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SUMMARY

The practicability of using a stretched cable for a rocket
launching device is dependent primarily upon the transverse move-
ment of the rocket and the stresses involved in the system. This
requires analysis of the effects of the moving rocket mass on the
cable from the instant of contact, and the problem reduces to one
of wave propagation.

The analysis here is restricted essentially to developing a
procedure by which the initial motion of the mass can be calculated,
and an expression is obtained which permits determination of the
deflections. The problem is approached by first assuming that the
mass exerts a constant transverse force on the cable. Admittedly,
this is a simplifying assumption, and the result is not valid for the
instant the mass hits the cable or for a short time thereafter be-
cause the inertia of the mass is not considered.

Next, the problem is solved by taking into account the dy-
namics of the mass, and the solution reveals that the path of the
actual mass deviates from the force path by as much as twenty per-
cent during the initial motion but soon returns to the force path.
The mass does not exert its full force on the cable at the instant of
contact, but comes down on the cable with full force a short time
later. Since maximum stresses on the system occur at this time,
this factor is an important result of the analysis. Further, it is
shown tﬁat increased velocity of the mass increases the deviation
from the force path, and increased mass lengthens the time of

return to the force path.
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I. INTRODUCTION

The problem investigated here results from an original
inquiry by the U. S. Navy as to the feasibility of using a stretched
cable for a rocket launching device. Recent interest in the subject
has extended greatly the range of possible applications, and since
the analysis of the physical phenomena involved in a mass moving
on a stretched cable is general in nature, it need not be restricted
to the launching of rockets.

C. R. DePrima and F. E. Marble(l) have investigated the
problem of a force moving on a stretched cable. Their\ results in
the supercritical case (i. e. where the force travels faster than
the speed of propagation of a disturbance on the cable) show that
although the cable distorts under the influence of the force, the
path of the force is unaffected and all distortions occur behind the
moving force. In the subcritical case, the path of the force is af-
fected but the initial conditions are unrealistic because a force
and not a mass was considered. Of interest then is the subcriti-
cal case of a mass traveling with constant velocity across a
stretched cable. By considering the subcritical case, the analy-
sis will hold fqr slower and heavier masses, and the range of
application can be extended.

Eor the purposes of this work, a portion of this phase of
the problem is investigated: i.e. the initial motion of a mass
traveling with constant subcritical velocity on a stretched cable.
The procedure will be to derive the partial differential equation

which describes the physical phenomena, solve the equation, and
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arrive at a result which can be used to determine the deflections
along the path of the mass. Determination of the mass deflections
will permit calculation of the stresses involved, which of course

are of primary interest in the practical problem.
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II. DEVELOPMENT OF THE PROBLEM

For the system,

m_.v assume a stretched string

777777 ey

between two fixed points
and consider a mass mov-

ing across it with constant

Fig. 1 velocity v (Fig. 1).
First, consider the partial differential equation for the trans-
x verse motion of a string
777777 ulx 1) 77777 «
distorted into some curve
u(x,t), (Fig. 2). Applica-
[ 1 tion. of Newton's second
Fig. 2 law leads to the wave equa-

(2)

tion in one dimension

p 2=T > (1)

where p is mass per unit length of string, T is tension in string,
2

and u(x,t) is the displacement of the string. The term p'a—--zE is
2. ot
the inertia force due to string mass and T-{-’—% is force due to ten-

ox
sion in the string.

If an arbitrary force F(x,t) is applied to the string, Equa-

tion (1‘) becomes

93}-1---1_.93.9.:-2 (Z)
ze cZ atz T

2
where ¢ =

|
ol
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If the force is exerted by a mass m on the string at a def-

inite point, x; distance from the origin (Fig. 3), and the mass has

e X1 a-‘ . 2 displacement W(t), then
Tt Fi" s the force F applied at the
od
point of the mass may be
| u w(t)
i calculated by applying
Fig. 3 Newton's laws to the mass.
2
m _c_l_’;_’il = -F + mg
dt
or
2
d™w
F=-m(ES - g) (3)
dt

where mg is the force due to gravity.

The acceleration of the mass may be expressed in terms of
u, the displacement of the string. Consider the mass moving across
the string with uniform velocity v. Taking an instantaneous look at
a particular point P, the vertical velocity of the mass is -g—‘%

However, the verti-

cal velocity due to the
77777] 777777 ™% velocity v along the
/
/]
/ ax/ " _ string must also be
p AU
Y as considered. Looking
K v

at Fig. 4, (greatly
exaggerated because
0 actually is very

Fig. 4 small),
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Vertical component of v = v sin 0

and replacing sin @ by tan 0,

Vertical component of v = v tan 0 = vﬁi
Passing to the limit, lim 2% -24
x  9x

and therefore
Vertical component of v = Vo

Thus, the total vertical velocity in terms of u(x,t) is the

sum of two terms: -g—% + v -g% . . It was agreed before the ver-

tical displacement of the mass at a fixed point is W(t). Therefore,

if u is fixed at a point determined by x,t,
dW _ |du, [Bu
at " |8t ex|

d dW, 8 ,0u duy,dx, & ,du du, dt
Tl etttV @t e et VaR &

ox ot
or
dZW - 8211 + 2v azu + VZ Bzu
at? at2 9xdt %2 .

and introducing this into Equation (3)

2 2 2
_ 9%u 9% 2 9%u -
F=-m( ——-atz + vy $v ——-axz - g) (4)
x,t x,t x,t




-
Since at t = 0, u = 0, and the mass moves with a constant
velocity v, the position x of the mass is fixed by x = vt. Using this
notation to denote a particular point and combining Equations (2)

and (4) gives

2 2 2 2 2
9 u 1 87u m ,0 u 97u 20 u :
sz c2 8t2 T Btz 90t sz x=vt

For all values of x other than x = vt, Equation (5) gives the

homogeneous wave equation, i.e.

2 2

1 9"u _
7 -:Z =0 for x # vt

g

and therefore it is convenient to introduce the Dirac delta func-

tion(3) defined as follows:

vit€
_ 0 for x # vt
o (x-vt) = (x-vt)dx =1
o for x = vt
vt-e

or saying the same thing

+o00
ﬁ(x-vt)dx:l (6)

Introducing this function, Equation (5‘) becomes

azu 1 azu m 82u azu 2 E)Zu E
s -5 =5 =g t2vgm v —-Z--g)f(x-vt) (7)
ox c ot ot ox

This is a linear inhomogeneous partial differential equation of the
hyperbolic type which is complicated by the fact that the coefficients
are variables. The problem at hand is to solve this equation, and a

dimensionless form will be convenient.
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Define the dimensionless parameters

u
x —— m
§=1 veLl 1==5
pc
T':.(..:E. A .-.LZ
- L AET @-"Lg

where L is the length of the string between the two fixed points.
First, note ﬁ(x-vt)dx =1 and since dx has the dimension
of length, this implies the delta function has the dimension L-l.
This indicates L EJ‘(x—vt)] is dimensionless, and dimensionless
notation for the delta function is " (§-47) *. Therefore

L [f(x-vt)] c\orresponds to J”(S'—/a_r).
2

2.3
Multiplying the left side by l‘L_ , the right side by < zL 5
c L
and noting T = pcz, Equation (7) can be written
2,u; 2,a 2,u; 2.u:
97(1) —3('1:) m o2 (8 (1) v a7(1)
2,x,2 ct,.2 = ~_2)TLg t,2 c 1asCt
85T AT pe € ol RRIESEICLY
2.,
97(+) 2.2
vi2 L, c¢L ’
+D == ) -z L f(x-vt)
‘ (1)
or
2 2 2 2 2
v 0Ov 97V 9°v 297v
- =-A7 1-8 (= + 2u5755 + ——2)} J(s-uT)  (8)
ajz 572 A gpl M5 ot /485

It should be noted that the initial conditions imposed by the fixed

end point of the stretched string are v = -g—% =0at 7=0..

Two solutions will be considered in the analysis of the prob-
lem: first, the solution by assuming a constant transverse force on
the string; and second, the solution of Equation (8) which takes into

account the effects of a mass on the string. The constant transverse

ko _ . x _ Vv ct )
x = vt can be writteny =T T which becomes § =&7.
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force equation is obtained by making 5 = 0 in Equation (8) and is

ﬂi’-?ﬁ=-ang- ) (9)
952 o1t A
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III. SOLUTION OF THE PROBLEM WITH

CONSTANT TRANSVERSE FORCE

Courant(4) shows that the solution of Equation (9), with the

given initial conditions, can be written

r a5+(~8)
v(s,’:“) =32- f [ of (x- 4 t) dxdt (10)

t=0 x=¢-(7-t)
where ¢, 4+ are the dimensionless coordinates of the physical sys-
tem, and x,t are used as variables of integration. It should be em-
phasized that the variables of integration x,t as used in Equation (10)
are not the same as the x,t coordinates of the physical system used
in the original development of the problem.

Since interest is focused on evaluating the solution on the path
of the moving force defined by § =47, v(j ,7) can be written
V(,a'?‘) ~) = Wo( 7 ) where WO(W ) represents the displacement of the
force. Equation (10) becomes

T L s4+(r-0)
W (r) =% $(x- 4 t) dxdt (11)
t=0 x=§-(7 ~t)

The evaluation of the integrals of Equation (11) can be accom-
plished readily by geometric interpretation and the use of character-
istics. Since the slope of the characteristics in the dimensionless
¢-T plane are #1 and the subcritical case (v< c) is to be consid-
ered, the diagram (Fig. 5) can be drawn. The path of the force,

labeled ¥, is given by § =ur and is drawn with a slope 1< ;1—{4 o0,



-10-

\ F
N
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\
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O e 1 s o —

Fig. 5

The initial condition imposed by the physical fact that the
string is fixed at x = 0 may be taken into account as follows. If
the string is assumed infinite in length, then the effect of this fixed
end is simulated by assuming an equal force starting at x = 0 and
traveling in the negative direction with velocity v. Similarly, the
boundary condition imposed by the string being fixed-at x = L can
be simulated by an equal force starting at x = 2L and traveling in
the negative direction with velocity v. The paths of these fictitious
forces are labeled -F. As will be shown, these paths have a neg-
ative effect in the geometric process for evaluating the integrals.
Further,r it should be noted that the distance L in the dimension-
less plane is unity.

The arbitrary points ( § T ) are picked on the path of the

force and triangles of integration (commonly referred to as
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domains of dependence) are defined by drawing characteristics
through them. From Fig. 5, it immediately is evident that two
cases must be considered if a solution is to be obtained along the
entire length of the string. At the point (g*) ’I“*) , the force en-
counters the wave which has been reflected from the fixed end,
and the solution at point (g: +') , good for 04T« 1*, will be
different than the solution at point (5”’ #” ) , good for ?*<L 7T« 74." .
For the purposes of this work, only the initial motion of the force
is considered and therefore detailed analysis is presented for just
the first case, i.e. where 0{ 7 ¢ %, P‘roceeding now to the eval-
uation of Equation (11),

it will be convenient to

\

&= -/177>
(51;7})\r/
/

0 3

refer to the simplified

diagram, Fig.' 6.

Fig. 6

From the definition of the delta function,

+ (7 -t) Oforx #put
J(x—,«t) dx = 1 forx=mut
x=§ -~ (7r-t) -l for x = -4t

and since the value of the solution is dependent on the given values
only in the interior of the triangle of integration, this integral yields
a value of 41 at, and only at, each point on the line ¢ :/(fr , and
a value of - 1 at, and only at, each point on the line §=- u4*. This
may be thought of as a series of positive unit impulses along €= pt

and negative unit impulses along § = -« 7 , the effects cancelling



-12~
in the region 0 to 7, . Now taking into consideration the summing
’r N
process indicated by jdt, the double integral of Equation (11) yields

¥=0
nothing more than -7 . It can be shown that

Tof = ATEE L Zp?

I t )
Therefore
VA o
W (1) = T{'-&/T (12)
It is evident that a

W.(T) '

° S = plot of displacement versus
ope I+/l?
time would give a straight

line, arbitrarily drawn in
Fig. 7 Fig. 7. It should be noted
that positive displacements are directed down or earthward in the
physical sense.
Investigation of the physical results of this solution reveals
that if a force F = ET&' is moving along the solid foundation with con-
stant velocity vatt { 0 and
F hits the string at t = 0, the
string deflects instantaneously,
and the force takes on a con-
stant vertical velocity (Fig. 8).
1=0 Therefore, the vertical veloc-
ity jumps from zero to some

finite value and the accelera-

Fig. 8 tion is infinite at t = 0. This
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of course is physically impossible.

The reason for such a result is obvious. Equation (11) gives
the solution for a constant transverse force moving across the string
and not a mass which is physically the case. That is, Equation (11)
ignores the dynamics of a mass. Intuitively, it is evident that a mass
moving along the solid foundation and hitting the string would give a

path probably something

like that of Fig. 9. The

7777777777 \

inertia of the mass would
prevent in effect the infin-
ite vertical acceleration.
The solution of Equation
Fig. 9 (8) which takes into account

the effects of a mass should correct this discrepancy.
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IV. THE DIFFERENTIAL DIFFERENCE EQUATION
FOR THE MOTION OF THE MASS

Rewrite the complete physical equation (i. e. Equation (8) k)

2
9"v  3v 9 v Zav
9 v .8 v ._._ 1-3( +2 + 4=t S(E-pur) 13
5 > 2 ﬂasmﬂ } §-H (13)

The solution in integral form where x,t are the variables
of integration is
T g4 -t)

2

=4 «?-(2 +2 o%v 23Vl f(x-ut)dxdt (14)
v+ =4 D P ) foptiax
t=0"x=¢ -(* t)

\

Fig. 10

It will be remembered that the integral with respect to x
is zero except at each point on the path of the mass where it yields
unity. Further, the values of this integral cancel in the region

0 to4 (Fig. 10). It can be shown easily that
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'r em)fr (15)

and since the path of the mass is defined by §= 44 , Equation (14)
can be written

2 2
v(/t'}',?‘)——fﬁ'ﬁ("?"'z/"‘:x;; ﬁzg'}:%)] dt (16)
1+/<

Using the notation W(# ) = v(/u)' , %), it is clear that Equa-

tion (16) becomes

" |
2
ZW(fr)-—-f(A-@E‘-—“z’ﬁl) at (17)

t=ar

where the system parameter aZ

=14
T i
Integrating Equation (17) gives

W('r)’-'%‘(l-a)""%[d‘g(ﬂ dZ"::””]  for 0CTCT(18)

This is the differential difference equation which can be used to con-
nect the solutions at two values of time, at and 7. It should be noted
that the validity of this equation is limited to 0 < ¥ 4 "

In a similar manner, a differential difference equation can be

developed for that portion of the string where A P "/14_‘ , (Fig. 11).

A7

Y2
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It is simple to show

ﬁﬁ (19)

1+ 2 ,

Py = (A - Tz (20)
2

Writing Equation (14) for this case, it is clear that

2W(#) = [) W(t) dt-f)jﬂ d W(t)] at
at?

Integrating and using Equations (-19), (20) and (21) gives the

differential difference equation good for T*< t< ;'Z

W(f’) =

2AU(1- u?) __ﬁ dw(1) _ dwW(f) _dw(4, ) dW(’P‘L) (22)
1 _/(z 2\ ar ar, v, s

This equation will permit evaluation of the displacements of the mass

over the last portion of the string.
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V. SOLUTION FOR THE INITIAL MOTION

Rewrite Equation (18)

W(F) = 5 (1-a)t - & [d‘;‘{f’ - d};’}ﬁ*’] (23)

This differential difference equation connects the value of the dis-
placement of the mass W(7 ) at two values of time within the limits
0 < * ¢ 7. It should be noted that a ¢ 1 and consequently o™
defines times less than 7 . Bearing these facts in mind and using
a stepwise procedure, this unique equation can be used to derive
an expression for the initial motion of the mass. The number of
steps taken will determine the accuracy of the result. Three steps
will be sufficient for the purpose of illustrating the procedure.
By using Taylor's series expansion and expanding about zero,
it is possible to obtain an expression for the solution which will in-
- clude a point, say a Z’I‘ s
\</ -M ! M ' close to zero on the path
\ ‘ of the mass (Fig. 12). If
\ the next step is taken to
\ point a # , the solutions

\ at the two points are con-

. \/ nected by the differential
Region of N %7

Taylor's expansion \ difference equation, and

\0 / =S by inserting the result at
point a 2’}" into Equation
Fig., 12 (23) and integrating from

a.zfr' to a4 , the solution at point aT* is obtained. Repeating the
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process will yield the solution at 4+ . It is of interestt® note that
if steps of ar are taken where n is an integer, each subsequent
point is located geometrically in the ¢-4 plane by use of the char-
acteristics as shown in Fig. 12. Proof of this fact is trivial. The
actual mechanics of the procedurearecarried out as follows.

Differentiating Equation (23)

2 2
dw(+) ' d"W(r) d"W(a?)
T =g - -6 e d(a:)z \X

andas T—>0, W(#)=W(a?* ) =W(o). Therefore
W'(o) =2 (1-a) - & (1-a) W (o)
-W (o) + 5 (1-a)

£ (1-a)

Using these in the Taylor's series

W (o) =

W'(o) + % (1-a)
p(l-a)

2, .

W() = Wio)# {-

and inserting a more convenient notation where

-WYo) + % (1-a)
(T-a)

A = W'(o) ‘ B:

24
W(+) = At +B1% 4 -oco- (24)

It is evident that the accuracy could be increased by taking more
terms of the series.

Taking the first step to o,zfr » Equation (24) gives

W(e% ) = A(a®r ) + Bla?r )2 (25)

where W(aZ’r ) is interpreted to mean the displacement at the point

az’r .
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The next step to point a? is taken by use of the differential

difference equation. Inserting at for 4 in Equation (23)

A .
¢ dWar) | wigr)=2(l-a) £ dw(a’r)
7 dary T Wler)=gl-alar)+5 gy
Using Equation (25) to obtain __________dW(;, 7')
d(a™ 1)

g dW&a:) + W(ar) = % (1-a)a 1) +§ [A+2Ba(o.1—)]

This equation now is integrated over the step under consid-

eration, i.e. from az'r to a1 , to give the result

2 2 2 2
1 T -=at —ar
e W(a’r)-—e-eﬂ W{a T)z[%ep (a'r)——’%‘?;e
2 2 2 2 2
-at 4 -ar r —=at 2 —a
-’lz.a_ep (a?) a ee +A% e-Fa ~!’-Ba(‘)ee (a'r)-B—e——g ef

Inserting the limits and using Equation (25), the expression for W(at)

is obtained.

Repeating the above process to the point * leads to the final

result
) 2 _ %(o.z-lb)’l'
W(t) = (KS'I" + Kb'f' —K7) e
2 » Zaz-u)f'
+ (Kg® “ + Kot -K;) ef |
2,3 2, . o (26)
—a"~a"+a -1)?*

- (asz'?' 2 + aKg’f‘ - Klo) ef
—2-(0, -1)4

A 8
1) e + KT + 5K

+ (aKB’?‘ + K 3
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where
- A_Aa (a-1)
K, = §--%5—+ Ba K,z —
15272 S
€ 2 (o,z-a-[—' 1)
2
Ky = —ft— Ky = —5——
2(a” - a +1) (a” - a+1)
- n 4 2
K. = Ba K, = a“(A-K))
K -%(A-K) K, = Ba’k
7% 1 g8 = 2
_ 2 2
Ky = 2Ba”Ky(1-aK,) + o “K,(A-K,)
P(27)
K 2 BpK;K,(l-aK,) - K;(1-a K, )(A-K;) +% K,(A-K))
2
Khz é'(A‘Kl) -B ’%‘ o
K .z 4(1-a) K .= BBa
125 2 13 = B P B

l_
By setting @ = 0 and renumbering that a = —':};—I , Equation

(26) reduces to

wir) =31 - )

or
.y % 8
W(r) =17 m * (28)
which is exactly Equation (12), the result of the simple analysis con-
sidering a constant transverse force.
The algebraic expression, Equation (26), can be used to solve

for the displacements of the mass for 0 < T < ¥ Selecting the

fixed parameters to be

mg = 250 1lbs. 350 ft/sec.

¢]
]

L

2500 ft. p = 0.1866 slugs/it.

H



-21-
A and @ can be determined, and calculations were carried out
for the following representative conditions: (1) M= %, W'(o) = 0;
(2) f= 3 Wo) = 0 (3) =7, W'lo) =154 5 (4) u=3, Wo) = 24
and (5) M= -12-, W'(o) = 0 with mass increased tenfold. For conven~-
ient comparison, plots of %%%) -1 versus 7 for conditions (1)
and (2) are shown in Figs 13. Condition (5) is shown in Fig. 14,
and the difference in 4 scales between the two figures should be
noted. As should be the case, it was found that conditions (3) and
(4) were symmetric to conditions (1) and (2), respectively, and
therefore are not shown.

Reference to the plots shows that when the dynamics of
the mass are considered by solving the complete physical equa-
tion, the discrepancy of infinite acceleration which appears in the
result of the constant transverse force analysis is eliminated. In
fact, the slope of the displacement curve, W(% ) versus 1 , is
zero at time 7 = 0. Further, the actual mass path W(7 ) returns
very rapidly to the force path W_(7).

Since A = -;— is indicative of a greater horizontal velocity
than g = -;—, other parameters being equal, the plots in Fig. 13 re-
veal that increased velocity gives the actual mass path a larger
deviation from and slower return to the force path. Also, other
parameters being equal, the plot in Fig. 14 indicates that an in-
crease in mass decreases the deviation from the force path and
increases greatly the time of return to it.

As was pointed out, greater accuracy can be attained in

the solution by increasing the number of steps. The result by using

five steps is given in the appendix.



B RN

IR
ol

1 ADmEE AT
B

Blaisisiele)
|

S

EEEs

Bt
5 19 158 1

i
1

L

I

TH

ARELE

1

BN B}

eSO 3 B

i

RSN

10T

30

an

I BRNRE DD

v
),j:;

BE
i
e

o

o
RN AWENDER

e R

T
SEEA




En

4

=

s

BE R

T

i

rH -

507 6 U Y R L

1

Y
[

IRT

0

[
)3 L




_24-

APPENDIX

\ /

AL,
3

%7

Fig. 15

2,2
(a™-1)% a
W(1) =%K7 e? + [a3K7~r +(K4- éz‘ K7):\ e?-(

2, 4
-1\
3 1)

8 2 g
-F[Bo, 7 -I-o.Kl'?' +K3] e +K23e

A more accurate
expression for the initial
motion of the mass is ob-
tained by increasing the
number of differential
steps taken. The math-
ematical procedure is the
same as outlined in the
text, simply being repeated
more times. If five steps
be taken as shown in Fig,
15, the result is

2003 1)

%(uz—o.)'r

2, 4

%{a3-a)'7' 2 -e;(ﬂ -a)T
*[KZJ ] e * [Kzs'r Ko7T -Kagl ©
%(a3_az),,, ) %(a4-a2)r
+ [Kzg’r +K } e + [K31 To o+ K32'r -K33} e
flat-ad)r

+[34'r +K ’I' K36}e

+[‘1K18'r (K3~ 21] ef

a3-a2+a -1)T
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—Z-(o.4-a2+a -1)*

2 2
a Klo'r +0‘(K14 —K24)T —(K19+K25{' e

5 > %(a4—a3+a ~1)r
- a Kll'l" +c1.(K16 -Kzg)’l“ - (KZO+K3O)] e

b

[ 4

5 %(34-a3+a2-1)?‘
a KS’P‘ + uK13’T' - (K8 + KZI)] e

2 (a4-—0.3-l?-u2-0.)"'

[ 2
Kiph ™+ Kt ‘K39] e

b

- 5 g(a5-a2+o. ~1)m
Kz()’r‘ + aKZ.?’T‘ -KZS] e
r 5 E((J.E-)-a.:e,-l'-o, -1t

K 'T' + aK ’?‘ -K ee
i 33
4 E(QS—a3+a2-lb)'r
a K ’T' +a K ’T‘ -K19 e?

5-a3+a2-a) "~

SR 2,
K40’P’ +K41 -K42 e

-?1(0.5-o,4+u -7

2
L-c‘, K34'T‘ -o.K 4’- 36] e%
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