

These integrals can be simplified using the relations

€ € 3
f [u;0¢]dz = 4 u;pdr — uz¢(€1)(—1§l- - / (w)epde

o dt Jo—_oo dt =—00

and
€

€
L:-—oo f{u;)p,dz = [f(uz)cblfl - /z_ f(u;),0dz

Similar expressions are obtained for the space integrals from &; to £ and from &

to co. After substitution the expression for I; becomes

€1 €2 0o
I =f u;(z,0)¢(z,0)dx +[U, (z,0)¢(z,0)dz +[u, (z,0)¢(z, 0)dze
=T *=¢£ =€,
0 d p
+ /tz_oo {- '(“1%1“[111(51, t) — um (&1, t)]o(&1,t) — —d%?—[um(ég,t) - u,(&,1)]

+[f(w (&1, 1)) = Fum (&1,)]0(61,) + [f(um (€2, 1)) — Flur (&2, 1))]0(&2, 1) jt
Hence

L= f T (e, 0)(z,0)dz

_——
The integral I, is easily simplified since u is equal to v for ¢ > 0 and v is the

solution to the Riemann problem (1).

I = L: f ioo (06t + £(u)ps|dudt
_ /t:] ioo{vqu(v)qsx]dzdt
- f Ozo_oov(:c, 0)6(z, 0)dz

= —/:o u(z, 0)p(z,0)de

—_——00

- 40 -

Hence I = I; + I = 0. This shows that the description given for the interaction of
discontinuities describes a weak solution to the conservation laws. We must further
ask whether this weak solution is the physically correct solution. This requires that
the two shocks and the solution v be solutions which satisfy the entropy condition.
Actually the above proposition is a special case of the result that two weak solutions,
one defined for £ < £y, and the other for { > ¢y, which agree at { = {; can be combined

to form a new weak solution.

2.4.3 The Riemann Problem

We now discuss some aspects of the Riemann problem. In the next section a numer-
ical algorithm for computing a solution will be described. Recall that the Riemann
problem is the solution to the initial value problem when the initial data consist of

two constant states.

u + (£(u)) = 0 0
(w0 ={3F 735

From the form of the initial conditions one might expect that the solution will
depend solely on the similarity variable € = z/t. Assume a solution of this form,

u(z,t) = v(¢). The partial derivatives of u with respect to time and space become

dv
us = (-—é’/t)gg
Ei_z

ugczl/td€

Upon substitution, equation (1) becomes

d d
TV g5 = €3¢ (2

where J(v) is the Jacobian matrix of f(v)

- 41 -

Equation (2) is in the form of an eigenvalue equation with eigenvector v(£) and

eigenvalue £. Possible solutions are the trivial solution

v = constant (3)
dv
7e = ol@rv) (4a)
€ = ci(v) (40)

r; is the right eigenvector of J corresponding to the eigenvalue ¢; and «(€) is some
scalar depending on £. Given initial values € and v, we can try to solve equation
(4a) to determine a solution that depends on &, vo and a(€). However, the second
equation (4b) places constraints on the solution. Differentiating (4b) with respect

to £ gives

dv
Ve, T — =1
o T
Hence, using (4a)

a(€)VeTry(v) =1

Provided that Vc,Tri(v) is never zero this equation determines what « should be.
This gives the initial value problem

N RS
d¢ ~ VeTri(v) (5)
v=vy at €=¢ and & =ci(vo)
Lax [1972] calls the system strictly nonlinear if Ve;Tr;(v) is always nonzero. The
solution to (5) will be a classical similarity solution to the Riemann problem. This

solution is called a fan or ezpansion fan. Another similarity solution to (1) which

is only a solution in the weak sense is the shock solution

_Jvp for&<U
T |\vg for€>U

- 49 -

The states vy and vy and the constant shock speed U must satisfy the jump
conditions

(f(ve) —f(ve)) =Ulve - vr)
In addition, for a physically valid solution we require that the entropy condition is
satisfied.

Let us suppose that these two types of solutions are all we have to work with
to try and construct a weak solution to the full Riemann problem (1). The solution
will consist of a sequence of fans or shocks separated by constant states. There
will be a shock or fan corresponding to each family of characteristics. Beginning
with the state u; we generate a solution u(uy, &) through a 1-wave. A l-wave
is a fan or shock solution formed on characteristic 1. The parameter £; in this
solution is not yet determined but will either be the value of £ at which the fan
solution stops or the speed of the shock. The state u(ug, &) will now be connected
through a 2-wave to a state u(ug, &, £2). Continuing in this manner one obtains a
solution u(uy, &y, €2, ..., &x) which depends on the m parameters §;. We will have
a solution provided we can choose the & so that u(ug, &, &,...,&x) = ug. Lax
[1972] has shown that the £ can indeed be chosen to satisfy this equation provided
|lur — ugl| is sufficiently small and the system is strictly nonlinear. In this case the

system is essentially linear in behaviour and

u(u[néla €2a"-3€m) =ur + Zri(uL)gi + 0(512)
i=1

Since the right eigenvectors r; are linearly independent we can solve for the £; to
make the above expression equal to ug

In general the form of the solution to the Riemann problem is not known. For
many systems of interest the solution is of the form of constant states separated by
fans or shocks. The numerical procedure described in the next section assumes this
form. If one has a system for which the Riemann solution is of a different form it

would be necessary to replace this solver with one that will perform correctly.

- 43 -

2.4.4 The General Riemann Solver

In this section a numerical procedure for solving the Riemann problem is discussed.
Efficient algorithms have been devised for specialized systems. An iteration proce-
dure for the equations of gas dynamics with certain types of gas laws was given by
Godunov [1959]. Improvements and extensions of this scheme were made by, for
example, van Leer [1979] and Colella and Glaz [1982]. The algorithm presented here
applies to more general systems, those for which the Riemann solution is of the form
of constant states separated by fans or shocks. This more general scheme suffers

from the drawback of being slower than those optimized for particular systems.

Now consider solving the Riemann problem numerically. To each characteristic
family ¢ = 1,..,m there will be a possible shock or fan appearing in the solution.
The shock or fan may degenerate to zero strength. To begin with one does not
know which characteristics lead to shocks and which to fans. This complicates
matters in two ways. Firstly the equations that must be solved depend on whether
there is a shock or fan; through a fan the characteristic equations are solved while
across a shock the Rankine Hugoniot jump conditions hold. Secondly, the number
of equations varies with the number of shocks, as will be seen shortly. Suppose for
the moment that one knows which characteristics form shocks and which form fans.

Let ns be the number of shocks in the solution. The unknowns to be solved for are

(1) u* k=1,2,...,m -1 The constant state which separates the k-wave

(fan or shock) from the (k+1)-wave. Define u® to be ur and u™ to be ug.

(2) U; k=1,2,...,n, The velocity of the shock which occurs on charac-

teristic iy, ix € (1,2,...,m).

- 44 -

A 4

Figure 2.6 Form of the Solution to the Riemann Problem

The equations to solve are of the form

(1) The Jump conditions across each shock (on characteristic k say)
[f(u**) - £(u*)] - Ue[u™* - u*] =0

(2) The characteristic equations through each expansion fan (on characteristic
k)

rdu

dt=0 on C; i=12,....k—LEk+1,....m

a;(u)

where C; is the characteristic which passes through the k-fan. A simple

approximation to this equation is thus

1
ai(g(uk"’l + uk))T(uk"'l - uk) =0
The number of equations and the number of unknowns are both equal to m(m—
1) + n,s. In practice it was found necessary to to use a more accurate formula for

the characteristic equations which are calculated through strong expansion fans

(since the solution changes appreciably through the fan). This is done by adding

- 45 -

additional states through the fan. If there is a fan between the states u*~! and u*
denote the extra states by u*» v =1,2,... k.. The number of extra states k, is
determined by the angle of opening of the fan. The states are positioned through

the fan along the lines
z/t = ayer(u™h) + (1 - ay)eg (u¥)

where a, = v/(ke + 1) for the v*" extra state. The extra equations that are solved

are
1 .
a,-(i(uk"+1 +uF)T (uF+ —uf) =0 i=1,2,...,k-Lk+1,...,m

ek () = ayep (U1 + (1 - a,)er(u¥)
In these expressions we have defined

uko - uk—l ukke+1 — uk

Notice that Af appears nowhere in the equations. This is to be expected as the
solution to the Riemann problem is self similar in variable z/t.

These equations are solved by Newton’s Method. The initial guess at the so-
lution is sometimes not very good and it has been found necessary to start the
iteration with a few steps of the method of steepest descent. Then during the New-
ton iteration a partial Newton step is taken if the corrections are still too large. As
the iteration process proceeds the number of unknowns may vary. This may be the
result of the number of shocks, ng, changing or the number of extra states through
afan changing. Contact discontinuities in particular tend to oscillate between being
shocks and being fans. Since Newton’s method is used, a Jacobian matrix must be
inverted. It was found that early on in the iteration the Jacobian could be nearly
singular (due apparently to the number of unknowns being incorrect). When this
situation was encountered the weakest shock was replaced by a fan, thus reducing

the number of unknowns by one.

- 46 -

This solver has worked well when tested on the equations of gas dynamics.
Table 2.1 gives some results for a particular Riemann problem. This is the problem
solved in example 1 of the third chapter. The solution consists of an expansion
fan, a contact discontinuity, and a shock. There are two interior constant states.
In the table the values of the density, momentum and energy for these constant
states are given. The state between the fan and contact discontinuity is denoted by
a subscript 2, and the state between the contact and the shock by a subscript 3.

Results are given for 0,1,2,3 or 4 extra states through the fan.

Riemann Problem
True Calculated

k.=0 k.=1 ke =2 k.=3 k. =4
p2 = .4263 4746 .4397 4324 .4208 4285
ps = .2656 .2654 .2658 .2657 .2657 .2656
mo = .3954 .4399 .4084 4014 .3088 .3976
ms = .2463 .2460 .2469 .2466 .2465 .2464
Ey = 0412 L9610 .0485 .0447 .9432 0425
Es = .8720 8712 .8735 8729 .8726 .8724

Table 2.1 Results from the Riemann Solver

- 47 -

Chapter 3

Computational Results

8.1 The Equations of Gas Dynamics

In this section results are presented for the numerical solution of the equations of
gas dynamics. The three components of u have the more common names of density,

momentum and pressure.

p = density
P
u=|{m m = momentum
E
E = Energy

The flux function f for an inviscid polytropic gas is

flu)=| m?/p+p
m/p(E + p)

where the pressure p and velocity u are defined as

p=(r-DE-5ms] =14

u=m/p
The computer code requires expressions for the coefficients which appear in the
characteristic equations. These can be obtained as follows. First the Jacobian

matrix is determined.

0 1 0
fu(u) = 2(y — 3)u? (3—9)u y-1
—ymE [p+ (v —1)m*[p* ~E[p—3(v—1)m*[* u

The eigenvalues and left eigenvectors of this matrix can be calculated in a straight-
forward manner.

a1 —u(zu+af(y-1))
c1=u—4a ay=\|ap | = u+a/(7—1)
ays —1

az; —1E[p— (v + 1)u®
Co = U 89 = | Qg9 | = U
ags -1
as1 ~u(zu —af(y - 1))
cg=u+a ag = | Gzo = u——a/(7—1)
Gss -1

The characteristic equations are then
3
du;
Za,-]-(u)-g;’ =0 along —=¢u) =123
j=1

Four examples have been chosen to illustrate the performance of the computer code.
The first example is the solution of a Riemann problem. The second example shows
the collision of two shocks of equal strength. In these first two numerical tests the
results are compared to the exact solution. As a third example the formation of
a shock is shown. A more complicated problem of interacting shocks, fans and
contact discontinuities is given as the final example. Examples three and four are
compared to the results obtained using a more standard finite difference code with

many points.

3.2 Example 1 Shock Tube

This first example is taken from the paper by Sod [1978]. This Riemann problem

has become a standard test case. The initial conditions are

t=0 z<.5 2.5

P 1.0 125
m 0.0 0.0
E 2.5 .25

Table 3.1 Shock Tube Initial Conditions

- 49 -

The solution for times greater than zero consists of a shock wave travelling to
the right followed by a contact discontinuity and a rarefaction wave. The density
and epergy (and momentum) are discontinuous across the contact, while the

velocity and pressure are not.

A 4

Figure 3.1 Shock Tube

The time evolution of p, u, E and p are shown in figure 3.2. Indicated on the
figure are the time step dt, the number of points on the fixed grid n, and the number
of characteristic points nc. nc is given as a range of values. This range indicates
the maximum and minimum number of characteristic points that were needed over
the entire run. Initially there is only one group of characteristic points. As the
discontinuities separate the group becomes larger and the number of characteristic
points increases. When the smooth regions in this group becomes large enough the
group splits and the number of characteristic points decreases. By the final time
shown there are three groups. Comparison to the exact solution is made at time

t =.2 for n = 40 in figure 3.3.

-50-

Shock Tube

dt = 00100 n =40 nc = 3to24

Figure 3.2 Shock Tube - Time Evolution

0.7

Velocity
g @
I i

g.18

1

-51-

] i

0.00
0.00

1.00

0.20

0.40

!

0.60

0.80 1.00

| }

0.00
0.00

0.20

0.40

0.80

0.80 1.00

1.00

0.80

Pressure
o o
3 8

0.20

0.00

2.80

2.00

0.50

0.00

t = 0.2000 dt = 0.0100 n =

Shock Tube

! I] | j

.00 0.20 0.40 _0.80 0.8 1.00

[| i i i

0.00 0.20 0.40 0.60 0.80 1.00
40 nec = 10

Figure 3.3 Shock Tube - Comparison to Exact Solution

-52-
8.3 Example 2 Shock Collssion

This example was chosen to demonstrate how the program handles the collision
of shocks. In particular we look at the collision of two shocks of equal strength

travelling in opposite directions. The initial conditions are given as

=0 z<.33 33 <z <67 x> .67
[.2656 ‘ d25 .2656
m .2463 0.0 -.2463
E .8720 .25 .8720

Table 3.2 Shock Collision Initial Conditions

v

Figure 3.4 Shock Collision

Figure 3.5 shows the numerical solution proceeding in time. A comparison is
made with the true solution at time ¢ = 2.5 in figure 3.6. At this time the shocks
have already collided and are now moving apart. Due to the way that interactions

are handled (described in an earlier section) there is a slight error in the shock

-53-

position after the collision has taken place. (Before the collision the shock positions

are exact up to the precision of the computer .)

8.4 Example 3 Shock Formation

This numerical experiment was performed to see how a smooth profile can steepen
up to form a shock, figure 3.7. For the first few steps there are no characteristic
points present. Once the shock starts to form, characteristic points are put in.
Eventually the solution develops a jump. Many shock tracking codes would prob-
ably not be able to handle a shock formation problem since they require a priori
knowledge of the positions of the shocks. The code developed here is well suited for
this problem.

This solution is compared to the result using the Lax Wendroff method on
a fixed grid with 400 points (figures 3.8 and 3.9). Artificial viscosity of the type
developed by Lapidus is used in the Law Wendroff solution. The value of this
artificial viscosity is given as vnu in the figures. It is seen that the method accurately

predicts the shock development.

8.5 Example 4 Interactions

In this final example a shock moving from the right hits the flow that is generated

by the shock tube problem of example 1. The initial conditions are

t=0 z<.5 b5 <2< 753 x> .753
P 1.0 125 .2656
m 0.0 0.0 —.2463
E 2.5 .25 8720

Table 3.3 Initial Conditions for Shock Interactions

The resulting interactions of shocks and contact discontinuities are fairly com-

plicatdd and are shown schematically in the following # — ¢ diagram. This should

- 54 -

W__—_JJJ

i | 5
Q.2 :
/'% Qé =

5

g L::;;— . . L% .
jaud N by \———._
L - S i -
) Z I
Rl =S ;\}—ﬁ =
g &
x 1.00 > 1.9m0
Shock Collision
dt = 00100 n =30 ne= 5to 1l

Figure 3.5 Shock Collision - Time Evolution

-55-

0.93 0.7
0.56 [~ 0.82
'
Poas b o.a7 -
vt
Q | |]] }
S %
I 0.pc 0.20 o040 080 060 1.00 O
>-0.19 - a 0.31 et
-0.56 P g.i6
-0.93 b b emaeens 0.00 1 | | | }
0.00 0.20 0.40 0.60 0.80 1.00
X
0.5t 1.95
0.41 - 1.6
o T o bhi1?
= 9]
w0 s e e e e [
o ']
L) e
& 0.20 = omw -
o.10 0.38 [
.00 | H i { b 0.00 i i i i |
0.00 0.20 0.40 0.80 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

Shock Collision

t=02500 dt = 00100 n= 30 nec= 7

Figure 3.6 Shock Collision - Comparison to Exact Solution

- 56 -

~

:
%
A 4
R~ . EN -
+ _,'% Qc# + s, o gﬁ’
7 ¥ z

1.871

YELOCTTY

2.000

DENSITY
ENERGY

8.125

il

A A

-+
7 OSSN

Shock Formation
dt = 00040 n=81 nc= 1to @

Figure 3.7 Shock Formation - Time Evolution

- 57 -

0.99

0.78

0.58

Density

0.39

0.20

0.00
0.00 0.20 0.40 X 0.680 0.80

Shock Formation

t = 03000 dt = 00040 n= 81 nc= 4
LW t = 0.3000 dt = .00100 n= 401 vnu = 1.50

Figure 3.8 Shock Formation - Comparison to LW Solution

-58-

.07 0.97
0.86 I~ 0.7
[
Pos Hoss [
]
13)
S %
© &
> 0.43 - S
.2t b+ 0.18 R
0.00 | i ! | 0.00 1 I I !]
0.0 0.20 0.40 0.80 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
X X
0.98 2.48
0.78 1.97
0.5 1.97
ot
w2
o
)
0 0.38 D.98
8.20 0.48
0.00] i i i] 0.00] 1 i i j

0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
X

Shock Formation

t = 03000 dt = 0.0040 n= 8! nc= 4
LW t = 0.3000 dt = .00100 n = 401 vnu = 1.50

Figure 3.9 Shock Formation - Comparison to LW Solution

- 50 -

be helpful to follow the numerical solution of figure 3.11.

A 4

Figure 3.10 Shock Interactions

At the point marked (1) on the diagram the isolated shock which is moving
in from the right side of the diagram hits the shock which began at z = .5 and is
moving to the right. These shocks are of equal strength. They pass through each
other after being refracted. The one shock continues to move to the left until it
hits the contact discontinuity at (2) on the diagram. Note that in the figure 3.11
the contact discontinuity only appears in the density plot. When the shock and
contact hit they pass through each other with some refraction. There is also a weak
reflected shock which is generated from this collision. This reflected shock moves
to the right and catches up with the other shock at (3).

Again the solution is compared to the result using Lax Wendroff and a large

number of points, figures 3.12 and 3.13.

- 60 -

veLocrry

1.000
2.500

2.5
ENERGY

DENSITY

" Iz

8.258

@.000

o.000
t.220

Interactions
dt = Q0050 n =80 nc = 5to 28

Figure 3.11 Shock Interactions - Time Evolution

- 61 -

1.00
0.80
0.60
ey
e
(=1
Q
=
0.40
0.20
0.00 | | 1 1 }
0.00 8.20 0.40 0.60 0.80
X
Interactions

t = 03000 dt = 0.0050 n= 80 nc = 11
LW t = 0.3000 dt = .00100 n = 401 wvnu = 1.580

Figure 3.12 Shock Interactions - Comparison to LW Solution

0.83

0.48

y
e
-
w

\{elocit
N

~0.58

-0.93

0.80

0.20

0.00

1.00
o.es +
)
= 0.680 I~
i 1] i] g
0. 0.20 0.40 0.60 0.80] 1.00 &
é-:n.eo -
0.20 P
| 0.00 i i | !
C.0C 0.20 0.40 0.60 0.8
2.50
2.00 |~
150
0o
ot
)
=
/100
0.50 -
1 i ! ! i 0.00 !] 1 !
0.00 0,20 0.40 0.80 ©0.80 1.00 0.00 0.20 0.40 0.60 0.80
Interactions
t = 03000 dt = 0.0050 n= 80 nc = 11
LW ¢t = 0.3000 dt = 00100 n = 401 vnu = 1.50

-62 -

Figure 3.13 Shock Interactions - Comparison to LW Solution

-63 -

References

M.J. Berger, Adaptive Mesh Refinements for Hyperbolic Partial Differential Equa-
tions, Ph.D.dissertation, Department of Computer Science, Stanford University,
Report No. STAN-CS-82-924, 1982.

J.P. Boris and D.L. Book, Fluz Corrected Transport. . SHASTA, A Fluid Transport
Algorithm That Works, J. Comput. Phys., 11, p. 38, 1973.

J.U. Brackbill and J.S. Saltzman, Adaptive Zoning for Singular Problems in Two
Dimensions, J. Comp. Phys. 46, pp. 342-368, 1982.

D.L. Brown, Solution Adaptive Mesh Procedures for the Numerieal Solution of Sin-
gular Perturbation Problems, Ph.D. thesis, California Institute of Technology, 1982.

A.J. Chorin, Random Chosice Solution of Hyperbolic Systems, J. Comp. Phys. 22,
pp 517-533, 1976.

R. Courant and K.O. Freidrichs, Supersonic Flow and Shock Waves, Interscience
Publishers, New York, 1948.

P. Colella and HM. Glaz, Numerical Modelling of Inviscid Shocked Flows of Real
Gases, Eight International Conference on Numerical Fluid Dynamics, Edited by E.
Krause, Lecture Notes in Physics 170, Springer-Verlag 1982.

P. Colella and P.R. Woodward, The Piecewsise-Parabolic Method (PPM) for Gas-
Dynamical Simulations, LBL report #14661, July 1982.

B. Engquist and S. Osher, Upwind Difference Schemes for Systems of Conservation
Laws, Potential Flow Equations, Preprint, 1980.

J. Glimm, Solutions in the Large for Nonlinear Hyperbolic Systems of Equations,
Comm. Pure Appl. Math., 18, pp. 697-715, 1965.

S.K. Godunov, A Finite Difference Method for the Numerical Computation of Dis-
continuwous Solutions of the Equations of Flusd Dynamics, Mat. Sb., 47, pp. 271-290,
1959.

A. Harten, The Artificial Compression Method for Computing Shocks and Discon-
tinusties. I. Single Conservation Laws, Comm. Pure Appl. Math., 80, pp.611-638,
1977.

A. Harten and P.D. Lax, A Random Choice Finite Difference Scheme for Hyperbolic
Conservation Laws, New York University Report DOE/ER/03077-167, May 1980.

A. Harten, P.D. Lax and Bram van Leer, On Upstream Differencing and Godunov
Type Schemes for Hyperbolic Conservation Laws, Siam Review 25, no. 1, January
1983.

- 64 -

A. Harten, JM. Hyman and P.D. Lax, On Finite-Difference Approzimations and
Entropy Conditions for Shocks, Comm. on Pure and Appl. Math., vol. XXIX, pp
297-322, 1976.

J.M. Hyman, Adaptive Moving Mesh Methods for Partial Differential Equations,
Los Alamos National Laboratory report LA-UR-82-3690, 1982.

J.M. Hyman, Numerical Methods for Tracking Interfaces, Los Alamos National Lab-
oratory Report LA-9917-MS, March 1984,

S.N. Kruzkov, First Order Quasi-linear Equations in Several Independent Variables,
Math. USSR Sb., 10, pp. 217-243, 1970.

Lapidus, A Detached Shock Calculation by Second Order Finite Differences, J.
Comp. Phys. 2, pp.154-177, 1967.

P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves, SIAM Regional Conf. Series Lectures in Appl. Math., 11, 1972.

P.D. Lax and B. Wendroff, Systems of Conservation Laws, Comm. Pure Appl
Math., 13, pp. 217-237, 1960.

P. Lotstedt, A Front Tracking Method Applied to Burger’s Equation and Two-Phase
Porous Flow, J. Comp. Phys, 47, pp. 211-228, 1982.

Ni Lin-an and Wu Xiong-hua, The Singularity-Separating Method, The Proceed-
ings of the Fourth International Symposium on Finite Element Methods in Flow
Problems, July 26-29, 1982.

O.A. Oleinik, Discontinuous Solutions of Nonlinear Differential Equations, Uspekhi
Mat. Nauk, 12, pp. 3-73, 1957. (Amer. Math. Soc. Transl. Ser. 2, 26, pp. 95-172)

S. Osher and S. Chakravarthy, High Resolution Schemes and the Entropy Condition,
SIAM J. Numer. Anal. 21, no. 5, October 1984

S. Osher and F. Solomon, Upwind Difference Schemes for Systems of Conservation
Laws, Preprint 1980.

B.Plohr, J. Glimm, O. McBryan, Application of Front Tracking to Two Dimensional
Gas Dynamics Calculations, Courant Institute Report, 1983.

R.D. Richtmeyer and K.W. Morton, Difference Methods for Instial Value Problems,
2nd Edition, Interscience, New York, 1967.

P.L. Roe, The Use of the Riemann Problem in Finite Difference Schemes, Royal
Aircraft Establishment, Bedford, England, 1980.

P.L. Roe, Approzimate Riemann Solvers, Parameter Vectors and Difference
Schemes, J. Comp. Phys., 43, pp. 367-372, 1981.

G. Sod, A Survey of Several Finite Difference Methods for Systems of Nonlinear
Hyperbolic Conservation Laws, J. Comp. Physics, 27, 1978.

- 65 -

B. van Leer, Towards the Ultsmate Conservative Difference Scheme, V. A Second-
order Sequel to Godunov’s Method, J. Comp. Phys., 32, pp. 101-136, 1979.

B. van Leer, Towards the Ultimate Conservative Difference Scheme, II. Monotonic-
ity and Conservation Combined in a Second-order Scheme, J. Comp. Phys., 14, pp.
361-370, 1974.

J. Von Neumann and R.D. Richtmeyer, A Method for the Numerical Calculations
of Hydrodynamic Shocks, J. Appl. Phys. 21, p. 232, 1950.

G.B. Whitham, Linear and Nonlsnear Waves, John Wiley and Sons, Inc., 1974.

P. Woodward and P. Colella, The Numerical Simulation of Two Dimensional Fluid
Flow with Strong Shocks, J. Comp. Phys. 54, pp. 115-173, 1984.

S.T. Zalesak, Fully Multidimensional Fluz-Corrected Transport Algorithms for Flu-
¢ds, J. Comp. Phys., 31, pp. 335-362, 1979.

- 66 -

Part II: Composite Overlapping Grid

Techniques

- 67 -

Chapter 1

Introduction

Composite overlapping meshes are very useful in the numerical solution of
partial differential equations. This is especially true on regions of nontrivial shape.
The basis of the technique is to cover the computational domain with a number
of meshes. Where the meshes meet tvhey overlap a few grid lines, rather than
joining up exactly along their boundaries. Solution values on these overlapping
mesh boundaries are obtained by interpolation from the solution values of the mesh
which is overlapped. For example, figure 1.1 shows a region (! which has been

covered by two grids.

A curvilinear grid follows the boundary and a rectangular grid covers the in-
terior. The component meshes are also shown . There are a number of advantages
to using the composite mesh procedure :

(1) Accurate representation of boundaries

(2) Ease of applying boundary conditions

(3) Mesh refinement to resolve certain parts of the region is made easiser

(4) Flexibility in the grid construction. The curvilinear grid in figure 1.1 can
be constructed in a manner essentially independent of the inner rectangular
grid. This is in contrast to many methods which construct a single grid
for the entire region.

(5) The method lends itself naturally to parallel processing.

Composite overlapping mesh methods are illustrated in the numerical solution
of an oceanographic problem. This problem will illustrate methods for the numer-

ical solution of time dependent and elliptic equations on composite meshes. The

- 68 -

-

A

ATl

%

Figure 1.1 Overlapping Grids

following set of partial differential equations is to be solved on a region (1. {} can

be thought of as an ocean basin.

¢ = —Rolugz +vgy] — Bv + Ex Vi + f (1.1a)
V2¢ = Yozt Pyy =¢ (l.lb)
(u: ’U) - (—%,%) (1.16)

0
¢ =0 and ——‘gzo on 0
on

9% denotes the boundary of (1. Partial differentiation with respect to time and

space are denoted by subscripts.

ds
ft—at

d
S"x"“i

T Oz

- 69 -

These are the quasigeostrophic barotropic vorticity equations for flow on a beta
plane. They are a model of large scale ocean flows. The parameters Ry and Ej will
be called the Rossby number and Ekman number, respectively. We shall refer to
these equations as the ocean equations or the vorticity stream function equations.
When the system is nondimensionalized so that the size of the region is O(1) and
the size of ¥ is O(1) typical values for Ry, Ef, 8, and f are
Ry=10"% to 1073
E,=10"* to 107°
g=1
f=1
Of interest will be the effect of boundary geometry upon flows of small Ekman
number. For small E; strong boundary layers develop. It thus seems essential to
have a grid which smoothly follows the boundary.

We now give a short outline of the contents of the chapters to follow. In chap-
ter two composite meshes are described. This includes introducing the notation
and the concepts of composite mesh functions and composite mesh operators. In
chapter three the ocean equations are discussed. The form of the expected solution
in boundary layers is derived. This indicates the appropriate stretching to use for
the grids which lie next to the boundary. In addition, the time marching scheme
that is used to solve the ocean equations is described. The fourth chapter is con-
cerned with the solution of Poisson’s equation on composite overlapping meshes.
Both direct and iterative methods are discussed. A major section of chapter four
deals with the multigrid algorithm as it applies to composite meshes. Chapter five
presents the analysis of some model problems which relate to other parts of this
work. The first model problem examines a one dimensional overlapping grid. The
accuracy of the solution to an elliptic problem is examined. In particular we see

how the amount of overlap between the grids and the order of interpolation at the

- 70 -

overlapping boundaries affects the error. The second model analysis examines the
numerical boundary conditions which are used for the vorticity stream function
equations. A reason is given to explain why higher order boundary conditions are
needed. The final chapter, six, gives some numerical results from the multigrid
solver and the solution of the ocean equations. As many of the ocean model codes
approximate the boundary in a somewhat more crude fashion it is of interest to see
what differences there are when composite meshes are used. Such a comparison is

made in this final chapter.

- 71 -

Chapter 2

Composite Meshes

The composite overlapping grid technique has been in use for some time. For
example, Starius [1977] looked at the convergence of elliptic problems on two over-
lapping meshes using the Schwartz alternating procedure. (This procedure is ex-
plained later.) In a later paper Starius [1980] considered the numerical solution of
hyperbolic problems. The stability of the Lax Wendroff method was shown for a
model problem on a one dimensional overlapping mesh. In his Ph.D thesis, Reyna
[1982] obtained further stability results for the method of lines, again for a model
hyperbolic problem on a one dimensional overlapping mesh. Reyna also gave ex-
amples and accuracy tests of the method. A method of mesh construction for two
overlapping grids was described by B. Kreiss, [1983]. We use a similar method to
the one described there. A more general program for generating composite meshes
has been developed. by G. Chesshire, [1985]. This program allows the interactive
description of the problem from which a composite mesh is generated. Also on in-
terest is a paper by M. Berger [1984] where she indicates how to obtain conservative

difference approximations at grid interfaces.

2.1 Notation

In this section the notation used to described composite meshes is introduced. A
good notation makes it much easier to describe algorithms on composite meshes.
This is especially true when we need to describe the multigrid algorithm. A com-
posite mesh comnsists of a union of (usually) simpler meshes. These simpler meshes
will often be called component meshes. One can define composite mesh functions
in the same way that mesh functions are defined on other types of grids. Similarly

compostte mesh operators can be defined. An overlapping composite mesh has com-

-72 -

ponent meshes which overlap where they meet. For such composite grids we often
deal with mesh functions which are related at the boundaries of the overlap to the
mesh function values on the component grid which is being overlapped (through

an interpolation formula say).

2.1.1 Composite Meshes

A composite mesh M is composed of component meshes M,.
M=MUMU...

In general a component mesh need not be simple in structure, and could in principle
be a composite mesh itself. For our purposes, however, we will assume that each

component mesh consists of a set of mesh points.
M, ={z,(i,j)| (i, 7) € Np}

N, € Z X Z 1s a set of index pairs which specify the points on the component
mesh. A component mesh will consist of boundary points and interior points. A
point on the boundary, dM,, of a component mesh will either be on that part of
the boundary which is interpolated from another grid or else on the boundary of
the computational region. The set of interpolation boundary points of M, will be
denoted by ¢M,. (The dota (1) prefix will be used when an interpolation boundary

is referenced.)
My = {z,(i,5) | (i, j) € Ny}

The set of all interpolation boundary points on M is :M.

2.1.2 Composite Mesh Functions

A composite mesh function f is a function defined on the composite mesh M. It is

a union of component mesh functions fp.

f=fUfU...

- 173 -

Each component mesh function can be represented as a set of values defined at the

mesh points of M,

ip = {fp(i,7)](i,7) € Np}

Those values which appear on the interpolation boundary ¢M, will be denoted by
L ip. The space of all composite mesh functions will be called Mf and the space of

component mesh functions Mf ,
M = {f| ip € Mi,}

M, = {1 | ,(i.5) € €}

2.1.3 Composite Mesh Operators

A composite mesh operator S maps one or more composite mesh functions into a

composite mesh function.

S:M" — M

Composite mesh operators which act only on those values of the mesh function
which correspond to the points on the interpolation boundaries will be denoted with
a preceding ¢, for example tS. A composite mesh operator consists of component
mesh operators. A component mesh operator maps one or more component mesh

functions into another component mesh function.
Sy Mf " — M,

The subscript indicates which component mesh the operator acts on. Composite
mesh operators will be written in terms of their component mesh operators as

follows

S=Sl'T2‘SI...'Sp

The order in which the component mesh operators appear may be important. The

operators act from right to left.

-74 -
2.2 A Two Component Composite Mesh

We now look at the solution of a simple hyperbolic problem on a region which has
been covered by composite meshes. Consider for example the composite overlapping
mesh of figure 1.1. A rectangular grid M; covers an interior portion of domain. A
curvilinear mesh M, lies on an annulus next to the boundary of (). The rectangular
grid and curvilinear mesh overlap. Functions defined on the composite mesh such
as ¢ and ¢ are connected between M; and M, by interpolation. The discussion here
will mainly deal with the case of two overlapping meshes, although the extension
to any number of meshes is not difficult. The partial differential equations (PDEs)
to be solved must be discretized on the meshes M,, p =1 or 2. One way to do this
is to first map each component mesh onto a simpler region such as a unit square.
The PDEs can then be transformed to the coordinates of this square. The physical

coordinates will usually be denoted by (z,y) and the transformed coordinates by

(r,3)

Figure 2.1 Transformation

As an illustration of the technique for solving time dependent problems on

-75 -

composite meshes consider trying to solve

Uy = aug + buy (1)

where for simplicity boundary conditions will be ignored. For each mesh M, the

equation is written in (r, s) coordinates
ur = Gpur + byus
@y = apre +bpry (2)

by = ap8; + bysy

Let the composite mesh function v(n) be an approximation to the solution
u at time { = nAf.
v(n) = v,(n) U ,(n)

vp(n) = {vpli,s,n) }
vp(i, 4, n) ~ ulzp(4,5), 4pli, J)s) for (2,03,5)95(i,5)) €My p=1,2
The procedure to advance from time ¢, to time ¢,4; = ¢, + At is (using leap frog

in time and central differences in space)

vp(i,yn+1) =vp(i, f,n—1)

+ 2At [apDO, +I§,,DOS] vp(i,fon) (i,j)EN, p=1,2

nligin+1) = aili, i,k Doa(k,Ln+1) (i,§) €N (3)
k,l

v(i,jn+1) =Y aoli, ik, Dok, Ln+1) (i,5) €V
k.l

where the central difference operators Dos and Dy, are given by

. . vli+1,j)—vli—L1j
Du(i) = M4 A =i =L
w1 =i, -1
DOrU(3>])= ()2h ()
”,

- 76 -

As indicated, values on the boundary of M, are obtained by interpolation from
values of M, and vice versa. The a,(i, j, k,[) are the interpolation weights. If there
is sufficient overlap so that boundary points are interpolated entirely from interior
points of the opposite grid then the interpolation formula can be evaluated directly
using the calculated values from the interior. Otherwise interpolation values are
linked together and a system of equations must be solved (i.e. the interpolation
equations) in order to determine those values on the interpolation boundaries. This
is discussed in further detail in chapter 5. Equations (3) define a composite mesh

operator for the leap frog scheme, LF : Mf x Mf — M,

v(n + 1) = LF(v(n),v(n — 1))

- 77 -

Chapter 3

The Ocean Equations and Time Marching

In this chapter we discuss the ocean equations and time marching. The ocean
equations are first nondimensionalized and scaled so the expected size of the solution
is O(1). This makes it easier to see the relative sizes of each of the terms in the
equation. For purposes of grid stretching the behaviour of the solution in boundary
layers is determined. Explicit and implicit time marching schemes are outlined in

the final section of this chapter.

8.1 Scaling

The quasigeostrophic barotropic potential vorticity equations are a simple homo-
geneous model of wind driven ocean circulation. See, for example, Pedlosky [1982]

for a derivation. In dimensional form these equations can be written as

¢ = Yytz — Yaty — Bz + ABVZ s + f(2,9,1) (1)
Ay 1s the horizontal turbulent viscossty coefficient. We introduce nondimensional
variables which will be denoted with a superscript star. The dimensional variables
will be scaled by combinations of the three parameters L, F and B. L is a length
scale on the order of the size of the ocean basin. F' measures the size of the forcing
term and B the size of 8(y).

F=Hm=gﬁvwwﬁl

B =g

For the moment a scaling W for the stream function and T for the time will be used.

These parameters will later be chosen in terms of L, F' and B.

x_ T «_ Y
x——L y-L
oo L)
Y= I'=7

Y 8
* *x M

- 78 -
f* = w;‘x‘ + w;»y-

Substituting these expressions into (1) gives

w ‘P2 * * L3 %* B\y *
i,"L_2§t*n = F(¢y¢§x- - i/fznfyv) - Tﬂ*ipzt
A (2)

L4

The parameters ¥ and T will now be chosen so that the Coriolis term and the

+ (Szege + Cyeys) +F 7
forcing term are the same order of magnitude. The reason for this choice being that
in the problems we are interested in the main balance in the equations will tend to
be between these two terms (at least away from boundaries). Dividing through
by F' and setting the coefficients of the forcing term and Coriolis term to 1 leads to
the choice for T and W.

1 L

T=3z =73

Define the quantities By and Ej to be the coefficients of the convection and dissi-

pation terms respectively.

F

R -

° T (BL)?
_ Anm
k= IsB

These nondimensional numbers will be called the Rossby and Ekman numbers, re-
spectively. The Rossby number measures the relative importance of the convective
(advective) terms. The Ekman number (which is usually small) measures the im-
portance of dissipation and will determine the size of boundary layers. Dropping

the stars from the nondimensional variables results in the nondimensional equation.

i =R0(1/)y§x _¢x§y) - ﬂ(y)"/)x +Ekv2§+f(xayvt) (3)

Some typical choices for L, F, B and Ay are
L =10°n

F=10"152
B=2x10"1m 1571

Ag = 2000m?2s~1

- 79 -

which gives values for the Rossby number and Ekman number of

Ry =2.5x 1072 E, =101

3.2 Approximate Solutions and Coordinate Stretching

From the typical values for R, and E; given in the previous section it is not hard
to see that much of the flow will be determined by a balance between the Coriolis
term and the forcing. However, since the Ekman number is small one can expect
that narrow boundary layers will be present. It is useful when solving a problem
numerically to know the form of the solution in the boundary layer so that the grid
can be stretched to place more points in the regions of rapid variation. Ideally the
solution on the stretched grid should be everywhere smooth. One can use asymp-
totic analysis to determine the form of the solution in boundary layers. For small R,
it is also possible to obtain an approximate (steady) global solution. This solution
was first discussed by Munk [1950]. It possesses some of the main characteristics of
ocean flows including the intense currents on the western shores. A more detailed
discussion can be found in Pedlosky [1982]. For our purposes we start from the fol-
lowing model problem. This equation models the behaviour of steady, low Rossby
number flows on regions of the ocean where the flow is mainly one dimensional with

boundaries running essentially north and south.

=1, =0 7 = %1

The parameter v is positive and assumed to be small, ¥ <« 1. The constant 2 is
O(1). 7 is also O(1) and for simplicity is assumed to be constant. The problem is

linear with constant coefficients and so can be solved explicitly. The solution is

Y= %6_%A(3+1){COS(§A($ +1) - Zﬁr-) - \E/—;cos(%—iz\(z +1)— g—)}

1
~ L Ly T Sy test.

BA g B A

(2)

- 80 -

The notation e.s.f. stands for terms which are exponentially small, that is of the form

X to some power times e~*. X is the principal root of the characteristic equation

A —glv=0.
A= (—)
v

The vorticity ¢ = 9, is given by

4
¢ = -—LVe"%)‘("“){cos(\/?g,\(z +1)— {,E)

V38 6
V3 V3 T\ —A1-2)
+ —2—:\—cos(—é—)\(z +1))} - '/é"\e +e.s.l.

(3)

X is large being O(v™%). From the above expression for the vorticity (3) it can be
seen that there are boundary layers at both +1 and —1. The boundary layer at +1
has strength (i.e. coefficient o the exponential) of A = O(r~#%) with exponential
decay rate of X. The boundary layer at ~1 is much stronger having strength A% =
O(v—*%). It oscillates rapidly and decays with rate A /2. The solution away from
boundaries looks like ¢ = (7/8)z + constant. This is a solution to 8¢, +7 = 0 and
is known as the Sverdrup relation. The form of the boundary layer given here will
be used to determine the stretching of the grid. The expression for the vorticity (3)

will be compared to some numerical results in the final chapter.
Coordinate Stretching

From the form of the boundary layer one can decide how to stretch the com-
putational grid. The most important results are the exponential character of the
layer and its decay factor. Consider the problem of stretching the annular shaped
component mesh shown in figure (1.1) in order to resolve a boundary layer. Recall
that the mesh is first mapped onto the unit square. Assume that the coordinate r of
the unit square corresponds to the radial direction on the annular strip with r =0

being the outer boundary and r = 1 the inner boundary. The grids are stretched

- 81 -

using a transformation of the form

Note that g : [0,1] — [0,1] and g(0) = 0,¢(1) = 1. If d is large and positive then
away from r = O ¥ is related r by ¥ ~ ar + ¢. Thus if the grid spacing in r in this

region is uniform the grid spacing in # will also be uniform. Near r = 0

Froep +coe”
or
1 1,
r ——C—iln(g(r —¢1))
Thus if ¢(r) ~ e~ #" for r =~ 0 then
B 1 Bld
() ~ (27 -)
2

Given J and taking into account the transformation to (r, s) coordinates, the con-
stant d can be chosen so that an exponential boundary layer in r will behave as a
low order polynomial in 7.

Hence the finite difference equations applied in the ¥ coordinates need only be

accurate for low order polynomials.

3.3 Time Marching

Two types of time marching methods will be described in this section. One will be
an explicit scheme which uses leap frog on equation (1.1a) to march the vorticity
and then solves the Poisson equation (1.1b) to obtain the stream function. This
procedure must be done in a way so that both boundary conditions are satisfied. The
second method will be partially implicit, using a Crank-Nicolson implicit scheme

on the boundary grid but an explicit scheme in the interior.

-82-

The leap frog time marching scheme illustrated for the model problem of the
section 2.2 is easily generalized to give an explicit method for the full vorticity

equation.

¢ = Ro(vytz — ¥aty) + B, + Ex Vi + f

To simplify the notation, the coordinate transformation from (z,y) to (r,s) will
be not be taken into account. In addition the subscript which usually denotes the
component mesh will be suppressed. The subscript will instead denote the point

(#,7) on the mesh. Application of leap frog scheme then gives

n+1 n—1
g;] gg 3

o =Ro(Doy ¥ Doxts — Dost}sDoyss)

+6D0x¢;3 +EkD2§3J 1;
where D? is the central difference approximation to the Laplacian operator.

D*=Dy,D_,+D,,D_,

Uit1y — Uiy

Doty = = —
X

Uij — Ui—yj
z

For stability reasons the diffusion term in not evaluated at the time level n but
rather at the time level n — 1. Away from boundaries the flow is mainly hyperbolic
in nature, assuming that the Ekman number Ej is small and there are no internal
layers. Leap frog is then a good procedure, with time differencing errors O(At2 +
ExAt). The ezplicit time marching scheme consists of the three steps. Advance
the vorticity for all nonboundary points, determine the stream function from the
Poisson equation with zj)t"]“ = 0 on the boundary and finally compute the vorticity
on the boundary using the zero normal derivative boundary condition.
Determine §”+1 for (4,) in the interior

Compute W"“ from D2z/)”+1 = g;’;“ for (i,) in the interior (1)
Determine g"““ for (,j) on the boundary

-83-

The vorticity on the boundary is obtained by using

Saz-?«?_'*‘l — D2¢?:7+1 (2)

where the stream function on the line outside the boundary is obtained from a

discrete approximation to the normal derivative condition. This approximation is

of the form
waz;rl = C—li//‘z-_*_-i + Cowz)-*-l + 01¢?1+1 + 02‘1/)?2-*-1 +..=0 (3)

The boundary is assumed to be the line j = 0 in the above formula, with interior
values j = 1,2,.... The coefficients in (3) are taken so the formula is third order
accurate. For a discussion of boundary conditions see the second section in chapter
5. The explicit scheme described here is second order accurate and numerically is
found to be stable.

For the curvilinear grid which lies next to the boundary there are advantages
in using an implicit method. (It is also of interest to see if there are any troubles in
using different time marching methods on different component meshes.) To resolve
viscous boundary layers the mesh may be highly stretched in the normal direction
next to the boundary 011. In these stretched coordinates the coefficient of 82 /dIn?
in the Laplacian will be O(1) and the flow will be parabolic in nature. Implicit
methods are often a more efficient way to solve parabolic problems. The stretching
of the grid close to the boundary leads to a very small grid spacing and so explicit
time marching techniques such as leap frog will require a very small time step At

.The stability condition is of the form

2
At < constant —
k
To overcome this restriction arising from the diffusive term one can use an implicit

scheme. With such a scheme the time step can be primarily chosen by accuracy con-

siderations. There are some difficulties in implementing an implicit scheme. These

-84 -
problems arise from the manner in which the vorticity stream function equations
are being solved. The vorticity equation is used to march the vorticity, but there are
no boundary conditions on the vorticity. The implicit scheme requires the vorticity
on the boundary at the next time level. One way to solve this problem is to iterate
on the value of the vorticity on the boundary attempting to converge to that value

for which both boundary conditions on the stream function are satisfied.

An implicit Crank Nicolson (or Peaceman Rachford) type difference approxi-

mation to the vorticity equation is

ST ooy, (A
N 2 AN
Prtl 4 oyn Rl en
__DOI(_’Z_E_A)DW(”_Z___Q)] (4)
n+1 n n+1 13
+ 8D, (—L—T4) +EkD2(—”———2——J-J—) + f3,+2
with boundary conditions
Yio =0
Dy =0

The y direction has again been taken as the direction normal to the boundary
with the line j = 0 being the boundary. The choice of the discrete approximation
Dy to d¢/dn = 0 is of the form (8). The implicit scheme is only applied on the
mesh which follows the boundary, M,. The solution on the inner mesh M, is first
advanced using leap frog. The values of the vorticity at the next time level on the
interpolation boundary of M, are then known. This assumes that the interpolation

equations are not coupled. The system of equations (4) is solved by iteration, the

values of the vorticity on the line j = 0 being unknown. Let wfj and pf]- denote
approximations to §t.';+1 and z,b:}'" ! respectively. The k+1 'st iterate is obtained from

the k’th iterate by solving a sequence of tridiagonal systems given by the following

- 85 .

equations.

k+1
w+ ¢

Wiy TS5 _
7 o[Doyl

2

pt] + z/);_y
——=1D

2) Oy(2
k41 k+l k+1
E wi]-+1—2 +w;;
+ k[2h2
— 2w l'c+1 + w

2hg

wikj + Set?;')
2
k+1
sz]

) Do (

2

— Do) + 8Doq()+

k
Wity

L
+ e S B Ak

We must re-solve for the stream function (on all meshes) from the new values for
the vorticity.

sz:cj—}-l _ wicj-u
The new guess for the vorticity on the boundary is obtained by the method given in

Israeli [1970]. This method changes the current guess of vorticity on the boundary

by a constant times the current estimate for 81 /dn.

R+l _ k+1
w;; w -+ KD p;;

The constant K is determined from a one dimensional analysis of the equations

near the boundary. X depends on the approximation to Dg.

- 86 -

Chapter 4

Poisson Solver

In this chapter we consider the numerical solution of Poisson’s equation with

Dirichlet boundary conditions.

Viu=f in O
(1)

U= g on 9()

The problem is discretized to be solved on the composite overlapping grids. The
composite mesh function v will be the numerical approximation to the solution
u. The right hand side f will have corresponding mesh function f. The Poisson

equation is discretized on each component mesh.
2
Dpyy, =1, p=1,2 (2)

Points on the interpolation boundaries are obtained by interpolation from the mesh

which they overlap.

24, 5) = Zal(i’ Jik, 1) vy (k,1) (4,7) € N ()
Q2(ivj) = Ea2(i? j’kJ)y-l(kv l) (iaj) € Ny (4)

This system of equations (2),(3) and (4) can be written as a single composite mesh

equation for the composite mesh function v.
Av=f~f (5)

These equations will be called the mesh equations.

- 87 -
4.1 Direct Solution of the Mesh Equations

When computer storage is available the mesh equations (4.5) can be solved directly.
The Yale sparse matrix routines, Eisenstat et al. [1977], have been used to solve
this system. These programs initially reorder the equations so as to reduce the
fill-in that occurs during the Gaussian elimination. The matrix is factored once and
the equations can be solved for various right hand sides by using this factorization.
When the time to perform the reordering and factorization is ignored and the system
is small enough to fit into the main computer memory then this is probably the

fastest way to solve the Poisson equation of all the techniques that were considered.

4.1.1 Interpolation Equations

The interpolation equations will be said to decouple if the right hand sides of the
interpolation equations do not involve any points on the interpolation boundaries.
That is to say that boundary points are interpolated entirely from interior points.
If the interpolation equations are coupled then a system of equations must be solved
for the interpolation boundary values. This system becomes singular as the over-
lap of the grids goes to zero. In that limit the interpolation equations become
independent of the interior values. To get an idea of how this coupling affects the
solution one can study a one dimensional overlapping mesh problem. This problem

is studied in detail in chapter 5.

4.2 Iterative Solution of the Mesh equations

For very large systems it may be necessary to use an iterative method to solve
the mesh equations (4.5). It is important to consider solving all the the equations
simultaneously. Trying to solve one part of the grid and then the other in the manner
of the Schwartz alternating procedure tends to result in much slower convergence
rates. In the context of two overlapping meshes the Schwartz alternating procedure

takes the form

- 88 -

(1) Fix the boundary values of M; and solve the grid equations for M; exactly.
(2) Update the boundary values of M. (equation (4.4))

(3) Fix the boundary values of M, and solve the grid equations for M, exactly.
(4) Update the boundary values of M;. (equation (4.3))

This process is repeated, and under certain conditions the iteration will con-
verge. The procedure is probably more useful for theoretical than practical pur-
poses. As already mentioned, Starius was able to show the convergence of the
Schwartz alternating procedure, applied as an iteration, to the solution of a general
class of elliptic problems on composite meshes, Starius [1977]. There seems little
reason, however, to devote a lot of effort to accurately solve the equations on one
component mesh when the boundary values are obtained from inaccurate solutions
on the other component meshes. Studies by J. Linden reported in Hackbusch and
Trottenburg [1982] indicate that the Schwartz procedure is much slower and also
sensitive to the amount of overlap between the grids. A better approach is to up-
date all grid points in each iteration sweep. Let v(n) denote the n’th iterate. One

way to obtain the n + 1% iterate is as follows.

Lyvy(n+1)= ——Upyp(n)+i p=1 (1)

o(i,Jin+1) = Zag LAk Dy (kIn) (i,§) € tNg (2)

Lpgp(n-l—l)::—Upyp(n)—f-ip p=2 (3)

v(igin+1) =Y ar(i,j,k Dok, Ln) (i,5) € Ny (4)
kI

Equations for one iteration sweep

The component mesh operators L, and U, are determined by the particular
iteration technique that is used. For example one might want to use Gauss Sei-

del with over-relaxation (SOR) or perhaps line SOR. Note that the values on the

-89 -

boundaries are updated at every sweep. In addition the most recently calculated
boundary values should be used in equation (3) for Gauss Seidel type iterations. If
the interpolation equations are explicit then all values appearing in the right hand
sides of the interpolation equations can be taken from the iterate n + 1. It is a
good idea to keep the convergence rates on both grids about the same or else one
will encounter the same problems that are associated with the Schwartz alternating
procedure. To keep the errors on the two grids nearly the same it may be necessary
to make more than one relaxation sweep on the one grid for each sweep on the other
grid.

The steps (1)-(4) define the order in which the grid point values are updated
during the iteration sweep. In this sense the two mesh iteration is no different
from a one mesh iteration since even on a single mesh the points are updated in
a particular order. This iteration can be denoted symbolically by the composite
mesh operator S : Mf — M. This operator consists of four component operators.
S =1I;-53-13-5;. (To be read from right to left). S; indicates step (1), sweeping
over the points on the mesh M;. I, is the interpolation operator corresponding to
the interpolation equations (2), assigning the interpolation boundary points of M.
Sy and I, are defined similarly. S will be called the composite iteration operator,

or in the case of multigrid it will be the composite smoothing operator.

Sy 1 Sweep M,
S = I : Interpolate 1M,
T 1 82 : Sweep M,

Iy : Interpolate 1M,

In this composite iteration the interpolation boundary points are updated im-
mediately after the sweep over the mesh from which they interpolate. Note that in
the sweep over the points of M, the newest values on the boundaries can be used.

Another possible iteration operator is S = Iy -I;-Sy-85,. This is the iteration

-90 -

S1 1 Sweep M;
Sy : Sweep M,
Iy : Interpolate + M,
I, : Interpolate t Mo

U
I

Experience seems to indicate that S is usually an inferior composite iteration
to S. Another question of interest is whether one should try to accelerate the
convergence of the interpolation equations (2) and (4) by introducing a parameter.

One possibility is to introduce a parameter as in successive over-relaxation.

2, "D = (1= W), ™ + (3 e i, j b, Dy ™ (K, 1)) (5)
k,l

Some improvement in convergence rates can be obtained by using this procedure.

4.3 Multigrid Solution of the Mesh equations

The composite mesh equations (4.5) can be solved using the multigrid algorithm.
Although it is assumed that the reader has some familiarity with the multigrid
procedure a short description will now be given. For further details see, for exam-
ple, Hackbusch and Trottenberg [1982] or Brandt [1977]. Multigrid is an iterative
method which utilizes a sequence of coarser and coarser grids to accelerate the con-
vergence of the solution on the finest grid. The basic principle rests on the fact that
it is possible to obtain iterative procedures {smoothers) for which the high frequency
components of the solution converge rapidly. This means that after a few smooth-
ing iterations the part of the solution yet to converge is smooth and hence can be
accurately solved for on a coarser grid. Many of the standard iterative procedures
such as Gauss-Seidel or SOR possess the property that the number of iterations
required to solve a system of N equations to a given accuracy is proportional to N
or worse. Multigrid convergence rates, however, are independent of N and hence

their attractiveness for solving large problems.

-0] -
4.3.1 Notation

Now consider the application of the multigrid algorithm to the solution of the com-
posite mesh equations. The notation introduced for composite meshes will have
to be extended since multigrid utilizes a sequence of composite meshes. A super-
script ¢, ¢ = 1,2,3,... will be used to denote a particular composite mesh. This
superscript will appear on the component meshes, composite mesh functions etc.
Hence a sequence of composite meshes M? ¢ =1,2,3,... will be considered. Each
composite mesh is made up of a union of component meshes.
M? = | M
»

Composite mesh functions will be written as f?. They are a union of component
mesh functions ig. The composite mesh operator is generalized to be a mapping
of mesh functions defined on one composite mesh to a mesh function defined on a

possibly different composite mesh.
S92 MY — ME??

If ¢; = g5 = ¢ the operator will usually be written in the simpler form S¢.

4.3.2 Multigrid Algorithm on Composite Meshes

Suppose the region (1 has been covered by a composite overlapping mesh. Denote
this composite mesh by M!. Associated with M! will be a system of mesh equations
of the form (4.5).

Alvl — fl

These will be the fine grid equations.

-92-

Figure 4.1 Fine grid M!

Figure 4.2 Coarse grid M?

A coarser grid M? is constructed from M! by removing every second line in
the two coordinate directions from each of the component meshes of the fine grid.
M! can be constructed so that this coarser grid is a valid overlapping grid. The

grid equations for M? will again be of the form (4.2)-(4.4) and will be denoted by

AZv? = f? (2)

-03-

This process of generating coarser grids and coarser grid equations can be repeated.
In practice the coarsest grid is generated first and lines are added to form the finer
grids. If the most coarse grid has sufficient overlap between its component composite
meshes then the finer grids will also have enough overlap. In the previous section
the method to perform relaxation sweeps was indicated. Multigrid smoothing steps
will be performed in a similar manner since a smoother is just an iteration technique
which is efficient at reducing the high frequency error components. The algorithm
will first be outlined. The objective is to solve the fine grid equations . Let v (k)
denote the k’th iterate in this iteration. Then the multigrid algorithm can be written

as follows.

Multigrid Algorithm

while not converged do

smooth 1, times
vi(x) — (8)1v!(k)

compute the defect and transfer to coarser grid
£2 — RI72(f! — Alv!(x))

solve the defect equation on the coarser grid
v? — (A2)1f?

correct the fine grid solution from coarse grid solution
vl — vi(x) + P2—ly?

smooth v times
vi(k +1) — (S)*2v!

end while

This algorithm is essentially the standard one for linear problems, with the

difference that the various operations indicated should be applied to functions de-

-04 -

fined on the composite overlapping grids. S stands for the composite smoothing
operator. This composite smooth involves the four steps as outlined in section 4.2.
The defect in a given composite mesh function v! is defined to be d* = f! — Alv!.
This is the amount by which the equations are not satisfied. R!™2 is the restriction
operator which maps the defect on the fine mesh M! to the forcing function for the
mesh equations of the coarse mesh M2. P2~ is the prolongation operator which
maps the correction computed on the coarse grid on to the fine grid. These mesh

operators are now discussed in more detail.

4.3.3 Composite Smoothers, Restrictions and Prolongations

Smoothers
As mentioned earlier a smoother is just an iterative method which is efficient
at reducing the high frequency error components. Methods which are optimized to

give a good overall convergence rate are usually not the best smoothers.

For example, optimal SOR is not as good a smoother as Gauss Seidel. The
relaxation parameter, w in SOR is chosen to minimize the spectral radius of the
iteration matrix. A good smoother on the other hand only requires that a certain
fraction of the higher frequencies converge rapidly. A good discussion of smoothers
and their smoothing properties can be found in Stuben and Trottenburg [1981].
Here we simply outline a few of the smoothers that have been used.

Jacobi w Relaxation

This is a Jacobi iteration with a relaxation parameter included in the fashion of
Gauss-Seidel. As a pure iteration procedure the convergence rate of Jacobi cannot
be improved by adding such a parameter. However, smoothing properties can be
improved and the parameter w is chosen less than one, under relazation, with w =
4/5 a good value.

Red Black Jacobi

- 05 -

This is a Jacobi type iteration in which the points on a square grid are up-
dated in the so called red-black ordering. The points on the grid are divided into
two groups in the manner of a checkerboard. A Jacobi sweep of all red points is
performed followed by a Jacobi sweep of all black points. On the sweep over the
black points the new red point values are used.

Line Zebra
This is a line Gauss-Seidel method in which all even numbered lines in a given

direction are updated before all odd numbered lines.

Restriction Operators (Fine to Coarse Grid Transfer)

R!™? is the projection or restriction operator which maps mesh functions
defined on the mesh M! to mesh functions defined on M2. One typical choice for
this restriction operator in the interior of a composite mesh is the so called full

weighting, which can be written symbolically as

. 1 1 21
R =T 2 4 2
1 21

This notation is to indicate that a point value on the coarse grid yz (k,1) is an
average of the 9 surrounding points of the fine grid

1

(-1, +1)+2u (i, +1) +up(i+ 1,5 +1)
+2up (i — 1,5) + 4w, (4, §) + 21, (i + 1, §)
1wi(i =1, — 1) + 203 (i, 5 — 1) + 1ub(i + 1,j — 1))

Along the interpolation boundary a one dimensional restriction operator is used.

1
(R™2 = -i— 2
1

That is to say the value of a point on the interpolation boundary of the coarse grid

is taken as an average with weights 1/4 , 1/2 and 1/4 of the three corresponding

- 96 -

points on the interpolation boundary of the finer grid. The composite restriction

operator R'™2 then can be written as R'=% = ,R}—2. RI—2 . R]—2 . R1™2

RI=2% : Restrict M} to M?
tR{™% : Restrict the boundary ¢M] to 1M}
R1™? : Restrict Mj to MZ
tR}™% : Restrict the boundary ¢ M3 to tM2

Rl—-*? —

Prolongation Operators (Coarse to Fine Grid Transfer)
P2~ is the prolongation operator mapping grid functions on M? to grid func-
tions on M'. One form for this interpolation operator as applied to interior grid

points is

P2—+1 —_

N
N b
RS
-

This operator notation is to indicate how a value on the coarse grid is distributed
to the 9 surrounding points on the fine grid. The interpolation can take one of four
forms depending on whether the fine grid point coincides exactly with a coarse grid
point, or lies between two coarse grid points (in either coordinate direction) or lies
at the centre of 4 coarse grid points. Thus a point on the fine grid Q;(i,j) will be

given by one of the following four equations.

vy (i,5) = v2(k,1)

. 1 1
v(i,j) = Zu2(k. 1) + Egﬁ(k +1,10)

2—P
1/ » 1 2 1 2
y(i,J) = Eyp(k,l) + -iyp(k,l-i- 1)
g;(z',j)=i(gg(k,z)+g§(k+1,z)+g§(k,l+1)+g§(k+1,z+1))

The coarse grid values on the interpolation boundaries are transferred using a one

dimensional prolongation operator.

LPZ—-A —

B | b
- b b

- 07 -

Hence the composite prolongation operator can take the form P?2—! = ,pPZ—!.

2—1 21 21
P2 . LPl ¢ Pl .

P2—1 : prolongate M? to M}
tP2~1 : prolongate tM? to 1M}
P2—1 . prolongate M2 to M}
tP2~1 : prolongate tM? to 1M}

PZ—-—rl —

The restricted defect equation need not be solved exactly on the coarser grid,
an approximate solution can be used. This approximate solution can of course
be obtained by the multigrid procedure. The algorithm then becomes recursive,
although at some level the defect equations are solved exactly or approximately by
another method. The number of equations to solve in the defect equation at this last
level is usually so small compared to the number of fine grid equations that it is not
too crucial how efficiently the equations are solved. Note that the defect involves
not only the residuals of the equations approximating the Laplacian but also the
residuals of the interpolation equations. Depending on the composite smooth that
was used, such as S, the residuals in some of the interpolation equations can be
nonzero. This means that in the solution of the defect equations the corresponding

interpolation equations will be inhomogeneous.

4.3.4 Choosing the Cycle and Parameters

An important part of the multigrid algorithm that has not yet been touched upon is
the choice of the various parameters vy, vy, etc. and the choice of cycle. Cycle is the
term to denote the sequence in which the different levels of grids are traversed. The
standard V cycle for example consists of moving from finest down to the coarsest

and then back up to the finest. This is represented schematically for 3 levels as

1 1

N /
2 2

N /
3

- 08 -

The finest grid is level 1 and the coarsest grid level 3. An alternative is the W

cycle

N e
2 2 2

N /s N s
3 3

Brandt [1977] outlines the principles for dynamically determining the type of cycle
and the values for vy and v5. This procedure requires that one keep track of the

residuals. In this context the residual refers to some norm of the defect.
" = 7 - AnvI)

The smoothing rate (based on residuals) is the ratio of the residual after smoothing
to the residual before smoothing. The basic approach to the dynamic determination
of parameters is
(1) Continue to smooth at a given level as long as the smoothing rate is less
than some number 5, 7 ~ .5. When the smoothing rate becomes worse
than n move to a coarser grid.
(2) Move to a finer grid once the residual at this level has been reduced by a
total factor of 4, § ~ .2 Otherwise perform another multigrid iteration at

this level.

Additional parameters are introduced since multigrid is being performed on
composite meshes. Within the composite smooth one has decide how many inter-
ations to perform in each of the component smoothers. This choice can be made
by trying to keep the component residuals (normalized appropriately) about the
same size. It is important to do this or the overall convergence rates may be much
worse. The technique of dynamically choosing parameters may not be the most
efficient since there is some extra work required to compute residuals. However, it
is an instructive approach to take when optimizing the parameters for a particular

problem.

- 00 -

Chapter 5

Model Problem Analyses

5.1 One Dimensional Overlapping Grid

In order to gain some insight into the behaviour of the solution of the mesh equations

we consider the solution of a one dimensional elliptic problem.

Ugy = f ZE(O,I)
{u(O) =0 u(l)=0

This model problem can be solved on a composite overlapping grid. In this simple
case one can determine the form of the errors. It is then easy to see how the accuracy
of the discrete solution depends on the order of accuracy of the difference formulae,

the interpolation formulae and the amount of overlap between the grids.

Xx(f:’) x,'(l) x (Ny)
S e e S S—
x,(0) x,(1) x2(Ng)

Figure 5.1 Composite Mesh for the Model 1D Problem

The composite mesh consists of two overlapping component meshes, M; and

M,
Ml={Z1(i)l$1(i)=$1(0)+ihl i=0,1,2,...,N1}

M, = {xg(i”zz(i) =x2(0)+ih2 i=0,1,2,...,N2}

The meshes are assumed to overlap by a positive amount d.

d=z;(Ny)—22(0) >0

- 100 -

The mesh equations take the form

DypD_,v,(i) = flap(i)) §i=12...,N,—-1 p=1,2 (1a)
v (0) =0 (1b)

vy(N2) =0 (1c)

v (Ny) = Z:al(l)vg(l) 1 €[0,N] (1d)

v (0) = ;ag(k)vl(k) ke [0,N] (1e)

where the difference operator Dy, D_, is defined as

vpli + 1) — 20, (i) + v, (i — 1)

DipD_pvy(i) = 2
?

Let A = max(h;,hz). An acceptable solution to the mesh equations (1) will be
second order accurate since the difference approximation to uz, is second order. The
following proposition indicates the sufficient conditions under which the solution will
be second order. For certain f or special arrangements of the composite meshes it
is not necessary to satisfy these conditions. However, in general the conditions are

necessary as well as being sufficient.

Proposition.

(1) If as the meshes are refined and h — 0 the amount of overlap d is greater
than some positive constant independent of h and the interpolation equa-
tions are at least second order accurate then the solution to the mesh
equations (1) will be second order accurate. { The definition of order of
accuracy follows shortly.)

(2) If as the meshes are refined and h — 0 the amount of overlap satisfies
d > ch where ¢ is a positive constant independent of h and the interpolation
equations are at least third order accurate then the solution to the mesh

equations (1) will be second order accurate.

- 101 -

As a remark it is to be noted that in practice one is almost always in the situ-
ation of case (2). The amount of overlap will be any where from a few mesh widths
down to a fraction of a mesh width. To study the accuracy of the mesh equations
we look at the error equations. Let e be the composite mesh error function. e is
the difference between the exact solution u and the computed solution, normalized
in a fashion shown shortly. This error function will have components e; and e
corresponding to the errors on M; and M;. Each component is normalized by the

square of the mesh spacing of the corresponding component mesh.

hyep(i) = u(z, (i) — vp (i) p=12

The component errors satisfy the equations

D.H,D_pep(i)=rp(z') i=1,2,...,]\’pfl p=1,2

’761 J\'l E al 62 +LT1
——62 E 02 61 +LT2

where + is the square of the ratio of the mesh widths.

7;, try and trp are the truncation errors in the finite difference formulae and interpo-
lation formulae, respectively. The central difference operator Dy,D_, is a second

order accurate approximation to d? /dz®. The interpolation formulae are assumed

to be accurate to order g and v.

rp = 7(z5(i)) + O(hy)

2 d*u
() = 5o (#)
d*u
i = K20, M (.n(N)) +O(R™H)

V

dz¥ (

iTg = hz;-—?gy .’52(0)) + O(hlll—l)

- 102 -

There are two types of forcing terms in the error equations (2). The 7, forcing
in the first equations will turn out not to cause any difficulties. The forcing terms
in the interpolation equations are more critical. To isolate the effects of these
terms we split the problem into two parts. The error will be written as the sum e =
el +el. eff satisfies the equations with no inhomogeneous terms in the interpolation

equations

D+pD_pe£(i)=Tp(i) 1=1,2,...,N, -1 p=12

el(0)=0

es(N2) =0 (4)
ve; (Ny) = Z ay(l)eg(l) + emy

7651(0) Z ag(k)e{(k} + i1y

I

» Will now be obtained. The first equation

The solution to the equations (4) for e

and the boundary conditions at 0 and 1 are satisfied by functions of the form
e1 () = ief(1)
Iy _ (v oI
ez(i) = (N2 — i)ey (N — 1)
The values for e] (1) and e](N; — 1) are determined by the interpolation equations

of (4). This leads to the following system of equations

A | e S B e B

- 103 -
with solution

[6{(1)] hlhz [%Ngtﬁ + (Nz - d/hg)bfg]
$(Ng — 1) d (Ny —d/hy)ery + Nyyerg

In obtaining (5) we assumed that the interpolation equations were at least second
order. The determinant of the matrix appearing in (5) is —d/(hyh2). It is apparent
from this result that one may have difficulty if d is small. Expressions for the errors

I 1
e; and e, are

teli) = ki(&1 Vil (1)

ek b aba) 1, 4 a1 - o en))
= () TR0 = 3o + R
Ny — i)

hzez(N2) h2(N,)N262(N2"1)

N. i AA d
(}2) 1d2(hf”2 +h§(1—A—1)Wl)

where A; and Aq are the lengths of the component meshes M; and M, respectively.

(7)

Al =Nl Ag = Nahs Aj+Ay=1+4+d

Note that the product A;A, is always > 1/4.

Consider now equation (3) which determines e/ It is not hard to show that
eF (i) = T(ay (1)) + O(h)

where T' is the solution to

Specifically

(z) -—] [dtd:c——x/ f t)dtdz. (8)

- 104 -

This result requires that the interpolation equations are second order.

We can now write down expressions for the components of the total error.

P AA d
hi’e i=-t———1——2—h21—-———br + hiir
1 en(d) (Nl) ¥ (h3(Ag) 2 + hjery) ()

+ 1y 2T (2, () + O(R®)

d
h2ury + R2(1 — —)ur
(Buma + B3(1 = $=)em) 0
+ hy®T (22 (i) + O(A®)
From these last two equations we obtain sufficient conditions for second order

accuracy. These conditions are
vry = O(d) and 1y = O(d) ash— 0

Note that for special composite meshes the interpolation truncation errors ¢+7; and
trp could be identically zero. For example, the interpolation points could happen
to fall exactly on a mesh point of the opposite component mesh. Neglecting these
cases the conclusion in general is that if the distance between the meshes goes to
zero as h goes to zero then the interpolation equations must be more accurate. If,
however, the amount of overlap d is greater than or equal to some constant as h
goes to zero then the interpolation equations need only be second order accurate.
As a check of the above results the mesh equations (1) for the model problem

were solved numerically for the following problem.
Ny =10 Ny =10

:cl(Nl) =.6 T (]\72) = .575

5 10
d=.025= rz—hl = 1—7h2

f=—-n%sin(rz)

- 105 -

Order of R2|le1]|oo h2|lez||oo
Interpolation Calculated Estimated Calculated Estimated
2 (linear) .592e-1 .586e-1 .608e-1 .616e-1
3 (quadratic) .265e-2 .307e-2 .257e-2 .165¢-2

Table 5.1 Error Comparison

The true solution is u = sin(rz). The maximum errors were computed for second
and third order accurate interpolation. These results were compared to the esti-
mates obtained using (9) and (10). The results, which are summarized in table 5.1,

suggest the correctness of the formulae that have been derived for the errors.

- 106 -

5.2 Boundary Conditions for the Stream Function Vorticity Equations {

5.2.1 Introduction

One of the difficulties associated with the stream function vorticity equations is the
numerical implementation of the no slip boundary conditions ¢ = 0 and d¢'/dn = 0.
These boundary conditions place constraints on the stream function and its normal
derivative at the boundary. There is, however, no explicit boundary condition for
the vorticity. This lack of a vorticity boundary condition seems to be at the root
of the problems that appear. Some reviews of numerical methods for the stream
function vorticity equations can be found in Peyret and Taylor [1983], Orszag and
Israeli [1974] and Roache [1972].

There are (at least) two ways to look at the numerical approximation of the
boundary conditions. The first and more common approach is to use the normal
derivative condition to determine an expression for the vorticity on the wall in terms
of interior and boundary values of the stream function. The alternative approach,
which we prefer, is to think of approximating not the vorticity at the wall but rather
approximating dv/dn. The vorticity on the wall is defined as it is in the interior.
The discrete approximation to d¢/dn will determine the values of ¢;; needed to
apply the formula for ¢ on the boundary.

To achieve accurate answers many investigators advocate the use of higher
order approximations to the boundary conditions. When an implicit time marching
method is used or when a steady state solution is required, the stream function
vorticity equations may have to be solved by iteration. When such iterations are
required the higher order boundary conditions are often found to be unstable and
abandoned in preference to lower order schemes. We have found in implicit time
stepping calculations that higher order methods are stable provided the appropriate

iteration scheme is used, such as the one developed by Israeli [1970)].

+ The work in this section was performed together with Michael Naughton.

- 107 -

There has been some work performed at trying to obtain accurate and stable
boundary conditions and to try and understand the difficulties present in this prob-
lem including the work of Briley [1971], Bontoux, Gilly and Roux [1980], Israeli
[1970] and Orszag and Israeli [1974]. It appears that most results are heuristic
or only qualitative in nature, although Orszag and Israeli study a model problem
similar to the one we look at here.

Reduction to a Model Problem

Numerical experience shows that the difficulties seem to be related to boundary
layers in the vorticity. In such boundary layers the flow is often one dimensional in
character, varying in the normal direction to the boundary. Tangential derivatives
of the stream function and vorticity are small. A reasonable model problem to

study thus seems to be the following two point boundary value problem.

$t = VSzg + f(x, t)
§ = wzx

y=9,=0atz=0,1

The terms that have been neglected are assumed to be small or to vary smoothly
in which case one can argue that they can be absorbed into the forcing term f.
Discretization of this system in time using a second order centred finite difference

scheme gives

Sk SN v o 4 Aty
2

Al =y 2 +f(x,tn+

¢" =9z
Y =y" =0 atz=0,1
where)™ (z) is an approximation to ¢(z, nAt). Given a solution at time ¢ = nAt

these equations define the solution at the next time step ¢ = (n + 1)At. By letting

¢ = ¢! and ¢ = "t a single step of the difference equations can be written in

- 108 -

the form
¢ —€ge =F

¢ =Yzq (1)
Yp=y¢,=0atz=0,1
where € = vAt/2 and F = F(z) depends on f, At and the solution at the previous
time step

At
F=¢"+el +Atf(z,t+ -;)

We shall refer to (1) as the single time step model problem. Discretization of (1) in
space leads to the discrete single time step model.
2y —€DyD_z, =F, v=12...,.N-1
z,=DyD_¢, v=01...,.N
Po=¢n =0
Dyg¢o = Dy gon =0
¢y, which is defined for v = -1,0,1,...,N — 1, N, N + 1, is an approximation to
Y = ¢(2,), 2, =vh,v=-1,0,...,N,N +1 with Nh = 1. Second order centred
finite differences are used to approximate d?/dz%. The derivative boundary condi-
tions are differenced with approximations of order g. D; ,; will be the approximation
to d/dz at the left boundary and D, , the approximation at the right boundary.
This system represents one time step of the Crank-Nicholson method applied to the
space discrete time dependent problem. The boundary condition approximations
are for now left unspecified. It is convenient to introduce a shorthand notation for
the model problems. Define the continuous and discrete operators L and L, by
Lp(z) := Yas — €¥az2a
Ln¢, :=DyD_¢, —e(D4D_)%9,
and the boundary operators B and Bj, by

'/’%0% oo
_ | #ll _ ON
Bv=1y.0| © 2= D s

'/>z(l) Dr,q¢N

- 109 -

With this notation the continuous and discrete single time step model problems are

written as
Ly=F By =0 (3)
and
Lnp=F" Bpop=0 (4)
respectively. Proceeding one step further we will write (3) and (4) as
Ly =F (5)
Lnp = F" (6)
We investigate some of the properties of the discrete solution (¢,,z,) of (2) as an

approximation of the continuous solution (¢(z),¢(z)) of (1). An equation for the

normalized error in the stream function e? := (¢, — ¢,) /h? can be written down as

0
0
go
g1

Liet =G Bret =g =

(7)

or

Lheh = Gh

The functions G, go and g, are related to the truncation errors. Since these functions
are known as continuous functions we can form a continuous error equation as
an approximation to the exact discrete error equation (2). The continuous error

equation is

Le=G Be=g-= (8)
9

We emphasize that it is the exact error e® which is of importance and that e is
only an approximation to e”. We initially choose to consider the second order form

of the discrete boundary conditions with

D{,g = .Do and Dr52 = Do (9)

- 110 -

This corresponds to an approximation to the vorticity on the left hand boundary of

261

=2 (10)

2p

This approximation is alternatively referred to as the conventional approzimation
(Gupta and Manohar [1979]) or Thom’s formula. The truncation error in formula
(10) is formally only O(h). We shall also be interested in using higher order approx-
imations for the no slip condition. The second order approximation was centred but
the higher order schemes are one sided; there are more values of the stream function
used from within the interval but still only a single point outside the boundary (i.e.
at _y or zy4+1). The third order approximations can be derived from Taylor

expansions of ¢ and are

—2¢_1 — 3¢9 + 691 — ¢

D = =0
1,300 oh
Dr by = On-2 —6ON_1 + 30N + 20N41 _ 0
6h

The fourth order approximations are

—3¢-1 — 109 + 189, — 693 + ¢3

o —ON-3s +69N_2 —180n_1 + 100N + 3PN41
Dr,4¢N = =0

12h
The truncation errors in approximation (2) with the conventional approxima-
tion for boundary conditions are all O(h?). The discrete stream function computed
from (2) will thus be second order accurate provided that the normalized error sat-
isfies |le”|| = ||Lr "' G"|| = O(1). The discrete vorticity z, = D4y D_¢, will also be
second order provided that the error e is sufficiently smooth. This can been seen

as follows. The computed stream function ¢, is related to the true solution ¢(z,)

by ¢, = ¥(z,) — h%e". The discrete vorticity is thus given by
2y =DyD_¢,=D,D_1, ~h®D,D_e

= 2pxa:(xy) + O(h2) - h2D+D__8z

- 111 -

If e” is sufficiently smooth then D, D_e” looks as if a second derivative and
D, D_e!|| will be O(1). The approximation to the vorticity will then be second
+ v

order.

It seems useful to consider the problem of obtaining an accurate answer to the
vorticity in the manner outlined above. That is, to think of obtaining an approxi-
mation to the stream function with a smooth error. Divided difference approxima-
tions to higher derivatives of the stream function will then have the same accuracy
as the stream function itself. This is one reason why we consider approximating
81 /dn = 0 rather than the vorticity on the wall. If € is not small compared to h?
we will show that the vorticity computed from (2) with the boundary conditions
(9) will be second order. This is despite the fact that the approximation to the

vorticity on the boundary is formally only first order.

The parameter ¢ in (1) and (2) results from the application of an implicit
time stepping procedure and is related to the time step by ¢ = vAt/2. In general
the solutions to (1) or (2) will have boundary layers which depend on e. In the
context of time stepping, however, we expect (hope?) that as At — 0 and ¢ — 0
the solution will only have boundary layers that depend on v and not Af. The ¢
dependent boundary layers will hopefully be suppressed by the form of the forcing
and the boundary conditions. Even if the forcing satisfies compatibility conditions
we will see that the discrete approximations to the boundary conditions can create
¢ dependent boundary layers so that as € — 0 the error in the solution to (2) is not

smooth and the vorticity is only first order accurate.
Synopsis

We now outline the contents of the rest of this section and state some proposi-
tions which give the basic results which are obtained. We first look at the continuous

single time step model (1). We find that the solution is composed of a smooth part

with derivatives bounded independently of € and a boundary layer part. The bound-

- 112 -

ary layer can be suppressed to a given order in € provided the forcing F satisfies
certain compatibility conditions. In the propositions to follow we state our results
only to first order. However, in later sections more detailed results are usually
obtained. The full set of compatibilty conditions is given in section 5.2.2. For

presenting the propositions we will need the following definition.

Definition. A function F is said to satisfy the compatibility conditions to O(e) if

1 1 pa’
f F(z)dz = O(e) and / / F(z')dz'dz = Ole)
0 0o Jo
Then in section 5.2.2 we show the following.

Proposition 1. IfF satisfies the compatibility conditions to O(¢) then the solution
to (1) satisfies
Sb:wzx-_—F"'O(f)

We next look at the discrete single time step model (2) and the corresponding
error equation (7). This discrete error equation is approximated by the continuous
error equation (8). Using the results obtained from the continuous single time step
model the behaviour of the solution to the continuous error equation is found. The
important difference between the continuous single time step model (3) and the
continuous error equation is that the normal derivative boundary conditions in (8)
are inhomogeneous. We find that even when F satisfies the compatibilty conditions
the error in the vorticity is O(max(h?, h?/\/€)), where ¢ is the order of accuracy of

the boundary conditions. In particular we prove

Proposition 2. If F satisfies the compatibility conditions to O(¢) and e is the

solution to the continuous error equation (8) then

— G(x) - gg_e~x/\/z + _q_];_e—(l—.’t)/\,ré + O(E)

exx - \/g €

(For boundary conditions of order q, go and g, are O(h?72).)

- 113 -

For typical time steps \/e = O(h) and thus if the boundary conditions are only
second order it looks like the vorticity is only first order. Of course if there are strong
boundary layers the continuous error equation may not be a good approximation to
its discrete counterpart. In such a case it will be necessary to consider the discrete
error equation.

The analysis of the discrete error equation is performed next. The basic result

is contained in the following proposition.

Proposition 3. If F satisfies the compatibility conditions to O(e) and e" is the

solution to the discrete error equations (7) then
DyD_(e"), = d(x) (gox™" = g16" ") + O(h)

where

h? h? h?
" +2e+ 26(+2e)

and where d(k) depends on the type of boundary condition. For the second, third

and fourth boundary conditions we considered

7. O(1/\/fe) h €
o= {o)

and d(k) varies smoothly between these two limiting cases.

Thus if higher order boundary conditions are used and € = O(h?) then the
vorticity will be second order. In this case the single time step model continues to
apply for future steps (since the compatibility conditions are satisfied by the forcing
at the next time step to O(max(h?,¢))). However, if only second order boundary
conditions are used the analysis breaks down since the forcing for the next time

step will not satisfy the compatibilty conditions to even O(e).

5.2.2 Asymptotic Expansion of the Single Time Step Model

In this section we derive the form of the solution to the continuous single time step

- 114 -

model.
¢ — €pe = F

¢ = Yas (1)

Y=¢,=0 atz=0,1
We construct an asymptotic expansion (for ¢ — 0) of the solution to (1).
The solution will be found to consist of a smooth part and a boundary layer part.
We derive compatibilty conditions that F' must satisfy in order to suppress the
boundary layer to a given order in e. The system (1) can be solved by variation of

parameters

1 z 1
¢(2) === {] F(g)e==Vedg + / F(e)e(“-“/ﬁds}
2\/6_ 0 z
where a and b are constants which are determined by the boundary conditions at
z=0and 1.
The particular solution (the two integral terms) can be developed into an
asymptotic expansion for ¢ — 0 using integration by parts, assuming that F €

C®)[0,1]. The first integral becomes

1 o 1 = 1 f°
- (6—2)/Vege — = (E—2)/Ve|” _ = ! (E—2)/ /<
57z | Pl = 3 [preeean) - 2 [prgee-anveag

|
ot

L4 z

_1
T2

(]

[(_1)m€m/2F(m) (E)G(E—x)/\/?]

0

3
1]
o

x

+_;_(_1)p6(p—1)/2/ F(p)(f)e(f”“)/‘/zdf

0

1 5=
5 D (~Lymens? {F™ (2) - VR (0)}
m=0

+ remainder integral

and similarly for the second integral

1 ! 15
—_ (z2-6)/Vege — = m/2 | p(m) () — g~ (1=2)/ /e p(m)
2\/€/x F(¢)e d¢ = 2722_:06 {F (z)—e F (1)}

1
+_;_€(p—1)/2 / FO) (g)elE-DVeqe

z

- 115 -

These results can be combined to give
1=
mi1 m
((x) =3 3 [L+ (-1 |2 P (2)
m=0

+emo/VE {a -1/2 p}f (~1)mem/2F(m)(0)}

m=0

p—1
+ e~ (ma)/Ve {b -1/2)" em/2F(m)(1)} + O(e?/?)

m=0
In the first sum every second term drops out so that the solution for the vorticity
is of the form
¢(2) = Fz) + eF"(z) + FW + ...+ £ F?) 4 O(PH)
+ A v B aegnve 2)
e Ve

7

Hence, asymptotically the solution for ¢ consists of a smooth part plus boundary
layers at # = 0, 1. The boundary layers arise from the singular nature of the problem
in the limit ¢ — 0. The boundary layers are needed to match the boundary condi-
tions and the coefficients of the boundary layers depend on the forcing function F.
We are interested in the case where the solution is smooth up to the boundary; this
is the case only if F" satisfies appropriate compatibility conditions. These conditions
will now be derived.
The solution derived for ¢ can be integrated twice to give the general solution
for 9. ,
T paz
p(z) = /0 fo ¢o(")" d’
— JEA(L — e7HIVE _ (1 — e71 V)
— VeB(1 - e"(U=IVE — (1 - g)(1 - e~ 1/VE))
+C + Dz
The terms which 4 and B multiply in (3) have been chosen to be zero at the two

boundaries. ¢, is the smooth part of the vorticity which asymptotically is given by

¢s(z) ~ F(z) + €F"(2) + EFW (2) + ..

- 116 -

The constants A, B, C and D are chosen to satisfy the boundary conditions ¥(0) =
¥(1) = ¢;(0) = ¢(1) = 0. Initially we need only look at A and B which are

determined from the following two conditions on the vorticity.

[stetae = twali =0

[[steietae = ol - va(0) =0
Whence
(1-e-1/¢f‘)(A+B)+f ¢o(2)dz = 0

AlL = \Je(1 — e /VE)] 4 B|\Jfe(1 — e/ VE) — e~V 4 /1 /z ¢s(2')dz'dz =0

Define the single and double integrals I; and Iy by

1
I :=f ¢s(z)dz
0

1 z
I = / / ¢s(z')dz'dz
o Jo

A and B satisfy the matrix equation

1—e1/Ve 1— e 1/Ve Al L
1—\fe(1—e 'IVE) el —e W) —em Ve | B| T | L

The coefficients of the boundary layers will vanish if and only if the integrals I; and

I, vanish. Ignoring the exponentially small terms, e"lf'\/g, gives

[LE) =[]

which is solved for A and B

o] - = e AL

To leading order in ¢ the coefficients of the boundary layer terms in ¢ = ¢, are

thus
A~

B ~ (11—12)

- 117 -

From the asymptotic expansion for ¢; we can easily relate I; and I; to F.
¢s(2) ~ F(z) + eF"(2) + EFW(2) +

1 1 1
I = / F(a)dz + ¢ / F'(2)dz + & / FO(2)da+ ...

0

I —/ / d:c'dx—i—e/ / F'(z)dd'dz + ..

Thus we see that the strength of the boundary layer in ¢ (and also in) is related

to the vanishing of a number of integrals of F.

Definition 1. F € C*°|0,1] is said to satisfy the compatibilty conditions if
1
/ FC™) (z)dz =0
0

1 z
/ / FC™ (z"Yde'dz = 0
o Jo

form =0,1,2,.... These conditions imply that that the single and double integrals

(4)

of F are zero and that the derivatives of F evaluated at the end points satisfy

ramena] <o
1 (5)
[F(Q’")(z)] = Fm+1)(g)

0
form=0,12,...

If F satisfies all the compatibilty conditions then the solution to (1) will consist
entirely of the smooth solution ¢s;. If F only satisfies the first M conditions then
the coefficient of the boundary layer terms in solution for ¢ will be O(eM‘Jz").

To complete the calculation we need to determine the coefficients C' and D

in the equation for the stream function (3). These constants are determined from

$(0) = 0 and y(1) =
0=y(0)=C

0=y(1)=I,+C+D
Thus C = 0 and D = —I,. Hence if F satisfies the compatibilty conditions D will

be zero.

- 118 -
5.2.3 Discrete Approximation of the Single Time Step Model

We now consider the discrete single time step model equations. These equations

were introduced previously, where they were written as
Lip=F" Bpp=0 (1)

To analyze the error in the stream function we form the equation for the error.

Recall that the normalized error in the stream function was defined as
e = (Y, — ¢,) [

and satisfies the discrete error equations given by

D,D_et —¢(D,D_2e=G, v=12.. . N-1

el =eh =0 (2)
Dy qe6 = go D, e = ¢
or
0
h R 0
Lhe =G Bhe =g =
go
gi

Gy, go, and g; are the truncation errors of the space differences divided by h2.

Explicitly, G, is given by

G, = (xb’)
G(a:) = %(Lh - L)w(a’)
_ [(D+D_ - 3’3) —¢((DyD_)? - ;g-;)] ¥(z)
1 2h

The truncation errors in the boundary terms will be of the form

1 d _pd™y _
go 1= 35 (Dig = -)(0) = Cogh"™* 52 (0) + O(™Y)
} d dt1+1w

J¥(1) = Crgh? ™

)+ 00

- 119 -

The approximations are accurate to order ¢. In particular for the conventional

approximation D; ;, = Dy and D, , = Dy we have

1 d 1
go := ;;;(Do - 3‘;)%/)(0) = g%zx(o) +

=L —d— _1 E_ (5) 4
g1 = h2 (DO - d:l:)w(l) = 6wxxz(1) + 3 w (1) + O(h)

h2
5

p®(0) + O(h*)

Since G(z) is known as a continuous function we can form a continuous error
equation as an approximation to the exact discrete error equation (2). The solution
to this continuous error equation should be close to the solution to the discrete error

equation provided that the solution we find is smooth. We consider
0

Le=G Be=g= (3)
5

Since G involves only even derivatives of ¢ and assuming F' satisfies the compatibil-
ity conditions it is easily checked that G also satisfies these compatibility conditions.
We decompose ¢ into a forced and boundary part
e=¢e;+ep
where e; and ¢, satisfy
Lef =G Be]- =0
Leb =0 Beb =g

The results on asymptotic expansions of the continuous problem obtained in

the previous section allows us immediately to write down the solution e;.

z pz’
ey ~ / / G(z") + €Ggy ... dz"dd’
o Jo

Integrating gives
er Nf / G(2")dz"dz' + eG(z) + €Grp() + ...
0o Jo
— [eG(0) + €G22 (0) +..]

— [€G2(0) + €2 Grga(0) +..] 2

- 120 -

Hence the continuous approximation of the forced part of the error is smooth and
O(1). (If F only statisfies the compatibilty conditions to O(e) then e; will also
contain boundary layer terms. These terms will be small, however, having strength
0(e*?).)
Likewise we can solve for the the boundary part e of ¢ as
b =go /(L= &7V = gue(1 - e~ U=I1VF)

— /e(go + g1)x + smaller terms
That is the first and second derivative of e, are

(es)z ~ goe™%/VE + gre=(1=0)/VE

€ €

Hence the continuous approximation of the boundary part of the vorticity error
has boundary layers with thickness O(,/¢) and strength O(go/\/€) at # = 0 and
strength O(g;/./€) at z = 1.

For completeness we include the full calculation of e;. e, is a solution of the

homogeneous system and so it has the form
ey = Ae~¥/Ve 4 Be~(1-0)/Ve L 0 4 D2

The coefficients are determined from the boundary conditions. Substituting into

the boundary conditions gives
A+ Be\Veico=0
AWV LB+ C+D=0

(—A+ Be'l/‘/z) + D =g

(-4 +B)+D =g

-4

Ignoring exponentially small terms e~1/VE gives C = —-A, D= A - B and

[-

- 121 -

Hence if we denote exponentially small terms by e.s.t the coefficients A and B are

A=-— 1\/2_\/—[90“*‘\/— —go)] +e.8.t = —\/ego + O(e)

B = I _\/2—\/6_[411 — Velgr — g0)] +e.s.t. = \Jegy + Ole)
and

ey = Ae~ Ve 4 Be~(1=0)/VE _ 4(1 - z) — Bz

5.2.4 Asymptotic Expansion of the Error

Now we would like to have a decomposition of the discrete error e* of the single
time step model into a smooth forced part and a boundary layer part analogous to
the splitting which we have demonstrated in the previous section for the continuous

error approximation e. We write

" = el +ef (1)

where e}‘ and el’; satisfy
Lnef =G Bpef =0 (2)
Lnel =0 Bpel=g¢g (3)

The behaviour of these two parts of the error is the subject of the following

two propositions.

Proposition 1. el’} , the boundary part of the error, satisfies

D+D_(e;,’),, = d(k) (gorc'” - gln"_N)
where

LY Ly P
FEIT o TV 2 2¢
and where d(k) depends on the type of the boundary conditions. For the second,

third and fourth order boundary conditions considered here

7 O(1/\/e) h €
i) = {ohny B

- 122 -

Proposition 2. If F satisfies the compatibility conditions then e'}, the forced part

of the error, can be decomposed as
h _ _h k
€7 = ¢1s ter

where et is the smooth part of the forced error and e, is the boundary part of the
forced error. Then

D.D_(e},), = 0O(1)

DyD_(eh,), = K h2d(x) [G'(0)x™ - G'(1)x"~N] + O(R?)
where K; = O(1).

From these two propositions the conclusion of Proposition 3 of section 5.2.1
follows. Proposition 1 is the subject of the rest of this section and Proposition 2 is
a consequence of the results of the next section.

We consider the solution of (3) for ¢'. The homogeneous difference equation

for eg‘ has the general solution
(ef), = Ak™" + B&"~N + C + Dg, (4)
where k is the larger root of

n——h%(n—l)2:0 (5)

(Note that the two roots of (5) satisfy k1K = 1.) The larger root is

h? h? h?
=14 — — 24+ —
" +2e+ 26(+26) (6)

There are two interesting limits.
I. h « /e « 1. This is the case where the possible boundary layer is well
resolved by the mesh.
II. /e « h < 1. Thisis the case where the boundary layer is not well resolved

because it is small compared with A.

- 123 -

In these limiting cases

RN{1+h/\/€ h < \/fe (1)
h? /e VELh

The coefficients A, B,C, D are determined from the boundary conditions. Sub-

stituting into the boundary conditions gives

A+BekN4+C=0

AkN+B+C+D=0

(8)
d(k)(A-Bx™N)+ D = g,
d(k)(Ak~N —=B)+D =g,
where
k-l — 2\ 1/2
alr) = " = -—\-1[2 (1 + %) (9)

for the second order boundary conditions. Clearly d(k) 3> 1 for € small; in the two

limits of interest

d(x) ~ {_‘_,145/:_ ’\l/2<<\/lf (10)

N

In either case k™" is negligibly small and so the coefficients are well approximated

by
A+C=0

B+C+D=0
Ad(k)+ D =g,

—Bd(k)+D =g
S0

A~ go/d(k)

B ~ —g,/d(r) 12

- 124 -
The contribution of e to the vorticity error is D4 D_e} which is given by

(k—1)? _ (k=12 , N
W) v gt v
h2k o h2k " (13)

~ d(k) (gox™" — g1x*™)

D+D_(6£l),, =A

where
_ 1 (lc—l)2 11

“d(k) Rk d(k)e
)T

< min(
In the two limiting cases

. h
d(x) ~ { ;ji\z/— \/"<<<<\/i:

The case h < \/E follows the continuous case closely as expected. In the unresolved
case (/e € h it is interesting that the vorticity error costs only a power of h at the
boundary.
In the case of no slip boundary conditions of higher order the calculation of
h

el remains the same with different formulae for d(x) and d(k). For third order

boundary conditions d(k) has the form

d(k) = -2k — 3+6€;:c“1 - K2 { ié:_\;'/;— i\z/_<<<\/h- (15)
and so
- 11 -1 h
i) = ¢ 07 ~ { 3%[f;‘/,; (16)

Similarly, for fourth order boundary conditions

-3k — 10+ 18k~ -6k 2 + k3 -1 h
d(x) = 12h { hh/e— f<<\/i; (17)
and
- 1 -1 h
d(k) = Zd(n) { 4%[\/'<<<\/i: (18)

- 125 -

Thus we conclude that the error in the vorticity from e} costs at most a power of
h. That is, if a higher order boundary condition D; 4¢¢ = Dy q@dn = 0 is used such
that h2go, h%g, are O(h?) then the strength of the boundary layer in h2D D _el

is at most O(h?™1).

5.2.5 Asymptotic Expansion of the Discrete Single Time Step Model

We now construct an asymptotic expansion of the discrete single time step model
Lhp=F" Bp¢=0 (1)

which is contained in the following result.

Proposition 1. If F satisfies the compatibility conditions then ¢ can be decom-

posed into a smooth part and a boundary part as
b=¢'+¢"

The smooth part of the solution has any number of bounded divided differences. In
particular,

D,D_¢" =0(1)

The boundary part satisfies
D.D_¢® = M,d(k) [F'(0)x™" - F'(1)x*~N] + O(R?) (2)

where

[-n¥f6 ifg=2
Mq‘{O(hS) ifg>3

and k, d(k) have been defined in the previous section.
This result is obtained under the assumption that F satisfies the sequence of

compatibility conditions identically. In the time dependent problem we expect that

the compatibility conditions will only be satisfied to some order in €. The analysis

- 126 -

below still holds as far as the compatibility conditions are satisfied. For example if
the compatibility conditions are violated at order € then (2) is modified by terms

of order € on the right hand side.

In the continuous case we used variation of parameters to write down the exact
solution of the model problem and then obtained the asymptotic expansion by
integration by parts. Similarly in the discrete case it is possible to write down the
solution using variation of parameters and then use summation by parts to develop
the asymptotic expansion of ¢. Instead we shall proceed more formally by assuming

the form of the asymptotic expansion and solving for the coefficients which appear.

We make an ansatz that ¢ has the form

by ~ (qb,(,o) +eol) + €20 4)
+ Ak +Bk* N +C + Dz, (3)

=d,+ e,

where ¢° is the asymptotically smooth particular solution and ¢° is the homogeneous

solution needed to satisfy the boundary conditions.

In establishing the above result we shall first determine the boundary conditions
such that each of the ¢{™)’s in the asymptotic series for ¢® is smooth independent
of h. In obtaining this expansion we shall use the smoothness of F' to make Taylor
series expansions but we do not need any compatibility conditions to be satisfied.
Next we use this series to calculate A and B, which depend on ¢° and hence on F
through the boundary conditions. These calculations are the discrete forms of those
which were made in 5.2.2 to obtain the boundary layer terms for the continuous

single time step model.

We need to prescribe boundary conditions for ¢° and ¢°. First we concentrate

on the smooth part of the solution. We choose the boundary conditions for ¢° to

- 127 -
make ¢° smooth up to the boundary. We take
95 = 0% =0
DyD_¢5 =z~ z(()o) + ez(()l) + 62232) +...
D,D_¢y =25 ~ 25\?) + ezgé) + 6221(\?) +...
where z§, 23, will be specified later.

Substituting this ansatz into the difference equations (1) and equating coeffi-

cients of powers of € gives a sequence of equations defining the ¢{™)’s
D.D_¢9 =F,
D,D_¢{Y = (D D_)" ¢{")

DyD_¢() = (D4 D_)* ¢V

forv=1,...,N — 1 with boundary conditions

o™ =7 =0

DyD_¢{™ = ™

DyD_g{") = 2"
Note that each of these problems for the ¢{(™) is well defined and that the p(m)s
are independent of €. We must choose the 2(™)’s in such a way that each of the

#(™)’s is smooth up to the boundary. We consider the first few terms in turn.

The first term ¢(%) satisfies

A9 y=o0
5 =
D.D_¢"={F, v=1..N-1
z](\(,)) v=N
and so ¢(%) has at least two bounded divided differences for any choice of z(()o) and
20,

At the next order O(e)

2V v=_0_0
{ -

DyD_¢\V =< (D,D_)2 v=1,...,N-1
zl(vl) v=N

- 128 -
and

D+D_F1+El'§'((()) FO) V=
(D4D_)?*¢Y ={ D,D_F, v=2..N-2

D4D-Fy-1+ L (40 ~Fy) v=N-1
We see that (DD _)26(%) is bounded independently of h if and only if
A9 = Fy + O(h?)
2V = Fy + 0(h?)

This also ensures that D, D_¢(1) is bounded. At this level there is no constraint
(1) (1)

on 2y~ and zy

At second order in ¢

(2)

2y v=20
DyD_¢ =< (D,D_)Y v=1,... N-1
zj(\?) v=N
and
((D4D_)*F, v=3,...,N-3
(D+D-)*F> + & (zg°> - Fo) =2
(D+D-)Fy—s + & (4 - Fv) v=N_2
(DsD_yol = | & L [D+D_F, —2D,D_F, + 4"
—7127(3(()0)—F0) v=1
& [DyD_Fy_5-2DD_Fy_, +3]
(h4(zz(v0) Fy) v=N-1

At this level there are four conditions which must be satisfied for (D, D_)?¢(V) to
be bounded. They are

A9 = Fy +0(h?)
20 = Fy + O(h*)
Y =2D,D_F; - D,D_F; + O(h?) = F"(0) + O(h?)

2V =2D,D_Fy_y - DyD_Fn_y + O(h?) = F"(1) + O(R2)

- 129 -

This process can be continued to higher orders in ¢; at each order zém) and z,(cfn)
are chosen such that D, D_¢(m+1) is bounded independently of h. This requires
that (D4+D_)?¢{™) be bounded independent of A.

We continue the calculation one further order without showing all the details

in order to show more clearly the trend which develops. There are six conditions

which must be satisfied for D, D_¢(®) to be bounded. The three conditions on zéo),

z(()l) and zc(f) are

A9 = Fy + 0(h®)
AV = D, D_(2F, - Fy) + k*(D4D_)? (2F; — F3) + O(h*)
2*) = (DyD_)? (2F, — Fy) + O(h?)
and the other three conditions are of the same form at the other boundary. Substi-

tuting the Taylor series of F into these equations gives expressions for the 2(m)g in

terms of the F' and its derivatives at the boundaries

29 = F(0) + O(r)
A = F(1) + O(h)
Y = F"(0) + %th(‘*)(o) +0(h?)
AD = F'(1) + %h2F(4)(1) +0(hY)
AP = F(0) + O(h?)
AP = FW (1) + 0(r?)

Now we investigate the homogeneous part which contains the boundary layer

terms. The homogeneous solution depends on the smooth particular solution ¢°

through the boundary conditions. The boundary conditions for ¢ are

Dl,qd)g = "Dl,q¢8

Dr,q(b?v = ‘“Dr,q(bfsv

- 130 -

Just as in the continuous case there are two constraints which together de-
termine the coefficients A and B of the boundary layer terms. We examine the
situation first for second order boundary conditions; the modifications for higher
order boundary conditions are then easily made. The conditions which determine
A and B are obtained by expressing sums and double sums of Dy D_¢?® over the

interval [0,1] in terms of the boundary conditions at the ends. They are

0 =Dopn — Dogo

= (Dodly = Dodg) + (Dod — Dodt) 5)
N-1
= —(A+ B)d(k) + (%D+D_¢3 + Y hDyD_¢} + g-D+D_¢;,)
v=1
and
N-1
0=¢n —¢o= Y hD,¢}
v=0

N-1 v
=> h [D+¢g +Y_ hD,D_¢;,

v=0 u=1

(6)

N-1

= Doo§ + Z h h
v=0

2
= —Ad(rk) +)_(...)

We introduce a notation for the trapezoidal sum

v
DiD_¢5+), hD.,_D-qB;}

u=1

v=vy—1

h h
SZ?f = é’ful + Z ki, + Efug

v=ri+1

for 0 < v; < 3 < N and also for the double summation
N-1 h v
Af =Y h [Efo + thu]
v=0 u=1
Then the equations (5) and (6) become
(A + B)d(x) = S D+ D_g* (7

and

Ad(x) = A(D4D_¢") ®)

- 131 -

These relations together determine asymptotic expansions of A and B. We consider

these two relations in turn.
First we examine (7). Substituting the asymptotic expansion for ¢° gives
(A+ B)d(k) =S DyD_¢°

~SN¥D.D_¢® +e8S¥D,D_¢W + 28D, D_¢? +....

We consider the first few terms of this asymptotic series. The first term is
h h
Y D409 = 2 (& +) - 5 (o + Fn) + S{'F.

We prove below that S)YF = 0 provided the compatibility conditions of F' are

satisfied and so from the forms of zgo) and 25\?) in (4) it follows that

SND,.D_¢" = O(h")

At first order

h? ht
= (z(()l) + z,(\})) + [F’]é + 5 P+ PO+]

-2 [(F”(O) + F'(1)) + ii;(pm(m + FO (1) +..] +0(h?)

The terms involving the odd derivatives vanish by the compatibility conditions on
F. The terms involving the even derivatives cancel to fourth order in A by the forms

of z(()l) and z%) in (4). Hence

SND,D_¢W) = O(h®)

-132 -

At second order

(

;1; |DyD_F, -2D,D_F, + 4]
1

il

DyD_Fn_o-2D, D _Fyn_, + ZS)]
N-2
(287 = Fo) + (- = F)] + - W(D+D_)*F,
=2

We can reduce this expression by eliminating the sum

1
=D+D_ (Fy = 2Fy) + D4 D (Fy— = 2Fn—1)]
N-2
2 1
+ > h(D4D_)?F, = +(D4D_Fi+DyD_Fy_y)
v=2

and then expand using Taylor series

2
6!

WFEY +..]

2
DyD_Fy+DyD_Fy_, = [F{' + Ehm(") +—hF® 4]

1 2 2 (4) 2
= { F"(0) + hF"(0) + '—1—2-F(‘*)(0) +.)+ 3h2F(*>(0) +...
2 4

h? 2
Hegy _ 3ot (4) “ B2 (4)
+(F (1) = hF (1)+2F (1)+...)+4!hF (1+...

= (z(()l) + z,(\f)) + %2- (zgz) + zg\?)) + O(h*)

using the compatibility conditions on F as well as the forms (4) for the z(™)’s.

Hence

SND,.D_¢® = O(r®)

We have shown that the first three terms of the asymptotic expansion (7) of
(A + B)d(k) are O(R"), O(eh®) and O(e2h®) respectively. This expansion can be

carried to higher orders with the result that

A+B=0

- 133 -

to all orders.
Now we consider the relation (8) which determines A. Substituting the asymp-
totic expansion for ¢° gives
Ad(k) = A(D4+D-¢°)
~ A(D4D_¢) + €A(D4D_¢W) + A(D4D_p) +
To determine the A(DyD_$("™) terms we need to use the double integral compat-
ibility conditions on F.

We begin with the first term
A(D4D_6(®) = A(F)

We use Taylor series to relate the sum of F' to the double integral of F and the
compatibility conditions on F to reduce the expression which results. This leads to
the following result.
Lemma 1. If F satisfies the compatibility conditions then
h2
A(DyD_¢) = -5 70 + O(h*)

Proof. By the compatibility conditions

~A(DyD_¢9) = f f "Ydz'dz — A(F)

We break up the integration domain {(z,2'): 0 < z < 1, 0 < &’ < z} into pieces by

first making slices along the lines z = z,, and then along the lines ' =z, + %

A(DLD_¢®™) = Z /xm f (x')dx'—i:th]

f f — Fy)de'dz

Ty h/2 :z:,,+b-
+Z/; {/o (F(') - Fo)de' +Z[- F,)d'
v n=1

v=1

- 134 -

Next we make Taylor series expansions about 2’ = z, and change variables to
y=z—1z,
- (0) Flm) m
o= £ 4 (5 [
/2
+ Z Fg"’)f mdy—l—ZF(m)/ mdy+F(’")/ y™dy | ¢ de
1 0 a1 hi2 R/2

Evaluating the integrals gives
o] hm +2 N—-1

20:0-0 = 3 gy 1

m=1 v=0
o0 N-1 v—1
h/f2)mt! m m m
+) ((,,/1—.11)1 2 {th’") +) L= (=)™ HRF™ — (1) FRE)}
m=1 v=1 p=1

Replacing the inner summations by trapezoidal sums we obtain

0 o~ _hmH! N h 1
—A(D;D_¢") = Z CFL (so F(m) _ _Z.F(m)‘o>
m=1 :

oo h/2m+1N1

+ Z (m+ 1)! Zh F§™ — F{™)

(m odd)
m N-1
(m e_ven)

=<1>+<2>+<3>

< 2> can be further simplified by replacing the sum over v by boundary terms
N-1
3 A(E™ - F{™) = F(0) - SY) 4
v=1

which is O(h?) by the compatibility conditions as shown in the appendix to this

F(ﬂ?)l(l)

section. Similarly < 3 > can be simplified by

N-1 N-—-1 'h B
Yo RSGF = T h DR+ Z hF{™ — —F(m)]
v=1 r=1 -

N-1 'h "~ N——-
=> h 2F('") + ZhF(m)] ~ =Y hF{™
v=0 | p=1 v=0

h?

h
= AF™ _ 750 Flim) 4 —2—F(m)|g

h2
= AF™ 4 EF(”‘“)(O)

- 135 -

Hence
N X (r)2)"
—A(D.D_¢)= gNpim) L W2 (p(m)gy—gN p(m)
(+ d’) mzzl {(m+2)! 0 + (m+1)! (F (0) SOF)
(m odd)
o0
RmHL R (B)2)™ K2
— — F(m+1) S el B (m) 4 Z_p(m+1)
2 {(m+2)!(T O AT A F (0))}
{m even)

h? (h/2)?
= —3—!—F'(0) + TA(F") +O(h)
But F" satisfies all the same compatibility conditions as F' and so

2
~A(D4D_¢) = T-F'(0) + O(h)

which proves the lemma.

For completeness we go to first order in € in the expansion for Ad(k) by calcu-

lating A(DyD_o¢M).

A(D+D_¢(1) Zh{ (1)+ZhD D_)2¢(0)}

v=0

N-1
=Zh{ (1)+ZhD+D F}
v=0
N-1

h
= Ez(gﬂ + Y h{D4F, - D{F}

v=0

AV 4+ Fy - Fy— D4 Fy

N|§" MI&MI?“

cg:‘FMf-as—\oA

[
eS|
2
(]
=

Y4+ F'(0)- Dy Fy

24 (6)
&hF (0) +...

hs
EWﬂWm+m}

F"(0) + 3h2F(4) (0) +

F"()+ 2 FO(0) +

(0) - 2P ®(0) -

We have found the first two terms of the asymptotic expansions for the coeffi-

cients A and B 12
Ad(k) ~ ————F (0) + O(h*, eh?)

Bd(k) ~ EF() + O(h*, eh?)

- 136 -

Now we consider the modifications to determine the coefficients A and B when
higher order boundary conditions are used. In this case (7) and (8) involve extra

terms; they can be written as

(A+ B)d(k) =SYD,D_¢° + H, (7)
and

Ad(k) = A(D4+D_¢°) + H, (8")
H, and H, are determined from the equations
0= Dr,q¢N - Dl,q¢’0
= (Do — Di,g) ¢ — (Do — Drq) O
+ (Dodk = Dod) + (Dr.qdN — Die$5)

= H, +SYD,D_¢° — (A+ B)d(k)

and
N—-1
0=0¢% —¢) =)_ hDy¢}
v=0
=ores & D0¢g + A(D+D_¢s)
= (Do = Di,¢) 95 + Di,¢¢5 + A(D+D-9¢°)
= (Do — Di¢) $§ — D495 + A(D+.D—¢°)
= Hz - Ad(ﬁ) + A(D+D_¢S)
Hence

H, = (DO - Dl,q)¢(s) - (DO - Dr,q)qﬁzsv

Hy = (Do — Dy,¢) ¢
From the properties of ¢° which were found above it is easily deduced that
0 ifg=2
(Do — D1 g) 8% = %f—F'(O)-i—O(hs,eh?) ifg=3

BLP/(0) + O(h*,eh?) ifq =4

and likewise for (D, , — Do) ¢% . Hence for ¢ > 3 it follows that H; = O(h®) and

Hy + A(D4D_¢%) = O(k?)

- 137 -
That is, both Ad(x) and Bd(k) are O(h*), which is the final result of Proposition 1.
Appendix to Section 5.2.5

Lemma 1. If F satisfies the compatibility conditions

1
/ FC™(z)dz =0 m=0,12,...
0

then
A N-1 h \
Np.== —Fn = O(h%
SNF 2F0+I§hF,,+2FN (h29)

for all positive integers q.

Proof. The proof is by induction.

/OlF(x)dx—-Sész {[m

N 1

f . +f } - F)ia

1 m
= { }Z %FIE)(:c—:c)" d=
m=1
_ i 1 (r/2)"" {r™
—m! m+1 0
N-1
+ Y[= (- R - (—1)'"+1F§m)}
v=1
= 3 GBIy
= (m+ 1)
(m odd)
+ z) SYF)
(m even)

io: h/2 o (2n)

o
n:l 2 + 1
Therefore
[o.@]
SYF =) aMn¥s)Ftn
n=1
where
alV) = —————l————-SNF(Z") n=12,.

- 138 -

Now F'! satisfies the same compatibility conditions as F and so

e}
SévF" — Z a%l)h2nséVF(2n+2)

n=1
Hence
o
SéVF _ Z agz)thSévF(%)
n=2
where
a® =a® +aVal), n=23,...

This process can be continued to any order in h with the result that
Sl F = 0(h*9)

for any positive integer q.

Lemma 2. If F satisfies the compatibility conditions
1
/ Fe™ D (g)de = FE™ TV (0) m=0,1,2,...
0

then
SVF@ = Fla(0) + O(h?)
for any odd positive integer q.

Proof.

1 oo hi2 m-+1
/ F(‘I)(a:)dx - SNF@ = Z LL[_F(q+m)]lé
0

= (m+1)
{m odd)
o0 m
+ Z .Lh._/_z_)__sgfp(q+m)

(m+1)!

- 139 -

Therefore
o0 m-+1
N p(0) — plo) (h/2)"7
SYF@ = FO @)+ Y B

m=1
(m odd)

0 m
(h/z) N v {g+m)
Z (m+ 1)!So F

F(q+m+1)(0)

m=1
(m even)

(@) L (AN [ee) LN p(a+2)
=F (0)-{-'2"! 5 F (0)-—-§SOF

1 /hr* 1
+ 4 (—2—) [F(H‘*)(o) - =87 F<q+4)] +...

oo

1 /r\™ 1
= (9o E : = (= Fla+m) (o) — SN ple+m)
()+ o m!(z) { () m-+1 o F

{m even)

The result follows.

5.2.6 Numerical Examples

In this section we look at some computational results to see how well our analysis
predicts the observed numerical behaviour. Solutions are computed to the discrete
single time step model when the forcing has been chosen so that an exact solution
to the corresponding continous model is easily found. The errors are compared to
the errors which are estimated from the results of previous sections. We consider
two examples. In the first example the solution is of a form where there are no
boundary layers in the error. The computed stream function and vorticity are then
accurate to second order. In the second example, however, the error has boundary
layers. In the two limits, ¢ < h% and € 3> h2, the errors are seen to be of the
appropriate form. Accuracy is lost when the boundary conditions are only second
order. When higher order boundary conditions are used the computed vorticity is
seen to be second order.

Example 1

When the forcing to the continuous single time step model is chosen to be

F = 47*[1 — 47%¢| cos 27z

- 140 -

The solution is given by

Y =1—cos2rz.

We solved the discrete single time step model problem (5.2.1.2) with the forcing F,
equal to F(z,) . Second order boundary conditions were used. The error has no
boundary layer component in this case. The terms which force the boundary layers
in the error, go and g¢,, are both zero since all odd derivatives of ¢/ are zero at the
boundaries (see section 5.2.3). The asymptotic expansions for the continuous and

the discrete vorticity are
¢~ F 4+ eFp, +..

z~F+eD D_F+....

Thus the normalized error in the vorticity e} := (¢ — z)/h? is

62
e§~—-h—(D+D_ 62)F+0()

1
2

= ——(;‘1;—(2#)4 cos 2rz + O(€?, eh?)
—€(5.127 x 10*) cos 2wz + O(e?, eh?)

The normalized error in the stream function ew (¢ — ¢)/R? is given by

f / Gdz'"dz' +€G +..

(— cos2rz) + O(e, h?)

12

Whence the leading order terms for the maximum norms of the errors are
lle? |loo ~ 5.127 x 10%¢
lle lloo ~ 6.58.

The errors and their norms were calculated for ¢ = 10™%. Table 5.2 gives the

results for some different values of h.

- 141 -

h lleg lleo lle¢ lloo /€
1/10 6.74 5.04 x10°
1/20 6.64 5.09 x10°
1/40 6.61 5.10 x10°
1/80 6.61 5.11 x10°

Table 5.2 Normalized Errors for Example 1, ¢ = 10~*

It is seen that the errors behave has expected. Both the stream function and
vorticity are computed to second order. In fact, the error the vorticity is O(eh?).
Example 2

As a second example we consider the forcing function

F=—u’sin [w(:c - %)]

where
w=2tan§, 2r < w < 37

w ~ 8.9868189158181

The exact solution is
¥ = sin w(z—l) +(1—2.’1:)sin-bi
- 2 2

The asymptotic expansions for the continuous and the discrete vorticity are

gNF+€Fxx+-..
—-v v—N (K - 1)2
z~F+eDyD_F+...+ (A7 + Br"7V) =
where
A~ —gh?/d(k), B~ gh®/d(k)
with

1
go ~ mex(()) ~ 26.3

1
gl ~ §¢zxz(l) ~ 26.3.

- 142 -

h leblloo | lleflloo | hllefllo | R/vE
1/10 9.58 539 53.9 316
1/20 9.29 1050 52.6 15.8
1/40 9.22 2050 51.2 7.9
1/80 9.21 3760 47.0 3.95
1/100 9.22 4460 44.6 3.16

Table 5.3 Errors for ¢ = 10~°

From these expressions we can write down the normalized error in the vorticity

1 _ _ -
e? ~ —e-l-—z-me + (—gok™" + q1K” NMyd(k) + O(e, h?)

~ 4.4 x 10*esin w(z — %) ~26.3d(k)(k™" + ") + O(e, h?)
For second order boundary conditions the function d(x) is given by

)= I (1 fed
T d(k) h%x 2/h Je<h<kl

The normalized error in the stream function in this example is given by
x Il
el ~ / [Gda'"da' +€eG+...
0o Jo

w? 0
= £ p(2) + (e, ?)
~ —6.Ty ()
Hence, the leading order terms for the maximum norms of the errors are
lle®loo ~ max {4.4 x 10%¢, 26.3d(x)}
leflloc ~ 6.7]1¢ oo ~ 9.18

In the two limits

oy _ | 26.3/\/ for h <« \fe
26.3d(x) = {52.6/h for /e < h

When 2 > \/e_ the above results suggest that the computed vorticity should
be only first order accurate with hlle/||cc ~ 52.6. Table 5.3 shows the results for

different values of & when ¢ = 1075.

- 143 -

h lleglloo | lleflloo | vEllefllo | h/+/E
1/10 150 2540 25.4 1
1/20 146 2530 25.3 5
1/40 145 2550 25.5 25
1/80 145 2550 25.5 125
1/100 145 2560 25.6 1

Table 5.4 Errors for ¢ = 10~2

In the other limit, h <« \/E, the predicted behaviour of the error in the vorticity

is \/€|lef]|cc ~ 26.3. Results in this limit are shown in table 5.4.

Now we show the behaviour of the error as h/,/e varies from large to small.

The error shows a continuous transition between the two limiting cases.

h lepllo | lleclloo | ellegllo | Rlletllo | h/vE
1/10 9.67 528 5.28 52.8 10
1/20 9.39 986 9.86 49.2 5
1/40 9.35 1660 16.6 41.6 2.5
1/80 9.36 2260 22.6 28.3 1.25
1/100 9.36 2390 23.9 23.9 L

Table 5.5 Errors for ¢ = 10~*

Higher Order Boundary Conditions
The boundary part of the vorticity error when higher order boundary conditions

are used is given asymptotically by
lleg, oo ~ lg d(x)]

Recall that d(x) depends on the approximation to the boundary condition. In table

5.6 we show the expected form of the boundary part of the error.

- 144 -

Order of g lle? lloo
b.c. h < \fe Ve < h
2 (h2]80) 0244 (0) ~ 26.3R2 26.3/ /e 52.6/h
3 ~(2h3 /4!)ypH) (0) ~ 530R3 530h/./€ 1600
4 6(h*/5)y(®)(0) ~ 637h* 637h%/ /€ 2600

Table 5.6 Form of Boundary Error for Higher Order B.C.’s

h legllo | lletlloo | elleflloo/h | B/VE
1/10 9.59 1330 133 10
1/20 9.30 1340 268 5
1/40 9.24 1070 428 2.5
1/80 9.24 651 520 1.25
1/100 9.24 533 533 1.

Table 5.7 Errors for Third Order B.C.’s and ¢ = 10~*%

h leglloo | lletlle | lleglloo/h | elletlloo/h* | R/ /e
1/10 9.61 804 8940 894 10
1/20 9.34 278 5560 1110 5
1/40 9.28 72.7 2910 1160 2.5
1/80 9.26 18.8 1500 1200 1.25
1/100 9.26 13.1 1310 1310 L

Table 5.8 Errors for Fourth Order B.C.’s and ¢ = 10~*

In the next two tables we give the errors for third and fourth order boundary

conditions, respectively.

The vorticity looks to be even more accurate than second order. However,
other parts of the (normalized) error of order e. If a larger epsilon is taken the
vorticity shows that it is second order. This is illustrated in the last table of this

section. (When the boundary errors are small we expect ||e?|| to be ~ 4.4 x 10%¢.)

- 145 -

h lleglloo | lleflloo
1/10 167 660
1/20 173 505
1/40 174 483
1/80 174 484
1/100 174 483

Table 5.9 Errors for Fourth Order B.C.’s and ¢ = 107!

- 146 -

Chapter 6

Numerical Examples

6.1 Multigrid

In this section we illustrate the solution of Poisson’s equation on composite over-
lapping meshes using multigrid.
Multigrid Example 1

As a first example the region (2 is a circle which has been covered by a composite
mesh consisting of two component meshes. Figure 6.1 shows this mesh along with
the coarser meshes which are used by the multigrid algorithm. Boundary points on
the inner component mesh are marked with small circles. Biquadratic interpolation
is used at the interpolation boundaries of the component meshes. The composite
smoother for the curvilinear grid consists of an alternating line SOR (Line Zebra)
on lines in the radial direction. A Red-Black Jacobi smoother is used on the inner
rectangular grid. A composite smooth of type S is employed. For the rectangular

grid the restriction operator is taken as the half weighting.

Rl—'2 =

Q0 | =t
ool S)
e e
O =D

A full weighting is used on the curvilinear grid. The mesh equations are solved
directly on the coarsest grid. The interpolation equations are coupled at the lower
multigrid levels and it is necessary to solve a small system of equations to update
the interpolation points.

Tables 6.1 and 6.2 summarize the results when the number of multigrid levels
is 2 and 3, respectively. The quantities appearing in the table are now explained.

r(k) is the residual on the finest grid after the k** multigrid iteration and defined

- 147 -

r(k) = |if' - A'v' (k)]

WU (k) is the total number of Work Units used up to and including the k*" iteration.
A work unit is the amount of work (number of multiplications say) to perform
one iteration of SOR on the composite mesh. The effective convergence rate ECR
is defined as
r(k) \’
CR(k)=| ————=
zor) = (7555)

1
P=WUk) -WU(k - 1))

This effective convergence rate is useful to use when comparing the multigrid meth-
ods to other methods. It essentially indicates the convergence rate that an SOR
type iteration would have to achieve in order to be doing as well as multigrid. We
usually obtain effective convergence rates in the range .6 to .7. For comparison the
(effective) convergence rate for optimum SOR on a unit square with N x N points,
N =50, is (1 — sin(r/N)/(1 + sin(x/N)) ~ .87. The convergence rate for Gauss
Seidel is cos®(x/N) ~ .996.

Iteration r(k) r(k)/r(k-1) | WU(k) | ECR(k)
k=2 7e-3 .050 10.7 48
k=3 Tle-4 .093 14.8 .56
k=4 12e-4 A7 19.0 .65
k=5 .20e-5 A7 23.1 65

Table 6.1 Convergence Rates for 2 Levels

Iteration r(k) r(k)/r(k-1) | WU(k) | ECR(k)
k=2 .99e-2 14 11.5 65
k=3 14e-2 14 16.0 .65
k=4 .20e-3 14 20.6 .65
k=5 .20e-4 14 25.1 .65

Table 6.2 Convergence Rates for 3 Levels

- 148 -

Computational Grid

nx = 17 ny = 17 ns = 48 nr = 17
d,= 10.0 74= 0.50 d,= 10.0 7,= 0.70

PO PX
ot e ¥
A(
7
k{4 .;
i
A ae
.
X
Pa LA
L/
Computational Grid Computeational Grid
nx= 8 ny= 8 nyx=25 nr= § nx= 5 ny= 5 ns=13 nr= 5
d,= 10.0 7= 0.50 d,= 10.0 7,= 0.70 d,= 10.0 7= 0.50 d,= 10.0 7,= 0.70

TS

7

7

P
./
A

TSN ENS
é(/

Figure 6.1 Composite Mesh for Multigrid Example 1

- 149 -

Computational Grid

nx = 93 ny = 51 ns =149 nr = 13
d,= 5.0 m= 0.65 dy= 15.0 m,= 0.70

Computational Grid

nx =47 ny =26 ns =75 nr= 7
d,= 5.0 no= 0.65 d,= 15.0 7n,= 0.70

Figure 6.2 Composite Mesh for Multigrid Example 2

- 150 -

Multigrid Example 2

As a second example Poisson’s equation is solved on the composite mesh shown
in figure 6.2. This region is used for the dig ocean run presented in the final section
in this chapter. The actual grid shown here, however, is finer by about a factor of
four than the one that is used in that section. The effective convergence rates for
this large problem, presented in table 6.3, are seen to be just as good as those of
the previous example. The total amount of work to solve this problem is of course

more since there are a greater number of points on this mesh.

Iteration r(k) r(k)/r(k-1) | WU(k) | ECR{k)
k=2 34e-2 A1 10.9 .69
k=3 .48e-3 14 15.1 .63
k=4 .64e-4 13 19.3 .62
k=5 dle-4 A7 23.5 .66

Table 6.3 Convergence Rates for 2 Levels

Timings

Next we present some results which give an idea of the speed of the multigrid
method. When the problem is small enough a direct solver can be used. The time
for multigrid is compared with the time required to solve the same composite mesh
equations using the direct solver (not including the factorization). The program has
been run on a Cray-1 at the National Center for Atmospheric Research in Boulder
Colorado, and on the Fluid Dynamics Vax 11/750 at Caltech. At the time the
runs on the Cray were made the mesh equations at the lowest level were not solved
exactly. Instead an SOR iteration was used. Experience shows that some saving in

time is gained by using the direct solver.

The number of grid points indicated is an approximate number only. The

multigrid programs are relatively efficient but they were not written to be as fast

- 151 -

Run Machine Number of Multigrid Direct
Grid Points Per Cycle Per WU
1 Cray-1 2300 .03 .005 .073
2 Cray-1 4200 .04 .007 777
3 Vax 750 1100 3.8 1.1 .94
4 Vax 750 4300 9.2 2.1 M

Table 6.4 CPU times in seconds

as possible. The times shown should thus be considered with this in mind. Timings
for multigrid are given in two ways. The first is the time for an average multigrid
cycle. Dividing this value by the number of work units required by the cycle gives a
time per work unit. Although times for a cycle and number of work units required
per cycle may vary, the time per work unit for a given grid is fairly constant. The
effective convergence rates for the runs in table 6.4 were all around .6 to .7. From
the results of run 1 on the Cray one sees that approximately two multigrid iterations
take the same time as the direct solver. Hence, if one starts with a good guess, two
multigrid iterations may achieve the desired accuracy and the multigrid iteration
could be just as fast as the direct solver. For larger problems multigrid becomes

more efficient relative to the direct solver.

6.2 Comparison with a Rectangular Model

In this section we look at the solution of the vorticity stream function (ocean)
equations on a circular basin. For comparison the same equations are solved on
a mesh which consists of a subset of a uniform rectangular grid. This alternate
method will be referred to as the rectangular model. The four different grids used
in this comparison are shown in figure 6.3. There are two composite overlapping
meshes and two rectangular grids. For reference the grids are labelled 1 through
4. Some of the points to consider when examining the results from this comparison
are

(1) the accuracy of the composite overlapping mesh method versus the rect-

- 152 -

angular model.
(2) the effect of boundary fitted coordinates and the effect of stretching the
grid to resolve boundary layers.

(3) the relative speeds of the methods.

We now proceed to briefly describe the rectangular model.
Rectangular Model
A disk or radius 1 is approximated by a subset of a rectangular grid. Points

on the grid are given by
RG = {{(2:,y;)|(i,j) € Nr }

zi=—-1+(i—-1)h yy=-1+(i-1)h

Ne={(i,j) | /=l +y}<1}

The vorticity stream function equations were discretized in space using central dif-
ferences and in time using leap frog, in the same fashion as outlined in chapter 3.
The Poisson equation for 1) was solved using a sparse matrix solver. Multigrid was
used for a few runs and gave the same results. For problems of this size, however,
the direct solver is faster. The no slip boundary conditions ¢ = 0 and d¢/dn = 0
are approximated by setting the discrete stream function to zero on the boundary
of RG and on the points outside this boundary. The boundary of RG was chosen
so that on average the circle of radius 1 lies midway between the boundary of RG
and the next line out.
Accuracy Tests

As a test of the accuracy of the codes the equations were solved with a forcing

that makes the following stream function and vorticity satisfy the equations exactly.
T (2,) = (2% + 4% - 1)2 sin(271)

fT — V2¢T

- 1563 -

Computational Grid 1 Computational Grid 2
nx =22 ny=22 ns =46 nr= 8 nx =25 ny=25 ns = 49 nr = 14
4,= 0.0 ng= 0.00 d,= 0.0 n,= 0.00 d,= 50 ny= 050 d,= 5.0 n,= 0.70

Computational Grid 3

Computational Grid 4
nx = 30 ny = 30

nx = 50 ny = 6§60

Y

Figure 6.3 Meshes for the Comparison Runs

- 154 -

This stream function satisfies the no slip boundary conditions and so will be a

solution of the equations (1) provided the forcing is chosen as
flz,y,8) = ¢ = Rol¥y 67 —vz¢y) — Byz — Ex VT

This test example gives an indication of the accuracy of the codes when the solution
is smooth. The test is somewhat artificial since the solution has no boundary layers.

The other parameters in the equations are taken to be

Ry, =101
E, =102
=1

Table 6.5 shows the results for runs on the 2 composite meshes. The errors in the
computed vorticity and stream function on the two component meshes are given.
The errors are given as normalized I, errors. The square of the [, error for a

component mesh function v, is defined to be the sum of the squares of the mesh

a4

function values divided by the number of values on the component mesh.

1
el = D v,%(i,4)
#Np 0]

Note that the definition of the norm ||-||2 depends on the component mesh function

which appears as its argument. The infinity norm of a component mesh function is

defined as

lipllo = max o (i)

The errors in the vorticity and stream function given in the table are

lie, = sTlle
ef = 2 B =12
ST
[P
e =—L Pt p=12

1 lloo

- 155 -

Grid | Method | Time el €5 eV ey time /step
1 Implicit 25 .012 .00083 .0061 .0047
- 15 015 .0014 .0073 .0056 2.7
1 Explicit 25 .013 .00085 .0065 .0049
75 .016 .0016 .0078 .0058 1.9
2 Implicit .25 011 .00026 .0036 .0015
75 .013 .00040 .0041 .0018 4.8

Table 6.5 Errors on Composite Meshes

g;-’r and g’z are the component mesh functions corresponding to the true solutions

¢T and ¢T. The annular mesh is component mesh p = 1 and the interior square

grid the component mesh p = 2.

Since grid 1 is not stretched near the boundary it is feasible to use the explicit time

stepping procedure. Only the implicit method was run on grid 2. The table also

shows the computer time, in seconds, required per step for each of the methods.
Table 6.6 shows the errors in the numerical solution for the rectangular grids.

The errors eS8 and e¥® can be defined in the same manner as e and ef, if one

P

considers the rectangular grid as a component mesh. The errors in the vorticity on

the rectangular grids are quite large near the boundary.

Grid | Method Time | 7 evR time/step
3 Explicit .25 15 0047
.75 15 .0036 1.5
4 Explicit .25 A3 .0036
75 A3 .0022 4.7

Table 6.6 Errors on the Rectangular Grid

Figures 6.4 and 6.5 show plots of the numerical solutions on grids 1 and 4
respectively. The corresponding plot for grid 2 is much the same as the one for

grid 1. Since there are no boundary layers in the solution no advantage is gained

- 156 -

from the stretched grid. The contour plots of the stream function and vorticity on
figure 6.4 were made by calling a contour plotter twice, once for each component
mesh. The contours match up across the interpolation region. This is a further
indication of the accuracy (or inaccuracy) of the solution. Some of the parameters
related to the run are given above each contour plot. This information includes the
maximum and minimum solution values, along with the interval between contours,
CI. Negative contours are plotted as dashed lines.
Comparison Run

To see how the codes and grids compare on a more realistic problem we solve

with parameters and forcing given as

Ry=10"* Ey=10""*

This is a similar problem to the one solved by Beardsley [1973] and Reyna [1983].
The forcing f (curl of the wind stress) causes the ocean to rotate in a clockwise
direction. A strong boundary layer develops on the western coast. A time sequence
of the solution is given in figure 6.6. The solutions at time ¢ = 50 for the 4 grids are
shown in the sequence of figures 6.7 to 6.10. Each figure shows the mesh that was
used and contour plots of the vorticity and stream function. In addition the vorticity
along the line y = 0 is plotted. This profile can be compared to the approximate
solution of Munk which was obtained in section 3.2. This approximate solution
predicts the vorticity at the boundary to have a value given by

AT

which for Ex = 10~* , 7 = —1 and 8 = 1 gives A = 10% ~ 20 and ¢(-1) ~
900. The vorticity profile along y = 0 is in qualitative agreement with the Munk
approximation. There is a strong oscillating boundary layer on the western coast,

and a smaller boundary layer on the eastern coast.

Stream Function
T= 076 At =0.0100

0.100E-01 R,= 0.100 Impliet 1
0.00 Mn= =100 Cl= 0.100

- 157 -
Implicit 1 =
1.500 Max =

-830 CI =

Vorticity
T= 078 At =0.0100

0.100E-01 Ry= 0.100
787 Min =

Max =

4
!
t
]
]
)

[}

)

Grid

Computational
=22 ny=22 ns = 456 nr = B
= 0.0 n,= 0.00

.00 d,

0.0 M= 1)

d'=

Vorticity along the Lineay = O

- +8 i 1.0

-8 -t 2

1.0

Figure 6.4 Accuracy Test - Grid 1

- 158 -

Vorticity Stream Function

T= 076 At =0.0100 T= 075 At =0.0100

Ex= 0.100E-01 Ry= 0.100 E= 0.100E-01 R,= 0.100
Max = 800 Min= 1341 Cl= 1800 Max = 000 Mim= -1.00 Cl= 0.100

T .

N

N -
~

Computational Grid
nx = 50 ny = 50

Vortioity along the Line y = 0

] y o\
4
/1 '\
2 {
]
-2
\
-4
-8 \ /
-
“1.0 -8 -8 -4 -2 o .2 o, .8 B 1.0

Figure 6.5 Accuracy Test - Grid 4

- 159 -

Function Stream Function
T = 1250 At =0.5000 T = 25.00 At =0.5000
Ex= 0.100E-03 Ry= 0.100E-02 Implicit 1
Max = 240 Min = 000 O =

E,= 0.100E-03 Ro= 0.100E-02 Imphcit 1
0.1%0 Max = 278 Mn= 000 CI=

0.150

Stream Function

Stream Function
T = S7.50 At =0.5000 = 50.00 At =0.5000
E.x= 0.100E-03 Re= 0.100E-02 Implicit 1 E.= 0.100E-03 Rg= 0.100E-02 Implicit 1
Max = 288 M = 0.00 CI= 0.1%0 Max = 2.85 Nin =

-0.04 Cl = 0.15C

N

o

e o
S
\“\—_W"’/

Figure 6.6 Comparison Run - Time Development

- 160 -

Vorticity Stream Function

T = 50.00 At =0.5000 T = B0.O0 At =0.5000
Ex= 0.100E-03 Bg= 0.100E-02 Implicit 1 Ey,= 0.100E-03 Rg= 0.100E-02 Implicit 1
Max = B48.00 Min = -27043 Cl = 850.000 Max = £.43 Min = -0.03 Cl = 0.150

Computational Grid

=22 ny=22 ns =46 nr= B
d,= 00 7= 0.00 d,= 0.0 n,= 0.00

Vorticity along the Line y = O

xo v T T T T Y T T T
wd 4
2 -+
o b 4 A—i it
] . et X
00 -« - ey X
o N
500 H J ¢
1 J %
7 iy
| : s T
o - [H
: 0 i
200 - . ! Bilsy
- STathN 7Y
100 e DS
L \ 7
o Wb i
i) 3
<4
=100 = -4 A
L e = s
~200 - - G b
- i i i 2 i i i i i 4
~1.0 -8 -8 -4 -2 ° 2 (] +8 4 1.0
x

Figure 6.7 Comparison Run - Grid 1

- 161 -

Vorticity Stream Function

T = 60.00 At =0.5000 T = 50.00 At =0.5000
B,= 0.100E-03 Re= 0.100E-02 Implicit 1 E,= 0.100E-03 Ro= 0.100E~02 Implicit 1
Max = B58.49 Min = -324.14 Cl = 50.000 Max = 285 Min= -004 Cl= 0.150

Computational Grid

nx =26 ny=25 ns =49 nr = 14
d.= 5.0 mp= 050 d,= 50 n,= 0.70

Vorticity along the Line y = O

m L 1 v v 1 T L} 1 i3 L] 1 -
3 4
=
00 ~ ol
E Z et
s |
600 7 G P K.
2 4 ¥) -
» - / 23
] T A
W E 777
/77 »
a0 H . sy 4
L d il SrA
L 4 ;7Y 7
a0 o il
b g{i" el
19} 4
X0+ P NI
st
r 9 X eual
X =\
o
P
NP
S =
N i SRR
N
. X i i i PR i 1 L =

Figure 6.8 Comparison Run - Grid 2

- 162 -

Vorticity Stream Function
T = 50.00 At =0.5000
E,= 0.100E-03 Ry,= 0.100E-02
Max = 665,92 Min = -3%88.82 Cl = 50.000

Mex = 2.87 MNin =

T = 50.00 At =0.5000
= 0.100E~C3 Ry= 0.100E-02

-0.07 Cl =

Computational Grid
nx = 30 ny = 30

Yorticity along the Liney =0

T T T T

T~

0.150

o

TYTTTrYYTeYY

8
T

TV Ter e TrTTY

S s

.
8

Figure 6.9 Comparison Run - Grid 3

- 163 -

Vorticity Stream Function
T = 80.00 At =0.5000 T = 50.00 At =0.5000
E,= 0.100E-03 R,= 0.100E-02 Ey= 0.100E-03 Rp= 0©.100E-02
Max = 1040.21 Nin = -444.58 Cl= 50.000 Max = 248 Min= -004 Cl= 0.150

%

1
|
{ M |
.22
/
Computational Grid
nx = 50 ny = 50
L Vortioity along the Line y = 0 ol
«0 H < N
300 . x‘
N
4 4 e\
200 -4
L
100 | -
ob - e
b L
~100 -]
L]
-200 -1 s
-0 X i i) H i 4 I3 i I
=1.0 -8 -8 8 -2 /] 2 L]] 1.0
p 4

Figure 6.10 Comparison Run - Grid 4

- 164 -

The global features of the stream function solutions agree fairly well on all
grids. The vorticity near the wall for the rectangular grid models, however, is not
very smooth. Only the stretched composite mesh, grid 2, has enough points to
resolve the strong western boundary layer. When looking at these results keep in
mind that a second derivative of the vorticity must still be estimated using divided

differences. This estimate will be accurate only if the vorticity is fairly smooth.

6.3 A Run on a Large Ocean

As a final example the vorticity stream function equations are solved on the non-
circular grid shown at the top of figure 6.11. The shape of the region was chosen in
order to study the behaviour of a strong current as it rounds a sharp corner. One
might imagine the eastern basin to be the Indian ocean and the central peninsula
to be the southern tip of Africa. In dimensional units, the parameters describing

the run have the values
L=1x10°m

F =10"115"2
B=2x10""m 17!
Ay =2000m?%s™!
These correspond to values of the nondimensional parameters of
Ry =2.5x1072
E,=1x10"*

The curl of the wind stress is chosen to be

f(z,y,1) = {Zin((”/lo)(y ~ %)) z Z zz

where y, is the vertical position of the bottom tip of the peninsula and [, is the
distance from this tip to the top of the eastern ocean basin. This forcing causes

the ocean to rotate in a counter-clockwise direction. Figures 6.11 to 6.13 show the

- 165 -

solutions at the nondimensional times of { = 10,20,...,100. The stream function
was given the initial value of zero. The flow gradually increases in intensity until
the velocities are large enough so that nonlinear effects become important. This run
was made primarily to show the feasibility of the method. The number of points on
the grid is small enough to allow the program to be run on a Vax. The total CPU
time for this run, including input and output was about 1 hour. Further studies

are planned.

- 166 -

Computational Grid
nx =48 ny =28 ns =% nr= 7
d,= 20 ng= 0.60 d,~ 10.0 n,= 0.70

1T
| 4 4
= 1

Stream Function Stream Function

T = 25.00 At =0.1000 T = 80.00 M =0.1000
E= 0.100E-03 Ry= 0.250E-01 Implicit 1 E,= 0.100E-03 Re= O0.280E-01 Impleit 1
Max = 142 Min= 000 CI= 0.1% Max = 183 Min = -0.08 CI= 0.150

Stream Function Stream Function

T = 85.00 At =0.1000 T = 40.00 At =0.1000
E,= 0.100E-03 Ry= 0.260E—01 Impleit 1 E,~= 0.100E-03 Ry= 0.280E-01 ImpHeit 1
Max = 178 Min= -0.08 Cl= 0.150 Max = 195 Min= -0.14 Cl= 0150

Figure 6.11 Big Ocean Run

- 167 -

Stream Function

Stream Function
T = 45.00 At =0.1000 T = §0.00 At =0.1000
Ey= 0.100E-03 Rg= O0.B50E—01 ImpHeit 1 Ey= O0.100E-03 Ry= 0.250E-01 mmplicit 1
Max = £03 Min= -0.25 Ci= 0.15 Max = 208 Min =

~-041 Cl= 0.15%

Stream Function

Stream Function
T = 8800 At =0.1000
Eu= 0.100E-03 Ry= O0.2880E-01 Impleit 1

T = 6000 At =0.1000
Ex= 0.100E-03 Ry= O0.280E-01 Impliet 1
Mox = 206 Min= -043 Cl= 0.1% Max = £.08 Mn =

-041 Cl= 0.150

Stream Function

Stream Function
T = 65.00 At =0.1000 T = ¥0.00 At =0.1000
E,= 0.100E-03 Ry= 0.250E—01 Impleit 1 Ey= 0.100E-03 R,= 0.280E-01 Implieit 1
Max = 218 Min= -030 CI= 0.15% Max = 223 Min =

-038 Cl= 0.14%

Figure 6.12 Big Ocean Run (continued)

- 168 -

Stream Function Stream Function

T = 78.00 At =0.1000 T = 8000 At =0.1000
B~ 0.100E-03 Rg= O0.280E~01 Implieit 1 E = 0.100E-03 Ry~ 0.850E~01 Impleit 1
Max = 239 Min= ~011 Cl= 0.150 Mar = 233 Min= -0.57 Cl= 0.i5

Stream Function Stream Function

T = 65.00 At =0.1000 T = 0000 At =0.1000
B,= 0.100E-03 Ry= 0.850E~0i Implicit 1 = O0.100E-03 R,= D0.250E~01 Implieit 1
Max = 244 Min= -084 Cl= 0.150 Mex = 264 Min= -030 Cl= 0.150

Stream Function Stream Function

T = 95.00 At =0.1000 T =100.00 At =0.1000
EB= 0.100E-03 Ro= 0.250E~01 Imphicit 1 BEy= 0.100E-03 Ry= O0.280E~01 ImpHeit 1
Max = 258 Min= ~071 Cl= 0.1% Max = £38 Min = -0.858 CI = 0.150

Figure 6.13 Big Ocean Run (continued)

- 169 -

References
R.C. Beardsley A Numerical Model of the Wind Driven Ocean Circulation in a
Circular Basin, Geophysical Fluid Dynamics, 4, pp. 211-241, 1973.
M. Berger, On Conservation at Grid Interfaces, ICASE report no. 84-43, 1084.

P. Bontoux, B. Gilly and B. Roux, Analysis of the Effect of Boundary Condstions
on the Numerical Stability of Navier Stokes Equations, J. Comp. Phys., 15, pp.
417-427, 1980.

A. Brandt, Multi-Level Adaptive Solutions to Boundary Value Problems, Math.
Comp., 31 no. 138, pp. 333-390, April 1977.

W.R. Briley, A Numerical Study of Laminar Separation Bubbles using the Navier
Stokes Equations, J. Fluid Mech., 47, part 4, pp. 713-736, 1971.

G.S. Chesshire, A Composite Grid Generation Program, to appear.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman, Yale Sparse Matriz
Package 1. The Symmetric Codes, II. The Nonsymmetric Codes, Research Reports
112 and 114, Yale University, Department of Computer Science, May 1977.

M.M. Gupta and R.P. Manohar, Boundary Approzimations and Accuracy in Viscous
Flow Computations, J. Comp. Phys, 31, pp. 265-288, 1979.

W. Hackbusch and U. Trottenberg (eds.), Multigrid Methods, Proceedings of the
Conference Held at Koln-Porz, Lecture Notes in Mathematics, 960, Springer-Verlag,
Berlin 1982.

M. Israeli, A Fast Implicit Numerical Method for Time Dependent Viscous Flows,
Studies in Applied Math, vol. XLIX, 4 , December 1970.

B. Kreiss, Construction of a Curvilinear Grid, SIAM J. Sci. Stat. Comput., Vol. 4,
No. 2, pp. 270-279, June 1983.

W.H. Munk, On Wind Driven Ocean Circulation, J. Meteor. 7, pp. 79-93, 1950.

S.A. Orszag and M. Israeli, Numerical Simulation of Viscous Incompressible Flows,
Annual Rev. Fluid Mech., 6, pp. 281-318, 1974.

J. Pedlosky, Geophysscal Flusd Dynamics, Springer-Verlag, 1982.

R. Peyret and T.D. Taylor, Computational Methods for Fluid Flow, Springer-Verlag,
New York 1983.

L.G.M. Reyna, PhD. thesis, California Institute of Technology, 1982.

- 170 -

P.J. Roache, Computational Fluid Dynamscs, Hermosa Publishers, Albuquerque,
1972.

G. Starius, Composite Mesh Difference Methods for Elliptic and Boundary Value
Problems, Numer. Math., 28, pp. 243-258, 1977.

G. Starius, On Composste Mesh Difference Methods for Hyperbolic Difference Equa-
tions, Numer. Math., 35, pp. 241-255, 1980.

K. Stubén, and U. Trottenberg, Mulitigrid Methods: Fundamental Algorithms, Model
Problem Analysss and Applications, Universitat Bonn, preprint no. 544, 1982.

