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ABSTRACT

A general method for calculating the performance of two-
dimensional jet ejector systems is presented, with special emphasis
on those qualities desired in thrust augmenter devices. The nature
of the viscous-inviscid interaction problem is examined and a
'""frictionless'' model is defined. The equations are solved for the
particular parametric problem of a single jet in a finite length
shroud of uniform height. The flow in the ''"recovery'' or confined-
mixing region is discussed for this model and techniques are
developed which may be applied to devices with diffusing systems.

The solutions presented for the free-mixing or interaction
region are shown to agree with the simple channel flow studied

analytically and experimentally by Curtet.
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I. PRINCIPLES OF JET EJECTORS

I.1 Introduction

The turbulent mixing processes associated with a high energy
jet exhausting into a free ambient medium have been of interest to
many investigators in the past half-century. This flow affords a
comparatively simple experimental medium for the measurement of
turbulence phenomena, and a good verification of the similarity
arguments used in shear flow models.

The fundamental effect of putting a body in the vicinity of a
high energy jet is to distort and direct the flow which is induced by
the entraining action of the jet. A free jet normally spreads into the
secondary medium by the diffusion of momentum, but the total
momentum flux in the jet direction at any station downstream remains
constant. When a body is placed in the induced flow, however, it is
acted upon by pressure and viscous forces due to the induced flow,
and in general these forces have a component in the direction of the
primary jet flow. The reaction forces of the body on the fluid then
produce a change in the jet streamwise momentum flux, which rep-
resents a change in the thrust of the system. For thrust augmentors,
this change is an increase in thrust, and the design criterion is the
maximization of this momentum exchange between the forces on the
body and the jet momentum flux. We will concentrate in this study
on the mechanism of momentum exchange applied to two-dimensional

jets with a symmetric external geometry (shroud), as illustrated in

figure 1.
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Designing the outer geometry in order to utilize this influence,
several practical devices have been produced. Jet pumps are de-
signed to maximize the induced/primary mass flow rates, and to
deliver this flow into regions of higher pressure. In thrust augmen-
tors, the desired characteristic is the maximum total/primary
momentum flux ratio, in order to produce large increases in thrust.

In principle the ejector phenomenon could be used to improve
the performance of primary thrust systems and such auxiliary de-
vices as jet flap aerofoils and boundary-layer-control blowing
systems. The effective design of such systems requires fundamental
knowledge of the characteristics of shrouded or confined jets, which
is as yet not available.

With the use of the momentum theorem T. von Kdrmdn(!)
investigated the possibilities of obtaining thrust augmentation in a
uniform shroud system as a function of the assumed inlet and exhaust
velocity profiles. His results (discussed in Section I. 4) indicated the
possibilities of large increases in thrust but could not close the prob-
lem by relating the thrust augmentation to the geometry and primary
thrust of a particular configuration. In this study we will present a
method for relating the mixing processes to a generalized ejector
configuration, and use the method to define the limits of operation
for a simple class of two-dimensional ejectors.

To this end we define a ''"frictionless'' model as one in which
friction effects (boundary layers on the shroud surfaces) are ne-
glected. This model represents the limiting case for the real Sys-

tem, whose performance characteristics will in general be degraded
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by friction. Even though for some configurations this model will be
somewhat imprecise, it has been found by various authors (Curtet(z),
Hill(3)) that the frictionless model is quite good in the specific
geometries investigated. In any case, the effect of friction will

best be estimated as a ''correction'’' to the ideal model.

1.2 The Frictionless Model

The basic fluid-mechanical problem in a shrouded jet system
is the evaluation of the mixing effectiveness in the region of entrain-
ment. The nature of this process enables us to conveniently divide
the flow into two fundamentally distinct regions, with an unsteady
interface (figure 2). This same division occurs in the classic free
jet spreading into an ambient medium. A look at this associated
problem will illustrate the characteristics of the two regions. In
the mixing region, viscous effects predominate, and for most prac-
tical cases the flow is rotational and turbulent. The assumption that
the flow in this region can be adequately described by the boundary-
layer equations was shown to be valid by many investigators (Gold-

(4),.

stein They have also shown that a wide variety of phenomeno-
logical laws describing the behavior of the turbulence terms allow
excellent predictions of the mean velocity profile of the jet, the
growth of the jet thickness, and the rate of increase of mass flux (the
entrainment).

G. L Taylor( ), referring to some earlier work in the calcu-
lation of the external streamlines, showed that the smoke pictures of

Lippisch(é) could be reproduced by an assumed sink distribution

along the jet axis in potential flow. He generated the first-order
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solution to the flow in the outer region by matching the sink distribu-
tion to the entrainment rate of a turbulent jet. The outer flow is
thus essentially inviscid and irrotational, and may be handled by the
classical method of potentials,

These results suggest singular perturbation methods should
be used for the jet mixing, in which the simple free jet and Taylor's
potential flow represent the first-order inner and outer solutions
respectively. In these flows, the inner or free-mixing solution is
the dominating solution, and is not changed to first order by the
external geometry, as demonstrated by the fact that Taylor's solu-
tions for the infinite region and the semi-infinite region (the jet
issuing normal to an infinite wall) can use the same sink distribution
on the jet boundary to generate the induced flow.

Another class of turbulent jet mixing is represented by the
mixing of jets in constant area ducts, where the flow external to the
mixing region can be assumed to be uniform and in the direction of
the primary jet, as in the analyses of Curtet for the two-dimensional
problem, and Hill for the round jet in a coaxial duct. In this type of
flow, the external flow has a fundamental effect on the development
of the mixing region through the first-order effects of the pressure
gradient and entrainment as represented by the non-zero edge
velocity. This strong interaction is solved by simultaneously cal-
culating the mixing and entrained flow problems, which must be
matched at some boundary.

The problem of a body in the neighborhood of a high energy

jet issuing into an ambient medium contains the two simple flows
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mentioned above as limiting cases. To clarify this point we can
divide the problem into two classes, remembering that we are dis-
cussing only those flows with symmetry about the axis of the primary
jet.

Type I flows (figure 2) include those in which the bodies are
totally enclosed by entrained or external flow, and hence do not
influence the mixing by direct contact with the mixing region, but by
modifying and directing the external entrained flow. These flows
have the free jet as the limit when the body is far removed from the
mixing region.

Type II flows (figure 3) include those where some part of the
body is in direct contact with, and hence modulating the mixing pro-
cess, as well as influencing the external flow. Thus the limit as the
body becomes a very long duct in which the mixing process is con-
fined, is represented by the second simple case discussed above.

The problems in the type I category could clearly be calcu-
lated by the same perturbation technique as the free jet problem,
since the body is totally immersed in irrotational flow and potential
solutions can be found. For the case where the body is far from
the mixing region, the solution to the first-order potential problem,
which would have the boundary conditions imposed by the free jet
entrainment rate, would give a good approximation of the forces
exerted on the body. As the body is moved closer to the primary
jet, second-order terms would become important, but the perturba-
tion scheme would still be straightforward. In this type of problem,

the boundary conditions to the outer flow problem would be imposed
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on the axis of symmetry, but the potential flow region must exclude
that part of the region occupied by the turbulent mixing.

The use of this method is not so straightforward in the type II
problems, where a portion of the body is submerged in the mixing
region. Applying the boundary conditions to the outer flow on the
axis of symmetry would imply that the entire body was in the en-
trained flow region. In particular the application of a Kutta condition
on a sharp trailing edge would then appear as an artificial condition
if that part of the body was in the mixing flow. It seems practical
for this type of problem to find a solution of the inner and outer flows
simultaneously and to choose a matching boundary which would realis-
tically represent the confining effect of the body on the turbulent
mixing, and the blocking effect of the turbulent mixing on the potential
flow solution.

The problem which we will solve here is of the second type,
since it seems that the strong interaction of the viscous and inviscid
regions, and the increase in mixing efficiency due to the confining
effect of the bodyarenecessary to produce large changes in the jet
momentum flux, and hence large forces on the body. In addition, we
will assume that the symmetric pair of external bodies, (the shroud),
is long enough to prevent the viscous-inviscid mixing of the flow down-
stream of the shroud from affecting the flow at the shroud entrance.
Thus the entraining efficiency of the jet is determined by the jet mix-
ing in that region upstream of the jet impingement on the shroud.

I.3 Geometrical Parameters

The complete ejector configuration can be described by the
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shroud geometry and the position and distribution of the primary
nozzle system. A complete study of any practical device would
necessitate the definition of parameters to represent each geometric
detail (for example the shroud shape, lip shape, number of jets). In
this study we confine ourselves to the uniform shroud with a zero
thickness lip and a single center-line primary nozzle (figure 4).

The parameters to be studied now are reduced to

A

A

L/h the nondimensional shroud length

1 Ll/h the nondimensional position of the primary nozzle
relative to the lip of the shroud
An additional parameter, the relative nozzle height A, = a/h
is considered here to be much smaller than 1. The nozzle can now
be represented as a point momentum source, a model which gives
good agreement with experiments for free jets at distances down-
stream of the nozzle greater than a few nozzle heights.

The symmetry of the model allows us to represent the ejector

by a half-plane model with boundary conditions

v =0

ou _

a7 - ©
on Y =0

I.4 Conservation Laws

Since we are neglecting friction on the shroud, we can gener-
ate a ''law'' for this system corresponding to the conservation of
momentum for the free jet. In figure 4, we designate a velocity u(Y)
with an associated static pressure p(Y) at a general station X down-

stream of the jet nozzle. The corresponding quantities at the nozzle
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.station and exit plane are designated with subscripts 1 and 2 respec-~
tively.
The equations of conservation of ﬁass and momentum lead to

the following ''laws'’

[ war =

udY = u,dY = Q (1. 1)
)y J, 2 T

b 2 R 2

_fh (p + pu“)dY = !h(pm + pu3) dY = M, (1.2)

where Po is the ambient pressure of the outer flow, and MT is the
total momentum flux. If Mj is the primary jet momentum flux, we

can define the Thrust Augmentation, Qs 28
= M../M. 1.3
¢p = Mp/M, (1.3)

and this parameter, which is dependent upon the configuration of the
ejector, describes the efficiency of the thrust augmentor since it is
a ratio of the thrust of the system to the thrust of the primary (or the
jet thrust in the absence of the shroud).

Assuming a uniform velocity, uniform pressure primary jet,

j j j )

The induced flow at, and upstream of, station 1 is inviscid
and irrotational, and hence the pressure is determined from Ber-
noulli's theorem.

I. 5 Fundamental Ejector Behavior

We can obtain an idea of the performance of uniform shroud
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ejectors by considering the asymptotic behavior of the frictionless
model in a uniform external flow Uoo when the shroud is long enough
to allow the induced flow upstream of the primary and the mixed flow
downstream of the primary to become uniform with velocity U (figure
5). For the ideal momentum source primary, the finite momentum
. 2 .
flux M. {lim 2pau{ = M, } makes the mass flux {lim 2apu.} of the
J a0 J J a—+0 J
primary negligible. All of the flow in the shroud is then entrained
flow. The external streamlines contract as the flow which is en-
trained into the shroud is given an increase in velocity (U-Uoo), and

hence near the lip of the shroud on the outside, there is a stagnation

point. The mass flux in the shroud is given by

Q,. = 2phU (1. 5)

T
and the thrust of the system is given by the increase in momentum

flux of the entrained flow

My, = 2hU p (U-U_) (1. 6)

The flow inside the shroud may be calculated by considering the con-
servation of momentum in the control volume shown in figure 5,

where the pressure in the uniform entrained flow is given by

2 .2
p=py, t+5 (U - U (1.7)

We find then that

_ 2 .2
M, = ph(U”-U ) (1. 8)
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and hence from 1. 3, the thrust augmentation is given by

U
Qp =2/ + =) (1.9)

When the ejector is stationary, the asymptotic value is obtained

@ =2 (1.10)

This remarkable number is a convenient standard with which
to compare the performance of finite ejectors, and deserves some
comment., It is independent of ejector geometry near the entrance
as long as the region in which the control volume is considered is of
uniform height. Thus in this limit the lip shape plays no role, and
the pressure forces generated there are similar to those generated
at the leading edge of an aerofoil. In particular, the zero thickness
lip generates the same thrust as the finite lip, due to the negative
infinite pressures developed. This is exactly analogous to the flat
plate aerofoil nose suction.

For finite Uoo the thrust augmentation is a function of the
conventional jet momentum coefficient

M.
C; = ;h—(ElUT) (1.11)
2 "o
since the velocity ratio -I—J[—J—-— can be obtained from the momentum

o}
balance, equation 1.8. Hence ¢ can be written as

1
=2(1 - — (1. 12)
QDT ( 1+\1+ Cj )
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Thus for a given primary, the augmentation is degraded by
forward speed, and the analysis presented here for zero forward
speed must be modified if the device is to operate at flight speeds
where Cj ~ O(l). For the limiting case where Cj—~ 0, or U— Uoo’
the shroud produces no augmentation in thrust since then the stag-
nation point moves up to the lip and the infinite negative pressure
there disappears.

To introduce the analysis for finite ejectors in an ambient
medium, it is useful to look at the results obtained by the method
used by von Kdrmd&n, which was referred to earlier. If we assume
that nonuniform velocity profiles occur in ejectors of moderate
length, we can assign a parametric description of the nonuniformity

by defining

where then X > 1 for nonuniform profiles. We use Bernoulli's equa-
tion to relate the pressure to the velocity in the entrained flow and
then make the critical assumption that the entrained flow is uni-
directional (v = 0). Referring again to figure 4 we can evaluate the
two conservation laws, equations 1.1 and 1.2 at station 1, and thus
calculate the thrust augmentation as a function of the dimensionless
primary nozzle height A‘2 and the velocity parameters Al and 7\2
evaluated at sections 1 and 2 respectively. The results are shown

in figure 6,
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It is apparent that highly nonuniform entrance profiles and
profiles approaching uniformity at the exit produce the highest
thrust augmentations. The apparently unbounded values of ¢ pos-
sible stem from the assumption that highly nonuniform inlet velocity
profiles may be attained in the induced flow, with no accompanying
transverse velocity components. We will make the more realistic
assumption of potential entrained flow to show that the thrust aug-
mentation is constrained to a much narrower range, and reaches

the asymptotic value

for the ''frictionless'' model of infinite length.
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II. THE FLOW FIELD (TYPE II)

II.1 The Nature of the Flow

In addition to the distinction made in the previous section
between the mixing region and the outer region, it is convenient to

divide the turbulent flow field into two parts, the free-mixing region,

where the turbulent processes are controlled by the free boundary,

and the confined-mixing region which is enclosed by solid surfaces

(figure 7).

This difference is expressed in the behavior of the pressure
term in the confined-mixing region. Because there is no longer any
boundary condition linking the pressure to the velocity field, it must
be treated as a separate variable, with values prescribed at the
point of impingement of the jet and at the exit, where it must equal
Pt

The exit plane is assumed to be downstream far enough that
the outer entrained flow is not affected by the discharging flow, and
hence the flow downstream of the exit plane may be neglected.

II. 2 The Interaction Problem

As has already been discussed, this type of interaction prob-
lem is most conveniently solved as a strong interaction, in which
both the inviscid region and the viscous region must be solved simul-
taneously. Moreover, the boundary conditions must be so specified
that the entraining effect of the mixing is limited to that part of the
jet which is bounded by fluid, and hence the matching conditions will
be specified off the axis of symmetry. We choose to match both the

pressure and mass flux at the edge of the jet, which then will be
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considered to be the boundary of the potential flow region. This
seems to be the most obvious matching point from a physical point
of view, but no mathematical justification exists for choosing it over
other positions, for example the half-velocity point.

We must now formulate the equations of motion in each regién,
and apply the conditions at the boundary that mass flux and pressure,
or edge velocity, be the same for the inner and outer regions. We
will then calculate the flow in the confined mixing region, and deter-
mine the length of shroud necessary for the pressure to return to
ambient pressure.

1I.3 The Free-Mixing Region

We will define two axial scales for the inner and outer flow
for convenience. In the inner flow, the distance from the nozzle will
be denoted by X, while in the outer flow, x will be measured from

the shroud lip, and is made dimensionless by the shroud height.

We represent the velocities and pressure in the two-dimen-

sional Navier-Stokes equations by

u=u+ v
v=v+ty
p=p*tp

where barred quantities are time averaged and primed quantities are

fluctuations with zero mean. The equations can be written as

du
——X+

[e>] Rab]
4“
it
o

(2.1)



o ouv

_ 1 ou' ou'v'
X "y T p 98X~ 89X - oY (2.2)
v . v 10p euy  ov'?
v, - .18 _oduv' (2. 3)
ax T Y 5 BY ~ X " oY

In addition to the transverse scale 6~ O(h) previously men-
tioned, we note that L represents an axial length scale which is large
compared with h. That is A = L/h >> 1.

Thus if -3-8X~r1 and 587~ —}1;, from 2.1 we get

=06

et]<l

In addition, we assume that the mean products of the turbulent
quantities are of the same order, that is O(;TZ) = O(-V'_Z) =O@uv').

Examining the roles of the inertia and pressure terms in 2.2
and 2. 3 we see that if they are of the same order in 2. 2, the inertia
terms must be of order (l/A)2 compared with the pressure term in

3.3. Thus

where PO is the pressure evaluated at the jet boundary. This implies

that

—2
P.=0OA ) v
0 YLG

and hence that Bernoulli's equation reduces to

- _ Pyl
Py=p, -5 U X)
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where U(x) is the edge velocity. The model equations are reduced to

gut  ouv _ 1 %o 8 ——. 8 T2 T2

X" BY - p dx ~ar Y Vitax o -v) (2.4)
du , ov  _

xtay ° O (2. 3)

The assumption on the turbulence terms leads us to exclude
the last term of 2. 4 as O(—jl-&) compared with the others. We use 2.5

to eliminate v and obtain the basic equation

g’ 8 (GfYﬁdY _ 1 9% s 2.6)
X T 7Y \"J X = '

(b) Similarity Solutions

In order to make some progress in solving 2. 6, a relationship
connecting the turbulent shear stress to the mean flow must be found.
One procedure is to postulate a ''law'' through some simple argument
such as the mixing length. For shear flows of this type investigators
(see Schlichting (7)) have formed several such laws which seem to
have virtually the same validity in predicting development of mean
flow quantities.

In addition the mean velocity profiles in the region down-
stream of the jet potential core can be reasonably well correlated
onto a single universal curve, as has been demonstrated for cases
of free jet spreading (Reichardt (8)), jets in co-flowing constant

(9))

velocity streams (Weinstein

(10),

and self-similar jet spreading
{Harris . For this reason we will represent u(X, Y) by a uni-

versal function

WX, Y) = U(X) + 9(X) f(-G—é—(-)- (2. 7)
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where 6(X) is the edge of the jet, U(X) the axial velocity measured
there, and the supervelocity ;(X) is the difference between the jet
maximum velocity and the edge velocity. The edge will be defined in
the next section as the line at which the inner and outer flows are to
be matched, and we then avoid the conventional difficulties in locating
the point where the physics of the flow changes.

We choose to represent the universal velocity profile with

the function
1 Y
f=3(1+ COS(W'E')) (2. 8)

since this represents the experimental curve in the inner region as
well as any other, and has a finite radius of curvature at Y = 0.
Before discussing the representation of the turbulent shear

stress, we note that truly self-preserving flow can only satisfy 2. 6
for certain relationships between U, uand 5. The integral form of
the equation, however, with the assumed velocity profile, together
with enough auxiliary equations to solve the problem, predicts well
the required functions when they are mutually independent. Inte-

grating 2. 6 across the shear layer, we obtain the basic integral
equation

~

S (260) + % (5(U + 2y W) + & @U+ ) = 0 (2. 9)

where vy, B and A are constants defined as

1
- Y, _1
A_{)fd(—é)_z
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and

3
1

<2
1}
i

For this two-parameter model of the free-mixing region we
need two additional relationships. One will bring in the forcing term
through the shear stress term, and the other will be supplied by the
matching at the boundary.

Forms of the auxiliary equation commonly used are the inte-
gral mech.a,nical energy equation for the mean flow, and the moment
of momentum equation, both derived by integrating the product of
equation 2. 6 and the appropriate weighting function. For this study
we choose as our auxiliary equation the momentum equation evaluated
on the axis of symmetry. While it is recognized that the physical
applicability is perhaps not as direct, in that it empilasizes the
mechanics of the flow at one particular transverse position as opposed
to the averaging effect of the other equations, it has the advantage of
being in the simplest form, and more important, it gives the same
general results as the other forms.

In terms of our assumed velocity profile, it has the form

3—%(63)+%(6(U+G))=- %(W)l (2. 10)

Y=0

o |~

(d) The Turbulent Shear Stress

We need not specify at this time which representation of the

Reynolds stress term we will use, but only its format Y = 0. We
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denote -u'v' = — by the general form

T
p
2

%:Ktu (X)g(—t%a—) (2.11)

since experiments in a wide range of jet expansion flows justify the
assumption that the shear stress is in local equilibrium with the mean
flow parameters as scaling factors. We thus seek to extend this as-
sumption to our problem with the condition that those regions where
large X-gradients occur must be held suspect. Since no data are
presently available on the behavior of jets departing from or relaxing
to equilibrium, any correction is not justified in this model.

For the auxiliary equation used here, the forcing term is of
the form |

8u'v'l =c ﬁ 2.12)
Y L, s (@.

where c, = th' (0) is an empirical constant which must be obtained
from th>e limiting cases of the flow.
(e) Matching Conditions

The quantities to be matched in this problem are those most
naturally associated with the mixing process, the pressure and the
entrainment. In our model, these are represented by U(X) and Q(X)
where

5

Q ={) WdY = 5(U + Au) (2.13)

We therefore replace u by Q and rearrange equations 2. 9 and
2.10, using 2.12 to evaluate the forcing term. The set of equations

to be solved is then
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Lo} as au

FlSg+ P9 +F, 9% = 0 (2.14)
dQ dé dU _ 2

Giax * Gax * Gszax T - %R-U0) (2.15)

where F. and G, are functions of Q, U, & and are listed in Appendix L
Each coefficient is homogeneous in Q and US6.

II. 4 The Inviscid Region

The inviscid region is shown in figure 8 as that area bounded
by the upper shroud surface, GF, the lower shroud surface, FE, the
free boundary y = —E-)}L}(—-)- = g(EB), and the y = 0 axis from the free
boundary to x—+ -00, BA. Since the induced flow is assumed irrota-
tional we may use potential flow theory to solve for y(x, y), the

incompressible streamfunction defined by

=9
u-ay

where

véy = 0.

For this two-dimensional problem we will use complex vari-

able methods to solve for the complex potential

F=@kxy)tidk,y)

where z = x + iy
and F = F(z).

We use the outer axial coordinate x which is related to the
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inner coordinate X by

_A (2. 16)

b4
it
i

1

where A1 is the normalized axial separation of the primary nozzle
and the shroud leading edge, and hence in the z-plane the shroud is

defined by
x20, y=1.

The solution to the problem is determined by mapping the
z-plane into the upper half-plane ¢ (figure 9) where ¢ =& + inis
defined by the mapping functions developed in Appendix III,

At the boundary y = g, the flow is regular and hence the
inviscid region may be analytically continued across the free boundary.
We choose then to consider the flow as being generated by an artificial

distribution of sinks on the line BC, and thus must solve a Dirichlet

problem (figure 10) with the boundary conditions

¢ =0 on AB
¢y = ¥(x) on BC

g = QT/Z on DFG

and a sink-like behavior at y— m

Q .
Y~ 5= (1 - Lian 1))

Mapping the function F directly over into {, we form the corresponding

boundary-value problem on the half-plane (figure 10) with the solution



_22-

0
F(¢) =-+ [ 1(E") log (£'-g)dE" (2.17)
-€
where
18 =G5 = o o (2.18)

and -€ is the mapped nozzle position.
In the physical plane, the complex velocity w(z) = u-iv is

calculated from the complex potential as

w(z)=g—? j—g . (2.19)

Defining Zgs §‘6 to be the real and transform points which lie

on the free boundary y = & (x), we can calculate from 2.17 and 2. 19

the streamfunction and x-velocity at Zg and equate them to the values

Q(X) and U(X) in the inner flow.

The required relationship for Q, U, and 6 is then obtained

by solving two integral equations

0
Q) = Jm {- £ [ 1€ tog (e -, Jag '} (2. 20)
-€
0 1e
U(X) = Re{-:—r%zlz fe g,(i; dg'} (2. 21)
Ll

simultaneously to eliminate I(£').

The interaction problem is now formulated. At this point the
problem could be generalized to consider other shroud shapes with
their corresponding mappings to the half-plane. Regardless of the

shape of the shroud, the transformation must reduce to the scaling
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transformation
za ¢

for large €.

Using this we can show that 2. 17 satisfies boundary conditions
(a)  For Re{t}<-e, dm{t} =0
¢ =9dm{F ()} = 0.
(b) For Re {t} >0, dm{e} =0
log(§'-¢) = ~inw + log (£-§')
and therefore
o= f ugnag =L .
-€
(c) If we consider the limit |¢ |-
log(§'-¢) ~ - i(m-arg({))

so that

O

~ =% (1- 2 arg ()

Q
TT-(I - -:; tan-l(ﬁ)) .
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II1I. THE INTERACTION PROBLEM

III.1 The Equations

Quasi-linear differential equations of the type 2.14 and 2. 15
would ordinarily be handled as an initial value problem and forward-
integrated. The elliptic nature of the outer flow, however, makes
the coefficients of the equation dependent on the values of the parame-
ters along the entire boundary, and necessitates a more elaborate
numerical scheme. Accordingly we will introduce a numerical
method which starts by integrating the inner equations using some
assumed relationship in place of the equations 2.20 and 2.21. With
the solution so calculated we will solve one of 2. 20 or 2. 21 for the
kernel I(§'). Rearranging the inner equations so that the remaining
equations, 2.20 or 2.21, can be considered a forcing function, with
a known kernel, we can obtain a second approximation to the inner
solution. We must then provide a suitable scheme such that succes-
sive iterations will converge to a stable solution in a2 reasonable
manner.

It is important that we establish the correct initial conditions
for the inner integration. As was suggested in Section 1. 2, we will
use the momentum point source model for the primary to avoid the
complications of the initial "primary core' region of mixing. We
then must look at the behavior of the equations close to the source.

III. 2 Initial Conditions

Assuming that the leading terms of the expansions of the

parameters U, Q and 6§ for small X are of the form
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6 ~ & X (3. 1)

U

R
c
>

where a;, a, are both greater than zero, with the restrictions
Q=586(U+ Au) 20

and &u > 0, we find that

5.U a,ta,-a
lim O0< gOXZ'?’ ISI
X-0 0
andhencea4=a2+a3-a120.

Keeping the lowest-order terms in 2. 14 and 2. 15 we have

a4 Za4
k1 + kZX + k3X =0 ‘ (3.2)
a,-1 a 2a a, 6,U, 2
2 4 4, _ 2 4 070
and X (k4 + kSX +k6X ) = - CtQO (1-X Qo ) (3. 3)
where
k., = (2a,-a )l 6 QZ
1 1 27 A 070
=_(2X - X _
k2 ((2 A 1)a1+2(A 1)a3) OQO
= (2L Y. 2458
k3 (2 A 3)a3 + ( l)az) 6 U0
k, =(a,-a,)é QZ
4 1 72770
k5 = -(1-A)(a1+a2-a3) 60U0Q0

- 2
k6 = (1l- ZA)a o 0

3
O
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First consider a,> 0. From 3.2 and 3. 3, keeping only the

lowest order terms,

=1
452
a, =1 (3. 4)
60 =2c
Now consider a4 =0, 3.2 and 3.3 become
k1 + kz + k3 =0
. 2
a,-1 U.&
2 _ 2 070
X (k4+k5+k6)--ctQ0 I-W
60U0
Again a, =1, and a,, a, and §, are found to be functions of s
_ 2 1 3 0 ( QO
such that
Zal -1>0

(This is shown in Appendix II.)

Examining the jet momentum flux

6 ~
M(X) = 2p [ (U +uf)? ay
0

and using 2. 13 to remove u, we have
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2
M(X)_ ..2 i (Q-6U)
—2-5-—" =U 6+ 2U(Q-8U) + A § (3.5)

For ay, > 0, we note that as X -0

lim M(X)_ 7y Qp 2a)-a, 24
im -
e (1+0(X %)
2
L1 o
T A 2c

or

Setting this limit equal to Mj/ZP’ we solve for Q to obtain

2¢, A ﬁi
QO= o > . (3. 6)

This case corresponds to momentum source flow.

-

In the case ay = 0, equation 3.5 becomes

2
lim M(X) _ y 20 Lt (60U0)
X0 Zp A5, n Oy
5 U
~0 foro< 2%«
ol
since Za1 -1>0.

This flow is the self-similar flow studied by Harris and does
not correspond to momentum source flow.

The behavior of the flow in our problem can be characterized
by equations 3.1 within a certain finite radius of convergence for a
given accuracy, The magnitude of this radius is determined numeri-
cally as described in Appendix VI. Adding further terms to the
expansion requires the knowledge of the behavior of U near X = 0,

which is initially unaccounted for. We choose XO the starting point
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within this radius so that the initial conditions become
1

2c A M, 2
Qo) =\ 2 %o

6(XO) =2 ctX

(3.7)

0

It is of interest to note for further reference that this one-
term expansion is an exact solution for the case U= 0, that is, the
free jet case. Hence the constant c, may be simply related to the
free jet growth rate %}E‘ . (Appendix V. )

II1. 3 Physical Parameters

The homogeneity of the coefficients and forcing terms in

equations 2.14, 2.15, 2.20, and 2. 2] allows us to express the veloci-

ties and lengths in terms of non-dimensional quantities and the global

parameters QT and h, Then we define

Q*:%—Q—
T

S
X*—h
U*:———glU
T

s L6
® =3

(The symbol © is used to avoid confusing the dimensionless edge posi-

tion with the commonly used displacement thickness §%). From
2.14 and 2.15, corresponding coefficients F:‘ and Gf, are derived in

Appendix I. The full problem can now be stated as

% -~
k dQ¥ | px db  pa dUX

Fit ot F3ax=

= 0 (3. 8)
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w dQ* « ds _ R 2
G} Txx * O o3 * OF axm = - (@ - 8 U¥) (3.9)
L 9
Qx(x#) =g {1 [ 1% og(s'-¢g)ax'} (3.10)
-€
b =re {138 [ IMENAE \
Uk (X*) = Re{1r = |_ f e (3.11)
237, =€ 6
6
We also define the parameter
M.
- _J 2h (3.12)
P QZ
T
The initial conditions then become
2CtA * 3
Q*(X¥) = ¢ o Xp)
(3.13)

ey *
5(X%) =2 X}

and end conditions are, at X% = Xz
-~ * _
& (Xe) =1
¥y
Q'F(Xe) =1

The parameter a is strictly speaking a momentum coefficient,
but in a more general sense is the characteristic parameter for jets
in uniform channels, as it is exactly analogous to the parameters
discussedv by Curtet and Hill. As the problem is now stated there
are two independent parameters, a and the primary nozzle parameter
Al’ The conditions at X’: fix both Xz and U:, the value of the edge

velocity at the end of the free-mixing zone. However, the parameter

A will then fix the length of the confined mixing region and hence
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govern the pressure recovery. Thus for this analysis a is deter-
mined by the value of A.for a given Al’ and provides the condition
which closes the problem.

We can now solve the interaction problem as a parametric
problem involving a and Al' The only requirement is that A be
large enough so that the shroud extends past the end of the free-
mixing zone.

I11. 4 Method of Solution

To make the problem tractable, we replace the integral equa-
tion with a series of known functions multiplied by unknown constant
coefficients. We must now satisfy the equations 3.10 and 3.11 at
only a finite number of points along the matching boundary.

The kernel I(§') is approximated by a series of thé type

N
IE') = Cyly(&") +-Xi C.A(&")
1

Then equations 3.10 and 3. 11 can be replaced by
N
Q¥(X*¥) = CoK,(8,) +iZ,1 C.K,(€) (3.14)

N
UH(X*) = CoJ (¢, ) + ), CI(€,) (3.15)
i=1

where the functions Ki’ Ji are known functions of (x, 6). For this
analysis we base these functions on an assumed piece-wise linear

distribution of ¥*(x') of the form (see figure 11)

x'+A
\I{*(x') = C1 (}—{FA—I-) for -A1$ x's Xl (3. 16)
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and
x'-%;
Yy — A -
UHx') =C, ; + (Xi'xi-l) (C;-C; ) (3.17)

for x, < x'sx.andi=>2
i-1 i
where xi(‘i =1, N) are the endpoints of the intervals. It was also
found to be convenient to add a sink at the downstream infinity of the
channel, and this is represented by the zeroth terms in 3. 14 and
3. 15,
We integrate equations 3. 8 and 3. 9 in the form

N *
NUM1(Q*, 6, U* du

y T%)
* *
49 -  dX (3.18)
DEN(Q*, &, U%*)
~ ‘ ale N dU*
ds NUM2(Q*, 6, Ux, Ix%

- A (3.19)
dx* DEN(Q%*, 5, U%)

where the right-hand sides of these equations are evaluated in
Appendix I. The functions U* and dU%*/dX* are known functions

of X* and 5 in the integration. A standard Runge-Kutta technique
is used since the right-hand sides are regular in the range of inte-
gration. The difficulties arising at the initial point are discussed
in Appendix VI.

(b) Iteration Procedure

The iteration procedure is carried out for fixed A1 and a.
Because of the fixed end conditions which the solutions must reach,
it is possible to obtain a stable solution which does not satisfy the
end conditions, if all Ci's are allowed to vary. The procedure fixes
CO therefore and finds a stable solution for the N remaining Ci's.

The end condition is checked and if the value of Q*(X:) #1, a new
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value of CO is chosen and the procedure is repeated. The initial

Ci's are chosen to satisfy equation 3.14 at 6 =1,
N
Cy + iz_;l C, =1 (3.20)

since the functions K.1 have the value 1 at this point (see Appendix IV),
Equation 3. 15 is used to evaluate U% and dU%/dX*, and the
inner equations are integrated to give Q% and g Their values at the
N match points Xm. are inserted in 3. 14 to generate a set of N linear
algebraic equal&ions1 in Ci (i =1,N). The solution to this set of equa-
tions is used to generate a new set of coefficients, and the inner
equations are again integrated using 3. 15 with the new Ci's. A stable
condition is reached when successive iterations produce the same

set of coefficients. A more detailed discussion of the method and the

nature of the convergence can be found in Appendix VI.
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IV. SOLUTIONS IN THE FREE-MIXING REGION
The numerical solutions for g, Q% and U* were carried out
as described for values of the momentum coefficient a ranging from
0.3 to 1. 0, and nozzle positions A1 from -2. 0 (downstream of the lip)
to 5. 0 (upstream of the lip). The results for a = 0.5 and a = 1.0 are
representative of these solutions and are shown in figures 12 to 17.

The mean boundary position & is plotted in figure 12

against a turbulent axial coordinate defined by

X = c x¥

t

™o
2>

WithAl as a parameter. The corresponding values of Q* are shown
in figurel3 and the plots of U%, generated by the potential solution,
are shown in figure 14. We note in figure 14 that the edge velocity
curves are somewhat irregular, reflecting the fact that the solutions
are ''matched'' at only a finite number of points (5 in this study, for
all cases). Various values of N, the number of matching points,
were tried, and checked against the limiting analytic solution ob-
tained from the simple theory (which is discussed in Section IV. 2),
for the case when the nozzle is downstream of the region of influence
of the shroud lip. This simple solution is shown in the figures to
illustrate the agreement obtained for N = 5,

In figure 15, the boundary position 8 is plotted for a =1.0.
The same qualitative behavior is observed as for a = 0.5, with the
mixing distance X* considerably reduced. The volume flux Q% is
shown in figure 16 for a = 1.0, and the edge velocity U* is plotted

in figure 17 against X. Again excellent ag‘reement is obtained with
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- the simple solution for A1 = -2, N =5, The nature of the solution
will be discussed in Section IV. 3.

IV. 1 Limiting Cases

The lip parameter A1 has an upstream limit imposed by the

expansion rate of the free jet. For A1 = A1 , the free jet expand-
max ~
ing from the nozzle would just meet the lip of the nozzle at 6§ = 1.

This can be physically visualized by considering the ''starting'’

problem of the jet. For A1< Al , the free jet would spread to
max
the shroud and be ''trapped'' by the pressure gradient induced by

the lip, to be swept downstream to its stable position. For Al >A1 ,
max
the jet would not ''see'' the shroud and spread outside the lip. This

phenomenon was indicated by the numerical procedure which became

unstable in this regime. The value of A1 is found from the free
max

jet solution

6 =2 Ct X
where X% =A1 at 8§ = 1.
max
Thus
A =i (4.1)
1 2c ’
max t

The downstream limit is defined as the value of A1 when the
lip position ceases to have an effect on the jet spreading, and can be
considered removed t6 upstream infinity. The analysis for this
'"channel flow'' was done by Curtet using a much simpler potential

flow model which reflects the localizing behavior of flows in channels.
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This limit was found to occur within one or two channel heights from

the lip, and will be defined for all values of a as

A = -2 (4. 2)

min

IV.2 Simple Channel Solution

Following Curtet's method, the potential flow in the channel
is assumed to be uniform, and this allows us to replace equations

3.14 and 3.15 by the much simpler continuity equation
Q%+ (1-8)U*x =1 (4. 3)

The solution to equations 3.8, 3.9 and 4. 3 can be found in
closed form and is presented in Appendix VII. The comparison with
Curtet's results can be seen in figures 18 and 19. That this should
be a good approximation for the potential flow is not surprising since
classical solutions for potential flows in channels indicate that the
actual distribution of singularities at any x-station has an effect on
the flow only in the neighborhood of 1/2 channel heights upstream
and downstream. The flow is ''localized'' in the sense that deriva-
tives of g, Q% and U* at any x-station are dependent only on their
values at that station. Near the lip, this localization breaks down

and the elliptic nature of the potential flow becomes important.

IV. 3 Discussion of Free-Mixing Solutions

The solutions presented in figures 12 to 17 were obtained by
a five-point match (N = 5) in the numerical iteration process. The

momentum coefficient values a = 0.5 and a = 1. 0 were chosen as
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representative of the range of a possible for a non-diffused pressure
recovery. For values of a> 1, the edge velocity becomes negative
at the end of the free-mixing region and the applicability of potential
flow for these regions of reverse flow is uncertain. Since this is an
unfavorable condition for thrust augmentation in any case, as we will
see in Section VI, we have considered a =1 to be the upper limit of
interest. Values of a < 0.5 were investigated numerically but not
included in these results, and a = 0.5 will be silown to be the maxi-
mum achievable with a uniform shroud.

The simple channel solutions are shown in comparison with
the numerical results for the mixing boundary 8, the volume flux Q%
and the edge velocity U* ., It is noted that the numerical solutions
8 and Q%* for the channel flow are virtually indistinguishable from
the simple theory, while the U* curves (figures 14 and 17) reflect
the matching process in that they are linear combinations of the
assumed potential functions. Nevertheless their agreement with the
channel solutions is good except near the point source, where they
exhibit a singular behavior characteristic of the potential model used.
The agreement of the numerical solutions supports our assumption
that the mixing in this initial region has a weak dependence on the
outer flow.

The presence of the singularity in the potential solution at the
shroud lip becomes important for nozzle positions A1 near A
The jet spreading (figures 12 and 15) is seen to vbe depressed ?ﬁhe

favorable pressure gradient ahead of the lip, and swept into the

shroud. At the same time, the volume flux (figures 13 and 16)
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increases more rapidly than in the channel flow case, which suggests
that the role of the transverse velocity at the jet boundary in the po-
tential flow is significant. The increasing X-derivatives of the flow
quantities for A1 near A1 also indicate that the assumptions for
max
the formation of the boundary-layer equations are poor. Again how-

ever we will see that these values of 1\1 produce poor thrust augmen-

tations, and need not be emphasized.
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V. THE CONFINED-MIXING REGION

V.1 Introduction

In order to determine the thrust augmentation of the complete
system, we must determine the manner in which the pressure in the
confined flow rises to ambient pressure at the shroud exit plane.
Some assumptions about the turbulent mixing are necessary to re-
place our lack of knowledge of the detailed behavior of the Reynolds
stress terms in the equation of motion. In Hill's analysis for a
co-axial geometry, the integral methods which we employed in the
free-mixing region predicted quite well the pressure rise in the con-
fined mixing, except in the immediate transition from free mixing.
For his analysis an eddy viscosity model represents the effect of the
turbulent mixing, and can be extended to this study,

The basis for the applicability of the integral methods is the
assumption that we can approximate the y-dependence of the pressure
term in 5. 1 through some experimental evidence or physical argu-
ment. Hill assumes that the pressure is constant across the channel

for the axisymmetric case, and Ferguson(“)

does the same in a much
cruder analysis of the two-dimensional ejector. The success of the
calculation in matching the experimental data, with the exception of
the transition region which is of the order of one channel height in
length, supports the extension of our methods into the confined-mixing
region.

The nature of the turbulent flow in this region is expressed by

the integrated momentum equation
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h 2
h
L[ @+ puday = -c £TE (5. 1)
0

where the retarding effect of the viscous layers adjacent to the shroud

is represented by the friction coefficient C The experiments of Hill

£
and Ferguson indicate that pressure and momentum flux terms are
more significant than the friction term and hence that the loss in mo-
mentum flux due to mixing is almost entirely recovered by the
pressure term in channels of moderate length. For this reason and
in accord with our ''frictionless'' model, we will make the assump-

tion that the right-hand side of 5.1 is zero.

V.2 Integral Equations

The pressure recovery in the confined-mixing region depends
through 5.1 on the manner in which the momentum flux integral
decays toward the uniform state. The possibility of a filling -out of
the velocity profile due to the redistribution of momentum across
the channel must be allowed. To this end Hill suggests a velocity

profile of the form
WX, Y) = UX) + u(X) (£(y) +E (X) £, (y)) (5.2)

where y = Y /h.
Here the addition to the old profile 2. 7 takes the form of some

suitable function f1 (y) which has the value

f1:0 at y =0,1

and = (X), which represents the magnitude of the distortion from the

free jet profile.
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The unknown functions to be determined are the pressure p,
the edge velocity U, the supervelocity :1, arid the form parameter =.
To calculate these Hill uses the integral continuity equation and three
successive integral moments of the momentum equation. His results
indicate that the choice of fl (y) is not a sensitive factor in the calcu-
lations since the changes in the velocity profiles for moderate length
shrouds are not great. This result is substantiated by taking a closer

look at the momentum equation,

V.3 Similarity Solution

Making the same assumptions as in the free-mixing region
about the relative importance of the terms in the momentum equation,

we may write from the boundary-layer equation 2. 6

_ - Y - -
gow _ou o~ fu . _1dp Buv
“ax'an;ade"pdx‘ Y (5.3)
and from 2. 11 for the turbulent shearstress
T _ - _ ~2
; =-u'v' = Ktu (X)gly) (5. 4)

It can be easily shown (Appendix VIII) that substituting the

free-jet velocity profile in 5. 3 gives an equation of the form

2
du cosT d u ~ ¥
dX* ( ) Y) + axx (p* u 8_) = Ktu g'(y) (5. 5)
where
P-p.)
3k :-———m-z—-
pQ/2h)

and the other starred quantities have been defined in Section III 3.

If the eddy viscosity is assumed constant across the channel,
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then g(y) is related to f(y) by

and 5.5 can be rearranged as

LY 7
a AT rl
1
coswy (3 <RI t 9x= (p* + - ) =0 (5.6)

7]

joR}

Thus the momentum equation is exactly satisfied if

d o
—— 3k _1_1...__ =
axx PRt g (5.7)
and
~% 2
d 2 ~%
—dllﬁ: + Kt T U =0 (5. 8)

Since the conditions at the start of the confined-mixing region
must be matched to the values at the end of the free-mixing region
where the velocity profile is represented by ti1e cosine distribution,
the initial value of E(X) is zero. Thus the momentum equation 5. 3
evaluated at the station X* = X: and using the velocity profile 5. 2
would have the terms in equation 5. 6 plus the derivative of the second
parameter =(X) in the form
2,2 ~ 2

~%
d ~ d
cosTy(Z qxF Ky T e )+ g (% + )

d o~k "
taxw WE) A (X%, y) =0 (5. 9)

Applying the arguments used above, the first two terms result in
~ %
equations 5.7 and 5. 8, and either the coefficient },n or a-sd(_* (u &)

must be zero to satisfy the equation exactly. Since }n includes the
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initial conditions and the function fl (y), it will not be zero in general

dh d @'y =0
and hence m(u =) = 0.

Lond

In other words & and ‘3‘%& are zero at X% = Xz and in a numer-
ical integration = will then be zero at the next step in the integration.
Equation 5. 9 then holds throughout the confined mixing region and &
is identically zero. This result supports Hill's assertion that the
additional parameter is a correction to the first order solution.

Other phenomenological laws may represent the turbulent
shear stress as well as the eddy viscosity model, in which case
non-zero values of =(X) would be generated. They must however
have a small effect on the profile for these conditions where friction
is neglected, and hence the simple solution represented by 5. 7 and
5. 8 can be significantly improved only by a more detailed model of
the turbulent mixing. We will use this solution to obtain the para-
metrical dependence of the momentum coefficient a, and the thrust
augmentation @p» on A and Al'

V.4 Pressure Recovery

The initial conditions for the first order equations 5. 7 and 5. 8

are found from the solution in the free-mixing region evaluated at

X* = X”é‘. That is

Ux = U

o %

and from the integrated continuity equation
Q¥ = Uk + Au =1
* = U¥ u_ = (5.10)

Also the pressure is given by
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2
s
Ue
¥ = oo —=
P 2

* (5.11)

Integrating 5.7 and 5. 8 and applying 5.10 and 5. 11 the solutions

have the form

= 2(1-U:)/(l+27r2Kt(1-U:)(X*-X:)) (5.12)
p* = $-U% - —é-((l-U’g)/(1+21r2Kt(l-Uz)(X*-Xz)))Z (5.13)
U = U=g+27r2Kt(l—U:)Z(X—X’é)/(l+27r2Kt(l-U’g)(X-Xz)) (5. 14)

Equations 5.13 and 5. 14 are shown in figures 20 and 21 respectively.
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VI. EVALUATION OF THRUST AUGMENTATION

VI.1 Length of the Confined Mixing Region

We will now formulate the parametric representation of the
ejector characteristics. The analysis of the free-mixing region pro-
vided the quantities X"«é and Uz, the length of the free-mixing region
and the edge velocity at the end of the free-mixing region as functions
of A1 and the momentum coefficient a. These are shown in figures
22 to 25. In order to relate these quantities to the shroud length, A,
we must calculate the length of the confined-mixing region, Xf—Xe
(figure 7).

Since the pressure must reach ambient at the end of the
shroud, and the flow as modelled by equations 5.12 to 5. 14 is a
purely local flow, exhibiting no downstream dependence, we can
estimate the length of the confined region by setting

p¥ | =0 (6. 1)
X*=X>fl‘

From 5.13 then

1 1 1
X¥ - X+ = ; (6.2)
o 2%k, (\/1-2U>§ 1'U§>

which is shown in figure 26 for k, = . 021 (Kt is assumed to be deriv-

t
able from free-jet data--see Appendix V).

The total shroud length A can now be calculated as

A= (X - A+ (X% - X¥) (6. 3)
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VI.2 Thrust Augmentation

For our frictionless model, we may evaluate the integral mo-
mentum equation 1.2 at any axial position providing the pressure term
is accounted for. At the free-confined-mixing boundary, X* = Xi’
this relationship is given by 5. 11. The velocity profile is the free jet
profile 2. 7 and the supervelocity Tré” is related to U’é by 5.10. The

total momentum flux is then given by
a 2
T 3 2,y 2)
M = th(Zh) <2U>é< -5 Uz oy (l-Uz) (6. 4)

Using the definition of the momentum coefficient a (3.12) and

the thrust augmentation @ (1. 3), we may express (pT as
=1{x Y Y.3u 2
@ a<A+ Z(I-A)UZ-(A 2) (6.5)
which for the cosine profile reduces to
=L 1.5 - Ux (6.6)
$r =3 e y

VI. 3 Parametric Analysis

We now have enough information to derive the thrust augmen-
tation. We will consider the implicit functional relationships estab-
lished and invert in terms of the independent parameters A and Al’

From equation 6.2 and the parametric solution for X% -Al,

we can write equation 6. 3 in functional form as
A= A(Al’ a, Uz) (6.7)

From figure 18 we write

Ux = U%X(A}, a) (6. 8)
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Using 6. 8 in 6. 7 and solving the functional relationship for a,

we obtain
a = a(A,Al) (6.9)
Su'bstitu'ting back in 6. 8 we have
UZ = Uz(A,Al) (6. 10)

Now we can use equation 6. 6 to write the thrust augmentation

as

¢ =@ A . (6.11)

The parametric dependence represented by equation 6. 11 is
displayed in figures 27 and 28. It is evident that there is an optimum
thrust coefficient for each value of the shroud length A. This opti-
mum and the corresponding nozzle position A1 which produces it are
plotted in figures 29 and 30 respectively.

For A1< -2, the functional dependence on A1 expressed in

equation 6. 8 disappears. Equation 6. 3 can be rewritten as

Apg =D+ Ay = X%+ (X% - X¥) (6.12)

M
which can be inverted to give
a=a (AM) (6.13)

Since Uz is now only a function of a, we can write in this

limiting case, from 6,11

¢ =91 By 6. 14)
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This curve is plotted in figure 31. For the limit of very long
mixing chamber lengths, the edge velocity at transition, Uz, ap-
proaches the limit U: = 0.5. From the channel solution of the free-

mixing region, a is related to Uz by
a =1- U*x (6. 15)
e

and hence approaches a = 0. 5.

The limiting value of Xi is obtained from the simple channel
solution as X:’; = 8. 14.

From equation 6.2, as Xii‘ - Xi becomes large, the limiting
behavior of U: is obtained and with equation 6. 15 inserted into the

thrust augmentation equation, 6.6, we get the asymptotic dependence

of (pT as
1 |
$r=1t %75 (6. 16)
+
(hyg-3- 1)%
as AM >> 1.

We note that as AM - o0, the thrust coefficient for this channel
flow condition approaches the value Qp = 2. Since the lip is now
effectively at upstream infinity, it has 1(')100 effect on the flow. In addi-
tion, the number and transverse positions of the primary jets have
no effect on the asymptotic value, so long as they can be considered
as point momentum sources. We will discuss the significance of

(pT in the next section and correlate the von Karmdan results with
fe o)

those presented here.
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VII. GENERAL DISCUSSION

VII.1 Frictionless Model Characteristics

The idealized model as constituted in this study has a number
of important properties. The presence of an optimum primary nozzle
position emphasizes the interaction of the free-mixing process and
the confined-mixing process in a shroud of given length. The asymp-
totic performance of the frictionless model gives rise to a character-
istic number, Qo = 2, which has been previously recognized as an

Qo

""magic number, '’ but has not been fully understood as to its

ejector
significance.

The existence of an optimum nozzle position indicates the
tradeoff in the lengths of the free-mixing and confined-mixing regions.
The length of the free-mixing region is relatively insensitive to nozzle
position, although the edge velocity at the free-confined boundary,

U*é, rises as the nozzle is moved forward. The length of the confined-
mixing region however has a strong sensitivity to U’g for high Uz, and
is insensitive at low U’é (figure 26). The mixing in this region is an
increasing function of the length of the region, while the free-mixing
becomes less effective as the lip is moved forward. These two pro-
cesses produce a total mixing which has an optimum at some
particular nozzle position.

For larger A, the optimum nozzle position moves downstream
out of the region of influence of the lip. That is, the confined-mixing
process determines the characteristics of the system. In particular
the limiting value @ is the thrust augmentation of a shroud which

o]

effectively extends upstream and downstream to infinity. This allows
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complete mixing to occur, in that the exit velocity profile is uniform,
and in addition the flow at tile lip is that due to a sink at downstream
infinity. Thus the thrust produced by the pressure on the lip is inde-
pendent of the shape of the lip, and, for the zero thickness lip,is
analogous to the lip thrust of a flat plate aerofoil. An ''infinite'"'
shroud in principle doubles the thrust of a primary system of any
configuration provided that the primary cross-section is small com-
pared to the shroud cross-section.

VII.2 Effects of Wall Friction

The performance of the real ejector simulated by our friction-
less model will of course be reduced by the drag of the wall viscous
shear stress. This friction effect manifests itself in the wall boundary
layers which extend from the lip through the free and confined-mixing
regions, and through this mechanism the system size and velocity
magnitudes directly influence performance. A Reynolds number thus
becomes an additional independent variable in the problem. In addi-
tion, the high pressure gradients around the lip make the lip design
an important factor, in maintaining an attached flow and depressing
the initial boundary-layer growth. For certain ranges of the parame-
ter, a, where the edge velocity U(X) becomes small in the free-
mixing region, the boundary layer can grow rapidly and produce
regions of non-potential flow outside the turbulent mixing. Curtet
found that increa.ses in a for his experimental geometry eventually
produce regions of reverse flow leading to dynamic instabilities
where the jet oscillates between the channel walls. These values of

a are higher than the region of interest in this analysis, but would be
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important for ejectors with non-constant height mixing regions. No
attempt has been made in this study to assess the reductions in per-
formance due to these effects.

In the confined-mixing region, friction has two important
effects. First, it produces the possibility of a pressure maximum
occurring in the shroud axial direction, and effectively reduces the
optimum length of the shroud from infinity to some finite value.
Again this is a Reynolds number effect which for reasonable initial
skin friction coefficients seems to be small. Hill and Ferguson both
show experimental results which differ little from the frictionless
solution for lengths on the order of 20-30 shroud heights, where the
pressure maxima occur. For lengths beyond these maxima the flow
becomes primarily pipe flow, with the internal mixing effect reducing
in importance. Hence our study is not extended beyond moderate
shroud lengths. Even then, the numerical estimate of confined-
mixing region lengths is extremely sensitive to even small friction
effects, while the attainable thrust augmentations are less sensitive.
The curves produced in this study must in this light be considered
as illuminating the principles involved and the qualitative dependence
of the physical quantities on geometry rather than as pure engineering
data. For any given diffusion system (pressure recovery) a much
more detailed analysis is required.

VII. 3 The Real Ejector

Many of the simplifying assumptions made in this study were
necessary because the real fluid mechanics cannot be modeled in

more accurate ways. The model for the effects of velocity
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fluctuations is one such case. Two basic simplifications were intro-
duced here which are certainly not universally accurate, and probably
are misleading in certain areas. Nevertheless, without a much more
detailed and comprehensive experimental investigation than has yet
been attempted, they are the best models that can reasonably be
used.

The modeling of the transverse behavior of the u'v' Reynolds
term by a universal function of the transverse position in the shear
layer has been questioned in shear flows where a pressure gradient
exists in the flow direction. Most extensive work has been done in
boundary layers, however, and the applicability of boundary-layer
techniques is not obvious, since the wall effect on the boundary layer
is not present in this case. The extension of this universal function
through the free/confined mixing transition and into the pressure
recovery region is also a matter which needs much experimental
work, and can only be supported at this stage by the results of a few
experiments, which have been cited previously.

The proportionality of the turbulent shear term to the super-
velocity U and the shear layer width or channel height in the two
mixing regions is also inadequately supported by experimental work,
especially in the regions of strong pressure gradients. The effect is
manifested in the ''universality'' of the turbulent coefficient Cys which
might be more accurately modeled as a function of X* or a function
of the mean flow quantities. Certainly however the agreement within
30% of the ¢ derived from Curtet's experiments on shrouded water

jets, with that derived from free air jet data suggests that the



-52.
non -universality might be quite small.

Other areas where the model is probably over-simplified
ar e the immediate vicinity of the shroud lip, which has been dis-
cussed in Section IV, 3, and the transition region between free and
confined mixing. The discontinuity in pressure gradient between
the two regions as exhibited by this model is smoothed out into an
area a few channel heights in length, at the end of which the confined
mixing calculations are quite accurate. The correlation of the
dynamic quantities seems to be quite good in the experiments cited,
so that the error again primarily affects the length estimates of
the confined-mixing region. This is not a surprising result as the
flow is quite complicated in this region, and is quite sensitive to
viscous effects in the boundary layer there. Any improvement in
the calculations for transition and confined mixing will necessarily
take all these effects into account.

Another complication in most ejector systems is the finite
height of the primary nozzle, and the effect of the jet potential core
in the mixing analysis. This core region can be analyzed in the
same manner as the self-similar region, with good qualitative
results as shown by Curtet. His model includes the finite primary
height, and in this case the a parameter assumes a slightly different
meaning and is more easily related to the primary/secondary mass
flux ratio. Since this feature does not include any fundamental dif-
ferences from, but considerably complicates, our analytical procedure,

we have considered it an unessential addition to the problem.
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VII. 4 Extensions of the Model

The analysis of the free-mixing region, which was the major
problem in this study, has enough flexibility that it can be used to
treat a much wider range of jet ejectors. The primary restriction
is that of incompressible irrotational outer flow. The case of a
compressible or even supersonic primary could in principle be in-
vestigated with this analysis if the compressible turbulent mixing
could be adequately modeled. The numerical technique would require
few changes. On the other hand, the analysis for changes in shroud
geometry, lip shape and groups or off-axis positions of primary
nozzles needs only minor changes in the equations describing the
physics, but probably significant redesign of the potential flow solu-
tion in the complex plane. Similarly, analysis of diffusing sections
at the end of the shroud requires special treatment of the confined
mixing regions but could be handled in the same manner as uniform
height shrouds.

The extension of the study to three-dimensional, axisymmet-
ric configurations could conveniently be handled, if a suitable
numerical scheme could be devised to solve the potential flow of
the entrained fluid. This extension from a practical point of view
is essential since the ejector principle is most applicable to co-axial
systems.

VIi.5 Conclusions

This study provides a closed solution to the jet ejector problem
for a simple model of a jet in a shroud of uniform height and finite

length. The thrust augmentations achieved with the axial geometry
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of the primary are less than the theoretical limit thrust augmentation
(pT , and friction effects further reduce the performance of the
shroc?ud. We note that for the frictionless model in all cases the
shroud should be as long as possible, but that friction effects will
limit this optimum length. For fixed shroud length on the other hand,
an optimum primary nozzle position is defined, and for moderate
shroud lengths the effect of friction drag is probably small, if the

lip is correctly designed to minimize the initial growth of the shear
layer.

The ejector analysis presented here represents the maximum
performance which could be achieved if all the effects of friction
could be overcome. The fact that the asymptotic value of O = 2.0
is the fnaximurn obtainable suggests that the center-line ejector is
best operated with the lip effect removed. However, if the design
requirements limit the ejector shroud length, we have shown that an
optimum nozzle position exists, and that the lip area of the shroud
plays an important role in the mixing process. The analysis of von
Kédrm&n has been shown to corfectly estimate the effect of non-
uniform velocity profiles at the exit of the ejector, but to be mislead-
ing in the assumption that highly nonuniform, unidirectional potential
flows can be generated at the entrance section.

The addition of diffusers, and changes in shroud geometry
and nozzle position are amenable to the techniques developed here
and seem attractive, in particular the case for the primary jet on

the shroud wall.
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In conclusion, this study has put the mechanisms involved
into perspective, and provided some important guidelines for the
design of straight center-line ejectors, as well as provided the

necessary first step in understanding the principles of jet ejectors.
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APPENDIX I
COEFFICIENTS OF THE FREE-MIXING TURBULENT EQUATIONS

The coefficients in equations 2, 14 and 2. 15 are

F

. 5(23&(2- @L-1ns )

N A 2..2
2 (AQ-(A 1)6U>

e
[

g
"

2
3= -8 (2(%- 1)Q - (2%-3) 6U)

Q
]

1 6(Q-(1-A)6U)

2 -Q(Q-(1- A)sU)

0
I

G3 —62 <(1 -A)Q-(1 -2A)6U>

The corresponding coefficients F;" and G? in equations 3. 8

and 3.9 are defined by
* £ =
FU(Q*,U*,6) = kpi(QT’h)Fi(Q’ U, 6)

where the kp , the dimensional factors, are
i

2
k = =2
P; Qph
4
k = —
P2 QT2
2
k =
P3 QThZ

and the G;" are similarly given as

G*{(Q*, U*,8) = kpi(QT’ h)Gi(Q, U, o)
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The solution of equations 3. 8 and 3. 9 with U%, dU*/dx* as

forcing functions is found by inverting the matrix equation

| o+ cx | \% ) ) ( -ct(Q*-SU*)Z - Gx gg: )
Then in 3.18 and 3.19
NUMI = ¢ F§(@*-6U%)® + S5 (F4G¥ - F3Gy)

_ s f a2 AU
NUM2 = -c, F§(Q*-5 U*)" - 353 (F§G§ - F3G¥)

*Gx - FxG*
DEN FfGZ FG1

2

Examining DEN, we find the roots

~ & : . sk
DEN = - X 5 @2~ &%) (1-¢, 205 e, o)

where

bo=1-8¢
Y

or
fl

1-A<1

The denominator has no zeroes in the range of integration

since
~ A~*
o6 Ux _ bu
oF 1 - A'Q'?k' <1

for jet-like flows.
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APPENDIX II

BEHAVIOR OF INITIAL CONDITIONS FOR SELF-SIMILAR FLOWS

For the case

(A2.1)

equation 3. 2 becomes

k1+k2+k3=0

(A2.2)

where

_ _ 0'd 2
k) = @aj-a;) x §,Q

2
k2=~<(2 '-YA - Da, + 2‘% - 1)a3) 55U02

2 2.2
ky = ((—ﬁi}- 3)a, + (—X- 1)a2>6 U

00
50U0
With a, =1 and = B, using A2.1 to eliminate a.,
2 Q, 3
solution for a1

leads to the

(A2. 3)

when t3 =1 -

Nw
=l
N

Since 0< B< 1 from Section IIl. 2 we can conclude that

2a1-1>0
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APPENDIX III
THE COMPLEX TRANSFORMATION
The real and auxiliary planes are shown in figure 9. The

conformal transformation which maps

z =x + iy into L =E +in
is
ge) =55 =2 &) (A3.1)

The mapping points are defined as

z =1 £ =1
y>1
|x | = oo ¢ | = oo
y<1
|x| = oo [¢|—o
Then
He)=2=2 (¢ -log &) +i-2 (A3.2)
T T ’
The nozzle position x = - A1 maps into the point
£ = -¢ (e > 0)
so that

A1=—:;(e+ log € + 1) (A3. 3)
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The inverse transform
¢ = ¢(z)

is accomplished with the use of Newton's Method, when the nth itera-

tion gives
z-g_ )

=6t =
g€ )

and Z is the point z = Z at which { is required.

The number of iterations n is determined by requiring the

error
Z -1 )
l ~n-1 l< A
¢, 18, )

for a fixed upper bound A.

The method is quite rapid for a reasonable choice of the initial point

. (In generaln< 6 for A= 10_5 for any Z in the range of interest. )

A check is provided to keep the value to which the process

converges on the correct branch of ¢,
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APPENDIX IV
EVALUATION OF THE CHARACTERISTIC
FUNCTIONS OF THE POTENTIAL FLOW
The line in the physical plane -A1 < x' < oo is divided into N

sections by the N stations

-Al<x1<...<xN

over which ¥(x') is approximated by 3.16 and 3.17.

Then
1€ = §5 5
- N H(x'—x._ )-H(x'-x,)
= g(S')iZ;l ( xil '1X1-1 1 ) c, (A4.1)

where H(t) =0 for t< 0
=1fort>0
and E(S') is the transformation function defined by A3.1. The match-

ing points map into the corresponding points
-e< Sl <...< §N< 0 in the auxiliary plane.

Hence the fundamental solution 2. 17 becomes

F(£) = C o, (0) +§1 A (A4. 2)
where

Hol€) = - log (-¢)
1<i<N (0 = - -,;(-;{1—1,(1——17 fl log(£'-€) g(&")dE" (A4. 3)

€51
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The zeroth term represents the sink at downstream infinity.

The complex velocity is obtained from

wiz) = —1— %_g
g(g)
\
or w(z) = Cod (5) + El c.d.) (A4. 4)
1=
where
1
g () = - —=
0 TEE (L)
1<sisN 9.0 = - f ﬂ‘é,)_dg') (A4. 5)

W(X —X l)g(C)

In A4.5, the integrals may be evaluated using A3.1 to give

ﬂo(f) = 1

§;-¢ 1 &
g = W(X TE) log(gi_1_§,> + ¥ 1og(§i_1) (A4. 6)

lsis N

The integrals in A4. 4 cannot be directly integrated, however,

and must be approximated. This is most easily done by considering

that
Fi(©) = [ §.(0ae+ c (A4.7)
If we look at A4. 7 for the three cases

(a) le > fg; 4]

®) g g > o] > g
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(€ g > J¢]
and expand in terms of l—g——-

where m, and m, are positive or negative integers, we obtain the

form
K8 = - (ﬂh(r) +ﬂ21(§‘)) (A4. 8)
m (x -X, 1)
where
-E,
9,,(€) = (,-)log(E,-¢)- (5 ;_;-¢)log(E. ;-¢)-log(- g, o8t
(A4. 9)
and
_QZi(f) is expanded for each case.
@ 4= 1-(7— ) ( e (A4. 10)
2i n= ln ( ‘g" )
_ (logt)* n
(b) ﬂZi" 5>— - log(-§, ;)log? +Z 2( C) +§5;19 ) (A4.11)
-£. ® £E. n n
() 4,. =log )ogt - ) L (1-) )& + ¢ (A4.12)
2i _gi-l nz=:1 n2 ( Ei-l )Si

The constant C is determined by matching the three expansions at
their common points, and setting @Zl (-€) = 0.
This gives
-E.

1
) (A4, 13)
€51

C =1inlog ¢

The functions required in 3.14 and 3.15 are then
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K, () = Imb ()}
0<i<N (A4, 14)

1,85 = Re { g, (¢}

~

As 6 =1, from Appendix IIl we see that { is real and positive, ¢ =€
Evaluating A4. 8 at ¢ = £ and taking the imaginary part we have

1 Si

Ki(g) = W (Ei-gi_l-log(_si—l) ) (A4.15)
but from A3. 2, this is
f(g,)-1(5, )

Evaluation of dU/dx

The velocity derivative on the free boundary depends upon the
local tangent at the boundary d6/dx. We can express it as

dz
dUu _ dw =%
X Relm = (A4.17)

The derivative of the complex velocity can be expressed as

v . 1 (¢ g (r)+§ c, () (A4. 18)
dz ~ 070 . idi ‘
g(¢) i=1

dz

and X is written as

o, db
dax - dX

Equation A4.17 is now composed of two parts

N g N 9
%;% = iZ__‘IOCiRea_é—g - 2,C; 9m 3:1—§ (A4.19)
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Since the real and imaginary parts of the complex functions
J
—— are of the same order of magnitude throughout the range, and
g ds

we have assumed = < 1, in practice and in agreement with our

use of the boundary-layer equations, we use only the first term of

A4.19 as the forcing term in the differential equations.
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APPENDIX V

EVALUATION OF TURBULENT COEFFICIENTS

The coefficient <y which arises as a physical property of the

turbulent mixing must be determined experimentally. Since there is
insufficient data available from shrouded turbulent jet measurements,

we must use free jet data, assuming that the mixing coefficient is the

same for this case.

From Section III, we see that <, is defined as

ds (A5. 1)

d

0
i
)=

For the cosine velocity distribution

ll—'—H—=-‘,1§'-(1-1*cos (I—SY—)) (A5.2)

u
We note that Y =—-2§ gives the half-velocity point in the pro-
2

file, and this distance has been well established in the literature.

(12) has tabulated these results and has found the average to

Newman
be
dY;
TXZ = 0.104 (A5. 3)

From A5.1 we see that

cy = 0.104

Coefficient of Eddy-Viscosity

In the confined mixing region the turbulent Reynolds stress is

modeled as
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T=p Ktuh 'é-? (A.5. 4)

~

where Ktuh has the function of a viscosity coefficient.
Substituting for the velocity the distribution given by AS5. 2
where now 6 = h, we can form the non-dimensional forcing term in

the momentum equation

(fl—_) -:‘?—-— =-K, 5 T2 cosmy (A5.5)

Since the momentum equation is exactly satisfied by the cosine
distribution and one-dimensional pressure function, we can equate the
forcing term derived in Section II. 3 from equation 2. 10 to the above

expression which gives

-K, —_ 71*2 cosmy =-cC '{‘1*2 (A5.6)
t 2 ; t
y=0
or
Kt =0.021 (A5, 7)

Comparison with Experiments of Curtet

To fit Curtet's results for the channel flow solution, we define

a turbulent axial scale

Act

X = Xk 5.
¥ (A5. 8)

o

which for the cosine distribution has a best fit for

Ac
- o.26

o
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or
¢ = 0. 087 (A5.9)

This value is somewhat lower than that for a free jet, which indicates
that the presence of shrouds might inhibit the turbulent jet mixing.
However there is still insufficient evidence to substantiate any cor-

rection to the free jet value.
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APPENDIX VI
NUMERICAL TECHNIQUES
All numerical methods used in the calculations are standard
CIT 7090/94 library routines since all equations are well behaved
in the region of interest and, with the exception of the initial region,
exhibit no significant sensitivity to changes in program parameters.

(A) The Initial Point

Solution curves generated for a given set of initial conditions
were quite sensitive to the choice of initial point and initial step size
in the numerical integration scheme. To ensure that the correct
solution was obtained, it was necessary to vary both the initial point
Xé‘ and the step size A_ until the solution generated showed little
sensitivity to the variations. To check the result, the second order
initial conditions for the simple channel solution were used with the
same initial points. The variation in the final point Xz and the
volume flux Q’é‘ with Xﬁ and Am are shown in figure 32. The numer-
ical inaccuracies in the large Xﬁ range are due to the error in choos-
ing only a finite number of terms in the expansion around X* = 0 in
the initial conditions. The error in the small Xz’; range is due to the
inability of the relatively large step size to adequately represent the
derivatives. We choose as our operating points the largest Xﬁ and
Am at which the high XE and low X¥ errors do not overlap. They are

0

Xz% = 0. 0001
(A6.1)

Am = 0. 001
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When the integration has proceeded into higher ranges of X¥,
the step size is increased to Arn =0.1.

(B) The Iteration Scheme

The numerical program is illustrated in the flow diagram in
figure 33. The mechanics of transforming from the physical plane
to the {-plane, and the calculation of the forcing functions are
handled in subprograms, while the step-wise integration is done in
the main program. At the end of an iteration, a subprogram is again
used to calculate new coefficients in the potential flow solution.

At the end of each integration, arrays are generated consist-
ing of values of Q% and g evaluated at the chosen match points. The-
match points are selected during the integration to be near the down-
stream end of the particular interval, X, - X (see figure 11), and
are labeled X;kn.' The arrays generated, Q;k and gi are substituted
in 3.14 to calcullate ¢ 6 and hence the potential functions Ki(§’6)
(Appendix IV). The set of algebraic equations produced with the
non-homogeneous terms {Qik} are solved for the coefficients C,-

If these Ci's are now used as the new coefficients in 3.15 for
the forcing term U%*, the iteration procedure often produces a looping
condition whereby a stable solution does not appear. To prevent
this, the new coefficients are obtained by an averaging of the old
coefficients and those obtained from solving the algebraic equations.
This method produces an essentially stable solution for all cases

within four iterations.
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APPENDIX VII
SIMPLE CHANNEL THEORY

The equations are written in terms of the parameters U%, U*

-~

and 6 as, from 2.9

~ ~

*

255 gg* b5 (U* + 2vu) gl;-(’i* + Wk (U* +y Trk)afll;;(’—ﬁ,< =0 (A7.1)
from 2.10 and 2.12

6aF g;j{*+ 5 (U* + %) g‘;‘; =-ctz‘gi- (A7. 2)
and the continuity equation

Uk + A5 u¥* = 1 (A7. 3)
with the definition

Q¥ = 5 (U* + Au¥)
Equation A7.1 can be rewritten in the form

T (6 W¥U* +y 5 W) + § wr 0% = 0
and substituting for U* from A7. 3, this becomes

Sk (Y - 3 pux+ 1) = & (A7. 4)

73 A

where a is the momentum parameter defined by equation 3. 12.

This is solved for 6 =6 (;*), and hence

Uk = Uk(uk)

These are substituted into A7.2, resulting in an equation of
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the form

~ Tk
7 (u*) g—% =-c, (A7. 5)

which can be integrated to give

X% = X% (u%)

Rearranging the solutions and expressing them in terms of

the argument @* =1-U*

2
Q*=¢*+%%Q*_é1-sﬂ_”‘l (A7.6)
P2y ¥
5 =3 X 75 (A7.7)
d, p*+d d,p*+d
_2 _v 1 2 3 4
X* = X = + + dglog(SHT (A7. 8)
where
S(QD*,G.) =¢*2 - -3—(p*+_§_ a
détan-l(—z'ﬁi)+ d, a>z
T(p*,a) = NGa -1

d,log 1tV1-6a -3@* td, a<
1-N1-6a - 3¢*

o=

The coefficients dl' co d8 are listed in table I and the form parame-

ters v, A are defined in Section II. 3(b).

We find the values at X* = Xz by setting 6 =1 in A7.7.
Then

2 2 2 2
$¢ "39E13%73 AYe

Wit
[

(A7.9)

which must be solved for @E. We must pick that root of A7. 9 which
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gives a minimum X:, if two real roots exist. We can see that the
profile parameter % YK is important in that values less than 1 produce
the possibility of no real solutions for a above a critical value.
Physically in these cases the boundary turns back upstream. To

e , . 2y .
avoid this apparent anomaly we require 3 i— 2 1 from our profile.

3

For the cosine profile the limiting value is reached since (%)cosine 5

In this case A7. 9 has the simple solution

9% =a (A7.10)
Then
U* = 1-a (A7.11)
e
u¥ = 2a (A7.12)
e

120.2 + Qq - 2 3a

=1
and Xg = S, ( 8a(6acl) + T d8) (A7.13)
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APPENDIX VIII
SIMILARITY SOLUTION IN CONFINED MIXING

Integrating the assumed velocity profile
T = UX) + w(X)i(y) (A8.1)

across the channel, the integral continuity equation expressed in non-

dimensional variables, can be written as
U (X*) + Auk(X*) =1 (AS8. 2)

Substituting A8. 1 into the momentum equation 5. 3 and using

A8. 2 to remove U¥, we have

(%1(—*- ((f-A)+u*((f-A)2+f' (Ay- {) fdyﬂ)*

o |+

3k ~
%—(—; = Ktu*zg' (AS. 3)

The right-hand side is the derivative of the turbulent Reynolds term
as given in equation 5. 4.

If we represent the profile shape function by the cosine for-

mula,

= 3(1 + coswy) (A8. 3)

then A = 1/2 and the coefficient of da*/dx* becomes (c_ois_ﬂ'z + u—:).

The momentum equation reduces to equation 5.5, Now if g(y)

= df/dy as proposed in Section V. 3, the forcing function can be written

as

~ &2 > ~.2
kyu*” g'(y) = - K 5 u¥” cosmy (A8. 4)
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TABLE 1

CHANNEL FLOW COEFFICIENTS

...2_2'_(30+2)
e7

‘;‘;7'3a+')
1 -2
2-7 ( 6aa—|
y , 144a2-15a-2
"ZC!-F‘E; ( ca —1 )
47Y-3
2
-3 ('_ Y ( 27&“4))
Jea-1 3 6a-|
2./1-6a 3\ 6a-

Y ;36a-7 2 - l
3—-—2—( 6a ) d5log( 3a)+d5tan'(m)
Y ( 36a-7 | 2a I-V/1-6a
3-5 ( 6a -1 )-ds '°9(T)+d6'°g(|+m)

3
tan~!(vV6a=-1 )/(6a~-1) 7

(l«/_-_d_

|+m)/2(|-60)
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