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ABSTRACT

An experimental investigation of a stationary random process
will involve the measurement of the mean values and probability
distribution of a random function of time, This thesis describes an
automatic ten channel "statistical analyzer' for measuring the
probability distribution function of a continuous or discontinuous
function of time that can be represented by a suitable electric
voltage., The "statistical analyzer" is based upon a system of pulse
amplitude modulation, followed by pulse height selection and pulse
counting. An equation is developed by means of which the mean
values can.be cémputed from the distribution function., Finally,

sample applications from the field of turbulence research are given.



I, INTRODUCTION

An experimental investigation of a stationary random process
will involve the measurement of the mean values and probability
distribution of a random function of time. Let I(t) represent any
physical variable, for example an air velocity, which is a function

of time., The ntl mean power of I(t) is defined by,

-

I" = L/ T (t) dit (1)

T 0

If the statistical structure of the process is stationary with
respect to time, the value of this integral will approach a constant
value for sufficiently large T.

Measurement of a specified mean value may be done by using a
device which either (1) instantaneously forms I?(t) and then proceeds
to average these values over an interval of time, or (2) directly pro-
duces the mean of a definite power of I; as for example a thermocouple
meter that measures the time mean square of the electric current
passing through it.

A third method for obtaining mean values, which is essentially
different from the two previously mentioned, is by measuring the
probability distribution of I(t), The mean powers of I are then com-
puted from the moments of the probability distribution curve. In
principle all the mean values of a function may be obtained from the
probability distribution, whereas the first two methods are restricted
to the measurement of a specified mean power.

It was in consideration of this universality of the probability

distribution method for obtaining mean values that led to the design



and construction of the "statistical analyzer' described in this thesis
for automatically measuring the probability distribution of a random
function of time,

This project was originally initiated as part of a general program
of investigation of turbulent air flows and the examples cited will be
drawn from this field. However, the apparatus described in this
report may be used in the statistical investigation of any continuous or
discontinuous random function of time that can be represented by a

suitable electric voltage.



II, THE DISTRIBUTION FUNCTION

A time dependent function, I(t), has a probability density
fo(ﬂz) » where P(7) o(”? is the probability of finding I with a value
between /’( and 77 + o(/’? The mean values of I can be obtained

from the moments of P("’]) as follows:

(2)

b o
e[ Ceendr (L e A =/)

An instrument designed to measure P('”Z) has to be able to
distinguish between three possible states of the input signal, i.e.,
whether I lies above, below, or in the interval » to /7+0(’7 .
Combinations of gate circuits and coincidence circuit‘s have been
devised for performing this function (Ref. 1), but they are generally
quite complicated and their accuracy is limited because of hysteresis
aund drift in their discrimination levels, There is, however, a more
fundamental objection to this type of device and that is due to the fact
that such a device must of necessity use a finite interval or gate width
as an approximation to the infinitesimal interval 0//7 » and therefore
measurements of P("’{) so taken must be corrected for this error.

It is possible to eliminate the error due to a finite gate width

entirely and in addition simplify the necessary selection operations
of the measuring device. This is done by working with the integrated
probability density. The integrated probability density, F( 1 )» which

we will call the distribution function, is defined as the probability of

finding I(t} with a value greater than f'V( » and is related to the

probability density as follows:



F(”?)=/P(z)»0(2‘ , (3)
f)z
Flwo) =], F(+2°) =09

Therefore,
dFE = — (1) L7 (4)

Thus, an instrument designed to measure F( /7) has to dis-
tinguish between but two states of the input signal, i.e., whether
I1(t) is above or below the value /7 ; and since we are no longer
concerned with4 measuring the length of time that I(t) spends in an
infinitesimal interval 0(’7 , there is no longer an error due to a
finite gap width.

Because of the simplification which has been effected in the
selection functions of our measuring device, it is not necessary to use
grid control vacuum tubes for discrimination purposes, for it is
apparent that a diode will perform all the selection operations we now
need, A diode is a non-linear resistor which ideally has but two
possible values--infinite or zero, depending on whether the cathode
is positive or negative with respect to the anode. We can therefore
use a diode as an electronic switch to open or close a circuit depend;
ing on whether the input signal is greater or less than the bias voltage
on the diéde. Since a diode does not have any control grids that have
to be properly biased, diode circuitry is much simpler than that of

grid type vacuum tubes. In addition, in comparison with grid control



tubes, vacuum tube diodes are more stable, have sharper selection
characteristics, and exhibit very little hysteresis (Ref. 2).

It now remains to be shown how mean values may be obtained
from the distribution function, The first step is to combine

Equation (2)

T :/jz P() oL

and Equation (4)

aF = = C(7) o7

to obtain the relation that

= _ (" (5)

h
" = [ dre)
[+
The integral in Equation (5) is in an unsatisfactory form for

evaluation by numerical methods, such as Simpson's rule, because
the integrand becomes infinite at the limits. This difficulty can be
overcome by transforming this integral with respect to the F axis
into an integral with respect to the 47 axis. This is accomplished
by first dividing the integral in Equation (5) into two parts, one on

either side of the ﬂ? = 0 axis. This gives
—_— 2 /
I”=//7”0/F +f7“a(F
o 2
a 0
h
= [ e — [ 7o (1-F)
o /1~ a

where F(0) =a .,

Next, integrate by parts
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The first two terms vanish at the limits if, as 7 approaches
infinity, F( "’{ ) approaches the value zero exponentially or faster,
This requirement will always be satisfied if the mean value is finite. .

We thus obtain the following important equation

I"=n ;/77""" o +0/:7:’(/-F)M} ©

The integral in Equation (6) is in a form suitable for numerical
integration and in practice is evaluated by an application of Simpson's
Rule. Comparison of Equation (2) with Equation (6) brings out the
interesting relationship that the ntP moment of the probability density
is proportional to the (n-1) moment of the distribution function.

A typical distribution function is sketched in Figure (1), where
the shaded area corresponds to the region of integration in a computa-

tion of mean values from Equation (6),



I1II. COUNTING METHODS

The length of time required to measure the probability of an event
with a given accuracy is inversely proportional to the probability of
occurrence of that event. Therefore, a '"statistical analyzer' should
be able to record continuously for arbitrarily long time intervals in
order that very small probabilities may be accurately measured.

This requirement precludes the use of the common electrical
analog methods for summing time intervals, such as by measuring the
charge accumulated on a condenser that is being charged by a known
current, Because of leakage of charge, such devices are usually not
sufficiently accurate if the duration of the run exceeds five minutes.

In order to accurately sum over long time intervals digital tech-
niques must be employed. That is, time will be measured by counting
the number of occurrences of an event which is being repeated regularly

at equal intervals of time, The measured time will then be given by

t = NAt
where, ‘ N = total number of counts
At = constant time interval between events,

Because a digital counter can retain its information for an indefi-
nite period of time without deterioration of its reading, the maximum
length of time over which a "statistical analyzer" employing counting
techniques can measure is limited only by the available number capa-
city of the counters and by the stability of the equipment used in con-
junction with the analyzer.

In practice the event counted is a standard pulse that is generated

periodically by a master oscillator,



IV. SAMPLING METHODS

In the following discussion it will be assumed that the random
input to the statistical analyzer" is a fluctuating electric voltage,
denoted by V(t).

Let us suppose we have a pulse generator that produces a sequence
of equidistant, constant amplitude, narrow pulses (Fig. 2). We wish
to measure the distribution function of V(t) by counting the number of
pulses generated during the time that V(t) exceeds a given amplitude.

Ope way to do this is to feed V(t) into an Yamplitude discrimin-
ator" which serves to close a circuit connecting the pulse generator
to a group of pulse counters whenever V(t) is above the discrimination
level. It is easily shown that this method is equivalent to a process
whereby V(t) is sampled periodically at the pulse frequency and a
sample is counted with unit weight if its amplitude is above the dis-
crimination level, and a sample is not counted if its amplitude is
below the discrimination level.

The argument is as follows: the pulse generator produces a

pulse at a time tp » Where
tp= nat , mn=0,1,2,3, c0oc0s
and At = time interval between pulses .

Whether or not a pulse is counted depends on the amplitude of
V(tp). But since a pulse doesn't exist except at time tp as defined
above, the amplitude of V(t) during the time interval between pulses
has no effect on the total number of counts. Thus, in effect, thé ampli-
tude of V(t) is measured only at the time of occurrence of a generated

pulse, and the equivalence to the sampling method stated above is



proved,

This consideration leads to a second method for measuring dis-
tribution functions: samples of V(t) are taken periodically and these
discrete samplés aré fed into an amplitude discriminator., By this
method, the original input signal, which was a continuous function of
time, is transformed into a discrete function of time consisting of a
sequence of pulses, each pulse having an amplitude proportional to
that of the original signal, V(t), for t = tp“ The function of the ampli-
tude discriminator is to pass that portion of a pulse which exceeds the
selection level, This selected portion of the pulse is then amplified
to a standard amplitude and fed into a pulse counter. Thus, a sample
of the original signal is either counted once or is not counted at all,
depending on whether the amplitude of the sample is higher or lower
than the discriminator selection level.

It is this second method of operation, thich we shall call the
pulse amplitude modulation method, that was actually used for the
design of the "statistical analyzer'.

It is appropriate here to point out the analogy between the pulse
amplitude modulation method for obtaining the probability distribution
of a continuous function and the methods used in the field of nuclear
physics for measuring particle energy distributions. The nuclear
physicist uses an amplitude discriminator or *'pulse height analyzer"
in conjunction with an ionization chamber to obtain detailed information
on the probability of occurrence of ionization pulses of various ampli-
tudes, During the past few years many such "pulse analyzers" have
been described in the literature (Refs. 1, 3, 4, 5). However, they are

not suitable for our needs because of their low maximum counting rate
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-- on the order of 500 counts per minute, whereas we will want to
count at a rate of at least 100,000 counts per minute in order to

reduce the measuring time as much as possible.
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V. DESCRIPTION OF APPARATUS

The "statistical analyzer'" consists of a pulse amplitude modu-
lator, amplitude discriminators, and pulse counters. There are ten
"channels' so that ten points on a distribution function curve may be
obtained simultaneously.

The physical layout of the equipment consi;ts of two relay racks,
each containing five banks of codnters, and a small table top rack
containing the modulator and discriminator chassis, a square wave

generator, and a power supply.

1. Pulse Amplitude Modulator

Due to the high sampling rate desired, electro-mechanical
“"choppers'' are ruled out, and for this reason an electronic pulse ampli-
tude modulator was devised. The modulator circuit is given in
Figure (6), and its operation will now be described.

A sequence of unmodulated pulses (Fig. 2) is obtained by differ-
entiating and rectifying the output of a square wave generator. The
pulse frequency may be varied and may be as high as 10,000 pulses per
second., The pulses are characterized by a rise time of about 2 micro-
seconds and a short peak duration. These features are shown in the
oscillogram of Figure (3),

The random input signal V(t) can be obtained from any source
capable of providing a signal of approximately one volt peak to peak
amplitude across a load of 500,000 ohms. The frequency range of the
input signal may be between 1/2 to 50,000 cycles per second. In the

field of measurement of turbulent air velocities, for which this machine
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was originally designed, the input signal is obtained from a hot wire
anemometer-amplifier combination.

The input signal and the unmodulated pulse train are combined
in a differential amplifier (Ref. 6), yielding an output that is the
result of adding the pulses to the signal. This is illustrated in the
oscillogram of Figure (4) for a sine wave input signal.

The output of the differential amplifier is then rectified so that
only the upper portion of the differential signal remains, which yields
at the modulator output a sequence of pulses whose amplitude is pro=-
portional to that of the original input signal V(t). This is illustrated
in the oscillogram of Figure (5), which is that part of Figure (4) which
lies above line A-A,

The maximum output of the modulator is 90 volts. D,C. res-
toration (Ref. 6) is used at the modulator output to establish the base
of the pulses as a zero volts reference for measuring the pulse
amplitude.

We have, by this process of pulse amplitude modulation, con-
verted a continuous function of time into a discrete function of time

whose distribution function may be measured by counting methods.

2. Pulse Amplitude Discriminators

The modulator output is fed into ten amplitude discriminator
channels, each of which is biased at a different level. A typical dis-
criminator circuit is shown in Figure (7).

Biased vacuum tube diodes (bAL5) are used as amplitude discrim-

inators., The discriminators pass only that portion of a pulse that is



13

above the bias level, For example, if a modulated pulse that has a
"51 volt amplitude is fed into a discriminator biased at a 50 volt level,
a 1 volt pulse will be obtained at the discriminator output.

The discriminator output is fed into an amplifier which has
enough gain so that discriminator outputs of as low as ,05 volts may
be counted. This corresponds to a voltage that is less than one per
cent of the bias spread between adjacent discriminator levels.

The diode bias voltages are obtained from dry cells supply;'ing
a total of 90 volts with taps at 1-1/2 volt intervals, However, it is
planned to replace the batteries Wiﬂ; a chain of precision resistors in
series with a régulated power supply.

It is sometimes desirable to shift the discriminator levels so
that points between the original ten may be obtained. This may be
done very conveniently by changing the voltage tap to which the diode
bias ground is attached. This serves to raise or lower all the dis-
criminator levels equally with respect to ground while maintaining
their original ;pacing. Of course, if it is desired, an individual bias
level can be changed by merely shifting its bias battery connection to
another voltage tap.

The diode heaters are operated at 3.9 volts by means of a
6 volt storage battery and a 1 ohm adjustable rheostat in series with
the heaters. Operation of the diodes at this low value of heater volt-
age servés to reduce their quiescent plate current and minimizes

differences in selection characteristics among the various diodes,

3. Pulse Counters

Each pulse amplitude discriminator amplifier feeds a bank of



14

pulse counters consisting of a chain of from one to four commercial
electronic decade scalars followed by a five-place impulse type
mechanical register.

The decade scalars operate on the "flip-flop™ principle (Ref, 2)
and indicate their count by means of neon lights. The mechanical
register is coupled to the last decade scalar by means of a cathode-
follower and power-amplifier stage. Every tenth count of the last
decade scalar trips the mechanical register, Thus, a maximum of

109 counts may be stored in each channel.,

4, Operating Methods

It is possible to use all ten channels for measuring the distri-
bution function of either the entire input signal or one-half of the input
signal,

If it is desired to measure the entire signal, the initial height of
the unmodulated pulse is adjusted to a value such that the channel that
is biased midway between the highest and the lowest level just begins
to count. This channel will then correspond to the zero level of the
input signal, and amplitudes above and below this zero level can be
measured,

For the measurement of only one-half the signal at a time, the
initial amplitude of the unmodulated pulse train is adjusted to a value
such that the least biased channel just begins to count. Thus, since
the zero level of the input signal corresponds to the least biased channel,
only positive values of the signal will be miasured. | By inverting the
input signal, the other half of the signal may be measured. In this

manner twenty points on the distribution curve may be obtained by
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making two sets of measurements, one set for each half of the input
signal,

A run is started and stopped by means of a manually operated
toggle switch in the circuit connecting the modulator output to the
amplitude discriminators, The runs are timed by means of a stop-
watch., The timing accuracy is better than 1/10 second, which for a

run of one minute is less than 1/2 per cent error.
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Vi, COMPUTATION OF MEAN VALUES

The mean powers of a function are obtained as the moments of
the distribution function by means of Equation (6), A nﬁmerical pro-
cedure based upon Simpson's rule has been devised for computing mean
values from the data obtaiﬁed from the "statistical analyzer", Only
the actual experimental points are used in the computations. As a
check on the accuracy of Simpson's rule for computing mean values
numerically, ‘the fourth moment of a Gaussian probability distribution
curve was computed by using Simpson's rule with nine points. The
resulllt obtained was found to agree within one per cent of the theoreti-
cal value.

The readings obtained with the "statistical analyzer™ are
normalized by dividing each reading by the number of counts corres-
ponding to the total time duration of the run, The validity of this

normalizing procedure may be shown as follows?

Let y / ~ the actual readings obtained on
e (n?) ) F(/'Z) the "statistical analyzer",
—~ total count corresponding to the
N time duration of the run,
then,

S ey o
L

F7 _
P7) L7

Substituting Equations (5) and (6) into this expression gives,
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T h;/ol:?h_/F'o(ﬂ? 'f“/o-—/;ch—/(,_p’) 01,7 }

O/ NZ/F'(»;)

therefore,

5/ —— °‘7+/’7”'(' %)

which is the expression desired

(7)

In this connection it has been found convenient to make each run

a minute in duration and to use a pulse rate of 100,000 counts per
minute. Thus, N = 105

and the experimental readings are normal-
ized merely by dividing each reading by 10

The mean values are usually presented in the form of dimension-
&
less ratios,

The most common ones and their definitions are the
followings —
IZ
C =7
|T|

(8)

- NESS
&

(9)

fe o T (10
T*

The values of these factors for the case of a Gaussian probab-
ility distribution are, C 1 Z

S
F

o
=3

N

[}
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It is not possible to set the initial "zero" pulse amplitude at
some known arbitrary value with the accuracy required for computing
odd moments (see Sect. VII), Therefore the initial ""zero' pulse
height is set only approximately to some convenient value, and the
exact position of the zero axis is later computed on the basis that the
average (D.C.) value of the input signal V(t) is zero because a
condenser at the modulator input blocks any steady component of
voltage present in the input signal. |

The statement that the average value of the signal is zero is
equivalent to setting the 1st mean value equal to zero. Therefore,
from Equation (6), the {7( = 0 axis is defined as that axis about which
the shaded areas in Figure (1) are equal. This formulation is used as
the basis of a small perturbation method by means of which the

3
position of the zero axis is readily computed to the required accuracy

(Appendix I).
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VII, DISCUSSION OF ERRORS

The most important factor limitfng the accuracy of amplitude
selection is the lack of a perfect break in the diode characteristic
since there is no discontinuity in slope but only an exponentially
shaped transition region. By operating the diode heaters at a reduced
voltage the sharpness of the break becomes more pronounced and
variation among different tubes is reduced. With this method of opera-
tion the indeterminancy of the diode characteristic break is approxi-
mately .05 volts, a value that is less than one per cent of the usual
bias interval between channels.

It is desirable that the amplifiers associated with the diode
selectors have gain characteristics as nearly alike as possible.
Therefore each amplifier is provided with a trimmer gain control.
The uniformity in selection characteristics of the various "channels"
is checked by biasing each ""channel™ to the same level and checking
the agreement betW‘een the readings obtained when a random voltage
is used as an input signal to the modulator. With no attempt to trim
the amplifier gain controls the readings will agree within about one
per cent. However, by trimming the gain of each amplifier agree-=
ment of readings to within 1/2 per cent for random inputs is easily
obtained. Unless a tube needs replacement, adjustment of the ampli-
fier gain controls need not be done more often than about once every
two months.

At present the bias levels are set by means of 7-1/2 volt dry
batteries having taps at 1-1/2 volt intervals. The spacing between

adjacent channels is uniform to an accuracy of 1-1/2 per cent when
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the bias levels are set at 7-1/2 volt intervals, The drift in battery
voltage over a period of two months has been negligible, However, it
is planned to replace these batteries with a chain of precision resistors
in series with a stabilized power supply.

When computing odd mean poweurs, i.e., skewness factors, a
small difference between large nurhbers results and the result is very
sensitive to the position of the = 0 axis. The error in the com-
puted skewness factor due to a small shift in the zero axis was esti-
mated by cal‘culating the moments about an axis shifted small amounts
from the true ’7 = 0 axis. For the specific case of the distribution
function curve for the first derivative of a turbulent velocity, it was
found that in order to have an error of less than 3 per cent in the com-
puted skewness factor, the position of the zero axis has to be within
1/2 per cent of the bias interval from the true 7 = 0 axis.,

Because of this stringent reguirement, the position of the zero
axis is computed rather than attempting to set the initial pulse height

to an exact arbitrary value. The position of the zero is readily com-
puted to an accuracy of t.1 per cent of the bias difference between
adjacent "channels'.

As a check on the repeatability of the readings obtained with the
"statistical analyzer™, consecutive one minute runs were taken with a
sine wave input to the modulator. The reading of each "channel™ was
found to be repeatable to within Tl per cent of the average for the
various runs,

Measurement of the probability distribution of the first derivative
of a turbulent air velocity gave the following repeatability for the mean

values computed from data obtained from consecutive one minute runs:
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~

Another way to determine the accuracy of the "statistical
analyzer" is totake measurements of a random signal having a known
probability distribution. The most convenient way to do this is to use
a stable source of random noise that is known to have a Gaussian
probability distribution. Unfortunately, such a source of random

s

noise was not available at the time of this writing.
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VIiI. SAMPLE APPLICATIONS

A, Sine Wave

The distribution function for a sine wave (190 cps) was measured
with the "statistical analyzer'", The sine wave signal was obtained
from a Hewlett-Packard audio oscillator,

Measurements of only one half the sine wave signal were taken,
and the bias level was shifted once in order to obtain more points on
the curve, The experimental results along with the theoretical distri-
bution curve for a sine wave are shown in Figure (8). The theoretical
distribution function for a sine wave is an arcosine and the experimental

points are seen to follow this curve quite closely,

B, Isotropic Turbulence

Figure (9) shows a sample of a distribution function for the axial
air velocity as measured in isotropic turbulence behind a grid, The
curve is seen to be quite symmetrical, 'fhe mean value factors
computed from this distribution are given in Table I, These values
show that the distribution is fairly close to a Gaussian, except that
the tails of the curve are slightly longer than for a Gaussian distri-
bution,

Figure (10) presents the results of measurement of the distri-
‘ ol u
oA °

distribution differs appreciably from the Gaussian because it is

bution function of the velocity derivative This probability

asymmetric and the central portion of the curve is steeper than that

of a Gaussian. The mean value factors are given in Table I,
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Figure (11) shows the distribution function curve obtained for
the second derivative of the turbulent velocity, This distribution is
almost symmetrical, but the flatness factor is much higher than that

obtained for a Gaussian distribution.

Table 1
S o C
u .006 | 2,73 . 98017

-‘0"7;‘; -.439 | 3,80 | .984/Z

2
%‘1 031 | 4.59 |1.04/%

R,, = 11,000 Mesh size = 1,68 cm. x/M = 50

M
The values in Table I agree fairly closely with the results

obtained by Batchelor and Townsend (Refs. 7, 8).

C. Vortex Street

At low Reynold's numbers, the flow velocity behind a cylinder
fluctuates with a definite periodicity. Numerous measurements of the
probability distribution of the velocity were taken at different positions
in the cylinder wake. These results are presented in detail in Ref. (9),
and we will discuss only one example here.

Figure (12) shows the distribution function obtained in a vortex
street at a Reynold's number of 100, Examination of the hot-wire
signal on an oscilloscope screen showed a very stable pattern that was
almost triangular in shape except for a rounding of the peaks. ‘I£ the
signal were truly triangular, the distribution function would be a
straight line, and Figure (12) shows that the distribution is, indeed,

quite linear except at the outer edges where it curves inward toward
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zero, This curvature at the ends is due to the rounding of the peaks

in the velocity fluctuations which tends to give the velocity pattern

some characteristics of a sine wave. In this respect, it is instructive

to compare Figure (12), for the vortex street, with Figure (8), which

is for a sine wave.
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IX. CONCLUSIONS

Computation of the mean values of a statiopary random function
from the probability distribution is superior to other methods in that
all the mean powers can be obtained from one set of data.

The use of counting methods in obtaining probability distributions
enables small probabilities to be accurately measured, and by the use
of many "channels" a substantial reduction in the time required for
the measurement of distributions has been achieved. As an example,
the measurement of a complete probability distribution for a turbulent
air velocity can now be done in less than five minutes, whereas the
previously used method of point by point measurement'required appro-
ximately an hour's time. Thus, the required stability of the associated

measuring equipment has been considerably reduced.
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APPENDIX I. CALCULATION OF POSITICN OF ’T( = 0 AXIS

Figure (13) is to be used in conjunctioﬁ with this discussion. The
distance, € , of the zero axis from channel 5 is found by the

following method,

For zero average value of the input signal, we have,

A1+al = JA2+a‘2

A, and AZ are determined from the data by use of Simpson's rule.

1
The curve between channels 5 and 6 can usually be accurately

approximated by a straight line, Therefore; a; and a, are computed

by using the trapezoidal rule as follows:

a, :-ZL(hl +1/)€) d, = %(hz‘f‘/e;_)(l‘é)
Z(az—al) = h2_+ jzr‘—(h,'*"hz_)e "‘(/e, + /gz)é

—hyt A= (h+ho+)E

But, _,Z :l’)l +{|—hz“h.]€ ) /(2, = I_ll

Substituting, we get

2(a,-2a,) = hytl-h, +(h+hy-1)€ ~(hthy )€€
Z(An—Az)’:- hz_—l\l‘f—’ —2€

Therefore,

2.~k\+‘ —
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; TABLE OF NOTATION

Physical variable
Time

Time

An integer
Amplitude
Probability density
Probability distribution function
Time interval
Defined on page 8
Electric voltage input signal to modulator
Defined on page 16
Defined on page 16
Defined on page 16
Defined on page 17
Skewness factor
Fiatness factor
“Air velocity
Defined in Fig, 13
Defined in Fig. 13
Defined in Fig, 13
Defined in Fig, 13

Defined in Fig. 13

Time average
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