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Abstract 

Experiments have been conducted to investigate mixing and the geometry of 

scalar isosurfaces in turbulent jets. Specifically, images of the jet-fluid concentration 

in the far-field of round, liquid-phase, turbulent jets have been recorded at high 

resolution and signal-to-noise ratio using laser-induced-fluorescence digital-imaging 

techniques, in the Reynolds number range 4.5 x 103 S Re S 18 x 103 . Analysis of 

these data indicates that this Reynolds-number range spans a mixing transition in 

the far field of turbulent jets. This is manifested in the probability-density function 

of the scalar field, as well as in other scalar-field and scalar-isosurface measures. 

Classical as well as fractal measures of the isosurfaces have been computed, from 

small to large spatial scales, and are found to be functions of both scalar threshold 

and Reynolds number. The coverage of level sets of jet-fluid concentration in the 

two-dimensional images is found to possess a scale-dependent-fractal dimension that 

increases continuously with increasing scale, from near unity, at the smallest scales, 

to 2, at the largest scales. The geometry of the scalar isosurfaces is, therefore, more 

complex than power-law fractal, exhibiting an increasing complexity with increasing 

scale. This behavior necessitates a scale-dependent generalization of power-law­

fractal geometry. A connection between scale-dependent-fractal geometry and the 

distribution of scales is established and used to compute the distribution of spatial 

scales in the flow. A lognormal model of scales is proposed. The data also indicate 

a lognormal distribution of size of the isoscalar islands and lakes, and a power­

law distribution of shape complexity, with values of the latter that increase with 
. . . 
increasing size. 
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Preface 

Turbulent mixing refers to the advection and diffusion of any scalar quantity 

at high Reynolds number. Turbulent flow enhances (molecular diffusion) mixing 

and results, in turn, in more effective (local) scalar-field homegenization, relative 

to laminar-flow mixing. The structure and dynamics of turbulent mixing reflect 

the complexity of turbulent fl.ow. Apart from its scientific significance, turbulent 

mixing is biologically, environmentally, and technologically important in various 

contexts. For example, several aspects of marine biology depend on fluid transport 

at high Reynolds number as many aquatic organisms rely on turbulent mixing for 

their survival (consumption, waste, dispersion, and evolution) in the oceans (e.g., 

Denny 1988). Other examples include dispersion of pollutants in the atmosphere 

and turbulent combustion. 

Isosurfaces of the scalar field, e.g., surfaces of constant species composition or 

temperature, are known to be highly convoluted in turbulent-mixing flows. For 

example, isosurfaces of passive scalars (i.e., scalars that do not affect the advecting 

velocity field, such as dye markers), are known to exhibit a complex geometry in 

turbulent-jet flows (e.g., Dimotakis, Miake-Lye, & Papantoniou 1983), as well as in 

other high-Reynolds number turbulent flows (e.g., Sreenivasan & Meneveau 1986). 

The complex geometry of the isosurfaces arises, in part, because of the multiscale 

(and unsteady) nature of the structure and dynamics of turbulence. 

Knowledge of the geometry of the scalar isosurfaces is necessary for an un­

derstanding of the turbulent mixing process. The isosurface geometry significantly 

affects (molecular diffusion) mixing, wave propagation, scattering, chemical reac­

tions, and any physical process that depends on the area of the isosurfaces. In the 

case of nonpremixed hydrocarbon combustion, for example, chemical reactions are 

largely confined to the instantaneous (isoscalar) stoichiometric surface (e.g., Bilger 

1980), while in the case of premixed combustion, burning takes place on the (isotem­

perature) interface between burnt and unburnt fuel (e.g., Mantzaras 1992), with 
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flame-front propagation characteristics that are intimately intertwined with the ge­

ometric complexity of the burning surface (e.g., Ashurst 1995). Various measures of 

. the isosurface geometry, such as surface-to-volume ratio or volume-fill fraction, and 

their relation to the distribution of spatial scales, are, as a consequence, important 

to our understanding and modeling of mixing, chemical reactions, and combustion 

in turbulent flows. 

The need for a quantitative description of complex geometries also arises in 

other natural phenomena that involve fluid transport, e.g., nephron cells possess a 

complex boundary that provides the high surface-to-volume ratio necessary for the 

high transport (mass flux) of water in response to a small osmotic gradient (e.g., 

Welling et al. 1996). Other examples of natural complexity include the alveolar 

structure of lungs, the branching structure of blood vessels in the heart, complex 

organisms (e.g., a virus), the trajectory of particles exhibiting Brownian motion, 

earthquake fault systems, etc. 

In this thesis, mixing and the geometry of scalar isosurfaces in (liquid-phase) 

turbulent jets are investigated. In particular, the behavior and properties of scalar 

level sets in turbulent jets, identified from two-dimensional image slices of the scalar 

field, are analyzed using both classical and fractal measures. Chapter 1 describes the 

experiments and imaging techniques, and presents scalar-field image data. Chapter 

2 analyzes classical scalar and isoscalar measures, computed from the scalar-field 

images. Reynolds-number as well as scalar-threshold dependence is found for both 

classical and fractal measures. The present findings necessitate an extension of 

the (power-law) fractal (denoted 'PLF', below) framework to characterize the more 

complex geometries observed in these experiments, as well as in other natural phe­

nomena, for which PLF descriptions cannot capture the observed complexity. 

The framework of scale-dependent-fractal (denoted as 'SDF', below) geometry 

is described in chapter 3. In this framework, geometric behavior is characterized 

by fractal dimensions that vary with scale, as opposed to scale-independent, PLF 

behavior. Chapter 4 establishes a connection between SDF dimensions and distri­

butions of a measure of (multidimensional) scale. Chapter 5 presents experimental 

evidence of SDF behavior in turbulent-jet mixing, as well as its relation to the dis­

tribution of spatial scales in the flow. Chapter 6 reports a further analysis of the 
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isosurfaces that employs additional measures of geometric structure and complexity, 

based on the area-perimeter properties of the individual isoscalar islands and lakes, 

identified from the scalar level sets. 

The experiments, as well as investigations of various measures of the scalar 

field and of the isosurface geometry (in particular, chapters 1-3, and 5), are also 

reported in Catrakis & Dimotakis (1996a). The framework connecting SDF dimen­

sions to distributions of scales for complex geometries (chapter 4) can also be found 

in Catrakis & Dimotakis (1996b ). Finally, area-perimeter measures of geometric 

complexity, with application to isoscalar islands and lakes in turbulent-jet mixing 

(cf., chapter 6), are also reported in Catrakis & Dimotakis (1996c). 

The findings of this thesis have general implications for other turbulent flows as 

well as for other phenomena that exhibit natural complexity. Analysis of the present 

measurements on isosurfaces in turbulent jets has led to the development of SDF 

geometry - a framework which can be used to quantify the geometric complexity, 

analyze the distribution of scales, and model the geometric behavior, in a variety of 

complex phenomena. For example, this framework can be applied to any phenomena 

for which SDF dimensions have been reported such as, the trajectory of particles in 

Brownian motion (Takayasu 1982), Japanese coastlines (Suzuki 1984), topographic 

surfaces (Mark & Aronson 1984), fractured rocks (Chiles 1988), the galaxy distribu­

tion in the universe (e.g., Castagnoli & Provenzale 1991), solar granulation (Brandt 

et al. 1991), or the alveolar structure of lung tissues of prematurely-born rabbits 

(Rigaut 1991). Turbulent flows, in particular, exhibit structure over a wide range 

of scales and provide, therefore, a testbed for proposed frameworks that quantify 

the resulting geometric complexity. On the basis of the present findings of SDF 

behavior in turbulent mixing, as well as the implications and applications of the 

framework of SDF geometry in other phenomena, it is proposed that SDF geometry 

may be expected to be prevalent, and can be used to compute the scale distribution, 

in complex natural phenomena, in general, and in turbulence, in particular. 

The guidance, advice, and constant inspiration of my mentor and collabora­

tor, P. E. Dimotakis, throughout this effort, provided an invaluable educational 

experience as well as a unique research environment. The assistance and informal 
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CHAPTER 1 

Experiments and scalar-field imaging techniques 

In this chapter, experiments in turbulent jets are described. These experiments 

have been conducted in order to study the structure of turbulent mixing in the 

far-field of turbulent jets. Digital, solid-state (charge-coupled device, or CCD) 

cameras, coupled with laser-induced-fluorescence techniques, permit quantitative, 

multidimensional (field) measurements of the jet-:fiuid-concentration (scalar) field. 

In these experiments, two-dimensional, spatial measurements of the scalar field, or 

2-D "slices", have been recorded in the form of digital images, at high resolution 

and high signal-to-noise ratio. The imaging was conducted in the far field, in a 

plane normal to the jet axis, and at the highest Reynolds numbers possible, as 

dictated by the size of the facility, the resolution of the camera, and the laser-sheet 

thickness. An assessment of the space-time resolution of these measurements is 

provided. The normalization and calibration procedure in the image processing is 

described. Examples of scalar-field images are presented and scalar power spectra 

are analyzed. Reynolds-number effects on the (radial) scalar power spectra are 

found. 
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1.1 Turbulent-jet facility 

Experiments in liquid-phase, turbulent-jet flows were conducted in which im­

ages of slices through the three-dimensional scalar field of round, momentum-driven, 

turbulent jets were obtained. A schematic of the flow facility is shown in figure 1. 

It consists of the jet plenum, nozzle, and delivery system (not shown), and a large 

( '.:::: 1.1 m3 ), square-cross-section discharge tank with glass windows on four sides. 

For the present experiments, a 10-inch diameter glass window centered on the bot­

tom face provided additional optical access, with a 45° mirror facilitating imaging 

from underneath the tank. Transverse sections of the scalar far-field of the jet, at 

a downstream station z/d0 = 275, where d0 = 2.54mm is the (internal) jet-nozzle 

diameter, were measured using planar, laser-induced-fluorescence, digital-imaging 

techniques (described in next section). More information on the facility car.. be 

found in Dahm (1985), Miller (1991), and references therein. 

1.2 Laser-induced fluorescence imaging 

Laser-induced fluorescence techniques, coupled with digital imaging, can be em­

ployed to provide quantitative, field information of the scalar-species concentration 

in turbulent-mixing flows (e.g., Dimotakis et al. 1983, Koochesfahani & Dimotakis 

1986). In the present experiments, two-dimensional, spatial measurements of the 

jet scalar far field were obtained by imaging the fluorescence field emitted by a laser 

dye ( disodium fluorescein), premixed with the jet plenum fluid, upon excitation by 

an Argon-ion laser beam swept in the imaging plane. 

The laser-induced fluorescence field was recorded on a cryogenically-cooled, 

(1024 x 1024)-pixel, CCD camera (Photometrics Series 200 system), with a Nikon 

50mmf/1.2 lens. Figure 2 shows a schematic of the geometry of the scalar far field of 

the jet and the imaging station. The laser-illumination sheet was at constant z / d0 , 

i.e., in the similarity plane of the jet perpendicular to the jet axis, and spanned the 

entire extent of the jet-fluid concentration field at that downstream location. 

The jet plenum was seeded with an aqueous solution of disodium fluorescein 

at a concentration of c0 "' 2.0 x 10-6 11. The fluorescence response time of this 

laser dye is ~ 4nsec (see Dahm 1985), which is much shorter than the smallest 
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FIGURE 1 Jet facility and diagnostics schematic. 
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turbulent-mixing time scales in these experiments. The fluorescence is emitted at 

a longer wavelength than the excitation radiation, where the dye is characterized 

by a negligible absorption cross-section. Consequently, the mixed fluid is in the 

optically thin regime as far as fluorescence emission is concerned (Dimotakis et al. 

1983). At the downstream station used for these experiments ( z / d0 = 275), it was 

verified that the low plenum dye concentration resulted in a scalar fluorescent dye 

field with negligible laser attenuation across the field of view. 

A Gaussian (TEM00 ) beam from a continuous-wave Argon-ion laser (Coherent 

Innova 90) was collimated by a long focal-length (f = lOOOmm), spherical lens to a 

beam waist (diameter) of w0 ;S 300µm and approximately positioned in the center 

of the imaged field of view. The Rayleigh range for this beam was estimated to 

be ±12.5 cm (on either side of the waist). The field of view spanned .€0 '.:::::'. 42 cm, 

resulting in a pixel resolution of ,\P '.:::::'. 420 µm, and contained the full transverse 

spatial extent of the turbulent-jet fluid at the measuring station. This resulted in 

a transverse resolution that was smaller than the in-plane (pixel) resolution in the 

center and comparable to it near the edges of the field of view. The laser beam was 

swept across the jet and synchronized with the CCD camera shutter using a small­

inertia, small-aperture (5 mm), galvanometrically-driven, linearly-scanned mirror 

(General Scanning: Mirror M0540V and scanner G 120DT). Background laser light 

was filtered out using a low-pass optical filter (Kodak No. 22). The experiments 

were conducted in a dark environment to minimize noise due to ambient light. 

1.3 Image calibration and normalization 

The laser-induced-fluorescence image data were processed using a pixel-by-pixel 

calibration of the CCD array for noise, sensitivity, and laser illumination variations 

in the field of view. Each raw fluorescence-data image, Iraw(x, y), was calibrated 

and normalized with an ensemble-average of four background-noise images and four 

uniform-concentration images recorded for each run condition, i.e., 

c( x, y; z = const) 

Cref 

Iraw(x,y) - (Ibck(x,y)) 

(Im ( x, Y)) - ( hck ( x, Y)) 
(1.1) 
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FIGURE 2 Jet scalar far-field geometry and image plane schematic. 

where Cref is a reference concentration that is constant for all runs, hck(x, y) are 

pre-run, "background" images, and Im ( x, y) are post-run, "illumination" images, 

as described below. The background-noise images, hck ( x, y ), were recorded shortly 

before each run with no dye in the tank. Each such image was recorded at the 

same location as the (raw) jet images, along the same optical path, with the camera 

shutter open for the same exposure time as for the jet images. After the jet-plenum 

fluid had completely discharged into the tank, all of the water and dye were recircu­

lated continuously in the tank. During the recirculation process, the laser-induced 
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fluorescence at the imaging station was monitored for non-uniformities of the dye 

concentration in the plane of illumination. After a sufficiently long time, non­

uniformities were no longer measurable and images corresponding to the resulting, 

uniform-concentration dye field were recorded and used to measure the illumination 

and optical collection efficiency distribution in the field of view, Im ( x, y), as well as 

provide an absolute, jet-fluid concentration reference. The procedure of emptying 

all the (fixed-volume) jet-plenum fluid into the tank ensured that Cref was the same 

for all runs, and allowed the local scalar values, c( x, y ), to be referenced, in absolute 

value, to the (pure) jet-plenum concentration, c0 , i.e., 

Co 

c(x, y) Cref 

Cref Co 

c( X, y) Vplenum 

Cref (vtank + Vplenum) 

c( X, Y) / Cref 
rv 

2.2 x 102 
(1.2) 

c(x, y) 

where Vplenum '.:::::'. 5.0 x 10-3 m3 is the plenum volume and vtank '.:::::'. 1.1 m 3 is the 

tank volume. 

1.4 Reynolds numbers investigated 

The Reynolds number, Re, is a flow (and fluid) parameter that is defined, for 

round, momentum-driven, turbulent jets, at a downstream distance z, as, 

Re 
u(z)8(z) 

(1.3) 
v 

in terms of the (local) jet centerline velocity, u( z) oc l / z, the (local) jet trans­

verse extent (diameter), 8(z) oc z, and the kinematic viscosity of the fluid, v. The 

Reynolds number in this case is, therefore, independent of the downstream coordi­

nate, z, and, Re '.:::::'. Re0 , where Re0 - u0 d0 / v is the Reynolds number based on 

jet-nozzle values. The jet Reynolds number was varied in these investigations in 

the range, 

4.5 x 103 :S Re :S 18 x 103 
, (1.4) 

with measurements at three values: Re '.:::::'. 4.5 x 103 , 9.0 x 103 , and 18 x 103 . 
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1.5 Scalar-species Schmidt number 

The Schmidt number, Sc, is a characteristic of the ambient flµid and of the 

scalar species (as opposed to the fl.ow) and is defined as, 

1/ 

Sc = 'D , (1.5) 

where vis the kinematic viscosity of the fluid (v = µ/ p, the ratio of dynamic viscos­

ity, µ, to density, p) and Vis the diffusivity of the scalar species into the ambient 

fluid. This dimensionless number is a relative measure, therefore, of momentum 

(vorticity) diffusion to scalar-species diffusion. 

For the present experiments, the working fluid is a liquid (filtered, softened 

water) at a room temperature in the range (20±2) °C, with v ~ 9.9x10-3 cm2 /sec. 

The aqueous diffusion coefficient for the scalar species ( disodium fluorescein) is, 

V ~ 5.2 x 10-6 cm2 /sec (cf. \Vare et al. 1983, p. 280). The scalar-species Schmidt 

number is estimated to be, therefore, 

Sc ~ 1.9 x 103 (1.6) 

which reflects the fact that the diffusion of the scalar species occurs on a much 

longer time scale than the diffusion of momentum (or vorticity). 

The high Schmidt number of these investigations, Sc,....., 0(103 ) ::::P 1, is charac­

teristic of mixing in the liquid-phase (i.e., of miscible liquids) as well as of mixing 

of solid particulates in the liquid or gas flows, e.g., dispersion of aquatic organ­

isms such as planktonic larvae in the ocean (e.g., Denny 1988). Gas-phase mixing 

(i.e., when both the ambient fluid and the scalar species are gases) is associated 

with a low Schmidt number, Sc ~ 1 (e.g., Tritton 1988). High Schmidt number 

turbulent mixing can be expected to result in a more complex isosurface geometry, 

as compared to low Schmidt number mixing (for a given fl.ow, at a given Reynolds 

number), since scalar-field inhomogeneities will be smoothed out to a smaller extent 

(lower species diffusivity) in the former case. 
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1.6 Examples of scalar-field images 

Examples of turbulent-jet scalar-image data at Re c::: 4.5 x 103 , 9.0 x 103 , and 

· 18 x 103 are depicted in color in figures 3, 4ab, and 5, respectively. The image 

data have been. normalized and calibrated; cf. equation (1.1). Black denotes the 

reservoir fluid into which the jet is discharging. Pale yellow, red, green _and blue 

indicate successively lower levels of jet fluid concentration. 

Throughout the Reynolds number range investigated, the image field of view 

was the same. At Re c::: 9.0 x 103 (cf. figure 4), scalar diffusion-layer thickness 

scales (half-wavelength) on the jet centerline are estimated to be approximately 

half the pixel resolution, and much larger than the pixel resolution near the outer 

region of the jet. Also, at this Reynolds number, the time for the passage of these 

scales is estimated to be a factor of 30 times longer than the exposure time of an 

individual pixel, on the jet axis, and even longer near the boundary of the jet. 

The images were acquired maintaining a constant product of the beam-scanning 

time, which scaled the time exposure per pixel, and the local fl.ow velocity, over 

the Reynolds numbers investigated. These· choices provided temporally- as well 

as spatially-resolved measurements of the scalar field, throughout the Reynolds 

number range, certainly in the outer region of the jet where these investigations 

were primarily focused, with minor compromises in spatial resolution in the vicinity 

of the highest-velocity/-concentration (interior) regions of the jet. 

1. 7 Scalar power spectra 

The two-dimensional, scalar power spectrum, S~2)(x:xfo, Kyfo), for the image 

data of figure 4 is shown in figure 6. Contour values shown range from -8.5 to 

-6.0 (outer to inner) in increments of 0.5, in units of log10 (.e5 c;ef)· The contours 

are approximately circular, consistent with a statistically-axisymmetric scalar field. 

These spectra have been normalized such that the zero-wavenumber value of the 

power spectrum recovers the mean-field value of the scalar image data, i.e., 

[ ] 

1/2 
S~2)(0,0) = (c)' (1.7) 

where ( c) denotes the spatial (field-of-view) average of the scalar-field values, esti­

mated directly from the data. 
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FIGURE3 Jet-fluid concentration in the far-field (z/do = 275) of a turbulent jet at 
Re~ 4.5 x 103 . 
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FIGURE 4 (a) Jet-fluid concentration in the far-field (z / d0 = 275) of a turbulent jet 
at Re~ 9.0 x 103 . 
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FIGURE 4 (b) A different image realization at the same Reynolds number and down­
stream location as for (a) . 
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FIGURE 5 Jet-fluid concentration in the far-field (z/d0 = 275) of a turbulent jet at 
Re~ 18 x 103 . 
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FIGURE 6 Contour plot of the (decimal) logarithm of the two-dimensional, spatial 
scalar power spectrum of the image data depicted in figure 4 ( .€0 = 42 cm 
denotes the spatial extent of the field-of-view). 

It was also verified that the integral (sum) over the two-dimensional wavenum­

ber space recovers the spatially-averaged scalar variance, ( c'2 ) , which was estimated 

directly from the image data, i.e., 

L L s~2)(Kx.€0, Ky.€0) = ( c'2 ) ' (1.8) 
~,,£0 ~Y fo 

where these summations extend over the normalized-wavenumber range, Kx.€0 , Kyfo = 
±1, ... , ±(1024/2 - 1), i.e., exclude the zero-wavenumber spectrum value corre­

sponding to the (mean-field) (i,j) = (0,0) scalar-field value. 

Radial scalar power spectra, Sc(K.€0 ), where K = .J K~ + K~ = k/27r is the radial 
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FIGURE 7 Ensemble-averaged radial scalar power-spectra. Re '.::::'. 4.5 x 103 : dotted 
line; Re '.::::'. 9.0 x 103 : dashed line; Re '.::::'. 18 x 103 : solid line. 

wavenumber, for the three Reynolds numbers investigated (ensemble-averaged from 

six individual-image realizations at Re'.::::'. 9.0 x 103 , and three realizations at Re'.::::'. 

4.5 x 103 and Re'.::::'. 18 x 103 ), are shown in figure 7. These were estimated by an 

azimuthal, constant-K integration (shell-sum) of the corresponding, two-dimensional 

scalar power spectra (cf. figure 6), i.e., 

(1.9) 

where ( )e denotes the azimuthal (shell) average, and, 

(1.10) 

cf. equation ( 1.8). These (one-dimensional) radial scalar power spectra are nor­

malized so that the integral of Sc( KR.o) over a radial-wavenumber range recovers 

the integral of the two-dimensional scalar power spectra over the corresponding 
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wavevector (Kx.€0, K,y.€0) range, i.e., 

L L S~2 ) ( Kx.eo' /'i,y.eo) = ( c'2 
) (1.11) 

K.xfo K.yfo 

cf. equation (1.8), where the summations in equation (1.11) extend over a disk 

region centered at the (zero-wavenumber) origin in wavenumber space excluding 

the origin. 

The shape of these (radial) spectra reflects, in part, the spatial extent of the 

imaged jet-fluid concentration field, which is not a spatially (statistically) homoge­

neous field. In particular, embedding the image data in a larger (e.g., 20482-pixel) 

domain (with zero values in the extended region) would affect the behavior at small 

wavenumbers. Such an embedding was performed and it was found that the ( ra­

dial) spectrum tends to a constant (i.e., levels off) at small wavenumbers, whose 

value decreases as the size of the embedding domain increases. The spectrum be­

havior at moderate or large wavenumbers, however, was only weakly affected (for 

the 20482-pixel extended domain). 

In the limit of an infinite embedding domain, the (compact-support and finite) 

jet-fluid concentation field would be localized at the origin, whose 2-D spectrum 

would be a constant, resulting in zero value of the (2-D) spectrum as K,--+ 0 (this 

would also be the limiting value of the radial spectrum). Note that, if the (2-D) 

spectra were continuous, the radial spectra would also tend to 0 as K,--+ 0, for any 

domain size, by virtue of the definition of the radial spectrum (cf. multiplication by 

K, in equation (1.9)). It is, therefore, the discrete nature of the present spectra (and 

the finite extent of the imaged jet-fluid concentration field) that result, in part, in 

the shape of the radial spectra in figure 7. 

At high wavenumbers, a decrease of the spectra with increasing Reynolds num­

ber is evident from figure 7. This effect is not a consequence of inadequate resolution; 

the spatial spectra diverge at rather low wavenumbers, with a separation that does 

not appreciably increase with wavenumber and, in particular, is not characteristic 

of fixed-pole, low-pass filtering. The dynamic range of the scalar image data can 

be seen to be, approximately, 50 dB, corresponding to a signal-to-noise (amplitude) 

ratio of 300: 1. 
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The Reynolds number dependence of the scalar power spectra in figure 7 is 

consistent with the notion of increased molecular mixing, resulting in a decrease in 

scalar variance with increasing Reynolds number, previously documented on the ba­

sis of (temporal) scalar fluctuation measurements on the centerline of liquid-phase, 

turbulent jets (cf. Miller & Dimotakis 1991b ). Notably, this behavior is not encoun­

tered in gas-phase jets, in the same Reynolds number range, and must, therefore, 

be attributed to the lower (liquid-phase) molecular diffusivity, i.e., Schmidt number 

effects (cf. Miller 1991, figure 7.2 and related discussion). 
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CHAPTER2 

Turbulent mixing: classical scalar measures 

The two-dimensional, spatial measurements of the jet-fluid concentration al­

low an investigation of the structure of turbulent mixing in the similarity plane 

of liquid-phase jets. Knowledge of statistics in any one such ( constant-z) plane, 

in the far field, is enough to provide the statistics in any other, constant-z plane 

(in the far field). In this chapter, some classical measures of the scalar field, as 

well as of the isoscalar (level-set) surfaces, are analyzed: the probability-density 

function of the scalar field, the area enclosed by the scalar level sets, and a mea­

sure of the (maximum) isoscalar spatial extent or largest scale. While the first two 

measures are directly related, they offer complementary insight into the structure 

of turbulent mixing. The third measure provides a length scale appropriate for 

the normalization of various (fractal) coverage statistics (cf. chapters 3, 4, and 5). 

The Reynolds-number and scalar-threshold dependence of these measures is investi­

gated. Several of the characteristics of these measures are also discernible, directly, 

in the isosurfaces superimposed on the scalar-field image data, examples of which 

are included. Additional measures of the multiscale geometry of the isosurfaces, 

such as scale-dependent-fractal (SDF) dimensions or volume-fill fraction, and their 

relation to the scale distribution, as well as other measures of geometric structure 

and complexity, are discussed in chapters 3, 5, and 6. 
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2.1 Scalar probability density function 

The jet-fluid-concentration probability-density function (pdf), estimated as a 

. histogram of the scalar values over the imaged field, is shown in figure 8 for the 

Reynolds numbers investigated. This was computed from ensemble-averaged his­

tograms of six scalar images for Re c:= 9.0 x 103 and from three scalar images for 

Re c:= 4.5 x 103 and Re c:= 18 x 103 (cf. figures 3, 4, and 5). Lines of increasing 

solidity denote increasing Reynolds number. The scalar values are normalized by a 

constant reference concentration, Cref, where Crer/co c:= 2.2 x 102 ; cf. equation (1.2). 

Low scalar values in figure 8 are generally encountered in the outer portion of the 

images (tank fluid), while high values are encountered in the interior of the images 

near the jet centerline, as indicated in figures 3, 4, and 5. 
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FIGURES Jet-fluid concentration pdf in the far-field (z/d0 = 275) of a turbulent 
jet, as a function of Reynolds number. Re c:= 4.5 x 103 : dotted line; 
Re c:= 9.0 x 103 : dashed line; Re c:= 18 x 103 : solid line. Three scalar­
threshold values, c 1 , c 2 , and c3, are also indicated. 
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Figure 8 shows that, in the Reynolds number range investigated, the shape of 

the scalar pdf changes qualitatively with increasing Reynolds number. The peak 

. of the mixed-fluid concentration pdf shifts to lower values, with a relatively well­

defined mixing transition occurring between Re~ 9.0x103 and Re~ 18x103 . The 

pdf values depicted in figure 8 are normalized over the field-of-view, which is the 

same for all images. Figure 8 shows that the (mixed-fluid) pdf values increase with 

increasing Reynolds number. This implies that the (mixed) jet-fluid concentration 

scalar field covers a larger fraction of the imaged region with increasing Reynolds 

number. The change in the nature of the scalar pdf with increasing Reynolds 

number, evident in figure 8, occurs in the same range of Reynolds numbers which 

has been documented to produce a transition to fully-developed turbulence in jets 

as well as other flows (cf. Dimotakis 1993). 

The scalar-pd£ behavior in figure 8 indicates that isoscalar measures can be 

expected to be threshold as well as Reynolds-number dependent. In the subsequent 

analysis, three representative scalar thresholds were chosen for the computation of 

scalar and isoscalar measures: c1/Cref = 0.6, c2/Cref = 1.8, and c3/cref = 3.0, as 

indicated in figure 8. The intermediate threshold, c2, corresponds to the peak of the 

pre-transition pdf's, i.e., at Re~ 9.0x 103 and Re~ 4.5x 103 . The lowest threshold, 

c1 , corresponds to the outer isosurfaces for all Reynolds numbers investigated and 

to the vicinity of the local minimum of the pdf for the lower Reynolds numbers, for 

which PLF behavior has been reported (cf. Sreenivasan 1991 ). The high threshold, 

c3 , was chosen to investigate high-level behavior, mindful to avoid potential spatial 

resolution limitations that could be encountered at higher levels yet. 

2.2 Examples of isoscalar surfaces 

Examples of isoscalar surfaces (contours) at Re ~ 4.5 x 103 , for the three 

scalar thresholds, c 1 , c 2 , and c 3 , are shown in figures 9a-c, respectively. The isosur­

faces are superimposed on the image data of figure 3, from which they are derived. 

Figures lOa-c and figures lla-c show isoscalar surfaces at Re ~ 9.0 x 103 and 

Re ~ 18 x 103 , respectively, for scalar thresholds c 1 , c 2 , and c 3 . These isoscalar sur­

faces were constructed from the measured scalar-field data using bilinear B-splines 

and are depicted, in these figures, using boundary-outline pixels (cf. Appendix A). 
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FIGURE 9 Isoscalar surface at Re ~ 4.5 x 103 , superimposed on the image data of 
figure 3. (a) Threshold level, c = c1 . 
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FIGURE9 (b) c = C2. 
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FlGURE9 (c) c = c3. 
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FIGURE 10 Isoscalar surface at Re'.:::'.' 9.0 x 103 , superimposed on the image data of 
. figure 4. (a) Threshold level, c = c1 . 
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FIGURE 10 (b) c = c2. 
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FIGURE 10 (c) c = C3. 
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FIGURE 11 Isoscalar surface at Re'.::::'. 18 x 103 , superimposed on the image data of 
figure 5. (a) Threshold level, c = c1 . 



- 27-

FIGURE 11 (b) c = C2. 
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FIGUREll (c)c=c3. 
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2.3 Area enclosed by scalar level sets 

The area enclosed by the isoscalar surfaces ( 2-D level sets), at a level c, scaled 

by the square of the distance downstream, i.e., A( c) / z2 , is shown in figure 12, as a 

function of scalar threshold and Reynolds number. This quantity was computed as 

the summation of the area of all regions of the scalar field with values larger-than­

or-equal-to the threshold, c. For the computation of this area, the isosurfaces were 

represented using bilinear B-splines (cf. Appendix A). In the case of non-premixed 

hydrocarbon jet flames, for example, this area measure would represent the fraction 

of the cross-section occupied by unburnt jet fluid, e.g., fuel, for a scalar level chosen 

to coincide with the stoichiometric fuel-to-air mixture fraction. 
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FIGURE 12 Area, A, enclosed by isoscalar surfaces as a function of scalar threshold 
and Reynolds number. Re ~ 4.5 x 103 : dotted line; Re ~ 9.0 x 103 : 

dashed line; Re ~ 18 x 103 : solid line. Arrows label c1 , c2 , and c3 scalar 
threshold values (cf. figure 8). 
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The area measure, A( c), is an integral measure of the scalar field, representing 

the imaged cross-section where jet fluid has not yet mixed down to the level, c. It 

can also be expressed as an integral of the spatially-normalized pdf of scalar values, 

i.e., 

A(c)/Ao = 1= p(c')dc' , (2.1) 

where Ao = £5 is the total area of the image field (this consistency requirement 

was confirmed with the two expressions independently estimated from the image 

data, as described above). Equation (2.1) is equivalent to the geometric interpre­

tation of the scalar pdf, in terms of the differential area (volume) between isosur­

faces separated by a differential scalar interval, i.e., for these two-dimensional data, 

p(c)dc = ldA(c)l/Ao (e.g., Kuznetsov & Sabel'nikov 1990, p. 27). 

The area enclosed by the outer isosurfaces, at a given threshold, is seen to 

increase with increasing Reynolds number. Additionally, this behavior is seen to 

occur in a range of lower thresholds that diminishes with increasing Reynolds num­

ber. Conversely, higher threshold regions do not exhibit conspicuous Reynolds 

number effects, with variations well within our statistical confidence for this mea­

sure. These observations may be explained by appreciating that lower-scalar-level 

isosurfaces are generally encountered in the outer regions of the jet (cf. figures 9a­

c, lOa-c, and lla-c), where lower velocities, increased viscous effects, and higher 

sensitivity to the flow Reynolds number can be expected. 

2.4 Isoscalar bounding-box size 

The extent of the scalar isosurfaces (cf. figures 9a-c, lOa-c, and lla-c) allows 

the local, mixed-fluid extent to be estimated. This can be computed by identifying 

the bounding box that encloses each isosurface, in general, or the smallest circum­

scribing rectangle (cf. Tricot 1995), in two dimensions. Figure 13 depicts such a 

bounding box, identified for the isosurface in figure lOa, as well as the extent of the 

field-of-view. Note that, while this rectangle is oriented along the field-of-view axes, 

the near-circular symmetry of the individual two-dimensional scalar power spectra 

(cf. figure 6), as well as the ensemble-averaging over separate realizations, renders 
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FIGURE 13 Bounding box (dashed line) for the level set of figure lOa. Dotted line: 
field-of-view boundaries. 

it a useful measure. The isoscalar spatial extent, 8b, was computed as the square 

root of the area of the rectangle (bounding box), i.e., 

(2.2) 

where Ax and Ay are the lengths of the two sides of the circumscribing rectangle; 

cf. equation (A.1) and related discussion. 

Figure 14 shows the ensemble-averaged spatial extent scaled by the distance 
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FIGURE 14 Isoscalar spatial extent, Db, based on bounding box, as a function of 
scalar threshold and Reynolds number. Re ~ 4.5 x 103 : dotted line; 
Re ~ 9.0 x 103 : dashed line; Re ~ 18 x 103

: solid line. 

downstream, Db/ z, as a function of scalar threshold and Reynolds number. Al­

ternatively, Db/2 is a measure of the maximum distance from the jet axis where a 

particular scalar value will be encountered. As expected, the isoscalar spatial extent, 

Db, decreases monotonically with increasing scalar threshold, at a given Reynolds 

number. As with the scalar pdf's and the area measure, a qualitative change in the 

dependence of Db on the scalar value, c/ Cref, can be seen as the Reynolds number 

is increased from 4.5 x 103 to 18 x 103 • The spatial extent of the outer isosurfaces 

increases with increasing Reynolds number, while the extent of the inner isosurfaces 

decreases with increasing Reynolds number. In addition, the variation of Db with 

c/ Cref appears to approach a straight line as the Reynolds number is increased (cf. 

figure 14), i.e., 

z 

c __,. a-/3-
co 

(2.3) 



- 33-

with a ~ 0.6 and f3 ~ 0.1 eo/eref ~ 22; cf. equation (1.2). This behavior, in 

addition to the changes in the nature of the scalar pdf's and area enclosed by the 

.level sets noted above, provides further evidence of a mixing transition in this range 

of Reynolds numbers. 

At the intermediate scalar threshold, e2 , corresponding to the peak of the 

pre-transition pdf's, the isoscalar spatial extent, 8b, is seen to be (approximately) 

Reynolds-number independent (figure 14), at least for the Reynolds numbers inves­

tigated. This feature will be exploited in the analysis of Reynolds-number effects 

on the geometry of the isoscalar surfaces, i.e., comparisons of geometric measures, 

at different Reynolds numbers, will be made at this intermediate threshold. 

2.5 Isosurface spacing 

As noted in section 2.1 (Eq. 3.1 and related discussion), the scalar pdf, p(e), 

is equivalent to the area enclosed by the isoscalar surfaces (contours), A(e), i.e., 

( ) _ 2_ ldA(e)i 
p e - Ao de · (2.4) 

This can be related to the mean isosurface spacing (per unit c), h(e), in terms of 

the (total) isoscalar arc-length*, L( e), and an integral of the inverse of the ( 2-D) 

scalar gradient' \7 2 ( e)' along the isoscalar contours, r c' i.e.' 

h(e) = \I ae 1-1) = _1 [ I ae 1-1 dsc = _1 jdA(e)I ' (2.5) an L(e) Jr an L(e) de 
c c 

(e.g., Kuznetsov and Sabel'nikov 1990, p. 27). In view of equations (2.4) and (2.5), 

the mean isosurface spacing (per unit e) can be written as, 

h(e) 
p(e) 

L(e)/Ao ' 
(2.6) 

* The arc-length was computed using a biquadratic B-spline representation of the isoscalar con­
tours; see Appendix C. 
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FIGURE 15 Reynolds-number dependence of isosurface spacing (per unit c ), h( c; Re), 
at the intermediate scalar threshold, c2 . 

and can be identified, therefore, as the ratio of the scalar-pd£ value to the perimeter­

to-area ratio of the isoscalar contours. 

The Reynolds number dependence of h( c; Re), at the intermediate scalar thresh­

old, c2, is depicted in figure 15. The data indicate that the isosurface spacing 

increases with increasing Reynolds number, at the c2 threshold, in the Reynolds 

number range investigated. This indicates a higher degree of (local) scalar-field ho­

mogenization (molecular mixing) with increasing Reynolds number, at this thresh­

old. This behavior will be further investigated using fractal-geometric measures of 

the isosurfaces; cf. chapter 5. 
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CHAPTER3 

Scale-dependent-fractal geometry 

In this chapter, various fractal measures of complex surfaces (e.g., isosurfaces 

in turbulence or turbulent mixing) are considered. In particular, a generalization 

of (power-law) fractal (PLF) geometry is described that extends the notion of the 

(PLF, constant) fractal dimension to that of a scale-dependent-fractal (SDF) dimen­

sion. The resulting SDF framework can accommodate more complex geometries and 

can be used to model (in terms of, for example, stochastic-geometric simulations) 

multiscale structures whose complexity, as measured by the fractal dimension, for 

example, can be scale-dependent. 

After a brief summary of PLF geometry and a critical review of reports and 

proposals of PLF scaling in turbulence, as well as some reports and conjectures 

of (what would be termed here) SDF scaling in a variety of phenomena exhibiting 

natural complexity, the framework of SDF geometry is described. A comparison 

of SDF properties to the more-restrictive PLF properties is made. Various mea­

sures related to SDF coverage statistics are considered: the SDF dimension, the 

coverage fraction, and the coverage length (for curves). The implications of SDF 

behavior regarding the resulting nonlinear and nonlocal geometric-scaling behavior 

are addressed. 
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3.1 Review of power-law-fractal (PLF) geometry 

Characterizations of the geometry of isosurfaces in turbulence,, in particular, 

and of other complex structures encountered in natural phenomena, in general, re­

quire extending notions of Euclidean geometry. One such extension was proposed by 

Mandelbrot (1967, 1975b, 1977, 1982) who suggested that fractional (non~integer) 

dimensions can be used to describe complex geometries in nature. The word frac­

tal was coined by Mandelbrot (1975a,b) to denote geometric objects that exhibit 

power-law scaling, i.e., objects characterized by constant, fractional (in general) 

dimensions. He regarded such objects as, " ... rough and fragmented to the same 

degree at all scales" (Mandelbrot 1989). In the following, the original (power-law 

scaling) fractal geometry will be denoted as PLF (power-law-fractal). As originally 

defined by Mandelbrot, a "power-law" fractal would be a redundant term. The 

present terminology is used to distinguish it from more general, scale-dependent­

fractal (SDF) behavior that is encountered with the scalar isosurfaces in the present 

experiments, as well as with other complex geometries, as discussed below. PLF ge­

ometry has been applied to the description of a wide variety of natural phenomena 

(e.g., Mandelbrot 1982). In these descriptions, PLFs are used to characterize the ge­

ometry in a finite range of scales that is bounded by upper- and lower-cutoff scales, 

"a property we can assume for all objects arising as a result of any physical process" 

(Vicsek 1992). The underlying point of view, in such descriptions of natural ob­

jects as PLFs, is that, " ... over certain ranges of scale they appear very much like 

[power-law] fractals and at such scales may usefully be regarded as such." (Falconer 

1990, p. xxi) - square-bracket insert mine. Fluid turbulence, a phenomenon long 

recognized to possess complex structure, was considered by Mandelbrot (1975a,b) 

as a candidate for PLF geometry. 

Ever since Richardson's (1961) analysis of data on the length of coastlines and 

borders between countries and Mandelbrot's (1967) subsequent interpretation and 

proposals, it has become appreciated that convoluted curves and surfaces can be 

regarded as possessing scale-dependent length and area, respectively, that increase 

as the measurement resolution is extended to smaller and smaller scales. This is 

a consequence of the presence of ever-finer features that are encountered as the 

scale of measurement is reduced, in many phenomena. One particular form of 
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this scale dependence is a power-law function. The resulting fractal, or power-law­

fractal (PLF), geometry has been proposed as an appropriate framework for the 

characterization of various complex structures in nature (e.g., Mandelbrot 1967, 

1975b, 1977, 1982). 

PLF curves in a plane, for example, have a coverage-length, L 2 (>..), that in­

creases in a power-law manner with decreasing scale, A, i.e. (cf. Richardson 1961 ), 

(3.1) 

(with a dimensional prefactor ), where 1 < D 2 ~ 2 is the PLF dimension. The 

subscript 2, here, denotes the two-dimensional embedding (Euclidean) space of these 

curves. The coverage-length, L 2 (>..), is defined in terms of the (box) coverage, N2 (>..), 

which is the number of ( nonoverlapping, Euclidean) tiles ( 2-D boxes) of size >.. needed 

to cover the curve, i.e., 

(3.2) 

where, for PLF curves, the coverage follows a power-law, 

(3.3) 

also, presumably, with a dimensional prefactor and a scaling exponent given by the 

(negative of the) constant, PLF dimension, D 2 • 

In ad-dimensional embedding space, PLF sets are characterized by a geometric 

coverage, Nd(>..), given by the number of (nonoverlapping, Euclidean) boxes (tiles, 

in 2-D), of size >.., needed to cover the set, that follows a power-law, i.e., 

(3.4) 

also with a dimensional prefactor, where dt < Dd ~ d is the PLF dimension, and 

dt is the (integer-valued) topological dimension of the set. PLF relations, such 

as equations (3.1), (3.3), and (3.4), describe scale-independent geometric-scaling 

laws. From such power-law relations, the PLF dimension is identified as the scaling 

exponent of the coverage, i.e., 

dlogNd(>..) 
dlog>.. 

(3.5) 
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in a range of scales (only logarithms of dimensionless scales are allowed; for no­

tational simplicity, the (constant) normalizing length will be omitted sometimes) . 

. This PLF dimension can be expected to be constant if, and only if, the coverage, 

Nd(>-.), follows an exact power-law, i.e., only for geometric structures possessing 

scale self-similarity. 

Mandelbrot (1975a) had pointed out that, "turbulent shapes ... almost cry out 

for proper geometrical description" and proposed that PLF geometry may be appli­

cable to turbulence (Mandelbrot 1975a,b) suggesting a PLF dimension of D3 = 8/3 

for isoscalar surfaces in homogeneous turbulence with Kolmogorov-Gauss scaling 

(obtained by analyzing random, Gaussian fields with Kolmogorov variance). We­

lander (1955) had also proposed PLF geometry as a model for the geometry of 

interfaces advected in turbulence. In the last ten years, or so, the geometry of 

isosurfaces in turbulence has been the object of various experimental, numerical, 

as well as theoretical studies. Several investigators have reported PLF behavior in 

the geometry of turbulence. Sreenivasan & Meneveau (1986) reported experimental 

findings of PLF dimensions, D 1 = 0.32 and D 2 = 1.33, for isoscalar measurements in 

a turbulent jet, from which they argued that D 3 = 2.33 for the (three-dimensional) 

isoscalar surfaces. Sreenivasan, Prasad, Meneveau, & Ramshankar (1989) found 

a PLF dimension of D2 = 1.36 for isoscalar jet data, with D2 = 1.35 ± 0.05 as 

a mean value for various turbulent shear flows, and offered arguments for a value 

of D3 = 7 /3 based on Reynolds number similarity. Prasad & Sreenivasan (1990) 

analyzed three-dimensional data of the isoscalar surfaces in turbulent jets and re­

ported a PLF dimension of D 3 = 2.35 ± 0.04. A theoretical estimate for a PLF 

dimension of D 3 = 2.5 was obtained by Constantin (1989, 1990a), later refined to 

D 3 = 8/3 (Constantin, Procaccia, & Sreenivasan 1991; Constantin 1994a,b; and 

Constantin & Procaccia 1994), based on isosurface-area bounds obtained from the 

scalar advection-diffusion equation with Kolmogorov scaling for the advecting ve­

locity field (as well as the assumption that such a PLF, constant dimension exists). 

A lack of PLF scaling had been noted, however, by Sreenivasan (1991, p. 553) 

for isoscalar surfaces in the interior of the jet. In contrast, Constantin, Procaccia, & 

Sreenivasan (1991), reported PLF scaling in the jet interior, with D 3 = 2.67, citing 

the same isosurface for which Sreenivasan (1991, p. 553) had originally concluded 
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that there was no PLF scaling. In particular, Constantin, Procaccia & Sreenivasan 

(1991) suggested PLF dimensions of D 3 = 8/3, for isoscalar surfaces in the jet 

interior, and D3 = 7 /3, for isoscalar_ surfaces near the jet boundar,y. Procaccia, 

Brandenburg, Jensen, & Vincent (1992) pointed out, however, that "the theory [of 

Constantin et al. (1991 )] cannot exclude the possibility that the scaling exponent 

D depends on [the scale] r" (inserts in square brackets mine). Procaccia et al. 

(1992) analyzed isosurfaces of vorticity in three-dimensional homogeneous turbu­

lence, using the direct-numerical-simulation data of Vincent & Meneguzzi (1991), 

and concluded that, ". . . it is impossible to state with confidence that the [PLF] 

behavior [of the vorticity isosurfaces] is clear-cut." Lane-Serff (1993) reported a 

threshold-dependent PLF dimension of isoscalar surfaces in liquid-phase jet and 

plume flows, with a minimum value of D2 = 1.23, computed by fitting a straight 

line using a least-squares fit. He noted, however, that "there is a distinct curve [i.e., 

curvature, in the coverage plots]" but attributed this to "the small range between 

integral and Kolmogorov scales at the Reynolds numbers of [the] experiments". 

Flohr & Olivari (1994) analyzed isoscalar surfaces in gas-phase turbulent jets and 

reported "constant [PLF] scaling behavior over a wide range [of scales]" with a 

threshold-dependent PLF dimension exhibiting a maximum value. For the outer 

isoscalar surfaces, they suggested a PLF dimension of D 2 = 1.30 ± 0.05. Sreeni­

vasan (1994) suggested a PLF dimension of D3 = 2.35 ± 0.05 for outer isoscalar 

surfaces in turbulent jets, with PLF scaling "over much of the interval between the 

integral scale and the Kolmogorov scale," and a PLF dimension of D 3 = 2.67 ± 0.05 

for inner isoscalar surfaces in turbulent jets, in a scaling range "smaller" than that 

for the outer isosurfaces, indicating the degree of confidence of his results as "fairly 

certain". 

Takayasu (1982) had argued, however, that the dynamics of turbulent flow vary 

with scale, and had suggested that, as a consequence, descriptions of the geometry 

of turbulence may be expected to require fractal dimensions that are functions of 

scale and not constant. To support his conjecture, Takayasu invoked Reynolds num­

ber similarity. Interestingly, the same principle was invoked by Sreenivasan et al. 

(1989) to argue for PLF behavior and a constant, fractal dimension. Takayasu char­

acterized the geometry of the path of a one-dimensional random-walk particle with 

finite mean-free-path, using a scale-dependent fractal (SDF) dimension, and conjec-
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tured the applicability of SDF dimensions to turbulent diffusion. In random walks 

with finite mean-free-path, particles perform correlated, or inertial, random walks 

when observed at scales larger or smaller than the mean-free-path seale (Takayasu 

1982). As a model of turbulent diffusion, Taylor (1921) had considered a modified 

random walk in which he allowed for particles with inertia, i.e., a random walk with 

correlated steps. Taylor's modification of the random walk illustrated the nature 

of turbulent diffusion as a correlated random walk (cf. McComb 1991 ). Borgas 

(1993) has offered Lagrangian-statistic arguments for a SDF dimension of particle 

trajectories in turbulent fl.ow. 

Miller & Dimotakis (199la) reported on experiments in the far field of liquid­

phase turbulent jets, in which no PLF behavior was found for scalar level sets 

derived from either point, line, or space-time (streak-image) measurements of the 

jet-fluid-concentration field, at least for thresholds in the vicinity of the mean of 

the scalar pdf. In particular, they found a SDF dimension, D 1 (.A), for scalar level 

sets derived from one-dimensional temporal and spatial data, with a smooth vari­

ation from 0, at the smallest scales, to 1, at the largest scales. They also reported 

values of D1+1 (.A), increasing continuously with scale, from near 1 to almost 2, for 

isoscalar contours derived from space-time data (one space dimension plus time), 

in the neighborhood of the axis of turbulent jets. Sreenivasan (1991) commented 

on the Miller & Dimotakis (199la) findings, suggesting they could be attributable 

to differences between temporal and spatial data. See also Kerstein (1991) for an 

alternate discussion. Dimotakis (1991) argued, generally, that for scales ,\ that 

are dimensional, as is the case here, there are dimensional and similarity issues 

that arise with expressions like equation (3.4) and that, in particular, characteristic 

scales are necessary for PLF scaling, in contrast with previous proposals. Gluck­

man, Willaime, & Gollub (1993) conducted experiments in thermal turbulence and 

found that thermal isosurfaces do not display PLF scaling, while scalar isosurfaces 

show a limited range of "approximately-[power-law-)fractal" scaling. 
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3.2 Scale-dependent-fractal (SDF) geometry 

A scale-dependent-fractal (SDF) set may be regarded as a geometric object 

characterized by a fractal dimension that is a function of the scale>., i.e., Dd(>.), in 

a range of scales. The subscript, d, denotes the embedding (Euclidean) dimension 

for the object. SDF sets obey general geometric-scaling laws and allow for more 

complex geometric structures than PLF sets, which are, by definition, restricted 

to scale-invariant complexity. The difference between a PLF dimension, Dd, and a 

SDF dimension, Dd(>..), can be illuminated by considering a hierarchy of complex 

patterns (cf. Mikhailov & Loskutov 1991 ): 

• Level 1: Classical Euclidean patterns (e.g., circle) 

• Level 2: Scale-invariant complexity (PLFs) 

• Level 3: Scale-dependent complexity (SDFs) 

At the lowest level of complexity (level 1 ), simple Euclidean objects, such as circles, 

spheres, have structure only at a certain (large) scale and are associated with the 

integer-valued embedding dimension, d. A higher level of complexity (level 2) is 

possible for objects for which structure persists at all scales; these objects are PLFs. 

Level 2 objects are associated with a PLF dimension, Dd· For PLFs, it is the same 

structure that persists at various scales. A higher level yet (level 3) can occur for 

objects that have structures of variable complexity at different scales; this is the 

level of SDFs. Level 3 objects are characterized by a SDF dimension, Dd(>.). SDFs 

can be seen, therefore, as scale-dependent generalizations of PLFs. 

Various phenomena with natural complexity have been reported to exhibit SDF 

behavior. Different investigators have employed terminologies to denote Dd(>.). 

Some have also suggested models for the observed SDF behavior. As noted above, 

Takayasu (1982) found SDF behavior in characterizing the geometry of the path 

of random-walk particles. Using a real-space renormalization argument, he de­

rived an expression for the successive coverage of a one-dimensional random walk 

with finite mean-free path. Takayasu initially used the term "differential fractal di­

mension," later employing the term "scale-dependent fractal dimension" (Takayasu 

1992). Suzuki (1984) reported SDF behavior for Japanese coastlines and suggested 

a SDF Koch curve model. Suzuki used the term "transient fractal dimension" and 
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"transient fractals" to describe SDF properties. Mark & Aronson (1984) reported 

SDF behavior in the analysis of topographic surfaces and used the term "scale­

dependent fractal dimension." Chiles (1988) studied fractured rocks, and reported 

a continuously-varying "local similarity dimension" as a function of scale. Chiles 

suggested several models for SDF behavior, including SDF Cantor dust. A smooth 

variation of the coverage dimension with scale was found by Miller & Dimotakis 

(1991a) in their analysis of turbulent-jet scalar data, as noted above. In character­

izing the distribution of galaxies in the universe, Castagnoli & Provenzale (1991) 

suggested that " ... it is probably necessary to consider models whose scaling and 

fractal properties vary with the spatial scale." In addition, Brandt et al. (1991), 

in their analysis of solar granulation data, found " ... a smooth transition of the 

fractal dimension from small to large granules." Rigaut (1991) studied surfaces of 

biological tissues, using microscopic biometry, and also reported SDF behavior. In 

an analysis of the alveolar geometry of lungs of prematurely-born rabbits, he re­

ported a "drifting fractal dimension" with scale and used the term "semi-fractals" 

for SDFs. The term "scale-dependent fractal dimension", employed by Mark & 

Aronson (1984) and Takayasu (1992), has been adopted here. 

It is appropriate, in my opinion, to call the resulting objects "scale-dependent 

fractals" (SDFs ), since the word "fractal", coined by Mandelbrot (1975a,b) from 

the Latin fractus, means "fragmented", as he notes (Mandelbrot 1982, p. 4 ), and 

need not be excluded from referring to scale-dependent (fragmented) behavior. 

3.3 Box coverage 

Consider a set, S, embedded in ad-dimensional space, Ed, and contained in 

a d-dimensional bounding box of size 8b. Consider, also, successive partitions of 

the 6b-box into non-overlapping, ,\-size interior boxes that fill the Db-box volume 

(cf. Appendix for the two-dimensional implementation adopted here). The geo­

metric (box) coverage, Nd(,\), of the set, S, is defined as the minimum number of 

nonoverlapping partition ,\-boxes needed to cover the set. It follows that, 

Nd(>..) 

S c LJ B~i)(,\) , (3.6) 
i=l 
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where Bd(>..) denotes ad-dimensional box, interior to the bounding box, of size >.., 

i.e., of volume >..d, with B~i)(>..) n B~j)(>..) = 0, for i -:f. j. The d-dimensional volume 

. (area in 2-D) of the portion of space visited by the set, at the cover:age scale>.., is, 

therefore, >..d Nd(>..). 

The notions of coverage measure, and capacity dimension, introduced by Haus­

dorff (1919) and Kolmogorov and Tihomirov (1959), were defined in the limit of 

>.. ~ 0. Equation (3.6), however, allows the study of coverage statistics at any (fi­

nite) coverage scale, >... In particular, the specification of nonoverlapping partition 

boxes, in equation (3.6), permits the coverage fraction to be identified as a geo­

metric probability, which can, in turn, be connected to a distribution of geometric 

scales of the set, as will be discussed below. 

The size of the bounding box, 8b, provides a useful measure of the largest scale 

exhibited by the set. At this scale, the coverage count is unity (by construction), 

i.e., 

(3.7) 

For the level sets considered above, for example, for which the bounding box is the 

two-dimensional ( d = 2) circumscribing rectangle, 8b is given by the square-root of 

the area of the two-dimensional circumscribing rectangle; cf. (2.2). At all scales, 

the coverage count defined above has the property that, 

(3.8) 

i.e., at any scale smaller than the bounding-box scale, the coverage count will 

decrease (or remain constant) with decreasing scale (cf. Miller & Dimotakis 199la, 

Appendix). 
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3.4 Definition and properties of SDF dimension 

The SDF (box) dimension is the scale-dependent generalization of the PLF 

dimension. It can be defined (e.g., Takayasu 1982, 1992, Miller & Dimotakis 1991a, 

Dimotakis 1991 ), at a coverage scale .A., as, 

D (A.) = _ dlogNd(.A.) 
d - dlog.A. ' (3.9) 

in terms of the geometric coverage, Nd(.A.); cf. (3.6). The geometry of an object will 

be SDF if, in a range of scales, 

(3.10) 

while it will be PLF (i.e., Dd = const.) if, 

(3.11) 

SDF dimensions, defined through equations (3.9) and (3.10), allow for the descrip­

tion of phenomena whose geometric-scaling laws are scale-dependent, as can be 

expected to be admissible in general. 

The SDF dimension, Dd(.A.), can be expected to tend to the topological dimen­

sion, dt, at the smallest scales, and to the embedding dimension, d, at the largest 

scales, i.e., 

Dd(.A.) ~ ' { 
dt as A. --r O·, 

d, as A. --r 8, 
(3.12) 

where 8 is the largest characteristic scale of the set (cf. Dimotakis 1991 ). For spatial 

data confined in a bounding box, the SDF dimension will approach the embedding 

dimension at the scale 8 = {jb (the bounding-box size). 

If Dd(.A.) is monotonic with scale, the limiting values in equation (3.12) will 

also be the bounding values. Non-monotonicity of the SDF dimension (in a range 

of scales) is possible, however, for cluster-like structures (for example). Scale-local 

clustering can lead to values of the SDF dimension that are below the topological 

dimension, in a range of scales. 
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The SDF geometric-coverage law that follows from equation (3.9) is given, in 

differential form, by 

(3.13) 

i.e., the SDF dimension of a set, at a scale ..\, can be identified as the fractional 

decrease in coverage, - dNd/ Nd, per unit fractional increase in scale, d..\/ ..\. Note 

that, if Dd(..\) =/= const., the SDF differential-coverage relation (3.13) does not imply 

a power-law-like coverage, i.e., Nd(..\) cf:. ,\-Dd(A); cf. (3.4). 

Integrating the differential coverage relation (3.13), from a reference scale, ..\1 , 

to a scale, ..\,we see that a SDF dimension implies a geometric-scaling coverage law 

given by (cf. Takayasu 1982, 1992) 

(3.14) 

In particular, if the largest scale of the set, h'b, is the reference scale, we have, 

(3.15) 

since Nd(h'b) = 1; cf. (3.7). Equation (3.15) should be contrasted with the scale-local 

relation (3.4) for PLFs. For SDFs, the coverage can be seen to be a nonlocal func­

tion of scale, with geometric structure across the whole range of scales potentially 

contributing to the coverage at any one scale. 

For the isoscalar contours considered above, the SDF coverage can be written, 

therefore, as, 

(3.16) 

where, for the two-dimensional space here, h'b = ~ is the size of the bounding 

box, with Ax and Ay the lengths of the two circumscribing-rectangle sides; cf. (2.2). 
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3.5 Coverage length 

A useful measure, related to the coverage, is the (scale-dependent) dt-dimensional 

size of the set, defined as, 

(3.17) 

where dt denotes the topological dimension of the set. In particular, for the level 

sets considered above ( dt = d - 1 = 1 ), this quantity, with the units of length, 

becomes the coverage-length (distinct from arc-length, due to the box nature of the 

coverage process) of the isoscalar contours, L2 (>.), cf. (3.2), and can be computed 

from, 

L2(>.) = ~ N (>.) 
Db - Db 2 

' 
(3.18) 

where the coverage-length is scaled by the size of the bounding-box, Db. 

The coverage-length, at a scale >., is, therefore, given by, 

(3.19) 

Note, again, the nonlinear and nonlocal scaling as compared to PLF behavior; cf. 

equation (3.1). 

The small-scale limit of the coverage-length, i.e., 

(3.20) 

provides a finite (dimensionless) measure, at the smallest scales, for one-dimensional 

(dt = 1) level sets embedded in a two-dimensional space (d = 2), such as the 

isoscalar (level) sets considered above. In particular, it is a dimensionless measure 

of the surface-to-volume ratio (perimeter-to-area ratio, in 2-D) of the isosurfaces, 

in terms of the isoscalar bounding-box area, D~, i.e., L2 ( >. --+ 0) / ( D~) 112
. 
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3.6 Coverage fraction 

Another useful measure based on the coverage is the coverage £~action, Fd().. ), 

or volume-fill fraction, of the set at a scale >.., defined as (cf. Dimotakis 1991 ), 

(3.21) 

where Nd tot is the total number of d-dimensional boxes of size >.. that can fit in the 
' 

bounding box. It can be identified as the geometric probability that a randomly 

placed >..-box, interior to the bounding box, contains part of the set. 

For level sets derived from two-dimensional data (d = 2), the coverage fraction 

can be computed from, 

(3.22) 

cf. (3.18). 

The coverage fraction, as opposed to the SDF dimension, must be a nonde­

creasing function of scale, cf. (3.10), i.e., 

(3.23) 

at all scales. 

The logarithmic derivative of Fd(>..) follows from equations (3.21) and (3.9), 

z. e., 

(3.24) 

so that the behavior of the coverage fraction is characterized by the embedding­

dimension-complement of the SDF dimension. 

The limiting behavior of the coverage fraction is, cf. (3.12), 

as ).. ---+ 0 ' (3.25a) 

and 

as (3.25b) 



-48-

Integrating equation (3.24) from a coverage scale, ,\, to the largest scale, ob, 
the SDF relation for the coverage fraction becomes, cf. (3.14), 

(3.26) 

since Fd( Ob) = l; cf. (3.25b ). The degree to which a SDF set fills space, therefore, 

varies with scale and is dependent on the geometric behavior at other scales. 

3. 7 Nonlinear and nonlocal geometric scaling 

The implications of SDF geometry, as illustrated in equations (3.14), (3.19), 

and (3.26), are that geometric structures across a wide range of scales can contribute 

to the scaling behavior at any one scale, ,\. This is manifested, for example, in the 

coverage, coverage-length, or volume-fill fraction. For these measures, the scaling 

becomes nonlinear (in logarithmic coordinates). 

In SDF geometry, the SDF dimension, Dd(,\), is no longer a scaling exponent; 

recall the discussion of equation (3.13). It does, however, quantify the departure of 

the set from the topological dimension at a given scale, and indicates the type of 

structure (or, more precisely, the complexity of structure type) present at any one 

scale. By definition, it measures the (fractional) rate of increase of the coverage 

with descreasing scale (inreasing resolution); cf. equation (3.13). 

SDF geometry provides the means to model nonlinear and nonlocal geometric 

scaling, in terms of simulations based on models of scale distributions (see next chap­

ter), From the above considerations, it is concluded that SDF geometry provides 

a more inclusive framework than PLF geometry that can be used to the natural 

complexity exhibited by multiscale phenomena, in general, and by turbulence, in 

particular. 
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CHAPTER4 

Scale distribution 

Many phenomena in nature are characterized by complex geometries, possess­

ing a wide range of coexisting spatial and/or temporal scales that participate in the 

dynamics, e.g., turbulent fl.ow, or biological organisms and many others (see, for ex­

ample, Mandelbrot 1982, Nonnenmacher et al. 1994). Measures that are employed 

to characterize the geometry of such phenomena can also be useful for the computa­

tion of quantities of practical interest, e.g., fractal dimensions of isoscalar surfaces in 

turbulent mixing to estimate the volume-fill fraction, or surface-to-volume ratio of 

cell boundaries that limits the fluid flux for a given osmotic gradient (e.g., Welling 

et al. 1996). 

In this chapter, a geometric framework is presented that connects the scale­

dependent-fractal (SDF) dimension ( Catrakis & Dimotakis 1996a,b) to the distribu­

tion of measures of (spatial or temporal) scales. A 1-D formalism for stochastic point 

sets is derived and demonstrated on several distributions of spacing scales. Statisti­

cally homogeneous velocity, or species-concentration, threshold crossings (level sets), 

arising in turbulence would constitute such 1-D point sets, for example. Similarly, 

level sets of 1-D cuts through 2-D geometries consisting of lines, or 3-D geome­

tries consisting of surfaces, would also constitute such point sets. An extension of 

this theory to higher dimensions is also developed, in terms of a measure of scale 

appropriate for multidimensional geometries. 
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4.1 1-D theory: spacing scales 

To investigate 1-D, multiscale, geometries first, consider a stochastic, statis­

tically homogeneous, point process on the real line, e.g., space or time, with a 

distribution of spacing scales, i.e., interval-lengths between successive events of the 

process, described by a probability density function (pdf), p 1 (l), where l denotes 

a (nonnegative) spacing scale, cf. figure 16. The fraction of length spanned by a 

I-scale will be m1 ( l) ex l p1 (l). The probability (density) that a random location, 

with uniform measure on the real line, lies in a !-spacing is, therefore, 

where, (4.1) 

cf. figure 16. 

- - - - ---------------- - - - -

l 

FIGURE 16 Spacing scale, l, and coverage scale (tile size), ,\,for a stochastic point 
process (indicated by filled circles) on the real line. 

The geometric probability that a ,\-tile, randomly located on the real line (with 

uniform measure), is "empty", i.e., contains no transitions (points), can be written 

as, 

(4.2) 

In this expression, pf ( ,\ J l), the conditional probability that a randomly-placed 

,\-tile contains no transitions, given that it lies in a !-spacing, is given by (cf. figure 

16), 

pf(A J l) { 
0 , for,\> l ; 

1 - .A/ z , for ,\ :::; z 
(4.3) 
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The probability that a ..\-tile lies in a [-spacing is given by the geometric weighting 

of the scales, m1(l); cf. equation (4.1). By a ..\-tile lying in a I-spacing we mean 

that a chosen (reference) point of the tile, e.g., the left endpoint 0f the tile, lies 

in a [-spacing, cf. figure 16. The probability that a ..\-tile does not contain any 

transitions is then (cf. equations ( 4.1)-(4.3)), 

(4.4) 

To make the connection to coverage statistics, consider a L-record, L ~ lm, par­

titioned in ..\-tiles,,\:::; L. Let N1 (..\;L) be the coverage count, i.e., the (ensemble­

averaged) number of nonoverlapping, contiguous ,\-tiles necessary to cover all points 

(threshold level transitions) in the L-record. Consider the coverage fraction, F1 (..\), 

i.e., the ratio of the number of tiles that cover transitions to the total number of 

tiles (Dimotakis 1991c, Catrakis & Dimotakis 1996a). For homogeneous statistics, 

this can be written as, 

. { NiE)(..\) } -E 
F1 (..\) = 1 - hm (T) = 1 - P1 (..\) , 

L/>..-+oo Ni (..\) 
(4.5) 

where NiT)(,\) = N1 (..\) + NiE)(,\) is the total number of ..\-tiles and NiE\A.) is 

the number of empty ..\-tiles in the £-record.** The coverage fraction can then be 

expressed as (cf. equation ( 4.4)), 

{00 (l ,\) 1 {>.. {00 
F1 ( ,\) = 1 - j >.. ~ P1 ( l) dl = lm Jo j >.' P1 ( l) dl d,\ 

The limiting behavior of F1 ( ,\), at small or large coverage scales, is then, 

{
""' ..\/lm --+ 0 , 

--+ 1 ' 

as ,\--+ 0 ; 

as ,\--+ oo . 

(4.6) 

(4.7) 

The corresponding SDF dimension (Dimotakis 1991c, Catrakis & Dimotakis 1996a), 

1 
__ d l_og_F_1--'-( A._) 

dlog ,\ 
(4.8) 

** An incorrect relation between F1 (.\)and .Pf(>.) has been given in Vassilicos 1991 and Vassilicos 
& Hunt 1991. Equation 2.4 in those references reads (in the present notation), F1 (.\) = 
1 - J;° .Pf (>.')d.\1

. 
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(the latter in 1-D) can be expressed in terms of the pdf of spacing scales, i.e., 

_ l _ >. 1; P1 ( l) dl 

lo>. 1; P1 ( l) dl dN 

Two limiting cases follow from equation ( 4.9), 

D1(>.) -+ { 
0' 

1 ' 

as>.-+O; 

as>.-+oo, 

(4.9) 

(4.10) 

as required for the coverage of 1-D transition sets (cf. Dimotakis 1991c). Equation 

(4.9) can be viewed as a SDF transform, connecting p1(l) to D 1(>.). 

4.2 Inverse relations in 1-D 

Inverse relations connecting the pdf of spacing scales to the SDF dimension (or 

coverage fraction) can also be obtained. From equation ( 4.6), we have, 

1 1= -
1 

P1(l) dl , 
m >. 

(4.11) 

and, therefore, 

(4.12) 

Note that a relation similar to equation ( 4.12) was obtained by Longuet-Higgins 

(1958) in the context of zero-crossings of random Gaussian functions. The mean 

spacing scale, lm, can then be written as (cf. equation (4.11)), 

~ = lim { dF1 ( >.) } ' 
lm >.-+O d). 

(4.13) 

in agreement with the small-scale behavior of the coverage fraction (cf. equation 

( 4.7)). Since the coverage fraction can also be written in terms of the SDF dimension 

as (Catrakis & Dimotakis 1996a) 

it follows that, 

dF1(>. = 0) 
d>. 

( 4.14) 

(4.15) 



- 53-

Combining equations ( 4.12), ( 4.14), and ( 4.15) we obtain the (inverse) relation 

connecting the pdf of spacing scales to the SDF dimension, i.e., 

P1(Z) = 
1

1~ { D1(Z) [1 - D1(l)] + l dD;l(l)} 

{ 1
00 

dl'} x exp -
/ 

[1 - D1(l')J z, 
(4.16) 

where the mean scale, lm, is given by (cf. Eqs. 4.13 and 4.15), 

( 4.17) 

4.3 Alternative 1-D theory: largest-empty-tile scales 

An alternative measure of geometric scale, in 1-D, that can also be connected 

to coverage statistics, is the largest-empty-tile scale. This scale is the size of the 

largest tile, (centered) at a random location, that is empty. The pdf of this scale, 

Ji(>..), is also the probability (density) that a random point is a distance >../2 away 

from the nearest element of the point set (and, equivalently, it is proportional to 

the number fraction of intervals greater than >..), given by, 

Ji(>..) = 100 

hE().. I l)m1(l)dl , ( 4.18) 

where the conditional probability, hE(>.. I l), that a randomly-placed >..-tile is the 

largest-empty-tile, given that it lies in a l-interval, is given by, 

{ 

0, if)..> l 

hE().. I l) = 1/21, if)..= l , 

l/l, if).. < l 
( 4.19) 

and the probability that a >..-tile lies in a [-spacing is given by m1 (l), cf. equation 

( 4.2) and related discussion. Note that, in equation ( 4.19), for the case)..= l, there 

is only one point >../2 away from the nearest element of the set (i.e., the point that 

is at the middle of the [-interval), while for).. < l, there are two points that are >../2 

away. The distribution of largest-empty-tile scales can be connected, therefore, to 

the distribution of spacing scales, i.e., 

. 1 1· >.+e 1 loo Ji ( >..) = -
21 

lim P1 ( l) dl + -
1 

lim p1 ( l) dl 
m E-+0 >.-E m E-+0 >.+E 

( 4.20) 
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For finite p1 (l), this simplifies to, 

1 r= 
Ji ()...) = lm j >. PI ( l) dl - ( 4.21) 

and, consequently, the distribution of largest-empty-tile scales can be connected to 

the (1-D) coverage statistics (combining Eqs. 4.6, 4.9, and 4.21), i.e., 

(4.22) 

and, 

( 4.23) 

which offer alternative SDF transforms (cf. Eqs. 4.9 and 4.16). 

4.4 Applications of 1-D theory 

Zero-crossings of velocity signals derived from 1-D measurements in turbu­

lent boundary layers have been reported as well approximated by Poisson statistics 

(Sreenivasan, Prabhu, and Narasimha 1983, Kailasnath and Sreenivasan 1993). 

Constant fractal (PLF) dimensions were reported derived from such signals (Sreeni­

vasan 1991). The SDF dimension corresponding to Poisson point processes, i.e., 

P1(l)dl = exp(-l/lm)dl/lm, (4.24) 

is given by, 

( 4.25) 

cf. equation ( 4.9). Figure 17 compares Dd(>.), from equation ( 4.25), to the coverage 

dimension from five Monte-Carlo simulations. For each simulation, a randomly­

placed L-record, where L/lm = 1000, was successively partitioned into smaller .A­

tiles and the coverage count computed for each >.. The error bars indicate the 

standard deviation of the ensemble-averaged Monte-Carlo estimates. Such SDF 

behavior may be expected to be· encountered in geometries generated by natural 

phenomena that are described by Poisson statistics. 
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FIGURE 17 SDF dimension, D 1 (>.), for exponential pdf of spacing scales with a = 
0.5. Theory: solid line ( 4.25); simulations: circles. 

Exploratory investigations of the mean zero-crossing frequency (mean spacing 

scale, lm) of 1-D velocity signals in turbulence had been reported by Liepmann 

(1949). No measurements of the pdf of zero-crossing scales were reported, however, 

until the 1970's-80's (see Sreenivasan, Prabhu, and Narasimha 1983, and references 

therein). This can be appreciated in terms of the technological developments in 

high-speed, real-time data acquisition needed for these measurements. t 

In several turbulent flows, level crossings of 1-D scalar and velocity measure­

ments have been reported as well approximated by the lognormal distribution. In 

turbulent jets, a lognormal distribution was indicated for level crossings of 1-D 

scalar measurements (Miller and Dimotakis 1991a). Lognormal statistics were also 

indicated for level-crossings of 1-D scalar measurements in plumes dispersing in the 

atmospheric surface layer (Yee et al. 1995) as well as zero-crossings of 1-D velocity 

measurements in turbulent boundary layers (Sreenivasan, Prabhu, and Narasimha 

1983; in addition to exponential-distribution fits). The SDF dimension correspond­

ing to a lognormal distribution, 

P1(l)dl = exp{-[ln(l/lm)/o-+a/2]
2 /2} dl/(.f2;al), ( 4.26) 

t D. Coles, private communication. 
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is given by, 

() { 
lm [l+erf[(ln(>./lm)/0"-0"/2)/y'2]]}-l 

D1 >. = 1 - 1 + - · 
). 1- erf [(ln(>./lm)/O" + 0"/2) /v'2] ' ' ( 4.27) 

cf. equation ( 4.~). A comparison between this expression and results from five 

Monte-Carlo simulations, with L/lm = 3000 records, is shown in equation (18). 

The results agree with previous simulations that used a lognormal point-spacing 

distribution (Miller and Dimotakis 1991a). Generally speaking, stochastic fragmen­

tation processes result in lognormal distributions, as noted by Kolmogorov (1941 ), 

as do fusion/agglomeration processes (Lopez 1977). 

0.6 
,...-..., 
,<. ...._,, 
0 

0.4 

FIGURE 18 D 1(>.), for lognormal pdf of spacing scales with O" = 1. Theory: solid 
line ( 4.27); simulations: circles. 

Power-law scaling statistics, over a finite range of scales, e.g., 

{ 

adl/l1 , 

p(l)dl = a(l/li)-vdl/l1, 

0, 

with the mean spacing scale, lm, given by, 

for l ~ l1 ; 

for li < l ~ l2 

for l2 < l , 

lm = ;,, - 1 (0'.2
-1.1 - v /2) 

li 2 - l/ l/ - al-v ' 

( 4.28) 

( 4.29) 



- 57-

correspond to a fractal dimension (for v =/= 1, 2) given by, 

2 (v - a1
-

11
) / (v - 1) - >../Zi 

/3Zi/>.. + (1- v)(l2f>..t-l 
2 - v + /3li/).. - (l2/ >..t-1 
1 

( 4.30) 

in the respective scale ranges, where a = 12 /li and /3 = v(v - l)a11
-

1 /2. Figure 

19 plots D 1(>..), as given by equation (4.30) and as computed from the coverage 

from five Monte-Carlo simulations with L/lm = 4000 records, for 12/li = 1000 and 

v = 3/2. 

0.6 
,---.... 
,<. ...._.... 

0 

0.4 

FIGURE 19 SDF dimension, D1(>..), for a power-law pdf of spacing scales with v = 

3/2 and h/li = 1000. Theory: solid line ( 4.25); simulations: circles. 

In the limit of large 12/Zi and for scales li ~ l ~ 12, we have, for 1 < v < 2, 

( 4.31) 

This is indicated in figure 19 by the D1 = 1/2 dashed line, corresponding to v = 3/2. 

Conversely, if D1(>..) = D1 = const. in the range >..1 ~ >.. ~ >..2, figure 4.16 shows 

that, 

( 4.32) 



- 58-

in this scale range. The scale dependence of D 1 (>..) in figure 19 is, in this case, 

a finite scale-range effect. We conclude that power-law scaling is best assessed in 

. terms of the pdf's p1(l), or Ji(>.). 

4.5 Multidimensional theory: largest-empty-box (LEB) scales 

In d-dimensional space, an extension of the notion of largest-empty-tile scales 

allows the connection between coverage statistics and the distribution of the corre­

sponding multidimensional scales. Let S be a set consisting of points, lines, surfaces, 

etc., that is embedded in ad-dimensional space, Ed. 

For homogeneous spatial statistics, the coverage fraction, Fd(>.), can be iden­

tified as the geometric probability that a (randomly-placed) >.-box covers part of 

S; cf. (3.21 ). The coverage fraction can also be interpreted as a cumulative distri­

bution function of a measure of spatial scales, in the following sense. For a scale 

increment, .6.,\, the coverage fraction can be written as, 

1
Fd(..\+~..\) 

Fd(>. + .6.>..) - Fd(>.) + dFd(>..') 
Fd(..\) 

( 4.33) 

The differential coverage fraction, in this integral, can be associated with a proba­

bility density function of a measure of scales, fd(>.), where 

(4.34) 

In this expression, fd(>.) is the probability density function of the largest-empty-box 

(LEB) scale, >.., i.e., the size of the largest box that is empty, i.e., covers no part of 

S, as can be seen by the following considerations. 

Consider a >.-box and a (.6.,\/2)-wide strip, around the >.-box, as illustrated in 

figure 20. The identification of fd(>.), in (4.34), with the largest-empty-box scales 

can be established by considering the probabilities of the following three coverage 

events: 

A { (>.. + .6.>..)-box covers part of S} 

B {>.-box covers part of S} 

C { (.6.>../2)-wide strip, around >.-box covers part of S} 



- 59-

I\ + L1/\ 

I -/\- I 
,----~~~~~~---, 

L _____ _ 

x 

FIGURE 20 Illustration of a >.-box and a(>.+ .6.>.)-box, for relating geometric prob­
abilities of coverage. An example of a LEB is also depicted. 

The geometric probabilities of events A, B, and C are related as follows, 

P{ A} = P{ Bu C} _ P{ B} + P{ C n B} . ( 4.35) 

Since, 

P{A} and P{B} , ( 4.36) 

we have, cf. ( 4.33), 

P{CnB} , ( 4.37) 
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which is the probability that the (.6..A/2)-wide strip, around a .A-box, covers part of 

S and that the .A-box is empty. 

This allows the connection between the coverage statistics and the distribution 

of this (multidimensional) measure of spatial scales, .A. In this context, this scale 

is identified as the size of the largest-empty-box that contains a randomly-located 

point, P, but contains no part of S, i.e., is empty. Equivalently, the scale ,\ is a 

measure of (twice) the distance from a point P to the nearest element of S. 

From equation ( 4.34) we see that f d( ,\) satisfies the required normalization 

condition over the range of spatial scales, i.e., 

( 4.38) 

cf. equations ( 4.7a,b ). Integrating equation ( 4.34), we have the relation for the SDF 

coverage, 

( 4.39) 

The SDF dimension, Dd(.A), can be expressed, therefore, in terms of the distri­

bution of LEB scales, fd(.A), i.e., 

( 4.40) 

cf. equation (3.24). This can be inverted to yield the LEB scale pdf from the SDF 

dimension, Dd(.A), directly, i.e., 

fd(.A) = d - ~d(.A) Fd(.A) = d - ~d(.A) exp { -100 

[d - Dd(.A')] d:,' } ; 

( 4.41) 

cf. equations (3.26) and ( 4.34), which constitutes, therefore, the SDF transform pair 

in d-dimensional space. 

The small-scale behavior of J d( ,\) will be given by, 

{

constant, as,\ -+ 0, 
fd(.A) "' ,\d-dt-1 -+ 

0, as,\ -+ 0, 

for dt = d - 1 

for dt < d - 1 , 
( 4.42) 
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cf. equations (3.25a) and (4.34). The large-scale behavior of fd(>..) will be given by, 

cf. (3.25b ), 

fd(>..) ~ 0, as>.. ~ oo . ( 4.43) 

Equivalently, the SDF dimension can be expressed in terms of the distribution 

of the logarithm of LEB scales, fd(log >..), i.e., 

D (>..) = d _ fd(log >..) 
d log.\ - ' J_

00 
fd(log >..') dlog ,\' 

( 4.44) 

cf. ( 4.40), where, 

or, ,\ fd(>..) ' ( 4.45) 

with a small-scale behavior given by, 

( 4.46) 

unconditionally; cf. ( 4.42). 

4.6 Inhomogeneous statistics 

The multidimensional theory of the previous section was developed for homo­

geneous statistics. In this section, this theory is modified to account for ( statisti­

cally) inhomogeneous, spatial, stochastic geometries, such as the isoscalar surfaces 

in turbulent-jet mixing. The scalar-field level set considered in this work, contained 

in the two-dimensional Db-box, is such an example. 

Consider a set, S, comprised of various geometric structures, e.g., points, lines, 

surfaces, etc., which is allowed to exhibit inhomogeneous statistics, and is contained 

in a d-dimensional bounding box of size Db, e.g., for the isoscalar contours, the 

bounding box of size Db= ~· The (box) coverage of Scan be related to the 

distribution of (multidimensional) geometric scales spanned by S, in the following 

sense. In this case, the coverage fraction, Fd(>..), can be identified as the geometric 

probability that a (randomly-placed) >..-box, interior to the (outer) Db-box, covers 
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part of S; cf. (3.21). In general, the probability of covering the set with a .A-box, 

interior to the bb-box, will be a function of position within the bb-box. For spatially 

. inhomogeneous statistics, as is the case for the isoscalar contours considered in this 

work, the function Fd(.A) represents the probability of coverage for a ,A.:tile placed 

in the bb.:box without regard to its location. 

For a scale increment ~.A, the coverage fraction can be written as, 

( 4.47) 

where 9 denotes coverage of part of S by a .A-box, interior to the (outer) bb-box, 

and 1i denotes coverage of part of S by a (~.A/2)-wide strip around a .A-box interior 

to the bb-box. Since Fd(.A) = P{Q}, it follows that 

( 4.48) 

- cf. equation ( 4.33) - which is the probability that a ( ~.A/2)-wide strip, around 

a .A-box randomly placed interior to the bb-box, covers part of S and that the .A-box 

is empty. 

In the limit, a pdf can be defined, therefore, as, 

( 4.49) 

- cf. equation ( 4.34) - where fd( .A) is identified as the pdf of the LEB scales, 

or the size of the largest box, interior to the bb-box, that is empty, i.e., covers no 

part of S. This pdf satisfies the required normalization condition over the range of 

spatial scales, i.e., 

18b fd(.A) cl.A 

cf. equations (3.25a,b) and ( 4.49). 

1 ' ( 4.50) 

Therefore, the SDF dimension ind-dimensional space, for inhomogeneous statis­

tics, is also expressible in terms of the pdf (Catrakis & Dimotakis 1996a), i.e., 

( 4.51) 
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This too is invertible for the distribution of LEB scales in terms of the SDF dimen­

sion, Dd(>.) to yield (cf. equation (4.49)), 

. fa(>,) = d- ~d(>,) exp { - t [d - D,(>.')] ~~' } 

The small-scale behavior of fd(>.) will be given by, 

{ 

constant, as ).. -+ 0, 
fd(>.) "' )..d-dt-1 -t 

0, as>. -+ 0, 

for dt = d - 1 

for dt < d - 1 , 

( 4.52) 

( 4.53) 

cf. equations (3.25a) and ( 4.49). For the isoscalar contours considered in this work, 

for which dt = 1 and d = 2, the limit of fd(>.) at the small scales can be related to 

the small-scale limit of the coverage length, cf. (3.19) and (3.20), i.e., 

( 4.54) 

It follows that this limit is also a measure of the surface-to-volume ratio (perimeter­

to-area in 2-D) of the isosurfaces, i.e., 

fz(>. -t 0) ( 4.55) 

The large-scale limiting behavior of f d ()..) is given by, cf. equation ( 3.25b), 

( 4.56) 

4.7 Remarks 

The LEB scale distribution offers an additional interpretation in terms of 

surface-to-volume ratio. Specifically, for isosurfaces, fz(>.) measures the surface-to­

volume ratio (perimeter-to-area ratio in 2-D) of surfaces (contours in 2-D ), spaced 

by >./2 (within a proportionality constant) from the isosurface (Huygens construc­

tion), with fz(>. -+ 0) a measure of the surface-to-volume ratio of the isosurface 

( Catrakis and Dimotakis 1996b ). 
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The above analysis shows that SDF-geometric statistics, such as the coverage 

fraction or dimension, are invertible and can be used to compute the distribution 

of geometric scales. Specifically, the connection between fractal dimensions (SDF 

or PLF) and the distribution of LEB scales, of the set being covered, has been 

obtained in the form of a SDF transform pair which is rewritten here to summarize 

(( 4.9) and ( 4.16)), 

( 4.57) 

in one-dimensional space and (4.40) and (4.41), 

( 4.58) 

in multi-dimensional ( d-dimensional) space (or, also, in one-dimensional space). 

As an example of a scale distribution which is relevant in turbulent mixing, 

a two-dimensional lognormal model is considered in Section 5.8. Also, in addition 

to the examples worked out in Section 4.4, other models of one-dimensional scale 

distributions are included in Appendix D. 
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CHAPTER 5 

Geometry of isosurfaces 

Further analysis of the geometry of the isoscalar surfaces, or contours in 2-D (cf. 

chapter 2), derived from the scalar-field data in these experiments, was performed in 

terms of the following (fractal) measures: the coverage, N 2 (>..), the coverage-length, 

L 2 (>..), the SDF dimension, D2(>..), the coverage fraction, F2(>..), and the distribution 

of largest-empty-box (LEB) scales, i.e., h(>..) and J2(log >..). These were inve::>tigated 

as a function of scalar threshold, for each of the three jet Reynolds numbers in these 

experiments. Scalar-threshold effects on each measure will be discussed first, and 

an assessment of Reynolds number effects on the coverage will be discussed near 

the end of this chapter (section 5. 7). 

Note that the probability-density function of a field (alone) does not provide 

enough information to determine level set statistics of the (instantaneous) field, such 

as the ones mentioned above (cf. Yee et al. 1995). Yet, it is such (level set) statistics 

that can be relied upon to investigate the multiscale structure of isosurfaces, e.g., 

by computing the distribution of (LEB) scales of scalar isosurfaces in turbulent 

mixing, or of other isosurfaces in turbulence, or of interfaces in complex natural 

phenomena, in general. 



- 66-

5.1 Example of isosurface coverage 

The geometric measures to be investigated in this chapter ar~ based on the 

coverage count of the isosurfaces (contours), N 2 ( .\; c, Re). A new method to com­

pute an estimate of this coverage was developed that removes several shortcomings 

of conventional box-counting methods. The proposed method successively subdi­

vides the bounding box for the isoscalar (level) set, and computes the number of 

partition boxes that contain part of the level set. This Bounding-Box Partition 

Method (BBPM) is discussed in Appendix A, where its performance is compared 

to conventional box-counting methods. Isosurfaces used in the computation of the 

coverage-based measures were computed as the level sets of the scalar-image data, 

using a bilinear B-spline representation of the jet-fluid concentration c( x, y )-surface 

derived from each image. This method removes several difficulties of conventional 

pixel-based contour-identification methods and yields a representation for the iso­

surfaces that is well suited for the investigation of coverage-based measures. 

To illustrate the nature of the coverage process, as a function of scale, Fig­

ures 21a-i depict a sequence of coverage at successively smaller scales, for the iso­

surface data depicted in figure 9a. In the first stage (figure 2la), the bounding 

box for the isosurface is depicted, which is subsequently subdivided (partitioned) 

in the remainder of the sequence. The total number of boxes, Nz,tot(>.), as well 

as the number of boxes that cover part of the isosurface, Nz(.\), are stated in the 

captions corresponding to the figures. In figures 21a-g, all ..\-boxes that consititute 

the partitioned bounding box are depicted; boxes that cover the level set are shown 

shaded. In figures 21h-i, only those boxes that cover the set are shown, for clar­

ity. A visual inspection of this sequence confirms the expectation that, at the large 

coverage scales, the isosurface fills the area it is embedded in, while, at the small 

coverage scales, the area-fraction approaches zero; the coverage boxes converge to 

the level set, in the limit of small ..\-scales. 
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FIGURE 21 Example of isosurface coverage at Re ~ 4.5 x 103 and c = c1 (cf. figure 
9a). (a) Coverage at .\ = 8b: N2 = 1, N2,tot = l. 
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FIGURE 21 (b) ). 4, N2,tot 4. 
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15, N2,tot - 16. 
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FIGURE 21 ( d) ,\ 56, N2,tot 64. 
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FIGURE21 (e) ,\ 183, Nz,tot 256. 
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FIGURE 21 (f) ,\ 580, N2,tot 1024. 
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FIGURE 21 (g) A= 8b/64; N2 = 1667, N2,tot = 4096. 
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FIGURE 21 (h) ,\. = Db/128; N2 = 4363, N2,tot = 16384. 
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FIGURE 21 (i) ,\ = 61/256; Nz = 11238, Nz,tot = 65536. 
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5.2 Coverage 

Figure 22 shows the ensemble-averaged, two-dimensional coverage count, N2 (>..), 

of isoscalar surfaces for Re'.'.::::'. 9.0x103
. Coverage counts are plotted for three thresh­

olds, c1, c2, and c3 (cf. indicated values in figure 8), with lines of increasing solidity 

denoting increasing scalar threshold. The points joined by straight-line segments in 

figure 22 correspond to the coverage counts computed at the indicated >..-scales of 

the partitioned bounding-box (cf. Appendix A). Six images were used to estimate 

this statistic; the error bars (standard deviation of the mean count) are smaller 

than the size of the symbols employed in the plot of figure 22 (cf. figure A. 7 in Ap­

pendix A). The spatial scale, >.., is normalized by bb( c; Re), the ensemble-averaged, 

threshold-dependent bounding-box size (cf. figures 13, 14, and related discussion). 

The coverage counts for the intermediate threshold, c = c2 , are seen to be larger 

than for c = c1 , or c = c3 , in accord with the scalar pdf behavior at this Reynolds 

number (cf. figure 8). 
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FIGURE22 Coverage, N2 (>..), ofisoscalar surfaces at Re'.'.::::'. 9.0x103 . c = c1 : dotted 
line, crosses; c = c2: dashed line, diamonds; c = c3: solid line, circles. 
Recall (cf. figure 14) that bb = bb(c; Re). 
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5.3 Coverage length 

Figure 23 shows the ensemble-averaged coverage-length, L 2 (..\), normalized by 

·the bounding-box size, 8b, of isoscalar contours for Re:'.:::::'. 9.0 x 103 • The coverage­

length, L 2 (..\), ddined in terms of the coverage in equation (3.18), will, in general, be 

different from (larger than) the arc-length of the (smooth) contours (cf. figure A.2 in 

Appendix A). This geometric measure of the contours, with units of length, is seen 

to increase in a non-linear fashion with decreasing scale, in logarithmic coordinates; 

cf. equations (3.1) and (3.19). The (normalized) coverage-length is seen to be larger 

for the intermediate threshold, c2, in accord with the pdf behavior of scalar values, at 

this Reynolds number (cf. figure 8). For the intermediate threshold, the small-scale 

limit of the coverage-length, cf. (3.20), is approximately equal to L2(,\ ~ 0)/8b :'.:::::'. 

45 (cf. figure 23), or normalized by the perimeter of a square 8b-box, L 2 (>.. ~ 

0)/( 48b) ~ 11. In other words, the turbulent-mixing process generates isoscalar 

contours with a small-scale coverage-length, approximately 11 times longer than 

that of the perimeter of the bounding-box, at this scalar threshold and Reynolds 

number. 
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FIGURE23 Normalized coverage-length, L 2(..\)/8b(c), at Re:'.:::::'. 9.0x103
. Line/symbol 

legend as in figure 22: 
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5.4 Coverage fraction 

A plot of the coverage fraction, F2 (A), or volume-fill fraction (area-fraction in 2-

D), computed from the coverage counts of figure 22 using equation (3.22), is shown in 

figure 24; The coverage fraction is a normalized coverage count that is independent 

of the bounding-box size, bb( c; Re). It can be seen to increase in a non-linear fashion 

with increasing (logarithmic) scale; cf. equations (3.24) and (3.26). Its large-scale 

behavior reflects the highest volume-fill fraction, with F2 (A ---+ bb) ---+ 1, as required. 

The asymptotic behavior at the smallest scales corresponds to the lowest volume-fill 

fraction, i.e., F2(.A) rv A---+ 0, as .A/bb---+ 0, as expected for curves (one-dimensional 

objects) in a two-dimensional space; cf. (3.25) and related discussion. The coverage 

fraction is largest at c = c2 , i.e., near the threshold corresponding to the peak of 

the scalar pdf (cf. figure 8). 
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FIGURE24 Coverage fraction, F2(.A), of isoscalar surfaces at Re~ 9.0 x 103 (cf. 
figure 22). Line/symbol legend as in figure 22. 
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5.5 SDF dimension 

The SDF dimension, D2 (.\), computed from the data in figure 22, using 2nd 

order finite differences, is shown in figure 25; cf. equation (3.9). Error bars for this 

measure .are given in figure A.8 (Appendix A). The spatial scale, .\,is, again, normal­

ized by the ensemble-averaged (threshold-dependent) bounding-box size, bb( c; Re). 

The threshold dependence of the SDF dimension reflects the scalar pdf behavior 

at this Reynolds number (cf. figure 8), with D2 (.\) largest, over most of the scale 

range, at the intermediate threshold, c2 . It is seen that the dimension is a function 

of scale and, in particular, not a constant. It is found to increase monotonically and 

continuously with scale, from near unity, at the smallest scales, to 2, at the largest 

scales, i.e., 

(5.1) 

The bounds are the topological dimension, dt = 1, and the embedding dimension, 

d = 2, as expected for a monotonically-increasing SDF dimension; cf. (3.12) and 

related discussion. 
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FIGURE 25 SDF dimension, D 2 (.\), of isoscalar surfaces at Re'.::::::'. 9.0x103 (cf. figure 
22). Line/symbol legend as in figure 22. 
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5.6 Distribution of LEB scales 

Figure 26 depicts the probability density function of LEB sc,ales, fz("A), at 

Re '.::::'. 9.0 x 103 , for three scalar thresholds, computed using equation ( 4.49). This 

is a normalized probability density function, over the range of scales; cf. ( 4.50) 

and related discussion. For a given threshold, fz (A) is seen to be larger at smaller 

scales, approaching a constant value at the smallest scales, as expected for level sets 

consisting of lines in a plane, i.e., for geometric sets with dt = d-1; cf. (4.53) and 

related discussion. The data indicate a higher probability density of LEB scales, 

at small scales, for the c2 threshold corresponding to the neighborhood of the peak 

of the scalar pdf. Recall that the small-scale limit, fz("A ~ 0), is a measure of 

the surface-to-volume ratio (perimeter-to-area ratio in 2-D) of the isosurface. The 

highest surface-to-volume ratio is observed at the c2 threshold, consistent with the 

behavior of the coverage length, cf. figure 23. 
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FIGURE26 Pdf of LEB scales, fz("A), for isoscalar surfaces at Re ,...., 9.0 x 103
. 

Line/symbol legend as in figure 22. 

A further measure (that can be used to test for, e.g., power-law scaling behavior 

of the LEB scale distribution) is the (negative of the) local slope of the LEB scale 
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distribution, in the coordinates of figure 26. It can be computed as the (negative of 

the) logarithmic derivative of the LEB scale distribution, defined as, 

(,\) = _ dlogf2(,\) 
µ - dlog ,\ ' (5.2) 

and is shown in figure 27, computed using 2nd order finite differences on tl~e data of 

figure 28. It is seen that µ(,\) is a function of scale, throughout the complete scale 

range, for the threshold corresponding to the peak of the scalar pdf. Recall that a 

scale-dependent logarithmic derivative is not a (power-law) exponent; cf. discussion 

of equation (3.13). For threshold values away from the scalar-pd£ peak location, a 

near power-law region is suggested over a (short) range of intermediate scales. This 

threshold-dependent effect arises for reasons similar to the threshold-dependence 

exhibited for the SDF dimension (cf. figure 25), namely that, away from the mean 

value of a fluctuating field, level sets can be expected to display characteristic scales 

as an artifact of the presence of near-extrema (minima or maxima) in the spatial 

variation of the field values (see Miller & Dimotakis 199la). 

3 

FIGURE 27 Logarithmic derivative, µ(,\), of LEB scale pdf for isoscalar surfaces at 
Re~ 9.0 x 103 • Line/symbol legend as in figure 22. 
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For all three thresholds, however, a qualitatively-similar, SDF (non-power-law) 

behavior of increasing value of µ(>..) with increasing scale is evident, for over a 

decade of smaller scales. This is related to the near-lognormal distribution of the 

size of the isoscalar islands and lakes, discussed in Chapter 6, and can be modeled, 

as will be described below (Section 5.8). 

The pdf of the logarithm of LEB scales, f2(log >..), offers additional interpreta­

tion of the scalar-threshold effect on the isosurface geometry. This measure is plot­

ted in figure 28, for the same three scalar thresholds (cf. figure 8), at Re~ 9.0x103 . 

For a given threshold, J2(log >..) approaches zero at the small as well as large scales, 

as expected; cf. equations ( 4.46) and ( 4.53). At the intermediate threshold, c2, the 

peak of the log-LEB scale pdf shifts to smaller scales, as compared to the behavior 

at c = c1 and c = c3 . In other words, it is less likely to find a largest >.-size region, 

at large A's, that is not visited by the isosurfaces at this threshold. This finding is 

discernible in the isosurface image data directly, as can be seen in figures lOa-c. 
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FIGURE 28 Pdf of the logarithm of LEB scales, }2(log >..), for isoscalar surfaces at 
Re~ 9.0 x 103

. Line/symbol legend as in figure 22. 
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5. 7 Reynolds number effects 

These statistics allow us to investigate the Reynolds number . effects on the 

scalar field, isosurface geometry, and scalar mixing. Figure 29 shows the Re-effect 

on the coverage length, L2(.A), scaled by the isoscalar bounding-box size, Db at 

the intermediate scalar threshold, c2; lines of increasing solidity denote increasing 

Re. Recall that, at this threshold and in this Re range, the bounding-box size, Db, 

is approximately Re-independent (cf. figure 14 and related discussion). The data 

indicate that the small-scale limit, L2 (.A--+ 0), decreases with increasing Re, at this 

threshold. This (perhaps surprising) finding can be seen directly in the image data 

(cf. progression in figures 9b, lOb, and 11b ); it can be investigated further in terms 

of the SDF dimension and scale distribution. 
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FIGURE29 Reynolds-number dependence of coverage-length, L2(.A)/Db, at the in­
termediate scalar threshold, c2. Re '.::::'. 4.5 x 103 : dotted line, crosses; 
Re'.::::'. 9.0x103 : dashed line, triangles; Re'.::::'. 18x103 : solid line, squares. 

Figure 30 show the Re-effect on the SDF dimension. The data indicate that the 

SDF dimension decreases, in the range of moderate-to-large scales, as Re increases. 

At the same time, the data indicate that, at the smallest and largest scales, the 

SDF dimension is only weakly dependent on Re, if at all. The Re effect on the LEB 

scale pdf, h(.A), is shown in figure 31. A systematic trend with increasing Re is 

evident. Specifically, the probability density of a LEB scale, at a given large scale, 

increases with Re. This implies that it is progressively easier to find a largest .A-size 

region, at large .A's, that is not visited by the isosurfaces. 
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FIGURE 30 Reynolds-number dependence of SDF dimension, D 2 (>.), at the inter­
mediate scalar threshold, c2 . Line/ symbol legend as in figure 29. 
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FIGURE 31 Reynolds-number dependence of LEB scale pdf, h ( >.), at the interme­
diate threshold, c2 . Line/symbol legend as in figure 29. 

Figure 32 shows the Re-effect on the logarithmic derivative, µ(>.), of the LEB 

scale pdf; µ( ;\) decreaseas with increasing Re at intermediate scales. This is consis­

tent with the LEB-scale pdf behavior (cf. figure 31 ). Also, the small-scale behavior 

ofµ(>.) is only weakly dependent on Re. Figure 33 depicts the Re-effect on the pdf 
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FIGURE 32 Reynolds-number dependence of logarithmic derivative, µ(>..), of LEB 
scale pdf at c2. Line/symbol legend as in figure 29. 
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FIGURE 33 Reynolds-number dependence of pdf oflogarithm ofLEB scales, f2 (log >..), 
at c2 • Line/symbol legend as in figure 29. 

of logarithmic LEB scales, f2 (log >..). A systematic Re-dependence is evident; the 

peak of this pdf shifts to higher LEB scales with increasing Re. In other words, it 

is more probable to find a largest >..-size region, at large >..'s, that is not visited by 

the isosurface, as the Reynolds number is increased. 
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5.8 A model of 2-D LEB scales 

As noted in chapter 4, a lognormal distribution of 1-D spacing scales has been 

reported in turbulent jets (Miller & Dimotakis 1991a) as well as plumes dispersing 

in the atmospheric surface layer (Yee et al. 1995). A lognormal model of 2-D LEB 

scales will be discussed below. While, at this point, alternative statistics might 

also provide reasonable fits, further evidence for a lognormal model is provided by 

the size distribution of isoscalar (2-D) islands/lakes, in the present measurements, 

which is approximately lognormal (described in chapter 6). These findings, taken 

collectively, suggest a lognormal model for the SDF behavior of 2-D (or higher­

dimensional) measurements. The SDF dimension for a lognormal scale distribution 

(over all scales) is given by, cf. equation ( 4.27), 

( ) 
_ { lm [1 + erf [(ln(,\/lm)/o- - o-/2) /\!2]] }-l D2 ,\ - 2- 1 + -

,\ 1 - erf [(ln(,\/lm)/o- + o- /2) /\!2] 
(5.3) 
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FIGURE 34 Lognormal model compared to measurements of D2(,\). 

A comparison with the measured SDF dimension at Re ~ 9.0 x 103 and at a 

scalar threshold value c2 is shown in figure 34. The fit (solid line), which assumes 

for simplicity a lognormal distribution over all scales, is only shown at the smaller 

scales. The behavior of the model is consistent with the data, mindful that the SDF 

dimension is a nonlocal statistic which couples the behavior at different scales. 
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The 2-D model of LEB scales corresponding to the SDF dimension of equation 

(5.3) can be derived using the inverse relation of equation ( 4.41 ), and is given by, 

f2(>..) ""'erfc [ {ln(>../lm)/a+a/2}/J2] /2lm. (5.4) 

Note that this expression is identical to the 1-D LEB-scale distribution for lognormal 

spacings, and could alternatively be derived using equations ( 4.18) and ( 4.27). A 

fit using this model, at the smaller scales (solid line), is shown in figure 35, with 

log10 (lm /Db) ::::'. -1.4 and a ::::'. 1.3; the deviation at larger scales is due to the jet 

topology (a single large continent, and many smaller islands/lakes) and is, therefore, 

a large-scale effect (cf. Catrakis & Dimotakis 1996a). Figure 35 shows that a 2-D 

model of lognormally-derived LEB scales is consistent with the data, at the smaller 

scales. The LEB-scale distribution is a scale-local statistic, in contrast to the SDF 

dimension; cf. figure 34. 
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FIGURE 35 Lognormal model and measurement of LEB scale distribution, h(l), cf. 
Fig. 34. 
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5.9 The multiscale nature of turbulent mixing 

The above analysis suggests that the multiscale nature of turbulence can be 

better assessed in terms of the LEB-scale distribution, as compared to the fractal 

dimension. The former offers a scale-local statistic which can be used to test for 

geometric-scaling behavior (i.e., power-law or scale-dependent). Notably, while the 

(smooth) curve suggested by the data in figure 35 is differentiable, i.e., locally has a 

(straight-line) tangent at any scale, the data exhibit a (strongly) nonlinear scaling 

for over a decade of small scales. 

The precise form of nonlinear scaling is indicated to be lognormally-derived, 

consistent with other statistical behavior (e.g., size distribution of islands/lakes, cf. 

chapter 6). Lognormal distributions of sizes/scales can arise in fragmentation pro­

cesses, in general, as noted by Kolmogorov (1941), as can agglomeration (successive­

fusion) processes, e.g., turbulent (stochastic) growth of clouds (Lopez 1977). The 

dynamics of the turbulent jet involve both fragmentation and agglomeration of ed­

dies. 

The indications of lognormally-derived isosurface-geometry statistics in jets, 

may well be expected to be encountered in other turbulent-mixing flows. The 

cascade process (fragmentation as well as agglomeration) in turbulent jets, in par­

ticular, and in turbulence, in general, at high Reynolds numbers, is expected to 

exhibit (universal) scaling behavior at scales away from the viscous-dominated, as 

well as largest, scales; cf. Kolmogorov (1941 ). 

These results suggest that, in turbulent-mixing (shear) flows in general, any uni­

versal, multidimensional geometric statistics (e.g., lognormally-derived LEB scales) 

are more likely to be encountered at the smaller scales and, additionally, are more 

likely to be identified through the LEB-scale distribution (as compared to the SDF 

dimension). Recall that the LEB-scale distribution has the additional intrerpreta­

tion that a LEB scale is a measure of the distance from a randomly-chosen point 

to the nearest element of the isosurface. In the context of combustion, for exam­

ple, f2(>..) would measure the surface-to-volume (perimeter-to-area in 2-D) ratio of 

surfaces (contours), >..-equidistant to the burning (isoscalar) surface. 
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CHAPTER 6 

Other measures of geometric complexity 

In this chapter, additional measures of the geometric complexity (and struc­

ture) of the isosurfaces are investigated. In particular, measures based on area­

perimeter properties of the individual isoscalar island/lake structures, identified 

from the level sets of jet-fluid concentration, are analyzed. A measure of geometric­

shape complexity, nd, ind-dimensions, is described in a general context, and applied 

to the two-dimensional measurements of the scalar isosurface geometry. 

Knowledge of such measures would facilitate the description and modeling of 

turbulent mixing, for example, in addition to the SDF dimension or coverage frac­

tion. In the context of chemical reactions and combustion in non-premixed hydro­

carbon turbulent flames, for example, in which the combustion is largely confined 

to the instantaneous stoichiometric (isoscalar) surface, area-perimeter, or surface­

volume, properties of the isoscalar island/lake structures would be required to relate 

the local burning rate to the time required for local consumption of the unburnt 

fuel pockets. 

In a biological context, quantitative measures of the complex boundary of 

nephron cells, for example, would be needed to relate the water transport across 

the cell boundary as a function of the applied osmotic gradient (e.g., Welling et al. 

1996). In particular, complexity measures that can be connected to the surface-to­

volume ratio of such boundary surfaces (or interfaces) would be of primary interest. 
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6.1 Isoscalar islands and lakes 

The level sets of jet-fluid concentration consist of multiple, disjoint, closed, 

isoscalar contours of varying size and shape, as can be seen directly in figure 36, 

for example, depicting an isosurface at Re"" 9.0 x 103 and scalar threshold c = c2 • 

In figure 36, the level set has been superimposed on the scalar field; cf. figure 4b. 

These isoscalar contours are either "islands", or "lakes", depending on whether the 

neighboring interior isosurfaces are at a higher, or lower, threshold, respectively. 

In particular, the largest island in each image realization will be referred to as the 

"continent". The area, A, and perimeter, P, of the islands/lakes was computed 

from a biquadratic B-spline representation of the level sets, described in Appendix 

c. 

6.2 Size and shape complexity 

A useful (and dimensionless) measure of the surface-to-volume ratio of complex 

surfaces can be defined, in general, as follows. In a d-dimensional space ( d ~ 2), a 

useful measure of size of (d - 1)-dimensional surfaces embedded is vJfd, where vd 

is the (hyper)volume enclosed by the surfaces. Of all surfaces of a given size, Vdifd, 

the sphere has the least surface area. For a sphere of radius Rind-dimensions, the 

volume is given by, 

Vd,sphere = (6.1) 

(where r denotes the Gamma function) and the surface area is given by, 

d 
Sd,sphere = dR Vd,sphere 

1rd/2 d 
r (d/2 + 1) Rd-I 

(6.2) 

so that, 

7r
1

/
2 

d ( )(d-1)/d 
Sd,sphere = fl/d (d/2 + l) Vd,sphere · (6.3) 

Therefore, for any (closed) surface ind-dimensions, the surface area, Sd, is bounded 

from below, i.e., 
' 7r

1
/

2 d (d-l)/d 
sd > r11d (d/2+1) vd (6.4) 
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As size increases, this lower bound for the surface area must, therefore, increase. 

To examine surface-to-volume (or area-to-perimeter) behavior over a range of sizes, 

. it is useful to normalize the area of a surface by the area of an equal-sized sphere. 

The resulting surface-to-volume measure, denoted here by nd, is a (dimensionless) 

measure of the complexity of the shape of the surface. It will be unity for spheres 

and unbounded from above, in general, i.e., 
7rl/2 d 

1 < n = 
- d - r 1/d(d/2+1) 

sd 
y(d-1)/d ::; 

00 
' 

d 

(6.5) 

with the upper limit attainable, for example, for non-rectifiable (fractal) surfaces, 

e.g., PLF or SDF surfaces. 

For two-dimensional (closed) contours, the size is the square-root of the area 

enclosed by the contour, A112 . Let P and A denote the perimeter and enclosed 

area of any closed curve in a plane, respectively. Then, the two-dimensional shape 

complexity, n2' becomes, 

n2 = 
(47rA)1/2 ' 

p 
(6.6) 

and is bounded from below by unity, cf. equation (6.5). n2 is a measure of the 

interfacial arc length, per unit (square-root of) enclosed area. 

6.3 Area and perimeter of islands and lakes 

Figure 37 is a scatter-plot of the perimeter and size values of the isoscalar 

island/lake structures at Re~ 9.0 x 103 , for six image realizations (cf. figure lOa). 

Perimeter-size values for a total of 4, 368 individual islands and lakes are depicted, 

corresponding to (an average of) 728 isoscalar islands and lakes for each image 

realization, at this Reynolds number. As noted above, the scalar threshold for these 

structures corresponds to the estimated peak of the pdf of the jet-fluid concentration 

at this Reynolds number. The results, however, are not particularly sensitive to this 

choice. The size and perimeter values in figure 37 are normalized by the ensemble­

averaged, outer spatial extent, 8b, of the scalar level set at this Reynolds number 

and scalar threshold. The outer scale, 8b, is computed as the square-root of the 

area of the circumscribing rectangle (bounding box) for the level set. The solid 

boundary line in figure 37 corresponds to the minimum value of the perimeter as a 

function of size (cf. equation (6.5)), i.e., for circles. 
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FIGURE 36 Islands, lakes, and continent of an isoscalar (level) set, at c = c2 and 
Re '.:::::'. 9.0 x 103

, superimposed on the scalar-field image data of figure 
4b. 
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FIGURE37 Scatter plot of perimeter, P, vs. size, A 112 , of isoscalar island/lake 
structures at Re "' 9.0 x 103 and c = c1 (islands: crosses, lakes: circles). 

Figure 37 shows that the islands and lakes exhibit a range of size values span­

ning over 3 decades. At a given size, a range of perimeter values can be found. At 

small sizes, the perimeter values approach the minimum possible value, while, at 

large sizes, the perimeter values become progressively larger. The area-perimeter 

behavior exhibited in figure 37 must be interpreted in light of the fact that the min­

imum perimeter value for any size will increase with size, in general, cf. equation 

(6.6) and related discussion. In particular, the area-perimeter behavior can be bet­

ter assessed by normalizing the perimeter values by the perimeter of an equal-sized 

circle, cf. equation (6.6), as discussed below. 
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6.4 Size and shape complexity of islands and lakes 

The size-dependent behavior of the perimeter is more evident in ~gure 38, which 

is a scatter plot of geometric-shape complexity, n 2, and size, A112
, for the isoscalar 

islands/lakes in figure 37. Shape-complexity as well as size values (and, therefore, 

perimeter and area values) are seen to be distributed. In other words, a given size 

can be associated with a range of shape complexity. Equivalently, different sizes are 

encountered possessing the same shape complexity. In particular, over most of the 

nrrange, island/lake structures are found spanning a size- (area-) range of more 

than one (two) decade(s), for a given shape complexity. 
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FIGURE 38 Scatter plot of geometric-shape complexity, n2, vs. size, A 112, of isoscalar 
island/lake structures at Re '.'.:::'. 9.0 x 103 (islands: crosses, lakes: circles). 
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This conclusion, of a (joint) size and shape-complexity distribution, is at vari­

ance with previously-proposed, PLF, perimeter-area relations (e.g., Lovejoy 1982, 

Mandelbrot 1983), i.e., the present data indicate that, 

or, 
p (A )D2/2 
Ao =/:- const. A6 

(6.7) 

where D2 would be the PLF dimension of the (2-D) level set. A scaling length, 

Ao, has been added here for dimensional reasons. A direct comparison with a PLF 

proposal is made in figure 38, where the dashed line indicates a power law for the 

shape complexity as a function of size. In other words, for the present data, 

(6.8) 

for D 2 = 1.35, which is a value reported, for example, in Lovejoy 1982. 

The data of figure 38 are not described by a power-law area-perimeter behavior, 

and, additionally, do not admit a one-to-one area-perimeter relation. The present 

data analysis indicates that, at least in the case of turbulent jets, isoscalar islands 

and lakes possess a joint distribution of size and shape complexity' PA,n (A 1/2 I 8b ' n2)' 

which may be expected in other turbulent-mixing flows, in particular, and in other 

complex phenomena, in general. The joint pdf is normalized such that, 

[
00 [1 (A1/2 ) (A1/2) 

}
1 

Jo PA,n ~, n2 d ~ <ln2 = 1 . (6.9) 

The range of n2-values is seen to increase with increasing size (cf. figure 38). 
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6.5 Size distribution 

The ensemble-averaged number of isoscalar islands/lakes with si~e greater than 

. a given value, NA(A1 l 2 /ob), is shown in figure 39, derived from the same area­

perimeter data as for figures 37 and 38. This statistic is known as a Korcak plot 

(Korcak 1938). A smooth variation of the (local) slope is evident, as a function of 

the (logarithm of) size. This is at variance with PLF, Koreak, number-size proposals 

(e.g., Korcak 1938, Mandelbrot 1983). 
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FIGURE 39 Cumulative (ensemble-averaged) count of size, A112
, of islands/lakes. 

The Korcak (cumulative) distribution of size depicted in figure 39 can be con­

verted to the corresponding pdf of size, PA(A112 /ob), depicted in figure 40 for the 

data of figure 39. This pdf is given, in terms of the joint pdf of size and shape 

complexity, by, 

PA(A112 /ob) - 1= PA,n ( A;:
2 

'n2) dS12 ' 

cf. equation (6.9), and, 

(6.10) 

(6.11) 
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FIGURE 40 Probability density function of size, A 112 , of isoscalar islands/lakes. 
Solid curve: Gaussian fit (in these coordinates). 

A Gaussian fit (in these coordinates) of the data is included in figure 40. The 

quality of the fit indicates that a lognormal distribution provides a useful description 

of isoscalar island/lake sizes over the size range exhibited by the data, i.e., 

(6.12) 

with an estimated mean ofµ~ -2.5 and a standard deviation of a~ 0.37, in these 

coordinates. This finding is in accord with measurements of the (horizontal) size 

of clouds and radar-echo regions, for which a lognormal distribution was found in 

a variety of atmospheric conditions ( 70). Also consistent with these results are the 

findings of lognormal distributions of level-crossing (spacing) scales derived from 

1-D scalar measurements in liquid-phase turbulent jets (Miller & Dimotakis 199la) 

and in plumes in the atmospheric surface layer (Yee et al. 1995). 
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6.6 Distribution of shape complexity 

The ensemble-averaged number of islands/lakes with geometric-shape complex­

ity greater than n 2 , Nn(n2 ), is plotted in figure 41. This cumulative count decreases 

continuously with increasing n2, from the smallest values, n2 = 1, throughout the 

range of shape complexity. In other words, the cumulative count does not display 

plateaus at small or large values of !12 , in contrast to the behavior of the cumulative 

statistics for the size, cf. figure 39. The n2 values range over almost one decade, 

i.e., isoscalar islands/lakes were found with up to a factor of ten times the value of 

perimeter per unit (root) area enclosed, than for circles. 
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FIGURE 41 Cumulative (ensemble-averaged) count of geometric-shape complexity, 
n2, of isoscalar islands/lakes. 

The corresponding pdf of shape complexity, i.e., 

(6.13) 

or, 

(6.14) 

is shown in figure 42. An approximate power-law distribution of complexity is 

suggested from the data, as indicated by the fitted solid line in figure 42, i.e., 

(6.15) 
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with a'.:::::'. 5.3 (cf. equation (6.13)). 
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FIGURE 42 Probability density function of geometric-shape complexity, f22, of isoscalar 
islands/lakes. Solid line: power-law fit (in these coordinates). 

The pdf of shape complexity, therefore, decreases with increasing shape com­

plexity, in an approximate power-law fashion. In particular, near-circular struc­

tures, which generally correspond to small sizes (cf. figure 38), are associated with 

the highest shape-complexity probability density. Note that in terms of the pdf 

of the logarithm of the shape complexity, i.e., pn(loglO f22) = f22pn(f22), relation 

(6.15) is equivalent to, 

(6.16) 

which is a Poisson distribution for the logarithm of f22 (as noted by Dimotakis, 

in discussions). In other words, a power-law distribution of shape complexity is 

equivalent to log-Poisson statistics. 
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6. 7 Total perimeter, size, and shape complexity 

Consider the total perimeter, Ptot, 

nisl 

- "" (i) 
Ptot = ~~sl 

i=l i=l 

and the (net) enclosed area, Atot, of the isoscalar islands and lakes, 

n;s1 n1a.k 

- "" (i) "" (i) 
Atot = ~ Aisl - ~ Alak ' 

i=l i=l 

(6.17) 

(6.18) 

where Ji~~), P1~~, A~{, and A}!k denote the perimeter/ area values of the ith is­

land/lake, respectively. Note, therefore, that the presence of lakes increases the 

total isoscalar arc-length while, at the same time, decreasing the net area enclosed 

by the level set. 

A practically useful measure is the total shape complexity, (n2 ). In analogy 

with equation (Eq. 6.6), this can be defined as, 

( ) 
Ptot 

n2 = 1;2 
( 4n Atot) 

(6.19) 

The total shape complexity can be expressed as a weighted sum of the shape com­

plexities of the individual islands and lakes, i.e., 

"\;""'nisl n(i) r;;J0 + "\;""'nlak n(i) fiJD 
L..ti=l 2,isl V lii~i L..ti=l 2,lak V .lilak 

"'"'n1a.k A (i) 
L..ti=l lak 

(6.20) 

where the individual shape complexities are denoted by n;i?sl = pi~~) I ( 47r Afs1) 
112 

d ra(i) _ p,(i)/ (4 Ai )1/2 ' 
an ,l[,2 lak = lak 7r lak . 

' 

This total-shape-complexity measure represents the ratio of the (total) isoscalar 

interfacial length, to the (square-root of the) total area of the scalar-field cross­

section where jet fluid has not yet mixed down to the isoscalar threshold. In the 

context of non-premixed jet hydrocarbon combustion, for example, this (n2) mea­

sure, evaluated at a threshold chosen to coincide with the stoichiometric fuel-to-air 

mixture fraction, would become the perimeter-to-(root-)area ratio of the burning, 

isoscalar. interface. 
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FIGURE 43 Reynolds-number dependence of total shape complexity, (!12 ), perime­
ter, Ptot, and size, Atot, at a scalar threshold near the peak of the 
pre-mixing-transition scalar pdfs. 

The ensemble-averaged total shape complexity, {fh), computed as a function of 

Reynolds number in the range 4.5 x 103 ~ Re ~ 18 x 103 , at the c2 scalar threshold, 

corresponding to the peak of the pre-mixing-transition scalar pdf, is depicted in 

figure 43, as is the total perimeter, Ptot, and total size Atot. The decrease, with 

increasing Reynolds number, of the total shape complexity is seen to be due to 

the decreasing total perimeter; the total size is only weakly dependent on Reynolds 

number, in this range. These observations are consistent with the behavior of scalar­

field and isosurface measures observed in this Reynolds number range (cf. chapters 

2 and 4), and indicate a mixing transition in the far field of turbulent jets. 

The nature of the weighted sums in equation (6.20) shows that large lakes of 

high shape complexity can increase substantially the total shape complexity. Lakes 
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of high shape complexity and large size are indeed observed, across a wide range of 

sizes (cf. figure 38), contributing to the (relatively) high total shape complexity. 
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Conclusions 

Turbulent mixing structure - The multiscale structure of mixing in turbu­

lent flows, in general, and in turbulent jets, in particular, can be quantified in terms 

of scalar-field and scalar-isosurface measures (e.g., Catrakis and Dimotakis 1996a). 

Different aspects of turbulent mixing can be investigated by these two complemen­

tary approaches. In particular, scalar-field statistics provide amplitude-distribution 

measures of the mixing structure (e.g., the scalar pdf or power spectrum), while 

isosurface statistics (e.g., the SDF dimension or volume-fill fraction) can be used 

to compute the distribution of scales generated by the turbulent mixing process. 

Analysis of both types of statistics shows that, at least in the case of liquid-phase 

turbulent jets in the Reynolds number range 4.5 x 103 :=::; Re :=::; 18 x 103 , turbulent 

mixing occurs over a range of scales whose distribution is dependent on both the 

flow Reynolds number and the scalar (mixed-fluid concentration) threshold. 

Reynolds number effects; mixing transition - Analysis of both scalar­

field and isosurface measures in the far-field of liquid-phase turbulent jets indicates 

a transition between different states of turbulent mixing, in the Reynolds number 

range 4.5 x 103 :=::;Re :=::; 18 x 103 (Catrakis and Dimotakis 1996a). The Reynolds­

number dependence of such measures as the scalar (jet-fluid concentration) pdf, 

(cf. figure 8), the area enclosed by the isosurfaces (cf. figure 12), and the spatial 

extent (bounding-box size) of the isosurfaces (cf. figure 14), is most manifest at 

lower scalar values, corresponding to the outer region of the jet. This region gen­

erally contains lower scalar-threshold isosurfaces and lower velocities, and can be 

expected to exhibit increased viscous effects and higher sensitivity to the Reynolds 

number. Conversely, SDF isosurface measures do not exhibit a discernible Reynolds 

number effect at low ( c = c1) scalar values. Additionally, a conspicuous Reynolds 

number dependence is found for SDF measures of the isosurface geometry, such as 

the SDF dimension and the pdf of largest-empty-box (LEB) scales, at the inter­

mediate ( c = c2 ) scalar value. This threshold, near the peak of the pre-transition 
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scalar pdf's (cf. figure 8), corresponds to isosurfaces mostly to be encountered in the 

intermediate-radius (high-shear) regions of the jet (cf. b-series of figures 9-11). For 

.this threshold, the coverage-length of the isoscalar contours decreases with increas­

ing Reynolds number (cf. figure 29). The SDF dimension is also found to decrease 

with increasing Reynolds number (cf. figure 30), at the moderate-to-large scales, in­

dicating an isosurface geometry that becomes less complex, in this scale range, as the 

Reynolds number increases. Consistent with these findings is the Reynolds-number 

dependence of the distribution of LEB scales. In particular, the data indicate that 

small-scale regions of the flow are more likely to be visited by the isosurfaces; a 

lower probability of finding a LEB region of that size, as the Reynolds number is 

increased (cf figure 31 ). Finally, the expectation value of the LEB scale (as well as 

the most probable) is increasing with increasing Reynolds number (cf. figure 31 ); 

the distance from a point in the bounding box to the c2 isosurface is increasing 

with increasing Reynolds number. These observations, taken collectively, indicate 

enhanced molecular mixing, that is responsible for (local) scalar-field homogeniza­

tion, relative to stirring, that is responsible for isoscalar surface-area generation, 

with increasing Reynolds number. 

Geometry of isosurfaces in turbulence and turbulent mixing - The 

coverage of isosurfaces of jet-fluid concentration is found to possess a scale-dependent­

fractal (SDF) dimension that increases continuously with increasing scale. In par­

ticular, for level sets derived from 2-D, scalar-field images, the SDF dimension in­

creases smoothly from near unity, at the smallest scales, to 2, at the largest scales, 

indicating that the geometric complexity of the isosurfaces increases monotonically 

with increasing scale. This behavior necessitates a scale-dependent generalization 

of (constant-dimension) fractal geometry. The framework of SDF geometry can be 

used to quantify the scale-dependence of various measures of the isosurfaces, e.g., the 

volume-fill fraction. In addition, the interpretation of this SDF behavior in terms of 

the distribution of largest-empty-box (LEB) scales (chapter 5), as well as analysis 

of distributions of scales reported from velocity and concentration measurements 

in a variety of turbulent flows, suggest that the more-inclusive SDF framework can 

be used to quantify the multiscale geometry of turbulence and turbulent mixing, 

in general. The monotonic increase of the SDF dimension with increasing scale is 

probably a generic property of turbulent flows. One can argue that it would also 
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be encountered in other turbulent-mixing flows. 

Scale distribution, SDF geometry, and models -The theoretical frame­

work developed in chapter 4 shows that SDF coverage statistics of multiscale geome­

tries are invertible and can be used to compute the distribution of scales: spacing 

scales, in 1-D, or largest-empty-box (LEB) scales in multidimensions (Catrakis & 

Dimotakis 1996b ). For the case of power-law scaling over a finite range of scales, it 

is shown that power-law behavior is can be assessed (cf. figure 19) more accurately 

in terms of the pdf of scales, rather than fractal dimensions. Also, for the case of 

exponential or lognormal distributions of scales, both of which have been reported 

as good approximations of distributions of 1-D scales in level crossings of velocity 

and concentration measurements in various turbulent flows, the continuous varia­

tion of Dd(>..) with scale (cf. figures 17 and 18) shows that this SDF behavior is 

intrinsic and, in particular, not a consequence of finite-size effects. A model of the 

distribution of scales is proposed, in terms of 2-D LEB scales, and shown to provide 

a good approximation to the distribution of scales in level sets derived from the 2-D 

image data in turbulent jets, at the small scales. Such scale distributions, at least 

at the small scales, may be expected for isosurfaces in turbulence and turbulent 

mixing in other flows. 

Size and shape complexity - Isoscalar islands and lakes are found to ex­

hibit a joint distribution of size and shape complexity, at least in the case of jet 

flows in the Reynolds number range investigated. Consistent with SDF geometric 

behavior, the size distribution is found to be approximately lognormal. Also, the 

data indicate a power-law distribution of shape complexity (log-Poisson statistics). 

The isoscalar islands and lakes exhibit a range of values of the shape complex­

ity, fh, that increase with increasing size; the interfacial length of the isoscalar 

structures, normalized by the enclosed (root) area, increases with area. For small 

sizes, f12 tends to unity, indicating that the smallest isoscalar contours are relatively 

smooth and approach near-circular shapes. This can be appreciated, kinematically, 

by noting that the shape of a particular-sized fl.ow structure is more sensitive to 

being distorted, at its own scale, by smaller structures, and to a lesser extent by 

larger-scale fl.ow structures. Accordingly, larger-sized structures may be expected 

to be mo:(e complex in shape, as they subtend a larger fraction of the distribution 
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of scales. 

Multiscale nature of turbulence - The experiments and analyses de­

scribed in this thesis suggest that the geometry of scalar isosurfaces in turbulent jets, 

in particular, and in other turbulent flows, in general, can be quantified in terms 

of SDF measures and the distribution of scales (see, specifically, chapter 5). As the 

geometry of the isosurfaces is a result of the (space-time) dynamics of turbulent 

mixing in one of the canonical flows (jet), with transport and mixing occurring over 

a wide range of scales, one can expect that other multiscale, turbulence-generated 

structures, in a variety of other flows, will also exhibit a geometric behavior that is, 

at least qualitatively, SDF. While different turbulent flows may have quantitatively 

different SDF statistics as, for example, turbulent shear layers, boundary layers, 

wakes, etc., the distribution of scales holds the promise of possessing universal fea­

tures (lognormal statistics) at the small scales. In addition, the connection between 

SDF behavior and the scale distribution (chapter 4), in conjunction with additional 

evidence of SDF behavior in a variety of other multiscale natural phenomena, sug­

gest that SDF geometry may be expected to be prevalent - and can be used to 

compute the distribution of scales - in multiscale natural phenomena, in general, 

and in turbulence, in particular. 
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APPENDIX A 

Isosurface representation and coverage 

Conventional methods for the representation and coverage of isosurfaces (level 

sets) derived from digital images are based on the identification of boundary pixels. 

In the analysis of the data described here, the scalar image c( x, y )-surfaces were 

represented using bilinear B-splines. Isoscalar contours (level-sets) were then com­

puted from the bilinear B-spline representation. This removes several difficulties 

associated with pixel-based schemes. 

The effects of pixel representations on the identification of isosurfaces will be 

discussed first. Figure A.1 depicts a scalar isosurface contour, for c = c1 , at Re'.:::::'. 

9.0 x 103 (cf. figure 8) using conventional, boundary pixels, within the field-of-view 

of the image. The field-of-view is, by design, larger than the local ( z / d = 275) 

transverse jet extent. All individual level sets of the measured isosurfaces are thus 

closed and fully contained within the field-of-view. 

A selected portion of the isosurface of figure A.1, indicated by an arrow, is 

shown enlarged in figure A.2 using conventional boundary pixels. The boundary­

outline-pixel representation for this isosurface is also shown in figure A.2, superim­

posed on the conventional-boundary-pixel representation. Boundary-outline pixels 

cover the outline of the boundary pixels and were devised and employed in the 

2-D streak-image data analysis of Miller & Dimotakis (1991a). Figure A.3 shows 

a small island and a geometrically-identical lake represented using both conven­

tional and boundary-outline pixels. It is seen that the conventional-boundary-pixel­

representation counts for this island and lake are substantially different, even though 

the two isosurfaces are the same. There is, therefore, an inherent asymmetry in the 

representation of small lakes and islands using conventional boundary pixels. The 

boundary-outline-pixel representation removes this asymmetry. 
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FIGURE A.l Isoscalar surface at threshold c = c1 , for Re= 9.0 x 103 (cf. figure 8), 
depicted using conventional boundary pixels. Also shown is the field­
of-view (dotted line). Arrow indicates an isoscalar island, magnified 
and shown in figure A.2. 

Figure A.4 compares the ensemble-averaged coverage counts of scalar isosur­

faces for c = c1 at Re~ 9.0 x 103 (cf. figure 8) represented using both conventional 

and boundary-outline pixels. The coverage counts for figure A.4 were computed 

using a conventional coverage method in which the field-of-view of the image was 

successively subdivided (e.g., Sreenivasan et al. 1989). Figure A.5 shows the corre-
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FIGURE A.2 Isoscalar island (indicated by arrow in figure A.1). Bilinear B-spline: 
solid line; boundary pixels: shaded squares; boundary-outline pixels: 
dashed squares. 

sponding ensemble-averaged SDF dimension, D 2 (..\), computed from the coverage 

counts of figure A.4 using 2nd order finite differences. It is seen that the conventional 

boundary-pixel representation ca:n lead to D 2 (..\) values at the smallest scales that 

are less than the topological dimension, dt, i.e., unity, in this case. This is a result 
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FIGURE A.3 Asymmetry in conventional boundary-pixel representations. The bound­
ary of a small island (left) and of a geometrically-identical lake (right) 
is covered using conventional vs. boundary-outline pixels. 

of the asymmetric representation of small lakes/islands with conventional bound­

ary pixels, as noted above. The boundary-outline-pixel representation removes this 

problem as shown in figure A.5. 

The coverage results of figure A.4, however, exhibit an inflection point, at large 

scales, for both the conventional and boundary-outline pixel representations. This 

is manifested as a dip in the value of D 2 (>..) at the large scales, as seen in the SDF 

dimension results in figure A.5. This is an artifact of the fact that the conventional 

box-counting methods employed to produce the data in figure A.5 subdivide the 

field-of-view of the image. Those methods do not account for the finite spatial 

extent of the data, and, as a result, such methods can mask the coverage behavior 

of the data at the outer scales, producing counts that substantially overestimate 

the coverage counts at those scales. For example, the ensemble-averaged coverage 

counts based on successive subdivision of a larger field-of-view (2048 x 2048 square­

pixels) are also shown in figures A.4 and A.5. It is seen that a larger field-of-view, 

for the same data, can influence the large-scale estimate of the SDF dimension. 

To address these issues, we have developed a modified box-counting method, 

the Bounding-Box Partition Method (BBPM), that removes several shortcomings 

of conventional box-counting methods. The modified method accounts for the finite 

spatial extent of each particular isosurface, and is, therefore, able to produce cov­

erage counts over the whole range of scales, from the image-pixel resolution to the 

spatial extent. The first step of the method is to estimate the spatial extent of each 

particular isosurface. This is achieved by identifying the bounding box, or smallest 

circumscribing rectangle.( cf. Tricot 1995), that covers the isosurface. Figure A.6 

shows an example of a bounding box computed for the isosurface of figure A.l, as 
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FIGUREA.4 Coverage, N2 (>-.), of scalar isosurfaces for c = c1 at Re = 9.0 x 103 

(cf. figure 8), computed by successive subdivision of the field-of-view 
(cf. figure A.1). Conventional boundary pixels: solid line, squares; 
boundary-outline pixels: dashed line, circles; larger field-of-view: dot­
ted line, crosses. 

well as the extent of the image field-of-view. A coverage count of unity is assigned 

for the bounding box. The single scale that corresponds to this coverage count is 

assigned to the geometric mean of the lengths of the two sides, Ax and Ay, of the 

bounding box. This scale is also taken as an estimate of the spatial extent, Db, of 

the isosurface, i.e., 
c - ( )1/2 Vb= AxAy , (A.l) 

and, cf. equation (3. 7), 

(A.2) 

The largest coverage scale, ).. (o), at this initial stage of the coverage process, is given, 

therefore, by ).. (o) = Db. In the first iteration, the bounding box is subdivided into 
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FIGURE A.5 Comparison of SDF dimension, D 2 (>..), computed for the coverage 
counts of figure A.4. Same legend as figure A.4. The topological di­
mension, dt = 1, is also shown (solid line). 

four equal rectangles, and the number of the smaller rectangles covering parts of 

the isosurface is counted. The associated coverage scale, >.. (l), corresponding to this 

(first-iteration) count, is computed in a similar fashion, as the geometric mean of 

the sides of the smaller rectangles, so that >.,(l) = 8b/2. The process is repeated by 

further subdividing each rectangle, so that, at the kth iteration, the coverage scale 

is given by, >.. (k) = 8b/2k. 

The bilinear B-spline representation method developed to represent the isosur­

faces removes step-like pixelation difficulties that characterize pixel-based schemes. 

Bilinear B-splines conserve the (local) integral under the scalar surface, i.e., they 

match the particular pixel output. Figure A.2 shows the bilinear B-spline represen­

tation (solid line) of an isosurface (cf. figure A.2). For every set of four neighbouring 
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FIGURE A.6 Bounding box (dashed line) computed for the isosurface of figure A. l. 
Also shown is the field-of-view extent (dotted line). This isosurface is 
depicted using boundary-outline pixels. 

image pixels, segments of the isosurfaces were computed using bilinear B-splines. 

Level sets of bilinear B-splines can, in general, give two branches within a four-pixel 

region, each of which belongs to a different isosurface. For this reason, a contour­

following algorithm was written which marches along the boundary pixels belonging 

to the same isosurface. The resulting piece-wise-bilinear isoscalar contours are con­

tinuous and closed (e.g., figure A.2). 
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FIGUREA.7 Coverage, N2(>..), of scalar isosurfaces at c = c1 and Re= 9.0x103 

(cf. figure 8), computed using the Bounding-Box Partition Method 
(BBPM). Bilinear B-splines: solid line, squares; boundary-outline pix­
els: dashed line, circles. Field-of-view-based coverage counts also 
shown (dotted line, crosses), cf. figure A.4. Error bars are for bilinear 
B-spline BBPM counts (error bars are smaller than data symbols). 

The ensemble-averaged coverage computed using the BBPM applied to the bi­

linear B-spline isosurfaces is shown in figure A. 7, for scalar isosurfaces at c = c1 

and Re ~ 9.0 x 103 . For comparison purposes, figure A. 7 also shows the cover­

age counts computed using the BBPM for isosurfaces represented using boundary­

outline pixels, as well as the coverage counts computed using the conventional, 

field-of-view-based, box-counting method applied to boundary-outline pixels. Fig­

ure A.8 shows the ensemble-averaged SDF dimension corresponding to the coverage 

counts of figure A.7, computed 'using 2nd order finite differences; note that the 

ensemble-averaged SDF dimension was computed as the dimension corresponding 
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FIGUREA.8 Comparison of SDF dimension, D 2 (>.), computed for the coverage 
counts of figure A.7. Legend as in figure A.7. Error bars are for 
dimension computed from bilinear B-spline BBPM counts (cf. error 
bars for the corresponding counts in figure A. 7). 

to the ensemble-averaged counts (and, in particular, not as the ensemble-average of 

the individual dimensions). It is seen that the BBPM removes the (artificial) dip 

in the value of D 2 (>.) at large scales. 

The uncertainty level in the counts is indicated by error bars in figure A.7. The 

error bars are of size equal to ± 1 standard deviation of the mean count (estimated 

from ensemble-averaging over six realizations) and were computed as, 

1 n 2 

n ( n - 1) ~ (Ni - ( N ) ) ' (A.3) 

where n = 6 is the number of images (at Re '.::::::'. 9.0 x 103 ) and ( N) is the mean 

count. The percentage error in the (logarithm of the) coverage count is estimated to 
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be ±1 %, over most of the scale range investigated. The error bars for the dimension 

were computed based on the dimension values of the individual realizations using 

an equation similar to (A.3) and are shown in figure A.8; as comput,ed, these error 

bars correspond to a mean value of the dimension that is different from (slightly less 

than) the computed ensemble-averaged dimension (as also indicated by the slight 

asymmetry of the error bars with respect to the ensemble-average), cf. discussion 

on ensemble-averaging procedure above. The corresponding percentage error in the 

dimension varies with scale: from ±0.5% at small scales, to ±2% at large scales, to 

±0.5% at the largest (computed) scale. The uncertainty levels in the dimension (at 

least in the lower decade of scales) do not affect, therefore, the conclusions reached 

regarding the SDF geometry and scale distribution of the isosurfaces. 

The proposed BBPM yields coverage counts at large scales that follow the spa­

tial extent of the isosurfaces. Additionally, the coverage counts of the proposed 

method agree at the small scales with the coverage counts obtained using the con­

ventional method at those scales. Figures A. 7 and A.8 also show that the bilinear 

B-spline representation yields coverage counts which agree, at the large scales, with 

the counts obtained using boundary-outline-pixel representations. At the small 

scales, boundary-outline-pixel representations lead to overestimates of the coverage 

necessary for the isosurfaces. Also, the smallest scale at which the conventional 

methods can produce coverage counts is limited by the pixel scale. The level sets 

derived from the bilinear B-spline representation, as seen in figure A.8, lead to cov­

erage results that do not have these limitations. The computed SDF dimension 

approaches unity at the smallest scales, as expected. 
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APPENDIX B 

Effect of noise on coverage 

To investigate the effects of noise on the isosurface geometry and, in particular, 

coverage statistics, scalar isosurfaces were computed from the scalar-field image 

data of figure 4 (Re ~ 9.0 x 103 ) for a progression of decreasing threshold values, 

depicted in figures B.la-f, from c/cref = 0.6 to 0.1, in steps of 0.1. Note that 

figure B.la reproduces the scalar isosurface depicted in figure 9a, for the c/cref = 

c/ c1 = 0.6 threshold. Recall that this threshold value is outside the range of values 

corresponding to the near-singular region of the scalar pdf in the vicinity of the 

zero-value threshold, cf. figure 8. 

The lowest threshold value is seen to result in qualitatively different isosurfaces 

(cf. figure B.lf). Clusters of points, or "dust", are evident alongside the larger 

isoscalar structures, at the lower thresholds. This is a direct consequence of noise. 

At such low values of the scalar threshold, isoscalar surfaces derived from scalar­

field image data can be expected to be strongly influenced by noise, as a result of 

the (relatively) lower signal-to-noise ratio. 

As noted earlier (Chapter 1), for the two-dimensional image data analyzed 

here, the highest-concentration regions are to be found generally in the center of 

the image, and the lowest-concentration regions in the outer part. Both the highest­

and lowest-regions are associated with low signal-to-noise ratio, as compared to the 

intermediate-concentration, high-shear regions. Additionally, the isosurfaces corre­

sponding to high concentration values have the least spatial extent. It is expected, 

therefore, that noise has the least effect on isosurface statistics computed for the 

intermediate concentration values (as compared to lower, or higher, values). 
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a 

FIGURE B.l Isoscalar surface at Re'.'.:::::'. 9.0 x 103 , derived from the scalar-field image 
data depicted in figure 4. (a) Threshold level, c/cref = c/c1=0.6. 
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FIGUREB 1 (b . ) cj Cref = 0.5. 
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FIGURE B.l ( c) cj Cref = 0.4. 
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FIGUREB.l (d) c/cref = 0.3. 
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FIGURE B.l (e) c/cref = 0.2. Note noise manifested as "dust". 
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FIGURE B.l (f) c/cref = 0.1. Note large regions of "dust" due to noise. 
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FIGURE B.l (g) c/ Cref = 0.104. This particular threshold was found to give near­
PLF behavior (due to the noise), cf. figure B.2. 
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The SDF dimension, D 2 (>.), computed from the coverage of the isosurfaces de­

picted in figures B.la,b is shown in figure B.2. For the higher threshold, c/cref = 

c/c1 = 0.6, the SDF dimension is seen to increase with increasing scale. Note that, 

while the behavior at c/ Cref = 0.6 depicted in figure B.2 result is for a single realiza­

tion only, it is representative of the qualitative behavior of individual realizations, 

at this scalar threshold and Reynolds number. Recall, also, that the ensemble­

averaged results show a well-defined, smooth SDF behavior at this threshold and 

Reynolds number, cf. figure 25. 
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FIGURE B.2 Effect of noise on SDF dimension of the isoscalar surfaces depicted in 
figures B. la-f, for a progression of decreasing threshold ( c/ Cref) values 
(in square symbols): 0.6 (solid line); 0.5 (long-dash line); 0.4 (short­
dash line); 0.3 (dot-dash line); 0.2 (triple-dot-dash line); 0.1 (dotted 
line, squares). Also shown (dotted line, crosses) are dimension values 
for c/ Cref = 0.104, a particular threshold for which a near-PLF behavior 
was found. 
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As the threshold is progressively decreased, a decrease of the SDF value at 

moderate-to-large scales is evident in figure B.2. At the lowest threshold in the 

progression (c/cref = 0.1), a (sudden) increase of the SDF value at the smaller 

scales is evident. In particular, a threshold value can be found for which a region 

of a near-constant value of the fractal dimension ( D 2 '.::::'. 1.25 ± 0.05, in this case) 

is indicated at the smaller scales for a threshold of c/cref = 0.104, cf. figure B.lg. 

This is a direct result of noise and, in particular, of the "dust" regions surrounding 

the isoscalar structures. This dust masks, in effect, the intrinsic geometric scaling 

of the (noise-free) isosurface, at this threshold. 

The non-monotonic behavior of the SDF dimension in figure B.2, at the 2 lowest 

thresholds ( c/ Cref = 0.1 or 0.104) is due to the clustering of points, which can cause 

the SDF dimension to decrease locally (with increasing scale); cf. Appendix D. 

As noted earlier, the limiting values of the SDF dimension are, respectively, the 

topological dimension, dt, at the smallest scales, and the embedding dimension, d, 

at the largest scales (cf. equation (3.12) and related discussion). These are not 

necessarily the bounding values, however. The rate at which the SDF dimension 

decreases with decreasing scale, locally, can be augmented by clustering of structures 

and can result in the SDF dimension decreasing below dt. For example, the SDF 

dimension may approach zero in the case of point-like clustering of structures. In 

that case, for clusters that are spaced sufficiently far apart, the SDF dimension can 

approach zero at scales of the order of the mean spacing between clusters. Similarly, 

clustering of structures into regions of shapes other than points, e.g., lines or planes, 

can result in a SDF dimension that locally approaches a value corresponding to the 

overall cluster topology. 

We conclude that low values of the threshold, corresponding to low values of 

the signal-to-noise ratio, can lead to a qualitatively different geometry and, as a 

result, different SDF behavior as a result of noise. In particular, a (low) threshold 

was found ( c/ Cref = 0.104) at which a near-plateau of the fractal dimension ( D2 '.::::'. 

1.25 ± 0.05) was indicated (for a particular realization) which may be interpreted 

as PLF behavior in a range of scales, cf. Sreenivasan 1991. In this case, therefore, 

noise can lead to PLF behavior. Finally, different manifestations of noise may be 

expected to give rise to quantitatively different PLF (or SDF) behavior. 
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APPENDIX C 

Area-perimeter computation 

For the purpose of computing the perimeter, P, and area, A, of the isoscalar 

islands and lakes (cf. Chapter 6), level set contours were computed using a local 

biquadratic B-spline representation of the two-dimensional scalar field data. This 

ensures C1-continuity of the computed contours (no cusps) and eliminates several 

pixelation difficulties associated with conventional methods for constructing con­

tours from digital images. 

In contrast to pixel representations, B-spline constructions of the isosurface do 

not impose a maximum, or minimum, value to the possible perimeter corresponding 

to a given area value, and do not overestimate the arc length of arbitrarily-oriented 

contours. Additionally, it was found that bilinear (i.e., first-order) B-splines re­

sulted in large overestimates of the perimeter-to-area ratio (or, the dimensionless 

!12 complexity), for small islands /lakes ( i. e., for low values of the area). This ef­

fect is due to cusps introduced by the bilinear B-splines; the choice of biquadratic 

(second-order) B-splines eliminated this difficulty. 

A contour-tracking algorithm was also developed that traces each individual 

island/lake contour, evaluated at subpixel resolution, based on the local biquadratic 

B-spline representation of the scalar-field, c( x, y )-surface. Examples of isoscalar 

islands computed in this fashion are shown in figures 44 and 45. 
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FIGURE 44 Example of an isoscalar island (solid line) derived from a biquadratic 
B-spline representation of the scalar field. Image pixels are shown as 
(large) dotted squares. Outer extent of boundary-outline subpixels, 
evaluated at 1/8th of pixel resolution, is shown as a dashed line. 
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FIGURE 45 Isoscalar island derived from a biquadratic B-spline representation of 
the scalar-field image data depicted in figure 4, cf. figure A.2. Image 
pixels are shown as dotted squares. 
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Figure 44 depicts, in addition to the isoscalar island, the outer extent of 

boundary-outline subpixels that were computed in the contour-tracking process. 

A subpixel resolution of 1/8th of the image-pixel resolution was chosen to com­

pute these boundary-outline subpixels using local biquadratic B-splines. As long 

as this subpixel ·resolution is small compared to the smallest features sought, this 

scheme will track successfully the individual islands/lakes. From the outer extent 

of the boundary-outline subpixels, intersections with the contours were computed 

employing, again, biquadratic B-splines. The intersection points were joined with 

straight-line segments, as shown in figure 44. 

It is seen that the biquadratic B-spline representation eliminates cusps, as 

opposed to bilinear B-splines (cf. figure A.2). While this is not an issue for the 

computation of coverage statistics, it is an important issue for the computation of 

area-perimeter statistics, as discussed above. 
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APPENDIX D 

Scale-dependent-fractal (SDF) transform pairs 

For reference, recall first the general 1-D SDF transform pair derived in chapter 

4 for statistically homogeneous point sets, cf. equation ( 4.9), 

and, conversely, 

l _ _ -\_f"'""">..
00

_P_1 (_l)_d_l _ 

f0>.. f >..~ P1 ( l) dl d,\ 
(D.1) 

(D.2) 

where D 1 (,\) is the 1-D SDF dimension and p1(l) is the pdf of spacing scales. The 

mean scale, lm, is given by, 

lm = 1= lp1 ( l)dl 

= J~ {z exp [f [i - D1(I')] ~'.']} 
(D.3) 

SDF transform pairs for several distributions of (spacing) scales (in 1-D) are listed 

in table S, below. 



Pl(/) 

(S.1) 6(1- lm) 

(S.2) 8(l-l1) + 8(l-l2) 
2 2 

(S.4) 

(S.5) 

_ l. [In(~) +~].
2 

2 ,,. 2 

e 
../21rul 

(S.6) 

1 < v < 2 
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{ 
0, .\ < lm 
1, lm < A 

N-1 . 

I: (~Y 

I: '(~)!· + ~ ~>· ' { 
i=k+l z=O 

1, 

.\ < ---1rL_ 
bN-l 

lo 10 
k+l < .\ < k 

b b 
k=O, ... ,N-1 

{ 
l [1 + erf [(ln(.\/lm)/u - u/2) /Vi]] }-l 1- 1+.!..W.. 
,\ 1 - erf [(ln(.\/lm)/u + u/2) /Vi] 

S. Table of SDF transform pairs 
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Pl(/) D1(.A) 

{ A/211 .A< 11 
{ a/l1, l < l1 1- .A/211 +ln(l2fl1)' 

(S.7) a/l, 11 < l < l2 _ ln{Z2L.>.} 
l1 <.A< 12 o, l2 < l 

1 
l-l1/2.A+ln(l2/.A)' 

1' l2 <.A 

{ .~, l < /1 
{ I 

.A< 11 2 (2 - l1/l2) Zif .A - 1 ' 
(S.8) sili. 11 < l < 12 1 - >.L12 

11 <.A< 12 [2 ' 1 
- 3/2 - .A/l2 + ln (.A/11) ' 0, 12 < l 1, 12 <.A 

0' .A< 11 

l < l1 1- ALl1 11 <.A< l2 
{ 0, [(')2-v ] ' (S.9) a;rv, l1 < l < 12 .A 1 - -1 . 

G-(~=v) l~(~)l-v 0, 12 < l 

' 1' 12 <.A 

{ o, l < 11 r .A< 11 

(S.10) a/l, 11 < l < /2 1 _ .>.1n{Z2L.>.} 
l1 <.A< l2 

0, /2 < l 
.A-l1-.Aln(.A/l2)' 

1, 12 <.A 

{ o, l < /1 r .A< 11 
1 - AL/2 (S.11) a/1

2
' l1 <I< /2 l - ln(.A/11) + 1 - .A/l2' l1 <.A< l2 

0, l2 < l 1, 12 <.A 

S. Table of SDF transform pairs (continued) 
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For the cases of exponential (table entry S.4), lognormal (table entry S.5), or 

power-law (table entry S.6) distributions, plots of the SDF dimension, D 1 (>..), were 

given in section 4.3, cf. figures 17, 18, and 19, along with Monte-Carlo simulation 

results. Additional plots of the SDF dimension, for other scale distributions listed 

in the SDF transform pairs of Table S, are shown in figures 46-49. 

For a single-scale pdf, i.e., equally-spaced points (on a line), the SD F dimension 

exhibits a step-increase at the (characteristic) scale of the pdf, cf. table entry S. l). 

This is shown in figure 46. This behavior implies that the only change in the 

complexity of the set, as a function of scale, occurs at the (single) characteristic 

scale of the pdf, as may be argued a priori. 

A two-scale pdf has a SDF dimension given in table entry S.2. This is plotted 

in figure 47. It is seen that the SDF dimension changes only in the range of scales 

bounded by the two characteristic scales. Additionally, the SDF dimension decreases 

with increasing scale, in that range. The behavior of the SDF dimension is, threfore, 

non-monotonic. This, perhaps surprising, behavior is confirmed by numerical results 

from 4 Monte-Carlo simulations with L / lm = 3000, plotted in figure 4 7 along with 

the theory. The discrepancy, at one of the smaller scales, between theory and 

simulation (cf. figure 4 7) is due to the discrete nature of the scales at which the 

box-counting was performed. 

Table entry S.3 corresponds to stochastic (statistically-homogeneous) variants 

of Cantor-like sets (i.e., discrete scale pdfs, as opposed to continuous scale pdfs 

such as entry S.6). This entry is a generalization of S.2 and has a scale pdf which 

is non-zero at scales generated by a power-law with a (single) characteristic scale 

10 and parameter b. The probability densities (delta functions) at these scales are 

also generated from (another) power-law, with parameter a. The parameters a and 

b (and the scale 10 ) can be chosen to study several (stochastic) variations of the 

Cantor set. The theoretical prediction for the SDF dimension, in general, is also 

shown in entry S.3. 

As an example of entry S.3, parameters were chosen (a = 2 and b = 3) to 

correspond to the (stochastic version of the) classic middle-third Cantor set. Four 

generations of this set result in a SDF dimension shown in figure 48. Multiple 



-135-

regions of non-monotonicity are evident (cf. figure 47). Ten generations (with the 

same parameter values) are shown in figure 49 (cf. table entry S.3). The SDF 

dimension appears to develop a plateau (with superimposed oscillations), at a value 

near the (constant) PLF of D 1 = log 2/ log 3 :::::::'. 0.63 for the (inhomogeneous Cantor) 

set (in the small-scale limit). This value is indicated in figure 49 as a dashed line. 

Table entry S.7 is a special case of (the continuous, power-law scale pdf of) 

S.6, for a power-law exponent of v = 1. The resulting SDF dimension increases 

continuously with scale (at all scales smaller than the upper-cutoff scale 12 ) as 

shown in figure 50. This is, therefore, another example of a case in which power-law 

behavior (of the scale distribution) is better assessed in terms of the SDF dimension. 

At the same time, the SDF dimension retains its practical use a quantitative measure 

of the volume-fill fraction (or complexity) of the set, as a function of scale. 

Another special case of S.6, for a power-law exponent of v = 2, is listed as entry 

S.8 and is depicted in figure 51, A smoothly-increasing SDF dimension is evident 

(for scales below the upper-cutoff scale, 12 ). This behavior is similar to that of entry 

S. 7 (cf. figure 50), with higher values of the SDF dimension at a given scale. 

Finally, entries S.9, 10, and 11 are given (for completeness) for scale distri­

butions corresponding to entries S.6, 7, and 8, respectively, with zero probability 

density below the lower-cutoff scale, 11 • The behavior of the SDF dimension for 

these cases is similar to the behavior in figures 19, 50, and 51, respectively. 
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FIGURE46 SDF dimension, D 1 (>.), for single-scale pdf, cf. table entry S.l. 
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FIGURE 4 7 SDF dimension for two-scale pdf, cf. table entry S.2. Results from 4 
Monte-Carlo simulations with L / lm = 3000 are also shown (circles). 
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FIGURE48 SDF dimension, D 1 (.A), for a discrete power-law pdf, over four genera­
tions, with a = 2 and b = 3, cf. table entry S.3. 
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FIGURE49 SDF dimension, D 1 (.A), for a discrete power-law pdf, over ten genera­
tions, with a= 2 and b = 3, cf. table entry S.3. 
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FIGURE 50 SDF dimension, D1 (.A), for (continuous) power-law pdf of spacing scales 
with v = 1, cf. table entry S.7. 
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FIGURE 51 SDF dimension, D 1 (.A), for (continuous) power-law pdf of spacing scales 
with v = 2, cf. table entry S.8. 
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