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ABSTRACT

Two methods of obtaining approximate solutions of the equations of
motion in the Earth-Moon space are derived. The first method =~
asymptotic expansions of the\solutions of the equations of motion - is a
power series expansion of the solutions in powers of the inverse maximum
velocity {(%)n} « A comparison of the results of numerical integration
with the asymptotic expansions is presented, which shows the range of ap-

plicability of this method.

The second method is similar to the small perturbation approach.
In this method the zeroth order solution is a Keplerian orbit about the
Earth (the Moon's effect being neglected). The first order solution
corrects for the lunar gravity effects on the zeroth order trajectory.
To demonstrate the computational difficulties involved in the applica-
tion of this method, a straight line Keplerian trajectory was used as the
zeroth order solution. Several applications of the solutions are

discussed.
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I. INTRODUCTION

Interest in the problem of the motion of a small body in earth-moon
space has increased greatly within recent years.

The complexity of the problem does not permit an all-encompassing
analytical solution; therefore, the possible approaches left are (a) exact
numerical solutions of particular cases, (b) analytical solutions of
simplified models, and (c) analytical approximate solutions for certain
ranges of the parameters involved. Numerous examples of the first approach
can be found in the literature. Several examples of the second approach
can also be found. In this thesis an attempt is made to use the third
approach.,

The advantages of having analytical solutions are well known and
appreciated., In addition to the general advantages of relating initial and
final conditions, good analytical approximations could:

A, Provide a method for checking the accuracy of numerical inte-
gration schemes,

B. Provide a convenient method for determining thrust maneuvers

(impulsive and continuous) in the earth-moon space.

11, EARTH-MOON SYSTEM MODEL

For the sake of simplicity, and in order to bring out the salient

points of the problem, a simplified model of the earth-moon space was
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used in this study. The earth and the moon are assumed to be spherical

bodies gravitating like point masses isolated in space and revolving in

circles about their common center of mass. (It should be noted that any
improvement in this model will limit the applicability of the results to
certain periodic times.)

The equations of motion of a vehicle in the above model of earth-
moon space can be written in a coordinate system with its origin at the
earth moon center of mass and rotating at the same rate as the earth and
the moon from an initial position chosen so that the earth and the moon

always lie on the X-axis, as follows (1):

. . 2__ 1l -y o) g
X = 20y -« 0°x = = K ———3—-+ —3 (x + pd) + K —3 a + T, {l(a)]
r r r
e m m
. . 2 l"'p' M [
- = S o +
¥ + 2wx - oy K =3 +r3 v+ I l(b)]
e m
= - il IR I
z=~K 3+t 3 ¢+ T, [l(c)}
r T
e m
where

r, = VQX + pd)2 + y2 + 22 3Ty = \/(x + pd - d)2 + y2 + 22

- m___ 1 K=06(m +m) = 14,035187+10%° e’
W= m +m T 8245 - e m y 2

sec
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-6 rad

. _ . 10

w = 2,6616995°10

Tx,'I‘y,Tz = thrust acceleration components

No analytical solution is known for the system described by equations
1(a-c); however, for vehicles moving at very high velocities in the
earth-moon space, certain analytical approximations give results with

good accuracy.

IITI. APPROXIMATE SOLUTIONS FOR VEHICLES MOVING AT VERY HIGH VELOCITIES

For the sake of definiteness, we will consider cases of launchings
from the moon to the earth. Considering the full range of firing
velocities from the moon, it is observed first that at an infinitely
large firing velocity* neither the earth nor the moon has any effect on
the straight-line trajectory; however, as the firing velocity is reduced,
the earth's gravitational field will influence the trajectory. The
moon's gravitational field has no appreciable effect until the velocity
is reduced much further, Thus, for the range of velocities between
infinity and where the moon's gravitational field has an appreciable effect,
the trajectories will be well approximated by hyperbolas with the earth's

c.g. as the focus.,

__).
TBy firing velocity is meant the total velocity of the vehicle V after
launch.
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The gradually increasing effect of the earth's gravitational field
with the decrease in firing velocity is demonstrated in figure 1, which
shows the ratio of atmospheric entry velocity (Vh) to the firing velocity
(Vf) vs firing velocity for the range of firing velocities approximated
by hyperbolas about the earth's c.g.

As the firing velocity is decreased, the moon's effect becomes
more noticeable and, for firing velocities of about 21,000 ft/sec, the
difference between the firing velocity calculated by neglecting the moon
and the actual firing velocity is about 10%. For firing velocities lower
than 21,000 ft/sec, the effect of the moon's gravitational field on the
firing velocity is increasing rapidly. Plotted in figure 2 is the
actual firing velocity vs the ratic of the actual firing velocity at the
moon, to the firing velocity neglecting the moon, resulting in the same
atmospheric entry velocity.

It can be summarized, on the basis of figures 1 and 2, that

A, For velocities lower than approximately 25,000 ft/sec,
solutions of equations 1(a-c) are required, and

B. The velocity (firing or impact) is the basic parameter deter-
mining the nature of the motion.

IV. DERIVATION OF THE ASYMPTOTIC EXPANSION OF THE SOLUTIONS OF
THE EQUATIONS OF MOTION IN FARTH-MOON SPACE

The equations of motion 1(a=-c) are first non-dimensionalized by

using the following characteristic quantities:
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N

N

10 40 100 400 1000

FIRING VELOCITY FROM MOON, Vg (103 FT/ SEC)

EFFECT OF EARTH'S GRAVITATIONAL FIELD

ON MOON EARTH TRAJECTORIES FOR
LARGE FIRING VELOCITIES FROM MOON

Figure 1
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Length - d - distance between the centers of the
earth and the moon
Velocity - U - the "vacuum" velocity at the surface

of the earthT

The non-dimensional variables resulting in the simplest set of differen-

tial equations are:

1/2

=W d3 ; ™% =T d?
K(L - p) ’ K(L - p)

%
1
uld
“e
%
1
d—
il
-
%
|

Introducing these variables into the D.E. results in

35*-2w*n§*—w*2m2=-n2[13+ b1

(2% + 1)
pe L H 3
e m
b L
“ToR 3 T* [E(a)}
m
. . 2 2 2 1 !
b a R - 0y 1T = (=g g =l - T [2(0)]
e m

Tin the rotating system of coordinates the conserved quantity resulting
from the Jacobi Integral is the total energy minus W times the angular
momentum: ¢ = we(xz + yg) + 2K£l-u) + iKu - (ie + &2 + ia)° This con=

e m
stant is evaluated using initial conditions. The first three terms are
then evaluated for any point on the earth and subtracted from c. The
square root of this quantity is defined as U. The variation of U with
position on the earth is a fraction of 1 ft/sec.
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o 2 1 i 1
Z% = - 1 + z¥ o T % 2(c)
TZS 1 =-p r;; Z [ ]

is a non-dimensional parameter. This choice of

K(L - u)]l/g

where T = {———-————

a v

normalization introduces a somewhat restricting ordering of terms; this
restriction did not prove serious. For high velocities 7 becomes small,

so that for these cases an expansion of the form
o]
£= g (%) + T 1%, (+) (3]
o =1 J

is valid. Substituting these expressions in the equation 2 and applying
the 1limit process for 7| —> 0 (U —> =) results in the following equations

to order zero:

S =0 3(2) ]
Jr, =0 3(0)]
z*_ =0 t3(c)]

the general solution of which is

x¥* = ut B+ ok [h(a)]
v = vi vy [1(2)]
z% = WE tF + 2% [h(c)]
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where xi, y?, z§ are the components of the initial radius vector and

_ laxx _ [ayx _ [az*
u = {dt*)i > Vi~ (dt*)i 1T e,

This result is to be expected at the limit of infinite velocities

(n=0). To the first order one has the equations
= o vy [5=)]
Ty = - ey [5]
#=o0 [5(c)]

To order 1 the solution satisfying the initial conditions is given by

x* = (x¥f + uX t*%) + 7 (w* vi t*g) [6(a)]
o= (v + vE ) 4 (- 0% ux o) [60)]
z% = (z? + W? t*) [6(c)]

The equations to order 2 are

kg - eoy - o s - g () sl G s (9] 5 [1@)
o e o
Fx + 2wk - w*gyi = - ri3 + (l % u) ri3 yE+ T [Y(b)]
e m
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e o Rl ol B | [1(e)]
e m
(o] O

Substituting the results from the zeroth and first-order solution one

obtains

. o
== OX - DU ¥ t¥ ur¥ % ¥
X% ouk (- 2 uit)+ (x’{+uit)
% ¥
) X"{-!-ui'b + W
: 375
2 2 2
% ¥ * % *
[(X?‘”uit) + (y4vy o) +(zi+w"£t)]
X6+ uk t* 4
+ o 1 i
Lo 2 2 2] 3/°
- * L 4 % X *
(x§+pl+uit) +(y'):.tv*£t) +(zi+we{t)
v 1
T I-u ‘ 5 5 51372~ o [.8(8')]
- ¥ ¥ ¥ ¥ *
{(x@{w Lru¥ ¢ )© o+ (yeie+ve{ ©*)" + (zi+w9{ t )}
o ) 2
= . QUK Wk % Nk %
y*ze 2uw* (2 v*{t)-r (y-){+v+{t)
%3
_ YE+vE L
Y- ? ek *23/2
(frutug £%) +(y')j<:+v9{t* +(zi+i'b)
v+ v B
B i 1 . T (B(b)l
L * 2 %2 3T *23/2 v
(ftu-ltuX )7 + (yhevE o) + (27w )



Page 11

. z¥ + wX t¥
% = - i i
2 : * t*)g v¥ ¥ 2 Fepyr¥ B¥ 2 3%
(oprirnagp ©)° + (rgrg 06 + (e ©9)
z¥ + w¥ t¥
o i i ]
T im > > 32 " T [8(e)
~L1tu¥ t¥ + * L%
[(xﬂiwl)ruit) +(y§v§t) +(z§~+w9{t)
The solution to order 2 is therefore given by
, 2 2 1.2 3.1 .2 2
= * %) + muk % - = W% ¥ = U *
x*%(t) (x§+uit) m v-):{t + 7 5 uit + 5 xéje_t
% 4
b1 (2) +—E_ T (3)+ | | Tatat [()]
- Ix(l) TI o I, 1 -4 "x o Jox Na
0 0
2 ,G*e

[9(v)

T at dt [9( c)]
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The components of the velocity vector are given by

- 3 w*2u§ t*2 + w*2x§ t¥*

dx¥ 2
— % % ke oK 't* + Y
TL% ur + s1(2 v ) T

a T (L az a1 (3 ¥
Al SUN P foca)]

T Tg t*x T 1-p 4t

o - n(owur %) + 1
3% = 3 F,(Mit)+{‘

_ 2 2aq - bp 2 1/2 1/2 bg - 2cp
I= 5 = %at + bt + c) -c - cl 5 t

b + 2at + 2&1/2 (at2 + bt + <:)l/2
1/2

b + 2(ac)

P 2
——2;37-é(’+a0~b) 1

(2aqg - bp)t* + (bg - 2cp) _ bg - 2cp
12

ar_ _ 2
dt hag - b2 (at*2 + bt¥* + c)l 2

The values of p, q, a, b, ¢ in Ix’ Iy’ Iz are tabulated on the next page.



Page 13

+ +
k! 1
L_igi___J L.:.P:.J

+
al

:g;r-l

t;r-l

£

B

:EH

ord

d

()1

(1)1

(2)'

(1)

(€)1

(2)1

(1)1

Tea8oqur



Page 14

Since the first three terms of the expansion include all the physical
effects, namely: inertial, Coriolis, centrifugal, gravitational and
thrusting it was felt desirable to compare results using this method with

numerical integration. Although a discrepancy is inherent in this solu-

tion due to calculation of all but the inertial effect on a "wrong"
trajectory, if this discrepancy turned out to be of the same order as

the errors introduced by simplifying assumptions on the earthe-moon model,
the results will still be useful. Furthermore, some "contingency" de-
vices could be used to improve the results. One such device is the use of
stepwise evaluation similar to stepwise integration, the advantage of

this method being a more accurate evaluation of centrifugal and gravita-
tional effects.

In order to make the comparison, seversl moon-to-earth trajectories
were run on the IBM 704 computer. The trajectories chosen were selected
to cover the full range of interest of firing velocities from the mocn.
The initial conditions were taken from reference (2). A comparison of
the results of the mmerical integrations with the three~term expansion
is given in figures 3, h, and 5. As seen from these results, the 3-term
asymptotic expansion gives good results for the high firing velocity even
without the use of the stepwise evaluation. The accuracy of the
asymptotic expansion is degraded as the firing velocity is reduced,
particularly near the earth where the curvature of the trajectory is con-
siderable., In practical applications the last difficulty can be aleviated
by the use of Keplerian orbits sbout the earth with initial conditions
taken as far as half way between the earth and the moon. For example, in
Case 2, the eccentricity (evaluated by neglecting the moon) at the half-
way point between the earth and the moon is 1.0499 while at impact the

eccentricity is 1.0496.
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Days Method x (miles) y (miles) z (miles)
Nu. Int. (At=.001) 211,558.5 -3,592.036 238.990

.05 Asy. Exp.(At=.05) 211,546.2 -3,593.255 239.072
Nu. Int. (At=.001) 188,040.6 -6,631.539 4T77.165

.1 Asy. Exp.(At=.1) 188,012.0 -6,634.301 477.367
Nu. Int. (At=.001) 140,760.6 -11,075.86 952,726

2 Asy. Exp.(At=.2) 140,696.5 -11,080.51 953.158
" " (At=.1) 140, 715.1 -11,021.73 9524537

Nu. Int. (At=.001) 93,049.63 -13,310.26 1,425,417

.3 Asy. Exp.(At=.3) 92,935 .0k -13,311.23 1,425,784
. " (At=.1) 92,981.26 -13,336.67 1,425,003

Nu. Int. (At=.001) 4k 183,67 -13,202.28 1,882,034

oA Asy. Exp.(At=.1t) Ll , 218,47 -13,134 .4k 1,878.459
. " (At=.1) 4, 391.77 -13,259.18 1,881.698

Nu. Int. (At=.001) 3,024,379 -10,311.12 2,054 .298

.48 Asy. Exp.(At=.48) 3,126,558 -9, Th6.04 2,099.225
" " (At=.01) 3,087.239 -10,483.53 2,069.436

Comparison between Numerical Integration (Runge - Kutta) and the 3-term
Asymptotic Expansion.
Case 1: '"Vacuum" velocity at the surface of the earth = 46,484 ft/sec=U

Initial Conditions:

. =0
i

!
N

X,
1

i

235,082.87 miles vy =

-29,570 ft/sec v, = -4,783.8 ft/sec

i
]

u, .
1 1

v, = 296 ft/sec

Figure 3



Days

.01

ol

5

-7

YRR

Method

Nu. Int. (At=.001)
Asy. Exp.(At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=.1)
*‘ " (At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=.3)
. " (At=.01)

Nu. Int. (At=.001)

Asy. Exp.(At=.5)
" " (At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=.T)
" (At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=.T1)
" " (At=.01)
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x (miles) y (miles) z (miles)
231,884 .4 -565.177 101.791
231,882,2 -565.352 101.822
203,84k .27 ~4,901.684 999.022
203, 766.83 -4,910.362 1,000,816
203,81k.1 ~4,897.727 999.727
141,082.3 ~10,315.03 2,979.446
140,796 .54 -10,33k.732 2,985.839
140,988.3 -10,298.13 2,981.660

76,92&.02' -9,793.21 4,917.868

76,248,03 -9,751.12 4,915,340

76,764 .45 -9,759.93 k,921.kk2

5,784.93 -2,062.98 5,T19.413
4,518.57 +1,331.59 5,637.831
5,485.59 ~2,009.93 5,696.935
803.393 ~1,187.579 5,066.576
578.523 +2,715.458 5,511,463
466,758 -1,127.436 5,009.153

Comparison between Numerical Integration (Runge - Kutta) and the 3-term

Asymptotic Expansion

Case 2:

Initial Conditions:

X, = 235,082.87 miles
u, = -20,340.1 ft/sec

vy = 629.7 ft/sec

"Wacuun" velocity at the surface of

Y.

vV, =

Figure b

=0

i

-3,541.9 ft/sec

the earth = 41,210 ft/sec=U
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»005
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1.0

1.5

2.0
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Method
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Nu. Int. (At=.001)
Asy. Exp.(At=.005)

Wu. Int, (At=.001)
W T (at=,01)

Nu. Int. (At=.001)
Asy. Bxp.(4t=1.0)
" " (At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=1.5)
" " (At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=2.0)
" " (At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=2.24)
" " (At=.01)

x (miles) vy (miles) z (miles)
234,497, 7 ~390.300 36.910
234,496.8 -390.396 36.924
196,483.9 -25,279.01 2,789.921
190,336.2 -25,1h2,24 3,105.048
195,301.3 ~25,557.03 2,835.669
153,845.6 -39,659.67 5,365.726
137,812.5 -31,558.46 6,004,490
151,283.3 -39,966.26 5,460,906
10k4,642.4 -42,066.75 7,663.783

76, 57248 -36,767.92 7,738.52k
100,466.7 h1,972.24 7,789.638

44,119.83 ~26,650.32 8,724 .632

16,681.03 +4,102.02 7,030,494

37,208.78 -24,867.89 8,6u8.342

-3,491.612 822,468 -1,430.927

~6,331.503 3L, 7h6.92h +5,924 163

-2,768.496 895.049 -30,829.10

Comparison between NMumerical Integration (Runge - Kutta) and the 3 term

Asymptotic Expansion

Case 3: "Vacuum" velocity at the surface of

Initial Conditions:

x, = 235,082.87 miles Y.

i

1

u, = -7,959.01 ft/sec v

i
i

Wy = L57.4 £t/sec

Figure 5

il

. =0
i

4,845,k £t/sec

the earth = 36,743 ft/sec=U
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Since one source of error in the three term expansion is the computation
of the gravity losses on the zeroth order solution, it was felt that an
additional term, which will include corrections to the gravity losses

based on the first order solubtion might improve the solution. The equa-

tions for the 3rd order term are:

os . (%t xkry Xy ket ¥z
X% - 20%yX - WEXE = - ._.].'___3(xx+u) o 170" 1 Ol+x*
3 2 1 r*3 o] r*2 1
e e
o o
(x*tp=1 )X HtyRy Rtz Xz ¥
¥ o o 3(er-2) —2 Lol o b, 10(a)
Ly 3 o] 2 1
r¥ r*
n m
c o
- (XX )X yRy ¥z X Z%
y§+2w*;.c§-w*yi=- ..2_3._33,* o7l ol oJ_+y3f
r¥* ° ¥
€ e
o o]
(¥t =1 )k y Xy ke zXz¥
B3 o 170’1 0’1
* - 35§ + y* 10(b)
% o3 " 0 g t [0(v)]
m m
o o
e (x_+p )x¥+y*yktz¥s
z§ = _ 13 - 3z% 0 1 20 ) 1,+ Zi
r* o %
e m
o o}
(xK-Hu=L ) XKt yRy¥t 2R 2%
+—-—-_.1'... - 3z% o o Yo'l Ol+z* 10(c)
1 o3 o 2 1
r¥* ¥
m m
o o}
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Substitution of the zeroth, first and second order solutions in Equation

10 and integration yields

% ¥
L3 et o LS tnd fow
X§ = 7 WRIVERET + 3 WRIFEER ~ 2w*oj. Iy(l)dt-zw*OJ o Iy(2)dt
Vi " w3
+ 3wk [Jx(l) -3 Kx(l) + 1o JX(E) “in T KX(E)J
™t ot
+ I I j‘ T dtdtds [ll(a)]
o © O
X ¥ ¥
_ 1.3 1.3 3 L
ye3e = ZRREtRT - Sk XEERS + 2wk J' Ix(l)dt + 2w¥ i f IX(2)dt
O e]

L% -
- e ‘ _x B
Dk 1"“‘0 Ix(3)dt + 30)*{Jy(1) + 3 Ky(l) + Top Jy(2)

£ %
3 1q Yy g ; T dtdtdt [11(13)]

2% = 3K [Jz(l) + 1%@ JZ(E)J {11(c)]
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where
B a(ag-b.p)t* + (ab. gH2acp-3bop) »
s 28°A

(atx 12 P10 o

x
+ 2blt + c)

o1/2( o1 +2blt*+c)l/ atkeb

(ac)l/2 +b

(aq--blp)cl/2 2apt* + (3blp-aQ)
- K -
ah ® 5]2

In

1

(ablq~+ 2acp - 3b§p)cl/2

Qa?A

t* 3b§-2ac

4
- I j t dtdt
o o (at2+2b t+c)3/2 a2A

(at*2+2blt*+c)l/2-cl/21

a1/2( o +2blt*+c)l/ atrib, blcl/2

al

3b + at¥*

572 - (ac)Y + v

%

1

t* ¢
(sttr)tiatat _ r 2b) trte
= 5

3ab +2blt*+c)

J = 173

K (at2+2bl’c+c)5/ 2 (at*

2
actb 1/2 3/2
. L (at*2+2blt*+c)l/2 - 393%-—- t* - Eaz

+

2 2 22 2 2
(ko ~5ab, cta’c )t*-2blc(ac—b ) bl(bl—3ac) 5

1/2
+ %S4 ¥t
173 : (at 2blt c)

384 aA(at*2+2blt*+c)

a1/2( atxion t*+c)l/ rathib 3/2 b, (36P-58c)c /2
1 + 2ac t + 1 1

- %%2 n ) A )
a (ac) /2 +by

= = b2
and. bl 2o A ac bl

The values of a,b,c,s,r for the J's and K's are given on the next page.
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TTT T T
Snkakh-kakz (1o ) (T-mix)

A Xaka (T ) (T-rhdx)

RRTRANCIN

Tadndam_Ra(T-mix)

G ﬁﬁiw%%s:,fw&m y Tk ()= ia(g o) (T-med) | _Enba-adn(r-ri)
u M M 0 0
" u " 0 0

y . . nfzia-faka(niix) | Raknia-faka(ridx)

. . . T h-laka ()| Fakeke-_fa(trx)

mwa+mwh+m§+wuc T&%N.%\%?wifwk VT mwz+mw>+mws w&&?%ﬁ..wﬁ?%ﬁ mwsw.n&:wkrwii.rﬁﬁa
b a B X g

()
(2)"
(@)°r
(2
(2)°c
()"
(1)
(0’
(1)

b
(t) r
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The corresponding velocity contributions of the 3rd order terms are:

2 3 3,6 de( 1)
uf = - SWRTVEER Ry tXT 20X T (1) 2w¥ 1 I (2}30% | —
v* ag (2 v* dx (2 ™t
A de(l) " dJ ( ) e i (2) . I I S bl(dﬂ
R dt* 1-4 3 ~dt¥ y
O O
R I t*2+2w*1 (l)+2u>* Lo (2) -2wk T I (3)
373 W TRy I-w
aJ (1) u, de L (2) u% n aK (2)| & %
LA T T vy Tty I at% +OJ C;J Tyawds [ll(e)]
we = 3ox !:Jz(l) t 1o JZ(Q)} {11(f)]
where
2 1/2
- % %
a _ r (2b ac)t* + cby (ac—i—bl ) at* + bl ) Eablc
atx  3a4 (at*2+2blt*+c)3/ 2" |73 (atx%2p, tre) /2 A
S (2b2-ac)t*2+c b, t¥ ac+bs at*o4p. t*
+ 1 1 1 1
3ah (at*2+2blt*+c)3/ 2 A (at*2+2blt*+c)l/ e
2
2b, t¥+c ac+b 3/2
_ - 1 . 1 (at*2+2b t*+c)l/2 _ 2ac
(at*“+2b, tric) / 1 A
(2b2-ac)t*+cb 1/2 l/ 2( at*“4op t*+c)l/ +at*+b
ax 1 1 be 1 1 1

= - + n
de* aA(at*2+2blt*+c)l/2 al a3/2 (a.c)l/2 +b

1
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The results of the 4 term asymptotic expansion for the same cases as in
figures 3 through 5 are shown in figures 6 through 8. Although these
results are closer to the results of the numerical integration than the
three term expansion, the particular asymptotic expansion used seems to
impose limitations on the accuracy achievable.

One source of the difficulty lies in the singular nature of the
present asymptotic expansion. The singularity being at infinite launch
velocities (1| ~>0). The present solution gives the expected behaviour
(straight line constant velocity motion) only at the limit. For smaller
velocities the rotation of the coordinates distorts this trajectory even
when gravitational terms are omitted. The discrepancies observed seem
to be caused in a great part by this rotation of the coordinates. When
this effect is small (i.e., short flight times), the effect is small. As
the time of flight is extended the discrepancy increases, as expected.
The reason for the success of the stepwise evaluation can also be ex-
plained in a similar fashion.

Since no physical reasons exist for this singularity, it should be
possible to find a similar asymptotic expansion that approaches the limit

of 1—0 uniformly;r Such an expansion is derived next.

Tin this context uniformity means reduction of the solution to a straight
line when the gravity terms in the differential equation are neglected.



Days

Method

05

.1

o2

o3

i

.48

Nu. Int. (At=.001)
Asy. Exp.(At=.05)

Nu. Int. (At=.001)
Asy. Exp.(At=.1)

Nu., Int. (At=.001)
Asy. Exp.(At=.2)

Nu. Int. (At=.001)
Asy. Exp.(0t=.3)

Nu. Int. (At=.001)
Asy. Exp.(At=.4)

Nu. Int. (At=.001)
Asy. Exp.(At=.48)

Page 2k

x (miles) y (miles) z (miles)
211, 55805 "3’ 592 0036 238.990
211,552.2 -3,590.295 239.039
188,040.6 -6,631.539 477,165
188,272.7 -6,627.542 477.269
140, 760.6 -11,075.86 952,726
140,733 .4 -11,067.02 952.939

93,049,63 -13,310.26 1,k25.417

93,008.62 ~13,296.65 1,425,738

L, 483,67 -13,202.28 1,882,034

Ll Lho7.80 ~13,18k4,66 1,882.431

3,024,379 ~10,311.12 2,054%.298
2,947,927 ~10,290.56 2,053.672

Comparison between Numerical Integration (Runge - Kutta) and the k-term

Asymptotic Expansion

Case 1: "Vacuum" velocity at the surface of the earth = 46,484 ft/sec=U

Initial Conditions:

X = 235,082.87 miles

u, = =29,570.0 ft/sec

I3

V.
i

= 296 ft/sec

Figure 6

]

170

-k, 783.8 ft/sec



Days

01

.1

<7

.71

Comparison between Numerical Integration (Runge

Method
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Nu. Int. (At=.001)
Asy. Exp.(At=.01)

Nu. Int. (At=.001)
Asy. Exp.(At=.1)

Nu. Int. (At=.001)
Asy. Exp.(A0t=.3)

Nu. Int. (At=.001)
Asy. Exp.(At=.5)

‘Nu. Int. (At=.001)

Asy. Exp.(At=.7)

Nu. Int. (At=.001)
Asy. Exp.(At=.T1)

Asymptotic Expansion

Case 2: "Vacuum" velocity at the surface of

Initial Conditions:

X

i

i

u,
1

Wy = 629.7 £t/sec

235,082.87 miles

-20,3k40.1 ft/sec

x (miles) y (miles) z (miles)
231,88k .4 -565.177 101.791
231,882.9 -565.081 101.822
203,844 ,2 -4,901.684 999.022
203,812.6 -4,897.801 999.7Thk
141,082.3 ~10,315.03 2,979.4u46
140,983.9 -10,298.16 2,981.718

76,924 .02 -9,793.2L 4,917.868

T6,T75T+06 <9,759 .64 k,921.53k

5, 784.93 -2,062.98 5,719,413
5,471.41 -2,008.14 5,695.683

803.39 -1,187.579  5,066.576
4,502.11 -1,124,897 5,005,665

Y

V.

Figure 7

1l

- Kutta) and the L-term

earth = 41,210 ft/sec=U

. =0

-3,541.9 ft/sec



Days

.005

>

1.0

1-5

2.0

2.2h
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Method x (miles) vy (miles) z (miles)
Nu. Int. (At=.001) 234,497.7 -390.300 36.910
Asy. Exp.(At=.005) 234,497.5 -390.306 36,910
Nu. Int. (At=.001) 196,483.9 -25,279.01 2,789.921
Asy. Exp.(At=.5) 195,276.6 ~25, 564 .3k 2,836,615
Nu. Int. (A4t=.001) 153,845.6 -39,659.67 5,365.726
Asy. Exp.(At=1.0) 151,229.5 =39,975.53 5,462,895
Nu. Int. (At=.001) 104,642,k -42,066.75 7,663.783
Asy. Exp.(At=1.5) 100,378.9 -41,974.36 7,792.255
Nu. Int. (At=.001) Lh,119.82 -26,650.32 8,724 .632
Asy. Exp.(At=2.0) 37,062.61 -24,831.85 8,646,127
Nu. Int. (At=.001) -3,491.612 +822 468 -1,430.927
Asy. Exp.(At=2.24) =4h6,217 +17,082.49 -32,520.24

Comparison between Numerical Integration (Runge - Kutta) and the h-term

Asymptotic Expansion,

Case 3: "Vacuum" velocity at the surface of the earth = 36,743 ft/sec=U

Initial Conditions:

X, = 235,082,877 miles

u, = =7,959.0 ft/sec

wy = b5T.h ft/sec

Figure 8

vy = =4,845.k £t/sec
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If the non-dimensional variables are chosen as follows

+ a a

= :.y_' ;*:E- * = p.' = - =
x¥* ;5 y¥ d,Z d,'t td,w wU,T* Tm

elx

then introducing these variables into Equation 1 results in

2
W - 2wyt e = P ( 13 + 13 (o) - 5 -]:-3; - T [12(a)]
r* r* r¥
e m
. 4 +2 of | 1 1
Y+ 2w XK -W y*z-ﬂ“ 3+l“‘ 3)y*-T*] [12(b)]
r* o Y
e n
7% = -nz ( 13 + l“ 13 z% - TX [lQ(Cﬂ
r* ok
e m
2 K(1-p) . . . .
vhere 7| = ~+—=—~ 1is a non~-dimensional parameter. For very high veloci=-

d

ties T becomes small, so that for these cases an expansion of the form

[»+]
£=1 (t%) + Y N7 £, (t%)
o] P d
=1
is valid. OSubstituting these expressions in the differential equation and
applying the limit process for N—» o0 (U—®) results in the following equa-

tions to order zero:

>

- +o +=

% - 2y - o= 0 [13(2)]
P 4+ owlxx w+2 =0 [ b]
v T ewxy - w yg = 13(%®)



" = 0 [13(c)

The general solution of which is

x* = (x? + u?t*) cos w ¥ 4+ (y? + vit*) sin o' tx bh(aﬂ
y¢ = = (x% + w¥t*) sin o tx (v% + vXt*) cos ' g [1h(b)]
7% = % 3%
z¥ (zi + w?t ) bh(cj
B = o orurtt ) st pesurcosw ot (yrivrer ) cosw brervrsing T tx [11»,(&)]
dt* o i1 i i i i
Sl S -w+(x*+ueft*)cosw+t*-u+.esinw+t*.w+(ye.e+ws-t*)sinw+t*+v+&cosw+t* [1u(e)}
dt* o i 71 i i i i
dz¥| _ }
] B ace)
dx* + dy* + dzx| ¥t
L= - f— S oS T | —
where ui TEX ; w y§, Vé To% ; + W xi, and. w? dt*)i

These results are to be expected at the limit of infinite veloecity (11—<).
Furthermore, when gravitational effects are neglected the razsult is a
straight line constant velocity motion in an inertial frame of reference.

To order nz one has the equations

2
.o + . + 1 ¢ 1 s 1
XE - 20 YR~ xk = _{( - (x%Hp) = = == - T*} = £(t*) [15(a)
1 1 1 r§3 L r;? 0 Ly r§3 x [ ]
o 0 o

T Note the difference in definitions of u?, v?, and w§ with those used in

Bquations 4 et al. The different choice was made for reasons of con-
venience only. In this case (uﬁ, vE, wﬁ) corresponds to the initial

veloclty in inertial space.



2
o + o + _ 1 g1 - ¢
V20T - Wi“'Hr*B'l—u e yj;-T;]—g(t*) [lS(b)]
e m
o o
e _ l p, l -
e e R AR bste)
o o

The initial conditions on (xi, y{, zi) and on (ii, &i, ii) for these equa-
tions vanish identically since the zeroth order solution fulfills the
prescribed six initial conditions. Thus it is necessary to find particular
integrals satisfying zero initial position and velocity conditions. One
method of obtaining these integrals is as follows:

Equations 15(a), 15(b) are uncoupled using regular methods, resulting in:

2|2 2 2
(De-w+ w¢ + ot DPxx = 0wt |£(t%) + 2wPDg(%) = F(1¥) [16( a.)]
2,2 2 2
D2t ) v + bt D2pe = D2t |g(t%) - 20'De(tx) = a(tx) [16(b)]

The solutions for x{(t*), yi(t*) can be obtained by the use of Laplace

Transforms resulting in

£¥* %
xi(t*) = f £(1)(t*-r Ycosw’ (¥ )dr + y g(r ) (%= )sinw’ (t*-1)ar @T(aﬂ
0 0
1% %
r(ex) = I g(7 ) (%=1 )cosw (t¥-1)ar - f £(7 ) (4% Ysinw’ (-1 )ar [17(b)]
O e}

The solution for zf(t*) is

1%
zy(0) = |
(o]

Ocmmpet

h(r) ar b7(cﬂ

where the expressions for f, g, h are
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£

X
%L

LT T T o Noe i TOT TT Hﬁv
z . m\mh ﬁ*ﬁsﬁm A*p*>+*3+*p+amoo (%9 %0+5X) Ti )2 Nﬁj Hv+mA*p*s+*NTm?p*iﬁ?m?v*f.*xv

=T +
T [y
(xa5nikz) =

_ I, I T T T, . T
m\mm T@ 4TS (3hhil )+t 0800 (43045 g Tt Tt (R b (43 ) (42300 M

T , = (%3)U
A*pwk.fkav -
T T T T T
2 \mm Tp LTS (#3R0+RE) b3 L0800 (%) QE-dm..mgéim?p*?%v+m?pw»+w3+m?pws+§v* e
*l + - N
Tp 800 (xer+5L) + 42 LTS (x1Anix) - ] - T
T T T T
3 \mm Tp Louts A*pw\ri.a.\n?*# 4800 A*pmbL.WxV gim+mi+mﬁ*p§+*nv+ma *¢t+whv+mﬁ *pmﬁ +.wx:
T T = (%3)8
Tp 7800 A*pwi.mb + %3 OUTS (x30HxX) - w -
T
m\mﬁ Tfanﬁ (¥1RA+R8) 00 0500 (xaRnien) | (1T )am_(MeT ), (ks ke )+, (xARAHA )4 (43 Fi) M e
+ i 2 2 — 2 2 iﬂ +
mi + Tp+aqﬁm (#3x043L) + #3_ 0500 (x33M+5X) g M.. T

.n T .n T T T ﬂ .n ﬁ L
:)” : [y} T . mm.)n 3 h'e
N\m hﬁ*u. 3_: g A *u x>+ v “+ *Q. ms00 A*P*S...T*umv g N'T -+ A*u.*s?.._r*ﬂ v+ A*u =>+. v+ A *u %S..T VAV

T T T T = (%3)3
T + Tp LOUTS (3xa+xL) + %3 050D ?ﬁ?&xv: -
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The complexity of the last expressions makes direct integration of the
integrals in Equations 22 tedious at best. However, the resemblance of
these integrals to the I integrals discussed previously ensbles a good
approximation using the I integrals. By rearrangement and expansion in a

series the expression for f becomes:

- [(x*+u*t*+u) cosw+t*+(y*+v*t*) sinm+t*+u(l-cosw+t*ﬂ
f(t*)= 11 R A .

3/2
[(x§+u*t*+u)2+(y§+v§t*)2+(z§+w§t*)2]

i

" [(X%+u%t*)(cosw+t*-l)+(y*+v%t*) simh+t*]
1-3 1 1 1 l + LR N

2 2 2
%y, ) % Vo (b bE
(x§+u§t W) (y§+v§t ) (zi it )

~

(x¥+wet*Hy) cosw’ te+(y¥vet*) sinw’terp(l-coswTtx)
i 71 i i

o kzﬁ+u*t*+ l)2+(y*+v*t*)2+(z*+w*t*)2]3
e A EREA EEA

(1-p) [(x§+u§t*)(cosw+t*-1)+(y§+v§t*) sinw+t*]

l+3 2 2 2 + . e
(fru t0hu-1) "+ (v % )"+ {2k %)
+ 2 L .
14 2 2 213/2
[(x§+u§t*+u-1) (PR )+ 2t o) J
(1) [ (etrauty* ) (cosw teo1 )+(yvetr) sinw+t*]
1+3 - S Foees

2 2 2
EH LR Rk tR
(x§+uit +Hi=1) +(y§+ X ) +(zi wkt )
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-k
2 2 2
+0 {(x§+u§t*+u) + (y§+v§t*) + (z§+w§t*)} ,

=l
2 2 2
XhuF LY = Sy ¥R WpRLR
[(Xi witr 1) + (yi vy )<+ (zi Wit ) } + T*

with similar expressions for g, h. If terms of order r;B, r;3 are

neglected compared to terms of order r;Q, r;lg, and the previous notation

is used, f, g, and h become:

2 2 2
a I (1) a"r (1) + a“1 (2)
f(t*) =‘-——~5§—— cosw+t*--——41——— sinw+t*-|*(l-cgsw t@-lu 5 cosw t¥
dt* dt* r; gt
o}
2 2
dI (2 2 + a7I
2 —-1£—Z sinwTtx - B LzCOS® T . L X(3) + 0 [r'3, r-3]
b g w3 b gex® % %
o]
2 2 2
a~T (1) a T (1) + a°1 (2)
g(t*) = ———55—— sinw+t*- cosw+t*-—“ sigw Ll + l“ X2 sinw+t*
dt* dt* r> g
o
dgl (2) 2 . w+t*
- 5— COSW t¥ - g 50 +0 [r_S, =3
T4 gix 1w ri % o
o}
2 2
a1 (1) a"1 (2)
h(t*) = - 22 - iﬁr 22 + 0 {r;B, r;3 ]
at* g o o)
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It is now possible to evaluate the integrals in Equations 17 as follows:

%
J [f(T)cosw+(‘b*-T) + g(r)sino’(tear )} (tx-r)ar = - { Ix(l)cosw+‘0*

.+ e + R +%_
+ Iy(l)s:.nw t* 4+ i [Ix(z)cosw t* + Iy(2)s:mw tHmpl [ Io(l)

t*

+ j_‘%; 10(2)] cosw’ t* + p‘éJ. ';%" - ;1%_) (t*~‘r)cos<n+(t*-1' Yar [18(8.)]
o e}
%
[ [ e(r)cosu™ (txar) - £(r)stmnt(bror) | (oror)ar
9}

.+ + -
= e - x 2 —E.'_.
Ix(l)smw % + Iy(l)cosw t i [Ix(e)s:mw t*

+ Iy(a)cosw*”t*} + u[ T (1) + -5 T (2)] sinw ' t*

l'ﬂb

(t*-1 )sinw+( %ot )ar {18(13)]

¥
(o]

T
e

o

3
rm
[o]

where Ix’ Iy are as defined previously and

I,(1) n=0, 1, 2 ...

W

H
Ccqapq

o
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tet
1(2) = I I T %”d” 1=0, 1, 2 au.
o © ;m
[o]

by the use of the expansions

sinw+(t*-7) = sinw+t*-w+mcosw+t* - %(w+r)2sinw+t* + %(w+7)3cosw+t*+...
+

cosw+(t*-7) = cosw t¥~o rsiny t* - %(w+f)2cosw+f* - %(w+7)3sinw+t*+...

the integrals on the right hand side can be approximated as follows:

%
j —%— - —%— (t*-?)cosm+(t*—7)d¢ = [Io(l) - 10(2)] cosut tx
e r T
e m
le] [e)
2
+ [11(1) - 11(2)} whsinwtex - % [12(1) - 12(2)] ot coswtix +...
¥
1 1 .+ _ .
OJ‘ = -3 (t*-r )sinw’ (t*-r)dr = [Io(l) - I.(2) }m“’ t*
e m
o] (o]

2
- {Il(l) - 11(2) ]w+cosw+t* - % [12(1) - Ié(2)] o sinetx Fuus

For the expected transfer times, the terms containing 12 in the above
expansions will contribute a fraction of 1% of the contribution of the
first terms. Since the contribution of the neglected terms in the expan-

sion of £, g might be of the same order, additional terms should not be

added.
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Using these resulis, and the notation used in the previous asymptotic

expansion, the two term present asymptotic expansion becomes:
-+ .+
x*(t¥%) = [(x){-i‘u*{t*)cosw t* + (yi+vit*)sa.nw t*]

2 + N V] +
- =% e -
+ 1 [ I (L)eosw’ o + I (1)sim’tx + o T (2)cosu’t

B i e o P tix
+ i Iy(2)s:mw t i 10(2)cosw t* +

b+
Il(l)-Il(e))w sinw t*

2

- g—( I,(1) - I,(2)|w cosw bE + ... ]-x- o (nh) [19(8«)}

y(t%) = | ~(etruror)sin’ e + (3 +v t%)cosw x|

n2 [ -I (l)s:.nw t* 4+ I (l)cosw t* - m I (2)s:|.nm %

+ * - + +
1 I (2)cosw t* 4 =i 1-4.!, I (2)s:.nw t* + u.( Il(l) 11(2))(» cosw’ t*

2

+L2". 12(3_) - 12(2)) o sinwtex + ... ]+ o (T]LL) [19(b)]

z*(t¥%) = (z?w-’{t*) + ng[ -1 (1) - I (2) Fooe ]+ ) (n”) {l9(c)]
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The results of an application of these solutions to the cases con-
sidered previously are presented in Figures 9 through 1ll. As expected,
the x and y solutions are in closer agreement with the numerical integra-
tion then the previous method for short times. Near the earth the effect
of the neglected terms in the expressions for f, g, and h becomes
appreciable, to the extent of equalling or surpassing the terms retained,
in some cases., The omission of these terms will cause a degradation in
accuracy near the earth, particularly for the slower trajectories. This
effect can be reduced by inclusion of more terms.

The physical reason for the degradation of accuracy of the last
asymptotic expansion for long flight times is primarily due to the errors
involved in computing gravity effects on the straight line constant
velocity trajectory rather than on the actual trajectory. Although
successive terms might eventually approach the right result, the com-
plexity of deriving these terms suggests a different approach. Such an
approach will be illustrated next. It should be noted again that for
practical applications the present approach, coupled with the Keplerian
orbit for the latter half of the trajectory will give satisfactory

results.
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Days Method x (miles) y (miles) z (miles)
Nu. Int. (At=.001) 231,884 .4 =565.177 101.791

01 Asy. Exp.(At=.01) 231,883.7 -565,.283 101.804
Nu. Int. (At=.001) 203,84k ,2 -k,901.684 999.022

.1 Asy. Exp.(At=.1) 203,803.7 ~4,907.665 1,000,242
" " (At=.01) 203,833.k4 -4,903.k21 999.338

Nu. Int. (At=.001) 141,082.5 -10,315.03 2,979.446

.3 Asy. Exp.(At=.3) 140,920.4 -10,330.01 2,983.7h1
" " (At=.l) 140,950.9 -10,331.34 2,983.890

" " (At=,01) 141,049.0 -10,318.63 2,980.411

Nu. Int. (At=.001) 76,92k ,02 -9,793.2L 4,917.868

.5 Asy. Exp.(At=.5) 76,448.32 =9, 773.67 4,914,749
. " (At=.1) 76,694, 71 -9,810.32 4,925,360

" " (At=.01) 76,867.32 ~9,796.37 4,919.k52

Nu. Int. (At=.001) 5,784.93 -2,062.98 5,719.413

.7 Asy. Exp.(At=.7) 1,873.51 -785.11 L, 267,114
" " (At=.1) 5,6kl 54 -2,102,35 5,812,580

" " (At=.01) 5,683.79 -2,057.02 5,713.840

Nu. Int. (At=.001) 7,707.55 -1,187.579 5,066,576

.71 Asy. Exp.(At=.T1) ~3,546.7h +580.098 2,807.909
" " (At=.01) 6,993.71 -1,179.198 5,057 4164

Comparison between Numerical Integration (Runge - Kutta) and the second

Asymptotic Expansion (2 terms)

Case 2 (see figure 4 for initial conditions)

Figure 10
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Days Method x (miles) vy (miles) z (miles)
Nu. Int. (At=.001) 234,497.7 ~390.300 36.910
.005 Asy. Exp.(At=.005) 234,496.9 ~390.311 36.920
Nu. Int. (At=.001) 196,483.9 -25,279.01 2,789.921
.5 Asy. Exp.(At=.5) 194,378.0 -27,002.12 2,971.965
" " (At=.1) 195,240.9 -26,442,99 2,912.013
" " (At=.01) 197,412.7 -2k, 047,58 2,748,041
Nu. Int. (At=.001) 153,845.6 -39,659.67 5,365.726
1.0 Asy. Exp.(At=1.0) 146,901.9 -42,182,91 5,685,100
" " (At=.1) 151,052.6 -41,673.09 5,608.436
Asy. Ebcp.(At:.Ol) 155)95205 '39)170037 5:275-325
Nu. Int. (At=.001) 10k,642.4 -42,066.76 7,663.783
1.5 Asy. Exp.(At=1.5) 86,128.4 -36,957.21 6,893.551
" " (At=.1) 99,948.3 <4l , 374,50 8,001,947
" " (At=.01) 108,128.3 -41,791.21 7,539.697
Nu. Int. (At=.001) 4h,119.82 ~26,650.32 8,724,632
2.0 Asy. Exp.(At=2.0) 20,931.65 +27,005.32 -3,629,236
" " (At=.1) 36, 716.69 -27,634.90 8,925.200
" " (At=.01) 49,755. 74 -27,524 .90 8,720.586
Nu. Int. (At=.001) -3,491.612 +822,468 -1,430.927
2.24 Asy. Exp.(At=2.24) +6,932.498  +78,203.136 -13,939.685
" " (At=.01) +8,140.654 -7,014.,860 +6,057.270

Comparison between Numerical Integration (Runge - Kutta) and the second

Asymptotic Expansion (2 terms).

Case 3: (see figure 5 for initial conditions)

Figure 11
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V. APPLICATION OF THE SMALL PERTURBATION APPROACH TO THE
RESTRICTED THREE BODY PROBLEM

The limitations on accuracy of the asymptotic expansions near es-
cape velocity indicate the necessity for a different approach for
problems in this velocity range. Since the major source of error was due
to the calculation of the gravity effect near the earth on the "wrong"
trajectory, the obvious approach is to use the '"right" trajectory in this
region. One way of achieving this is described below.

In the following derivations, trajectories from the earth to the
moon will be considered. Although the derivation of the expressions for
the solution is straightforward and the procedure has a simple physical
explanation, the algebra involved is exceedingly complicated. This point
is demonstrated by the application of this method to near parabolic near
straight line trajectories.

The equatioﬁs of motion 1(a~-c) are first non-dimensionalized by
using the following characteristic properties:

Length - 4 - distance between the centers of the earth and the moon
Time - % - angular velocity of the coordinate system

The non-dimensional variables then become

+ + (L-p). ot = ¢ __:%

d-w dw

00‘+- o+- +___+ 1 4] 1 + +__l-_1'___ 1 +T+ [20 ]
X -2 x—K{+3+l_pr+3](x +u) +K % (a)
e m m



oot o+ + o4 1 w1 + .,
Yy +2x =3 “’K[r+3+1-u r+3}y +f.r_‘y [20(*0)]
e m
1o S, 3 I w1 + + ]
z = -K [ 3 + o r+3} z' + T, EEO(C)
e m

: . + _ - : [ S " _
In the above equations K = l-u = 1., Since T4 = B1.05 is a "small

parameter"” in the problem, it should be possible to simplify the equations

by expanding the spatial varisbles in a power series in this parameter,

namely,
+ o > +
et = £ (£) + 7 &% r () [(21)]
n=1
where
= M
€ =15

Substitution of these expansions in Equations 20(a-c) results in the
following set of equations for the zeroth order terms (in principle K+
and (xo+p) should also be expanded; however, this added complication will
add little to the accuracy and will distract from the simple phjsical

picture).

ae . + XO+U' r
X, =2y, - %, = K 3 + T [22(aﬂ
e
o
¥ o+ oon - =_K+Z.9_+T [22(10)]
Yo o~ o r3 y
e



Z

'Y _ + fo)

z, = K r3 + T, [ee(c)]
e

For the case of zero thrust the solution of Equations 22(a-c) is a conic
section with the earth's center as focus (motion of a small body in the
central gravitational field of the earth). Impulsive thrust can also be

treated with the known methods. The equations for the first order terms

are
. . +] ¥ +u xo+p-l
X, =2y, =%, = =K ;§— -3—— [(x +p)xi+yoyl+zozl} + 3 [?3(aﬂ
% o %o
¥ J J
e . I 1 o) 0
¥y + 2xl - yl = =K ;§— -3 ;3— [(x +u)xl+y y'+z Z } + ;§— I?3(bﬂ
e, e m
z z z
Y = xt! X o + -2
z, = -K = - 3 3 [(x +u)X +y yl+zozl} 3 [23(0%
r r T
e e m
o o) )

The right-hand side of Equations 23(a-c) contains terms of zeroth order

and first order. Furthermore the zeroth order terms contain the factor

r;3 resulting in a large contribution near the moon. Thus, an iteration
o]
solution where the zeroth order terms in the variables only are retained
initially, suggests itself. Once this solution is found, namely X (t+),
I

Yy (t+), z) (t+), it is inserted in the right-hand side of the equations
I I

and the next iteration obtained, until the desired accuracy is achieved.



Page 43

Physically the procedure so far can be summarized as follows: (a) com-
pute the trajectory about the earth, neglecting the moon's gravitational
field, (b) compute the effect of the moon's gravitational field on the
trajectory calculated in (a), and (c) compute corrections to this tra-
Jectory due to the earth's gravitational field with the moon's effect
computed on the trajectory calculated in (a). The higher order terms
should increase the accuracy by computing corrections to the gravita-
tional effects of the earth and the moon on better approximations to the
actual trajectories.
The equations for the first iterations are:

. x_Hu-1

% - 2%, = X' o - £(th) [gh(a)]
r

§, ok = X Yo - geh) [2u(o)
7. = KT -2 [eh(c)]

In Equations 24(a,b) x on the left-hand side were omitted because

1 N1
terms of the same order were omitted on the right-hand side. The solution

of Equation 24(c) is obtained directly as

t* %
+

z, (5 = x j‘ %ol
o}

ar dt [(25)]

1 r3 (r)
o
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The solution of Equations 2L(a,b) is obtained by first separating

variables, giving

D3xlI + qulI = pe(t") + 2g(th) [26(a)]

D3le + b,Dle = pg(t") - 2e(¢") [26(10)]

Use of the same method as used in the previous case to obtain a particular

solution results in:

X

]

1 (

t+
: t+) %—CI [Df('r) + 2g(1‘)] sin 2(t+-1-)d1' [27(8.)}

]

¥, (£

&F
I -]é: .]‘ {Dg(’l‘) - 2f('r)] sin 2(t"-r)ar ]:27(b)]
o

Integrating by parts and noting that x, , ‘5{1 , 3511, ¥y 5’1
I I I I

at t =0 (conditions used in the derivation of x; , ¥ ), the following
I I

, '3;1 vanish
I
results are obtained

‘t+
", j' L£(r) cos 2(t"r) + g(r) sin 2(£7r) ] ar [8(2)
(o]}

+

t
" =oj" [ -£(r) sin 2(£"r) + g(r) cos 2(t"r)] ar [28(v)
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The solution for the second iteration for z., is

1

. ¢ ZlI(T) z (1)
z, (t7) = «xF -3 -2 (x (t)+)x, (r)
11 gy 5I rzo(f) rzo(T) { ? 1
z (1)
+ 3, (Tyy(r) + z(M)z,(1)] + oyl b
o

The equations for the second iteration for x

e » +
X - 2y - X = -K
Li it lpp
+yy, tzz ] +
o lI o lI
5':1 + 2;{1 - yl = ..K+
IT IT IT

+ yole + ZOZlI]

12 yl are
X
1 (x_+u)
I o]
-3 (x _+u)x
r3 rZ [ o lI
o) o)
X -1
(o] = F (t+)
r3 1
m
o}
¥y
1 y
I 0
~= = 3 = | (x tu)x
r3 r5 [ lI
e e
o) o)
o} - +
=g ()
r
m
o)

[e9)

[s0(=)

pocv)

Equations 30(a,b) are of the same form as Equations 15(a,b) and therefore

their solutions are
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t et
x, () = [ s (mhcos(stenar + [ g (0t m)sin(s m)ar (e
II o o
" L
v () - ;j' fl(w(t*-w)sin(t*-w)a-r+Oj g (T)(& = )cos(tTr)ar  [31(v)

The solution of the higher order iterations has the same form as
Equations 29 and 31.

Evaluation of the integrals in Equations 26, 28, 29, and 31 in-
volves inversion of Kepler's equation into an explicit function of t.
Such an inversion is not known for the general case. However, for some
special cases good approximations are possible. These cases are the near
vescape (e~l) straight line (or almost straight line) trajectories. The

derivation of the special cases is as follows:

2 2 2
Vo= u + Uy &32ﬂ
dur du.g
2 vov = éur E’E—- dat + EU.G a-_-b-—- de [(331

for a central gravitational field and ‘hear-escape’trajectories the only

r g
acceleration of importance is radial and equal to -~ ° 5 2 vhere T
T

g, are the earth's radius and acceleration at the surface, respectively.

Thus Equation 33 reduces to
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2 o]

where vy 1is the angle between the velocity vector and the local horizontal

and is given by:
[(35)

y = tan™t

3 e

Using the equation for conic sections

. ep
1l + e cos ©

where p is the distance from the focus to the corresponding directrix,

Equation 35 can be written as
-l|rsine| _1T p p3
vy = tan ——————-) = - , +
P 2 r sin © 3(r sin 6)3
p5 r sin ©
- 5 oo >q k%ﬂ
5(r sin 8) p
1 P 2 P2 }zh :
siny =1 - = ( = ) - + .ee
2\rsin 6 3(r sin 6)2 5(r sin 6)2
)i
L 2 L
1 P b
+ l - + LI Y +u.. (37)
Y (r sin 9) 3(r sin 0)°  5(r sin 6)" [ ]

TThis form was chosen because it is the same for the ellipse, parabols and

hyperbola.
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thus for the cases of small p (trajectories with perigees near the earth's
center) and for all cases far away from the earth, sin vy = 1.

For these cases we therefore have

av = - 29 3¢ [(38)]

The relationship for dv in terms of r can be derived as follows:

for e = 1 (parabolic)

iar =& ro2 (%) b9(aﬂ‘
for e < 1 (elliptic)
Vi:u_ = & ro2 ('f: - é) [39(b)]
for e > 1 (hyperbolic)
Vﬁy =8, r02 (% + %) [39(cﬂ

By introducing the factor k defined by

il

2 _ %o
2 [1-57 =22 (ko)
with the properties e= 13 k=1, e <13 k<1, e>1l3 k >1, all

equations can be combined into

; r 1/2
_ 1/2 2 0
w(r) = (2r g ) [(k - 1) + -l;-] [(s1)
The solution t = t(r) is obtained as follows:
2 viv = - (2rg ) (r)) 35 [(42)

r



dv = =
r ]17§ r2

(2r 8,)"/" [(k2 SR

combining with Equation 38 results in

1/2
at = r

-1/2 1/2
= i3~ [(ke'l)(grogo)} s 175
() 2]

1/2

k™-1

-1/2
t-t = {(ke-l)(2rogo)} { rl/2{ r + ;0 1

1/2

r
1» T+ s + 2
1/2 g o k2-l.
- T [r. ]-—2
k 1/2

-1 r ‘1/2
%: + =2 + 7,
1 1

1/2 2

=

1/2 | o

r

V() = (287,

av(r) = [- -g-_;— (2g0)1/2 ror'3/2 + llf (ke-l) (2go)l/2 x"'l/2

, (28 )2

r
o}

1/2

r +...]dr

- 3 (1)

s

o)

e9)

o)

[u7)
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: : 3+3/2
® . +3/2 r,
(5-1/2) 1 { TJJ 3 } 2 31 r\Y i
-3 (2 -) | 6yt | [ - |2 (18)
o Jt3/2) 3! £=o(2 ) ro ro [
: 0
where the convention o! = 1 and 77 = 1 should be used. Without loss
L =0
of generality ti = 0 can be taken,
or \"1/2
Letting t -é-ﬂ) = T, Equation 48 can be written as
(o]
© - j+3/2 ri J‘*‘?)/2 \]
T = A= - (—-— [(h9)]
R Jil\r r
J=o o) o] _J
An inversion of this series gives
1/2 en/3
r(t)=r ) a {3/2 ——) ] t
n
n=1 o]
2g |\ "2 = r,|3*3/2 s 2 /
o) i ~ 2n/3 ]
+2 ?“) Z AJ T - Z__ %y (t Bn) {(50)
(o] =0 [o} n=
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For the parabolic case (k=1), Ao = % and Ai = o for i> o, therefore

3/2.2/3

=)

e}

~-1/2
2g0 /

r
(e]

para 3

2/3
r(t) = [3/2 (2go>1/2 ro] / {t L2

The last equation checks with direct inversion of the solution for the
straight line parabolic solution.
To the degree of approximation used previously

@©
+. = ..£= - ' -.'2n/3
l-y-x"2p_, and therefore p =1 -z=1 g;l al (t ﬂn)

n._-_% -2/311 =
where a =g @ » By Bn@

The equation for f(t) can therefore be written as

+ + ©
£(t) = I;f_” — 5 = }i_“ 2 Y o (t-p1)2R/3
“[a- L a(e)®/3) =
o 2
2 (o g™ 2
n=

The integrals of f(t+) in Equations 31(a,b) can be evaluated term by term

as follows:
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t +
jl £ )(t-r)cos(t-r)ar = % { (cost = tsint - 1)
o
en en 2k
© ] —t] <] B'
3 1 3 t 3 k n
+ ngl 5573 %a {(t-BI‘l) + B ] t’ccost kZ:o (=) =
k1 g1 2L
k s k+2
2k+2 2n
By e
- sint ) ()72 D }+ s o [(t-s')3
k"gO (2k+1)% 2;_1 2n
2n

+ 5;13 ]{tcost coe ] + eee [(53)]

t
J‘ £ Y(t=r)sin(t-r)ar = %{ (sint - tcost)

(@)

2n 2n 2k
® =+l =1 ® B!
3 3 3 ; k "n
+ == | (t=g!) + B! ]{’cs:mt z (=) =
ngl 2nt+3 n { n n k=0 2k1
o (2k+1 © B‘2k+l
k "n 3k+1l *n
- sint (-) — + tcost Z (=) ;
g: (2k)t k=0 (2k+1)%
2k+2 2n
© 1 ® ——D
3k+1 Pn 3, N
- cost ;é_—o (-) 2k+1. !} + rél nt6 On {(t-sn)

+ 55“233*2 Mtsint ]} [ 54)|
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where

2
a-—zl,a:-gﬁ,a:-[g—i}--ﬁ}.u
1 2 3 Ao 3 3 Ao Ao
i o .\
i-1/2)\ 1 3 K =1
el o
i i+3/2 i'L—-O(2 &,
.1/2 i+3/2
Ego / ) r, 3+3/
=27 L AT
o Fo 9%,

The other terms are similarly integrated. It should be noted that for
the parabolic case the summation over k in Equations 53 and 5L is

eliminated, and the summations over n are convergent. A finite interval

of convergence in excentricity about e=l is assured by the (kz-l)i in the
expressions for Ai. The extent of this interval has not been established
accurately. Although the solution presented is approximate (zeroth and
first order solutions), and the assumptions that had to be made limit

the solution to cases of a small perigee radius or else for the part of
the trajectory far away from the gravitational center, the solution has
in principle far greater applicability than might be expected. The
reason for this being that the perturbation of the moon on the motion

near the earth is negligible up to the "half'"-point on the trajectory.
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The complication of the resulting expressions after the integra-
tion make the practical use of this method questionable,

1" o

The inversion of Kepler's equation for the "near-escape” 'near
straight-line" trajectories (Equation 50) might prove useful in many
other applications.

VI. APPLICATIONS OF THE APPROXIMATE ANALYTICAL SOLUTIONS OF
THE RESTRICTED THREE BODY PROBLEM

A, TRAJECTORY ANALYSIS

The solutions presented offer a handy tool for trajectory
analysis and selection for the numerous problems of restricted three
bodies., Among these problems are:

| 1. Lunar ﬁrajectories (earth to moon and moon to earth)

2. Conmet and meteor trajectories in the earth-moon space

3. The part of the earth to planet trajectories within

the earth-moon space

L, The part of the earth to planet trajectories within

the earth-sun space, and planet-sun space, using the
rotating earth-sun and planet-sun systems, respec-
tively.

The three solutions presented can be viewed as 1lst, 2nd,
and 3rd order solutions in accuracy and complexity. Thus for explora-
tory work the lst solution is recommended. Using a small mumber of
consecutive steps in the evaluation will result in improved accuracy in
most cases, This method is not recommended for slow trajectories
(e 2 1). The second method will give more accurate fesults with direct

evaluation and is recommended for most applications. The third method
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should give results comparable to numerical integration, at the expense
of great complexity.
B. THRUST MANEUVERS

In many applications it is necessary to establish thrust
maneuvers in order to accomplish a given mission. Thus establishing a
lunar satellite by a purely ballistic trajectory from the earth is
impossible. A thrust application is necessary in this case in order to
achieve a given velocity and position vector. The determination of this
thrust maneuver is a tedious task when no analytical solution is avail-
able., The solutions derived can all accommodate thrust maneuvers.
However the simple lst solution using 3 terms is most handy and sufficient
for exploratory work in this area. The determination of thrust maneuvers
using the 3-term first solution is as follows:

At a given time t¥ it is desired that the vehicle have
given position and velocity vectors. The three term solution without the

thrust term give a solution that difrfers from the required one by
aux(t*) ,  ave(ex) ,  Awx(e*) ,  Ax(t¥) , ay(t*) , az(tx) .

The three term solution then gives the following results:

£*
Jawe (0] = 1% § o s [55(2)
0

%
por (] g =1® [ mxae [55(v)
¢]
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t*
e (] [ e

o

™t
o )= [rp v 0o
0 O

[ay* (t*)] o= T* av a [55(e)]

o
Oe—p et

T* 4t dt [SS(f)]

°‘-1d

¥
pox ()] =02 |
0

Considering first the case of impulsive thrusting, it is seen that to
the present order of approximation the solution is simply given by
Auk(t*)  Avx(t*) Awk(tx)

impulsing with Av velocity increments given by 5" 5" %
Ll Ll Ul

Ax*(t*)  Ay*(t*) Az*(tx)

at times given by EuR(TF)? BVR(TF)? EwF(TF )’ respectively.

Next consider the case of constant-acceleration thrusting

where a range of acceleration is available; for this case

[Au* (t*)] = 7° * At [56(a)]

[axx (t*)] = 12 i @12*-)-2- [56(‘0)]
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The implications of the last results are obvious. Although for other
cases the solutions are not as obvious, Equations 55(a-f), provide a

comparatively simple tool for establishing required thrust maneuvers.

C. CORRECTIONS TO THE FIRING VECTOR FOR TRAJECTORIES
FROM THE MOON TO THE FARTH

One of the problems arising in trajectory work is the
determination of corrections to the firing vector in order to achieve
desired corrections in the terminal point, namely it is desirable to

determine Aui, Avi, Awi, so that the desired Axt, Ayt, Azt, Aut, Avt,

Awt will be achieved (t-terminal). As an example consider attempting
to determine the firing vector from the moon to impact at a given point
on the earth. After a first trial determination is made (say by
numerical integration, or stepwise expansion) an impact error results.
From the known impact error it is necessary to change the firing vector
to achieve an impact at the desired point. In this case only Axt,
Ayt, Azt are of interest. On the other hand if it is desired to
achieve a given orbit around the earth (moon) then the terminal veloecity
kis also important.

A correction up to order n2 can be determined easily us~-

ing the second asymptotic expansion. From Equations 1k one obtains
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Axi = (t%cosw+t%)Au§ + (t%sinw+t§)Av§ E7(aﬂ
Ay% = - (t')tfsim»-"t-gé)Au*{ + (t"écosw*-ti)m')i [57(10)]
Az¥ = ¥ Ak [57(C)]

dxcx oyt +
A‘35¥)t = = (w t¥sinw t%)Au? + (cosw t%)Au%

+ (uTorcosutor)ave + (stawtuplave [57(a)

A(%%;)t - (w+t§cosw+t%)Au§ - (sinw+t¥)Au§
- (w+t9€sinw+t9€)Av§ + (cosw+t'}é)A\r)£ [57(6)]
A(%%)t = v [57(2)

The problems of correcting for either the terminal velocity or position
vector can be handled easily. For convenience the equations are in-
verted here. For correction of errors in the terminal position vector,

the corrections to the firing vector are

duf = %I [ (tcosu™ st )axy - (tgésinw*t*)Aye{] [58(a)
+
bv = Z]:I [ (teécosw*'taé)zsye{ + (tgsiny t*)Axgé} [58(b)]
1
bt = 2% 0

L%
t
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where

+ +

A =% %

ttcosw t§ ttsinw tt 5
A = & = t*
1 t

+ +

- t¥si * * ¥

ts:m.w tt ttcosw tt

For correction of errors in the terminal velocity vector the corrections

to the firing vector are

1 + + + ) dx*
¥ = e ¥ . % ¥ —_—
Aui Ag [ (cosw tt ) ttsinw tt A(dt*)t
= + + dy*] }
- - % —
{51nm tf + W t¥cosw tt} A(dt*)t [59(3)
- L ( tix Tixsing” ) ay*
Av? = Ag [ cosw tt -0 tts1nw t% Atdt* .
+ + + dx¥ ] ]
- | - ¥ - -% : _—
( sinw’ t¥ ~ W t*cosw t%) A(dt* . @9(b)
_ dz¥ [ ]
Aw? = A(a§¥) 59(c)
t
where
- w+t*sinw+t* + cosw+t* w+t*cosw+t* + sinm+t*
t t t t t t 2 5
A, = =u}+‘t* + 1
“o : t
+ + + + + +
- * % - % - %4 :
w ttcosw t% sinw tt W tt31nw t% 4+ cosw t%

When correcting for errors in terminal position vector the
resulting change in the terminal velocity vector can be obtained by
substitution of the results of Egquations 58 in Equations 57 similarly

for the case of corrections for the velocity vector.
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Higher order corrections can also be obtained using Equations
2k, However the algebraic complications are great.

The problem of correcting simultaneously for terminsl posi-
tion and velocity vector errors is more complicated. Since the
equations of motion for this case are of 6th order, in general only 6
constants can be specified, these, then completely determine the
trajectory. The natural 6 constants are the initial position and
velocity vectors, however in principle any six constants will determine
a unique solution. It is clear therefore that specifying final position
and velocity vector and initial position vector is overspecifying the
problem and will in general not have a solution.

One seemingly "overspecified" case for which solutions can
always be found will be discussed here because of its practical
importance. This case is characterized by a given terminal position
and veloeity vector at a given instant in time and a given selenographical
location on the moon as the firing point. Provided certain constraints
are met (proper Jacobi constant and velocity vector orientation) the
proper firing vector at the moon can be found. In the simple planar
case the solution is easily obtained by integrating backwards from the
terminal position in a non-rotating earth centered coordinate system and
adjusting the position of the moon at the beginning of the integration
until the required initial position on the moon is reached. The reason
why this is possible is due to the fact that the initial position
vector was not specified in the same coordinate system as the final
position and velocity vectors. Had this been done, no solution would

in general be found. Thus the seemingly "overspecified" case is not
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truly overspecified, but rather a special case of a constrained problem,
vhere the constraint results in an apparent overspecification.

In the rotating system used in the rest of this thesis there
is no possibility of adjusting the position of the moon at the beginning
of the integration so that the same problem could not be solved by the
method discussed previously.

"It is easily seen that the corresponding problem is a
specification of the final position and velocity vectors to within a

rigid rotation about the origin of the rotating coordinate system.



U, v,w

Xy¥s2

Greek

SYMBOLS

distance between the centers of the earth and the moon

gravitational constant in Newton's law of gravity

Gr(m.e + mm)

distance from the center of the earth

distance from the center of the moon

time

thrust acceleration components

reference "vacuun"” velocity at the surface of the earth

components of the vehicle's velocity vector in the
instantaneous directions of x,y,z, respectively

coordinates of the r.h. rotating coordinate system with
the origin at the earth~moon center of mass, the X-axis
passing the moon's c.g. and the Z-axis perpendicular to

the moon's orbital plane

moon's orbital velocity
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APPERDIX

The use of the simplified model of the earth-moon space enabled an
analysis applicable to all chronological times. In reality however the
rotation of the earth and the moon about the baricenter is not circular.
The motion can however be approximated by circular motion for the short
periods involved in transfer trajectories (as opposed to satellite
trajectories). The variation in the distance between the centers of the
earth and moon has to be accounted for. Past experience has shown that
the major contribution of this difference is in changing the time of
flight. This change can be accounted for by dividing the distance

difference Arearth—moon by the minimum velocity along the chosen trajec-

tory. Figure 13 shows the location of this point as a function of the
vacuum impact (launch) velocity on the earth.
Following is an approximate relationship for establishing the

minimm veloeity

1/2
Vo= [vmpact + 141,860,900 pR2 31.5903)] [(Al)]

where T min is the distance of the point of minimum velocity from the
moon (figure 13) and Df is the instantaneous earth-moon distance at
firing.

Since astronomical data is generally given in geocentric coordi-

nates, it is necessary to transform the initial conditions from the
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coordinate system used in the analysis to the geocentric coordinate sys=-
tem. The geocentric coordinate system chosen iz a non-rotating system

with the positive Z-axis pointing to the true north, and the positive X-
axis passing through the launching point at launch. The required trans-
formation for the point on the moon nearest to the earth (the point used

in the examples) is given by

X = (D, - 1079.93) cos 6_, (miles) [Az(a)]
¥=o0 [Az(bj
Z = (D, - 1079.93) sin 6 . (miles) [Ae(c)}

i= (wcos A+ v sinA) cos B
- [(-—u sin A + v cos A) cos C -w sin C sin B] [A2(d.)}

'_Y_:: (wcos A+ vsinA) sin B
+ [(—u sin A + v cos A) cos C -w sin C cos B} [A2(e)]
é: (~usin A + v cos A) sin C + w cos C [AQ(f)]

where

cos A = cos(eln - emra) cos €,

Bzeln_emra

tan emd

sin( elm - gmra)

tan C =
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emd - Moon's declination (given in Ephemeris)

I Longitude of moon's line of nodes (given in Ephemeris)

emra - Moon's right ascention (given in Ephemeris)



