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ABSTRAGCT

6]

The purpose of this thesis is to extend the uselfulness
of a multifrequency reed gage, a simple mechanical instrument,
which records essential features of transient motions. This
instrument, which can be considered a dynamic model of a
multiple degree of freedom structure, consists of a set of
one degree of freedom cantilever beams having various
frequencies. The information from the instrument consists
of the maximum posltive and negative displacement of each
beam. It is desired to obtein as many features as possible
about the exciting motion from this Information al one.

The instrument response is obtained analytically for
various exciting pulses. Both symmetrical pulses and non-
symmetrical pulses with rise time to decay time ratios from
zero to ihfinity are considered. The impulsive response is
considered separately.

£

From a study of these responses a correlation is

made between the response and the excitation. Table #5,

page 32, summarlzes the information about these studies

C

and indicates the methods for obtaining maximum Information

from the reed gage.
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NOTATION

a maximum value of acceleration pulse, y(t).
B viscous damping coefficient
C capacitance

D=B/2Tkm  percent of critical damping

De=RﬂC/hL percent of critical damping for electrical circuit

E(t) transient voltage
f=p/2 T frequency of reed
7 force applied to main body

gravitational constant (ft/secz)

02

1 current

I Impulse

K spring constant

L inductance

m effective mass of reed

M mass of main body

p=ﬂk/m natural undamped frequency of reed in radians
o] electrical charge

r ratio of decay time/rise time for acceleration pulse
R resistance

T time

t! time to maximum value of acceleration pulse
tle time to maximum-value of electrical @ulse

- - 2
u‘XmaX/J;t‘XmaXP /a dynamic amplification factor

Uy, ordinate of maximum negative tangent to the
dynamic amplification curve
U, the value of un at p=0



electrical frequency in radians

relative displacement of m with respect to the
1
base

relative velocity of m with respect to the base
maximum value of x

particular solution of the differential equation
of motion as & function of ¥

acceleration of main body and reed gage base

static deflectlion of m if a were applied
gradual 1y -



Chapter I

INTRODUCTION

A new type of instrument for indicating some dynamic
characteristics of transient accelerations has provided
the incentive for this thesis. This instrument, which has
been developed over the past ew years, is called a reed
gage. - It is the purpose of the present work to extend the
usefulness of this device by suggesting how additional
information can be derived from it.

When measuring a transient acceleration two methods
are generally used. The Tirst is to use 2 seismic type
accelerometer with associated amplifying and recording
equipment. This method usually necessitates considerable
space and 1s prone to failure. The second is to measure
péak acceleration by a simple mechanical device. This
method needs liftle or no associated équipment and 1s

reliable in its operation. Its shortcoming is in the lack
of information as to time variation of the acceleration
pulse being investigated.

The reed gage as considered in this repprt is in an
intermediate position. It requires no external equipment
and does give some of the features of acceleration time
record indirectly.

A reed gage consists of a set of one degree of freedom

systems, usually in the form of cantilever beams, each of a
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Reed Gage
different natural frequency, p (radians per second or
f cps) fig. 1. For a structure which has natural frequencies
of Py, Posesss..Pp, & reed gage having single degree of |

freedom reeds at Py.....pP, can be considered the dynemic

n
model of the structure. For a transient acceleration the
response of each natural mode of vibration of the structure
will. correspond to- -the response of the corresponding
frequency reed in the reed gage.

The primary information obtained from a reed gage
récord is a dynamic amplification curve for a givén transient
acceleration pulse. The coordinates of the dynamic
amplification curve are u, the dynemic amplification factor,
vs. 2ft'=pt!' /AT , the frequency parameter. The dynamic
amplification factor is defined as the ratio of the maximum
response of en oscillator due to an acceleration pulse
compared to the static deflection of the same system if the
maximum acceleration were applied gradually. The variable
in the frequency parameter is the natural undamped frequency

of the oscillator; the facton t', is the time from the

initiation of the pulse to its maximum value.



The dynamic amplification curve has been generally
obtained for various pulses using the maximum positive
response for each frequency, p. Little has been done in
the pest in obtaining the negative dynamic amplification
curve by using the maximum negative response. The negative
dynamic response will be considered here for all transient
acceleration pulses.

The dynemic amplification curve can be used in two ways.
The stresses in a structure due to a transient acceleration
can be found directly from the dynamic amplification curve
(ref. 1). Secondly, some information about the acceleration
pulse producing a given dynamlc amplification curve can be
deduced. It is the latter information with which this thesis
is concerned.

The David Taylor Model Basin has designed and constructed
several reed gages for studying the motions of a ship due to
transient loads such as torpedo, mine, or bomb blasts as well
as excitation from the ship's own guns. Dynamic amplification
curves were computed for some typical excitations and the
reed gage results from tests were compared to these dynamic
response curves (ref. 2, 3 and u).

Other examples of transient forces where reed gages
might be applied are: |

1. Packaging problems
a. shipping

b. shock mounting



2. Impact machine parts
a. punch presses
b. air hammer opersations
3. Military applications
a. ships excited by various eXpiosions
b. other military machines and equipment

Iy Barthguake measurements

In the light of the preceding background the object of
the present thesls can now be stated. The object of this
study is to determine how to get the maximum information
as to the acceleration time curve from a reed gage record.
The method used is to obtain dynamic response curves for
some representative symmétrical and non-symmetrical
acceleration pulses: Then a correiation is made between the
curves and the pulses.

Generally, the reeds in a reed gage have practically
zero damping, therefore the main interest is centered on
the zero damping case. [For many of the above acceleration
pulses the dynamic amplification curves are obtained for
several values of damping so that the effect of damping can
be considered.

The negative dynamic amplification curves are obtained
for 2ll pulses.

All the pulses considered start with a positive slope
and proceed such that the slope varies without reversal to

a final negative value. It may be possible to deduce the



effect of some minor reversals in slope on the dynamic
amplification curve. Some examples of pulses with reversals
are a ripple superimposed on an acceleration pulse, or a
small negative overshoot of acceleration at the end of a
pulse which returns to zero slowly. These cases are not to

be considered further in the present thesis.



Chepter II

DYNAMIC AMPLIFICATION CURVES

At the onset of this study the dynamic amplification
curves were obtained for symmetrical acceleration pulses.
The resulté did not seem to be sufficient for many
generalizations, so the study progressed to investigation of
non-symmetrical pulses which are ildentical up to their
maximum value and have varying decay times. The latter study
proved successful In obtaining useful correlation between
pulse shapes and dynamic amplificetion curves. |

This section will concern itself with obtaining the
dynemic amplification curves for 211 the transient
acceleration pulses. The following section will deal with
the analysis of these curves.

The system to be employed is a single degree of freedom

oscillator with damping as illustrated in fig. 2a. This system
I & g J

V(%)

T
x K
B K ) -
L é N F(t)
|

fig. 2
is analogous to the single degree of freedom reed shown in
fig. 2b where the spring constant is supplied by the stiffness

of the cantilevered reed. The transient acceleration y(t)



is applied to the base of the instrument.
The equation governing the motion of the mass ls,
mX +Bx+Kx = my(t)
(1) or X +2pDx +plx = F(t)
The initial conditions for all cases are,
(2) x=x=0att =0

The solution for x is,

X = e‘th(A sin pf 1-D2 t+B cos p‘il—D2 t)+Xp(§)

When the damping 1s 'zero the solution reduces to,

x = A sin pt+B cos ptrx,(¥)

. The transient scceleration pulses y(t) to be treated
are shown in fig. 3. The time to the maximum value of each

pulse is t'.

a. sine
b. versed sine

c. triangular

0 - B 2t

(a) Symmetrical Acceleration Pulses

T f 1:p=Pecay Time
Rise Time
a. 1:0
y(e) a [Py @ © b. 1:.5
Ce J2l
d. 1t2
O t! 2t7 Bt! 6t' e. 1:5
f. l:o0

(b) Non-Symmetrical Sine Segment Acceleration Pulses

fig. 3
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The dynamic amplification factor as previously defined

on page 2 can be expressed as,

X max

Sst

m =

X max p

2
a

Symmetrical acceleration pulses.

The transient accelerations, y(t), for the three

symmetrical cases can be expressed as follows,

a. sine
t <40
0t L2t
2t Kt

b. versed sine

t<0
o<t <2t

2t <t

c. triangular

t40
0ttt
gt <t 28!
2t <t

-The responses for.

the dimensionless form

when x(t) is evaluated

becomes u, the dynamic
a. sine

(32) 2

=0
57.'=a 8 in:’L _t....
" 2 t!
y=0

g

y=0
ro a
?:E(l~cosir%7)
y=0

=0

. €
y=axT
Y_a(e— ET)
¥=0

the above cases can be expressed in

x(t)p2/a.

This form 1s chosen so that

at i1ts maximum value then the expression

amplification factor.

x(t) §~’=E2lji(sin g %T - ksin pt)

0t {2t



pe 2k

x(t) = ®*=5—= cos pt!' sin p(t'-t) 281 {
a ke-1
k= __
2pt!
b. versed sine
(ha) x(t) P21l L [(l-cos pt) kP (1-cos L )] o<t < 24t
a 2 I-kZ L T
’ 2 B |
()  =x(t) Er~=§%é sin pt! sin p(t'-t) 2t t
ke<1
c. triangular
(t) P2 . sinpt
(5) *(t) 2= = 2imob - %
a pt! £ 0t <t
2 . .
(5b) =x(t) B2 =% _48in pt 2 . 2 sin p(t-t')
a ! pt!?! pt! tr<t<2t,
o .
(Se) =(t) &= = E%T sin® BEL sin p(t1-t) 261t

The dynamic amplification factor is obtained for each
of the above when expressed at the maximum value in time, i.e.,
u = Kmaxp‘g/a
The dynamic amplification curve can be plotted as a function
of pt'/m . Figure Iy shows these three curves plotted. The

negative dynamic emplification curves are also plotted.

Non-symmetrical acceleration pulses.

Fig. 3b defines the six non-symmetrical acceleration
pulses.

The forcing function y(t) for the six cases can be

expressed,
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t<0 F(t)= O
N Tt
O<t<t' y(t)"aoh}.n%?—
51<E (1) ()= a sin T (E o, 2oa)

(re)t' L % F(t)= 0

The undamped response for the above forcing function is,

p2_ 1 . Tt Tt
6a) *(8)g=gzg(sing gr - Relingg 37) 0 L& w!

(610) p2 - T 2 1 ™ T ¥. n 2 2‘ ﬂ’ t - )
X(t)g~ = ~UkD-u) - 2(D—u>kDSLH§E + k<D cos(.é_E = @)
ST | S
~-E U - -1
sin o= (g7 + 71 srd 6 {(r 1)E
k= _T_
2pt!
D = —Z~—l E = __.Z...._zrg
» = -1/ r e r
/] tan™"( tan S Te2T) cos 5T )

The solution for t > 2t!' is not presented since the
computational method for obtaining the above responses was
not used. The electric amalog computer at the California
Institute of Technology was used [or obtaining the response
to the first five acceleration pulses described in this
sectlon. The solution as presented on the analog computer
gave the complete response of a single degree of freedom
system at various values of natural frequency (p). The
maximum and minimum values of the response x(t) were measured
directly on an oscilloscope screen (ref. a-pendix). It was
desired to obtaln the dynamic amplification curves for several
values of damping. The analog method lent itselfl easily to

-

the damping case since damping 1s easily introduced into the
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electric enalog of a single degree of freedom system by the
addition of resistance. The analog computer was therefore
used to obtain the positive and negative dynamic responses
of en oscillator at 12 different natural frequencies, and six
values of damping for esach of acceleration shapes. The case
of r—poe was not obtalned on the analogz computer. The 6
values of damping were D=0, .05, .10, .30, .60 and 1.00.

The dynamic amplification curves obtained are shown in
figures 5-9. anhﬁfigure 1s for one acceleration pulse and
shows the curves for all values of damping. Figure 10 shows
all the D=0 cases for the sine segment pulses including r-soo.

In the case when r=5, a few of the points did not seem
to form a smooth curve (see fig. 9). It was decided to compute
the positive response for these points. All the points fell
in the range t'{t {(m+l)t' hence the solution is given by

equation 6b. The' computed points are marked on fig. 9 and

do Tform a satisfactory curve.

Impulsive response.

When the time duration of a transient pulse is less than
about one-fifth the perlod of the responding system, then the
loading can be considered impulsive within a maximum error of
ive percent. The response of a system to an impulse is
equivalent to that caused by an instantaneous velocity change.
The base of a reed gage mounted on a main body (M) receiving
an impulse will experience the velocity change,

V= I/

where the impulse
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I ZJth 5

The response to a step veloclity change 1is,

v
X = - -0 gin pt
b

or X Vop 8in pt
hence

(7) Xmax = Xmax pZ = Vgpp

This result is plotted in fig. 11.

Tt will be shown later that the coordinates of the reed

data are those plotted in rig. 11.

9
o]
-
)

‘V% LLoog ‘
§ 128 | 6l 32
Y,
o 300g
:5
Gy 16
QU
ol
“u
& 200g
<
3 .
= 8
oy}
S—Q .
9 100g
[0}
g 4
<3
&
& 0 200 lLo0 600

frequency p

fig. 11
Acceleration of an Oscillator of
Frequency p for Various
Values of Step Velocity



20

The initial slopes of a dynamic amplification curve
(figs. L-10) thus correspond to impulsive loading. Hence
we may expect the initial slope of any dynamic amplification
curve to indicate the velocity change associated with a
particular pulse.

The following extension of the above momentum equation
is made for sine éegment pulses.

_/ﬁﬁ(t)dt = Mav = Mvg

The total area of a pulse is therefore

t’ t'Ci+r)
fydt + ydt = Vo
o tl

(8) Vo = aé#;(l+r) = (XmaxP)
Solving for r
1 v

(9) v = FEIEE). (T

Equations (7) and (9) are to be used in the following
section in order to obtain information about the pulse from

a reed gage record.
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Chapter III

ANALYSIS OF RESPONSE CURVES

The purpose of this section is to determine how much
information about the transient acceleration pulse can be
determined from its dynamic amplification curve alone. The
following oroperties are important in defining the pulse,

1. Peak acceleration (a)
2. Time duration (t!)

3. Area (vgy)

i, Shape (r)

The following portions of the dynamic amplification
curves are to be considered from the standpoint of their

&

usefulness in giving the above desired information: (fig. 12)

a. Steady value u at
large values of 2 ft!

b. The maximum negative
tangent

¢c. The maximum leading
edge tangent

d. Extreme values
e. Negative portion of

the dynamic amplifica-
fig. 12 tion curve

Typical Dynamic Amplification
Curve
In addition to these factors, the effect of reed damping
is discussed, and finally, & possible extension of the

information obtained for sine segment pulses to other shape

pulses 1s considered.
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Steady value of u at large values of 2ft!.

In the case of zero damping it can be seen on fig. 9 that
the dynamic response approaches unity for all pulses after
2ft' (the frequency parameter)® 2.5. The manner in which the
various curves approach unity depends upon the exact pulse
shape.

At a value of 2ft'=3, 1{u{l.25 at 2ft'=6, u is restricted
to smaller range namely, 1 {u<l.13. At values of 2ft!'> b
the value of u diminishes in an envelope which approaches
u=l as 1/f. Tence for 2ft!'=12 we would eXpect 1< u<l.06.

From the above one might expect that in order to find the
maximum value of the pulse (a), it is only hecessary to use
a reed of sufficiently high frequency and if willl give the
exact value for a, where

Xnex P2/a=u = 1
, or a = Xpaxp<
However, for a given value of a, Xmgx (deflebtion of the reed)
is diminished as 1/p2 and therefore the error in the ability
to read the reed gage record goes up. It is pointed out in
ref, M that reed gage records cannot be measured much closer
than 0.0l inches, which amounts to recorded value srrors as
shown in Table #1.

It is, therefore, not always possible to use the reed

gage information to find a in the range where u—= 1, due to

the error associated with reading the reed amplitude.
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TABLE #1
fleps) Error (in g's)
20 L
e} 1.39
100 8.32
210 37.7
345 120
30 185
570 316

It will now be shown that there are other independent
means of determining a elther as a check of the above method

or when the above method does not yield accurate results.

Maximum negatlive tangent.

Figure 10 shows quite clearly that the maximum negative
tangent for the dynamic amplification curves of all the sine
segment pulses are a proximately equal. Since all these
pulses are identical from time zero to thelr maximum, the
maximum negative tangent can be expected to define this
similarity of all the pulses.

The maximum negative slope intersects the u ordinate at
2.23 £.03 for the dynamic amplification curves of all the
sine segment pulses (fig. 10). ' The equation of this tangent
line is, |
(10) un=2;23(1.§§g%)
where the value lL.63 (t.10) is where the tangent line

intersects the frequency (2ft') axis.
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This line can be located with a fair asmount of accuracy
if the reed gage has two or three reeds in the range where
the maximum negative tangent and the dynamic amplification
curve coincide.
To illustrate clearly two pleces of information to be

obtained from this line, assume flg. 13 1is a curve obtained

from reed gage data and plotted as Xmaxp2 vS. pP.

Then Wi 0
ma: ,A = 2.23
- OA
(11) | a = (1. 0150es)]
and prt!
w5 = 2fptt= [.63(1t.022)
- L.631
(12) .1 2 iﬁg__—[it(.OZE*esﬂ
A N
~
~N
~
~
~N
C ; X
2
XmaxP /
/ y T
~N
~
~
~
~
\\\\
0 -
D — B P
fig. 13

Dynamic Amplification Curve for LExample in Text

These two relations are quite easy to use and give
desired information about the applied acceleration. The
first error term in each expression is due to the inaccuracy

or varlations in slope found in the dynamic amplification
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curves for the sine segment acceleration pulses. The second
error term 18 the error in obtaining the points A and B in

fig. 13 as determined by evaluating the reed gage data.

Maximum leadling edge tangent.

The maximum leading edge tangent of a dynamic amplifica-
tion curve 1s determined by the change of velocity of the
reed gage base as shown on pages 19 and 20. The relation

obtained for the maximum accelerstion of a reed is,
X 2 .y D
maxP~ = Vo

or (XmaXPZ)
5 = Vo

As an example consider the curve of fig. 13. Then,

A e

O

- 0C
(13) Vo = &5

The values of vy vs. r for the sine segment pulses are
plotted on fig. 1L based on equation (8).

If the value of & asnd t!' are known, then we have [rom

equations (9), (11), ‘and (12), and fig. 13,

(9) _ 1 (xmaxp?) ar
R at’
( ]l}.) or r = 0, 2&_19‘9‘. CB -1

0D OA

from the consideration in this section, two more

ke
=
)
(@]
0]
[#5]

of Information about the pulse have been obtained.
Equation (13) gives the relation for the change of velocity
applied to the base of the reed gage and equation (1) gives

the shape of the sine segment by the relation for r.
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Vo
at' 2.0
0
2.0
u
1.5
1.0
2re!
0.5
0

i

r, rise time/decay time

Velocity Change, vg, VvS. T

fig. 1

/ Umax
Umin

\\\\“-~, i i L
N T —

—

1 .

fig. 15

W

L

Extrene Values of the Dynamic Amplification Curves

" vs. r for Zero Damping
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Extreme values.

Figure 15 plots u and 2ft' vs. r as taken from figure 10
for the maximum and minimum of each dynamic acceleration curve.
The extreme values of dynamic amplification factor, u, are not
very sensitive to changes of r. However, the value of the
fregquency parameter, 2 ft!', does show substantial variation
with r for both the negetive and positive portions of the
dynamic response curves.

For a specific reed gage record fig. 15 will act as a

cuide to find the value of r, hence indicating the pulse shape.
& .. 30 ] %

Negative portion of the dynamic smplificetlon curve.

In obtaining reed gage information the negative dynamic
response 1s available with hardly any extra effort. In the
past, little has been done with the extra availlable information.
The negative response has been obtained for all the transient
pulses considered in this report and are shown on figures Iy 210,

The following observations are made about the character
of the negative portion.

1. The shape of the first part looks like a negative
sine wave (ode, fig. 12).

2. The maximum negative leading edge tangent 1s equal
to the maximum positive leading edge tangent at

: zero damping only.

3. The minimum value of u 1is approximately constant
at a given value of damping for all the sine

segment pulses.
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As can be seen in fig. )_L for the S‘Vmﬂ'letr’ical
o ot

pulses, the maximum negative value of u (undamped)
does vary for different pulse shapes. A generality
which seems evident is that the value of the
minimum varies with the "bluntness" of the peak of
the acceleration pulse. DBluntness shall be here
defined as the area of an accelergtion culse that
intersects the rectangle from O to t' and Ifrom

a/2 to a. Table #2 gives the minimum value of u

and the bluntness area; figure 16 shows a plot from

the date in Table #2.

TABLE #2 -

Area of Peak From

Shape Unin o-t' and a/2-a
triangle 1.3 .125 at!
versed sine 1.62 .160 at!
sine 1.72 218 at!
rectangular 2.00 .500 at!

~

The frequency parameter varies aponroximately for
both extreme values of the dynamlic amplification
fector as shown in fig. 15.

The negative response represents the steady
unforced residual &ﬂplitude of the reed subsequent

to the trensient pulse. It may be possible to

plot an energy spectrum from this data.
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Area of Bulse From O0-t!' and a/2—a, (bluntness)

FPig. 16
Minimum Dynamic Amplification Factor Vs.
Area From a/2 to a and O to t!
For Symmetrical Acceleration Pulses

Damping.

245 = 3 2 £ -~ - b Fal 2

lhe dynemic amplification curves for each sine segment
pulse are shown at six values of damping in figs. 5-9.

Observation of these figures will show that the value of
u approaches unity more rapidly for larger values of damping. .
Table #3 shows the range of u at two values of the frequency

parameter and all the values of damping.

TABLE #3
Range of u
D 2TET=3 2rT7=5
0 1-1.25 1.13
- .05 | s I 1-1.06
.10 .98-1.09 1-1.0L
.30 1-1.03 1-1.02
.60 .97-1.01 1.00

1.00 .37-1.00 .98-1,00
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Hence it 1s seen that damping allows more accurate
determination of a at lower values of 2ft' as compared to
the undamped case. For an example, at D=.60 the value of
u=lt.02 for sll pulses at a value of 2ft! as low as 2.0.

Figures 5-9 show that the essential features of the
D=0 dynamic amplification curves have been preserved for
D=.05 and .10. If a reed gage were operatinz with a known
damping then most of the above derived relations could be
altered to sult that value of damping.

In the curves for large amounts of damping (D ».30),
the essential features of the curves become obscured and
it is unlikely that a reed gage in this range of damping
values would yileld much information. The two features
apparent for the D .30 dynamic ampiification curves are,
1. the éteady values approach u=l rapidly, and 2. the
leading edge slope of the response curves vary according to
pulse area, these slopes being smaller than for the correspond-

ing zero damped cases.

Extension from sine segment pulses.

There is one important feature concerning the

Fal
I
i

information derived from this study of sine segment pulses
which applies to pulses of other shapes. The maximum negative
tangent of the dynamlc amplification curves for non-sine
segment pulses intersect the ordinate axis‘of the response
curve at similar values as the sine segment pulses. Table #ﬁ

was prepared using some information found in ref.6 for the

value of u.
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TABLE #
Leading Returning Sym. Remaining
Edge By to Zero Uup rulse Ug Steady

Sine 2.2l /]_ 2.23 /M =2.24 [/
Triangle 2.00 // 2.15 A 2430 /S
Versed o

sine  #2.16 J|_ 2.22 /\__2.28

#Bstimated value assuming linear reduction from other
values as found in the triangle case.

With the exceptlon of the first triangular pulse in
table #l, the value of u, that could apply to "almost" any
pulse is 2.22%.08 or 2.22(11.036). From the value of ug
the value of maximum acceleration, a, can be determined for
any pulse (except certain triangular pulses) to within
four to six percent by the use of equation (11.

An important conclusion 1is obtained from the following.

Using the value of u, for any dynamie amplification curve,

o
the value of a can be found. Then a value for t' can be
obtained by the use of equation (2. Equation (12), however,
is derived for a sine segment pulse. So the value of t!
found, if the curve were another shape, would be for the
equivalent sine segment pulse which gives the same dynamic
response. In other words, given a reed gage record there
can be found a sine segment pulse which produces a positive

dynamic amplification curve similar to the actual pulse

producing the reed gage record.
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Summary.
Table #5 reviews all the acceleration pulse information
which may be obtained from various parts of the dynamic

response curve as found in Chapter III.

TABLE #5

‘Rising
Characteristics of leading
Dynamic Amplification edge
Curve (fig. 12, p2l) a L' Vo m shape
1. value at large 2ft! b4
2. max. negative tangent X %
3. max. leading edge

tangent X

h._(}) and (2) : x
5. maximum alone
6. (It) ena (2) X
7. minimum alone X
8. (6) and (2) X

Reed gage range.

There are five types of reed gage records thet might
be obtained depending upon the reed gage frequency range
and the time to the maximum value of the pulse t'. The five
types of records are shown in figs. 17a, b, ¢, d, e. If all
the records of fig. 17 were taken with the same reed gage then

(a) would represent a very short t', (e) a very large t'.
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Here t' 1s smallest and the response is purely
impulsive. Many of the reed gage records taken
from ﬁhe Navy Shock Machine described in ref. 5
are of thils type. Information obtainable would
be vg.
Thig is similar to 17(a) with additional
information about the pulse shape. It is
possible to guess or estimate the slope and
position of the maximum negative slope and
thus obtain approximate values for a and t'.
This case ylelds practically all the information
possible as listed in table #5.
This case 1s practically like case 17(c) except

it may be more accurate to obtain the value of

.a from large values of 2ft'. Then the maximum

negative tangent can be located more accurately.
This case is a static reéponse. The value of

a can be obtained but'probably little else.
Aétually a 1s the only value desired in a static

case.
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APPENDIX

ANALOG COMPUTER METHOD

The analog computer at the California Institute of
Technology was used for obtaining the dynamic response
curves for various transient excitations, figs. 5-9.

The basic analogy between the mechanical and electrical
systems 1s seen in the differential equations for the single
degree of freedom system with damping (fig. 2) and a series
loop of LRC and voltage E. They are,

mx+Bk+kx= -my(t)

L+R3+3a= E(t) q= [1dt
These may be rewritten in the form,
(1) %+2pDik+p2x= -y (t)
(15) q+aubggrulq= BB

2.1 =2
g CeR

¢
L

To make the motion similar for egquations (1) and (15)
the percent damping is equated and the same time ratio is
used between the period of applied motion and the natural
frequency of the system, i.e.,

D=Dg

and pt'=wt'e

E(t).

The transient voltage excitation is produced by first
making a film record of esch transient acceleration function
on a circular track. This £ilm i1s placed on a turntaeble and
rotated at a cons%ant speed of 10 RPS. A photo-electric cell

picks up a light signal proportional to the track spacing



which is amplified to become the inout voltege E(t). The 36
transient voltage is repeated every 0.l second in which time

the electrical system responds For 0.05 seconds and the entire
system is allowed to come to equilibrium in the remaining

0.05 seconds before another voltage pulse starts a new cycle.
The output 1s placed on an osclilloscope which has a sweep

speed of 10 cps giving a stationary image.

Electrical circuit.

The circult diagram used is shown in fig. 18(a). The
main elements are LRC and E(t). A negative resistance
element cancels all resistances when R 1s set to zero.

Figure 18(b) shows the overation of the synchronous switch
S-h whiéh permits a repetitious response to start with the
systemn quiet. When 3=y is closed (shorting terminals N to 0)

the pulse E(t) starts the circult in motion giving a voltage

o)
{

proportional to displacement in the mechanical system across
the capacitor terminals P-H. Switch S—h opens putting a
resistance R-15 in series which makes the circuit approxi-
mately critically damped, hence quileting the circult by the
time S-l| closes and starts a new cycle.

When 1t is desired to set zero damping, in some cases
it is necessary to use the special arrangment shown in fig.
18(a). Connection K- is opened and L~0 is closed. The
synchronous switech S-5 puts a step voltage on the system;
the output of which is a uniform amplitude oscillation. The

control on the negative resistance system 1s set untlil the

oscillating amplitude is exactly uniform.
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The response was measured for five pulses, 12 values
nf 2ft', and six values of damping. The maximum and minimum
dynamic response was measured in each case. Hence 720 values
were recorded.

The five pulses used are shown in fig. 19,

The response for the pulse r=1 is shown for five of the
twelve values of 2ft' in fig. 20. For 2ft'=3.96, the response

at three values of damping, D=0, .05 and .60 are shown. In’

several cases For D=0 there is shown also the transient

voltage producing the response.

Xy
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