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Time-Frequency Analysis Based on Wavelets for Hamiltonian

Systems

by

Luz Vianey Vela-Arevalo

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

In this work, we present the method of time-frequency analysis based on wavelets

for Hamiltonian systems and demonstrate its applications and consequences in the

general dynamics of higher dimensional systems.

By extracting instantaneous frequencies from the wavelet transform of numer-

ical solutions, we can distinguish regular from chaotic motions, and characterize

the global structure of the phase space. The method allows us to determine res-

onance areas that persists even for high energy levels. We can also show how the

existence of resonant motion affects the dynamics of the chaotic motion: we de-

tect when chaotic trajectories are temporarily trapped around resonance areas, or

undergo transitions between different resonances. This process is a good indicator

of intrinsic transport in the phase space.

The method can be applied to a large class of systems, since it is not restricted

to nearly integrable systems expressed in action-angle variables, which is the tra-

ditional framework for the definition of frequencies.

The main contribution of this method is that we have included the time variable

in the analysis. We can determine exactly when the trajectories exchange between

different regions by keeping records of resonance trappings. This allows us to

analyze chaotic trajectories and not only quasiperiodic trajectories. And, we do

not require any assumption about the regularity of chaotic trajectories.
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We present three different applications of the method.

The first application consists of the analysis of dynamics and global phase

space structure of the classical version of a quantum Hamiltonian for the water

molecule. In the second application, we study the planar circular restricted three

body problem, and show how resonance transitions of chaotic orbits are related to

transport between different regions of the Solar system. Finally, we applied our

method to a vibrational three-degrees-of-freedom Hamiltonian of the planar OCS

molecule. We study the global dynamics at an energy level close to dissociation,

which corresponds to a highly excited state of the molecule.
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Chapter 1

General Introduction

The coexistence of chaos and order is a common feature of nonintegrable Hamilto-

nian systems. For systems of two degrees of freedom, it is possible to construct a

two-dimensional Poincaré map, where commonly we observe islands of quasiperi-

odic motion surrounded by a chaotic ocean. However, the generalization of this

picture beyond two degrees of freedom is far from being understood, in part for the

lack of techniques of analysis available; but essentially for the different dynamical

features of higher dimensional systems. For instance, in the case of three degrees of

freedom, invariant tori are objects of dimension at most three in a five-dimensional

energy surface; therefore, they are no more barriers in the phase space.

In this work, we propose a new method of time-frequency analysis based on

wavelets. With this method, we generalize the notion of frequency map tradition-

ally defined for completely or nearly integrable Hamiltonian systems. We are able

to compute a frequency map for systems that are not nearly-integrable, or that

are not given in action-angle coordinates.

The method is based on the extraction of time-varying (instantaneous) frequen-

cies from the wavelet transform of the numerical solutions. With this assignment

of frequencies, we are able discern chaotic from regular regions, and determine

resonant and non-resonant quasiperiodic trajectories and resonance channels. Fur-

thermore, the good accuracy in the determination of the time-varying frequencies

allows us to determine when chaotic trajectories are temporarily trapped in a
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resonance, providing a mechanism for intrinsic transport in the phase space.

The method is successfully applied to a large variety of problems, ranging

from molecular systems to celestial mechanics. In this work, we present a detailed

analysis of two molecules, water and OCS; and the application to a comet cap-

ture problem represented by the planar circular restricted three body problem in

celestial mechanics.

The computation of frequencies from numerical solutions of dynamical sys-

tems has been used as an analytical tool in fields as diverse as galactic dynam-

ics [6, 7], chemical physics [34], celestial mechanics [24] and molecular dynamics

[33, 51, 52, 30]. Since the existence of quasiperiodic solutions for integrable and

nearly integrable systems is guaranteed by the KAM theorem [4, 8], the approxi-

mation of the solutions by (truncated) Fourier series is justified for a large set of

trajectories, that is, the quasiperiodic trajectories that remain on Diophantine tori.

Therefore, this procedure calls for constructing an approximation of the solutions

by trigonometric polynomials in terms of the n basic frequencies of a system of n

degrees of freedom.

We have extended this analysis to systems in which highly chaotic dynamics

exists next to quasiperiodic trajectories. We use the method of time-frequency

analysis based on wavelets to compute the evolution in time of the basic frequen-

cies of the trajectories. This allows us to identify quasiperiodic trajectories with

constant frequencies with respect to time; and chaotic trajectories featuring great

time-variation of their frequencies.

We will argue that our method has several advantages over other available

techniques for higher dimensional systems, specially with respect to the frequency

analysis based of the Fourier transform that has been extensively used in Hamil-

tonian systems.

Technically speaking, the main difference between wavelet and Fourier analyses

is the introduction of a time parameter in the wavelet transform. In this way, the

wavelet transform produces an expansion over the time-frequency space, unlike

the frequency-domain expansion that Fourier analysis yields. Our method takes
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advantage of the automatic localization in time and frequency that the wavelets

provide, thereby avoiding the “averaged” results that Fourier analysis can give

when applied to functions which are not quasiperiodic.

Time-frequency analysis based on wavelets turns out to improve the resolution

of the time evolution of the fundamental frequencies when compared with Fourier-

based methods. Indeed, our analysis has resulted in a number of surprising find-

ings; e.g., we can observe how chaotic trajectories can be trapped temporarily in

a single resonance or in resonance junctions. This is one of our main results.

As a further consequence of the superior accuracy of the time-evolution of the

frequencies, we can determine exactly the time interval when a chaotic trajectory

is temporarily trapped in a resonance, meaning that the trajectory remains close to

a lower dimensional torus during that time-interval. When a resonance transition

occurs, the trajectory has evolved from being trapped around one resonant torus to

another one, indicating an exchange between different regions of the phase space.

We use this fact to explain transport in phase space.

We believe that the main contribution of time-frequency analysis based on

wavelets is that chaotic trajectories are included in the analysis besides the quasi-

periodic trajectories. In this way, we can provide a detailed description of the

global dynamics without any assumptions regarding the measure of the chaotic

zones.

1.1 Organization of thesis

The thesis is organized in six chapters. The first chapter is a general introduction

where the motivation and main results are presented.

In Chapter 2 we describe the necessary background in the definition of a more

general frequency map for Hamiltonian systems. We also present the general theory

for definition and extraction of time-varying frequencies and their use in analysis

of Hamiltonian systems.

In the three following chapters we present different applications of time-frequen-
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cy analysis based on wavelets. In Chapter 3, the classical version of the quantum

Hamiltonian of the water molecule is analyzed. This is a three degrees of freedom

(dof) system in action angle coordinates, that due to symmetries and a second

integral of the motion, can be reduced to 2-dof.

In Chapter 4, the transport mechanism in the planar restricted three body

problem is explained in terms of resonance transitions.

In Chapter 5, we describe the phase space dynamics of the 3-dof Hamiltonian

for a vibrational model of the OCS molecule, in a highly excited state.

Finally, we present general conclusions, main achievements and future work in

Chapter 6.
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Chapter 2

Time-Frequency Analysis Based on Wavelets

for Hamiltonian Systems

2.1 Introduction

The purpose of this chapter is to describe the use of the wavelet transform in the

definition and computation of a frequency map for a more general class of Hamilto-

nian systems. The main idea of the method is to introduce the time variable in the

analysis, and this is done by computing time-varying or instantaneous frequencies,

extracted from the numerical solutions.

First, in Section 2.2, we recall the definition of the frequency map in completely

integrable Hamiltonian systems, since is the traditional framework for the asso-

ciation of frequencies with the quasiperiodic solutions of the system, as a way to

characterize the dynamics in phase space. We also describe the theory of quasiperi-

odic solutions for Hamiltonian system, based on a result by Moser regarding the

number of independent frequencies. The frequencies of quasiperiodic solutions can

be computed numerically using standard techniques of Fourier analysis, but the

treatment of chaotic trajectories requires a different approach. In Section 2.3, we

introduce the wavelet transform and its main properties, and describe how it can

be used to obtain the time variation of the frequency of a signal. A definition of

instantaneous frequency determined as the time derivative of the instantaneous

phase of an analytic signal will be discussed in Section 2.4. We also discuss the
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applicability of this concept in real signals such as numerical trajectories. The

wavelet transform of analytic signals can be used to extract the instantaneous fre-

quency of an analytic signal, this is discussed in Section 2.5. This algorithm is

generalized to extract the instantaneous frequency from signals featuring oscilla-

tory behavior. In Section 2.6, we point out that the case of multiple frequency

components can be treated in a practical way since the formal definition of instan-

taneous frequency does not apply. This will be important for Hamiltonian systems

in which the coupling between dynamical variables produces the existence of two or

more frequencies varying in time. Finally, in Section 2.7, we compare the method

of time-frequency analysis based on wavelets with other available methods.

2.2 Frequency map in completely and nearly integrable

systems

2.2.1 Definition of the frequency map

The frequency map is traditionally defined in the context of completely integrable

Hamiltonian systems, that is, systems for which there is a set of independent

integrals of motion which are in involution, and the number of integrals is the

same as the number of degrees of freedom. If this is the case, the Liouville-Arnol’d

theorem [4, 8] assures that it is formally possible to find a canonical transformation

that allows us to express the Hamiltonian system in action-angle variables in each

bounded component of the constant energy manifold. Therefore, the frequency

map is defined in these regions. Knowledge of the frequency map for such systems

is sufficient to completely describe the dynamics.

Consider a completely integrable Hamiltonian system with n degrees of freedom

expressed in action-angle coordinates I, θ,

H(I, θ) = H0(I),

where I = (I1, I2, . . . , In), θ = (θ1, θ2, . . . , θn).
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The equations of motion are given by

İk = 0,

θ̇k =
∂H0
∂Ik

(I) =: ωk(I). (2.1)

The solutions can be easily obtained as functions of time,

Ik(t) = I0k ,

θk(t) = ωk(I
0)t+ θ0k, k = 1, . . . , n.

Therefore, the motion takes place on a n-dimensional torus parameterized by

the vector I0. The trajectories are quasiperiodic functions in each of the planes of

motion, this is, the complex functions

zk(t) =
√

2I0k e
i ωk(I

0)t+θ0k

are quasiperiodic functions of t.

The frequency map is defined as

I → ω(I), (2.2)

and ω1, ω2,. . . , ωn are said to be the frequencies of the torus. If the frequency

map is invertible, we can use the frequencies ωk instead of the actions Ik as the

coordinates.

The frequencies determine completely the dynamics on the torus: if the fre-

quencies are non-resonant, this is, if

m1ω1 +m2ω2 + · · ·+mnωn 6= 0,

for all integer numbers mk, then the motion is quasiperiodic and all trajectories
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are dense on the torus. On the other hand, if an equation of the form

m1ω1 +m2ω2 + · · ·+mnωn = 0

is satisfied for some integer vector (m1,m2, . . . ,mn) with not all the components

zero, then we call the torus resonant and in that case the trajectories lie on lower-

dimensional tori, the dimension depending on the multiplicity of the resonance;

this is, the dimension is the same as the dimension of the frequency module.

The definition of the frequency map (2.2) is basically attached to the repre-

sentation in action-angle coordinates of a completely integrable system. This idea

can be extended to any quasiperiodic solution, since it is possible to extract the

frequency vector from any representation of a quasiperiodic solution. This is im-

portant since the aim is to construct a frequency map (as in 2.2) independently of

the coordinate representation of the system.

The method of frequency analysis calls for reversing the procedure: to extract

the frequencies from the solutions, and then to obtain a characterization of the

dynamics of the system based on the resonance relations of the frequencies.

Although the extraction of frequencies of quasiperiodic solutions is achieved

with standard techniques of Fourier analysis, we will see that the generalization of

the procedure to chaotic trajectories is not valid, even in the case of near-integrable

systems.

In the following, we discuss the definition of quasiperiodic solutions and the

use of Fourier analysis for the extraction of frequencies.

2.2.2 Quasiperiodic solutions

Consider a Hamiltonian system (not necessarily integrable) of n degrees of freedom

(n-dof), with Hamiltonian given by

H(x, y), x = (x1, . . . , xn), y = (y1, . . . , yn), (2.3)
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where x and y are general canonical position and momentum coordinates (and not

action-angle coordinates). Assume that a quasiperiodic solution is known to exist,

and is expressed as a complex variable zk(t) = xk(t) + i yk(t), k = 1, . . . , n.

In general, quasiperiodic functions are a special class of almost-periodic func-

tions. A complex function f(t) is almost-periodic if it can be represented in the

form

f(t) =
∞∑

j=0

cj ei λ
j t (2.4)

where the coefficients cj are complex numbers. The numbers λj are called the

frequencies of f . A vector function f = (f1, · · · , fn) is almost-periodic if all its

components are almost periodic.

The sub-class of quasiperiodic functions is characterized by expansions of the

form (2.4) but in terms of a finite number of frequencies, i.e., they can be expressed

as convergent Fourier series:

f(t) =
∑

m∈Zn

dm eim·ω t,

where m = (m1, . . . ,mn) is an integer vector, ω = (ω1, ω2, . . . , ωn) ∈ Rn is called

the frequency vector, and m · ω = m1ω1 + · · ·+mnωn.

Almost-periodic solutions of an n-dof Hamiltonian system (2.3) are in fact

quasiperiodic due to a result by Moser [37] showing that the number of basic fre-

quencies is at most n, the number of degrees of freedom. This is a consequence of

the exactness of the symplectic form of the Hamiltonian system (see [37] and also

[8], p. 125). Quasiperiodic solutions are characterized by the frequency vector,

which is also associated to the n-dimensional invariant torus where the quasiperi-

odic solution lies.

A quasiperiodic solution of (2.3) can therefore be expressed as

zk(t) =
∑

m∈Zn

dmk e
im·ω t, k = 1, . . . , n. (2.5)

The frequency vector ω is unique in the sense that, if there is another canonical
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coordinate representation x′, y′ with frequency vector ω′, then there is a linear

map L such that ω = Lω′, where L is a constant matrix with integer entries and

determinant ±1 [44].

Therefore, in the approximation of a quasiperiodic solution of (2.3) as

zk(t) ≈
p∑

j=0

cjk e
i λj
k
t, k = 1, . . . , n, (2.6)

the numbers λjk are integer linear combinations of the components of the frequency

vector (ω1, . . . , ωn).

The computation of λjk can be achieved using techniques of Fourier analysis,

and from them we can extract the basic frequencies ω1, . . . , ωn and provide an

approximation of the solutions of the form (2.5). Once we know the frequencies

associated to a particular quasiperiodic torus, we can describe the motion on the

torus as resonant or non-resonant.

2.2.3 Computation of the frequency map in near integrable sys-

tems using Fourier analysis

The procedure described above can be used for completely integrable systems,

where all the bounded solutions are known to be quasiperiodic, and hence, Fourier

analysis techniques apply. We can proceed in the same way for nearly integrable

systems (this is, when a small perturbation is added), since the KAM theorem

ensures the existence of quasiperiodic trajectories lying on slightly deformed in-

variant tori with the same frequency vectors as in the unperturbed Hamiltonian,

provided that Diophantine and non-degeneracy conditions are satisfied [1, 2, 8].

Laskar’s frequency analysis [25, 27, 26] provides an efficient algorithm for this

case, by extending the Fourier basis to a more general set of complex exponentials.

He proved that his method for approximating quasiperiodic solutions of nearly

integrable systems provides the exact value of the frequencies with a certain con-

vergence rate.

The use of Fourier analysis to approximate trajectories as in Equation (2.6)
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relies heavily on the fact that for systems that are integrable or near-integrable,

there are many quasiperiodic trajectories for which the frequencies are well de-

fined. An immediate concern is the treatment of chaotic trajectories generated by

the perturbation. The generalization of the procedure to chaotic trajectories is

frequently expressed as a negative statement: if we cannot assign frequencies to a

particular solution, then the trajectory is deemed chaotic.

A common argument of Laskar [25], and Martens et al. [33], to justify the use

of Fourier analysis in the case of chaotic trajectories is that for near-integrable

systems, the behavior of its chaotic solutions is “regular enough” when viewed in

short intervals of time. They assume that chaotic trajectories are close to quasiperi-

odic locally, but this cannot be justified. The method we propose disregards this

assumption.

2.3 Time-frequency analysis based on wavelets

As seen in Section 2.2, Fourier methods are justified for completely integrable

systems, and even allows one to examine the behavior of many solutions of nearly

integrable systems. However, chaotic trajectories in a very large class of non-

integrable systems cannot be adequately examined.

Our main interest is to generalize the assignment of frequencies to solutions of

Hamiltonian systems that feature oscillatory behavior. Although Fourier analysis

provides a frequency representation of a time dependent signal, all Fourier methods

require that the signal is periodic or quasiperiodic. Furthermore, this frequency

representation does not reflect at all any change in time of the spectral information

of the function. Therefore, frequency analysis based on the Fourier transform does

not apply for systems that are not near integrable, even in principle.

We will present a new method to define a frequency map for a much larger

class of Hamiltonian systems. One of the key points in achieving this is developing

the concept of time-varying or instantaneous frequency. With the assignment of

time-varying frequencies we are able to extend the frequency map analysis to
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Hamiltonian systems that are not nearly integrable, or that are not given in action-

angle coordinates.

Advantages. The method we propose is time-frequency analysis based on wave-

lets. We compute the instantaneous frequency associated with time series repre-

senting numerical solutions of the Hamiltonian system, producing the frequency

evolution of the dynamical variables in the system. This will allow us to differen-

tiate between regular and chaotic trajectories, since for quasiperiodic trajectories

the frequencies are constant and coincide with the Fourier frequency. We can

also identify resonance channels due to the good accuracy in the assignments of

frequencies. Furthermore, the time evolution of the frequencies allows us to de-

tect temporary resonance trapping of chaotic trajectories and their implications in

transport in the phase space.

This methodology is inclusive, meaning that it can be applied on problems

where Fourier methods apply, together with strongly chaotic systems.

2.3.1 Wavelet transform

An ideal method for analyzing functions that have time-varying frequencies is the

wavelet transform [12]. The wavelet transform by design provides good localization

in both time and frequency. With this new methodology we will be able to define

a frequency map for a large class of Hamiltonian systems, by the assignment of

instantaneous frequencies to the trajectories.

The wavelet transform is defined in terms of a function ψ, called the mother

wavelet, as

Lψf(a, b) =
1√
a

∫ ∞

−∞
f(t)ψ

(
t− b
a

)
dt. (2.7)

The function ψ ∈ L2(IR) must satisfy the admissibility condition 0 < cψ =

2π
∫∞
−∞

|ψ̂(ω)|2

|ω| dω < ∞, where ψ̂ is the Fourier transform of ψ; to be useful the

mother wavelet must have compact support or decay rapidly to 0 for t → ∞ and

t→ −∞.

The wavelet transform depends on two parameters: a is called the scale, and b
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is the time parameter. The wavelet transform can be viewed as a time-frequency

representation of a signal f in the following sense: If the wavelet ψ has compact

support, the parameter b shifts the wavelets so that the local information of f

around the time t = b is contained in Lψf(a, b); the scale parameter a is pro-

portional to the inverse of the frequency; therefore, Lψf(a, b) gives the frequency

content of f over a small interval of time around t = b.

The wavelet transform (2.7) produces a complex surface as a function of the

variables a and b. A common representation of this surface is a density plot of the

modulus of Lψf(a, b), with b as the horizontal axis (time) and ln(a) as the vertical

axis. However, since the frequency is proportional to the inverse of the scale (1/a),

we opted for the frequency ω as the vertical axis.

2.3.2 A first example: the chirp

For motivation, and to show the capability of the wavelet transform to yield the

variation in time of the frequency, consider the example given by a chirp; this is,

a function with “increasing frequency.” In Figure 2.1 we present such example.

In part a), the real part of a function with increasing frequency is represented,

and in b) is the density plot of the modulus of its wavelet transform. We note

that the density plot is “concentrated” or has the maximum along the line that

corresponds to the time-varying frequency; this region is called the ridge of the

wavelet transform.

In part c) of Figure 2.1, we plotted the frequency producing the maximum

modulus as a function of time, and we observe that it coincides with the line that

we expect to be the instantaneous frequency. Note that there is some discrepancy

at the beginning and at the end of the time interval studied. This is caused by

the finite interval considered in the analysis; this is, in the beginning and end

of evolution, we do not possess enough information of the signal to perform the

analysis. This is a normal limitation due to the finite time analysis.

We note also that the ridge of the wavelet transform (in Figure 2.1 b) has a

larger spread as the frequency increases. This is caused by the constant area of the
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Figure 2.1: Density plot of the modulus of the wavelet transform of a function

with linearly increasing frequency. Note that the ridge of the wavelet transform

goes along the instantaneous frequency.

time-frequency window in which the wavelet transform localizes the signal. Since

our physical systems have bounded frequencies, this does not represent a problem

in our analysis. This characteristic of the wavelet transform is reminiscent of the

Heisenberg uncertainty principle: The localization in both time and frequency is

limited. (See for instance [19]).

In the following, we describe the main properties of the wavelet transform in

order to establish its convenience for time-frequency localization.

Zoom-in and zoom-out capabilities of the wavelet transform. We want

to consider local information of f in time intervals that yield spectral information

on any desirable range of frequencies (or frequency band). For high frequency

the time interval should be small; for low frequency the time interval should be
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wide. The wavelet transform possesses this property, called the “zoom-in” and

“zoom-out” capabilities. This fact will be clear from the determination of the time

window and frequency window on which the wavelet transform is localized; for this

we need to introduce some concepts.

The center and radius of the wavelet are defined (respectively) by

t∗ =
1

||ψ||22

∫ ∞

−∞
x|ψ(x)|2dx, and ∆ψ =

1

||ψ||2

(∫ ∞

−∞
(x− t∗)2|ψ(x)|2dx

)1/2
.

Assume ψ and its Fourier transform ψ̂ are wavelets, with centers and radius

t∗, ω∗,∆ψ,∆ψ̂
. Then, the wavelet transform 2.7 localizes the function within a

time window of the form

A = [b+ at∗ − a∆ψ , b+ at∗ + a∆ψ].

Since the value of the frequency is proportional to 1/a, the time window automat-

ically narrows for high frequency (a small) and widens for low frequency (a large);

these are the zoom-in and zoom-out capabilities that we mentioned above.

Now, let η(ω) = ψ̂(ω + ω∗), the center of η is 0 and its radius is ∆
ψ̂
. Using

Parseval’s identity, we obtain that

Lψf(a, b) =

√
a

2π

∫ ∞

−∞
f̂(t)eiωbη

(
a(ω − ω∗

a
)

)
dω,

then the same quantity Lψf(a, b) gives localized information of the spectrum f̂(ω)

within a frequency window

B =

[
ω∗

a
−

∆
ψ̂

a
,
ω∗

a
+

∆
ψ̂

a

]
,

(with the exception of multiplication by
√
a/2π and a linear phase shift eiωb).

Therefore, Lψf(a, b) localizes f in the time-frequency window A×B.



16

Morlet-Grossman wavelet. The mother wavelet that we use throughout this

work is the Morlet-Grossman wavelet [9], given by

ψ(t) =
1

σ
√
2π

e2πiλt e−t
2/2σ2

.

The parameters λ and σ can be tuned to improve the resolution. This wavelet

proved to be convenient for our computations, although the analysis can be done

with other wavelets as well.

The simplest case. Consider a periodic function f(t) = ei2πω0t, for which the

wavelet transform can be obtained analytically as

Lψf(a, b) =
1√
a

∫ ∞

−∞
ei2πω0t ψ

(
t− b
a

)
dt

=
√
a

∫ ∞

−∞
ei2πω0as ei2πω0bψ(s)ds

=
√
a ei2πω0b ψ̂(ω0a),

where ψ̂ is the Fourier transform of ψ. As we should expect the modulus of

Lψf(a, b) depends only on the scale a, and it is independent of the time variable

b.

Particularly for the Morlet-Grossman wavelet, the modulus of this transform

is given by

η(a) = |Lψf(a, b)| =
√
a ψ̂(ω0a),

with ψ̂(ω) = e−2π
2σ2(ω−λ)2 . η(a) has a global maximum, in other words, ψ̂ is

well localized in frequency. The maximum is at aω0 = 1
2

(
λ+

√
λ2 + 1

2π2σ2

)
.

Therefore, we can define the frequency variable (for the Morlet-Grossman wave-

let) as

ω =
1

2 a

(
λ+

√
λ2 +

1

2π2σ2

)
, (2.8)

and the value of the frequency ω0 can be recovered from the scale a that maximizes

the modulus of the wavelet transform. We will see below that this procedure can
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be extended for functions that feature time-variation in frequency.

In the following, we will discuss the definition of instantaneous frequency and

related concepts, and how they can be use to define a more general frequency map

for Hamiltonian systems.

2.4 Instantaneous frequency

We want to use a definition of time-varying or instantaneous frequency that agrees

with the intuitive notion of frequency as the “oscillation rate.” This definition must

agree with the usual notion of Fourier frequency for signals with constant amplitude

and frequency. In this way, periodic and quasiperiodic functions will retain their

constant frequencies in the new analysis, and the frequency map will coincide

with (2.2) for completely and nearly integrable Hamiltonian systems expressed in

action-angle variables. Of the available definitions for instantaneous frequency, the

one that satisfies this condition is based on the concept of analytic signal.

Assume that a complex function f(t) can be represented as a complex expo-

nential with varying amplitude and phase,

f(t) = A(t) ei φ(t). (2.9)

Our intuition suggests that the frequency is given by time derivative of the phase:

ω(t) =
1

2π
φ′(t).

(From now on we adopt the convention of the factor 2π in the definition of fre-

quency). However, the representation (2.9) is not unique. To illustrate this with

a simple example, consider

f(t) = A(t) cos(t),

where A(t) is a bounded function. This is a function that oscillates as cos(t) inside

the “envelope” given by the variable amplitude A(t). Let Ã = sup|A(t)| and define
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the new function

f̃(t) = (1/Ã)f(t).

Since |f̃(t)| ≤ 1, we can find φ̃ such that f̃(t) = cos(φ̃(t)). Therefore,

f(t) = Ã cos(φ̃(t))

is another representation of f which would have a different frequency.

The instantaneous frequency cannot be obtained from a particular representa-

tion. We need to find a definition of instantaneous frequency that can be uniquely

determined and that also corresponds to our physical intuition. Vakman [48] im-

posed three conditions that instantaneous amplitude, phase and frequency should

satisfy:

a) The amplitude is continuous and differentiable. This means that if the orig-

inal function f changes slightly in amplitude, then the instantaneous ampli-

tude should increase or decrease accordingly.

b) The phase is independent of scaling, and the amplitude is homogeneous; this

is, if f(t) is replaced by cf(t), then the frequency does not change and the

amplitude is scaled by c.

c) The constant amplitude and frequency of a simple sinusoid should retain

their values.

Other authors have added new conditions, for instance Loughlin and Tracer [31]

proposed that i) the instantaneous amplitude of bounded functions should be

bounded, and ii) if the signal has bounded Fourier spectrum, the instantaneous

frequency should have the same bounds.

There have been several attempts to define variable amplitude, phase and fre-

quency, some satisfying these conditions, and the discussion about their conve-

nience has been long. We refer the reader to [40] and references therein.
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2.4.1 Analytic signals

The most common definition of instantaneous frequency involves the concept of

analytic signal, introduced by Gabor [18] and Ville [50]. This definition includes

the notion of Fourier frequency for periodic or quasiperiodic signals. The concept

of analytic signal is based on the Hilbert transform.

Definition 1 A function f(t) = u(t) + i ν(t), expressed in terms of its real and

imaginary parts, is an analytic signal if

ν(t) = H u(t),

where

H u(t) = − 1

π
P

∫ ∞

−∞

u(η)

η − tdη (2.10)

is the Hilbert transform of u(t). P denotes the Cauchy principal value integral. We

also say that u and ν form a Hilbert pair. The inverse of the Hilbert transform is

given by

u(t) = H−1 ν(t) =
1

π
P

∫ ∞

−∞

ν(η)

η − tdη. (2.11)

We also say that the analytic signal associated to a real function u(t) is u(t) +

iHu(t).

The following theorem provides three possible characterizations of analytic

signals.

Theorem 1 Let f(t) = u(t)+ i ν(t) be a piecewise continuous function with piece-

wise continuous derivative in any finite interval. Also, suppose f ∈ L1(R), and

that f is bounded by decaying exponentials. The following are equivalent:

1. f is an analytic signal; i.e., ν(t) = H u(t).

2. The Fourier transform of f is one sided, i.e., it satisfies

f̂(ξ) = Ff(ξ) = 0, for ξ < 0.
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3. f is obtained as the restriction to the real axis of a complex function f(t+i τ)

that is analytic for τ ≥ 0; this is, f(t+ i τ) = u(t, τ) + i ν(t, τ) is analytic in

the complex upper half plane, and the signal satisfies

f(t) = u(t, 0) + i ν(t, 0), t ∈ R.

The proof of this theorem contains a review of the mathematical concepts involved

in the definition of instantaneous frequency, and can be found in the Appendix A.1.

The concept of analytic signal is useful to define instantaneous frequency since

for analytic functions the real and imaginary parts are uniquely defined; therefore,

we are able to define the instantaneous phase and frequency in a unique way.

Definition 2 Let f(t) = u(t) + i ν(t) be an analytic signal, where u and ν are the

real and imaginary parts respectively. The instantaneous phase of f is defined by

φ(t) = Arctan
ν(t)

u(t)
,

and the instantaneous frequency is the time derivative of the phase:

ω(t) =
1

2π
φ′(t).

Identification of analytic signals. To determine if a function f(t) = u(t) +

i ν(t) is an analytic signal is not an easy task. Theorem 1 gives three possible

characterizations of analytic signals; however, they are hard to use in practice and

the analysis must be done numerically in most cases.

In general, functions arising from solutions of differential equations are not

analytic signals. Most Hamiltonian systems have solutions that are not analytic

in the upper half plane even if the Hamiltonian is analytic. Consider for instance

the one-degree-of-freedom pendulum, which is of course integrable; its solutions

can be expressed explicitly in terms of inverse elliptic functions that have a lattice

of singularities in the complex plane.

Among the few results about completeness of Hamiltonian systems in Cn,
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Forstneric [16] has shown that the only Hamiltonian system in C2 of the form

H(z1, z2) =
1

2
z22 +Q(z1) (2.12)

that has analytic solutions in the entire complex plane is for Q quadratic. That is,

if Q is not a quadratic function, every regular level set of (2.12) contains a point

that flows to infinity in finite (complex) time.

In practical terms, the restriction of having a function of real time that has

an analytic continuation to the upper half plane without any singularity is very

strong.

The following examples illustrate some cases when analytic signals can be de-

termined, and characterizations according to the definition or their spectral prop-

erties.

Example 1. A trivial example of an analytic signal is the function f(t) =

exp(i 2πω0t). To see this, note that the Fourier transform is one sided: F[f ](ξ) =

δ(ω0 − ξ); therefore, the imaginary part is the Hilbert transform of the real part,

H[cos(2πω0t)] = sin(2πω0t) and H−1[sin(2πω0t)] = cos(2πω0t),

and of course, the instantaneous frequency is ω0.

This example shows that the definition of instantaneous frequency by means

of analytic signals coincides with the definition of Fourier frequency for the case

of constant frequencies. It is also clear that the Hilbert transform is linear and

homogeneous, and that the instantaneous phase and frequency are independent

of scaling. Therefore, this definition of instantaneous frequency satisfies the three

conditions mentioned in the beginning of Section 2.4.

Example 2. u(t) and u̇(t) (the derivative of u with respect to t) are not a Hilbert

pair; i.e., f(t) = u(t) + i u̇(t) is not an analytic signal. To see this, consider the
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Fourier transform of f ,

F[f ](ξ) = û(ξ) + i ̂̇u(ξ) = û(ξ) + i (2πiξ)û(ξ) = (1− 2πξ)û(ξ),

which is not one sided due to the fact that u(t) is real and then its Fourier transform

satisfies û(−ξ) = û(ξ).

Example 3. Consider a function of the form A(t) exp(2πiω0t) with A(t) ≥ 0.

There is no a priori reason for this function to be an analytic signal. If this were

the case, then we should have that

H[A(t) cos(2πω0t)] = A(t) sin(2πω0t) = A(t)H[cos(2πω0t)].

Let Â(ξ) be the Fourier transform of A, then

F[A(t) exp(2πiω0t)] = Â(ξ − ω0);

therefore, A(t) exp(2πiω0t) is an analytic signal if and only if Â(ξ) = 0 for |ξ| > ω0.

This example can be seen as an application of the Bedrosian’s theorem that

we enunciate in the following (for a proof see [21], p. 88).

Bedrosian’s Theorem. Let f, g ∈ L1(R), such that f̂ , ĝ ∈ L1(R) and

f̂(ξ) = 0, if |ξ| > ξ0,

ĝ(ξ) = 0, if |ξ| ≤ ξ0,

then H[f(t)g(t)] = f(t)H[g(t)].

Consider again the function A(t) cos(2πω0t). If Â(ξ) vanishes for |ξ| > ω0, we

can apply the Bedrosian’s theorem to obtain that

H [A(t) cos(2πω0t)] = A(t)H [cos(2πω0t)] = A(t) sin(2πω0t),
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as we saw before.

Example 4. Bedrosian’s theorem gives the conditions on the Fourier transforms

of A(t) and cos[φ(t)] for which is valid

H[A(t) cosφ(t)] = A(t)H[cosφ(t)].

However, it is not clear that it should be H[cosφ(t)] = sinφ(t). In general this is

not the case, an example is the following (taken from [40]):

Consider

x(t) =
sin(2πBt)

2πBt
cos(2πω0t),

where ω0 > B. Since |x(t)| ≤ 1, it is possible to introduce a function φ(t) uniquely

defined such that 0 ≤ φ(t) ≤ π and

x(t) = cosφ(t).

If it were true that H[cosφ(t)] = sinφ(t), then we should have

[x(t)]2 + [H x(t)]2 = 1.

We will see that this is false. Since the Fourier transform of sin(2πBt)/(2πBt) is

zero for |ξ| > B, we can apply Bedrosian’s theorem to get

H x(t) =
sin(2πBt)

2πBt
H[cos(2πω0t)] =

sin(2πBt)

2πBt
sin(2πω0t),

and then

[x(t)]2 + [H x(t)]2 =

(
sin(2πBt)

2πBt

)2
.

Example 5. We can apply the Bedrosian’s theorem to compute the Hilbert

transform of A(t) cos(2πω0t+φ0) only if the Fourier transform of A(t) vanishes for

|ξ| ≥ ω0. Its analytic signal is in this case A(t) exp(i2πω0t + φ0). In general the

spectrum Â(ξ) exists for both ξ < ω0 and ξ > ω0; therefore, Bedrosian’s theorem
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does not apply directly.

An asymptotic result can be obtained for ω0 large [21]. When ω0 →∞ we have

that

H[A(t) cos(2πω0t+ φ0)] = A(t) sin(2πω0t+ φ0)

for almost every t.

Example 6. As we mentioned before, is not true in general that H[cos(φ(t))] =

sin(φ(t)). If the function exp[iφ(t)] is an analytic signal, φ(t) must have the fol-

lowing form [40]:

φ(t) = θ + ω0t+ φb(t),

where θ is arbitrary, ω0 ≥ 0 and φb(t) is the argument of a Blaschke function b(t),

b(t) =
N∏

k=1

t− zk
t− zk

, Im(zk) > 0;

i.e., φ(t) is the argument of a function of modulus 1 that has all its poles in the

lower half complex plane.

A function with constant amplitude c exp[iφ(t)] is an analytic signal only if

φ(t) takes this particular form. This strong condition is very difficult to satisfy. In

general, we should expect that analytic signals have the form A(t) exp[iφ(t)].

2.4.2 Asymptotic analytic signal

We have seen that the concept of analytic signal is very restrictive. In practice,

we deal with functions that are close to an analytic signal. Delprat et al. [13]

introduced the concept of asymptotic analytic signal.

Vaguely, a function u(t) = A(t) cos(φ(t)) is called asymptotic analytic signal if

its analytic signal associated,

Zu(t) = u(t) + iH[u(t)],

is close to A(t) exp
[
iφ(t)

]
.
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The following lemma shows that a function is an asymptotic analytic signal

if the oscillations due to the term cos[φ(t)] are much more important than the

variations of the modulus A(t). The proof can be found in the Appendix A.3,

and it follows from the computation of the Hilbert transform using the stationary

phase method (see Appendix A.2).

Lemma 1 Given u(t) = A(t) cos[λφ(t)] with λ large, the analytic signal associated

Zu(t) = [I + iH]u(t) satisfies

Zu(t) = A(t) exp[iλφ(t)] +O(λ−3/2).

This result is used in practice rather loosely, since in general there is not a

parameter λ controlling the rate of oscillation. However, we expect that functions

with oscillatory behavior with a representation A(t) exp[iλφ(t)] are close enough

to an analytic signal in such a way that the definition of instantaneous frequency

applies.

2.5 Instantaneous frequency and the wavelet trans-

form

In the previous Section, we reviewed the definition of instantaneous frequency for

analytic signals, and the difficulties to use it in practice since in general we deal

with functions that are only close to an analytic signal.

In this Section, we study the relation of the wavelet transform with instan-

taneous frequency of an analytic signal, and generalize this procedure towards

numerical algorithms that allow us to extract time-varying frequencies.

All the arguments follow closely [13] and [9], and are explained here for com-

pleteness.

The wavelet transform of f provides the expansion of a function f in terms of

basis functions ψab that are constructed as dilations and translations of the mother
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wavelet ψ:

ψab(t) =
1√
a
ψ

(
t− b
a

)
, b ∈ R, a > 0.

The coefficients of this expansion are given by the wavelet transform of f ,

Lψf(a, b) = 〈f, ψab〉 =
1√
a

∫ ∞

−∞
f(t)ψ

(
t− b
a

)
dt.

Let f(t) = Af (t) exp[i φf (t)] be an analytic signal. If the wavelet ψ is an

analytic signal itself, and it is written in the form

ψ(t) = Aψ(t) exp[iφψ(t)],

then the wavelet transform coefficients can be computed as

Lψf(a, b) =
1√
a

∫ ∞

−∞
Mab(t) exp[iΦab(t)]dt, (2.13)

where

Mab = Af (t)Aψ

(
t− b
a

)
,

Φab(t) = φf (t)− φψ
(
t− b
a

)
.

In order to obtain an asymptotic expression for the integral in Equation (2.13),

we note that if the integrand oscillates greatly due to the term exp[iΦab(t)], then the

functionMab(t) appears as constant and the contributions of successive oscillations

effectively cancel. However, if the phase Φab(t) is constant, i.e., there is a stationary

point, this effect is reduced. Therefore, the coefficients of the wavelet transform

will “concentrate” around the stationary points.

Let t0 be a unique point such that Φ′
ab(t0) = 0 and Φ′′

ab(t0) 6= 0. t0 is called

a stationary point. We can apply the method of stationary phase (see Appendix
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A.2) to obtain the expression,

Lψf(a, b) ≈
1√
a
f(t0)ψ

(
t0 − b
a

) √
2π

|Φ′′
ab(t0)|

ei sgnΦ
′′

ab(t0)π/4. (2.14)

Note: t0 = t0(a, b). Then the equation t0(a, b) = b gives a curve in the time-scale

plane. This leads to the following definition:

Definition 3 The ridge of the wavelet transform is the collection of points for

which t0(a, b) = b.

From the equation Φ′
ab(t0) = 0, we have that

Φ′
ab(t0) = φ′f (t0)−

1

a
φ′ψ

(
t0 − b
a

)
= 0, (2.15)

and then, by definition, the points on the ridge satisfy

a =: ar(b) =
φ′ψ(0)

φ′f (b)
.

Therefore, the instantaneous frequency φ′f (b) of the function f can be obtained

from this equation once we have determined the ridge of the wavelet transform.

2.5.1 Extraction of the ridge of the wavelet transform

(i) From the modulus of the wavelet transform. In Figure 2.1 we showed

with an example that the modulus wavelet transform has a maximum along the

ridge. The ridge of the wavelet transform can be obtained by computing the

maximum modulus of the wavelet transform (with respect to scale) for each point

in time. Therefore, the maximum in scale for each time t = b corresponds to the

instantaneous frequency of f , using the relation (2.8) (or an analogous one if a

different mother wavelet is used).

The pseudocode of the numerical algorithm for this approach can be found in

the Appendix A.4.
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(ii) From the phase of the wavelet transform. Delprat et al. [13] described

an algorithm is to extract the ridges from the phase of the wavelet transform. This

is explained in the following:

Define the phase of the wavelet transform of f (2.13) as

Ψ(a, b) = Arg(Lψf(a, b)).

From the asymptotic approximation in (2.14), we obtain

Ψ(a, b) ≈ Φab(t0)±
π

4
.

Note that, from the definition of the ridge of the wavelet transform, t0 =

t0(a, b), i.e., Φab(t0) is a function of the variables a and b. Then, computing the

partial derivative with respect to b we have

∂Ψ

∂b
≈∂Φab

∂b

=
∂

∂b

{
φf (t0(a, b))− φψ

(
t0(a, b)− b

a

)}

=φ′f (t0)
∂t0
∂b
− φ′ψ

(
t0 − b
a

)( ∂t0
∂b − 1

a

)

=

[
φ′f (t0)−

1

a
φ′ψ

(
t0 − b
a

)]
∂t0
∂b

+
1

a
φ′ψ

(
t0 − b
a

)

=
1

a
φ′ψ

(
t0 − b
a

)
.

(In the last step, the quantity in brackets is equal to zero due to Equation

(2.15)).

Evaluating at b = b0 (and then t0(a, b0) = b0) we obtain

∂Ψ

∂b

∣∣∣∣
b=b0

≈1

a
φ′ψ

(
t0 − b0
a

)

=
1

a
φ′ψ(0).
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This equation provides an algorithm to extract the scale ar(b0) that solves the

ridge equation t0(ar(b0), b0) = b0, for each time-value b0. The algorithm consists

of finding the fixed point a that solves the equation

a =
φ′ψ(0)

∂bΨ(a, b)
,

for each b fixed. Therefore, given an initial approximation a0, we can produce a

sequence of points aj+1 =
φ′

ψ
(0)

∂bΨ(aj ,b)
that converges to the solution a∗.

In this work we use a combination of the two approaches discussed above:

the initial approximation is obtained from the maximum modulus of the wavelet

transform evaluated on a series of test-frequencies, and then we use the fixed point

algorithm to obtain an exact value of the frequency at each time.

2.6 Two or more frequency components

The definition of instantaneous frequency using the analytic signal has a phys-

ical meaning only for signals that have a single frequency component varying

in time (monochromatic). Although it seems intuitively plausible to consider

functions with more than one frequency component varying in time, the defini-

tion of instantaneous frequency is an ill posed problem in this case, as it has

been pointed out often (see for instance [53]). In the case of two components

f(t) = a1 exp i φ1(t) + a2 exp i φ2(t), several physical restrictions lead to the defi-

nition of the instantaneous frequency as the average of the derivatives of the two

phases, but only in the case that a1 = a2. Oliveira and Barroso [38] introduce

a heterodyne definition of frequency to obtain the average of the two frequencies

agreeing with the definition of instantaneous frequency in the case a1 6= a2, and

also give conditions for the case of n components.

In practice when two frequency time-dependent components are present, we

would like to determine both components, and not only the average. In Hamil-

tonian systems, the coupling between the different dynamical variables produces

that several frequency components are present in each degree of freedom of the
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trajectory, and we want to obtain the exact value of at least one of them. For us,

the case of multicomponent signals can be addressed with a useful definition of

instantaneous frequency, rather than a rigorous one.

Consider the signal f(t) = (2− .0005(t−45)2) exp(2π i (.5t+ .6 sin(t/4))). This

is a monochromatic function with variable phase and amplitude. We see that

the variation of the amplitude is not as important as the oscillations due to the

complex exponential; therefore, the definition of the instantaneous frequency as

the derivative of the phase coincides with our intuition of what the frequency

should be. This turns out to be correct since the function f , as a function of

complex time t, is entire and therefore it satisfies the definition of analytic signal

(Definition 1). In Figure 2.2 a) we plotted the real part of f , and the density

plot of the modulus of its wavelet transform is represented in b); note that the

maximum of this surface for each time value b corresponds to the instantaneous

frequency at that given time, as it can be seen in c).

Consider now the function with two frequency components represented in Fig-

ure 2.3. The function to analyze is f(t) = (1 − .0001(t − 45)2) exp(2π i (.5t +

.6 sin(t/4)))+ .6 exp(2π i (1.2t+ .6 cos(t/4))). Note in the density plot of the mod-

ulus of the wavelet transform (Figure 2.3 b) that there are two ridges corresponding

to two frequency components; the one with highest intensity corresponds to the

component with higher amplitude (around frequency .5), and the band with less

intensity corresponds to the component with lower amplitude (around frequency

1.2). This is, the modulus of the wavelet transform has two local maxima for

each point in time. In this case, we consider as “the dominant frequency” the one

with higher amplitude, corresponding to the absolute maximum. Hence, we define

the instantaneous frequency as the one producing the absolute maximum of the

modulus of the wavelet transform for each time.

This procedure seems to be appropriate for the computation of the instanta-

neous frequency of numerical solutions of Hamiltonian systems. When dealing with

solutions of a general Hamiltonian system (2.3) we want to assign an instantaneous

frequency to a complex time-series of the form zk(t) = xk(t)+i yk(t) (k = 1, . . . , n).
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Figure 2.2: a) Analytic signal with variable phase and amplitude, and b) modulus

of its wavelet transform. In c), we can see that the maximum of the modulus of

the wavelet transform coincides with the instantaneous frequency of the function

defined as the derivative of the instantaneous phase.

Due to the coupling terms, these time-series generally have several frequency com-

ponents. Our aim is to identify n basic frequencies that describe quasiperiodic

motions, and to determine how the frequencies vary in time for the case of chaotic

trajectories. Therefore, in our heuristic solution for the multicomponent case, we

consider only the absolute maximum of the modulus of the wavelet transform of

zk to obtain just one time-varying frequency, and disregard other local maxima.

Although it seems that we lose information by doing this, usually the location of

other local maxima corresponds to the absolute maximum of another variable of

the trajectory, zl. Therefore, we will end up with as many time-varying frequencies
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Figure 2.3: a) Two frequency components with variable phase and amplitude,

and b) modulus of its wavelet transform. In c), we show how the instantaneous

frequency is determined by the absolute maximum (in frequency) for each point

in time.

as degrees-of-freedom of the system.

2.7 Other methods

There are other methods available in the literature to analyze dynamical systems;

particularly to distinguish chaotic from regular trajectories in nearly integrable

Hamiltonian systems. We can mention the method of Lyapunov exponents [29],

frequency analysis [25], and the method of twist angles [11]. We refer the reader

to [17] for an application of these methods to the standard map and a discussion

of the results.
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The main advantage of our time-frequency analysis over other methods is that,

besides the determination of quasiperiodic and chaotic trajectories, it provides de-

tailed information regarding the order of the resonances in case of quasiperiodic

trajectories; furthermore, the treatment of chaotic trajectories is done in a suit-

able way and we are able to detect resonance trappings and resonance transitions

of chaotic trajectories. This information yields good picture of transport in the

phase space. Also the applicability of time-frequency analysis is not restricted

to near-integrable systems, but it can be used to analyze strongly non-integrable

Hamiltonian systems.

Here, as a point of comparison, we outline the method of frequency analysis

by Laskar, that can be seen as a special case of the Gabor transform. We refer

the reader to [27, 25] for a detailed description and the numerical implementation

of the method of Laskar; also see [26] for the analysis of the algorithm and its

convergence.

2.7.1 Gabor transform

To include the time variation in the computation of frequency a second parameter

is introduced in the Fourier transform, that will localize the spectral information

around a given point in time. This results into the Gabor transform [12, 9], in which

the analyzing function is the usual complex exponential of the Fourier transform,

multiplied by a Gaussian function that acts like a time-window:

Ff(q, p) =

∫ ∞

−∞
f(t) e−2πiqt e−(t−p)

2/2σ2

dt

The parameter q is the frequency variable, and the parameter p slides continuously

the Gaussian window that localizes the signal (other windows can be used as

well). In Figure 2.4 a), we represented the analyzing function for two different

frequencies. Note that the shape and size of the window is the same for any value

of the frequency. Since the size of the time window has to be predetermined, this

may produce poor localization and rapid transitions can be missed.
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Figure 2.4: Analyzing functions in a) the Gabor transform, and b) the wavelet

transform. The plots correspond to low frequency and high frequency.

On the other hand and for comparison, in Figure 2.4 b) we represented the

analyzing function in the wavelet transform for different frequencies. Note that

the time window automatically contracts for higher frequencies and expands for

low frequencies, according to the zoom-in and zoom-out capabilities of the wavelet

transform described before. This is the main advantage of the wavelet transform

over the Gabor transform, since this capability of adapting the time window to the

frequency range produces better localization in time of the spectrum information

of the signal.

Laskar’s frequency analysis

The method of frequency analysis by Laskar [27, 25] uses Fourier analysis to obtain

approximations of quasiperiodic solutions by finite series of complex exponentials

of the form
∑N

j=0 cje
2πiωjt, cj ∈ C.

For a nearly integrable system of n degrees of freedom in the action-angle-like

coordinates (I, θ), I = (I1, . . . , In) and θ = (θ1, . . . , θn), Laskar’s frequency analysis
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consists of the numerical computation of the fundamental frequency ωk associated

to each degree of freedom zk =
√
2Ike

iθk of a given trajectory (z1, z2, . . . , zn)(t),

and of the approximation of the solution by an iterative scheme, giving

zk(t) ≈ c1e
2πiωkt +

N∑

j=2

cjke
2πiωj

k
t.

If the given solution is quasiperiodic, a good approximation can be achieved and

the value of the frequency vector ω = (ω1, . . . , ωn) is close to the actual rotation

vector of the trajectory. Thus, with this method we can determine and analyze

quasiperiodic motions in the phase space. For instance one can identify resonant

regions when we have a set of initial conditions for which their frequency vector ω

satisfies a resonance equation k · ω = 0 for some integer vector k.

On the other hand, if the trajectory is chaotic the approximation with a

quasiperiodic series is compromised due to the evolution in time of the fundamen-

tal frequencies. The main idea of Laskar’s approach when dealing with chaotic

trajectories is to compute the fundamental frequencies in disjoint time intervals

of the form [τ, τ + T ] for different values of τ , and observe how they evolve. This

approach has been used extensively in the literature: Chaotic regions are thus

detected when the frequencies associated to a set of initial conditions vary greatly

with respect to time and with respect to initial conditions. However, the selection

of τ and T is a very sensitive part of the procedure, because we have to assume

that the trajectory is regular enough in each interval [τ, τ + T ] to obtain reliable

information from the complex exponential expansions.
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Chapter 3

Time-Frequency Analysis of Classical

Trajectories of the Water Molecule

Abstract

We present a new method of frequency analysis for Hamiltonian Systems of three

degrees of freedom and more. The method is based on the concept of instantaneous

frequency extracted numerically from the continuous wavelet transform of the tra-

jectories. Knowing the time-evolution of the frequencies of a given trajectory, we

can define a frequency map, resonances, and diffusion in frequency space as an

indication of chaos. The time-frequency analysis method is applied to the Baggott

Hamiltonian to characterize the global dynamics and the structure of the phase

space in terms of resonance channels. This three-degree-of-freedom system re-

sults from the classical version of the quantum Hamiltonian for the water molecule

given by Baggott [5]. Since another first integral of the motion exists, the so called

Polyad number, the system can be reduced to two degrees of freedom. The dy-

namics is therefore simplified and we give a complete characterization of the phase

space, and at the same time we could validate the results of the time-frequency

analysis.
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3.1 Introduction

The Baggott Hamiltonian is a quantum model of the water molecule which was

originally developed by Baggott [5] using spectroscopic methods. It is a three-

mode vibrational Hamiltonian featuring 1:1 Darling-Dennison resonance between

the stretch modes and 2:1 Fermi resonance between the bend and stretches, where

the symmetric x,K constraints have been relaxed to obtain better fitting to the

experimental data. It has been used extensively in the literature in classical,

semiclassical and quantum contexts. The same kind of model has been used for

the description of triatomic symmetric molecules such as D2O, NO2, ClO2, O3

and H2S [32]. In these models there exists a constant of the motion known as

the Polyad number, which will translate into an independent first integral in the

classical regime.

The classical version of the Baggott Hamiltonian is obtained using the Hei-

senberg correspondence principle. It is a three degrees of freedom (dof) Hamilto-

nian given in action-angle variables, and as the quantum version, contains 1:1 and

2:1 resonance couplings. The existence of the Polyad number allows the reduction

of the system to 2-dof, and the global dynamics can be studied more easily.

In this work, we were interested in the case of Polyad number P=34.5, which

corresponds to the quantum Polyad 16. This value is used in [22] to study the

quantum-classical correspondence of highly exited states of the molecule.

In [22], a description of the classical phase space was given in terms of res-

onant two-dimensional tori and resonance channels calculated with the Chirikov

resonance analysis. This procedure uses the integrable limits of the Hamiltonian

obtained when only one resonance coupling is considered. The location of the reso-

nance channels was the basis for the classification of the eigenstates of the Baggott

Hamiltonian.

With the method of time-frequency analysis presented in this work, we are able

to locate exactly the resonance channels and to show their angular dependence.

Therefore, the Chirikov analysis gives only an approximation and the treatment
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of the Baggott Hamiltonian as a near integrable one is not so obvious.

We can also identify chaotic trajectories that are trapped temporarily around a

resonant channel, suggesting the concept of time-varying resonances. This notion

can explain how the energy of the system is distributed and how it is transported

along the resonances during the evolution in time.

With the information of the resonances channels and the diffusion of the tra-

jectories, we give a complete characterization of the dynamics in the phase space.

The organization of this chapter is as follows: In Section 3.2 we present the

Baggott Hamiltonian, and describe the reduction of the system to 2-dof. The time-

frequency analysis based on wavelets was used to analyze the classical trajectories

of this system; this is presented in Section 3.3 together with the description of how

the resonance structures determine the dynamics of the system. We also identify

the chaotic zones in the phase space by numerically computing the diffusion of the

system. The conclusion is found in Section 3.4. In the Appendix A.5, we describe

the transformations to obtain the 2-dof Baggott Hamiltonian.

3.2 Baggott Hamiltonian

The classical version of the quantum Hamiltonian for the water molecule by Bag-

gott [5] is given by

H = H0 +H1:1 +H2:2 +H2:11 +H2:12 , (3.1)

H0 =Ωs(I1 + I2) + ΩbI3 + αs(I
2
1 + I22 ) + αbI

2
3 + εssI1I2 + εsbI3(I1 + I2),

H1:1 =(β12 + λ′(I1 + I2) + λ′′I3)(I1I2)
1/2 cos(θ1 − θ2),

H2:2 =β22I1I2 cos 2(θ1 − θ2),

H2:11 =βsb(I1I
2
3 )
1/2 cos(θ1 − 2θ3),

H2:12 =βsb(I2I
2
3 )
1/2 cos(θ2 − 2θ3),
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where (I1, I2, I3, θ1, θ2, θ3) are action-angle coordinates.

The Baggott Hamiltonian is a three-degree-of-freedom (dof) system exhibiting

2:1 resonance between the bend and stretch modes, and 1:1 and 2:2 resonances

between the two stretch modes. There is a permutation symmetry between the

indices 1 and 2, and also note that the Hamiltonian is not differentiable at I1 = 0 or

I2 = 0. The values of the parameters are obtained to fit the experimental spectra.

We used here the notation in [22]. See Table 3.1.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ωs 3885.57 (cm−1)

Ωb 1651.72

αs −81.99

αb −18.91

εss −12.17

εsb −19.12

β12 −112.96

λ′ 6.04

λ′′ −0.16

β22 −1.82

βsb 18.79

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Table 3.1: Parameters of the Baggott Hamiltonian.

The system possesses a first integral which is the classical expression of the

quantum Polyad number of the system. It is given by

P = 2(I1 + I2) + I3. (3.2)

This constant of motion P is related to the quantum Polyad P by P = 2P+5/2 [22].

Equation (3.2) implies that the values of the actions are bounded: 0 < I1 < P/2,

0 < I2 < P/2 and 0 ≤ I3 < P .
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Figure 3.1: Energy levels for a slice of the phase space corresponding to θ1 = θ2 =

θ3 = 0, projected onto the action plane (I1, I2), with I3 = P − 2(I1 + I2), and

P = 34.5.

In this work, we study the Polyad number P = 34.5, that corresponds to the

quantum Polyad number P = 16. This is the same value used in [22] to study

highly excited states of the molecule. We will use time-frequency analysis based

on wavelets to give a more accurate and complete characterization of the phase

space for this Polyad number.

Taking the angles θ1 = θ2 = θ3 = 0, the intersection of the energy surfaces

H = H0 with the plane P = 34.5 can be drawn as contours projected to the plane

I1, I2, since I3 is obtained from Equation (3.2). These contours are represented in

Figure 3.1.

Equation (3.2) will allow us to reduce the Baggott Hamiltonian to a 2-dof

system. Via successive canonical transformations we obtain first the Hamiltonian

in normal coordinates, and then a system in action-angle variables (N1, N2, N3,

ψ1, ψ2, ψ3) for which the third action satisfies

N3 = P,
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and the conjugate angle ψ3 does not appear explicitly in the Hamiltonian, as we

should expect. The details of these transformations can be found in the Appendix

A.5.

Therefore, for a fixed value of P , the system can be considered as a 2-dof system

in the variables (N1, N2, ψ1, ψ2), and afterwards we can solve for the third angle

ψ3.

The 2-dof Hamiltonian is given by

H =α1N1 + α2N2 + α3 + β3N
2
1 + β4N1N2 + β5N

2
2 (3.3)

+ β1
√
N1 +N2(−2N2 + P ) cosψ2

− β2(N21 +N1N2) cos 2ψ1.

For the Polyad number P = 34.5, the values of the parameters are given in

Table 3.2.
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 −112.96− .16P = −118.48

α2 525.65 + 56.44P = 2472.83

α3 1651.72P − 18.91P 2 = 34476.71

β1 26.5731

β2 −76.8150

β3 73.1750

β4 79.5350

β5 −78.7125

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Table 3.2: Parameters of the 2-dof Hamiltonian (in cm−1) for P = 34.5.

Since the Baggott Hamiltonian can be reduced to a 2-dof system, it is possible

to construct Poincaré maps to obtain a global view of the dynamics for P fixed

and a particular value of the energy H = H0.
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In action-angle coordinates (N1, N2, ψ1, ψ2), the Poincaré section we defined is

Σ = {(N2, ψ2) : H(N1, N2, ψ1, ψ2) = H0, ψ1 = 0, ψ̇1 > 0}.

The plots of the Poincaré maps for P = 34.5 and different values of the energy

H0 are shown in Figure 3.2. We can observe alternation between chaotic and

regular motions, and the chaotic motion predominates for higher values of the

energy.

3.3 Wavelet time-frequency analysis of the Baggott

Hamiltonian

For completely integrable Hamiltonian systems in action-angle variables H(I, θ) =

H0(I) the frequency map is defined by

I → ω(I) =
∂H0
∂I

.

This map characterizes trajectories for nearly integrable systems as well, since the

non-resonant tori are preserved under small perturbations, according to the KAM

theorem.

The computation of time-varying frequencies enables the assignment of frequen-

cies even for non-nearly-integrable cases. The time-frequency analysis we present

relies on a frequency map computed numerically with the wavelet approach de-

scribed in Chapter 2, particularly in Sections 2.3 and 2.5.

We perform time-frequency analysis of the Baggott Hamiltonian for the case

P = 34.5.

To define the frequency map, we proceed as follows: constrain the initial con-
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Figure 3.2: Poincaré sections for P = 34.5, ψ1 = 0, ψ̇1 > 0.
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ditions to a particular slice of the phase space given by

0 < I1 < P/2, 0 < I2 < P/2, I1 + I2 ≤ P/2, (3.4)

I3 = P − 2(I1 + I2),

θ1 = θ2 = θ3 = 0,

(see Figure 3.1).

For a given initial condition (I01 , I
0
2 ) in this slice, we obtain numerically the

trajectories over the time interval [0, T ] and express them in complex coordinates

zk(t) =
√

2Ik(t) e
iθk(t), k = 1, 2, 3, for t ∈ [0, T ]. We then obtain the evolution in

time of the associated fundamental frequencies ωk(t) for t ∈ [0, T ], by computing

the maximum of the modulus of the wavelet transform (see Section 2.5). The

frequency map is then defined as

(I01 , I
0
2 , I

0
3 ) −→ (ω1, ω2, ω3)(t), t ∈ [0, T ].

The procedure for the computation of the frequency map can be summarized

as follows:

1. Grid of initial conditions.

The initial conditions in the slice (3.4) are evenly spaced in the coordinates

(I1, I2) in the form:

I01 = 0.1 ∗ k, k = 1, . . . , 172

I02 = 0.1 ∗m+ .01, m = 1, . . . , 172− k.

2. Numerical integration of the trajectories.

For each initial condition, the trajectory is numerically integrated over a time

interval [0, T ], T = 5.7. We use a Runge-Kutta method of order 7-8, with

automatic step size control (approx. 100,000 iterations). The trajectory is
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expressed in complex coordinates:

zj =
√

2Ije
iθj , j = 1, 2, 3.

The step size is small to ensure small error of the integration method. For the

computation of the frequency, the complex time series z1, z2, z3 are sampled

leaving their lengths of approximately 10000 points not equally spaced in

time. This sampling does not have an effect on the accuracy of the method,

and reduces the computational time due to less multiplications in the evalu-

ation of the wavelet transform.

3. Computation of the frequencies.

For each time series z1, z2 and z3, we compute a series corresponding to the

evolution in time of the fundamental frequencies ω1, ω2, ω3. The frequency

is obtained from the scale producing the maximum modulus of the wavelet

transform at each time point. This was done with the routines in Appendix

A.4.

Some examples of time-frequency analysis for the Baggott Hamiltonian are

shown in Figure 3.3.

The reduction to 2-dof of the Baggott Hamiltonian allows us to compare the

frequency map analysis with the Poincaré map for each trajectory. In this way we

can decide whether a given trajectory is quasiperiodic or chaotic, and see that there

is an exact correspondence with time-frequency analysis: quasiperiodic trajectories

have frequencies that remain constant in time, whereas chaotic trajectories have

frequencies with large variation in time.

Time-frequency analysis based on wavelets has the obvious advantage over

Poincaré maps of being applicable to any number of degrees of freedom; besides it

provides a quantitative as well as a qualitative method to characterize quasiperi-

odic, resonant and chaotic motions. The advantage over the Laskar approach of

frequency analysis, described in Section 2, is the improved resolution of the evolu-

tion in time of the frequencies associated with the trajectory. Due to the “zoom-in”
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ries.
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and “zoom-out” capabilities of wavelets (see Section 2.3), we do not have to assume

slow transition of the frequencies or to propose a priori the size of the interval in

which the trajectory behaves close to quasiperiodic, which is a sensitive part of

the Laskar approach.

With time-frequency analysis, quasiperiodic trajectories can be identified due

to the small deviation of ωk(t) from its mean value ω̃k . This mean value is

actually the value that we would obtain with the method of Laskar; thus we can

recover the results obtained with that approach. We can define a “mean frequency

vector” (ω̃1, ω̃2, ω̃3) that corresponds to the fundamental frequency in the case of

quasiperiodic solutions.

With this in mind we can compute the Arnol’d web, which is the mapping of

the actions to the frequency ratios:

(I01 , I
0
2 ) −→

(
ω̃1
ω̃3
,
ω̃2
ω̃3

)
.

For a grid of evenly spaced initial conditions (I01 , I
0
2 ) in the slice (3.4), we

performed time-frequency analysis and plotted the Arnol’d web in Figure 3.4.

We can observe the lines corresponding to resonance equations:

k1ω̃1 + k2ω̃2 + k3ω̃3 = 0,

for some integers k1, k2, k3. Therefore, the main resonances found are the ones

we expected for the form of the Hamiltonian: 1:1 resonance between I1 and I2

(stretches), and 2:1 resonance between I1 and I3, and between I2 and I3 (stretch-

bend). We found also higher order resonances, all of them intersecting at the same

point. See Figure 3.4.

Note in Figure 3.4 that the resonance line ω̃1 = ω̃2 (the 45o line) is rather

isolated, yielding to the conjecture that this resonance exists, but it does not

have a large effect on the quasiperiodic motion nearby. On the contrary, the 2:1

resonance lines (the vertical line ω̃1/ω̃3 = 2 and the horizontal line ω̃2/ω̃3 = 2) are

surrounded by many dots, indicating that the 2:1 resonance has a strong effect on
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Figure 3.4: Arnol’d web of the Baggott Hamiltonian for P = 34.5.

the motion for this particular slice of the phase space.

3.3.1 Resonance channels

With time-frequency analysis we can locate the resonant trajectories, i.e., initial

conditions for which their mean frequencies satisfy a given resonance equation

up to certain accuracy. Inverting the frequency map, we can find the resonant

regions in the phase space; the results for the Baggott Hamiltonian are presented

in Figure 3.5. We can see that the predominant resonances are in three areas,

one corresponding to 1:1 resonance on the symmetry line I1 = I2, and two regions

corresponding to the 2:1 resonances. There are also higher order resonances, as

indicated in the Figure 3.4.
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We also plotted in Figure 3.5 some invariant two-dimensional stable tori with

initial conditions in the slice. The tori were found as stable fixed points of the

Poincaré maps of the 2-dof system (3.3): these points correspond to stable periodic

orbits for the four-dimensional system, and these periodic orbits correspond to

stable 2-tori of the six-dimensional Baggott Hamiltonian (3.1). We can see in

Figure 3.5 that the resonant tori are at the center of the so called resonance

channels, i.e., initial conditions strongly affected by the existence of the resonance.

In [22], Keshavamurthy and Ezra consider the H0 part of (3.1) as the unper-

turbed Hamiltonian, and the remaining terms as small perturbations. Then, they

define the frequencies as in the near-integrable case, i.e., as the partial derivatives

of H0 with respect to the actions. These frequencies were used to determine the

classical resonances. They also obtained the resonance channels using the Chirikov

analysis, a procedure that uses the integrable limits of the Hamiltonian, i.e., when

some terms are neglected.

Figure 1 in [22] has some similarities with our Figure 3.5, regarding the location

of the main resonances, the resonant tori, and the resonance channels. However,

the results of the time-frequency analysis we present correspond to the full Hamil-

tonian (3.1), and not only to the integrable approximations used in [22].

We can observe in Figure 3.4 that all the resonances intersect at the same

point. This can be seen also in Figure 3.5, since around the point (I1, I2) =

(7.2703, 7.2703) the resonance channels overlap. We will show in Section 4.2 that

there is a periodic orbit passing through this point, that corresponds to the inter-

section of the two main resonances, 1:1 and 2:1.

3.3.2 Diffusion

The concept of diffusion of a trajectory is used generally to describe a drift in the

action variables and characterize unstable motion in the phase space. This concept

can be translated to a variation in frequencies using the method of time-frequency

analysis.

We explained before that the chaotic motion is characterized by the variation in
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time of the frequencies with respect to their mean value. The size of this variation

is closely related to the drift of the trajectory in action space, this is something that

we can check again by looking at the Poincaré map. If the trajectory is strongly

chaotic, i.e., if it fills up a big area of the Poincaré section in a short time, there

is a large deviation of the frequencies from their mean value. This motivated our

definition of diffusion of a trajectory in terms of the frequencies:

Definition 4 For a trajectory with initial conditions (I0, θ0), time-frequency anal-

ysis provides the evolution in time of its fundamental frequencies: ω1, ω2, ω3 in

[0, T ]. Then we define the diffusion of the trajectory over the interval [0, T ] by

diffusion(I0, θ0) = dev1 + dev2 + dev3,

where

devk =
1

T

∫ T

0
|ωk(t)− ω̃k|dt.

Laskar [25] used an approximation of the second derivative of the frequency

map with respect to initial conditions as an indicator of the chaotic behavior of the

trajectory. He also showed some examples for which this approximation is propor-

tional to the derivative of the frequency map with respect to time, calculated as the

difference of the frequency in two successive intervals of time. Arguing that this

relation is characteristic of diffusion, he used these approximations interchangeably

as a measure of the diffusion of the trajectory in frequency space.

Our definition of diffusion also makes use of this correspondence between

chaotic trajectories and variation of the frequencies. However, we include all the

spectral information of the trajectory in the interval [0, T ], given by the frequency

map. Meanwhile, Laskar used only the “mean frequencies” in two successive in-

tervals. It is clear that the better resolution we achieve with frequency analysis

based on wavelets yields a more dynamic indicator of the diffusion.

We compute the diffusion of the Baggott Hamiltonian in the slice (3.4) with the

frequency map described above. Therefore, to each initial condition in the slice,
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we associate the diffusion and plot a density graph corresponding to this slice of

the phase space. The results of these computations are shown in Figure 3.6. This

figure renders the symmetry of the system with respect to I1 and I2 (recall that the

initial conditions were taken symmetric, θ1 = θ2). The quasiperiodic areas (low

diffusion) and chaotic areas (high diffusion) are well distinguished. We can observe

that for low values of the energy (see also Figure 3.1), most initial conditions have

low diffusion; however, as the energy increases, we observe alternation between

low and high diffusion, showing the coexistence of regular motion and strongly

chaotic motion. When the energy is close to the maximum (around the point

(I1, I2) = (7.2703, 7.2703)), large diffusion predominates but it is not as large as

in some other regions, indicating that all trajectories are chaotic but they do not

have much room to wander.

Figure 3.6 confirms the results in Figure 3.5: The resonance channels have zero

or very low diffusion, that is, the values of the frequencies remain fairly constant

in time and therefore the motion is quasiperiodic in those areas. The symmetry

line I1 = I2, corresponding to the 1:1 resonance, is surrounded by quasiperiodic

motion for low values of the energy (up to 46500 cm−1). For higher values of

the energy, the symmetry line is surrounded by trajectories with large diffusion

(strongly chaotic); therefore, the 1:1 resonance channel is very thin in this slice.

Basically it includes only the line I1 = I2. On the contrary, the 2:1 resonance

channels correspond to a large region with low diffusion, then the resonant 2-tori

are surrounded by quasiperiodic trajectories strongly affected by the resonance.

All the results in the diffusion plot correspond exactly to the analysis of the

Poincaré maps (Figure 3.2). We have picked some points in Figure 3.2 on the

line ψ2 = 0, and the same points have been plotted in the original coordinates in

Figure 3.6 with their corresponding energy contours. This allows us to compare

the dynamics in both figures, as we do in the following. Note we only plotted

points with I1 < I2; the symmetric points with I1 > I2 correspond to a different

Poincaré section and the analysis is analogous.

For low values of the energy H0, all the trajectories are quasiperiodic (see



55

points A1, A2, A3). When H0 increases, chaotic motion appears (see the point B1)

alternating with regular motion.

In the Poincaré sections we can observe quasiperiodic trajectories for large

values of N2 (points B3, C3, D3), some of them in resonant islands (points A3,

E3). For all these trajectories, the value of I3 is small, or equivalently I1 + I2 ≈
P/2; physically this corresponds to initial conditions with the bend mode close to

equilibrium.

The 2:1 resonance channel corresponds to the large regular area at the center

of the Poincaré sections, appearing for the first time around 48800 cm−1. This

regular area remains up to values of the energy around 53100 cm−1, for instance

between the points C1 and C2 and between the points D1 and D2; the closed curves

we see in the Poincaré sections between these points correspond to quasiperiodic

trajectories lying on invariant 3-tori of the 3-dof system; these trajectories form

the resonance channel, since they have frequencies close to the 2:1 resonance.

Note in both Figure 3.5 and 3.6 that the boundary of the 2:1 resonance channel

has some “fingers” or gaps. These are consequence of the alternation between small

regular islands and chaotic regions that we can observe in the Poincaré sections.

The islands correspond to higher order resonances that we did not plot.

At the point E2 in Figure 3.6 the 2:1 resonance channel breaks. This can be seen

also in the Poincaré section for H0 = 53100 cm−1: Instead of the regular region,

there is a saddle point surrounded by chaotic trajectories. The corresponding

2-torus is unstable.

For H0 = 53600 cm−1 we find several resonances, the point F1 is in the 2:1

resonance between I1 and I3, and the point F3 is in the 2:1 resonance between I2

and I3. There is also a small quasiperiodic region with 1:1 resonance. All these

resonances alternate with chaotic trajectories.

The quasiperiodic regions disappear completely around 53900 cm−1, and from

here to the maximum (54340 cm−1) all trajectories have large diffusion, corre-

sponding to Poincaré sections filled with chaotic trajectories.

Comparing the resonance plot and the diffusion plot (Figures 3.5 and 3.6), we
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observe some quasiperiodic areas which are not close to resonance (for instance

the region around points B3 and C3). These areas may act as boundaries for the

diffusion of trajectories. To explain this with an example, in Figure 3.7 we plot

different representations of one chaotic trajectory: a) the Poincaré map, b) its

frequency evolution in time, and c) the frequency ratios (dark line) on top of the

Arnol’d web (dots). Note there is an accumulation of points around a resonant

island of the Poincaré section, corresponding in b) to the beginning where the

trajectory is close to the 2:1 resonance. After certain time the trajectory leaves

this resonance, but we can observe that it wanders around the resonances 2:1 and

1:1. This is more clear in c), the trajectory passes by the three main resonance

lines; however, it remains around the point (ω̃1/ω̃3, ω̃2/ω̃3) = (2, 2), and never

goes to the regions corresponding to quasiperiodic trajectories.

This particular trajectory is not the exception; it can be observed in many

chaotic trajectories that their frequencies wander around the main resonances when

they evolve in time. This suggests the concept of time-varying resonances, i.e., tra-

jectories for which their frequencies are trapped temporarily around a resonance,

but they leave for another resonance and so forth. Energy transport between the

different modes of the motion can occur in this way via chaotic trajectories.

3.3.3 Two more slices of the phase space

All the analysis that we have done so far was for the particular slice of the phase

space given in (3.4). We have shown how frequency analysis allows a complete

description of the phase space for initial conditions in that particular slice.

To obtain a more complete analysis of the phase space, we consider two different

slices, and perform time-frequency analysis on them with the same procedure as

before. Figures 3.8 and 3.9 show the resonance channels and the diffusion plot for

initial conditions evenly spaced in action space, and angles given by

θ01 = π, θ02 = 0, θ03 = 0,
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and

θ01 = π, θ02 = π, θ03 = 0,

respectively.

Observe that Figure 3.8 is no longer symmetric as a result of nonsymmetric

initial conditions. In this slice we can observe that the 1:1 resonance between the

stretches (I1 and I2) is predominant, and the 2:1 resonance between I1 and I3 is

not present. This shows how the Chirikov resonance analysis performed in [22]

disregards the angular dependence of the resonance channels. The structure of

the phase space can hardly be understood with the integrable approximations of

the Hamiltonian. The Baggott Hamiltonian cannot be treated as nearly integrable

without losing important features of the dynamics.

In Figure 3.9 the initial conditions are symmetric; however, we can observe new

higher order resonances occupying large regions of the slice, showing a different

structure from that of (3.4).

3.3.4 Some more phase space structure

It is still interesting to look at the symmetry line I1 = I2. This line corresponds

to N1 = 0 in the reduced coordinates (3.3) and is invariant under the 2-dof flow.

In the full six-dimensional phase space, this invariant surface is two-dimensional

when the energy is fixed.

We can study the flow on this surface by looking at the intersection of the set

N1 = 0 with a constant energy surface H = H0. The intersection can be expressed

as the invariant curve

Q1 = {(0, N2, 0, ψ2) : α3 + α2N2 + β5N
2
2 + β1

√
N2(−2N2 + P ) cosψ2 = H0}

(where to avoid the indefinition of the angle ψ1 for N1 = 0, we have fixed it

arbitrarily as 0). The curves for several values of H0 can be observed in Figure

3.10.

Note that the fixed points of the 2-dof system in Q1 correspond to periodic
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orbits when the third angle ψ3 is considered; therefore, they are periodic orbits of

the full 3-dof system (3.1). The fixed point at ψ2 = 0, N2 = 14.5406 is a center-

saddle point for the 2-dof system; therefore, the corresponding periodic orbit of the

3-dof system has a three-dimensional center manifold, a two-dimensional unstable

manifold and a two-dimensional stable manifold. Its coordinates in the original

variables are expressed as I1 = I2 = N2/2 = 7.2703, I3 = P − 2N2, θ1 = θ2 = 2ψ3,

θ3 = ψ3.

Furthermore, this periodic orbit can be found directly in the original coordi-

nates (3.1) if we solve for the intersection of the resonance channels 1:1 and 2:1;

that is, solving the equation θ̇1 = 2θ̇3 for I1 considering I1 = I2 and θ1 = θ2 = 2θ3.

We have to note that this periodic orbit is located at the global maximum of the

energy H restricted to the slice (3.4).

Since most of the curves Q1 are closed (ψ2 is an angle in [0, 2π]), they corre-

spond to two-dimensional tori in the six-dimensional system. Observing that the

line ψ2 = 0 in Figure 3.10 corresponds exactly to the line I1 = I2 with I1 = N2/2,
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then we can conclude that this line is foliated with invariant 2-tori (with the ex-

ception of the periodic orbit we just mentioned above).

Another invariant surface of the 2-dof flow (3.3) is given by N2 = P/2, since

for this value Ṅ2 = 0. This surface corresponds to the invariant set I3 = 0 in

the original coordinates (3.1). In other words, the bend mode is in equilibrium.

This is the case of a system with only the 1:1 stretch coupling that can be reduced

to 1-dof, therefore completely integrable. In [54], this problem is studied and a

complete characterization of the phase space in terms of P is given.

The intersection of the surface N2 = P/2 with a constant energy manifold can

be written as

Q2 = {(N1,
P

2
, ψ1, ψ2) : α3 + α2

P

2
+ β5

P 2

4
+ (α1 +

β4
2
P )N1+

β3N
2
1 − β2N1(N1 + P/2) cos 2ψ1 = H0}.

The intersection of this surface for a given value of H0 with a plane ψ2 = constant

is represented by a curve in the Figure 3.11.

The expression of Q2 we obtained here corresponds exactly to the normal

mode representation of the Hamiltonian in [54]. In that work, they propose a

reparametrization of the trajectories such that the phase space is a sphere with

constant Polyad number. We refer the reader to that work for a detailed explana-

tion of the bifurcations in the phase space.

We will see that Q2 is a two-dimensional manifold in the phase space. Since

I3 = 0, the conjugate angle θ3 must be fixed arbitrarily to avoid indefinition, say

θ3 = 0. After the coordinate transformations, this implies ψ3 = 0. For H0 fixed,

Q2 is two-dimensional manifold when ψ2 is considered. More precisely the closed

curves in Figure 3.11 are two tori for the 2-dof system. Since the third angle

ψ3 = 0, they are also 2-tori in the full six-dimensional phase space.

The fixed points in Q2 are actually periodic orbits of the 2-dof system (ψ2 ∈
[0, 2π]). Again, since ψ3 = 0, they are periodic orbits for the full six-dimensional
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Figure 3.11: Intersection of the invariant surfaces Q2 = {N2 = P/2} with a plane

ψ2 = constant, for different values of H0.

system. The fixed points at N1 = −8.59, ψ1 = 0, π are elliptic, then the cor-

responding periodic orbits are stable and they can be expressed in the original

coordinates as I1 = 17.2499, I2 = .00004, I3 = 0, θ1 = θ2 = ψ2, θ3 = 0, and the

symmetric point I1 = .00004, I2 = 17.2499.

In the intersection of Q1 and Q2 there is another periodic orbit, with coordi-

nates N1 = 0, N2 = P/2, ψ1 = 0 and ψ2 ∈ [0, 2π]. The coordinates of this orbit in

the six-dimensional phase space are I1 = I2 = P/4, I3 = 0, θ1 = θ2 = ψ2, θ3 = 0.

This periodic orbit is unstable.

Some fixed points of (3.3) not lying in the invariant surfaces can be found

solving numerically the equations ψ̇1 = 0, ψ̇2 = 0 with ψ1 = 0, π and ψ2 = 0.

These points correspond to periodic orbits for the six-dimensional phase space,

since the third angle ψ3 is a parameter in [0, 2π]. Their coordinates in the original

variables are I1 = 10.27, I2 = 0.0009, I3 = 13.9504, θ1 = θ2 = 2ψ3, θ3 = ψ3; and

its corresponding symmetric point, I1 = 0.0009, I2 = 10.27; the orbits are stable.
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3.4 Conclusion

The method of frequency analysis based on wavelets that we have presented is

a good alternative to study a wide range of dynamical systems. Since wavelet

analysis allows simultaneous localization in frequency and time, we can compute

time-varying frequencies associated to trajectories, and in this way characterize

the motion of systems with oscillatory trajectories.

Time-frequency analysis based on wavelets proved to be very suitable for the

Baggott Hamiltonian due to the vibrational character of the solutions. For this

system, the fundamental frequencies are obtained with great accuracy in the case

of quasiperiodic solutions.

And due to the capability of adjusting the time window automatically for every

frequency, with the wavelet approach we compute more reliable information about

the variation in time of the frequencies of chaotic trajectories. This is the main

advantage with respect to the frequency analysis of Laskar, where a fixed interval

of time is used, disregarding the possibility of rapid transition in the frequencies.

Also, the definition of diffusion we present seems more adequate than the one

given by Laskar. Since we are capable to compute the variation with respect to

time of the frequencies, we obtain an indicator of the diffusion at every time.

With frequency analysis based on wavelets, we were able to characterize the

phase space of the Baggott Hamiltonian for the Polyad number P = 34.5. We have

located the resonance channels, the quasiperiodic motion and the regions with large

diffusion, producing an exact picture of the global dynamics of the system. We

also showed the angular dependence of the resonance channels, concluding that

the system cannot be treated as a nearly integrable one.
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Chapter 4

Transport and Resonance Transitions in the

Restricted Three Body Problem

Abstract

Our method of time-frequency analysis based on wavelets is applied to the problem

of transport between different regions of the Solar system, based on the model of

the planar circular restricted three body problem. The method is based on the

extraction of instantaneous frequencies from the wavelet transform of the numer-

ical solutions. Time-varying frequencies provide a good diagnostic tool to discern

chaotic trajectories from regular ones, and we can identify resonance islands that

greatly affect the dynamics. Good accuracy in the calculation of time-varying fre-

quencies allows us to determine resonance trappings of chaotic trajectories, and

resonance transitions. We show the relation between resonance transitions and

transport between different regions of the phase space.

4.1 Introduction

In Hamiltonian systems that feature chaotic dynamics, transport in the phase

space is greatly affected by the existence of resonance islands: chaotic trajectories

can be trapped around a resonance for a long time, or can wander around different

islands.
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The goal of this work. We propose the use of a wavelet-based method of time-

frequency analysis to study the dynamics of Hamiltonian systems for which the

trajectories display oscillatory behavior. This method was introduced in [49] to

study the global dynamics of a molecular system; however, it can be applied in a

large variety of systems. This chapter presents the application of this method to

the well known planar circular restricted three body problem.

Wavelet-based time-frequency analysis. Time-frequency analysis is a nu-

merical tool that allows us to distinguish between regular and chaotic trajectories

by computing time-varying frequencies associated with the trajectories. Since

quasiperiodic trajectories are characterized by constant frequencies, the variation

in time of the frequency is a good indicator of chaos.

The method allows us to detect resonance islands that greatly affect the dynam-

ics of the system in the sense that they “capture” temporarily chaotic trajectories

nearby. We can show that chaotic trajectories that remain around a resonance

island for some time have frequencies that satisfy the resonance equation during

that interval of time. This process is what we call a resonance trapping. Since

the method we propose yields good accuracy in the frequency evolution, we know

exactly when a chaotic trajectory has been trapped, or has undergone a transi-

tion between resonances. We show how the resonance transitions are related to

transport in the phase space.

The PCRTBP. The planar circular restricted three body problem

(PCRTBP) has been a subject of extensive study in the disciplines of astrodynam-

ics, celestial mechanics and dynamical systems. This is the problem that inspired

H. Poincaré in the development of what we know now as the qualitative theory of

dynamical systems.

The PCRTBP is a Hamiltonian system of two degrees of freedom, for the

motion of a small body attracted by the gravitational forces of two other bodies

orbiting in circles. The model can be applied to systems like the Sun-Jupiter-
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comet, or the Earth-Moon-satellite, and the assumptions allow this model to be

the starting point in the design of space missions. The PCRTBP has been as well

a benchmark for testing dynamical systems techniques.

Application of time-frequency analysis. The main motivation to apply this

technique to the PCRTBP arises in the context of the results of Koon et al. [23]

that related the transport mechanism with resonance transitions. In particular, we

found that the time-varying frequencies associated with the orbits in the inertial

frame provide enough information to detect transitions between different regions of

the phase space. In this work, time-frequency analysis is applied to the restricted

three body problem to study the transport mechanism between the interior and

exterior regions of the Solar System. This is why time-frequency analysis is so

important for this problem.

Koon et al. [23] show the existence of heteroclinic connections between periodic

orbits around the libration points L1 and L2 (the Lyapunov orbits) with the same

energy. The heteroclinic connections are obtained as a result of the intersections

of the invariant manifolds associated to the Lyapunov orbits, and these intersec-

tions occur in the regions corresponding to the 2:3 and 3:2 resonances. Since the

invariant manifolds of the Lyapunov orbits are two-dimensional objects that form

tubes in a three-dimensional energy surface in phase space, these tubes provide

dynamical channels between different regions of the phase space. Therefore, by

following the structure of these tubes, Koon et al. [23] were able to describe an

important ingredient in transport in phase space.

With time-frequency analysis we are able to add the time component to the

picture given by the invariant manifolds: by keeping track of the resonance tran-

sitions, we know where the system is at a given point in time; in other words, we

know what trajectories are trapped in the different resonances during some period

of evolution. Using this approach, we are able to detect key regions in the phase

space in which rapid resonance transitions occur.

Since we know exactly when resonance transitions take place, we are able to
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describe the occurrence of resonance transitions between the outer resonances and

the inner resonances. This will provide an indication of transport between the

exterior and interior regions of the Solar system in terms of time.

An additional advantage over the invariant manifold approach to study trans-

port is the dimensionality of the problem. The computation of invariant manifolds

can be extremely difficult, especially for higher dimensional systems and for long-

time evolution. Time-frequency analysis provides a good and computationally

efficient approach to study transport. Although the calculations in this work are

done for the planar restricted three body problem, which is two degrees of freedom,

by design time-frequency analysis based on wavelets is generalizable to systems of

three degrees of freedom or more. The analysis of the spatial three body problem

is promising work in progress.

The organization of this chapter is as follows. In Section 4.2 we describe the

equations of motion and general aspects of the dynamics of the PCRTBP. The

application of time-frequency analysis based on wavelets is described in 4.3, and

the results are presented in Section 4.4. Finally, the conclusions are in Section

rtb:conclusions.

4.2 Description of the PCRTBP

The planar circular restricted three body problem (PCRTBP) is a system in which

a small body moves in a plane under the attraction of two primary bodies moving

in circular orbits. For instance, the primaries can be the Sun and Jupiter, and the

problem will consist of the description of the motion of a comet. The motion of

the two primaries is restricted to a particular solution of the Kepler problem: the

two bodies move in circular orbits around their center of mass. The third body is

assumed to be a “point mass,” i.e., it is small enough so that the motion of the

primaries is not influenced by its presence.

When the time and position coordinates are normalized [45], the system has

only one parameter µ, which is the ratio between the mass of one primary and the
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total mass of the system. For instance, for the Sun-Jupiter system with masses

mS and mJ , the mass parameter is

µ =
mJ

mJ +mS
= 0.0009537.

The equations of motion of the third body are given in the coordinates (x, y)

of a system of axes rotating at the same angular velocity as the primaries. In this

frame, the primaries are fixed at the points (−µ, 0) and (1− µ, 0). The equations

of motion can then be expressed as

ẋ =vx,

v̇x =2vy + x− (1− µ) (x+ µ)

r31
− µ (x− 1 + µ)

r32
,

ẏ =vy, (4.1)

v̇y =− 2vx + y − (1− µ) y
r31

− µ y

r32
,

where r1 =
√

(x+ µ)2 + y2 and r2 =
√

(x− 1 + µ)2 + y2.

The equations of motion (4.1) are the Euler-Lagrange equations corresponding

to the Lagrangian function given by

L =
1

2

(
(vx − y)2 + (vy + x)2

)
+

[
1− µ
r1

+
µ

r2
+
µ(1− µ)

2

]
.

The corresponding conserved energy is given by

E =
1

2
(v2x + v2y)−

[
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+
µ(1− µ)

2

]
. (4.2)

The energy is related to the Jacobi constant C [45] by E = −C/2.
In this work we are interested in the system Sun-Jupiter-Comet, for values of

the energy close to that of comet Oterma, E = −1.515 (Jacobi constant C = 3.03).

(For a description of the motion of comet Oterma, see [23]).

System (4.1) can also be expressed in Hamiltonian form via the Legendre trans-
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formation from the Lagrangian L, with the momenta defined as

px = vx − y, py = x+ vy,

and Hamiltonian function given by,

H =
1

2
[(px + y)2 + (py − x)2]−

1

2
(x2 + y2)− 1− µ

r1
− µ

r2
− µ(1− µ)

2
.

From the equation of conservation of energy (Equation 4.2), one immediately

notices that

v2x + v2y = 2E + (x2 + y2) + 2
1− µ
r1

+ 2
µ

r2
+ µ(1− µ) ≥ 0.

This inequality provides the values of the position coordinates x, y for which the

motion is allowed; this region is known as the Hill’s region. The boundary of the

Hill’s region is formed by the curves for which vx = vy = 0 for a specific value of

the energy E.

The Hill’s region for the Sun-Jupiter system is displayed in Figure 4.1. Note

that the forbidden region defines three areas where motion is possible: the interior

region around the Sun, the Jupiter region, and the exterior region.

Equilibrium points and their stability. The PCRTBP has five equilibrium

points: the so called libration points L1, L2 and L3, and the Lagrangian or equilat-

eral points L4 and L5. The values of the energy that we study are slightly higher

than the value of the energy at L2. The corresponding Hill’s region for these val-

ues divide the phase space in three areas: the interior region around the Sun, the

Jupiter region, and the exterior region. See Figure 4.1 for a scheme of the Hill’s

region and the position of the libration points.

By analyzing the linear dynamics around the fixed points L1 and L2, it follows

from Lyapunov’s center theorem that there is a family of periodic orbits around

each fixed point parameterized by the energy. These Lyapunov orbits are unstable;
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Figure 4.1: Hill’s region of the Sun-Jupiter system. Motion is possible in the

interior region around the Sun, the Jupiter region, and the exterior region.

therefore, they have two-dimensional stable and unstable invariant manifolds in the

corresponding three-dimensional energy surface. The invariant manifolds intersect

each other along the periodic orbit. These stable and unstable manifolds form

tubes that give a nice template to describe the channels that produce an exchange

of the particle between the interior and exterior regions.

Dynamics on the Poincaré section. Recall that for the Sun-Jupiter-Comet

system, the mass parameter is µ = 0.0009537, which is the largest µ in the Solar

system. Notice that the value µ = 0 corresponds to a system of two bodies:

only one primary and the small body. Therefore, the case µ = 0 is equivalent

to the Kepler problem with one infinitesimal mass, hence is integrable. Although

one might think that the value of µ for the system with the Sun and Jupiter as

primaries is small, this system features highly chaotic behavior. This can be clearly

seen from the computation of a Poincaré map. As the Poincaré section, we choose

the plane y = 0 with vy > 0. The Poincaré section obtained is shown in Figure

4.2. In this figure we can observe different resonance islands; in particular, in the



72

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

v x

Figure 4.2: Poincaré section corresponding to y = 0, vy > 0, and energy E =

−1.515.

exterior region there is an island in 2:3 resonance with respect to the motion of

Jupiter, and in the interior region there is the island in 3:2 resonance with Jupiter.

Figure 4.2 is a common picture of the dynamics of a non-integrable system with

two degrees of freedom. Essentially two types of motion are identified: i) regular

orbits forming “islands” of quasiperiodic motion, created by nonlinear resonances;

and ii) chaotic areas surrounding them like an “ocean.”

4.3 Time-frequency analysis of the PCRTBP

Time-frequency analysis based on wavelets allows us to reproduce the picture of

the Poincaré section (Figure 4.2) in terms of the diffusion in frequency space as-

sociated to the trajectories. In the this section we will show the capability of

time-frequency analysis based on wavelets to discern regular from chaotic motion.

With time-frequency analysis we can also identify when the motion of the comet

is in resonance with respect to the motion of the primaries. Finally, we are able to

determine exactly when a chaotic trajectory “visits” a resonant area, by attaining

its frequency very close to resonance for some period of time. We will see that

the resonance transitions shed light of the mechanism of transport between the

inner and outer regions of the Solar system, and reproduce the template that the
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invariant manifolds of the Lyapunov periodic orbits provide.

The frequency of the solutions of the PCRTBP that we shall use is associated

with the representation of the orbits in the configuration space in the inertial

frame. The objective is to construct numerically a frequency map, by associating

time-varying frequencies with the trajectories over a fixed time interval [0, T ].

4.3.1 Frequency map

We compute the frequency map for the PCRTBP (Equations 4.1) with the follow-

ing procedure:

• The initial conditions are taken in the rotating frame (x, vx, y, vy) with a

fixed value of the energy of E = −1.515 that corresponds to the energy of

the comet Oterma. They are on an evenly spaced grid of points in the plane

(x, vx) corresponding to y = 0, x < −1, where vy > 0 is chosen to fit the

energy level. The initial conditions are located in the exterior region of the

Solar system. In Figure 4.3, the initial conditions are represented by large

dots, and the Poincaré map is plotted for reference in the background.

• For each initial condition (x0, v0x), we numerically integrate the trajectory

(x, y, vx, vy)(t), t ∈ [0, T ]. In this case, T = 2000 ≈ 318 Jupiter years. We

express the orbit in configuration space in inertial coordinates,

Z(t) = (X + iY )(t) = e−it(x+ iy)(t).

• We extract the instantaneous frequency ω(t) of Z(t), t ∈ [0, T ], by computing

the ridge of the wavelet transform of Z(t).

Definition 5 The frequency map is expressed as

(x0, v0x) 7−→ ω(t), t ∈ [0, T ].
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Figure 4.3: Initial conditions for the frequency map: they are in the plane x, vx

with y = 0 and E = −1.515. The background small dots correspond to the

Poincaré map.

4.3.2 Computation of the instantaneous frequency

The general method is described in Chapter 2. The instantaneous frequency (Sec-

tion 2.4) was obtained from the ridge of the wavelet transform of the orbit Z. We

refer the reader to Section 2.5 for a detailed description of the algorithms for the

computation of the instantaneous frequency.

In this work, we use the Morlet-Grossman wavelet [9],

ψ(t) =
1

σ
√
2π

e2πiλt e−t
2/2σ2

,

where σ and λ are parameters that can be tuned to obtain better resolution. For

our case, σ = 1 and ω = .8 proved to be convenient to detect rapid transitions in

the frequency.

4.3.3 Diffusion

The variation in time of the frequency will be a good indicator of whether a

trajectory is regular or not. A trajectory with regular motion will have a frequency

that is constant in time. If the frequency varies greatly in time, this suggests that

the orbit is chaotic.
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If for a particular initial condition the frequency is constant in time, then the

mean frequency ω̃ is equal to this constant value and coincides with the basic

Fourier frequency of the orbit. For chaotic orbits, the mean frequency ω̃ does not

have a physical meaning, but it can be used as reference to compute how much the

frequency is varying in time. We consider the average variation of the frequency

with respect to ω̃ as an indicator of how chaotic the trajectory is. We call this

average variation the diffusion.

Definition 6 The diffusion associated to a trajectory with initial conditions (x0,

v0x) is defined as

Diffusion =
1

T

∫ T

0
|ω(t)− ω̃|dt. (4.3)

4.4 Results

The results of the computation of the frequency map are represented in Figure 4.4.

In a), we present the density plot of the mean frequencies ω̃ on the plane of initial

conditions (x, vx). The color code represents the mean frequency divided by the

frequency of Jupiter; this is, a mean frequency of 1 represents a trajectory which

has the same frequency as Jupiter. In b), the diffusion obtained with the formula

in Equation (4.3) is represented in a similar way.

We see a resemblance between the Poincaré map (Figure 4.2) and the density

plot of the mean frequency (Figure 4.4). The regions corresponding to chaotic tra-

jectories have a significant mixture of frequencies, and high values of the diffusion.

We can also easily identify in Figure 4.4 the regions for which the trajectories have

the same frequencies and low diffusion, and see that they correspond to resonance

islands. In particular, we can detect the island in 2:3 resonance with respect to

the motion of Jupiter, and the islands in 1:2 and 3:5 resonances.

4.4.1 Results for individual trajectories

With time-frequency analysis we can also analyze individual trajectories. In Figure

4.5 we present two trajectories with interesting dynamics: they have large diffusion
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Figure 4.4: Results of time-frequency analysis: a) mean frequency (in ratio with

the frequency of Jupiter), and b) the diffusion plot.
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but remain close to a resonance for some time. The orbit in inertial coordinates

is represented in the first panel, and the time-varying frequency (in ratio with the

frequency of Jupiter) is represented in the second panel. The lines labeled as 2:3

and 3:2 were plotted as a reference, and they correspond to the value of frequency

that is in such resonance with the motion of Jupiter. Figure 4.5 a) displays a

chaotic trajectory with frequency close to the 2:3 resonance; it remains there for

a long time before it drifts away. In Figure 4.5 b), we see a trajectory that jumps

from nearby the 2:3 resonance to nearby the 3:2 resonance; and jumps again to

the 1:2 resonance.
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Figure 4.5: Examples of trajectories and the corresponding frequency evolution.

The orbits are represented in the inertial frame. The dotted line is the orbit of

Jupiter. The frequency evolution is in ratio with the frequency of Jupiter. We

have indicated the lines of the 2:3 and 3:2 resonances for reference. Note that

the trajectories that go from the exterior region to the interior region “visit” the

previous resonances.
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The time-varying frequency reflects accurately the behavior of the solution.

Recall that the initial conditions were taken with y = 0 and x < −1 in the exterior

region, on the opposite side to Jupiter (see Figure 4.1). The trajectory in Figure

4.5 a) corresponds to an initial condition close to the island of 2:3 resonance,

that is “trapped” around the island for some time. During this period of time,

the trajectory behaves almost regularly (as we can see in the plot of the orbit in

inertial coordinates). But at some point in time around 170 Jupiter years, the

trajectory is “released” from the resonance. We say that this trajectory featured

a resonance trapping. Such concept is possible due to the good accuracy in the

computation of the instantaneous frequencies of this method.

In the same way, we are able to determine resonance transitions. The trajectory

in Figure 4.5 b) corresponds to an orbit that evolves from the exterior region, close

to the island of 2:3 resonance, to the interior region, passing nearby the island of 3:2

resonance; and then to the exterior region again going towards the 1:2 resonance.

4.4.2 Resonance trappings, resonance transitions and transport

We see that many trajectories that evolve from the exterior region to the interior

region of the Solar system also feature a resonance transition between the 2:3 and

3:2 resonance islands. This in fact can be seen as an implication of the transport

mechanism between the exterior and interior region of the Solar system.

Therefore, by looking at the evolution of the frequency, we can determine which

trajectories have been exchanged from the exterior region across the Jupiter region

to continue evolving in the interior region, or vice versa. Since time-frequency

analysis yields the precise time at which a resonance transition happened, we can

determine how trajectories are being transported in different regions of the phase

space.

In Figure 4.6, we marked in different patterns the initial conditions correspond-

ing to chaotic trajectories that have undergone a resonance trapping during certain

intervals of time. In a), the time interval corresponds to the beginning of the evolu-

tion; this is 0 < t < 8 Jupiter years, and we can notice that the trajectories trapped
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Figure 4.6: Resonance trappings. The marks correspond to initial conditions of

orbits trapped in the resonances in the time interval indicated. Recall that the

3:2 resonance is in the interior region. Therefore trapping in this resonance occurs

when the trajectory exchanges from the exterior to interior regions.
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lie in the region around the resonance islands of that particular resonance. In b),

the time interval is 80 < t < 95 Jupiter years and any trace of regularity has been

erased. Note that if an initial condition is marked more than once, it means that a

resonance transition has occurred during that time interval. We can also observe

that up to this time many trajectories keep exchanging between the exterior and

interior region and vice versa.

4.4.3 Rapid transitions

Transitions between the exterior region and the interior region occur when there

is a sudden change in frequency. Remember that the frequency of Jupiter is 1.

Therefore, a transition occurs when the frequency of the orbit changes from less

than 1 to a frequency greater than 1, or vice versa. Therefore, with the frequency

map we can detect these transitions.

In Figure 4.7, large dots represent the initial conditions corresponding to tra-

jectories that transition between the exterior region and the interior region during

three different intervals of time. The background dots represent the Poincaré map

for reference. In part a), the transitions occur in less than three Jupiter years; this

is, these are rapid transitions.

Koon et al. [23] have shown that the stable manifold of the Lyapunov orbit

around L2 serves as a dynamical channel for capturing orbits: all trajectories that

transition from the exterior region to the Jupiter region must be in the interior

of the tube formed by this manifold. The first intersection of this manifold in

backward time with the Poincaré section y = 0, vy > 0 is a closed curve (shown in

Figure 4.7 as a thick curve) that we can use as the boundary of the region with the

orbits that are going to be captured rapidly into the Jupiter region, and possibly

into the interior region. Not all orbits captured in the Jupiter region transition to

the interior region: some trajectories can swing around Jupiter and leave towards

the exterior region again. Our results agree with the results in [23], since all the

rapid transitions have initial conditions in the interior of this curve, as we can see

in Figure 4.7 a), where transitions for less than three Jupiter years are represented.
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Figure 4.7: The large dots represent initial conditions of orbits that feature rapid

transition from the exterior to the interior regions, during the time interval in-

dicated. The thick curve represents the first backward intersection of the stable

manifold of the Lyapunov orbit around L2 with the Poincaré section. The dots in

the background correspond to the Poincaré map.
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We can observe in parts b) and c) of Figure 4.7 that the distribution of tran-

sitions in the time-intervals 3 < t < 15 and 15 < t < 25 (Jupiter years) is quite

irregular. If we want to use the method of invariant manifolds to obtain all the tra-

jectories that will get captured in the Jupiter region after a number of revolutions

in the exterior region, we need to find the successive intersections of the stable

manifold of the Lyapunov orbit around L2 in backward time with the Poincaré

section. This is computationally hard due to the extremely complicated dynamics.

For instance, intersections of the stable and unstable manifolds of the Lyapunov

orbit around L2 produce foldings and swirls of the manifolds. Furthermore, there

is an intrinsic difficulty in the computation of such invariant manifolds for long

times.

4.4.4 Number of transitions vs time

Figure 4.8 displays the percentage of trajectories that experience a transition from

the exterior to the interior region at a given time; we only considered the first tran-

sition of the orbit, and therefore each trajectory is counted only once, although

it might evolve back and forth between the two regions afterwards. For this cal-

culation, we divided the total evolution time into subintervals of 8 Jupiter years,

and counted how many first transitions occurred in each subinterval. The percent-

age was calculated with respect to the total number of chaotic trajectories; this

is, trajectories in the resonance islands (that remain there for all time) were not

considered.

For comparison, the second panel shows the percentage of trajectories that

feature a first transition from one of the exterior resonances (2:3, 1:2 and 3:5) to

the interior resonance 3:2, as a function of time. Note that the two curves show

the same decreasing tendency as time grows. Resonance transitions represent a

clear indicator of transport between the two regions.

The decreasing trend of the plots yields a qualitative description of how tran-

sitions between the exterior and interior regions happen. If a comet happens to be

in the distribution of our initial conditions, and it features a transition, then it is
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Figure 4.8: Percentage of trajectories that for the first time transition from the

exterior region to the interior region as a function of time; and similarly from the

outer resonances (2:3, 1:2 and 3:5) to the inner resonance 3:2.

more likely that the comet will exchange towards the interior region within a few

Jupiter years; it is less likely that the comet will remain in the exterior region for

more than 300 Jupiter years and then transition to the interior region.

4.5 Conclusions

Time-frequency analysis based on wavelets provides a powerful tool to evoke key

dynamical features of a system from numerical solutions. From the variation in

time of the frequencies calculated from the wavelet transform, we can distinguish

quasiperiodic trajectories from chaotic ones. We are able to determine if a chaotic

trajectory has been trapped in a resonance, or if it displays a resonance transition.

The method of time-frequency analysis allows us to detect resonance islands
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that greatly affect the dynamics. For the PCRTBP, transport in the phase space

between different regions was resolved by determining resonance transitions of

chaotic trajectories. This was achieved by extracting time-varying frequencies of

the orbits in configuration space in the inertial frame.

Our results implicate the same regions that Koon et al. [23] use in describing

the transport mechanism between the exterior and interior regions of the Solar

system and its relation with resonance transitions. However, since our method

includes the time variable in the analysis, we are able to determine exactly when

resonance transitions take place, and their distribution along the evolution of the

system.

We showed that the resonance transitions between three exterior resonances

2:3, 1:2 and 3:5, and the interior resonance 3:2, reflect a great deal of the transitions

between the exterior region and the interior region. Although the meaning of

these results is limited by the finite number of trajectories considered, and by the

bounded time interval that was used for the frequency map, we have shown the

strong relation between transport in phase space and resonance transitions in the

restricted three body problem. We believe that this work will open a course of

research in many high dimensional problems for which the transport mechanism

is still to be understood.
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Chapter 5

Incomplete Vibrational Energy

Redistribution in Highly Excited OCS

Abstract

We determine the dynamics and global phase space structure of the highly ex-

cited OCS (carbonyl sulphide) molecule using time-frequency analysis based on

wavelets. We perform our study at an energy level close to dissociation in a three-

degrees-of-freedom vibrational model of planar OCS. By assigning time-varying

frequencies to the time-series representing the solutions, we are able to detect

quasiperiodic motion where chaos was believed to be predominant. We show that

all quasiperiodic trajectories at this energy are close to a resonance, and therefore

they form resonance channels. Our method allows us to keep track of temporary

resonance trappings of chaotic trajectories, and we are able to explain transport

between different regions of the phase space in terms of trappings in the resonance

junctions. We show that resonance trappings and resonance transitions occur even

at long times, showing that the energy redistribution is not complete.

5.1 Introduction

Carbonyl sulphide, OCS, one of the most abundant sulphur-containing gases in

the stratosphere, is also one of the major components of the overall sulphur cycle
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influencing climate [43]. Its prominence in atmospheres is not restricted to the

Earth because the infrared spectrum of OCS has been detected in Venus, and it

has been associated with reactions with CO at the planetary surface [41]. Because

it is such an important molecule, its intramolecular dynamics is of great interest

to the scientific community.

Conventional wisdom -widely supported by experiments- asserts that intra-

molecular vibrational energy redistribution (IVR) is rapid, complete and statis-

tical [28, 39]. It is therefore valuable to add to the few known cases [47] when

it is not so. But perhaps, what matters even more are the reasons behind in-

complete redistribution, especially beyond the well studied case of two degrees of

freedom. This is the purpose of the present work. In the present work we will

present evidence that the intramolecular vibrational dynamics of the carbonyl sul-

fide molecule, OCS, shows incomplete redistribution even when the molecule is

excited within ten percent of its dissociation threshold.

The most popular potential energy surface of OCS was obtained by Carter and

Brumer [10] from a force field which Foord, Smith and Whiffen [15] constructed to

analyze highly excited intramolecular dynamics. The potential surface consists of

Morse oscillators for each of the vibrations, and contains strong coupling terms. We

perform our analysis on the planar and rotationless version of this molecule which

amounts to working with a Hamiltonian with three degrees of freedom (3-dof).

This system is known to be chaotic at total energies close to dissociation [10].

The same model of OCS was analyzed by Martens et al. [33], by computing “local

frequencies.” To this end, they used a short-time (or windowed) Fourier transform.

Their method requires that the size of the time-window be determined a priori,

and as a result, some rapid transitions in frequency, which we will show to be

crucial to the intramolecular dynamics, may remain undetected.

The coexistence of chaos and order (“soft chaos” [20]) is a common feature of

nonintegrable Hamiltonian systems. The picture of a Poincaré section containing

quasiperiodic trajectories and resonance islands surrounded by a chaotic sea is

characteristic of systems with 2-dof or periodically forced systems of 1-dof. How-
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ever, we lack of techniques for the detection of the global structure of the phase

space in 3-dof. Although it is possible to construct a Poincaré map in a 3-dof

system, the dimension of the section is four, therefore making it impossible to

visualize when projected to three or two-dimensional planes. However, the main

difference between 3-dof systems and the 2-dof case is that invariant tori are no

longer barriers in the phase space: They are objects of dimension at most three

in the five-dimensional energy surface. So, are there any barriers to energy flow

beyond 2-dof? Indeed, Martens et al. [33] contains a number of speculations

concerning the nature of energy flow, many of which are closely linked with the

multidimensionality of the OCS model.

In contrast, we use the method of time-frequency analysis based on wavelets.

Our method assigns time-varying (instantaneous) frequencies to the numerical so-

lutions (the trajectories). The method is discussed in Chapter 2. With a frequency

map so computed, it becomes possible to distinguish regular motion from chaotic

motion.

Time-frequency analysis based on wavelets provides an improved resolution

of the time evolution of the fundamental frequencies. Indeed, our analysis has

resulted in a number of surprising findings; e.g., we can observe how chaotic tra-

jectories can be trapped temporarily in a single nonlinear resonance or in resonance

junctions. This is one of our main results.

As a further consequence of the superior accuracy of the time-evolution of the

frequencies, we can determine exactly the time interval when a chaotic trajectory

is temporarily trapped in a resonance, meaning that the trajectory remains close

to a lower dimensional torus during that time-interval. When a resonance transi-

tion occurs, the trajectory is trapped by a different resonant torus, indicating an

exchange between different regions of the phase space. We use this fact to explain

transport in phase space.

Particularly for OCS, we have detected quasiperiodic regions at total energy

level that corresponds to 90% of the dissociation energy. Such regions were not

suspected before because chaos was assumed to be widespread.
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By analyzing the frequencies of the quasiperiodic trajectories, we can see that

all quasiperiodic trajectories at this energy belong to some resonance channel:

They are located in areas strongly affected by a resonance. Therefore, we have

detected the main resonances in the system which have a significant effect in the

dynamics. The resonant tori turn out to be responsible for the resonance trap-

pings of many chaotic trajectories; this is, chaotic trajectories can be temporarily

trapped near the resonance channels. We study the evolution of the system for

30 ps (although we could observe it longer, too), and we can describe how the

resonance trapping along single or double resonances occurs as the system evolves.

We have also detected intriguing motions near the resonance channels. Tra-

jectories with positive Lyapunov exponents (and therefore chaotic) can remain

near a resonance channel for long time, behaving almost regularly. This process is

reminiscent of “stable chaos” in the Solar system [46].

We believe that the main contribution of time-frequency analysis based on

wavelets is that chaotic trajectories are included in the analysis besides the quasi-

periodic trajectories. Since we can extract the variation in time of the frequencies

with good accuracy, we can determine how transport takes place in phase space.

Also, the existence of resonance trappings of chaotic trajectories for long times

shows that in some parts of the phase space, the relaxation time can be very long

if not infinite.

The outline of this work is as follows. The planar vibrational model of OCS

is briefly described in Section 5.2, together with the description of the use of the

method of time-frequency analysis based on wavelets. In Section 5.3 we describe

how the method allows us to determine the diffusion in the phase space, the res-

onance channels, the trajectories lying in resonance junctions, and trappings in

resonance junctions. We show evidence of transport between the resonance zones

and display how fast it takes place. Finally in Section 5.4 we discuss the dif-

ferences between the method of time-frequency analysis and other methods used

before, and the implications of the results for general dynamics of systems with

three or more degrees of freedom.
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5.2 Hamilton’s equations of OCS and analysis of tra-

jectories

5.2.1 The Hamiltonian of OCS

The planar OCS molecule can be modeled as a three body problem with masses

m1, m2 and m3 corresponding to the atomic masses of S, O and C (respectively),

moving according to a potential function computed to fit spectroscopic data. It is

a Hamiltonian system with three degrees of freedom, corresponding to the three

variables: Two interatomic distances, and the angle formed by these segments (see

Figure 5.1):

R1 =distance C− S = RCS,

R2 =distance C−O = RCO, (5.1)

α =angle (CS,CO).

R
2
 

R
1
 

C 

O 

S 

. 

. 

. 
α 

Figure 5.1: OCS molecule.

The third distance R3 between O and S is given in terms of the previous

variables as R3 =
√
R21 +R22 − 2R1R2 cosα.

In Hamiltonian form the system can be expressed as the sum of kinetic energy

plus potential energy, where the angular momentum has been fixed as zero. Defin-

ing P1, P2 and Pα as the momenta conjugate to R1, R2 and α, respectively, the
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kinetic energy is

T =
µ1
2
P 21 +

µ2
2
P 22 + µ3P1P2 cosα+ P 2α

(
µ1
2R21

+
µ2
2R22

− µ3 cosα

R1R2

)

− µ3P1Pα sinα

R2
− µ3P2Pα sinα

R1
.

The parameters µi are related to the atomic masses of the system by

µ1 =
m1 +m3
m1m3

, µ2 =
m2 +m3
m2m3

, and µ3 =
1

m3
.

The potential energy function of OCS was obtained by Carter and Brumer [10]

from a force field by Foord, Smith and Whiffen [15] used to analyze highly excited

intramolecular dynamics. The potential surface includes Morse potentials for each

diatomic and an interaction term,

V = V1(R1) + V2(R2) + V3(R3) + P (R1, R2, R3)VI1(R1)VI2(R2)VI3(R3),

where Vk(Rk) = Dk(1− e−βk(Rk−Rik))2, P is a quartic polynomial, and VIk(Rk) =

1−tanh[γk(Rk−R̃k)]; R̃k are the coordinates of the equilibrium position. This is a

collinear configuration (α = π) with R̃1 = 2.9508, R̃2 = 2.2030, and R̃3 = R̃1+ R̃2.

In Figure 5.2, the contours of the potential function are shown for the collinear

case, α = π.

The equilibrium point with coordinates Pk = 0, Rk = R̃k is an elliptic fixed

point of the system. The purely imaginary eigenvalues lead to the normal frequen-

cies of 2089.14, 874.261 and 520.843 cm−1.

5.2.2 Time-frequency analysis of OCS

In Chapter 2, we defined the instantaneous frequency and described how it can be

extracted from a time series representing a numerical solution using the wavelet

transform. We will use these concepts to extract the basic frequencies of the

numerical solutions of planar OCS and compute a frequency map. With this, a

characterization of the dynamics in phase space in terms of regular and chaotic
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Figure 5.2: Contours of the potential energy function, for the collinear case α = π.

motion, resonance channels, resonance trappings, and diffusion in phase space,

becomes possible.

Frequency map

The frequency map for OCS is obtained by the following procedure.

• For a given initial condition (R01, R
0
2, α

0), we obtain the solution as three time

series corresponding to each dynamical variable of the system (5.1): R1(t),

R2(t) and α(t), over a time interval [0, T ], in our case T = 30ps.

• Then we construct analytic signals for each of them by computing the Hilbert

transform, obtaining three complex time-series: z1(t) = R1(t) + iH[R1](t),

z2(t) = R2(t) + iH[R2](t), z3(t) = α(t) + iH[α](t) (see Equation (2.10)).

• For each z(t), we extract the instantaneous frequency over the interval [0, T ]

using the wavelet transform, obtaining the frequency-series ω1(t), ω2(t),

ω3(t).
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• The frequency map is then

(R01, R
0
2, α

0) =⇒ (ω1, ω2, ω3)(t), t ∈ [0, T ].

If the trajectory is quasiperiodic, the frequencies are constant in time, and this

value is what Fourier analysis would give. On the other hand, if the trajectory is

chaotic, the instantaneous frequency will show great variation in time with respect

to its mean value.

The deviation of the frequency ω(t) from its mean value ω̃ yields a measure of

how chaotic the trajectory is. We call this measure the “diffusion” of the trajectory

over [0, T ]:

diffusion (R01, R
0
2, α) = dev1 + dev2 + dev3, (5.2)

where

devk =
1

T

∫ T

0
|ωk(t)− ω̃k|dt.

Quasiperiodic trajectories will have zero diffusion, whereas chaotic trajectories will

have high diffusion.

We performed time-frequency analysis at total energies close to dissociation,

which is .1 a.u. The energies analyzed here were .085 a.u., and .09 a.u., which are

85 and 90% of the dissociation energy. Since the results obtained are qualitatively

similar for both energies, we only show the computations at the energy level .09 a.u.

The initial conditions were chosen in a slice of the phase space corresponding

to zero momenta, P1 = P2 = Pα = 0. The values of R1 and R2 are chosen at a

regular grid on the plane R1, R2 and α is calculated to fit the energy level. We

used 100 grid-points in the R1 axis and 80 grid points in the R2 axis.

Note that we define the frequency map for OCS by computing the instanta-

neous frequency associated with the position coordinates R1, R2 and α, and this

definition does not involve the momenta P1, P2 and Pα. The justification for pro-

ceeding this way is the following. Recall that for quasiperiodic trajectories, we

can find an approximation by a trigonometric polynomial of the form (2.6). The
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values λjm are linear combinations of the basic frequencies ω1, ω2, ω3 that describe

the quasiperiodic torus (see Section 2.2). Our analysis consists of finding only the

first frequencies λjm associated with the position coordinates, and the frequencies

associated to momenta Pk are implicitly included in these values; the exact values

of the basic frequencies ωk can be found by looking for all the frequency com-

ponents and harmonics for each variable (we can apply Laskar’s method [25] for

this purpose, knowing in advance that the trajectory is quasiperiodic). Therefore,

by considering only frequencies of the position coordinates and not the momenta,

we simplify the analysis and, most of all, this allows us to assign time-varying

frequencies to all trajectories, not only quasiperiodic ones.
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Figure 5.3: Typical chaotic trajectory with large diffusion. The first plot shows the

frequency ratios, ω2/ω1 in blue, ω1/ω3 in green, and ω2/ω3 in red. In the second

plot, a detail of the trajectory is shown, this is, the evolution of R1(t) (blue), R2(t)

(green) and α(t) (red).
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Figure 5.4: Mean frequencies ω̃1, ω̃2 and ω̃3 (a-c) and diffusion (d) for the total

integration time of 30 ps.
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5.3 Results

5.3.1 Generic aspects of the phase space

At this high vibrational energy, the generic trajectory is chaotic. In Figure 5.3

we show the time evolution of the frequency ratios of a chaotic trajectory (ω1/ω2,

ω1/ω3 and ω2/ω3), and in the second subplot a section of the evolution of R1, R2

and α is plotted. Notice the rapid and frequent changes of frequency in each of

the motions.

The results of wavelet-frequency analysis are displayed collectively in Figure

5.4. Each initial condition is indicated in the plane R1, R2, in a), b) and c) we

show in color code the mean value of the frequencies, ω̃1, ω̃2 and ω̃3, associated

with each variable R1(t), R2(t) and α(t), respectively; and d) shows the diffusion

associated with the trajectory (Equation (5.2)).

We note from the diffusion plot in Figure 5.4 d) that most of the slice is

filled with chaotic trajectories, some of them strongly chaotic: very large diffusion

means that the frequencies vary greatly, and this can be interpreted as trajectories

wandering through most of the phase space.

It is also possible to identify in Figure 5.4 some islands of stability, i.e., re-

gions of initial conditions in which the diffusion is zero or very low and the fre-

quencies have about the same mean value (see for instance a small spot around

(R1, R2) = (3.6, 2.3)). These regions correspond to quasiperiodic trajectories, and

by computing the frequency ratios we can determine if they are resonant or not.

Recall that for the quasiperiodic orbits the mean value of the instantaneous

frequency corresponds to the fundamental frequency that Fourier analysis would

render. Therefore, we can talk about resonances in the traditional sense: a reso-

nance is determined when a trajectory has zero diffusion and its frequencies satisfy

an equation of the form

k1ω̃1 + k2ω̃2 + k3ω̃3 = 0, (5.3)

where k1, k2, k3 are integers.
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5.3.2 Resonance channels

Using time-frequency analysis we can find the initial conditions giving rise to tra-

jectories with very low diffusion, and satisfying a resonance equation up to certain

tolerance. We set the tolerance value to include trajectories that are strongly

affected by the resonance. These trajectories form a resonance channel.

We tested for resonances using the following expression,

∣∣∣∣
ωk(t)

ωj(t)
− p

q

∣∣∣∣ < ε,

where ε is a tolerance value that we chose to be .15, and p, q are integers.

All quasiperiodic trajectories form resonance channels

Typically, KAM tori are half the dimension of the phase space. We found that all

quasiperiodic trajectories (this is, trajectories with very low diffusion during the

30 ps of evolution) have frequencies which satisfy a resonance equation up to the

tolerance value. This is, for OCS at this energy, all the invariant tori that remain

are located around a resonance, and they form what we can identify as a higher

dimensional resonance island.

The resonance channels of planar OCS are shown in the center of Figure 5.5. In

this figure the most important resonances in the system are marked with different

colors and symbols. We found single resonances and resonance junctions, that

is, frequencies satisfying one or two independent resonance equations respectively

(in the case of double resonance we wrote also a third non-independent relation

between the frequencies for completeness). For instance the 1:1 resonance between

R1 and R2, i.e., trajectories with frequencies satisfying ω̃1 = ω̃2 are marked with

magenta stars. (From now on, we drop the tildes denoting the mean frequencies

in the understanding that for quasiperiodic trajectories the mean value of the

instantaneous frequency corresponds to the fundamental frequency).
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Figure 5.5: Resonance channels: Periodic and quasiperiodic trajectories with res-

onant frequencies. We show the most important resonance junctions and single

resonances. Representative trajectories very close to the periodic orbits in the

resonance junctions are plotted. See text for more details. The trajectories were

projected on the planes of motion (R1, P1), (R2, P2), (α, Pα).
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Figure 5.6: Trajectory satisfying 4ω1 = ω2, ω1 = ω3 and ω2 = 4ω3 for 30 ps. The

assignment of colors is the same as in Figure 5.3.

5.3.3 Trajectories in the resonance junctions:

Long-time trapping

Resonance channels describe the quasiperiodic motions in the system. Lower di-

mensional tori are created by resonances, i.e., if a trajectory satisfies exactly a sin-

gle resonance equation, then it lies on a two-dimensional torus. The surrounding

quasiperiodic trajectories that are close to that resonance lie on tori of dimension

three. On the other hand, if a trajectory satisfies exactly a double resonance, then

it lies on a one-dimensional torus (a periodic orbit at the intersection of the reso-

nances); and it is surrounded by a set of trajectories satisfying closely the double

resonance. These trajectories lie on higher dimensional tori. Recall that when the

energy is fixed, the phase space is five-dimensional, and 3-tori cannot be barriers

of the motion. Therefore, the resonance channels do not divide the phase space,

and chaotic trajectories can wander around them.

Stable periodic orbits of OCS are then found as trajectories lying on the res-

onance junctions. See, for instance, in Figure 5.6 the evolution in time of the
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frequency ratios and the variables R1, R2, α. This particular trajectory lies al-

most exactly at the resonance junction 4ω1 = ω2, ω1 = ω3 (and then it also satisfies

closely ω2 = 4ω3).

The panels around the central panel in Figure 5.5 show some representative tra-

jectories with frequencies satisfying closely the resonance junctions. In each case,

the trajectories have been projected on each of the planes of motion (R1, P1),

(R2, P2), and (α, Pα). We note that these trajectories are very close to the pe-

riodic solution that lies exactly at the resonance junction. Note, however, that

the trajectory corresponding to ω1 = ω2, ω1 = 4ω3, ω2 = 4ω3 (marked with

green squares) is closed to a quasiperiodic torus of dimension two instead. The

discrepancy is a result of our simplification: We are only computing one frequency

component for each degree of freedom (see Section 2.6), and in this case more

components need to be taken into account to find another independent frequency;

this trajectory has in reality a Fourier spectrum with two independent frequencies.

5.3.4 Are the resonances connected? The absence of a web

Note also in Figure 5.5 that the resonance channels are isolated. Indeed, this is an

important difference from the so-called Arnol’d web [1], which is characteristic of

near-integrable systems. At this energy level of OCS, we see that the resonances

appear as separated spots in the phase space, and their pattern is not a web but

an archipelago. As a consequence, the phase space structure here is fundamentally

different from the typical Arnol’d web of nearly integrable systems.

A remarkable feature of OCS is how abruptly chaotic trajectories can jump be-

tween resonances. To see this, we show in Figure 5.7 the evolution of the frequency

ratios of a particular trajectory, and in part b) we can see how the trajectory jumps

from ω1 = ω2 = 4ω3 to the resonance 2ω1 = 3ω3, and after that is captured also

in the ω2 = 3ω3 resonance. Therefore, the diffusion in OCS does not occur slowly

along the resonance channels, as would happen in a near-integrable system [3],

but the diffusion involves almost instantaneous jumps in the frequencies from one

resonance to another.
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5.3.5 Analysis of resonance trappings

The analysis of chaotic trajectories is possible due to our superior accuracy in the

tracking of the evolution of the frequencies. We observe that chaotic trajectories

with large diffusion can be trapped temporarily in single resonances and resonance

junctions.

For instance, Figure 5.8 shows the time evolution of the frequency ratios for

two chaotic trajectories; in a), the trajectory is trapped temporarily in the 1:2

resonance between R1 and R2 (2ω1 = ω2) and simultaneously in the 3:2 resonance

between R1 and α (2ω1 = 3ω3). In b), the trajectory is trapped temporarily in

the junction ω1 = 2ω3 and 2ω2 = 7ω3.

Therefore, time-frequency analysis allows us to keep records of all the resonance

trappings that the trajectories can sample during the time interval in question. Or,

from a different point of view, it allows us to take a snapshot of the system at a

given time in terms of the resonance trappings.

5.3.6 Evolution of resonance trappings

In Figure 5.9 we show how the resonance trappings due to the resonance junction

ω1 = 2ω3, 2ω2 = 7ω3 evolve in time. The way to read these figures is the following:

If a particular trajectory happens to be trapped in a resonance junction during

that interval of time, we mark the initial condition accordingly. In part a), the

trappings correspond to the beginning of the evolution, this is for 0 < t < .5 ps.

Recall that the time-frequency analysis was performed for a total time interval of

30 ps, so here we are only considering the trappings at the very beginning of the

evolution. Parts b) and c) correspond to the intervals 1 < t < 1.5, 5 < t < 5.5.

We see in Figure 5.9 that the distribution of resonance trappings varies con-

siderably during the evolution of the system. Only 5 ps later, many of the initial

conditions that were initially close to a resonance have drifted away from the reso-

nance junction, and other trajectories that were initially away from the resonance

junction have been trapped.
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5.3.
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The time evolution of the frequencies can give us a very good idea of the

transport occurring in the system: trajectories evolve through the phase space

and can be trapped in a resonance junction, meaning that they are close to one

of the periodic orbits living on the resonance junctions; therefore, we know the

location in the phase space and how the trajectory exchanges between different

regions. This sort of detailed analysis would have been impossible with other

methods.

5.3.7 Histograms of resonance trappings

We note that the resonance trappings and resonance transitions persist even after

long evolution of the system. The chaotic nature of the system prevails and as far

as 30 ps, the system does not show relaxation in any of the variables of motion.

To see this more clearly, we have computed the number of trajectories that are

trapped in the main resonance junctions (shown in Figure 5.5) per interval of time.

The resonance junctions considered correspond to the most important resonance

channels obtained as trajectories with low diffusion and with frequencies satisfying

a double (hence triple) resonance equation.

We show the results of this computation in the first panel of Figure 5.10. We

note characteristic asymptotic behavior: the junction corresponding to 4ω1 = ω2,

ω1 = ω3 and ω2 = 4ω3 (red crosses) tends to a constant value of about 2%.

Similarly, the junction ω1 = ω2, ω1 = 4ω3 and ω2 = 4ω3 (green squares), tends to

a value of about 1%.

We can observe that the most important resonance junction in terms of number

of trappings corresponds to the channel 2ω1 = ω2, 2ω1 = 3ω3 and ω2 = 3ω3 (blue

triangles). However, this channel is only present in two initial conditions in Figure

5.5. We have observed that trajectories nearby this initial condition drift away

very soon; however, many other chaotic trajectories are trapped temporarily in

this resonance junction, thus accounting for the initial rise.

Our analysis suggests that at long times, two types of trajectories can be dis-

tinguished: The quasiperiodic trajectories living right at the resonance channels
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(with zero or very low diffusion), and the chaotic trajectories that can be trapped

temporarily around the resonance junction. However, in these statements, we are

limited by our 30 ps integration time.

Once we distinguished between quasiperiodic and chaotic trajectories, we can

obtain the number of temporary trappings as a function of time. For this, we

leave out the quasiperiodic trajectories, and we compute the percentage of chaotic

trajectories trapped around each junction out of the total number of chaotic tra-

jectories detected. The results are shown in the second panel of Figure 5.10.

It is interesting to note that the junction corresponding to 4ω1 = ω2, ω1 = ω3

and ω2 = 4ω3 (red crosses) now has an asymptotic value close to zero, meaning

that very few chaotic trajectories can be trapped by this resonance junction within

our integration time, and the 2% value that we obtained in the previous calculation

corresponds entirely to quasiperiodic trajectories living right at this junction.

On the other hand, the junction ω1 = ω2, ω1 = 4ω3 and ω2 = 4ω3 (green

squares) tends to a value of about 1% when we leave out the quasiperiodic trajec-

tories. Therefore, there is no decrease in the number of trappings at this junction.

The percentage of trajectories trapped at a resonance junction at a given time

shows that the mechanism of resonance trappings may have a noticeable effect in

the global dynamics of the system at long times.

5.3.8 “Stable chaos”?

We have established that some chaotic trajectories are trapped in single or double

resonances for long periods of time (see Figure 5.11). There are trajectories which

started nearby a resonant island, and remained there for long periods of time.

We can compute the empirical Lyapunov exponents to check that effectively the

trajectories are chaotic, but their frequencies remain close to a resonance. Related

observations, mainly in asteroid orbits in celestial mechanics, go under the term

“stable chaos” [46]. That we reproduce the hallmarks of stable chaos in a bona-

fide 3-dof system rather than a near-integrable one is surprising and opens a new

path of research along this line: there are regions in the phase space for which the
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Figure 5.9: Resonance trappings for different intervals of time: a) 0 < t < .5, b)

1 < t < 1.5 and c) 5 < t < 5.5 (ps). The arrow points towards initial conditions

living in this resonance junction up to 30 ps.
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text.
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trajectories behave in a quasi-regular way for a long time, and do not participate

in the chaotic redistribution of energy. These trajectories should have a lifetime

of 1/λ before leaving the region around the resonant torus, where λ is the largest

Lyapunov exponent, but instead they remain close to the periodic orbit for much

longer.

5.4 Conclusions and discussion

We have shown, based on intramolecular dynamics of OCS, that time-frequency

analysis based on wavelets is a powerful tool to determine the global phase space

structure of Hamiltonian systems beyond 2-dof. The introduction of the time vari-

able in the analysis of the frequencies associated with trajectories in a convenient

way was achieved by using the wavelet transform instead of the Fourier transform

as it has been done so far in Hamiltonian systems. Our frequency map consists

of the assignment of time-varying frequencies extracted from the numerical solu-

tions, therefore including the chaotic trajectories in the analysis together with the

quasiperiodic trajectories.

The automatic localization in time that the wavelets provide allows us to obtain

a better resolution in the time-variation of the frequencies; therefore, we can locate

with precision when a resonance trapping has occurred. This is very useful since

it is easy to observe that resonance transitions are closely related to transport in

the phase space.

The property of the wavelets to adapt automatically the time-window to the

frequency range is the main advantage of the present analysis over the frequency

analysis that has been performed before. For instance, in [34], a “short time”

Fourier transform was used to extract the basic frequencies. They chose a time

window of length 1.4 ps to obtain time-varying frequencies of three dynamical

variables that have very different frequency ranges, and some rapid transitions in

frequency were missed. Wavelet analysis avoids the arbitrary determination of the

time-window, since it is chosen according to the frequency.
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Figure 5.11: Chaotic trajectories trapped in a resonance for long periods of time,

illustrating “stable chaos.” The assignment of colors is the same as in Figure 5.3.
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Using time-frequency analysis we were able to locate quasiperiodic trajectories

in the phase space, all of them lying on resonant islands. Therefore, we find no

evidence of existence of KAM tori characterized by quasiperiodic motions with

rationally independent frequencies other than the trajectories surrounding the res-

onances. For the OCS Hamiltonian, the resonant islands are surprisingly persistent

at high levels of the energy.

Although it has been claimed that KAM tori might act as bottlenecks [34]

for the dynamics, possibly as part of a higher dimensional invariant surface, it is

well known that three-dimensional tori cannot be a barrier in the five-dimensional

phase space. Furthermore, all the tori found in OCS at the energy level studied

satisfy a single or double resonance condition up to a tolerance value. Therefore,

all quasiperiodic motion occurs in resonant islands around a lower dimensional

tori. Even when the dimension of a resonant torus is one or two, we see that they

affect the dynamics of chaotic trajectories since resonance trappings are produced.

We have determined that some of the main resonances in a slice of the phase

space, shown in Figure 5.5, turn out to be resonance junctions. Comparing with

the results of [34], we see that we have detected all resonances mentioned by them

like 2ω1 = 3ω3, and 4ω1 = ω2. We found some more resonances that are important

in terms of the trappings, like 2ω1 = ω2, ω1 = 4ω3, or ω1 = 2ω3; also there are

higher order resonances like 7ω1 = 4ω2 and 5ω1 = 2ω2. A closer comparison with

the results in [34] is not possible since the initial conditions in their analysis are

not mentioned.

Since we have shown the existence of regions with quasiperiodic trajectories,

the ergodicity assumption of intramolecular energy transfer is violated and we

cannot expect that the trajectories have a random behavior: the resonance islands

produce trappings that keep chaotic trajectories from participating in a uniform

distribution through the phase space.

We found a prevalent pattern in the chaotic trajectories: at some point of the

evolution, they can be trapped in a resonance, meaning that for some interval of

time their frequencies satisfy approximately a resonance equation. In this sense,



110

we can think of the resonance channels as “sinks” (loosely speaking), since tra-

jectories passing by the resonance channel are “attracted” by the resonance and

remain there for a period of time, and leave afterwards to wander around chaotic

areas or to get trapped again by another resonance. Although there is no theoret-

ical justification at present, this mechanism has been related to the “stickiness”

phenomenon of resonant islands [35, 36], and it has been observed in a large num-

ber of systems, especially in celestial mechanics [46]. The stickiness phenomenon

has also been invoked to explain the existence of chaotic trajectories that remain

nearby a resonance channel for long periods of time. Thus, there are trajectories

that behave almost regularly, but that have positive Lyapunov exponents. So we

have given evidence of existence of stable chaos in chemical physics.

We observed that diffusion in this energy level can occur very quickly, since

there are trajectories that jump almost instantaneously from one resonance to

another one. This of course does not resemble how Arnol’d diffusion takes place in

nearly integrable Hamiltonian systems, in which trajectories diffuse slowly along

the resonance channels.

Finally, we believe that the main contribution of time-frequency analysis based

on wavelets is the inclusion of the chaotic trajectories in the analysis besides the

quasiperiodic trajectories. The value of such a procedure for highly excited systems

is obvious: Since we can extract the variation in time of the frequencies with a

good accuracy, we can determine how trajectories are transported in the phase

space. Also, the existence of resonance trappings of chaotic trajectories for large

time values shows that the relaxation time can be very long if not infinite.
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Chapter 6

General Conclusions

The main motivation for this work was the development of new techniques of

analysis of higher dimensional Hamiltonian systems. The difficulty in analyzing

these problems becomes clear from the dynamical differences that systems of 3-dof

feature when compared with the well understood case of 2-dof. There are many

open questions for non-integrable systems of 3 or more degrees of freedom, and

we believe that the method we presented is an important tool in the search for

answers.

We have presented the new method of time-frequency analysis based on wave-

lets. The method allows us not only to distinguish chaotic from quasiperiodic

systems, but also to obtain a general description of the dynamics in the phase

space.

By introducing the time variable in the analysis, our method allows us to

characterize chaotic motion that is responsible for intrinsic transport in the phase

space. We have shown close relation between resonance transitions and transport

between different regions.

This analysis allows us to describe with much detail the main dynamical fea-

tures of higher dimensional systems: quasiperiodic trajectories forming resonance

channels can persist up to high values of the energy where chaos is thought to

be widespread. Furthermore, the resonance channels affect greatly the dynamics

of chaotic trajectories: chaotic trajectories can be trapped around a resonance
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channel, or wander between different resonances.

Time-frequency analysis based on wavelets is a unique tool to determine res-

onance trappings and resonance transitions of chaotic trajectories; and we have

shown their implications in the transport mechanism.

We have shown that the method is successfully applied to systems that vary

from molecular dynamics to celestial mechanics. Time-frequency analysis is appli-

cable to systems with any number of degrees of freedom.

Future applications of this method of analysis include the three-dimensional

restricted three body problem, and rotational motion in molecules. We expect

that the dynamics of these higher dimensional systems can be understood in terms

of resonances produced by the coupling with the additional degrees of freedom.

The theoretical justification of the method will include a deeper understanding

of the dependence of the analysis on the coordinate representation. Although

in Hamiltonian systems there is a unique frequency vector for each quasiperiodic

torus, transformations of variables might complicate the extraction of the basic

frequencies.

But this is only the start. We believe that we have only just begun appreciating

the power of this analytical tool.

Besides the previously mentioned applications, we are also planning to expand

the use of this method for a broader class of problems: dissipative systems. The

variation in time of the frequencies will still provide valuable information about the

limit sets of trajectories of higher dimensional systems. This method is one of the

very few that can extract the non-stationary properties of real physical systems.

By design, the extraction of instantaneous frequencies is not limited to Hamil-

tonian systems, not even to numerical trajectories. It can be applied to any time

series. The possibilities of the time-frequency analysis of real data open the doors

to a new field of study.
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Appendix A

Appendix

A.1 Proof of Theorem 1

The structure of the proof is 1⇒ 2, 2⇒ 3 and 3⇒ 1.

1 ⇒ 2. The Hilbert transform has a close relation with the Fourier transform.

Remember, the Fourier transform of f is f̂(ξ) = F[f ](ξ) =
∫∞
−∞ f(t)e−2πiξtdt.

From the definition of convolution of functions, f(t)∗g(t) =
∫∞
−∞ f(t−λ)g(λ)dλ,

the Hilbert transform can be expressed as

ν(t) = H u(t) =
1

πt
∗ u(t) and u(t) = H−1 ν(t) =

−1
πt
∗ ν(t).

Applying the convolution-multiplication theorem of the Fourier transform

F[f ∗ g] = F[f ] F[g],

and since F[1/πt] = −i sgn(ξ), we obtain that the Fourier transform of H u(t) is

F[H u](ξ) = Ĥ u(ξ) = −i sgn(ξ)F[u](ξ), ξ ∈ R, (A.1)

(where sgn(x) = 1 if x > 0, 0 if x = 0, and −1 if x < 0).

From the last expression we deduce an alternative formula for the Hilbert
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transform of u ∈ L1(R),

H u(t) = F−1{−i sgn(ξ)F[u](ξ)}.

Using (A.1) we can compute the Fourier transform of f ,

F[f ](ξ) = f̂(ξ) = û(ξ) + i ν̂(ξ) = (1 + sgn(ξ))û(ξ), (A.2)

and therefore, F[f ](ξ) = 0 for ξ < 0.

2 ⇒ 3. We need to prove that f(σ) is an analytic function of the complex

variable σ = t+ i τ for τ ≥ 0. For this, we calculate the inverse Fourier transform

of F[f ] from Equation (A.2), and consider it as a function of the complex-time

variable σ = t+ i τ :

f(σ) =

∫ ∞

−∞
f̂(ξ) ei2πσξ dξ.

Since f̂(ξ) = 0 for ξ < 0, we can write

f(σ) =

∫ ∞

0
f̂(ξ) ei2πσξ dξ,

Replacing s = −i2πσ, we can write this integral as the Laplace transform of f̂ ,

ψ(s) =

∫ ∞

0
f̂(ξ) e−sξ dξ

then f(σ) = ψ(−i2πσ) = ψ(s).

We assume that f(ξ) satisfies

|f̂(ξ)| ≤M erξ, ξ ≥ 0,

for some M > 0 and r ≤ 0 (the proof works for any r, but for our purposes we

take it negative).
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Let ρ be such that r < ρ ≤ Re(s). Then

|f̂(ξ) e−sξ| ≤M erξeRe(s)ξ ≤M e(r−ρ)ξ.

We have that

∫ ∞

0
|f̂(ξ) e−sξ| dξ ≤ lim

T→∞

∫ T

0
M e(r−ρ)ξ dξ

= lim
T→∞

M

ρ− r
(
1− e−(ρ−r)T

)
=

M

ρ− r ,

and this implies that ψ(s) is uniformly convergent in every compact subset of the

right-half plane Re(s) > r.

Since f̂(ξ) e−sξ is analytic in s for each finite ξ, then we obtain that ψ(s) is

analytic for Re(s) > r. (This is a consequence of a general theorem about the

analyticity of functions defined as uniformly convergent integrals, see [14] p. 188).

But f(σ) = ψ(s) with s = −i2πσ = 2π(τ + i t), then f(t + i τ) is analytic for

τ > r/2π. In particular, since we chose r < 0, f(σ) is analytic in the upper half

plane.

3 ⇒ 1. We need some concepts regarding analytic functions. A useful repre-

sentation of the function f analytic in a domain D is obtained with the Cauchy’s

integral formula,

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z dζ,

for any simple, closed, positively oriented curve C and every point z in the interior

of C, provided that C and its interior belong entirely to D.

To obtain another representation that involves the restriction of f to the real

axis, we consider the contour C as represented in Figure A.1.

We are assuming that f(z) is analytic in the upper half plane, then for t ∈ R,

by Cauchy’s theorem we have

∫

C

f(η)

η − tdη = 0
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Figure A.1: Contour C.

(since t is not in the interior of C). Then we have

∫

C
=

∫

γR

+

∫

γε

+

∫ t−ε

−R
+

∫ R

t+ε
= 0.

It can be shown that the integral on the half circle γR vanishes for R→∞. Also,

as a consequence of the Residue theorem, we obtain

lim
ε→0

∫

γε

f(η)

η − tdη = −πiRes
(
f(η)

η − t , t
)

= −πif(t).

Therefore, when R→∞ and ε→ 0, the remaining two integrals are precisely the

Cauchy principal value of the integral over the real line, denoted by P
∫∞
−∞

f(η)
η−t dη.

Therefore, we have

P

∫ ∞

−∞

f(η)

η − tdη = πif(t).

Substituting f(η) = u(η, 0) + i ν(η, 0) and equating the real and imaginary parts
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on both sides of the previous equation, we obtain

u(t, 0) =
1

π
P

∫ ∞

−∞

ν(η, 0)

η − t dη,

ν(t, 0) =− 1

π
P

∫ ∞

−∞

u(η, 0)

η − t dη.

These equations are equivalent to the definition of the Hilbert transform (2.10)

and (2.11). Therefore, u and ν form a Hilbert pair, and the theorem follows.

A.2 The method of stationary phase

This method computes the asymptotic expansion of the integral

I =

∫ ∞

−∞
M(t) exp[iλφ(t)]dt.

Assume t0 is a unique point (called stationary point) such that φ′(t0) = 0, and

that φ(t0) 6= 0 and φ′′(t0) 6= 0. Then we can expand φ and M in a Taylor series,

φ(t) = φ(t0) +
1

2
φ′′(t0)(t− t0)2 + . . .

M(t) =M(t0) +M ′(t0) +
1

2
M ′′(t0) + . . .

and so

I ≈M(t0) exp[iλφ(t0)]

∫ ∞

−∞
exp

[
i
λ

2
φ′′(t0)(t− t0)2

]
dt

+M ′(t0) exp[iλφ(t0)]

∫ ∞

−∞
(t− t0) exp

[
i
λ

2
φ′′(t0)(t− t0)2

]
dt

+
1

2
M ′′(t0) exp[iλφ(t0)]

∫ ∞

−∞
(t− t0)2 exp

[
i
λ

2
φ′′(t0)(t− t0)2

]
dt

=M(t0) exp[iλφ(t0)]

√
2π

λ|φ′′(t0)|
exp[i sgn(φ′′(t0))π/4] +O(λ−3/2).

Then, the contribution of an interval containing a stationary point is of the order

λ−1/2.
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Note that if there is no stationary point in the interval [α, β], then integration

by parts gives

∫ β

α
M(t) exp[iλφ(t)]dt =

1

iλ

∫ β

α

M(t)

φ′(t)

d

dt

(
eiλφ(t)

)
dt

=
M(β)

iλφ′(β)
eiλφ(β) − M(α)

iλφ′(α)
eiλφ(α)

− 1

iλ

∫ β

α
N(t) eiλφ(t)dt,

where N(t) = d
dt
M(t)
φ′(t) . Since N satisfies the same conditions asM , then the integral

over an interval without stationary points is of the order O(λ−1), as we see in the

following expression,

∫ β

α
M(t) exp[iλφ(t)]dt =

M(β)

iλφ′(β)
eiλφ(β) − M(α)

iλφ′(α)
eiλφ(α) +O(λ−2).

In other words, the intervals with no stationary points contribute to the integral

I in the order of λ−1, and so they should be considered in the following term of

the expansion.

A.3 Proof of Lemma 1

To compute the analytic signal Zu(t) associated with u(t), we use the formula

(A.2) relating the Fourier transform of Zu with the Fourier transform of u,

Zu(t) = F−1{2Θ(ξ)F[u](ξ)},

where Θ is the step function, Θ(t) = 1 for t ≥ 0, and zero otherwise.

In the computation of the Fourier transform of u, we use the stationary phase
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method to obtain

F[u](ξ) =F{A(t) cos[λφ(t)]}

=

∫ ∞

−∞

A(t)

2

(
eiλφ(t) + e−iλφ(t)

)
ei2πξtdt

=

∫ ∞

−∞

A(t)

2
ei(λφ(t)−2πξt)dt+

∫ ∞

−∞

A(t)

2
ei(−λφ(t)−2πξt)dt

=
A(t0)

2
ei(λφ(t0)−2πξt0)eiπ/4

√
2π

λφ′′(t0)
(A.3)

+
A(s0)

2
ei(−λφ(s0)−2πξs0)e−iπ/4

√
2π

λφ′′(s0)
,

where t0 = t0(ξ) and s0 = s0(ξ) satisfy

λφ′(t0)− 2πξ = 0, λφ′(s0) + 2πξ = 0,

and we are assuming that φ′′(t0) > 0 and φ′′(s0) > 0.

Now, we multiply the last expression in A.3 by 2Θ(ξ) and compute the inverse

Fourier transform using again the stationary phase method. The first integral to

compute is

I1 =

∫ ∞

0
A(t0)

√
2π

λφ′′(t0)
eiΦ(ξ)dξ

with

Φ(ξ) = λφ(t0)− 2πξt0 + π/4 + 2πtξ.

This integral has a stationary point if

Φ′(ξ) = (λφ′(t0)− 2πξ)t′0(ξ)− 2πt0 + 2πt = 0,

but the quantity in parentheses is zero for the definition of t0. Therefore, if t =

t0 = t0(ξ0) is the stationary point, the integral can be approximated as

I1 = A(t)

√
2π

λφ′′(t)
eiΦ(ξ0)eisgn(Φ

′′(ξ0))π/4 1

2

√
2π

|Φ′′(ξ0)|
+O(λ−3/2).
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Using the definition of t0, we obtain that t′0(ξ0) =
2π

λφ′′(t0)
, and then

Φ(ξ0) =λφ(t) + π/4, and

Φ′′(ξ0) =
(
λφ′′(t0)t

′
0(ξ0)− 2π

)
t′0(ξ0) + (λφ′(t0)− 2πξ)t′′0(ξ0)− 2πt′0(ξ0)

=λφ′′(t0)[t
′
0(ξ0)]

2 − 4πt′0(ξ0)

=
−4π2
λφ′′(t0)

.

When evaluating at t = t0, the integral is

I1 =
1

2
A(t)eiλφ(t) +O(λ−3/2).

The second integral can be treated in the same way to obtain the desired result.

A.4 Computation of the instantaneous frequency. A

pseudocode

For a time series z, we compute a series corresponding to the evolution in time of

the fundamental frequency ω. The frequency is obtained from the scale producing

the maximum modulus of the wavelet transform at each time point. This was done

with the routine Wavelet.

Description of the Wavelet routines.

Routine Wavelet.

For each time point b:

First it computes two values of the scale a1, a2 that approximate the largest

modulus of the wavelet transform in a range of scales. It calls the function

abswav to evaluate the modulus of the wavelet transform at given values of

time b and scale a.

a1 and a2 are the input for the subroutine fmnbrak that brackets the maxi-

mum of abswav.
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Then the subroutine fmaxim isolates the scale a that produces the maximum

of abswav;

This scale is related to the frequency of z about the time b by ω = cons/a.

The frequency is stored in omega. The information of omega(j) is used to

obtain omega(j+1), accelerating the procedure.

input:

ti, array that holds the time points of the time series,

z, array containing a complex time series evaluated at each time

point in ti: z(j) is a point of the time series that corresponds to

time ti(j),

n, number of points in the time series.

output:

omega, array containing the frequency value at each point b in ti.

parameters:

cons, constant that relates the frequency with the scale: ω = cons/a.

Function Abswav.

It computes the modulus of the continuous wavelet transform of z:

Lψz(a, b) = 〈z, ψa,b〉 = a−1/2
∫ ∞

−∞
z(t)ψ

(
t− b
a

)
dt.

The Morlet-Grossman wavelet is

ψ(t) =
1

σ
√
2π

e2πiλt e−t
2/2σ2

.

The modulus of the continuous wavelet transform is computed at a given

scale a and time b, for the complex time series z evaluated at the points in

ti. The subroutine uses the Simpson formula for numerical integration of

the product between z and ψab, over the time interval [b−3
√
2σa , b+3

√
2σa]

(effective support of the Morlet-Grossman wavelet.)
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input:

a, scale,

b, time,

ti, z, n, time points, values and number of points of the time series.

output:

abswav, modulus of the wavelet transform.

parameters:

sigma, lambda, variance and frequency of the Morlet-Grossman wavelet.

Subroutine fmnbrak.

Routine that brackets the maximum of a function. Given two initial values

a1, a2, the routine searches for the uphill direction and returns new points

a1, a2, a3 that bracket the maximum (i.e., a1 < a2 < a3 and f(a2) is greater

than both f(a1) and f(a3).)

It is used to find points of scale a that bracket the maximum of abswav at

each time b.

input:

a1, a2, initial values of the scale a,

b, time,

ti, z, n, time points, values and number of points of the time series.

output:

a1, a2, a3, points of the scale that bracket the maximum,

f1, f2, f3, evaluation of abswav at the points a1, a2, a3.

Subroutine fmaxim.

Routine that finds the maximum of a function given three abscissas that

bracket the maximum. This routine isolates the maximum to a fractional

precision using Brent’s method [42].

It finds the scale a producing the maximum modulus of the wavelet transform

abswav for the time series z at each time point b with tolerance 10−8.
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input:

a1, a2, a3, points that bracket the maximum,

b, time,

ti, z, n, time points, values and number of points of the time series.

output:

x, point where the maximum is located,

fx, value of the maximum.

A.5 Reduction to two degrees of freedom of the Bag-

gott Hamiltonian

The following transformations of variables were performed first to obtain a normal

form of the Hamiltonian (3.1), and then to reduce the system to two degrees of

freedom using the Polyad number (3.2).

With complex coordinates defined by the canonical transformation

zk =
√

2Ike
iθk , zk =

√
2Ike

−iθk ,

the Hamiltonian function (3.1) can be rewritten as

H = H0 +H1 +H2,

where

H0 =
Ωs
2
(|z1|2 + |z2|2) +

Ωb
2
|z3|2 +

β12
2
Re(z1z2),

H1 =
βsb
23/2

[Re(z1z
2
3) +Re(z2z

2
3)],

H2 =
αs
4
(|z1|4 + |z2|4) +

αb
4
|z3|4 +

εss
4
|z1|2|z2|2 +

εsb
4
|z3|2(|z1|2 + |z2|2)+

(λ′
2
(|z1|2 + |z2|2) +

λ′′

2
|z3|2

)1
2
Re(z1z2)+

β22
4
Re[(z1z2)

2].
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And the Equation (3.2) in this coordinates is

P = |z1|2 + |z2|2 +
|z3|2
2

.

In order to diagonalize the quadratic terms of this Hamiltonian, the following

symplectic change of coordinates is defined:

z1 =
1√
2
(x1 + x2), z1 =

1√
2
(x1 + x2),

z2 =
1√
2
(x1 − x2), z2 =

1√
2
(x1 − x2),

z3 = x3, z3 = x3.

The expressions in the Hamiltonian become

H0 =(
Ωs
2

+
β12
4

)|x1|2 + (
Ωs
2
− β12

4
)|x2|2 +

Ωb
2
|x3|2,

H1 =
βsb
2

[Re(x1x
2
3)],

H2 =
αs
8
[(|x1|2 + |x2|2)2 + 4(Re(x1x2))

2] +
εss
16

[(|x1|2 + |x2|2)2−

4(Re(x1x2))
2] +

εsb
4
|x3|2(|x1|2 + |x2|2) +

αb
4
|x3|4+

(λ′
2
(|x1|2 + |x2|2) +

λ′′

2
|x3|2

)1
4
(|x1|2 − |x2|2)+

β22
16

[(|x1|2 − |x2|2)2 − 4(Im(x1x2))
2],

and

P = |x1|2 + |x2|2 +
|x3|2
2

.

Action-angle variables can be defined by

xk =
√

2Jke
iφk , xk =

√
2Jke

−iφk ,
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that yield to the following form of the Hamiltonian function:

H = H0 +H1 +H2,

H0 =a1J1 + a2J2 + a3J3,

H1 =b1J
1/2
1 J3 cos(φ1 − 2φ3),

H2 =b2J1J2 cos 2(φ1 − φ2)+

b3J
2
1 + b4J1J2 + b5J

2
2 + b6J1J3 + b7J2J3 + b8J

2
3 ,

where the coefficients are given by

a1 = Ωs +
β12

2 b1 =
√
2βsb

a2 = Ωs − β12

2 b2 = αs − εss
2 + β22

2

a3 = Ωb b3 =
αs
2 + εss

4 + λ′

2 + β22

4

b4 = 2αs − β22
b5 =

αs
2 + εss

4 − λ′

2 + β22

4

b6 = εsb +
λ′′

2

b7 = εsb − λ′′

2

b8 = αb.

The Polyad number is expressed analogously:

P = 2(J1 + J2) + J3.

The system in this form also exhibits 1:1 and 2:1 resonance couplings, but it is

no more symmetric with respect to the indices. However, we have reduced the

number of terms in the Hamiltonian and we are left with a diagonal quadratic

part. Actually, this form corresponds to the so called “normal mode” Hamiltonian

by Baggott [5].

We can obtain integrable limits of this Hamiltonian if we neglect either the
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coefficient b1 or b2, i.e., when only one resonance coupling is considered. In this

case, the system can be reduced to a 1-dof Hamiltonian, therefore integrable. For

instance, the truncated Hamiltonian H = H0 +H2 is completely integrable with

first integrals given by H, J3 and J1 + J2; this is what we expect for the case of a

single resonance.

To reduce the system to two degrees of freedom, we use the symplectic linear

transformation (J, φ)→ (N,ψ) defined by

ψ = Uφ, N = (UT )−1J,

where

U =




1 −1 0

1 0 −2
0 0 1


 , (UT )−1 =




0 −1 0

1 1 0

2 2 1


 .

We obtain N3 = P , the Polyad number. Then we are left with a two-degree-of-

freedom system in the variables (N1, N2, ψ1, ψ2). The Hamiltonian can be written

as follows:

H = H0 +H1 +H2,

H0 =α1N1 + α2N2 + α3,

H1 =β1
√
N1 +N2(−2N2 + P ) cosψ2,

H2 =− β2(N21 +N1N2) cos 2ψ1 + β3N
2
1 + β4N1N2 + β5N

2
2 .

Note that since J1 > 0 and J2, J3 ≥ 0, it turns out that the feasible region in the

new variables is given by 0 ≤ −N1 < N2 ≤ P/2.



127

Bibliography

[1] V.I. Arnold. Proof of a theorem by A.N. Kolmogorov on the persistence of

quasiperiodic motions under small perturbations of the Hamiltonian. Russian

Math. Surveys, 18(5):9–36, 1963.

[2] V.I. Arnold. Small denominators and problems of stability of motion in clas-

sical and celestial mechanics. Russian Math. Surveys, 18(6):85–191, 1963.

[3] V.I. Arnold. On the instability of dynamical systems with many degrees of

freedom. Sov. Math. Dokl., 5(3):581–585, 1964.

[4] V.I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag,

New York, 2nd. edition, 1989.

[5] J.E. Baggott. Normal modes and local modes in H2X: beyond the x, K

relations. Mol. Phys., 65:739–749, 1988.

[6] J. Binney and D. Spergel. Spectral stellar dynamics. Astrophys. J.,

251(1):308–321, 1982.

[7] J. Binney and D. Spergel. Spectral stellar dynamics-II. The action integrals.

Mon. Not. R. Astron. Soc., 206:159–177, 1984.

[8] H.W. Broer, G.B. Huitema, and M.B. Sevryuk. Quasi-periodic motions in

families of dynamical systems. Springer-Verlag, Berlin, 1996.

[9] R. Carmona, W. Hwang, and B. Torrésani. Practical time-frequency analysis:

Gabor and Wavelet transforms with an implementation in S. Academic Press,

San Diego, 1998.



128

[10] D. Carter and P. Brumer. Intramolecular dynamics and nonlinear mechanics

of model OCS. J. Chem. Phys., 77(7):4208–4221, 1982. Erratum: J. Chem.

Phys. (78)4, 1983.

[11] G. Contopoulos and N. Voglis. A fast method for distinguishing between or-

dered and chaotic orbits. Astron. Astrophys., 317(1):73–81, 1997.

[12] I. Daubechies. Ten lectures on wavelets. SIAM, Philadelphia, 1992.
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