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ABSTRACT

Scale effects in cavitating flow are considered for the so-
called limited cavitation flow regime. The roles of nuclei and air
diffusion in ordinary water and the kinetic theory of liquids for
pure water are cox;;sidered as to their bearing on cavitation scale
effects.

The attack on the problem is concentrated in three general
areas. First, dynamic similarity considerations for individual
bubble growth show that no useful scaling laws can be established
from such arguments. Aside from changes due to Reynolds num-
ber, it is concluded that scale effects are dependent upon the time
required for a nucleus to grow from its original microscopic size
to a macroscopic size. Second, a series of experiments shows
that the cavitation behaves in a systematic way as the scale of the
immersed body is changed. In certain instances, the inception
of cavitation depends on both model size and free stream velocity.
Third, a theoretical study is made to gain insight into the rela-
tionships that must hold between the parameters which affect the
inception of cavitation. A simplified theory gives only rough qual-

itative agreement with experiment.
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PART I
INTRODUCTORY REMARKS

Introduction

(1)*

Following Plesset , one can divide the flow of a liquid
around a solid body into three regimes (Fig. 1). In the first re-
gime, which is known as noncavitating flow, the liquid follows the
classical hydrodynamic laws for an incompressible fluid. In the
second regime, which may be called limited cavitation, the first
manifestations of the coexistence of a gas or vapor phase with the
liquid phase appear. In this case small discrete bubbles or areas
occupied by foamy patches of gas or vapor first appear. The
third regime, which is known as full cavity flow, is characterized
by a single large vapor or gas cavity enveloping some portion of
the body. In the following, the first appearance of limited cavita-
tion will be called incipient cavitation. The study of the second,
or limited cavitation, flow regime is the primary concern here.

The scaling laws which control the behavior of flows in
the noncavitating regime have been well known for some time.

For full cavity flows, Reichardt(z) has shown that the decisive

quantity for determining the flow geometry is the cavitation num-

1 .2
ber, K = (po-pv)/-z-pV

o’ where P, and Vo are the free stream val-

ues of the static pressure and velocity respectively and p is the
liquid density. Reichardt takes for P, the sum of all gas pres-
sures within the cavity. In the present work, P, will denote only
the liquid vapor pressure. However, for the limited cavitation

*Superscribed numbers in parentheses refer to the references
listed in the bibliography.
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flow regime, there is a definite lack of knowledge concerning the
effects of body size, flow velocity, and dissolved air content upon
the development of cavitation. In fact, it is now customary to em-
ploy the cavitation number, K, as the only significant parameter for
describing all inviscid cavitating flows. It is shown in this paper
by both theoretical and experimental means that the use of only the
cavitation number for limited cavitation is an unjustified simplifi-
cation.

The object of this study is to determine the behavior of
limited cavitation on a given body shape placed in a rectilinear
flow of constant free stream velocity. Such a flow is approximated
in the test section of a water tunnel where the free stream velocity,
free stream static pressure, and the amount of air dissolved in the
water can be controlled as required. If one considers only this
elementary flow configuration, very simple experiments can be
performed. For such experiments, the spatial pressure distribu-
tions on the body surface will be known. From these known pres-
sure distributions and the free stream velocity, pressure-time
relationships can be calculated for a particle moving along the
body surface with the liquid. From such pressure-time functions,
one can study analytically the behavior of incipient cavitation with

changing body scales.

Origin of Cavitation

For ordinary untreated water one assumes that there are
nuclei containing air or water vapor, or both, which are stabilized

on small, solid particles in the liquid. It is held that boiling or
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cavitation must be initiated from such nuclei, since their absence
would mean that very large surface tension forces must be over-
come before cavitation can start. The slight tension under which
cavitation normally occurs lends plausibility to arguments favor-
ing the existence of the nuclei. If one supposes that cavitation
originates from such small nuclei, then it must take them an ap-
preciable time to grow to a macroscopic size. It is clear that this
growth time must be dependent upon the pressure to which the nuc-
lei are subjected. If for a constant free stream pressure and ve-
locity only the scale of the immersed body is changed, the liquid
flow may show corresponding changes in the cavitation due to
changes in the time available for bubble growth.

On the other hand, one might suppose that if the water were
saturated with air before entering the low pressure region of the
body, there would be more time for air to diffuse into the cavita-
tion bubbles, which move with the stream, as the scale of the body
is enlarged. Presumably, this process could account for some changes
in the nature of cavitation with scale. However, computations for air
diffusion into bubbles have been made by P. S. Epstein and M. S.
Plesset(?’). From their work it is found that for situations of prac-
tical interest the time required for the bubble to grow in any signif-
icant amount from pure diffusion is about one hundred times the period
of existence of a cavitation bubble. If air diffusion can not significantly
affect the growth of bubbles in ordinary cavitating flows, then one con-
cludes again that cavitation scale effects, aside from Reynolds' number

effects on the pressure distribution over the body, would result from
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the non-zero growth time necessary for a nucleus to grow into a
macroscopic bubble.

If it were possible to obtain a chemically pure liquid for cavi-
tation experiments, the absence of air or vapor nuclei (in the sense
outlined above) would dictate that one examine the kinetic theory of
nucleation in considering all possible time-pressure effects for cav-
itating flows. However, in this instance the transition time from an
initial steady nucleation rate to another such steady state, after an
instantaneous change in pressure, has been shown by Zeldovich(4.)
to be of the order of 10-12 second. This result is supported by the
recent work of Gilmore(s). However, for the flow over a body, the
time allowed for pressure changes is of the order of 10-3 second.
The disparity in the time scales indicates that any variations in the
state of the cavitation as a result of chemically pure water passing
over geometrically similar models of different sizes cannot be influ-
enced by nucleation effects. Further, for such pure substances,
the liquid must actually be subjected to very large tensile stresses
before it will cavitate, and these stresses are not even remotely ap-
proximated in cavitating flows of technical interest.

Under steady, or almost steady, conditions, ordinary un-
treated water has a definite boiling point and has no appreciable
tensile strength. Such water will withstand tensions if it is subjec-
ted to transient low pressures of short duration. For water flowing
around a solid body such short duration transient tensions can be

produced on the water when it flows by the body surface. It is pos-

sible that the differences in the transient tensions produced by
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changes in body length and free stream velocity can account for
corresponding differences in the state of cavitation. It is the study
of nucleus response under these transient pressure conditions that

is of primary concern here.
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PART II

SIMILARITY CONSIDERATIONS

Suppose that one visualizes two different spaces where typical

units of distance, time, and mass are related by
r=kr
t= k.t (1)

m= Kk, m,
The k's are constant factors which define the scale. Imagine that
both spaces contain an inviscid incompressible liquid in which there
are spherical bubbles of radius R = R(t) and R1 = Rl(tl), respectively.

The equation of motion(l) for such bubbles is given by
RR+3R"= % [p(R)-Pt)] (2)

where p is the liquid density, p(R) is the sum of all pressures at
the bubble wall, and P(t) is the external pressure field in the liquid
far from the bubble. The superscribed dots, as usual, stand for
differentiations with respect to time. Let o be fhe surface tension
of water, P, the vapor pressure corresponding to the temperature
of the liquid, and P, be the initial air pressure within the bubble be-
fore any growth from its initial size R0 has occurred. If the bubble

is assumed to expand under isothermal conditions, then

3
S 1- Re
p(RY=po— ¥ + pa(R)
Under the above assumptions, the bubble surface motion in

each space is governed by



RR+ 3R = &[p, + palf) - 3 - P)] &)
and

RR,+ 2R, = _‘—‘[Pv‘_l' pa, (5-)- 2 —P.(t.)] (4

These two motions, represented by (3) and (4'), are said to be
dynamically similar if one can proceed from Eq. (3) to Eq. (4), say,
by multiplying each term of Eq. (3) by the same constant factor, a.

This gives the equations

o) Biiak @ Bit) . 4 PO

Ay > 2 . 2 .
(b) %—'(%l)=a%(§°) e) R~ = aR (5)
© 5K =%4% ® RR = aRR

To eliminate the constant, a, from these last equations (5) one can

divide them all by (5e). This gives



(a) Pv| PV

PR~ pR®
(b) T (5_"-.)3 . P, (_&-)3

AR, \ R ~RE\R

o - o~

(c) ,o'R.l"\’.2 i} ,aRRTt (6)
(d) P‘(.t‘) z ——,—P(f‘)

PARE PR
1 |él =
(e) RR‘?. = RRa

It is clear that (6e) is identically satisfied by (1). Also, by
virtue of Eq. (1), (6b) is reduced to P, /lel2 = Pa/pRZ . Combining
1

this last expression with (6a) one gets

Py, + Pa, Py + Pa

-

o, R P R*

(61£)

The addition of the ratios involving the air pressure and the vapor
pressure serves only to group like terms. It is not intended that the
four independent ratios shall be reduced in number. Although the
combined ratios will be given a name, it must be remembered that
even in the combined form, both parts must be matched separately.

Equations (6f) and (6c) depend on properties of the liquid as well as
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on the scale. Since P(t) is dependent upon the boundary conditions
imposed upon the fluid, its behavior must be studied for the partic-
ular type of liquid flow that is imposed on the systems.
To summarize the results obtained thus far one can state that,
if two bubbles are to grow in a dynamically similar manner, then

both must have the same values of:

—;PC_)V_E'\’E& = Kb , the bubble internal pressure number,
o -
SRR W, » the bubble Weber number,
and
,o R Ct , the bubble external pressure number. *

This matching requirement is a very stringent condition which cannot

be easily satisfied.

* There is no uniqueness in the definitions of the dimensionless ratios
Kb’ Wb and C Further, it may be convenient to combine them. ZF¥or
example, Kb /Wb = (pV + Pa) - R/ o must also be constant if the motions
of the bubble wall are to be dynamically similar in any two cases. Sim-
ilar conditions can be found from other ratios. The forms exhibited in
the text were chosen because of their more familiar appearance. It
can also be observed that if the quantity, Kb - Wb - Ct’ is formed and
solved for R, we have the result that the velocity is equal to the square
root of the total pressure acting across the bubble wall, where the total
pressure H, is given by 1/p [p tp, - O /R- P(t)] Further, if the mo-
tion is dynamically similar for two distinct cases, 1 and 2, then R /R

-,HllH , which from Eq. (1) becomes VI—Il/I—I2 = (kllk2 ) » a constant

for the entire motion.
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Suppose that in a steady inviscid rectilinear flow, cavitation
is produced by putting a body in the stream. Cavitation bubbles will
appear on those portions of the body where the pressure is close to
the liquid vapor pressure. The time that a bubble spends in the region
of low pressure is proportional to I/Vo, where f is a characteristic
body length and v, is the liquid velocity far upstream from the body.
On the other hand, the magnitude of P(t) is proportional to Vé . It
is, therefore, not possible to match Ct for two geometrically simi-
lar bodies of different size in flows of the same liquid even if Kb and
Wb are matched. Accordingly, one may conclude that, for flows of
the same liquid around geometrically similar bodies, dynamically
similar growth of the individual bubbles cannot be expected to obtain,

It must be emphasized that, in the above discussion, the role
of viscous effects has been neglected. To consider such effects one
should also match the Reynolds numbers of the flow about the similar
bodies and of the flow about the bubbles. For sufficiently fine bodies
at small angles of attack, it is well known that the pressure coeffic-
ient, Cp =(p - pob)/% pVOZ* is practically independent of the free
stream velocity, V,» over a wide range of Reynolds numbers. The
viscous effects are important for individual bubbles only for very

small radii(s) {fe.g., R = 10—4

cm). For bubbles of macroscopic size
(e.g., R =1mm), the effects of viscosity can be neglected. Plesset
and Gilmore(7) have found that if surface tension can be neglected,

the macroscopic bubble size is not a sensitive function of its initial

radius. Without any restrictions as to surface tension, B.E. Noltingk

*p is the pressure on the model surface and p, is the free stream
static pressure, while p is the liquid density as before.
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and E. A. Neppiras(s) have found by trial from a series of electri-
cal analog computations that, for a given initial radius, wide varia-
tions in the initial values of the bubble wall velocity, I-{, produced
insignificant changes in the bubble history. Viscous effects produce
important changes only in the first part of the bubble growth, that
is to say, the effective initial values are changed. Since the subse-
quent growth has been found to be practically independent of these
initial values, it is possible to neglect altogether the effect of vis-
cosity on bubbles growing in water.

It must be noted that in discussing the flow of bubble-contain-
ing water over a solid body, the tacit assumption that the bubble rad-
ius is much smaller than the body length has been made; that is, no
pressure gradients are considered to be present in the vicinity of the
water around the bubble. As a further idealization, any interaction
between the pressure fields of the bubble and the body has been neglec-
ted (see, for example, Ref. 17, pp. 49-64). Further, experience shows
that pressure gradients and the presence of the model cause large
asymmetries in the shape of the larger bubbles (see Fig. 2). In fact,

(

theoretical calculations by Rattray 9) have shown that the presence of
a wall near a collapsing bubble is sufficient to cause large distortions
in the bubble shape, even in the absence of pressure gradients. In
addition, as the bubbles increase in size, the pressure gradients over
the model give rise to a relative velocity between the bubble and the

moving water, which further complicates the actual happenings. For

the present, no account will be taken of these complications.
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It was observed above, and it has also been pointed out by

(7)) that the time interval during which the bubble

Gilmore and Plesset
is exposed to a low-pressure region in which it can grow, is propor-
tional to { /Vo*. One must therefore expect the maximum size to
which a bubble can grow to be directly dependent upon the scale, 9 ,
if the velocity V0 is invariant. However, if both scale and velocity
are changed, because the pressure decrease around the bubble var-
ies as the square of the velocity, one cannot expect this simple scale

dependence to hold.

It is now customary to regard the cavitation number

K= 50
2/ Vo

where P, and Vo are the free stream values of static pressure gnd
velocity, respectively, as the significant parameter for defining all
cavitation modeling over geometrically similar shapes in the absence
of viscous effects(lo). In those cases where it has been observed that
discrepancies between prototype and model exist for the cavitation
number at incipient cavitation, the discrepancies have been ascribed

(11). That such effects are impor-

entirely to Reynolds number effects
tant is undeniable. On the other hand, in view of the similarity argu-
ments given above, there seems to be no reason for expecting the
cavitation number to remain constant for incipient cavitation on sim-
ilar shapes, even in the absence of viscosity.

*Gilmore and Plesset have also found that there may well be a de-

pendence on scale of the number of cavitation bubbles formed on the
body. However, it was not possible to test their findings by exper-
iment, and no consideration will be given to this problem here.
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PART III

EXPERIMENTAL INVESTIGATIONS

In order to look into the actual behavior of the effects of scale
on cavitation, a series of experiments was initiated. To eliminate as
many extraneous factors from the tests as possible, it was considered
advisable to use a simple symmetrical two-dimensional airfoil shape
which completely spans the 14-in. diameter working section of the Hy-
drodynamics Laboratory's High Speed Water Tunnel. (12) Blockage
correction factors for the minimum pressure coefficients on the air-
foils were computed using the work of Vincenti and Graham(13) and
also of W. Per‘l and H. E. Moses(l4) (see Appendix A). Later these
theoretically predicted tunnel blockage factors were checked by ex-
perimentally obtained pressure distributions with fair agreement.
Also, at this time, the independence for all practical purposes of the
pressure distribution with Reynolds number for the attainable velocity
range was checked.

The particular shape chosen for these tests was a 12%/0 thick
symmetrical Joukowski airfoil. This airfoil section was chosen be-
cause it was felt that for a given thickness it would cavitate more
readily than some of the more modern, highly refined shapes, and
thus allow for greater variation in the flow parameters P, and Vo'
Three airfoil models were made. They have chord lengths of 2,4,
and 8 inches. All models have a span of 14 inches. Pictures of these
models are shown in Fig. 3, while the airfoil section and its theoret-
ical pressure distribution will be found in Fig. 4.

In addition, the Hydrodynamics Laboratory already had some

models of the NACA 4412 airfoil of 3-in. chord and 10-in. span,
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. ... (15) . .
which had been used by J. W. Daily in other experiments. It was
found possible to insert a lucite window in the upper working section
side plate (see Fig. 5) and thereby obtain a profile view of the airfoils
as cavitation bubbles developed on them. The initial high-speed mo=

(16)

tion pictures were taken only of the upper or suction side of the
hydrofoil using this setup. The sole purpose for using the NACA 4412
model was to observe the bubble asymmetries from the side. Succes-
sive runs were made at a V0 of 35, 40, and 50 fps and the angle of
incidence was set at —40, OO, and +4° with the center line of the High
Speed Water Tunnel working section. The -4° angle corresponds
closely to the zero lift angle for the NACA 4412. A typical photographic
record and the resulting measured bubble growth is represented graph-
ically in Fig. 6. There was no systematic dependence of bubble shape
asymmetry on velocity and angle of attack, as can be seen from Table
I. However, for one constant velocity, there was a dependence of
average maximum bubble dimension on angle of attack (Table II). The
results are not consistent enough and the data too meager to draw any
conclusions as to the dependence of bubble size on velocity at constant
angle of attack from these experiments.

Upon their completion, the Joukowski models were installed
in the water tunnel working section to test for scale effects. High -
speed motion pictures were taken of each model for at least two dif-
ferent values of the cavitation number K at a constant Vo of 40 fps.
A schematic diagram showing the position of the camera relative to
the model in the working section is shown in Fig. 7. As with the NACA

4412, the films were printed and measurements were made from the
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prints. Such a graphical representation of the bubble growth for
the 4-in. model is shown in Fig. 8. For each model the values of
the maximum dimension transverse to the direction of the flow
were averaged and these average values were plotted against model
chord (Figs. 9 and 10). As can be seen from the graphs, at con-
stant velocity the bubble size does increase with scale, as expected.
Unfortunately the data are too sparse and the number of different
scale sizes is too limited to make any detailed conclusions as to
the precise nature of the variation. The data from the bubble his-
tories are summarized in Table III.

In addition to the high-speed motion picture data, some ob-
servations were made by means of single flash still photographs.
In this case, the shutter of the still camera was put on '"bulb" and
the very short duration single flash from the flash lamps was re-
lied upon to expose the film. As can be seen from the pictures
exhibited thus far, not all cavitation occurring on the hydrofoils is
in the form of discrete bubbles. In fact, for the bodies used in
these experiments, these large, well-defined bubbles are not nearly
so common as the fine scale foamy cavitation which can be seen to
coexist with the larger bubbles in the pictures (Fig. 2-a, for ex-
ample). In regard to this fine scale cavitation, one can ask, if
given two similar bodies of different sizes in a cavitating flow, will
the relative portions of the bodies covered by this zone of cavitation
be the same if both flows have the same cavitation number? To

find the answer to this question all models were tested at a velocity
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Vo’ of 40 fps, and the free stream static pressure, p,» was varied
‘so that all degrees of cavitation were produced from no cavitation
to the full cavity regime of flow. For each model the pressure range
was divided into several strips and at each division point a picture
and the pertinent flow data were taken. The length of the cavitation
zone was measured and averaged from the pictures and expressed
as a fraction of the chord length of the particular model. From the
flow data the value of the cavitation parameter was computed and
corrections for tunnel blockage* were applied. The resulting graph
is given in Fig. 1l1. To serve as a check, five additional points were
taken from random samples of the high-speed motion pictures of the
Joukowsky airfoils. The graph of the results, though having consid-
erable scatter, shows that the range of cavitation number K for each
model is different. For example the eight-inch model shows cavita-
tion for values of K in the range of the noncavitating flow regime for
the two-inch model. In order that the cavitation number be the de-
fining parameter for the geometric development of cavitation on the
similar bodies, the first requirement is that the range of K be the
same for all bodies. Fig. 1l shows that this is not the case and that
at constant velocity the cavitation number for incipient cavitation
changes with the scale of the body.

In order to check this change in the incipient cavitation num-
ber with changing scale, another set of experiments was made. Each
model was tested at free stream velocities of 30, 40, 50, 60, 70, 80,
and 90 fps, while the free stream pressure was varied until incipient

*See Appendix A.
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cavitation had occurred. The pertinent flow parameters were then
recorded. The values of the cavitation number for incipient cavita-
tion were then computed and corrected for wall effect and plotted
against Reynolds number based on the chord length (Fig. 12).

Data of a similar nature for axially symmetric flow around
a series of bodies, which were formed by adding a hemispherical
nose to a right circular cylinder of the same diameter as the nose,
have been obtained by Kermeen and Stallkamp of the Hydrodynamics
Laboratory*, California Institute of Technology. Models of various
diameters were run at various velocities and the incipient cavitation
point was found for each. The resulting cavitation numbers were
plotted versus the Reynolds number, based on the model diameter
for each model (Fig. 13).

There is much less scatter for these data than there is for
the graph of the Joukowsky experiments. This is due to the fact that
the point of incipient cavitation for these tests was obtained, not by
visual observation, as was the case with the two-dimensinnal studies,
but by measuring the sound intensity which results from cavitation
in the liquid flow. A typical example of a curve of sound intensity
versus cavitation number for the 2-in. diameter hemisphere-nosed
model is shown in Fig. 14. The inception of cavitation corresponds
to the peak sound level. As the cavitation number is lowered further
and the cavitation over the model becomes more profuse, the intensity
of the sound is seen to drop. It was found that for dissolved air con-
centrations near the saturation point at one atmosphere air pressure,

- -

# A report of this study is being prepared by Mr. Kermeen and will
be published in the near future.
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the sound curves were reproducible. However, when the air con-
centration in the water was lowered to about half of the saturation
value, a marked '""hysteresis' effect was encountered. That is, if
the cavitation was obtained by lowering the pressure Py it first oc-
curred at a stage corresponding to a lower cavitation number than
that for maximum noise intensity. Then, if the pressure was in-
creased after the cavitation had been established, the sound would
increase to its peak value. As the pressure was further increased,
the cavitation would disappear. Here again, the curve was repro-
ducible and Kermeen indicates that all incipient cavitation numbers
were taken from curves in which the cavitation was first well es-
tablished on the model and then the pressure was gradually raised
until all cavitation had vanished. Fig. 13 was constructed using
such sound curves.

It will be observed that the axially symmetric flow data very
clearly show the change in incipient cavitation number with model
size and flow velocity. The data from the Joukowski hydrofoils also
show the variation of the incipient cavitation number with velocity
but the dependence of the incipient cavitation number with model size
is not conclusive. The reason for this failure is due to the fact that
visual observation presents too great a chance for error for these
two-dimensional shapes. There were apparent rough spots on the
model which seemed to cause premature cavitation, and also the ap-
pearance of the cavitation changed from model to model and from
velocity to velocity, so that one could never be sure that he was see-
ing corresponding cavitation states when the flow data were taken.

We note then that these hydrofoil results partly contradict the results
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found for the axially symmetric case and the results of Fig. 11,
which motivated these last experiments. One may wish to disqual-
ify comparison between the hemispherical headed bodies and the
Joukowski hydrofoils on the ground that the effects on the pressure
distribution due to viscosity are too pronounced for these axially
symmetric shapes. However, a series of tests run in the water

(17)

tunnel at the University of Iowa showed only a 5°/0 variation

in the minimum Cp for a Reynolds number variation of from 1 x 105
to 6 x 105. From these Iowa tests the critical Reynolds number

was found to be 2 x 105. One may thus conclude that, although there
will be some Reynolds number effects for the data on the hemis-
pheres, they should not mask essential trends of the cavitation re-
sults.

In the hope that the above mentioned conflicts could be re-
solved, the scaling experiments on the Joukowski hydrofoils were
repeated, but instead of relying on visual observation as before,
the sound measuring equipment (Appendix B) was employed in an
attempt to find the point of incipieht cavitation with greater consis-
tency. However, it was found that the noise of vibration (Figs. 15
and 16) of the hydrofoils masked the lower frequency part of the cavi-
tation noise spectrum and, of greater importance, the geometry of
the flow was such that the hydrophone could not be focused in such
a way that sound waves reflected from the working-section walls
and the waves emanating from the opposite side of the model would

be of negligible importance in the resulting intensity measurements.

In other words, it was found that the peak noise intensity did not
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necessarily correspond to the inception of cavitation. In addition,
H. Shapiro, the designer of the sound-measuring equipment, has
suggested that, for the measurements under question, there is a
strong possibility that one or more of the amplifiers in the sound
apparatus may have been overloaded. The only interesting results
obtained from these experiments are presented in Fig. 17. This
figure was obtained from the sound intensity versus cavitation num-
ber curves. A typical sound curve for the 2-in. chord Joukowski
model is shown in Fig. 16. From the sound curves, AK, the change
in cavitation number required to take the flow from incipient cavi-
tation to the full cavity regime in each case, was plotted as a func-
tion of free stream velocity expressed in chord lengths per second.
The AK values shown in the final figure contain an element of arbi-
trariness in their definition so that only the general trend exhibited
in Fig. 17 is of significance. These results are another manifesta-
tion of the previously presented evidence that the bubble growth is
affected by the scale of the cavitation-producing body.

The important results of the experiments may be summarized
as follows. First, it was observed in connection with the high-speed
motion picture studies that different cavitation numbers were re-
quired to obtain seemingly similar cavitation development on bodies
of different size. This behavior was then confirmed at one free
stream velocity for a range of cavitation numbers. Second, it was
found that the inception of visible cavitation occurred for a very small
change in the cavitation number K. That is, the transition from the

non-cavitating flow regime to the regime of limited cavitation occurs
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for a very small change in the cavitation number, as indicated by
the sound curve, Fig. 14. Thus when the cavitation number is in
a certain critical zone, very small changes in K completely alter
the nature of the liquid flow. Third, a dependence of the inception
of cavitation on free-stream velocity was found, and in certain in-
stances, for constant velocity, a dependence of the incipient cavi-

tation number on body scale was observed.
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PART IV

THEORETICAL INVESTIGATIONS

The experimental results summarized above show that the
cavitation number for incipient cavitation exhibits systematic changes
with variations in the free-stream velocity, and that for some condi-
tions the incipient cavitation number at constant free-stream velocity
changes with the scale of the body. It is the purpose of this section
to investigate the conditions for incipient cavitation by analytical
means so that more precise ideas can be obtained about the relation-
ships between the parameters which influence the behavior of the
cavitation.

Basic Assumptions and Definitions

Before proceeding with the detailed formulation of the theory,
a statement of the basic assumptions underlying the whole analysis is
required.

First, viscous effects are entirely neglected in the present
work. If experimental pressure distributions are available so that
the minimum pressure on the body can be correlated with the Rey-
nolds number, then one may take account of such variations in the
minimum pressure coefficient in the calculations for incipient cavi-
tation on any specific body using the procedures outlined below. It
is known that the minimum pressures in the liquid occur on the im-
mersed body. In fact the pressures decrease slightly as one proceeds

(18)

through the boundary layer toward the body In view of the very
small nucleus size it would seem that at least in the initial stages of

bubble growth, the phenomena might be restricted entirely to the
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boundary layer. Since definite knowledge is lacking on the effect of
the boundary layer, it will not be considered here.

Second, the interaction between the flow around the expanding
bubble and the flow of the liquid around the immersed body is not
considered. Thus, the motion of the expanding bubble will be treated
as though the liquid is infinite in all directions and the velocity and
pressure relationships on the model will ignore the presence of cavi-
tation. The effect of the flow around the body is related to the bubble
growth through the P(t) term in the equation of motion for the bubble.

Third, the bubble is assumed to move with the fluid. For the
very small bubbles considered here, buoyant forces are small and
the viscous drag will be high so that any relative motion between the
bubble and the water will be very small.

Fourth, the bubbles are assumed to be spherical.

In this study it is supposed that cavitation is initiated from
small nuclei which contain air or water vapor, or both, stabilized on
small solid particles in the liquid. In the noncavitating flow regime
it is assumed that the nuclei do not have an opportunity to grow into
bubbles of macroscopic or visible size. The difference, then, be-
tween the noncavitating and the cavitating flow regimes is that in the
latter, the nuclei are exposed to a pressure environment favorable
to bubble growth for a period sufficient to allow for the appearance
of macroscopic bubbles. Consequently, one must consider two dis-
tinct problems in dealing with the matter of incipient cavitation.

The first problem is the effect of free stream velocity, free stream
static pressure, and body size in establishing a pressure environ-

ment favorable to bubble growth. The second problem is the response
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(from Eq. (2)) of the nuclei to the transient low pressure created by
the flow of water around the body. If the pressure distribution around
the body is given, the first problem is trivial. In addition to difficul-
ties of a purely mathematical nature, the second problem poses some
questions about the physical properties of the nuclei for which no def-
inite information is available.

Although it seems quite probable that the nuclei in a liquid
have a range of sizes, it will be assumed here that all nuclei are of
equal effective radius Ro' Incipient cavitation will be said to exist
if a nucleus grows from its initial radius RO to a radius of one milli-
meter during the time it is exposed to the low pressure which favors
growth. This definition is arbitrary but it does have the virtue of be-
ing simple enough to work with. It is certainly not an absolute measure
of a physical event, but this definition provides a framework within
which the relationships between the relevant physical parameters which
influence the inception of cavitation may be investigated. If one uses
this definition, the problem of finding the conditions for incipient cav-
itation is: Given a fixed time for growth, determined by the free
stream velocity and body size, what must be the free stream static
pressure, p (and hence K), so that the required bubble growth will
just take place?

Stability of Gas Nuclei

For practically all cases of technical interest, the water will
contain dissolved air. Accordingly, the nuclei will contain air as well
as water vapor. However, if surface tension forces act on these small
bubbles, the air will be driven from the nuclei into solution with the
surrounding water. That is to say, if the air or vapor bubbles are en-

tirely surrounded by water, and if buoyancy is neglected, the gas will be
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continually driven into solution until the bubbles Vanish(z). On the
other hand, if the air is stabilized on small solid particles in the
liquid the pressure due to surface tension must be zero or the three-~
phase nucleus could not exist as a stable thermodynamic structure.
Therefore, if the surface tension pressure is initially z'ero, the
nuclei can exist indefinitely, and by Henry's Law(zo) the initial air
pressure in the gas pocket is proportional to the concentration of air
dissolved in the water. (See Fig. 18). As the bubble grows from its
initial effective radius Ro’ the pressure due to surface tension will
increase until the full value, 207/R, of the pressure due to surface
tension is reached. Here O is the coefficient of surface tension
and R is the bubble radius, as before. The required behavior of
the surface tension pressure may be approximated by pgs= 2S(R,07)/R
where the "surface tension law", S(R,07), is characterized by
S(R_,o) = 0 and S(R;,07) = 0. R, is that bubble radius at which the
surface tension law first achieves its full value. It is convenient
to put R1 = nRo. The simplest assumption which will approximate
the complex variation of the surface tension law with bubble growth,
is that S(R,0) is a linear function of R. Then S = (R-RO)O'/Ro(n—l)
for Roé R=n Ro and S =0 when R=n Ro' If one puts r = R/RO,
then the surface tension law can be written in the form

L=l o l=r=n
S - Nn-i\ ? (6)
o r=n
It must be borne in mind that the surface tension law defined

above is in a sense an attempt to account for an average behavior of

a large number of nuclei of many possible initial sizes. Compared to
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the atomic or molecular scale, the nuclei are macroscopic structures
and hence the laws of surface tension for macroscopic systems are ap-
plicable. It has been argued that in order that such systems may exist
in a stable state it is necessary to add a solid phase to the gas-water
system and this has resulted in the introduction of another parameter,
namely, the slope, 1/n, of the surface tension law. The reason for
ascribing an average behavior to such a large number of nuclei with
many possible initial sizes is because of the experimental fact that
the zone of cavitation numbers at which cavitation starts is very nar-
row. That is, for a given flow configuration it is experimentally pos-
sible to assign a definite value of the cavitation number for the incep-
tion of cavitation.

Primary Parameters and Pressure-Time Relationships

The problem then is to study the behavior of the "average"
nucleus in the transient pressure regions caused by the flow of the
nuclei-containing water around submerged bodies of various sizes at
various flow velocities. Thus, the relationships between a large
number of parameters must be studied in order to obtain approximate
quantitative results which may then be used to guide further experi-
mental work. In particular, one must study the behavior of estimates
for the initial size, Ro’ with changes in the slope of the surface ten-
sion law (1/n). Next, the changes in the predicted values of the incip-
ient cavitation number for changes in slope of the surface tension law
must be estimated., Further, the sensitivity of the incipient cavitation
number to changes in the initial air pressure in the nucleus and to
changes in slope of the surface tension law must be at least qualitatively

determined. Unfortunately, almost no reliable experimental data for
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the effect of dissolved air content upon the inception of cavitation
are now available.

No exact account can be taken of the many pressure distri-
butions which can arise from all of the various body shapes which
one may wish to consider in a liquid flow. However, the general
falling and then rising of the pressure, common to all such bodies,
will be approximated by two parabola-like curves joined at the
point of minimum pressure. The term ''parabola-like' is used be-
cause the actual functions used will be parabolic in time and the
resulting spatial pressure distributions will differ'slightly from
the true parabolic shape. Two curves joined at the minimum pres-
sure point are used so that actual pressure distributions, which
are seldom symmetrical about the minimum pressure point, can
be more closely matched.

Next, certain conditions will be obtained which will enable
the "parabolic" pressure distribution to be replaced by a dynam-~
ically equivalent step function pressure distribution. The detailed
numerical integrations of the equation of motion for the bubble will
be made by using this further simplification. Two distinct advan-
tages are gained by the use of the step function. First, it turns
out that for a fixed n, or surface teﬁsion law slope, if the parabolic
approximation is used, a three parameter family of solutions for
Eq. (2) must be found. However, when the step function pressure
distribution is used only a two parameter family of solutions is re-
quired. Second, the use of the equivalent step function allows one to

find certain important relationships between the primary parameters
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involved in the problem. This could not be done if the pressure
distribution were not a constant in some time interval.
It was mentioned above that the only connection between the
bubble growth and the liquid flow over the body is the choice of P(t)
in the equation of motion for the bubble wall. For the step function
pressure distribution it is evident that P(t) can be written as

Po t<o ,

P(t) =
P,,-—::g/o\/oza t=o0 , (7)

where Po and Vo are the free stream static pressure and velocity,
respectively, and p is the liquid density. The quantity a is the mag-
nitude of the pressure coefficient in the low pressure region. Fig.
19 shows the step function pressure law.

If it is remembered that the bubble is assumed to grow iso-
thermally, and if account is taken of Egs. (6) and (7), the equation

of motion (Eq. (2) or Eq. (3) ) becomes

.s - 3
RR+2R™ = 4 [p, (&) -2 382 ooVl 10

The initial conditions are R(0) = RO and R(0) = 0. It may be noted
that the initial air pressure in the nucleus, P, is given by Henry's
Law, P, =ﬂ c, where ¢ is the concentration of air dissolved in the
water and /3 is the Henry's Law constant.

Estimates for Initial Effective Bubble Radius

From inspection of Eq. (8) one sees that the forces tending
to retard the bubble growth are a maximum at R = nRO. If the bubble

grows in such a manner that R just reaches nRo with zero velocity,
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it turns out that the time required for such growth will be infinite
and cavitation will not occur. On the other hand, if the forces reach
equilibrium when R = nRo, the bubble growth will be little influenced
by the retarding forces and cavitation will be well started. One can
use this condition of force equilibrium together with experimental
values for cavitating flow to obtain an estimate of the initial radius
Ro' Thus, setting the right hand side of Eq. (8) equal to zero, one

finds that for R = nRo

! 2 Pa 20
PPetzeVea t 3 TR, T O

. or

(a-KigpoV,' + 55 -E&-0 ,

where K is the cavitation number, (Po - pv)/l/ZpVoz. Experimental
values of K and VO were taken from the data for incipient cavitation
number for the Joukowski hydrofoils, and curves of R0 versus n for
various air contents, p,, were calculated. The results are shown in
Fig. 20. (V_ =30 fps =914 cm/sec, K = .30, O =70 dynes/cm,

a = .53). Inspection of the R0 vs. n curves shows that except for
the case of no dissolved air in the water, the variations in RO with

n are not large. Further since R0 is given by

R - 2 o
e n(a—K)%/oVZ + % ?

an underestimate of the quantity (a - K) results in an overestimate

of Ro' In using experimental values of (a - K) for incipient cavitation,
one must recognize that such an underestimate of (a - K) is being
made. The chief value of the calculations is that they show that an

initial radius of the order of 10"4 cm is reasonable. They do not
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relieve one of the task of arbitrarily choosing a value for Ro when he
wishes to make numerical computations for bubble growth.

Critical Conditions for Cavitation

As was mentioned abm.fe, the forces tending to retard bubble
growth reach a maximum at R = nRo, with the result that for certain
values of the coefficients in the equation of motion (8) cavitation will
not occur. Before deriving relationships between the coefficients,

the equation of motion will be rewritten in dimensionless form. Put-

ting r = R(t')/R0 and T =tV 2.0‘/pR03 Eq. (8) becomes .

r—I
d’r . 3(dr)’ 4 (hoor » =N

where the ""bubble driving parameter' a is given by

- IIAVA 2
L PoperEAV o ReeVs o

o ZO-/RO 40’ ?

and the "air content parameter'' vy is

. _ Pa
T = 7o/Re (11)

The initial conditions are then

r{o)=1 Mw . (12)

By recognizing that

) - k()]

one can write the first integral of Eq. (9) as
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3 2
L fr2=1 p2 _
L osfdr Y o gs r"'( 3z ) r=n
= (Tt) =5 () +ydnr - ., (13)
r-_h+ns+}l
3 3 ’ r=n )

where the initial conditions dr(0)/dT = 0 and r(0) = 1 have been used
and the two integrals have been matched at r = n. Since (13) is a
spatial integral of Eq. (9), Eq. (13) simply states that the change in
the kinetic energy during the expansion is equal to the work done in
the course of the motion. If one lets W(r) represent the terms on
the right hand side of Eq. (13), then for small enough values of the
bubble driving parameter, a, the function W(r) is very near a cubic
polynomial, as shown schematically in Fig. 21. The value of r for
which W has its isolated minimum will be called T It can be shown
that for n greater than 1 the minimum of W occurs at a value of Ty
greater than n. Since the kinetic energy is zero for r =1, it will
again be zero at the minimum of W if Wrnin = 0. It can also be shown
that the time required for the bubble to grow to the value Ty which
corresponds to a zero minimum of W, is logarithmically infinite.
Thus, if the bubble driving parameter, a, and the bubble air con-
tent parameter, y, are chosen in such a way that Wmin = 0, then
cavitation will not occur under any circumstance. One may call such
values of the bubble-driving parameter, o, and the bubble air content
parameter, y, critical values. These critical values are denoted by
a. and Yoo respectively. A relationship between the critical values
a and Yo will now be found from the conditions W(rl) = 0 and

C

dW(rl)/dr = 0.
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From Eq. (13>) the minimum conditions give

2 2
W(n):%—c—(h‘”-—\)-l» b’cﬁ/y\r‘ - —rla— + _!l_té@i = 0

and
C!V(;/‘fh) = o(c rlz + —‘?,‘(:— _ rl = O

Because the minimum occurs for r, >n, only the part of the inte-

gral (13) for r = n is required. If T is regarded as a fixed parameter,

a  and Y, are given in the parametric form,

3 2
n 2 n+n+|
—Z_—r‘QJnn—T—

O(C = 3 ? (14)
elondny,
3
and
. 3

Zc - r\ - o(c r‘\
The minimum value of Ty corresponds to Yo = 0 and the root of
0= rlz - acrlz of physical significance is r; = l/ac. Substituting

this result from the last of Eqs. (14) into the first of Eqgs. (14) gives

2 .
(14a)

Equation (14a) has one real root for a. When a. is real, it is ex-

pedient to solve for n in terms of a Since n=1, Eq. (14a) gives

for the positive root,

- _L '\/8“03 - 3qcz + 4
n = 2 p
c
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Taking values of a,. from 0.1 to 1.0, one finds the corresponding
values of n and s These results were plotted. For various fixed
values of the surface tension slope number, n, the values of Ty and
a. for Y. = 0 were taken from this curve and then larger values of

r, were selected to compute a and y_ from Eqgs. (14). The results

1
of these computations are graphically presented in Fig. 22. These
curves of the critical driving parameter, a.sasa function of the
critical air~content parameter, Yoo are the loci of points for which
the time required for a bubble to grow from its initial size to a size
of nR (or larger) is infinite. For example, if for a given slope
(1/n) of the surface tension law, a value of a greater than a. is
chosen at a fixed value of the air content parameter, y, a finite
time will be required for a bubble to reach a definite radius. How-
ever, if the slope of the surface tension curve is increased (n de-
créased) the bubble growth time will become greater and greater
until the bubble-driving parameter, a, corresponds to the value a c
for some decreased value of n. In this case the time required for
the growth will be infinite.

Numerical Calculations with the Step Function Pressure Law

In order that definite numerical calculations can be made,
values of n and Ro must be chosen. If the original bubble is stabil-
ized on only a portion of an unwetted solid particle, it seems plausible
that the bubble must grow to several times its initial size before the
surface tension law reaches its full value 0. For the present cal-
culations a value of 5 will be taken for the parameter, n, in the sur-

face tension law. If one takes account of the overestimate contained
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in the curves of R0 versus n (Fig. 20), a value for the initial effective
radius, Ro’ of 2 x 104 c¢m. can be chosen.

In accordance with the definition of incipient cavitation given
above, the bubble must grow to a macroscopic size of R = 1 millimeter.
The total range of r, (=R(t)/Ro') will then be from 1 to 500. The prob-
lem of determining the condition for incipient cavitation is now re-
duced to answering the following question. What time interval, as a
function of the bubble-driving parameter a and the bubble air content
parameter y, is required for the bubble to reach a radius which is 500
times its initial value? To answer this question, one must find a two-
parameter family of solutions of Eq. (13) of the form T = F(a ,Yv). The
dimensionless time parameter, T , is a function of the body length,
free stream velocity and ‘cavitation number. The air content parameter
vy will be given, and a, the bubble-driving parameter, is a function of
the cavitation number and free stream velocity. Then if T = Fla,y)
is known, a trial and error procedure will give the incipient cavitation
number.

After such calculations for incipient cavitation number versus
velocity have been made for different values of the air content param-
eter y, comparisons between experimental results and the calculations
could be used to obtain a measure of the success with which the sur-
face tension law parameter, n, was chosen. It will be noticed from
Fig. 22, that the slopes of the curves for critical bubble-driving param-
eter, a.s versus the critical bubble air content parameter, Y.» are
steepest for low values of the surface tension law parameter. Thus,

the initial air pressure in the nucleus will cause a greater change in
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the cavitation number for incipient cavitation for steeper slopes of
the surface tension law, S(R, o), than it will for a surface tension
law with more gradual slope (large n). If sufficiently reliable data
are available, a comparison with the calculated curves for incipient
cavitation will suggest a better choice for the surface tension law
parameter, n. Because there are almost no reliable data at this
time, these alterations of the calculations will not be made here.

Equation (13‘) is easily reduced to quadratures, so that T is

given by

5
T— =/ r% CJ\"
2 3 % !___‘
l \/%0‘(“3“)““2”’” W l(ra + 5 )

(15)

500
N r ¥z dr
AF el ey - (-]

The two integrals arise because of the change in the surface tension
law at r = n = 5. Because the variations in T for small changes in

a and y are required, approximate representations for Egq. (15) will

be of limited value for those cases where a is near the critical bubble-
driving parameter a.. In any event, precise numerical integrations
are required for the first integral in Eq. (15).

For the range of the air-content parameter y from 0 to 1. 8,
with corresponding values of the bubble-driving parameter, a, from
.145 to . 230, ninety-eight integrations of Eq. (15) were carried out
on an I. B. M. calculator. From these results the functional relation-

ship, T-= F(a,y), represented by Eq. (15), was plotted as in Fig.
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23. Tabulated data from which the figure was made are given in
Table V.

Properties of the '""Parabolic'" Pressure Function

Before the above results can be used, the question of the re-
lationship between the highly idealized step function pressure distri-
bution, as used in the above calculations, and a pressure distribution
determined by a body immersed in the liquid must be considered.
Suppose that the magnitude of the minimum pressure coefficient on
the body is b. Then in many cases it will be possible to approximate
the actual pressure distribution by two functions which are parabolic
in time. One function which decreases from Cp =0 to Cp = -b and
another function which increases from Cp = -b to Cp = 0 will be em-
ployed. Two functions are used because the pressure distributions

around actual bodies are seldom symmetrical in the streamwise di-

rection. Fig. 24 shows the parabolic pressure distribution. The re

uired results for the ''parabolic' pressure distribution will now be
q P P

obtained.

Decreasing part, OECPE -b:

The equation of a time parabola which decreases from Cp =0
to Cp = -b in a time interval T may be written as

Celt) = - b[z i —(%)2] (16)

where t is any time in the interval 0=t=T. (Fig. 24). From the

Bernoulli equation dx/dt =V = v, 1- Cp(x). % Under the conditions

%*x is the distance along the stream line adjacent to the body.
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x = x(t), with dx/dt = 0 one may write dx/dt = vV, V1 - Cp(t). If

%(0) = 0 and x(T) = Ql’ one obtains

or

(17)

. When Cp = - K, that is, the pressure coefficient on the body is equal
to minus the cavitation number for the flow, the pressure in the water
around the bubble is equal to the vapor pressukre of the water. In-
spection of Eq. (8) shows that ‘the bubble can not start to expand until
the bubble has reached a point on the model where Cp = - K. The
region for which Cp = - K will be called the region of "favorable en-
vironment' for bubble growth. Thus the time that is of concern here
is the time that the bubble is in a favorable environment. The value

of (t/T) for which Cp = - K is obtained directly from Eq. (16). If ty

is the required value of the time, then

'.__L__._ _b_"L(.
T b

But the time interval Aty spent by the bubble in the favorable environ-
ment is (T - tl). Hence Aty = T /(b - K)/b, or substituting for T one

finds

at, = | , 2 Avbk
v, [f +(i+b) s /& |

(18)
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The relationship x = x(t') can be found by suitably altering the limits
of integration in the integral leading to Eq. (17). If Eq. (17) is solved

for ’Ql and divided into the result for x = x(t'), there results

(19)

Increasing part, -b= Cpé 0:

For the portion of the pressure distribution downstream from

the minimum pressure point one can write
2 2
Cot)- gt -0y (20)

where lé-t,i-, =<m. Thus CP(T) = -b and Cp(mT) = 0. In a manner sim-

ilar to that used in obtaining Eq. (17), the analogous result

(m-0T = - 2}_? (21)
V.(Yo 5 e s ) VR

is obtained. Here ’QZ is the distance along the stream line next to
the body from the point where CP = -b to the point where again Cp = 0,
and T is given by Eq. (17). The time t, at which Cp = -K is obtained

from Egq. (ZOF);

. b K
"‘-r_"_"-"(m‘l) —'b—

Thus the period spent by the bubble in the favorable environment for

this portion of the pressure distribution is given by Atz = (tz - T).

Substitution for (m - 1)T from Eq. (21) yields
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At, - 2 0, \/b-K
V, [b r (1+b) sin \/;—E’—_B] ‘ (22)

As before, the space-time relationship can be found in a manner sim-

ilar to that employed in deriving Eq. (19). Thus,

‘—J'—b-ez + b sm_‘e |L\)b X

X e b b

- = ” ©=z—, (23)
g T . 1+b . - [b m-I

2 b + b sth T+5

where x is measured along the stream line from the point for which

Cp = -b. From Eq. (17') the expression for T can be put into Eq. (21)

to find m. This substitution gives

2

(m-1)= 22, (24)

f,
The '"'parabolic' curves are compared with the Joukowski and the
"Hemisphere' experimental pressure distributions in Figs. 26 and 28.
Equations (18) and (22) can be added to find the total time, At=At +At,,
that a bubble spends in the whole region of favorable environment,

and one finds

o (0 eRVER
. V,,(x/_ +(1+b) sin \/;—-?—ED (25

It is this value of the time At which determines the dimensionless

time T . For a given pressure distribution, Ql’ QZ’ and b are known
quantities and Vo’ the free stream velocity, will be given so that K is

the only unknown factor required to find At or T.
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Dynamic Equivalence between the Step and "Parabolic'" Pressure Laws

The preceding preliminary calculations now make it possible to
approximate the relationship which must obtain between the idealized
step function pressure distribution and the more realistic "parabola-
like'" pressure distribution if the essential features of the bubble
growths are to be the same in both cases. The matching will consist
of two parts. First, the time spent by the bubble in the low pressure
region will be taken to be the same for both the step function and the
parabolic pressure laws. Second, the equation of motion (2) will be
integrated in closed form by approximate means for both the step func-
tion and the parabolic pressure laws. The two approximate bubble
histories will be said to be dynamically equivalent when the total bub-
ble growths under the two pressure laws are equal. These two con-
ditions will result in approximations of the required relationships be-
tween the step and parabolic pressure functions.

The first point of comparison for the two pressure laws is
the relationship between the time intervals during which the nucleus
is exposed to the favorable environment in each case. It will be speci-
fied that the time spent by the bubble in the favorable environment shall
be the same for both the step function pressure law and the 'parabolic"
pressure distribution. In both instances the free stream velocity, Vo,
will be identical. From Eq. (7), the pressure coefficient for the

pressure step is

0 for t<<O, orx<< O,

CP: -0 for t=0, or x=0. (26)

If the bubble is assumed to grow in an interval 0 £ x<A then the same
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reasoning which gave Eq. (17) gives At = v—-—%: . Equating this
o Vita

result to the At of Eq. (25) gives

AL 2(4, + f)Vb-K
Viva b o+ (1+b) an”-vggg

(27)

If a relationship between a and b can be found, then A will be given
in terms of known quantities.

The second point of comparison is the requirement that the
total bubble growth in the time interval of favorable environment
must be the same for the two pressure functions. This requirement,
which will result in a relationship between a and b, will be called dy-
namical equivalence. The a priori derivation of an exact condition
for the dynamical equivalence of the two cases is formidable in view
of the fact that to obtain such a precise result the equation of motion
(3) must be integrated in exact analytical form. It will be worth-
while to use an approximate method of integration due to M. S. Ples-
set(lg). Plesset's method, while lacking rigorous justification, has
been shown to give results in close agreement with precise numeri-
cal results if the right-hand side of the dynamical Eq. (3') is a func-
tion which inéreases exponentially with time. The approximation is
based on the supposition that the right-hand side of the equation of
motion, Eq. (2') , is a monotonic function of time and it is felt that
when this condition is met, the agreement between the exact numer-
ical results and the approximate solution will be close. It is unfor-

tunate that this condition will not be entirely satisfied here. After
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obtaining the required approximate result, it will be used to define
a pair of dynamically equivalent pressure distributions so that nu-
merical integrations can be performed to test the reasonableness of
the approximate method.

The equations of motion applied to each case differ only in
the form of the forcing function on the right-hand side, because in
one case a step function is taken while in the other case a ""parabolic
dependence is assumed. Thus it seems reasonable that in compar-
ing the behavior in the two cases, one can discard the surface tension
and air content terms. This approximation may be partially justified
by recognition of the fact that both the surface tension and the air
content terms decrease very rapidly as the bubble grows. Thus Eq.

(3) can be written in the form

22

RR+2R - g (t) (28)

where g(t) is given for the step function case by

V.S K, t<o,

(t) = 29
7Y k), k0, =
and for the parabolic case by
2
9(t) =%vfb[hg—"— -(-% } :
(30)
with o< (1-4)= —bg‘-"‘—

Equation (30) accounts for only the portion of the parabolic
pressure curve lying upstream from the minimum pressure point

which is in the region of favorable environment. The growth in the
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second portion of the parabolic pressure curve will be accounted for
by approximating the slope of the growth curve at the minimum pres-
sure point and multiplying this slope by the time interval of favorable
environment At, (Eq. 22).
Plesset's approximate integration method is based upon the
assumption that in Eq. (28‘) g(t) is a function such that the accelera-

tion of the bubble wall R does not become negative; then
o 3 52
RR-%(’C)—ZR_O . (31)

Consequently,

2

R = % %(“.’) N or
R< -g— %(t) . (32)

Integration of (32) gives

t
R—Roé/w/%c}(g) de | (33)
t,

where R0 is the radius at the initial time to. Now define a function

&(t) such that

t
R-R,= <I>(t)f \/—2-3(%) dg = &)I(t) (34)
t

Because of Eq. (33), the function ¢(t') is of bounded variation:
o=dt)=1 . (35)

Equation (34‘) is a formal solution to Eq. (28). Accordingly, substi-
tution of (34) into Eq. (28) gives the exact differential equation,

(Ro+dI) (I +2 &1 +¢T)+ 2(b1 +91)=21° (36)
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Equation (36) will now be approximated with the assumptions that

bI + 26l << &1

2

b1 << ¢1

k]

and R, << &¢I

A first approximation for ¢ is then given algebraically by Eq. (36).

Solving for ¢ yields,

e p—

|+ 211

31® (37)

This result, together with Eq. (34) gives the required approximate
integration. In order that the parabolic case can be treated by means
of the linear extension outlined above, the derivative dR(t)/dt must be
found. Taking account of the inequalities preceding Eq. (37) the de-

rivative is given by R & ¢I. From the results following Eq. (21)

at, = (t, - T) = (m - 1) T /(b - K)/b so that the linear growth to be
added is

R(T)A't; ~ ¢] (T)(m—\)T\/l’?K

Hence the total growth in the parabolic case is
R-R, = ¢(M[IM+ 1Mm-0T EE] . (s

Substituting the equation for g(t) (Eq. 30) into the integral

/F\/ £V, b[EE (-] du
w) VR

for I(t),

or putting



Hence,
I = X1y (39)
From

z . ). [b-k
I®)=V, bk\/\-\—,-"_-’-R(t-ir-) and I(t)=_v°(' V=3

it follows that,

Tm=ve&5  ana  T(M)-0

From Eq. (40) and Eq. (37), ¢(T)

(40)

=~ 1 so that R - Ro’ Eq. (38),

R, A TVo (@ #moi) k) (41)

for the parabolic case.

becomes

For the step function case g(t) is given by Eq. (39) so that

t ——
= — —— 02 .—k t’ .
I(t) /o. \/3 = Vo (a—k) d (42)
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Because the time spent in the favorable environment is the same in
this case as it is in the parabolic case, the time interval for Eq. (42)
is equal to the At of Eq. (25). It is easy to see that At = mT y/(b-K)/b

so that

(at)= m\/T\/“ K)b-K)

(43)

Inspection of Eq. (42) shows that I(t) = 0 so that ¢(t) = 1. For this
case Eq. (34') alone suffices to give the approximate integration re-

quired, and hence

- (a-K)(b-K)
R-Ro=mV,T 35

(44)

The requirement for dynamical equivalence can be applied to Egs.

(41) and (44) to give

mVva—K ’Rf’('g"’m‘l) b-K

(45)

Thus, the relative shapes of the step and the parabolic pressure dis-

tributions are now specified by

A 20,4 8) VB
Vita V[_-+ (1+b) sin’ \/LhE (27)

\/aff" = (EE;%%QZJ) b-K

45
(m=-1)= gz ( ?
and ! (24)
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The above matching conditions were checked for one case of
incipient cavitation on the 2 inch Joukowski hydrofoil. From the trial
and error calculations presented below (p. 49), it was found that
when the free stream velocity is 16 meters per second the incipient
cavitation number, K, is .403, and hence the bubble driving param-
eter, a, is .190 and the dimensionless time T is 1400. The equation
of motion (2) was integrated for the case where the air content par-
ameter, vy, is 1.0, and the P(t) term is composed of the parabolic
laws (16) and (20). The numerical solution gives a bubble diameter
of 2/3 mm. at the end of the specified time interval. If the match-
ing had been exact the final bubble diameter would have been 2 mm.
The discrepancy arises since the condition R > 0 is violated because
of oscillations in the initial stages of bubble growth. The present
approximate integrations start from the point where the external
pressure equals the liquid vapor pressure. It is probable that a bet-
ter approximation would have been obtained if the integrations used
to approximate the growth under the parabolic pressure law had started
from that radius and time at which the surface tension is first constant,
and the external pressure is less than the vapor pressure by an amount
equal to the surface tgnsion pressure. Except for a constant factor
the essential variations between the step function and parabolic pres-
sure laws have been approximated in the above procedure and the
approximate results will be used.

Scaling Laws for Incipient Cavitation at High Free Stream Velocity (ngoo)

It is now possible to obtain a relationship for cavitation scale

effect for very large values of the velocity, V . As the free stream
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velocity Vo becomes very large, the bubble-driving parameter, a,

(see Eq. (10) } increases as V 2. From Eq. (25) it is clear that the
time At (and hence T since T tV2 O'IpR ) decreases as 1/V .

Hence for a >>1, Eq. (15) can be approximated by

T =~ \/‘/ (46)

2 +
where ol = (Q‘K) 4,0;/0 =(4 r:‘ ) RZ,OV (b'K)

This result for a follows from Egs. (10) and (45). From Eq. (25)

the relation

_ 2(9‘*-}2‘)\/5—?( [ 20
T Vo(\/g+(l+b)sm"-\/r;TE Ry

will be used for T in Eq. (46).

For geometrically similar bodies (fl + 92) will be some constant mul-
tiplied by the characteristic body length L., Using this fact and sub-
stituting for T and a into Eq. (46) there results
L V b- K C (47)
Yo ‘\/(b K)Va

where C is a constant. Suppose now that a given body running at very

high velocity has a characteristic length Lo and is found to have an
.incipient cavitation number Ko’ Then if another similar body in high
speed flow has length L and incipient cavitation number, K, the rela-
tionship (b-KO),(b—K) = L/Lo must hold. This last result can be written

* in the form

K . L°+_Rb_o<,_%.) (48)

>y
g
—
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subject to the condition that Vs the free stream velocity, is very high.
Just how high the velocity V0 must be is determined from more detailed
calculations below. A plot of K/KO versus L/Lo is given in Fig. 25,
for values of b/Ko from 1.0 to 2.0.

Calculations for Incipient Cavitation on the Joukowski Hydrofoils

Calculations for incipient cavitation on the Joukowski hydrofoils
will now be made by means of the procedures developed above. The re-

lationships which must be used for the numerical work are

Als n% 2
O(=<4+m ) Ro/Ovo (b—K) ;

m 4 o
(m-1) = % ;

T = 2(»0."’«02)1[{;? 20 .
Vo(-\/E +(1+b)sin’ \/%) PR 7

and a graph of the function T= F(a,y), Fig. 23. In order to find m,

the experimental pressure distributions for the three Joukowsky hydro-
foils were corrected for tunnel blockage and a single curve was faired
through the points as shown in Fig. 26. It was observed experimentally
that the first visible cavitation on the hydrofoils occurred at about 20°/0
of 4the chord, c, from the point where the pressure distribution CP is
first zero. In an effort to account for this experimental fact, the dis-
tance 'QZ was taken to be equal to . 25c - 'Ql' The length Ql was de-
termined by measuring the distance from the minimum pressure point
to that point where the pressure coefficient, Cp’ is zero nearest to

the leading edge of the hydrofoil. These measurements gave QZ/QI =
14/11 so that (m - 1) = 1. 27. | These geometric relationships and the ap-

proximating parabolic pressure distribution are shown in Fig. 26.
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If one takes 0~ = 70 dynes/cm, R_ =2 x 1074 cm, p =1 gram/cm3,

b = .53, the equation for the dimensionless time is
-1.28x10% & / .53-K
. Vo . H

and for the bubble-driving parameter,

a =.581x10’6(.53-K)v02.

By means of the graph for T = F(a,y), with y = 1. 0%, trial and error
calculations were made to find K for values of the free stream velocity
v, of from 900 cm/sec to 3000 cm/sec for each of the three chord
lengths, 2 inches (5.08 cm) 4 inches and 8 inches. The calculations
were extended to infinite velocity by means of Eq. (47) (for this case
C = 550 cm.). For the case ¢ = 4 inches, the calculations were re-
peated for zero air content (y = 0). From these calculations, curves
of incipient cavitation number K versus the ratio c/V0 are given in
Fig. 27. The calculated results are also compared with experiment
in Fig. 27. The experimental scatter is too great to draw any defi-
nite conclusions as to the applicability of the theoretical results. The
calculated curves show the tendency for the cavitation number to in-
crease with velocity for all scales, and, except for the higher veloc-
ities, no scale effects are found-at constant velocity. The data do not

conclusively prove or disprove these theoretical findings.

Calculations for Incipient Cavitation on the "Hemispheres'’.

Calculations were made for the inception of cavitation on right-

cylindrical bodies with hemispherical noses. The same body sizes

*y =1 correspohds to an initial bul‘))ble air pressure of 700 millibars or
a dissolved air concentration of 70 /o, the saturation concentration for
an air pressure of 1 atmosphere above the water.
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were selected as were used by R. W, Kermeen in his experiments
(see Fig. 13). Kermeen found that the dissolved air concentration
in the water during his experiments was about one half of the satu-
ration value for an air pressure of one atmosphere. The corres-
ponding value of the air content parameter, y, was taken to be 0.7.

(17)

The experiments of Rouse show that b, the absolute value
of the minimum pressure coefficient on the body, increases from
about . 65 at a Reynolds number of .6 x 105 to . 74 when the Reynolds
number is greater than or equal to 1.2 x 105. This change in the
minimum pressure coefficient, b, was accounted for in the deter-
minations of the dimensionless time, T » (Eq. 25) and of the hubble-
driving parameter, a, (Eqs. 10 and 45). The "parabolic' pressure
distribution was fitted to the experimental pressure distribution by
selecting for the pressure distribution asymmetry factor, m, a value
of 1.45. Fig. 28 compares the experimental and the "parabolic"
pressure distributions when the Reynolds number is in the supercrit-
ical regime (Re>_~ 1.2 x 105). Trial and error calculations were then
performed in the same fashion as for the Joukowski hydrofoils. The
calculations are compared with Kermeen's data in Fig. 29. It will

be seen that the calculated values of incipient cavitation number are
in poor agreement with experiment. The disparity between the ex-
perimental and the calculated results increases as the size of the body
decreases. There are two possible reasons for the disagreement.
Either the mathematical approximations used in developing the theory

are too great, or some physically important effect (such as that due

to the boundary layer) has been overlooked. It may well be that both
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of these factors contribute to the large differences between theory
and experiment.

It will be noticed in Fig. 29 that for the 2, 1-1/8 and 1/4 inch
models the experimental data for incipient cavitation number seem
to show little or no dependence upon the free stream velocity, VO,
when Vo is greater than or equal to 80 feet per second. This ap-
parent independence of the incipient cavitation number with free
stream velocity corresponds to the theoretical conditions leading
to Eq. (48). Eq. (48) relates the incipient cavitation number to the
characteristic body length of similar bodies under the condition
that the free stream velocity is very high. The incipient cavitation
number under this condition is said to have attained its limiting
value. If it is supposed that the experimental data, for the highest
free stream velocities measured, approximate such limiting val-
ues of the incipient cavitation number it is reasonable to compare
the experimental points for this case with Eq. (48). The data for
incipient cavitation number on each model at the highest test ve-
locity were averaged and plotted against model diameter in Fig. 30.
Eq. (48) was then fitted to the experimental points twice, at diam-
eters of 1/4 inch and of 2 inches respectively. The two curves are
shown in Fig. 30. It will be seen that the agreement between ex-
periment and theory is best when the calculations are fitted to the
smallest model. The free stream velocity in all cases was at least
80 feet per second. Perhaps data for even higher values of Vo would
give better agreement when the theory is compared with experiment.

More experiments must be made to test this point. The theoretical
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trends (Figs. 27 and 29) seem to indicate that the limiting value for
the incipient cavitation number will be attained for higher velocities,
Vo’ for large bodies than for small models. If this trend is correct
it means that most water tunnels cannot reach high enough speeds to
make use of this theoretical approximation when models with low
pressure regions larger than that of the two-inch diameter hemis-
phere are tested.

It will be recalled that in deriving Eq. (48), as with all other
theoretical results, two basic approximations were made. First, the
pressure was estimated from experimental results and Bernoulli's
Law. Second, the time during which the nucleus is exposed to a low
pressure condition where bubble growth can occur was estimated from
the body length and the liquid velocity along the body just outside the
boundary layer. The application of Bernoulli's Law should give quite
accurate results. One must conclude therefore, that the time esti-
mates are not good enough for the present purposes. Furthermore, if
one traces through the calculation procedure for the inception of cavi-
tation, he will find that underestimating the time results in an under-
estimate of the cavitation number for incipient cavitation. The present
calculations do not account for the possibility that at least a portion of
the bubble growth occurs in the boundary layer where the time available
for growth would be greater than the time estimates used here. Thus,
before one can make predictions for the inception of cavitation with
confidence, the boundary layer's effect on growing cavitation hubbles

must be understood.
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PART V

CONCLUSIONS

It is found by experiment that cavitation on submerged bodies
in a rectilinear flow shows decided changes in its development as the
free stream velocity and body size are changed. For a given flow con-
figuration, it is found that the inception of visible cavitation is ob-
tained at essentially one cavitation number, K. That is, when the
cavitation number is in a certain critical zone, very small changes
in K completely alter the nature of the liquid flow from noncavitating
to cavitating flow. It is found that under certain conditions the in-
cipient cavitation number depends on both body scale and free stream
velocity.

Similarity arguments show that one cannot obtain useful scal-
ing laws for limited cavitation from such considerations. In fact,
the similarity calculations show that one may expect limited cavita-
tion to be affected by both body size and free stream velocity. One
is then led to conclude that the cavitation number, K, is not the only
significant parameter required to define the limited cavitation flow
regime. Both experiment and analysis indicate that one must specify
the model size, free stream velocity, dissolved air content and the
cavitation number if he wishes to describe completely an experimen-
tal situation for an immersed body of specified shape. The condition
of the body surface should also be specified, but this effect has not
been considered in this paper. Although it is convenient to use the
cavitation number, K, for theoretical calculations, one would be closer

to the physical relationships if, instead of the cavitation parameter,
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he specified the liquid vapor pressure and the free stream static
pressure.

From the greatly simplified theoretical investigation pre-
sented in Part IV, one can conclude that the neglect of the role of
the boundary layer is not justified for precise evaluation of the ef-
fects of model scale and free stream velocity upon the inception
of cavitation. On the other hand, the qualitative agreement between
the experimental and calculated trends for incipient cavitation num-
ber versus free stream velocity and body size, substantiates the
basic premise that scale effects in limited cavitation arise because
of transient pressure effects on the nuclei in the liquid flow.

A combination of simple theoretical considerations and
some of the experimental data for incipient cavitatidn gives estimates
for the effective initial nucleus radius. It is found that for the water
used in the experiments, the calculated effective initial radius is
between 10™% and 1073 centimeter.

For the limiting case where the free stream velocity ap-
proaches infinity, it is found that the cavitation number, K, for
incipient cavitation does not approach b, the absolute value of the
minimum pressure coefficient on the submerged body. Instead,
the limiting value of the incipient cavitation number approaches a
value less than b, and the difference b - K is found to be inversely
proportional to the characteristic body length, L. The theory
closely approximates the experimental results if the equation is
fitted to the data for the smallest model. More experimental work

is needed to demonstrate the complete validity of this result.
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It is useful to note that the usual design procedure by which the

inception of cavitation is given by K = (-C_) is conservative

p'min.

even at very high free stream velocities.
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APPENDIX A

Corrections for Tunnel Constraint

For cavitation studies, a quantity which is of primary im-
portance is the value of the minimum pressure on the body immersed
in the liquid. When a series of models of the same shape but of dif-
ferent sizes is placed in a water tunnel, the tunnel walls constrict
the flow so that the larger bodies experience higher fluid velocities
at corresponding points than do the smaller models. This is roughly
equivalent to saying that if the tunnel walls were not present, their
effect could be replaced by increasing the upstream velocity by an
appropriate amount as the size of the model is increased. Of course,
the difference between the velocity distribution over an airfoil in a
tunnel and that over the same airfoil in an infinite stream varies
widely over the chord if the tunnel walls are sufficiently close to
the airfoil. Thus, rigorously speaking, one can match the pressures
at only one point on the body for both infinite and constrained flow.
Accordingly, only the minimum pressures will be matched. It will
be further assumed that the position of the minimum pressure on
the airfoil is not altered by the presence of the walls.

The required form of the correction factors can now be de-
rived very simply from the Bernoulli equations for the constrained
and the infinite flows, If ( )i denotes conditions in the infinite or
unconstrained flow, and ( )C refers the enclosed quantity to condi-
tions in the constrained flow, we have,

for the infinite flow,

2 2
Pt 2OV Pt 2R Ve
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and for the constrained flow,

| 2 _ | t
P°+E/Ovc - P°c+_2/ov°c :
The quantities on the left refer to conditions on the body, while
those on the right apply to conditions far upstream from the body.
If we require that the free stream pressures for both infinite and
constrained flows be equal, i.e., P, =P, the condition that at
c i

the minimum pressure point p. = reduces the two equations
p P P; = P, q

above to

\/QL 2= (Cpc)mm.
\/0 (Cpi)mm.

c

If experimental pressure distributions are at hand, one can then
solve for the equivalent free stream velocity in the infinite flow
and thus correct the cavitation number,
_ Po— Py
K =Ty
PV, 7

to its value for the equivalent infinite stream:.

At the time that the major portion of the experimental data
were being reduced, experimental pressure distributions were
not available. It was therefore necessary to compute the blockage
corrections from the theoretical results. Vincenti and Graham(l3)
have shown that in a closed tunnel of almost any shape, the pres-
sure distribution across the span of a thin airfoil which spans the

throat will be constant provided that viscous effects are negligible.

They have also shown that if the wake effects are unimportant, it
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is possible to replace the working-section diameter, d, of a circular

tunnel by an effective two-dimensional height, hZ’ given by

h, = 0tred (Eq. 41, Ref. 13) .

They also show that the total velocity correction with wake effects

included can be written in the form

Vo,
< = k, + 0-32'(]?‘)% (Eq. 45, Ref. 13) |

e

where k; is the correction without wake and the term 0. 321 ('cCT)Cd is
added to account for the wake. Here, c is the airfoil chord, d is the
working-section diameter, and C4 is the drag coefficient of the air-
foil as measured in the tunnel. Since no data for the drag of the Jou-
kowski models were available, a value of Cd =, 01 was assumed.

To obtain the correction factors kl’ the results of Perl and
Moses“4) were used. In their work, computations by conformal
mapping were made to determine the constriction effects on the ve-
locity distribution over a 12°/0 thick airfoil (in addition to other
shapes). In their report they present velocity distributions for the
airfoil as a function of the parameter tc /hz where h is the distance
between the bounding walls, and c and t are the airfoil chord and
thickness, respectively. Although the section treated by Perl and
Moses was not a Joukowski section, it was assumed that at the min-
imum pressure point the ratios, Voc /Vo.’ for the Joukowski would
be equal to those computed from the data1 presented in Ref, 14. Ac-
cordingly, the values of Vo‘ /Vo were computed as a function of the

c i
given ratios of tc /h2 and plotted. Then, using the value of hZ from
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Eq. (41), Ref. 13 in place of h, the values of tc /hz2 were found for
the Joukowski airfoils. The values of Vo./vo without wake effect
were taken from the curve derived from 1Ref.cl4. These values of
k were used in Eq. (4lb), Ref. 13, to give the final values of VO./V0 .
They were used to compute the corrected values of K and R fo: allc
data.

Finally when pressure taps were installed on the models,
the correction coefficients were directly computed from faired plots
of the pressure distributions over the hydrofoils and a calculated
pressure distribution for a Joukowski airfoil in an unlimited stream
(Fig. 31). Table IV shows a comparison of the experimentally de~
termined factors with those derived from the reference material
as outlined above. The correction factors for the two smaller mod-
els show very good agreement, while the factor for the largest model
shows that the theoretical value is about 6%/o too high. In view of
the large experimental scatter in the data to which these corrections
were applied, the portion of the data for which the corrections had

already been made prior to the pressure distribution tests was not

recorrected.
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APPENDIX B

Sound Measuring Equipment

The sound measuring equipment was designed to measure
noise intensities in the frequency range of from 20 to 100 kc. The
sound sensing element is a Brush C-11 Al hydrophone. Its output
is passed through a system of amplifiers and the sound intensity is
then read as a voltage.

The hydrophone is placed in an ellipsoidal reflector which
serves to focus the sound which originates from the other focus of
the ellipsoid on the hydrophone. In order to keep reflection and re-
fraction of the sound waves to a minimum, the reflector hydrophone
assembly was submerged in a water-filled tank which was attached
to the side of the water tunnel working section. The water was par-
tially de-aerated so as to avoid an accumulation of dissolved air
bubbles on the hydrophone and working-section window surfaces.
Noise originating at the model was transmitted through a water med-
ium, through the lucite window of the water tunnel test section to
the reflecting mirror and then to the hydrophone. Provisions were
made on the exterior tank to move the hydrophone mirror assembly
to any position in the exterior tank and for adjusting the focus and
position of the hydrophone. These features are shown in Fig. 32.

In order to avoid confusion with hydrodynamic pressures the
term ''sound intensity' has been used rather than the correct name
acoustic pressure. Thus ''sound intensity' is a measure of acoustic

pressure (dynes/cmz) rather than energy flux.
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TABLY V - TIE REQUIRID FOR A BUSBLE GROWTH, R/R, OF 492.75 FROU THE I.B.M. DIGITAL COMFUTER

A.ii, Ciﬁzig a, Dubble Driving Paranmeter. %o fc;; tg; ©
Parameter. A 2150 2 ¢ 150 $ 165 70 w75 2150 2185 190 <200 2«10 2220 £230 given values of 7.
g 14466 142466 1382.,6 1345.3 1311.4 +1807
.2 / 1491.9 1465.1 1418.8 1378.2 1341.7 1308.3 1754,
ody T - 154401 1511.8 14B4.2 1459.4 1414.8 1375.1 1339.1 1306.2 <1A%6
5 4_‘«\"57 1567.1 1533.6 1505.0 1479.2 1455.3 1411.8 1372.7 1337.1 1304.4 .1641
.8 \ ei—,ﬁ 1592.4 1557.2 1527.3 1500.3 1475.4 1452.1 1409.4 1370.7 1335.5 1302.0 «1593
1.0 \__XS‘K?\\ ) 1582,6  1551.1 1522.8 1496.7 1472.4 1449.5 1407.3 1360.1 1334.0 1301.7 « 1550
1.2 g}\@é 1609.9 157644 1546.6 1519.3 1493.8 1469.9 1447.4 1405.6 1367.6 1332.8 1300.6 1509
1 1439.3  1603.5 1572.0 1543.2 1516.5 1491.4 1467.8 1445.5 1404.1 1366.3 1331.7 1299.6 <1470
1.6 1671.2 1632.6 1590.0 1568.5 1540.4 1514.1 1429.4 1466.0 1443.9 1402.7 1365.2 1230.6 1208,7 #1430
1.8 106,01 1662.7 1627, 1595,3  1568.6 1538.0 1512.0 1U87.6 1464.4 V2.4 1401.5 1364.1 1329.7 1297.9 «139/




NONCAVITATING FLOW LIMITED CAVITATION FULL CAVITY FLOW
2" JOUKOWSKI, K=.273 4" JOUKOWSKI, K=.247 2" JOUKOWSKI, K=.190

Fig. 1 - Three regimes of liquid flow

FLOW DIRECTION
e

NACA 4412 HYDROFOIL

4" SYMMETRICAL JOUKOWSKI HYDROFOIL

AXIALLY SYMMETRIC "'2- CALIBER OGIVE

(FROM UNPUBLISHED WORK BY A.T. ELLIS)

Fig. 2 - Examples of bubble asymmetries
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Fig. 3 - Photograph of the three Joukowski hydrofoils
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Fig. 4 - The Joukowski airfoil section and its theoretical pressure
distribution at zero angle of attack
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UPPER SIDE PLATE AND WINDOW ASSEMBLY

GENERAL RADIO HIGH SPEED CAMERA
MIRROR

TOP WORKING SECTION
LUCITE WINDOW

UPPER SIDE
PLATE

SIDE PLATE
WINDOW

NACA 4412
HYDROFOIL

LOWER SIDE
PLATE

SCHEMATIC VIEW OF TEST SET-UP IN HIGH SPEED WATER TUNNEL
WORKING SECTION (LOOKING DOWNSTREAM)

Fig. 5 - NACA 4412 hydrofoil test arrangement
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PHOTOGRAPH OF THE 4-IN JOUKOWSKI MODEL INSTALLED IN THE
WORKING SECTION OF THE HIGH SPEED WATER TUNNEL

JOUKOWSKI
HYDROFOIL
HIGH SPEED o
CAMERA
= HIGH SPEED
| WATER TUNNEL
P il TEST SECTION
=i /
\\
/>\
\\
LUCITE WINDOW B N

SCHEMATIC VIEW (LOOKING DOWNSTREAM) OF TEST SET-UP

Fig. 7 - Joukowski hydrofoil test arrangement
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MAXIMUM AVERAGE BUBBLE
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SINCE FOR ROUGHLY CORRESPONDING STATES OF CAVITATING FLOW,THE CAVITATION NUMBER CHANGED
WITH SCALE, THESE DATA ARE TAKEN FOR VALUES OF K=p,-p,/3p VZ IN THE INTERVAL .247< K =.353
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Fig. 9 - Experimental verification of the dependence of
maximum bubble size on body scales
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Fig. 10 - Maximum bubble dimension versus C/Vo
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EXPERIMENTS BY R.W.KERMEEN
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Fig. 13 - The cavitation number, K, for incipient cavitation vs.
the Reynolds number, R, for hemisphere-nosed bodies
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Fig. 14 - Typical sound curve for a hemisphere-nosed body
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INTENSITY READING — VOLTS
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Fig. 17 - Limited cavitation flow regime for the Joukowski hydrofoils
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Fig. 18 - A stable threec phase cavitation nucleus
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TIME , t.

PRESSURE COEFFICIENT, |Cp,
o

Fig. 19 - Tne step function pressure law
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DIMENSIONLESS STREAMLINE DISTANCES ALONG BODY.

x"/f, xe/lz

0 =z 4 '6 8 0O 2 4 6 B 10

N i j T ] 1 I Il
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D

.6 PARABOLIC"ARC~
EQ. (19)

.
| C'PARABOLIC" ARC
| | EQ. (23)

PRESSURE COEFFICIENT, CP .

Fig. 26 - Comparison of the experimental pressure distri-
bution with the parabola-like spatial pressure
distribution for the Joukowski hydrofoils
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DIMENSIONLESS STREAMLINE DISTANCES ALONG B8ODY.
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Fiy., 28 - Comparison of the experimental pressure distri-
bution witn the parabola-like spatial pressure
distribution for the ".emisphere' models
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Fig. 31 - Faired pressure distributions over the Joukowski hydrofoils
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THO-DIMENSIONAL HYDROPHONE AND REFLECTOR
JOUKOWSKI HYDROFOIL -
~

AXIALLY SYMMETRIC BODY

LUCITE WINDOW /

WORKING SECTION J
{(LOOKING DOWNSTREAM)
(c) WATER-FILLED TANK

Fig., 32 - Arrangement of the sound measuring equipment

(a) Side view of the sound measuring apparatus installed on
the water tunnel working section.

b) View of the sound measuring equipment looking in the up-
. g P
streamn direction.

(c) Schematic diagram of the sound measuring equipment.



