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ABSTRACT

A method has been derived for the determination of the
downwash in the field of an airfoil extending through a circular
jete This solution has been applied particularly to the region aft
of the lifting line in the plane of the airfoil, to determine the lift
distribution on a wing extending through a circular jet.

The method of solution is essentially based on a division
of the flow induced by the jet boundary into parts which are even
and odd with respect to the direction of flow, The analysis due
to the even part alone is similar to previous theories, which in
effect disregarded the odd part, Such previous results based on
the even part alone differ considerably from the experimental
values, The results based on the total of the even and odd parts
show good agreement with the experiments, illustrating the ne=
cessity of including the odd part of the flow when the segment of
the wing immersed in the jet is of low aspect ratio,

The problem has been solved in parametric form, so
that the results may be employed to determine the characteris=-

tics of any geometry wing=jet combination at any jet velocity ratio.
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I. INTRODUCTION

The problem of determining the characteristics of an airfoil
extending through a circular jet has been investigated from several
points of view, One is the influence of a propeller slipstream on an
airplane's flight characteristics, Another is the influence of the
boundaries of a wind tunnel on an airfoil being tested therein,

An analytical treatment of the problem of a wing in a propel=-
ler slipstream was given by Koning (Ref, 1), based on lifting line
theory., The results of Koning's analysis, because of his method of
computation, are valid only for small increments of the jet velocity.
Other early estimates (Refs. 2, 3, 4) were based on semi~empirical
factors, and gave satisfactory results within the spéed»power range
for which they were developed. However, the higher ratios of jet
velocities attainable through turbo~prop engines lave stimulated
renewed interest in solutions valid at all jet velocities, This in
terest is further augmented by the development of certain types of
vertical takew~off aircraft, and other configurations where the higher
jet velocities now attainable produce a first order effect on perform=
ance,

Graham, Lagerstrom, Licher, and Beane of the Douglas
Aircraft Company (Ref., 5) recently surveyed the slipstream probe
lem, and extended Koning's results in a form valid (within the
original assumptions) at all jet velocities, Graham's study also
included an application of slender body theory to this problem,
These two theories were compared with the experimental data of

Stuper (Ref. 6), which seemed to lie between the two theories,
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In most cases of interest the width of a propeller slipstream
is of the same order as the wing chord immersed in it, With the
aspect ratio of the immersed segment thus of the order of one, it
would seem lifting surface theory would be required to properly
describe the actual conditions, The finding of Graham that the
available experimental data lay midway between the two limiting
theories, lifting line and slender body, would appear to support
this view,

The difficulty in applying lifting surface theory to this prob-
lem is the determination of the downwash due to the boundary of the
jet at points downstream of the lifting line, However, the downe
wash aft of the lifting line is of interest in certain wind~tunnel
problems, and has been determined by Lotz (Ref, 7) and Burgers
(Ref, 8)s These wind~tunnel investigations were situations where
the outer velocity was zero and the airfoil lay entirely within the
jet, and as such were special cases of the general problem of an
airfoil extending through a circular jet. A similar investigation
for a cldsed wind tunnel was carried out by Eisenstadt (Ref, 9).

This thesis develops the general case where there exists
an outer velocity and where the airfoil extends through the jet,

This permits the calculation of the downwash due to the boundary
in the entire field aft of the lifting line, Any wing problem in prin-
ciple can then be solved by lifting surface methods,

As an example, a wing problem is solved by finite step
methods (Ref, 10), based on the approximate lifting surface meth~

od of Weissinger (Ref, 11).
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II. NOTATION

Ty Jet radius
Xy Y, 2 Rectangular coordinates (Fig, 1)
Esme & Non-dimensionalized rectangular coordinates, _rz{— s ;}L s -:——
o o o
Xy Vs Z Rectangular coordinate running variables
a,B,7 Non-dimensionalized rectangular coordinate running
X % z
variables, ™ s T T
o o o

x, 1,0 Cylindrical coordinates
p Non-dimensionalized radius, _r_r__

o
s Semi-width of horseshoe vortex
b Wing span
S Wing area
A Vector velocity potential of flow induced by horseshoe

vortex
¢ Scalar velocity potential of flow induced by jet boundary
Vj Jet velocity
V0 Outer or free stream velocity
M VQIVj
I Circulation strength
g

v Vector perturbation velocity
u, v, w Rectangular perturbation velocities
u, Radial perturbation velocity
LK Modified Bessel functions
A;B Coefficients in series representation of ¢

P Summation index
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R!

o
Variable of integration
Spanwise locations of horseshoe vortices, non-
dimensionalized with respect to jet radius T
Perpendicular distance to a line vortex

Three~dimensional non-dimensionalized potential

distance = /gz + (ﬂ'ﬁ)z + & 2

Two~dimensional non~dimensionalized potential

distance = )/(n_g)z + & 2

Integral defined in text

Number designating a particular horseshoe vortex,
starting from left wing tip

Number designating a particular downwash point,
starting from left wing tip

Differential length element of horseshoe vortex, non-~
dimensionalized with respect to jet radius r,

Variable defined in text: gq = \§

Complex variable = n+i¢g = peig

Downwash points

Vortex points

Number of horseshoe vortices across total wing span

Downwash velocity at any point (%X,y) caused by a rec~
tangular horseshoe vortex of unit semi-width and
circulation strength equal to 4

Wing downwash coefficient; the downwash at any down-

wash point P-u due to the nth horseshoe vortex
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G(Es M) Downwash velocity at any point (£, n) caused by a rec=
tangular horseshoe vortex of unit semi~width and
circulation strength equal to 4w

G Boundary downwash coefficient; the downwash at any
point P, due to the nth horseshoe vortex

Psq Coordinates of a point on the wing surface with respect
to root quarter chord, based on semi~width of horse~

shoe vortex

XY Coordinates of a point in the wing surface with respect
to the origin of a unit horseshoe vortex, based on
semi~-width of horseshoe vortex
W Wronskian of Bessel functions = I(A)K¥(\) = I'(A)K(\) = = 71\-
W Modified Wronskian = Vo2 I'(\) K(\) - ij IN)K'(\)
Note H™ . Weedvp?
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III. ANALYSIS OF DOWNWASH DUE TO THE JET BOUNDARY

The problem, as illustrated in Figure 2, is an airfoil
spanning a circular jet, This circular jet of velocity Vj is bounded
by an infinite outer flow of velocity V = . The finite wing extends
symmetrically completely across the jet into the outer flow on both
sides,

In the analysis, the airfoil will be replaced by a series
of finite horseshoe vortices, The case for such a vortex inside or
outside of the jet will then be solved separately, These horseshoe
vortices, illustrated in Figure 3, will be represented in width para~-
metrically, so that combinations may later be superimposed to rep=~
resent any arbitrary jet wing combination. The circulation around
the horseshoe vortex as illustrated is taken as positive,

The fluid is assumed to be an ideal, incompressible, non-
viscous fluid, and this leads to the Laplace equation as the govern-
ing equation,

The boundary of the jet is a free surface, The presence of
different velocities on its two sides gives rise to a vortex sheet on
the boundary, This vortex sheet has associated with it a flow sys-
tem such that the required conditions on pressure and continuity of
the boundary are satisfied,

Thus the requirements of the jet boundary determine the
flow, aside from the singularities represented by the wing and its
wake, Two conditions must be satisfied on the boundary, In a
linearized small perturbation theory, these are: First, the pres~

sure of the inside flow (region j) must at the boundary equal the
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pressure of the outside flow (region o). Otherwise, the accel-
eration of the fluid would be infinite across the boundary. In terms
of the perturbation velocity, v, whose axial and radial compon-

ents are u and u respectively, this condition is written:
V.u, = V_u (1)

The second boundary condition is one of continuity, and
states that the boundary must consist of streamlines, that is, the
inside and outside flow must be tangent at the boundary. For a cir-

cular jet, this tangency condition is expressed as:
V. u, = V.u (2)
o r,

The perturbation flow v is composed of two parts, that due
to the wing and that due to the boundary. The flow due to the wing,
or due to system of horseshoe vortices used to represent it, may
be readily determined by the Biot Savart law, The essential prob-
lem then is to determine the flow due to the jet boundary. The sum
of the two flows then constitutes the total perturbation flow.

We note the single elementary horseshoe vortex of strength
/T may be decomposed into two halves, one even (1) and one odd
(2), each of strength —/;- , as illustrated in Figure 4. These two
systems are independent, and satisfy the boundary conditions inde-
pendently,

This decomposition of the vortex into its even and odd parts

with respect to x will facilitate the solution of the problem, as the

even part is two-dimensional, and may be readily solved by two-
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dimensional potential theory., The solution of the odd part, while more

complicated, may be facilitated by employing antisymmetry conditions,

A, Horseshoe Vortex Inside Jet

The elementary horseshoe vortex inside the jet is first de-
composed into its even and odd parts. KEach of these halves satisfies
the boundary conditions separately, so we may adopt whatever
method of solution is most feasible for each case,

1, Even System

The even system, as illustrated in Figure 4, is two-dimen-
sional, This place flow may then be solved most simply by two-
dimensional potential theory. In terms of our boundary conditions,
the condition (1) has vanished with the x component of the pertur-
bation velocity. However, the radial boundary condition (2) still
applies.

This requirement, for the case of a vortex located inside
the jet, may be met by an image system consisting of vortices
located outside the jet at the inverse points, as shown in Figure 5.

It has been shown (Ref. 1, p. 391) that, when a real vortex
is located inside a jet, the contribution to the motion inside the jet
due to the boundary, is that represented by this fictitious image
system outside the boundary, modified in intensity by the factor

v.l-v @
+ _.%____92_ . Thus when the outer velocity V is zero, the
V.4+ V
o

image strength is undiminished, As Vo approaches Vj , the

image strength vanishes with the boundary.
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Also, the contribution of the bounda_xry to the motion outside

the jet, due to a real vortex located inside the jet, in the presence
of a boundary, is that of the real vortex itself, modified in intensity

(V,-V )2
1, O

by the factor - » When the outer velocity Vo is zero,

2 2
V.“+Vq
this boundary cor’gtribution is undiminished, and completely cancels
.the real vortex inside., As the outer velocity Vo approaches Vj s
the boundary vanishes, and the effect of the real vortex inside is

undiminished.

a, Effect Inside Jet

For a real horseshoe vortex of strength /[~ lying in the
plane z=0 , of small but finite span extending between two para~
metric non«dimensionalized points ¢ and d , the even part consists
of two line vortices of strength /7/2 extendingto + co through
these points, The image line vortices then extend through the in«
verse points of ¢ and d, namely é— and é respectively,

Since the image system replaces the boundary, the down~
wash due to the boundary, for the even system, may be obtained as
the downwash due to the image system, This may be obtained by a
straightforward application of the Biot Savart law,

For two line vortices through points ¢ and d , as illustrated
in Figure 5, the downwash induced at any point in the jet n , in the
plane of the vortex due to the image vortices, may be found as follows:

For a doubly infinite vortex of strength //2 the induced

downwash is:

/2
win) = 4o
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where h is the perpendicular distance from the point n to the
vortex., Hence for the image pair located at the inverse points of
c and d, where the first subscript on w(n) refers to the location

of the effect point; the second to the location of the real vortex;

Wjj(n) = 4‘n'ro

and for the image pair located at the inverse points of -c and ~-d:

[ 1
WJJ('VI) - -

4rr |1 1

Hence for a pair of finite horseshoe vortices, symmetri-
cally spaced with respect to the axis of the jet, the downwash due
to the image of the even part, induced at a point 1 inside the jet,

taking into account the image strength factor, is:

2 2
V_] - Ve o 1 1 1 1
Wjj(n) = - + - (3)
2 2 4wr |1 1 1
VJ +Vo olg-n <N a—+1‘] —+n

b. Effect QOutside Jet

Here the downwash induced at a point n outside the jet
by the boundary due to a pair of real line vortices of strength /" /2

extending to + co through points ¢ and d is:
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and that induced by the vortex pair at -c and -d is:

1 1
w_.(n) = -
0j 4:1T1‘0 n+d n+¥cC

Hence for a pair of finite horseshoe vortices, symmetrically

spaced with respect to the axis of the jet, the downwash induced by
the boundary, due to the even part, at a point n outside the jet,

taking into account the image strength factor, is:

2
V., -V
(V; -V, /"[1 1 1 1} (4)

w_.(n) = - -
0j Ve +V 2 4nr
j o o

m-c  m-d ' mFd ~ mFc

2, Odd System

An elementary horseshoe vortex inside the jet will induce
a velocity perturbation, the vector potential of which in a uniform
flow we represent by A . In addition, the requirements of the
boundary induce a further flow, the potential of which we represent
by ¢ .

The total perturbation velocity v for the odd system (2) of

Figure 4 is thus the sum:
v=VxA+ v (5)

The part of the perturbation velocity due to the horseshoe

vortex itself, Va represented by the vector potential A , is

known, The part due to the boundary, v¢ » represented by the

potential ¢ , is unknown, However, the total perturbation velocity

v must satisfy the boundary conditions (1) and (2)., Hence we may
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use these boundary conditions to find the unknown potential ¢ ,
and from this potential ¢ we may then find the boundary induced
downwash for the odd system,
We may represent the potential ¢ conveniently by a ser~

ies of the form for p<l1

o o)
2/
¢J. = -“—2- ngo sin(2p+1) 6 A2p+l()\)12p+1()\p) sin ENdAMN
o
and for p > 1
0o
27 o
¢ =-— = sin(2ptl)0| B \) K Ap) sin £nd
o

The potential ¢ is anti~-symmetric with respect to the xy
plane, since the downwash W = %2 is symmetric with respect
to this plane. Hence for the potential we use only a sine 8 series,
Also we use only the odd 8 terms as the even © terms are anti-
symmetric with regard to the z plane, whereas the flow is sym«=
metric about this plane,

Also from Figure 4, the downwash W in the odd system (2)
is seen to be odd with respectto x . Hence ¢ is alsoodd in x ,
We may thus represent ¢ by a sine series in x , or in £ in non-
dimensionalized form,

With this form of the potential ¢ established, we must
find the unknown coefficients A(\) and B(\) , employing the known

velocity due to the vector potential A of the horseshoe vortex

its elfo

(6)

(7)
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The relation between the vector potential A and its result-

ing velocity field V, is:

i ik

_ | o ) )
VATV XA % %y Bz 182

A A A

x vy z

where Ax’ A_, AZ are the rectangular components of the vector

y
potential A ., For a rectangular horseshoe vortex lying in the
plane z =0 as illustrated in Figure 4, the potential of the bound

vortex is AY and the potential of the trailing vortexis A_.

For the bound vortex AX = Az =0, and

BAY %)AY or aAy 96
u =ie VvV, = = S e e — e ——
Apg — A 9z or 9z 980 0z
but
r = y2+z2 ;%E:sme
Oztan-lg-; e cos 6
y ' o9z T
so 4. = - sin 6 aAy _cosb aAy (9)
A T r, Op rp 09

which we write as the total u perturbation due to the vector poten~-
tial A , since the trailing vortex does not contribute to this axial

velocity component.
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Similarly
v =jev, =0
Abd - _.é
and
SAY
WAbd SET VAT
in6 0A
so u =w sin 9 = sin y
r T 9t
Abd o

have a contribution from the trailing vortex, for which A

The radial perturbation velocity component u,

For this case

uA =1'VA=O
tr ——
0A 0A Or 9A_ 96
v =jev, = X = X ---+—X-—-—
Ay T A g or 98z 90 9z
an 8Ax or aAX 08
WA =E-VA=———=-—_————-—-——-——
tr — oy or 9y 90 9y
or
— = 8in 6
9z
or
— = cos 0
oy
29 cos 6
— T
oz
8o ‘sinﬁi

oy T

A

will also

=A
vy z

(10)

=0



-15«

8Ax cos8 8AX

v = sin 6 +
Atr or r 96
BAX sin 6 9A
w, =-cos® + X
tr ar r 09
But
u = v cos 8 + w sin 6
r
A
tr
Hence 1 3AX (11)
u = —
LN r,p 96
tr
Now combining equations (10) and (11) we have the total
radial perturbation velocity due to the vector potential A :
. A 9A
sin 6 1
u, = = b + - X (12)
A o ot of 96

These expressions (9) and (12) give the axial and radial ve-
locity perturbations due to the horseshoe vortex whose vector po-
tential is A , in terms of the Ay and Ax components of the
potential, corresponding to the bound and trailing elements of the
horseshoe vortex.

We now proceed to determine these required components of
the vector potential,

a. Bound Vortex Elements

We consider an elementary horseshoe vortex of strength
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[ lying in the plane z = o , of small but finite span extending
between two parametric non-dimensionalized points ¢ and d .
The odd part is then of strength /1/2 . However, as can be seen
from Figure 4, the bound vortex is of full strength /7.

Now the flow due to a horseshoe vortex of strength /' may

be represented by the vector potential:

= (13)

=
A =5 e | ——
—

For a differential element of the bound vortex, d£ =j dB,

and R! =/§2+(n-—[3)2+§2 » A=A = 0, and
dA =/-1d‘3 1

y 4
T g%+ (np)? €2

Now we may represent the reciprocal distance by (Ref, 12,

p. 75)

00
9

= 1 = —12? K, [X )/(n-ﬁ)z +& 2 Jcosé)\dx
fe° + (n-)” +& 2

1
RY
o

Furthermore, from Figure 6

R =/(11-[3)2 +g2 =/p2+ p2 - 2PBp cos ©

Now applying Gegenbauer's addition theorem for Ko()\R)

(Ref. 12, p. 74, Ref, 13, p. 44) for the case inside the jet, where

Igl< lpl:

(s o]
K_(\R) = I_(AB)K_(\p) + 2 =

. cos p 6 Ip()\ﬁ) Kp()\p) (14)
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For |pl<|[B| , interchange p and B . Thus [B/p] < 1

0 o0
1 2 hat 4
7 == | I OBIK (hp) cos ENdN + pz_lcosPe = Ip()\B)Kp()\p) cos End)
(0] O

For a pair of horseshoe vortices symmetrically spaced
with respect to the jet axis, each of span from ¢ to d , the

terms for odd p cancel and those for even p combine, so

- . ;
A =—/: I (\B) dBf K _(\p) cos ENdN
v 11_2 o] o'"P
C
o
© 4 ]
0o
+ 2 Z cos 2pb IZ. (\p)ap K2 (Ap) cos Exdr (15)
=1 P P
pm
C
0 ot

b. Trailing Vortex Elements

Having found AY . we may determine Ax by noting

that the divergence of the vector potential A is zero, i.e.

V ¢ A=0 (16)
BAX 0A 8AZ
+ —L 4 = 0
ox a9y 0z

Since we are considering a vortex in the plane z=o ,
A =o , Hence we have:
A 9A
X

+ —L = 0 (17)
ox oy
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Now
0A 9A or 9A_ 098
Y .Y ¥ __
oy or 9y 96 9y
0A oA sin 8 9A
—Y = cos® Y o_ y
oy or T 026
gl
dA A
Yy = cos 0 I_(\B)dBT AK' (\p) cos EXdM
2 o o
oy T™r
o
o ¢ w
d
fo's)
+2 Z cos 8 cos 2p8 I, (\B)dBl NKY _(\p) cos EXdN
p=1 2p 2p
¢ o
© d
5 ®
+2 Z (2p)sin® sin 2pb { I, (\B) dﬁ} K, (Ap) cos EXd
pp:l P P
C
0
But
oA oA
X - Yy
ox oy
Hence
0A
A = | - —X dx + £(r, 0)

0 0]

A =-211]coss {J Io()\ﬁ)dﬁ} K; (Ap) sin NEdX

X 2
w C S
o
o ¢
+2 T  cos® cos 2p® { L_(A8)dp{ K, (\p) sinnEd\
p=l 2p 2p
c
o
|
2 X 1
z 2 ; . 1 .
+ 5 ngl (2p) sinB sin 2p6 { IZP(XB)dB} )\sz()\p)mnxgd)\
c

(o]

+ £(p, 6)
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Now using:
2 cos 0 cos 2p8 = cos (2p+1) ©® + cos (2p-1) 6
2 sin © sin 2p6 = cos (2p-1) 6 - cos (2ptl) 6

> a
A= - —Tg— cos 6 { jlo(kﬁ)dﬁ] K; (Ap) sin ENdA
c
o

+Z {cos (2p+1)8 + cos(2p- I)Q}lej I ()\ﬁ)dﬁ} 2 (Ap)sinEAd\
1

p=

(00}

+ = {cos(Zp 1)6-cos (2p+1) B}Jﬁf é)\ﬁ d[3 2 (Np) sin EXdAN |+ f(p, O)
p=l

Combining terms, with

Ko="K1

2p -
sz (\p) + Yo sz (Ap) = = K (\p)

2p-1

2p
sz ()\P) - 7\‘5 sz ()"P) = - K2p+1 ()\P)

L 4
Ax = - -Tr—/;'— -~ COS QJ{J IO()\B)dﬁ} Kl()\p) sin XA\
C 4
o

(0 0]
(e 0]

d
— er_l cos (2p-1)8 {f Izp()\ﬁ)dﬁ} sz_l()\p)sin ENdN

(e ¢]
- T cos (2p+1)8 { Iz'p()\ﬁ)dﬁ}szH()\p)sin«f,)\dk +£(p, 6)

p=1

oQ___—bQ
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0

d
A =+ g_ cos 6 {jlo(xﬁ)dﬁj K, (\p) sin EXAN
5 C
[0 0]

d
+ cos 6 { S, ()\B)dﬁ K ()\p) sin ENdM
C

d

oo
+>= cos (2p-1) GJ{ J’IZP(Kﬁ)dﬁ} sz_l()\p) sin Exd\
c

p=2

o

QO

: {
+ p=1 cos (2p+1) 6

o

I ()\ﬁ)d[s} Kjp4r(he)sinEXdh | + £(p, )

p

OQ—___DQ_.

(0 0]

A=+ ;/_2_' cos oj j[xo(m) 4 Iz(xs)] d(s} K, (Ap) sin ENdX

Qo

d
oo
+ = cos (2ptl) ® {f I, +2()\B)d[3 5 +1()\p) sin EXd\

p:
o
S d
0
+pZ=1 cos (2p+1)6 { Izp()\ﬁ)dﬁ 2 +1()\p) sin ENdXN | + f(p, O)
c

A = _/22. cos ej S[xo(xﬁ) + IZ(MS)] dp} K,(\p) sin EndX
[0}

o0
+ = cos (2p+1)8 {f LB) 1, +2(M3):ldB}K2 L (Ap)sin EXAN | +i(p, ©)
p—.
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gl |

no®
A_= :r-z— pzo cos (2p+1) 6 { j I:Izp()\ﬁ)

3 C
(18)

L (m)] dﬁ} 2pp1 (AP} sin EXAN
In this expression for AX we have put f(p,0) = 0, since f(p,8)
is even in & , whereas AX is odd in § , as seen from Equa~
tion (13) and Figure 4.

(1) Asymptotic Correlation with Even System

We may verify this expression for Ax by show=~
ing that the radial velocity obtained from it at £=+ oo approaches

the correct two-dimensional value, We will consider the particu-

lar case of c =0 to simplify the calculation, We have
t
21 ® Lo T ons
Hence
d\
1 4
(1,08 + 15, O8] ae =X | 21, 08)a08)
c=20 o}
d\
2 2
DY I2p+1 (AB) IN 2p+1 (Ad)
o
So: ®
L2t > sin gx
Ax == > cos (2p+l) @ Izp_l_l()\d) KZp-l-l()\ )-———— d\
™ p=0
o
The radial velocity is obtained from Eq, (11):
1 oA
u = (11)
Ay TP 99
0o
o e}
u = - 2/’ Z (2p+l)sin(2p+1)0 (ANd)K ()\p)sulg)\ dx
T ) ptl 2p+l
A r pmw® p=o

tr (o) o)
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Now consider the limit as §— 4+ o

of the integral

oo}
sin £\
Tom | Do O Ko (\p) ax
o
Let
d
g)\ =q d)\. = —él-
q d\ _dgq
X==E —_——— =
Aooq
1e's)
. d qp , sin g
Lim I ) K (22) 2229 4qq
1
£—>+ o0 S 2p+l ¢ 2ptl "¢
o
oo
2pt+l
19d, F (2p+1-1) & _2p-1 .
= _E_ ° ! A — (qp) == dq
Z 1 2 q
(2ptl1) <
o o
21 1 (Q)ZPH /qu aq
Z 2pt1 'p
o
Hence
1 1 4 2p+1 . + when § —> 4+ ®
J == =) (+~)
2 Zptl 'p -2 - when § — - ®
And
oo 2ptl
u =7 T = & sin (2p+1) ©
r p P
Atr ZrOpw p=0

-i(2p+1)e

i(2p+1)0
e -e

n
+I

_— 2
anop p=0 P2p+1

2i
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2p,

Now summing this geometric series in the form x

d i d _-i0

u =+ /1 p - P

T ' 4mr_pi 2 . 2 .
A o d* 2ie d* -2i0
tr 1 "T e 1~ 7 e

Y p

2 2 - when § — + 0©
— ['d sin 6 p- +d
u,o =1 Tt T 1,22 50 (19)

Aty ° p- +d” -2p d-cos + when £ — -~ ®©

To check this result, we now obtain the two-dimen-
sional radial velocity directly, using /'/2 as the strength of the
even half of the flow, For the particular case treated, where c = o,
the pair of horseshoe vortices symmetrically spaced about the axis
reduce to a single horseshoe vortex symmetrically spaced about
the axis at semi-span d:

From Figure 7 we note
5: n + ig = pelg
The complex potential is then

F(b) = EWAL: [log (6-d) - log (6+ d)]
2w

3 +:1¥ =i [1og‘§;—_§-l +iarg (gi‘};)}

T

V=111 é_iL 7 og f(n-a)% +%°

Y (n+d)? +52

(p cos 8 - d)% + p° sin® 0

(p cos 6 + d)° + p° sin” @
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‘g_}' =§/: [log (p2 + d2 - 2pd cos 8) - log (p2 + a? + 2pd cos 6)j|
™

a 1 81]_2' - A +2pd sin 6 N -2pd sin ©
r r a6 2 2
Ayl of wryp p“+a%-2pdcos & pZ%+d% +2pd cosb
2 2
[d sin 8 2(p” +d7)
u =S e—_—
r
Atr 4w ro (pz'l" dz )2- 4p2d2 COSZG
Now consider the denominator, using 2c0520=1+cos 20
2 2 2 2,2
(p” +d”) =2p7d” (1 + cos 28)
= ot +a% - 2p%a% cos 20
Hence:
. 2 2
/d sin 8 +d
= i Coimonsionat)
imensional
tr ° ot+ a%. 2p%d%cos 26

This expression (20) for the even part is identical
with (19) which was obtained in the limit as £ —>+ o from the A
potential of the odd part, The signs are identical when § = -
which is where the odd part should approach and add to the even
part. When € =+ 0 , the signs are opposite, so the odd and
even parts cancel, giving the correct representation of no vortex

upstreams.
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This verifies that the expression for Ax given
by Eq. (18) is the odd part of strength /1/2,

c. Application of Boundary Conditions

We now have expressions for AY and Ax s which
are known functions, We have series representations for the po-
tentials ¢ of the flow due to the boundary, unknown to the extent
of a coefficient in each of the two eXpressions. By employing the
two boundary conditions (1) and (2), we may determine these two
coefficients and hence determine the potentials ¢ for the flow due
to the boundary in the two regions,

(1) Pressure Boundary Condition

The first boundary condition which applies on the

surface p =1 is:
Vj u, =V _u (1)

which on employing Eq. (9) becomes:

sin 6 9 v cos® 3 vy 9 sin® 9 y cosé ? y, 9
-V. |- — + = - VO - + g
o

J r, 9p TP o6 r08§ r dp rop 08 roa

j
Now since the form of the vector potential depends
only on the location of the real horseshoe vortex and not on the ef-

fect region, we may write

i_v LV } [__ sin © aAy _ cos © aAy:l
i) o] T, dp TP EL) j

99 = 9%
PESNES
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On substituting the potentials from Eqs. (15), (6), and (7), and

putting p = 1, we have

P 4a
sin® /[ } !
{-Vj + Vo - = ) { JIO()\B)dB )\Ko()\) cos EndA
o C
o
P d
sin® /! o !
- 2 X cos 2p8 { 1 (xﬁ)dp) \K, (\)cos ENdM
r 2 2p 2p
0 T p=l :
o
o0 o d ]
cos 8 [1 .
t— = ° 2 ? (2p) sin 2p6 j{flzp()\ﬁ)dﬁ} sz()\)cos EndN
o T p=l b
r Q@ -
1 2172
_Vj ?c-)- -1:2-— Z— sin (2p+1) Gj A2p+1()\) Izp_l_l()\))\ cos ENdM
p=0
e O —
= Qo I
120
= - Vo  — sin(2p+1) 6 sz_l_l()\) K2p+l()\) A cos ENdM
| o w® p=o ]

(o]

Now we divide through by — 2/_‘ , take the
™,
Fourier cosine transform with respectto § , and divide through
by X . In this expression and the following analysis, the omission

of the argument of a Bessel function or the coefficients A and B

means the argument is N :
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N d .
ivj -V, - sin O{J’ Io(kﬁ)dﬁ} K,

¢ d

lo's} 1

-2 Z sin @ cos 2pb II A d}K

o pi 2pMBIAB [ Ko
c

d
oo

. 2

+2 3 cos 0 sin 2pb I, (\g)d P g

= n p{f 2pB) ﬁ}—f 2p
C

foe) —

4 2 i
+V pi}o sin (2p+1) 6 A2p+l 12p+l

ros1n (2p+l) © sz_‘_1 K2p+1

i

<

(xS
T M8

We may now simplify the terms in the first square

bracket as follows,

sin (2p+1) ® — sin (2p-1) 0

!

2 sin 6 cos 2p@

using

f

2 cos 6 sin 2p® = sin (2p+1)  + sin (2p-1) @

and obtaining: d .
- sin 6 j Io()\ﬁ)dﬁ K
c

d

> 1
+ = { — sin (2p+l) © + sin (2p-1) e} {j 12 ()\p)d‘g,}KZ

p=1 J p P

) d

s 2

+ pzl {sin (2p+1) 6 + sin (2p-1) e}}f IZp()‘ﬁ)dE’} —XE sz
Next using: c

1 Zp
Ky M+ 52 K, M= = Ky ) ()

' 2p —
-K zp(") + 52 sz(x) =+ Ky \)



we obtain:

d
+ sin e{j Io(xs)dﬁ] K,

C

- d
- T sin (2p-1) 8 jlzp(kﬁ)dﬁ Kop-1
p=1 o
o { ¢ }
+ T sin (2ptl) 0 JI (\B)dp | K
p=1 o c P e
Then:
d
sin e{j Io(xﬁ)dﬁ} K,
€d
-sin © {J IZ()\B)dB} Kl
C
d
(0 0]
- = sin(ZP-I)QIJ Izp()\ﬁ)dB}sz_l
p=2 ¢
d
(00}
+ T sin (2p+l1) 6 jI (M8)dp t K
el {C 2p 2p+1
Then: d
sin GJ {Io()\ﬁ) - IZ()\B)} dp K1
C
(0 0]
- £ sin (2ptl) 6 j 12p+2 (kﬁ)dﬁi K2er1
p=1 5
d
Qo
+ T sin (2 +1)9{ J I (kﬁ)dﬁj K
p=1 mn p ) Zp 2.p+].
Then:

d
sin Oj iIo()\ﬁ) - IZ()\B)§ dpg K1

0; d
+ = sin (2p+1) © j [Izp()\ﬁ) - Izp+2()\6):|d[3 Kol

p=1 o
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Then
d
oo
% sin (2p+1) 6 )\[3) L +2(M3)i|dﬁ K‘2p+1
p=0 &
Finally:
d\
o I, 11(M8)

2 5 (2p+l) sin (2p+1) @ K 2pt T aoe)

A 2p+l1
p=0 AR
ch
The complete equation then becomes:
d\
o I (AB)
2 . 2ptl
{Vj-VO} N péo (2p+1) sin (2p+l) 6 K2p+1 f T d(:\g)
cA
oo co
b i = i
+ 2V, oo sin (2p+1) © A2p+1 IZp+1 Z.VO p2=051n (2p+1)0 B2p+1KZp+l

This equation must hold for all values of 8, hence
we may equate coefficients of sin (2p+1)@,where p runs from 0 to oo,
Also, since now all Bessel functions and the functions A and B are

of order 2ptl, we drop the subscript temporarily:
d\

{v VL epr) Kk | ) gnp) +2v.a1=2V BK (21)
AB J ©

ch
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(2) Kinematic Boundary Condition

The second boundary condition which applies on the

1 is:

which on employing Eq. (12) becomes:

v sin0 aAy . 1 an N 36 - sin6 BAY 1 BAX . T
ol r 8t r p 96 r,op ; J| r, 0f r,p 990 r 9p .
which as before may be written:
sin® 9A 1 aAX_l 9 3¢
{-v + v ag’ + ] -V, ==V,
r T 0
o p o . r _dp j r 9p o

(6) and (7), and putting p =

On substituting the potentials from Eqgs. (15), (18),

, we have:
@

sin @ /[ d
2 VotV } - = f on(Ms)dﬁ K (M) sin ENdA
O iy C
(0 0] ° > d
sin® /! .
-5 5 2 % cos 2pb I{JIZP(hB)dB} )\KZP(}\)sm ENdAN
o w p=1 e
o QO
Y :
L 2p+l)sin(2p+1)0
=S Z:g (2p+1)sin(2p+1) j [Izp(w)+12p+2(m)]dﬁ szﬂ(x)
P Yote
sin ENd\
P m —
1 2 @ .
-VO — > Z sin (2p+1)9J 2 +1()\) I'Z +1 (A)sin EXNdAN
o p=o
L. (o} -
— © Q0 n
=-v.| L2 v gnee | 2B K '
i| T T o sin (2p+1) 2p+1(MK 2p11(\)sin AN
| (o]
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1
As before we divide through by - —7-/—_— , take
w To
the Fourier sine transform with respect to § , and divide throug

by M\ :

d
{Vo - VJ.} _ sin 0{ j Io()\ﬁ)ds} K,

o}

d
00
-2 p.Ztlsin 0 cos 2po {J Izp()\ﬁ)dﬁ} sz
c

p=0 c

~ o l -
+V ZpZ-‘:o sin (2ptl)6 A2p+1 12p+1

r (0'e) 1 —

= = s
=V.|2 e sin (Zp-fl) 0 B2p+1 K2p+1

Simplifying the terms in the first square bracket,
using

2 sin 6 cos 2p8 = sin (2p+1) 6 — sin (2p-1) ©

we obtain
d

- sin © j I, (\BYB[ K,

¢ d

(0 0]
- = {sin (2p+1) 0 - sin (2p-1) 9} SI (\B)dp [K
p= { 2p 2p

C

1

d
oo

- % sin (2ptl) @ V([IZP(MS) ¥ 12p+2<x5):|dp el g
C

p=0

h

d
(0 0]
- T sin (2pt]) 9“ [Izpms) + 12p+2()\6):|d6} prtl— Kyl

2ptl
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Then:

| d d
- sin o{j Io(xs)ds} K + sin e{j Iz(kﬁ)dﬁ} K

C C
d
(e o]
+ Z sin (2p-1) 0 I, (\B)AB[ K
=, sie (o1 2p(MB)B [ Ky

@ a°c
- ¥ sin (2p+1)9{5 Izp(xﬁ)dﬁ}x

p=1 d
los)
2ptl
- pZo sin (2p+1) G{‘S‘[ (\B) + I2 +Z()\ﬁ):] dﬁ} sz_‘_1

Now using

-—)-\1- K -K =+ K1
1 o
1 t
by K1 + K2 = - K1
we obtain: d d
1
sin © ‘( I,(\B)dp - sin Q{J I,(\B)AB [ K,

C (o4

d
o)
+ I§)=181n (2p+1) Q{J 12p+2 (AB)dp K2p+2
c

d
[ 0]
-~ ¥ sin (2p+1) 92 j L ()\B)dﬁ} K
1
C

e o]

d
- 1 sin (2p+1) 9{3‘ [12 (\B) + 1, +2(kﬁﬂdg} 2p+l Kyoen
p= .

Also:

2p+l _ !
=% Kope1r ~ Bop T Ko

2p+l _ !
= Kopi1 T Bopr2 ® 7 Koptl
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gives:
d
sin 9{ S [Io()xﬁ) - IZ(M3)] dﬁ} K
c
o0
+ T sin (2pt]) 0 5 J08) Bt Ky )

I,
crd
QO
- T sin (2p+l) @ /j Lo +2 (\B) d ﬁ} Koptl

(o

Then:

(0 0)

d
i
z in (2p+1) 6 -
= sin 2r) { Cf [ 1,,08) 12p+2<xs)}dﬁ}xzp+l

dx

©
Finally: % (2p+1) sin (2p+l) © K2p+l ‘f
p=0

IZ ptl (AB)
AB

d(NB)

[N

The complete equation then becomes:
d\

1o I (\B)
{v - v3IZ=z (2p+1) sin (2p+1) 0 K. 2ptl 77
o J¥ A p=0 2p+1 B

cA

d(»p)

00 . foe}
5 .
+ Vo pz_osm (2pt+1)0 A2p+1 12p+l 2V. pZOsm(2p+l)OB2 +1K2p+1
= =

Equating coefficients of sin (2p+1)0 , we have

dn
{vo-vj?; 2 (2pt1K f 1%3[3—)d(}\[3) + 2V Al = va.BK' (22)
c\
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d, Results

We now have two equations for the two unknowns A

and B :
dax
o2 I(\8) -
{VJ. AR (2p+l)Kf _)\?_d(xﬁ) +2VAL=2V BK
)N
dn
ivo -vY2 @pr) K f IMB) gag)+2V AT = 2V.BK
AARN SR o J
C

Solving for the coefficients A and B , using

I K
W = = IK' IIK = :
' | RN
I K
we obtain:
d\
V V.
1 2p+1 I(\B)
B A) = °J -1 epr2 ook Sl net
2p+1 (M) == TN . g 408)
Vo I K-V."IK A
dX
2 2 t
V. -V KK
21 1% Vo' S
A, () P i ©° IMB) ang)
P N 2.1 2.1 \B
V_1K-V. IK
o] k] c\

(21)

(22)

(24)

Substituting the values of A and B in the expressions

for the potentials, Eqs. (6) and (7), for the case of a horseshoe vor-

tex inside a jet, where all Bessel functions are of the 2p+l1

order:
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0? 5 7 dx
V.“-V _IKK'I(\p) _.
2 . j ofK sinENd\ I(\B)
¢..= > (2p+l)sin(2p+1)0 == d(\B)
I3 oo vV _°1'K-V.°IK! N B
o ° J c\
(6a)
(e 0]
o] V_ V. .
b =3-122 > (2p+1)sin(2p+1)0 °J 5 1 5 _ 1K p)sinEndr
b x® p=o NV TR-VIK A
© dn
I(\B)
*-)-:B'—d()\ﬁ)
CA
(7a)

B. Horseshoe Vortex Qutside Jet

The elementary horseshoe vortex outside the jet may be
treated in a manner identical to the vortex inside.

1, Even System

As before, the even system, as illustrated in Figure 8, is
two-dimensional, A similar image system may be used, consist-
ing of image vortices located inside the jet at the inverse points,
as illustrated in Figure 9.

For this case, when a real vortex is located outside the jet,
it has been shown (Ref. 1, p. 389) that the contribution to the motion
outside the jet due to the boundary, is that represented by the fic-

titious image szrsterzn inside the boundary, modified in intensity by

VJ Vo

vt y2
the image strength is equal in magnitude and opposite in sign to the

the factor ~ . Thus when the outer velocity Vo is zero,
real vortex outside the jet, As V approaches Vj’ the image strength
vanishes with the boundary.

The contribution of the boundary to the motion inside the
jet, due to a real vortex located outside the jet, in the presence

of a boundary, is that of the real vortex itself, modified in intensity
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(Vj - Vo)

by the factor - . When the outer velocity V, is zero,

T 2.v 2
V.“+V,
this boundary contribution is undiminished, and completely cancels

the real vortex outside. As Vo approaches Vj , the boundary

vanishes, and the effect of the real vortex outside is undiminished.

a., Effect Inside Jet

The downwash induced at a point n inside the jet by the
boundary due to a pair of real line vortices of strength [Y/2 ex-

tending to + co through points ¢ and d is:

A 1 1
w. (n) = -
J 4nro d-n c-m

and that induced by the vortex pair at -c and -d is:

1 1
WO(T‘) = F -
J 4wro d+n ctn

Hence for a pair of finite horseshoe vortices, symmetri-

cally spaced with respect to the axis of the jet, the downwash induced
by the boundary, due to the even part, at a point n inside the jet,

taking into account the image strength factor, is:

2

(V.-V )

o 1 1 1 1

W_]O(n) = - ‘]2 > 1 - + - (25)
Vj + Vo 4171'0 d-n c-n d+n cin

b. Effect Qutside Jet

For a pair of real line vortices extending to + ®© through
points ¢ and d , the image line vortices will extend through the
1 1
inverse points of ¢ and d , namely £ and g respectively,

The downwash induced at a point n outside the jet due

to the image vortex pair located at the inverse points of ¢ and d is:



00 4oy _ 1
™o =g n=<

and for the image pair located at the inverse points of -c and -d

1 1
M
woo(n) = [_ 1 + 1 ]
4

4‘“'1'0 +—C— T]+-a'

Hence for a pair of finite horseshoe vortices, symmetri~
cally spaced with respect to the axis of the jet; the downwash due to
the image of the even part, induced at a point n outside the jet,

taking into account the image strength factor, is:

V.4V
Wooln) = = —I—2 L |- 11+ 11' 11+ 11 (26)
V. +Vo 41r n

2, 0Odd System
As before, we represent the total perturbation velocity v

for the odd system (2) of Figure 8 by the sum:

I<
H

VA +Vd (5)

where for p< 1

b,

(e 0]
L2t %o sin (2p+1)0 | A (M) I (Ap) sin EXdX (6)
i~ ?_ P 2p+l 2p+1\P

=0
P o

and for p > 1

¢

Q
2 P .
=2 = 7
o= 2 sin (2p+1)9f sz_l_l()\)KZpH()\p) sin ENdN (7)
o]

p=0
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The expressions for the known perturbation velocities due
to the vector potential A are unchanged, as given in Eqgs. (9) and
(12).

a. Bound Vortex Elements

We consider the bound vortex as before, interchanging

p and B in Gegenbauer's addition theorem in Eq., (14). Hence

for |p|>le] :

QO
K,OR) =1 (\p) K () + 2 =

pmlcos p® Ip()\p)Kp()\B) (14a)

Thus for ‘ﬁ/p‘ > 1 o

0o
1 _2 ®© 4
—R—T = FI Io()\p)Ko()\B) cosEnd +p§1cosp9 © = Ip()\p)Kp()\ﬁ)cos §?\dx
o

o]

For a pair of horseshoe vortices symmetrically spaced
with respect to the jet axis, each of span from ¢ to d , the terms

for odd p cancel and those for even p combine, so
w

d
AY = -T—r/; f{j‘ Ko()\ﬁ)dﬁ] IO()\p) cos ENdA
c

(8]

(o0}

. d
+ 2 pilcos Zpgj{j)sz(Xﬁ)dﬁ} Izp()\p) cos EAdA (27)

o C

b. Trailing Vortex Elements

As before, we obtain AX from AY s+ employing the di-

vergence theorem (16) and (17).
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Now:

0A

0A 0A .
y _ sin® vy

—Y = cos ©
oy or T 90

9A d
— Y 2/_' cos QJ!{} Ko(xs)dgs}u;(xp) cos Exd\
C

oy wr
g |
00 1
+2 T cos 0 cos 2pb {f K2 (M‘S)dﬁ} MZ (Ap) cos EndA
p".:l |3 p
c

o]

P 4a

2 [0 0]

+Z2 % (2p) sin 0 sin 2p8 IKZ (\B)dB }1, (Np) cos EAAN

P o=l P P
C

And:

0A
A =] -—Y dx+g(x,9)
9y
(0 o]

d
A=~ ?/1 cos ef{f KO(XB)dﬁ} I;()\p) sin £Nd\
C

o
d

@ ?
+ = {cos (2p+1)0 + cos (2p- 1)9} ;fKZp )\[B)dﬁ}lzp()\p) sin EXd\
p=1

c

e}

(00

+ OZO {cos (2p-1)8 - cos (2p+1)0} { .
p=1 J Kﬁ)d ()\.p)Slng)\d)\

+ g (ps 8)
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Combining terms, with

‘ 2p =
IZp()\p) + ')\_P;Izp()\p) - IZp-l ()\P)

Zp =
Izp ()\P) - X—Izp ()\P) - IZp-l-]. ()\P)

b

jH

[
N

cos OJV Ko M3)d[3} 1()\p) sin EXdX
© g

QO
+ T cos (Zp-l)QﬁJ‘sz()\B)dB} I,p-100p) sin ExdX

p=1 c

[e]

@
+ Z cos (2p+1)9f{j 2 ()\B)dﬁ} IZp—!-l()‘p) sin EXdN |+ g(p, 9)
p=1 4

>

1

1]
N

@®© g
cos ef{ f KO(M&)dB} I (Ap) sin Exdr
o C
Q

d
+ cos Qf{ J KZ()\ﬁ)dB} Il()\p) sin £EXd)
c

o

8

@® /'
+ Z cos (2p-1) 6 { MS)dB 1()\p) sin ENd\
p=2 J
o
0 d
o0
+ Z cos (2p+l) 6 J’sz()\ﬁ)dﬁ} 2 +1()\p) sin EXdN |+ g(p, ©)
p:l J c
o

V)




4]

0
d
a .
A = - -5 cos 9[{ f [KO()\B) + KZ()\B)] dﬁ} I,(Ap) sin EXdX
o C
@© d
QO
+ T cos (2p+l)9f{ j [sz(xs)+K2p+z(m)]dg}lzpﬂ(xp)singxdx +g(p, ©)
p=1 / c
© 3
(e8]
A =~ % p‘ijocos (2p+1)9f{ J[sz()\ﬁHsz_l_Z()\B):\d6}12p+l(xp)sing)\d)\
o °© (28)

As before we have put g{(p,0) =0 , since g(p,0) is
even in £ , whereas AX is odd in § .

(1) Asymptotic Correlation with Even System

As before, we may verify this expression for AX
by showing that the radial velocity obtained from it at £ = +oo ap-
proaches the correct two~dimensional value, We will consider the
general case of a pair of vortices symmetrically spaced with re~

spect to the axis, of span between arbitrary points ¢ and d .,

We note
' - ——
2 KZp+1 - {KZp + K2p+2 }

Hence

d d\

g 1
—j [szmm + Ky +2(M3):l dp = 5 f 2Kb 4 (MBIANB)
c c\
d\

2 2
=5 Kopr1r OB | =5 [szﬂ()‘d) - KZp-&—l()\C)]

[N
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Xy T2 P 2 +1 2p+1+P
p=0
o
The radial velocity is obtained from Eq. (11)
1 an
u1~ = — —
A of 99
tr
o) o £
2/ . sin EN
u = - — = (2p+1)s1n(2p+1)9f sz_l_l()\d) IZP_H()\ )_7\———
A r_pwm P=O
tr o o
Now consider the limit as § —»+ @ of the integral
@
~ sin €N
Jq = J Kops1 (M) Ipp (M) === dh
Let
EXN=q d\ = %ﬂ
=2 dx _dg
3 X T q
0o
Lim K (gg I ( sin q dq
£ —>+ o 2ptl 2p+l 'E‘
o
@ 2p+l
2p1 (220)
1 (2p+1-1)f ,qd 3 sing 4
= I me— (Tg‘ q 4
1 (2p+1)!
o
00
_ 1 1 (p )2p+l sing 4
-2 2ptl 'd q
o
Hence 2ptl + when § — + @
Ty=y e (B) ()
d~Z 2p¥l ‘d Zz - when £ — - ®
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We consider first the \d term in the Ax expression:

(11)



w3
And

o 2p+l
SV SE sin (2p+1) ©

r d

A 2r pm p=o

o oo p2p+l e1(2p+l)9_e-1(2p+1)0

=+ — =
Zrop'n' p=o d2p+1

21

. . . o 2
Now summing this geometric series in the form x P

P i0 P ~-10
T [ d° d°
Y =+ . 2 o Z .
Atrd 41T1'Op i 1 - p_Z e219 1 - % e-219

d d

. T /Md sin © d2+p2 _l—wheng——a+oo

N 27T at s p4—2p2d2c052€|+ when § —» - 0
trd o

(29)

Now if we consider the Ac term in the A expres-
sion, we obtain the same result with d replaced by ¢ , and with
the sign reversed., Thus

. 2 2
u = 4 [csin® c“+p

T — 2%r

+ when § — + ©
tr o] C4+p4-2p2C2COSZG
c

- when § — - ®©

(29a)

The total result is the sum of these two terms,
To check this result, we consider Eq. (20), which was

obtained for the case of a vortex inside the jet, as shown in Figure 7.
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The two~dimensional derivation of Eq. (20), however, is not re~
stricted in the location of the jet, Hence the same expression will

hold when the vortex pair d 1is outside the jet,

For the vortex pair c , the result is the same with
the letter d replaced by c , and with the sign reversed. Thus

from two-dimensional theory, we have

N _, /d sin® o>+ a” (20)

TA, 2Ty | ot ra? - 2p%a% cos 20

r
d
. 2 2
0

u,  o=olpin p_* ¢ (20a)

AtrC © p4 + c4 - szcz cos 26

Hence for a vortex pair outside the jet, the expressions
(20) and (20a) are identical with (29) and (29a) which were obtained
in the limit as § —» + c0 from the A potential of the odd part.
The signs are identical when § = - o, which is where the odd part
shduld approach and add to the even part, When £ = + o, the signs
are opposite, so the odd and even parts cancel, giving the correct
representation of no vortex upstream.

This verifies that the expression for AX given by
Eq. (28) is the odd part of strength [1/2,

c. Application of Boundary Conditions

(1) Pressure Boundary Condition

The first boundary condition which applies on the sur-~

face p =1 is:

V.u. =V _u (1)
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which on employing Eq. (9) becomes:

. 0A 0A . A A
_Vj [_ sin® y _cosé Yoy oo :] - _Vo{_ sin®@ y cos@ v, b }

ro 9p rop 99 r08§ r, 9p r_p 089 r08§

J

‘10 8A 0 0A
{-V.+V } _ sin y _ cos y | _
j o ry op TP 99
o

O

0 - 0
v 2] - v %]
J o

On substituting the potentials from Eqs. (27), (6),

and (7), and putting p =1, we have:

> d
{—Vj-{-VO} - ¥ %f IK Kﬁ)dﬁ}kl’ (N\) cos Exdn

- 8111:1 Lo 2 T cos zpej{ Jﬂ sz()\ﬁ)dﬁ} )\I‘Zp()\) cos ENd\

o T p:l pd

O

oo ™

o0
cos 6 /; e 2 T (2p) sin Zp@j ? sz()\ﬁ)dﬁ} Izp()\) cos Exd\

O -

(e 0]

1 21 2
- V. — > sin (2p+1)6 N Azp_l_l()\) 12p+1()\) cos Exd\
o 'rrZ p=o0

o -

©

B 1 2 2@

==V, ?; _T_rz_ (Zp+1)9\SA A B2p+l()\)K2p+l()\) cos EndA
o
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As before we divide through by - 2/1 s take the
T
Fourier cosine transform with respect to £ , and divide through

by X\

d
{ v - VOS - sin e{f KO()\ﬁ)dﬁ} 1!
C

o0 d

-2 ¥ sin @ cos 2p8 5 K, (\p)dp}I!
=1 P 2
p - p

d

los) » { 20
5 . .
+ 2 o cos 8 sin 2po f sz()\ﬁ)d%\—lzp
c

0 N
+ Vj Zpﬂ_oan (2p+1) © A2p+1 12p+l

o0
= V_|2 = sin(2p+l)0 B

K
o
p=0

2p+l 2p+l

We now simplify the terms in the first square bracket,
using:

2 sin © cos 2pO = sin (2p+1} 6 — sin (2p-1) O

i

2 cos O sin 2p@
d

We obtain: - sin Q{I KO()\B)dB} I(‘)

sin (2p+1)6+ sin (2p-1) ©

co
+z {- sin (2p+1) + sin (zp-l)c:.}” K, (xﬁ)dﬁ} It
p=1 J P 2p

(98]

d
o - 5
+ pZ‘zl{an (2p+1)6 + sin(2p-1) Cf sz(}\ﬁ) dﬁ} X IZp
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Next using:

t -
Io"Il

2

1 P -

IZp(M + ~ Izp()\) = Izp_l()\)
2p

1 - =

IZp \) N Izp()\) IZP_H()\)

we obtain:
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+ ¥ sin (2p-1) 9{ f K, ()\[3 dﬁ}
p=l -
00 { d }
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Then:
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¢ d

o' e}
+ 2=151n (2p+1) 9% Cf K2p+2()\f3)df3} 2p+1
d

T

(00}

- 3 si (2+1)e§ K, (A d}
I sin G { 0000871,

C
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Then:

d
- sin © {,,( I:KO(MS) - Kz(kﬁ)] dﬁ} I1
c

(00

d
- T sin (2p+l) 9{5 [sz”(m) - sz(xs)] dB}IZPH
p=l o

Then:
d

(e8]
T sin (2p+l) e{f[K2p+2(xﬁ) - sz(xs):' dﬁ} Il

Finally

dX

— Z (2p+l) sin (2p+1) 61 —————d(M\B)
X p=o Rk ;{ AB

The complete equation then becomes:

dX\

00
Z— (2p+1) sin (2ptl) 6 12p+l j N
p=0 o p

K (\B)
_2ptl ™ A(NB)

rd 1Y

{v;vo)

QO (0 0]

+ ZVJ. pZLosin (2p+1)6 A2p+112p+1 = ZVo L sin (2p+1)0 B2p+1KZp+l

p=0

. Equating coefficients of sin (2p+1)8 , we have
d\
zvj-vog% (2p+1) I j KOB) aag) + 2V,AL = 2V BK (30)
A
c\

- (2) Kinematic Boundary Condition

The second boundary condition which applies on the

surface p =1 is:
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V u, =V,u (2)

which on employing Eq. (12) becomes:

sin 090y 1 By g sing 8y 1 B, g
-V + + = =V, + +
ol r 95 TP a4 roap jl 9¢ r.p 09 roap

o o

On substituting the potentials from Eqs, (27), (28), (6),

and (7), and putting p =1 , we have:

(0.0]
d
sin 9 /! ) )
{"Vo + ng " F 3 {j Ko(kﬁ)dﬁj ML_(\) sin XA\

O ¢ .

d
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O
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p=0
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Again we divide through by - 2/_' s take the Fourier
T rg
sine transform with respect to £ , and divide through by \ 3

d

{Vo - VJ.} — sin 9{{ Ko(m)ds}lo
c d
m .
-2 pZ::l sin @ cos ZpOéS sz()\ﬁ)dﬁ} IZp
C

d

[0 0]

+ T sin (@2p+l1) 9{5 [sz(xp) + K2p+2()\B)J dﬁj E-P%l L
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- .
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+v_ |2 pzno sin (2p+1) 8 A, ) Th )

[0 o]
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p=o

L_ s

t
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H
<

Simplifying the terms in the first square bracket, using:
2 sin € cos 2p6 = sin (2p+1) 6 - sin (2p-1) 6

we obtain:

- sin 9{ jd K (p)ap] 1,
C

(0 0]

d
+ = —~ sin (2p+1)0 + sin (2p-1) 9}{5 K, (M )d}I
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e o)

d
) 5 }Zp-{—l
+ pfo sin (2p+1) 9{5 [sz(Mi) + K2p+2()\ﬁ):| dp B IZp+1
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Then: = sin Qgg Ko()\ﬁ)dﬁ} I, + sin G{SKZ()‘B)dB} I,
d c

o C
+ Z sin (Zp—l)g{f K ()\ﬁ)dﬁflz
p=2 hs 2p p

d
o5}
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O

2ptl
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Then:
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- sin G?f KO()\S)dB} I, + sin 9{[ KZ()\B)dB} I,
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Then:

d
o
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d
foe}
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C

fo'e}
> 2p+1
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Now using:

2p+l

ol el = T!
v Lopr1M T Lp () = Lo ()
2p+l 7
K LprM = L0 = -G ()
we obtain
d
o'e}
. - 1
z sin(2p+1) e{j [K2p+2()\6) sz(m)] dﬁ}lzpﬂ
p=0 0
Finally: dx
0 K (AB)
2 ¥ (2p+l) sin (2ptl) O It Zptl d(AB)
N 2p+l
p=0 AB
ch
The complete equation then becomes:
, ® S Ky 0)
{V - v}.. > (2p+1) sin (2p+1) O I! —EPTL T d(ap)
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p=o \B
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00 e’
< 5 i — 3 t
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Equating coefficients of sin(2p+1)0 , we have

d\

%vo - vjz 22p+1) I'f Ky‘f) d(AB) + 2V AI' = 2V, BK'
C\

d, Results

We now have two equations for the two unknowns A and

B
dx
{vj ~ voz\% (2p+1) 1[ 5%‘3—) d(\p) + 2V,AL = 2V, BK
C

(31)

(30)
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d\

{Vo - Vj%—)z\l (2p+1) I KQ\Bﬁ) d(\p) + ZV Al' = .ZVJ BK! (31)
c\

Solving for the coefficients A and B , we obtain:

dx
vV V,
o) 1 2p+1 K(\
Ao = — = ! "E;‘C"or ﬁﬁm d(ne) (32)
» V_“I'K-V. “IK!
o] J [N
dx
2 .2
V.7-v_ St
2p+l { o } K(\
NIV A ) 52 apv) (33)
P Vv, TK-V,IK!
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Substituting the values of A and B in the expressions for
the potentials, Eqs. (6) and (7), for the case of a horseshoe vortex

outside a jet, where all Bessel functions are of the 2p+l  order:
0o

Qo
¢j0=2_/2'_“'2 (ZP“)Sin(ZP“)@j Vo 1 _ 1| Irp)sinEndr
TP o MV ARV AR N
0 j
dXx (6b)
J =06,
ch S P
© II'K(K) .
q)oo:% 2 (2P+1)Sln(2p+l)9j { P! singrd)
™ Pp=o “I'K- v, “IK! N
dx
f K(ﬁw) ang) (7p)

ch\
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C. Summary of Results

1, Even System

The previously derived expressions for the downwash in-
duced by the boundary due to the even system are collected for con-
venience, The first index refers to the effect region, and the
second to the location of the horseshoe vortex.

Vortex inside jet

V. -V
= _J o [ 11 1 1
Vi (“)“Vzwz T | T T T - T, (3)
even j g~ ¢~ g™ ¢ n
2
(Vi-Vo)™ | 1 1 1
Woi (M) == = s - + - (4)
Jeven V.SV Ty |n-e m-d mid nic
Vortex outside jet
2
w (n) = - AR B T U B (25)
J%even VjZ+V02 4nr d-n  c-m dim  cin
2 2
V. -V
W PSS I AL DRSS W S - (26)
00, en v 2+V 2 4Trro 1 1 +l +1
j o g Tt MYt 73

2 2

viiv e 14p? 5
J o V=V
2 N N
(V.-V ) V. 2
j o =L o =) (35)
V.%+V veiv ® 14h 2
j o j 0
V.2
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Employing these results, we have for the downwash induced

by the boundary due to the even system:

Vortex inside jet

() 1.2 1 N S S
jj = 2 dmr_| 1 1 1 T
even 1+pm °of 3-M1 < -n a—+n E+ M
w () == Qo) [ PR U R
Yeven 1+ “ 41T1‘o B n-¢ n-d nd nte |
Vortex outside jet
-2 [ 1 1 1 1]
Vjo (n) = - Z Fnr.| don  oom  dm R
even I+ o n n n n
12 [ 1 1 1]
w () =- t—p - —
1+ 2 4nr 1 I RS + 1
even ol g -2 7 Nty |

2, Odd System

a. Expressions for Potentials

We may now similarly collect the four expressions for
the potentials of the flow induced by the boundary due to the odd
system, These are designated by ¢ wn? where the first index re-
fers to the location of the effect point, and the second to the lo-
cation of the horseshoe vortex. All Bessel functions are of the

2pt+l order, and are of argument X unless otherwise shown,

(3a)

(4a)

{(25a)

(26a)
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Vortex inside jet

oo{ 2 2 d\
VAV 4KK'I(Np) .
Zf_‘ j o} sing\d) I(\B)
b.. T (2p+1)sin(2p+1)0 d(\p)
37 ot - X B
o N
6a
o dX (62)
vV V. .
2@ . 0'j .|K(\p)sinfxd\ I(\B)
o . Z (2p+1)sin(2p+1)6 -1 d(Ap)
0J ?pzo )\.W A )\B
o
ch (7a)
Vortex outside jet
0 dX
w
b, TS (2p+1)sin(2p+1)0 J _1| Lp)sinErdh md(m)
Jo Trz p=o A B
ch
N (6b)
o 2
o V -V jII'K()\p)
¢oo,,_2‘./.: Z (2p+l)sin(2p+1)6 mn)\&)\d)\ K{gﬁ) d(:3)
m™ p=o W
ch
(7b)
v 2 v2 Ik
where W2 +1()\) o I K—Vj K (36)
The expression V_VZp-l—l may be modified as follows:
— 2 2 A S
W= V0 I'K - Vj IK' + Vo IK V0 IK
- 2 1Tt - 2 2
= - V,IK'-I'K) = (V) - v %) 1K
2
v
W=_O _ {V.Z -V 2} IK' (36a)
A J °

Hence if we put Vo’/vj = M



ve_v? ve_.v?
j o _ j o
= = z
w \Y%
J-’--{v.z-voz} IK!
N j
1
-2 - IK!
x{v.z-v§z
U]
2 2
VitV 1 (37)
W 11. . -~ IK!
x{ -1
Also }‘7
VoVi VoY, 1
AW A v 2

-2 - {V.Z-V 2} IK!
N J o

} p
w2 oan{1-pllxe

vV V. 1

W p - x{&-,@m‘ (38)

The downwash due to the jet boundary, at points in the

plane of the airfoil, may be obtained for each of the four potentials

by taking the derivatives:
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9 96 + when 0 = 0

yn
W = = 4 -
bdry = 4, ~ roe - when ©

5

180°

1

The derivative with respect to ra0 of the expression in

front of the integrals of ¢ vn * which includes the angular function

in each case, is:

(0 0]
_%41 T (2p+1)% cos (2p+1) 6

T r p=o

In the plane of the wing, which we have approximated as

the xy plane, © assumes only the valuesof 0 and # . For

0 _ + 99 _ s cos (2pt1)0 = +1 for all p, and this

expression in front of the ¢ vn integrals is positive, Similarly

) 9
for O = ,wherea%:-i%%, cos (2p+1)@=-1 forall p,

and this expression is again positive.
Hence in the plane of the wing, for all p , writing TET P

and noting that in the plane of the wing p =mn , the expression in
front of the ¢ vn integrals becomes:

2 @ 2

m T =0
on P

b, Expressions for Downwash

Employing these results, we obtain the downwash induced

by the boundary due to the odd system:
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Vortex inside jet

© dx
[o's} . .
JJ m I‘o'q pP=0 T _IKI >
odd (] )\i -1 cA
¥ (6c)
a0 ' dn
m -
g | oMPT g | P 5?’“} ¢
(7c)
Vortex outside jet
© dx
w (€, m)= ‘;/_' g)(zpu)?f 11 -1 I(Wiinéhdkj K}fgﬁ)d(m)
j = M= LK
Jde T To P g " 21* ’“} o
(6d)
0o dx
e 8) . .
W (gs"l)""%'/—:" = (2p+1)2 II Il{(n)x) suxﬁ)\)\d)\f Ii(g@) d(Ag)
oo ™ T mn p=o I -IK'
odd o )\{_2_ _} Y
a (7d)

c. Convergence of Integrals

The four downwash expressions for the odd system may
be investigated in the limit as the variable of integration A —» 00

by use of the asymptotic series for the Bessel functions as follows:
da

K2p+lKép+112p+l(nx)j Lpr1 (M)
1 A
L
o3

Lim

Lim Iw = A—s 0

1 a(np)
A—>00 7 n
JJ

i
Moo 1B 2ph X
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ol [’/Z?W ][‘ /2 ][rzw—nx em] ™ ape)
n
1 f—— ZeNB B
1 - )\ )\ - ™ ')\.
1 d\ B
- 1 -2\ 1 nA f e
=0 ye e d(rp)
n A
ik g ow??
Now for this case n £ 1, Hence
(=24 2 AB
I, < = 372 f __ej_]T d(\B)
> \ &0
However, since 0 c<p<dsl
dx B d\ :
f _.e_ﬁzd(mwf Wdt<-——.ﬂzf
& e t ()
ch
1 dxn o 3/2 ax
= ———572 e - e < (-—) _:%72
(29 A
(-24n+d)\ 1
Hence: Iw..é c 3 < 3 (40)
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Thus we see that for large N the integral expression

for the

(6c) for Wi will converge at least to the order )\;
case where both the effect point n and the vortex point d are at
the jet boundary. The integral will converge exponentia'lly to a
stronger degree as either the effect or vortex pointis taken
farther from the boundary,

"The remaining three integrals may be investigated in
the limit as N —> 00 in a similar manner, and in each case they

may be shown to converge with the same rapidity.

3. Asymptotic Correlation of Downwash of Odd and Even
Systems

Each of the four expressions for the downwash due to the
odd system should in the limit as § —>» o0 approach the corres-
ponding expression for the even system., Considering first the

integral of Eq. (6c¢):

0o d\
1
K2p+1K2p+112p+1(“” singadr [ T2ps1MP)

I =
A B

W.. d()\ﬁ) (6c)
Hodd i Lp+1E2p41
o — -1}

c\

Now consider the limit as § —s co  of this integral.

Let EA=gq dx —c-lggl
=2 9r _ dq
M=Eg X q

> (%—) K! (%) 1) smq dq o B,

Lim Kop+l 2ptl 2p+1—§_ ]Zp-!-l( a(38)
£ — 1 ( ) K! ) qp €
2 q§ 1 1} 2p+1 £/ T2p+l Tg" E

E v cA\
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Substituting the leading term in the expansions around

the origin for the Bessel functions leads to:

2p+1 {d2p+1 2p+1}
I ] ) 5

W, . -
Hogad  a@phf Kl 1
2(1-p %

+ when £ — @
2p+1 2
T LM 1-p {CZp-l—l _de-H}(i%)

2(2p+])°  L4p 2

W..
Hodd - when £ — ®

Hence:

2 0 '
o Z'n'/: 5 n2ptl {C2p+1 i de-l-l}
Jodd 1+ p o' p=o

Now summing this geometric series in the form pr :

W.. =+ ! -/.AZ [ A - dn
Joad T 14w % foM | 1. g% 1-a% 9t
1- 48 /1 1 1 1 1
Lim  w(gn=+ =5 ol -
£ —» 0 odd I+p of =-m Ztn F-1 -d-+n

+ when § —>+ ®©

- when § —> - o

This Eq. (41) when § —» - @ is identical with (3a) for the
even part, thus adding to it to represent the complete horseshoe

vortex, When & —34+ oo, the signs are opposite, and so cancel
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completely,
The remaining three expressions for the downwash due
to the odd system may be investigated in the limit as § —» ®
in a similar manner, and in each case they may be shown to ap~

proach the corresponding expression for the even system,
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IV, APPLICATION TO AN ARBITRARY WING
EXTENDING THROUGH A JET

We have determined a basis for finding the downwash at
any point § , m in the plane of the wing due to the boundary re-
action to a pair of finite horseshoe vortices, symmetrically spaced
with respect to the axis of the jet. The total downwash at such a
point due to such a pair of horseshoe vortices will then be the sum
of this boundary induced downwash and the downwash due to the
horseshoe vortices themselves, |

The downwash due to a field of finite horseshoe vortices
has been conveniently tabulated in several forms (Ref, 15, 16),
and so facilitates the calculations of span loadings by finite step
methods (Ref, 10). We will therefore compute the boundary in-
duced downwash in a similar manner so that it may be conveniently
combined with the referenced tables for the horseshoe vortices
to calculate the span loading for an airfoil extending through a jet,

With the total perturbation downwash thus determined over
the entire x-y plane, and in particular over the field aft of the
lifting line, any wing problem in principle can be solved by lifting
surface methods, As an example, we employ the approximate
lifting surface method of Weissinger (Ref. 11) as a convenient
method of calculating the span loading,

The lifting surface method of Weissinger in effect takes
into account the linear variation of downwash along the chord.

For such a linear variation, the wing characteristics may be
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predicted exactly for infinite aspect ratio by satisfying the bound=-
ary condition on the wing surface at the 3/4 chord point. Such a
linear variation of downwash is the case for both a flat plate air=
foil and a parabolic arc airfoil, and hence would be expected to
be a good approximation for most conventional airfoils ,

The lifting line approximation assumes no variation of
downwash along the chord. Thus the Weissinger lifting surface
theory, in taking into account the linear variation of downwash
along the chord, is in effect considering the next term in a Tay-
lor's expansion of down\x;'ash around the 1/4 chord, If further
accuracy were required, say for a more complex cambered air-
foil, a second term representing the curvature of the downwash
could be employed.

In Ref, 10 and Ref, 16 the wing span is subdivided into
a finite number of horseshoe vortices, the spans of which are
non~dimensionalized with respect to the wing span, For the jet
problem, it is more convenient to non-dimensionalize the lengths
with respect to the jet radius. The wing data and the jet data may
thus be conveniently combined when the wing span is an integer
multiple of the jet radius; for non integer multiples the method
may be adjusted at the wing tips to provide suitable data there,

To provide a general and flexible method useful for an
arbitrary jet-span combination, we arrange the wing as illus~

trated in Figure 10 (Ref. 10, Fig. 1, and Ref, 16, Fig. 6). The
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wing is replaced by a system of N horseshoe vortices along
the quarter~chord line, the spans of which are so chosen that
their semi~-span s is one=~fifth of the jet radius r_ . Thus
five such horseshoe vortices are located inside the jet,

Sufficient additional horseshoe vortices of the same
semi~span s are placed outside the jet to completely repre-
sent the wing span. Thus any arbitrary ratio of jet diameter
to wing span arrangement may be represented, simply by
employing a sufficient (odd) number of horseshoe vortices to
represent the wing span, Ref, 10 includes smaller span vor=-
tices at the tips which may be used if a further refinement in
accuracy is required,

An equal number of downwash points is taken along
the three~quarter chord line, at the midpoint of each elemen~
tary horseshoe vortex, The downwash velocity from the total
vortex system and the boundary is then equated to the compon=-
ent of local velocity normal to the wing chord at each such
downwash point, Application of this tangent flow boundary con-
dition for a symmetrical loading provides a set of N+l simultaneous

2
. . N+1 . .
equations in the > unknown circulation strengths across the

span, since the circulation strengths of symmetrical vortex
pairs will be identical, Solution of this set of equations pro-
vides the span loading.

If the ratio of wing span to the jet diameter is so large

as to produce an unwieldy number of simultaneous equations,
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the number of horseshoe vortex pairs and hence the number of
equations may be reduced by employing larger horseshoe vortex
spans outboard where their effect on the jet boundary is less

pronounced,

A, Downwash Due to the Wing

The downwash velocity in the plane of a rectangular
horseshoe vortex due to the vortex itself is given by the expres-

sion

O F(xY)
41 s

w(%,y) = (42)
where F is defined in Ref., 10, and the X and ¥ are expressed
in horseshoe semi~-spans, The values of F(§ ,’{fl) are conveniently
tabulated in Refs., 15 and 16,
Distributing an odd number N of horseshoe vortices hav~
ing N downwash points across the wing span (Figure 10), the
downwash velocity at any of the downwash points P v resulting
from the N horseshoe vortices is
N
~ v 1 [Mn v
W(XV’ YV)”Z‘T“: TF(X\I’ YV) (43)
n=1
where
~J
Xy TPy " Py
(44)

Yy ¥4y "9,
and the X , g; s Py Qnotation, and the v, n subscript notation, as
used in this section, is illustrated in Fig, 11, The vy and n are

the effect and vortex points respectively counted from the left wing

tip.
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Since b/2=Ns, we may write (45)
N /T

~ ~ - N n ~ ~ 46

wi¥, ¥,)= ¢ T — F(X,7) (46)

n=1 b/2 v

For cases of symmetrical loading and geometry, the downwash

at any of the downwash points P becomes

N+1 v

N ZI /_,n
% .V )= = — F 47
W( XV’ Y‘.}) A1 n=1 b/Z vn ( )

with the coefficient FVn being given in terms of geometrical distances

measured in horseshoe semi-spans,

Foa=F[e ) @, ma)|+ F e, e @ a)] (48)

yn

and the prime on the summation sign indicating that for the Nj_l term,

representing the single horseshoe vortex at the center of the wing,

= - - 49

F xaq =F| (0, - (@, - 0)] (49)
VT

This condition may be applied at each downwash point to provide

N+1 N+1
a set of —~— simultaneous equations in the —— unknown circulation

strengths from Eq. (47):

N+1

3

~ ~ _N é
W(XV’YV)‘ET— .

|s
oy

n (50)

o'
el
N

1
v=l,2,3-m= Ngl

B. Downwash Due to the Jet Boundary

The expressions for the downwash due to the boundary have been
obtained as follows, where the first subscript refers to the location of
the effect region, the second to the location of the real vortex, and the

even or odd notation refers to the component of the horseshoe vortex:
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Even System

Odd System

xpression Equation No, Expression Equation No,
w.. 3a w.. 6c
JJ JJ
W, 4a W, Tc
0j 0J
W, 25a W, 6d
Jo jo
W 26a W 7d
00 00

These expressions are all non-dimensionalized with respect
to the jet radius T . We may combine this boundary downwash with
the horseshoe ;iownwash at any particular point, taking note of the dif-
ferent coordinates of the same point in the two systems, due to their
being non-dimensionalized on different lengths, and having different
origins,

Furthermore, by employing the relation

ro = 5s (51)

we may write the boundary downwash expressions in a form where they

may be conveniently combined with wing downwash expressions, i,e,

w(g ) = Slan) (52)

where we write the G(£,7n) as a function of §,1  to emphasize their
being non-dimensionalized with respect to the jet radius r_ ., By
this relationship we define the boundary downwash coefficient,

Gvn(g’ n)  as:

G, (&) = ‘j’_’f’ w (&) (53)

The quantities G v ay thus be written in terms of the
boundary induced downwash expressions previously derived, with

the aid of Eq. (51), as follows:
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JET BOUNDARY DOWNWASH COEFFICIENTS

Even System

Vortex inside jet

1l 1 1 1 1
v ™ 3 Z T~ - (3b)
even 1+ u 31 =-n  gtn =+n
1 (1-p)° 1 1 1 1
- (M) =-= *— - + -
%Jeven 5 1+/u~2 n-c¢ n-d ntd  ntc (4p)
Vortex outside jet
1 (1-00° 1 1 1 1
G () =-<2 z - + - (25b)
JOoven 5 1+p d-n c-7m d+n ctn
1 1- 1 1 1 1
GOO (n) = -5 ) /LLZ T~ l+ 1~ 1 (26b)
even e nte M- ntg ntg
Note:
G, = G_. (54)
JCeven Jeven
G = - G.. (55)
Ceven Weven
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JET BOUNDARY DOWNWASH COEFFICIENTS

Odd System
Vortex inside jet
oo dx
\ © 2 | KK'I(n\)sinfrdn \
G(Esm) =g T (2p+]) L(nh) sinf 12 ap)
ij M p=o —~— —MK!
odd o {-—2 —l} ch
# (6e)
oJo dx
g & 2 1 K(n\)sinénd A
Gk m=gos = (2pt]) I - 1| E(nhsing *f I(Mf)d(w)
oj 1"p:o . /“-)\i— - } IK!'
odd o H ch
(7e)
Vortex outside jet
o) d\
(0 0]
2
G (£, m) =?E_S__ 5 (2p+l) I(n)\)smg)\d)\ K()\B d(\g)
jo p=0 } IK'
odd Y
(61£)
0%} da
o ) . d
Gt M=ger = (2zpr1)?| ILEMSIEML 4 KOS gp)
OOdd n p=o _1_____ '-)\.IK'
o o {—2 -l} ch
M (7£)

All Bessel functions are of 2p+1 order, and unless otherwise shown

are of argument \,
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These boundary downwash coefficients may be employed in
a manner similar to the wing downwash coefficients, Thus for an odd
number N of horseshoe vortices having N downwash points across
the wing span (Fig. 10), the downwash velocity at any of the downwash
points Pv resulting from the boundary reaction to the N horseshoe

vortices is
1

2
+

1

™ o

/—I
< Gun (56)

1
W(gvs T]V) =4?

n

1l

for symmetrical loading, the prime on the summation again indicating
the unique character of the center horseshoe vortex. Here the G,
is the sum of the even and odd parts. As before, this expression

may be written:

N+1
e
w(g,n).—_}i ! _/__'_I}.G (57)
v Y 47 =1 /2 Vn N+ 1

V:]., 2, 3 ""‘"-—Z—

C. Total Downwash Due to a Wing Jet Combination

For small angles, the tangent-flow boundary condition

AR, i i~ (58)
wi X, s yv)-—-Vv sin a_ Vv av
may be applied at each of the downwash points. Thus, combining
1
Eqgs. (50) and (57), and using (58), we have as our final set of —IEZTL——
1
simultaneous equations in the NZ unknown circulation strengths:
N+1
z
cw, = Nz _nd + Gy} (59)
Vyap =Wy, = Z%-nz:‘-l b/2 Foon vn

N+1
\):1, 2, 3 == T

This set of equations is written in terms of the wing span b,
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the wing downwash coefficient F vn (Ref. 10), and the boundary
downwash coefficient G\in .
The values of F are obtained from Ref, 15, The values of
G are computed from the formulas derived in this thesis and pre-
sented on pages 70 and 71, Both the even and odd G coefficients
must be used in the above equations,

To facilitate the employment of the method derived in this
thesis for the determination of characteristics of an arbitrary wing
extending through a jet, the G coefficients, both even and odd, have
been programmed in a parametric manner for computation by elec-
tronic data processing equipment. The required coefficients may

thus be readily obtained for any arbitrary wing-jet geometry and

for any desired jet velocity ratio.
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V. COMPARISON OF THEORY WITH EXPERIMENT

A. General

The present theory provides a means to determine the 1lift
distribution over a wing extending through a circular jet, In order
to provide a comparison of the theory with experimental data, mea-
s)ured values of the lift at successive spanwise points must be em-
ployed. There is a dearth of such experimental data, particularly
at higher values of the jet velocity ratio, where the effect would be
expected to be large, and which would accordingly be of interest,

One such set of experiments is that reported by J. Stuper
in Ref. 6, employing velocity ratios that are fairly low, yet prob-
ably adequate to check the theory, Fig., 16 of Stuper's paper shows
the experimental results for a jet velocity ratio M= 0,735, and
for several angles of attack, and also shows the comparison with
Koning's theory (Ref, 1),

Stuper employed a rectangular wing 20 by 80 centimeters,
thus having a geometric aspect ratio of 4, His use of circular end
plates 32 c¢m in diameter gave his wing an effective aspect ratio
of 5,25 (Ref. 8, p. 211). The jet was 12 cm in diameter, so the
ratio of jet diameter to wing chord was 0,6, which is thus the as-
pect ratio of the wing segment immersed in the jet,

Graham (Ref. 5, Fig. 5.5) reproduced the data of Stuper's
Fig., 16, and included a comparison with slender body theory., As
observed previously, within the jet the experimental data seemed
to lie between the two limiting theories, lifting line and slender

body. Outside of the jet, neither theory represented the experiments
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very well, both lying below the experimental points, Also neither
of these theories gave the sharp discontinuity in loading found ex-

perimentally at the jet boundary.,

B. Method of Computation

In order to provide a comparison of the present theory with
/Stuper's experiment, the Weissinger application of the theory de-
veloped in the previous part of this thesis was employed. The wing-
jet geometry reported in Stuper's paper was represented by the
arrangement of horseshoe vortices illustrated in Fig. 10,

The segment of the wing in the jet was represented by 5

horseshoe vortices. Stuper's effective aspect ratio of 5,25 gave

an effective span of 105 cm. Hence

_ (b/2)effective _52.5 = g 75 (60)

Nt ip N 6
o

which determined the spanwise extent of the vortex pattern as shown
in Fige 10, thus representing the wing by a total of N = 45 horseshoe
vortices,

To use the Weissinger lifting surface method, the downwash
due to each of the horseshoe vortices, both from the vortex itself
and from the boundary reaction to the vortex, must be determined
at the downwash points located at the intersection of the center line
of each such elementary horseshoe vortex and the 3/4 chord line of
the wing,

The F downwash coefficients, representing the downwash

due to the wing itself, are obtained for the vortex pattern of Fig,
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11 from the tables of Refs, 15 and 16, In using these tables, the
value of the 3/4 chord line must be expressed in terms of the semi-

width s of the horseshoe vortex used, On this basis:

-10

~ X _ -10x 45 _

X = S =—p77 = 575 =~ 8,75 (61)
45

“is the constant value of the 3/4 chord line used in the Stuper experi-
ment,
| The required values of the FF downwash coefficients at this
constant value of X are most conveniently obtained from the tables
in Ref., 15, In this table, the distance in the spanwise direction

from the line of symmetry of a given horseshoe vortex, expressed

in terms of the semi-width s of the horseshoe vortex, is:

Yy = IZ(v-n)

The values of the F wing downwash coefficients, for the
case X = -8, 75 used in the Stuper experiment, have been taken
from Ref, 15 and are presented in Table 1,

These F downwash coefficients are of the order of unity,
and hence were computed in the tables of Ref, 15 to 3 decimal
places, in order to provide accuracies of 3 significant figures,
Hence the G downwash coefficients, representing the downwash
due to the jet boundary, must similarly be computed to 3 decimal
places, as the F and G coefficients are to be summed at each
downwash point,

The G downwash coefficients may be computed from the
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expressions derived in this thesis, In using these expressions, the
value of the 3/4 chord line must be expressed in terms of the jet

radius r used, On this basis:

-10 2
g:::.;(_:._é—-z—l—g (63)

o
is the constant value of the 3/4 chord line used in the Stuper experi-
ment,

The definite integrals in the Godd functions were evaluated
by Filon's Simpson's rule, employing electronic data processing
equipment, The computing was programmed so that ., &€ , B ,
and  were parameters, and in addition the mesh of the variable
of integration A and the upper limit of the integral could be speci-
fied, Four values of the summation index p were employed, which
included Bessel functions through order seven.

Computations were carried out only for the constant values
of £ = - l%— and pe = 0.735, corresponding to the experiment of
Stuper (Ref. 6). For this case trial runs showed that an interval
of AN = 0.5, together with an upper limit of X of about 12 pro-
vided sufficiently rapid convergence to give the required accuracy
of 3 decimal places, although an upper limit of A = 25 was used for
the most slowly convergent cases where both the vortex and the ef-
fect point were adjacent to the jet boundary.,

For the cases where both the effect point and the vortex
point were adjacent or close to the jet boundary, the convergence
with respect to p was inadequate to give the required accuracy
of 3 decimal places for the four values of the summation index p

employed. There were eight such cases.
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These eight cases were then extended by employing the Aitken
v 2 process (Ref, 17, p. 126) to improve the rate of convergence of
the sequence of partial sums of the series. This process was chosen
because it is exact for a geometric series, which the present sums
of integrals approach asymptotically for large values of the summa-
tion index P .

The four computed terms of the series provide three ratios,
The ratios of successive terms monotonically approach a limit, as
the order of the Bessel functions approaches infinity, since all inte-
grals monotonically approach a constant times the value of the inte-
grand at \ = 0 for large p . This limiting ratio is then determined
from the initial value of the integrands,

The last two ratios of the computed terms and this limiting
ratio were used to fit a hyperbola to provide a fifth term of the ser-
ies, T he Aitken VZ process was then employed three times to pro-
vide estimates of the sum of the infinite series, A further VZ ex-
tension was made on these three estimates, providing the final
accepted value,

The sums thus obtained were bounded by:

(1) an upper bound obtained by taking the last ratio of the
computed terms for all terms thereafter, and

(2) a lower bound obtained by taking the limiting ratio as the
ratio for all terms after the last computed term.

The computed values of the G jet boundary downwash coef-
ficients, for the case of § = -1%— and (= 0. 735, used in the Stuper

experiment, are presented in Table 2. For the eight cases where

the Godd coefficients were extended by the Aitken V 2 process,
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the extended values are those presented in the column, and the par-
tial sums of the first four terms from which the extended values
were obtained are shown in adjacent parentheses,

The G coefficients of Table 2 were atthis point available for
a:ddition to the F coefficients of Table 1 in accordance with Eq. (59),
to provide a set of linear simultaneous equations from which the
unknown circulation strengths /_'n could be determined.

It will be recalled that the formulation of the problem lead-
ing to Eq. (59) was based on symmetrical loading across the wing
span. Hence the circulation of symmetrical vortex pairs was iden-
tical, This permitted a reduction of the number of unknown circulation
strengths from N = 45 to —— = 23, the odd number arising from
the unique center vortex,

Hence a solution for the symmetrical Stuper wing was ob-
tained by a set of 23 simultaneous equations in the 23 unknown cir-
culation strengths of a half of the wing on one side of the center
line, In constructing these equations, the F coefficients for sym-
metrical vortex pairs were added together,

The G coefficients were derived for symmetrical vortex
pairs, and so are already in the proper form for use in the 23 si-
multaneous equations. However, the G coefficients were computed
separately for their even and odd parts, and so the sum of these
two parts was used at each downwash point,

The common factors in Eq. (59) may be transposed to the

other side of the equation, giving for the Stuper wing outside the
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jet, at 12° angle of attack:

b
4=
NZ Va = 317—35?1_;;12—2 x 98.425 x 0,209 = 9,915 £t°/ sec (64)

Inside the jet, where the velocity is increased by a factor of
1,36, this term becomes 13,485 ftzlsec. Hence Eq. (59), for the

case of the Stuper wing at 12° angle of attack, may be written ex-

plicitly:
23 _ 9.915(v=1-20)
% {F L L [ M= 13 485(v=21-23) (59a)
n=1 even odd

v=1-23

In this equation the Fyn coefficients are as defined in Eqgs.
(48) and (49). Table 1 may be used together with Eq. (62) to pro-
vide the F coefficients. Table 2 may be used together with Figs,
10 and 11 to provide the G coefficients.

The 23 simultaneous equations with the 23 unknown circula-
tion strengths f‘n so constructed were solved by an elimination
method, The circulation strengths obtained were converted into

local lift coefficients, based on Vo’ by the expression:

& local p(V/ﬂ)local
C = = (65)
£ 1 2 1 2
5P V0 c 5p V0 c

These local lift coefficients, for the wing and jet combina-
tion, were computed as outlined above for the case of an angle of

attack of 12°, The local lift coefficients were then linearly reduced
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for the angles of 8° and 4°. From these values, for each angle of
attack, were subtracted the local lift coefficients of the wing alone,
The differences, which are the increase in local 1lift coefficients due
to the jet, were added to the experimental lift coefficients of the
wing alone obtained by Stuper (Ref, 6, Fig, 16), and are shown in

Fig, 12,

C. Results

The theory of this thesis has been applied to the wing-jet
combination investigated experimentally by Stuper in Ref, 6, The
correlation, presented in Fig, 12, has been found to be excellent
for that portion of the data presented by Stuper which is felt to be
valid,

The present theory agrees well with the experimental data
of Stuper in the jet, which is the region of greatest effect and hence
of principal interest. The strong decrease in the experimental lift
observed immediately outside of the jet is explained by Stuper as
being due to the friction boundary layer of the fan enclosure,

The large increase in lift obtained experimentally in the re-
gion farther from the jet may be explained by the test setup shown
by Stuper in his Fig. 20. The jet has a free boundary as it passes
over the wing, and a free boundary for a distance of one quarter
of the chord upstream from the leading edge. But for about the
next two chord lengths upstream the jet has a solid boundary, in
the form of the fan enclosure, The present theory, as well as Kon-
ing's theory (Ref, 1), is based on the boundary of a free jet, and

would not be expected to agree with the results of a solid boundary.
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The effect of this solid boundary upstream will reverse the
sense of circulation of the image vortices for the upstream region,
and similarly reverse the direction of the downwash induced by
such image vortices in their representation of the boundary., From
the geometry of the wing-jet arrangement, it is seen that the angle
subtended by the fan enclosure, and hence the relative effect of the
solid boundary, will have a maximum at about six jet radii out-
board from the jet center line along the 3/4 chord line, The experi-
mental points of Stuper show such a maximum, as seen from Fig,
12,

Furthermore, the lift increment obtained by the theory is
the difference of opposing effects, Examination of these individual
effects for the present case of the Stuper experiment has shown
the lift increment to be a relatively small difference of large ef-
fects, Hence the large effects at appreciable distances from the
jet boundary obtained experimentally by Stuper are felt to be under-
standable in view of the experimental test set-up he employed.

The strong decrease in experimental 1ift observed immedi-
ately outside of the jet could also be partly caused by the solid
boundary upstream, although the dynamic pressure drop in the
transition region between the jet and the undisturbed flow caused
by the friction boundary layer of the fan enclosure would seem to
offer an adequate explanation,

The theory of Koning differs from the present theory es-
sentially in that Koning considers only what in this thesis has been

termed the even part, and disregards the odd part. Hence the
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difference in the résults obtained by the present theory must be at-
tributed to the inclusion of the odd part., The several theories are
compared in Figure 13, which includes Koning's theory, as computed
both by Stuper (Ref. 6, Fig. 16) and by Graham (Ref. 5, Fig. 5.5),
as well as slender body theory, as computed by Graham, It is seen
that the present theory is in substantial agreement with the valid
experimental points in the jet, and lies between lifting line theory
and slender body theory, as expected.

As may be observed in Table 2, for the present case of
Stuper's experiment the jet boundary downwash coefficients for
the odd part were of the same order as those for the even part,
particularly for the spanwise points of major contribution near the
jet boundary., Hence the agreement of the present theory with the
experimental results of Stuper must be attributed to the inclusion

of the odd part,
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Vi. CONCLUSIONS

A strong correlation of the theory with the available experi-
mental data has been demonstrated, The rapid approach of the down-
wash induced by the jet boundary, caused by the odd parts of horse-
shoe vortices representing a wing, to its asymptotic even value,
downstream of the lifting line, emphasizes the importance of the odd
part in obtaining this correlation,

The wing segment immersed in the jet in the Stuper experi-
ment, used for comparison with the theory, was of aspect ratio =
0.6. For this aspect ratio, and for the spanwise points of major
contribution near the jet, the boundary induced downwash at the 3/4
chord points used in the Weissinger analysis was almost the Trefftz
plane value. The conclusion is clear that for such low aspect ratio
immersed segments the use of lifting line theory introduces serious
error, and that an approximate lifting surface theory such as that
of Weissinger is required,

For wing segments immersed in the jet of aspect ratio of
the order of one, the downwash over the wing, and in particular at
the 3/4 chord point, will be in general intermediate between the
value at the Trefftz plane and half that value at the lifting line.

This variation is large, and the lift distribution predicted by the
theory is quite sensitive to the value of the downwash used. The
present theory provides a means to determine the proper down-
wash, and more accurate predictions of lift distribution may be ob-

tained thereby.
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SYSTEM OF COORDINATES



FIG. 2

‘AIRFOIL SPANNING A CIRCULAR JET
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FIG. 3
ELEMENTARY HORSESHOE VORTEX
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EVEN AND ODD PARTS OF ELEMENTARY HORSESHOE
VORTEX INSIDE JET
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FIG. 5

TWO-DIMENSIONAL VORTEX SYSTEM OF PAIR OF
SYMMETRICALLY SPAGED HORSESHOE VORTIGES

INSIDE JET
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FIG. 6

COSINE LAW GEOMETRY
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FIG. 7

COMPLEX POTENTIAL GEOMETRY



FIG. 8

EVEN AND ODD PARTS OF ELEMENTARY HORSESHOE
VORTEX CQUTSIDE JET



FIG.9

TWO - DIMENSIONAL VORTEX SYSTEM OF PAIR OF
SYMMETRICALLY SPAGED HORSESHOE VORTIGES
OUTSIDE JET
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SPANWISE LIFT DISTRIBUTION ACCORDING TO THEORY AND
EXPERIMENT FOR WING EXTENDING THROUGH CIRGULAR JET
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COMPARISON OF VARIOUS THEORIES WITH EXPERIMENT FOR
SPANWISE LIFT DISTRIBUTION OF WING EXTENDING THROUGH
GIRGULAR JET
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TABLE 1

WING DOWNWASH COEFFICIENTS

(X = -8.57)

(Ref, 15)

+4,014
-1.320
-0, 255
~-0,104
-0, 055
-0,033
-0,022
-0.016
-0,012
-0,009
-0,007
-0, 006
-0,005
-0,004
-0,003
-0,003
-0,002
-0,002
-0.,002
-0,002
-0,002
-0,001
-0,001
-0,001
-0.,001
-0,001
-0,001
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56
58
60
62
64
66
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-0,001
-0, 001
-0, 001
-0, 001
-0, 001
-0.001
-0. 000



JET BOUNDARY DOWNWASH COEFFICIENTS
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TABLE 2

™

L] . ®

W W N NNKRRO O O
*
o S (ST << ST U< S o N R - S N

(=]

(£ = ‘lé;ﬂ~=°“735)

even

N
0,024

0,048
0,048
0,005
0,003
0,002
0,001
0,001
0,001
0,001

0.024"
0,052
0.066
0,008
0,004
0.002
0.001
0.001
0.001
0.001

0.025"
0. 069
0.239
0.031
0.007
0,003
0.002

odd
0,021
0,042
0.043
0.006
0.003
0,002
0,001
0,001

0.021*
0,047
0,061
0,009
0,004
0,002
0.001
0,001

0.022"
0,064 (0.063)
0,238 (0.179)
0,034 (0,024)
0,007

0,003

0,002



1.6

Izp
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Bw W Y
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0,8
1.2
1.6
2,0
2.4
2,8
3.2
3.6
4.0
4,4
4,8
5.2
5.6
6.0
6.4
6.8
7.2
7.6
8.0
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even
0,001
0,001
0,001
0,001

0.003"
0.008
0.031
-0,180
20,033
0,015
-0,008
20,006
-0.004
-0.003
-0, 002
20,002
-0,002
-0, 001
-0,001
-0,001
-0.001
-0.001
20,001
-0,001
-0,001

0.001*

0.004

0,007
-0,035
-0.012
-0,006

odd
0,001
0.001

0.003"

0.009

0.033 (0,023)
-0,182 (-0, 110)
-0,028 (-0,026)
-0,011

-0,005

-0,003

-0, 002

-0,001

-0,001

-0,001

-0.001

0.002"

0.004

0.007

0. 030 (-0, 028)
-0,009

-0, 004



1.6

2.0
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‘_B'_' even
2.4 -0,004
2.8 -0,003
3.2 -0.002
3.6 -0,002
4.0 -0.001
4.4 -0,001
4.8 -0,001
5.2 -0,001
5.6 0,001
6.0 -0,001
0.001"
0.4 0.002
0.8 0,003
1.2 -0,015
1.6 -0,006
2.0 -0.004
2.4 -0,002
2.8 -0.002
3,2 ~0,001
3.6 -0,001
4.0 -0,001
4,4 0,001
4,8 0,001
0.,001"
0.4 0,001
0.8 0,002
1.2 -0.009
1.6 0,004
2,0 -0,002
2.4 -0,002

2.8 -0,001

odd
-0,002
-0,001
-0,001
-0,001

0,001

0,002

0,003

-0,011 (-0,011)
-0,004

-0,002

0,001

-0,001



3.6

4,0
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even
-0.001
-0,001
-0,001

0,001

0,001
-0,006
-0,003
-0.002
-0,001
-0,001
-0,001

0,001

0.001
-0.004
-0,002
-0,001
-0,001
-0,001

0,001
0,001
-0.003
-0,002
-0,001
-0,001

0,001
-0,002
-0.001
-0,001
-0,001

0.001
0,001
-0,003
-0,001
-0,001

0,001
-0,002
-0,001

-0,001
-0,001
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_n o B CTe ven CTodd
4,4 1.2 -0.002 -0.001
1.6 -0,001 -
2,0 -0,001 -
4,8 1.2 -0,002 -0,001
1.6 -0,001 -
2.0 -0.001 -
5,2 1.2 -0.001 -
1.6 -0,001 -
5,6 1,2 -0,001 -
1.6 -0,001 -
6,0 1,2 -0,001 -
1.6 -0,001 -
6.4 1.2 -0,001 -
6.8 1.2 -0,001 -
7.2 1.2 -0,001 -
7.6 1.2 -0,001 -
8,0 1.2 -0,001 -
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"All values are based on a pair of symmetrically spaced horseshoe
vortices of span AB = 0,4, except for the cases § = 0, where AR =
0.2. This situation results from the representation of the wing by
pairs of symmetrically spaced horseshoe vortices everywhere ex-
cept at the center of the wing, which is represented by a single
unique vortex,



