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Abstract

An analytical method for determining Young’s modulus and the Poisson’s
ratio of thin films is considered; the method is based on the load-deflection
behavior of a rectangular membrane of finite aspect ratio n = b/a subjected
to uniform pressure (c.f. figure 0.1). Following numerical analysis, previously
published model results are shown to be inaccurate, especially for aspect
ratios greater than 1.5.

An improved model description decomposes the displacement field into
two parts: following the Timoshenko formulation, the deflection is assumed
to be sinusoidal near the edges, but for aspect ratios larger than unity the
central portion parallel to the longer sides is assumed to bear two-dimensional
character (the displacement field is independent of the coordinate parallel to
the longer side).

Using energy methods and including the effects of the residual stress, the
load-deflection relationship for a rectangular membrane of arbitrary aspect
ratio n = b/a, under uniform pressure, is obtained.

Experiments are simulated by using numerical analysis. By comparing

the numerical data of load-versus-deflection behavior to that for the energy
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Figure 0.1: Cross-section of sample

based approximation, Young’s modulus can be determined to within 2% of
the value specified for the numerical analysis, provided that Poisson’s ratio,
v, is known. If the latter is not the case, the error increases to 14%, if the
full range of Poisson’s ratio (0 < v < 0.5) is admitted. Narrowing of the
uncertainty through bounding Poisson’s ratio is demonstrated. This result
constitutes a significant improvement over the previous models which were
shown to elicit errors on the order of 45%.

A method to evaluate Poisson’s ratio is also proposed. Making use of the
load-deflection relationship for a rectangular plate of any aspect ratio, Pois-
son’s ratio may be evaluated through the comparison of the load-deflection
behavior of membranes of different aspect ratios. This method was found to
be valid for materials with Poisson’s ratio in the range {0.25, 0.5}.

Since it is generally difficult to obtain homogeneous films, this study
was extended to considerations for bimaterial plates in terms of an effective
thickness that is well defined. A layer of the material under examination is
deposited onto a well-characterized substrate so that a sandwich film results.
Young’s modulus of the material can then be deduced from the load-deflection
data of the bimaterial film.
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Introduction

Thin films are widely used in the process of producing micro-electronic de-
vices and in micromechanics. It is commonly assumed that the thin film
material has mechanical properties identical to those of the bulk material.
However, because the ratio of surface to volume of thin film is very high,
the question arises of whether this assumption is valid. This question is also
important in interface mechanics, when property gradients must exist nor-
mal to the interface forming the ”contact” between the two materials. This
transition region is often considered to be on the order of hundreds or a thou-
sand Angstrom. In order to investigate the mechanical properties of such a
region, it would seem useful to examine the properties of films that are of a
thickness with similar or smaller dimensions.

The determination of the physical properties of thin films is typically
pursued along two avenues: one way is to use self-supported structures, ex-
emplified by microbridges or membranes. These films are fabricated using
photolithography and chemical etching. The film is deposited onto a sub-
strate, after which a part of the substrate is made sensitive to chemical etch-

ing by photolithography, leaving a single-layer membrane. The alternative



to this approach is to study films on a supporting microsized structure made
of some other material for example, silicon. Both methods have advantages
and drawbacks: Using single-layer membranes, the mechanical properties of
the thin film itself are measured directly. However, many film materials are
not easily produced by etching away their substrate. In that case, mea-
surements on a composite membrane (a film sandwiched with the substrate)
may be performed, but results are prone to accuracy limitations because the
substrate also influences the overall mechanical behavior of the composite
membrane.

Several useful methods have been identified for evaluating the mechan-
ical properties of thin films such as nanoindentation, measurements of the
natural frequency of a specimen, measurements of the deflection of buckled
membranes, and measurements of the deflection of membranes subjected to
uniform pressure. The work presented herein addresses the latter case.

It is the purpose of this study to investigate very compact approximate
solutions for the mechanical behavior of thin films. The work was conducted
using energy methods, and load-deflection relationships were obtained for
different geometries.

The cases of rectangular and circular membranes undergoing large defor-
mation under uniform pressure are studied. In chapter one, the governing
equations (Timoshenko) are explored and approximate solutions are found
for different geometries. Their limitations in determining Young’s modulus
and Poisson’s ratio are then investigated through comparison with numeri-
cal simulations in chapter two. It will also become apparent that Poisson’s

ratio significantly influences the mechanical behavior of a membrane speci-



men. Motivated by this observation, chapter three explores how geometri-
cal arguments are used to determine Poisson’s ratio. Finally chapter four
adapts the foregoing analysis to bimaterial membranes, through the use of
an approprately defined "equivalent thickness”. It will be shown that for
a membrane the "equivalent thickness” should be determined by a tension-
equivalent while a bending-equivalent is appropriate for small deformation re-
sulting from plate bending. This latter observation reinforces the assumption
that the mechanical behavior of membranes is driven by in-plane stretching

rather than by resistance to bending.



Chapter 1

Approximate solutions for the
large deformation of

membranes

In this chapter, the approximate solutions for large deformations of mem-
branes under uniform pressure will be investigated. In Section 1.1, some
hypothesis on the membrane itself and on the membrane behavior will be for-
mulated. Section 1.2 presents the general method to obtain a load-deflection
relationship for membranes of any geometry. This method will then be ap-
plied to a square membrane in Section 1.3, an infinite strip in Section 1.4,
a rectangular membrane of finite aspect ratio in Section 1.5 and finally to a

circular membrane in Section 1.6.



1.1 Hypotheses

In the sequel, the assumptions and definitions necessary to formulate the

membrane theory are presented.

1.1.1 Thickness change

To observe the load-deflection behavior of a thin film the thickness of which
is typically on the order of a few nanometers (10~° m), the specimen must
sustain deflections many times larger than its thickness. To remain in the
range of linearly elastic material behavior, the deflection should be such that
the engineering strain in the film is typically less than 0.2% (c.f. Section 2.4).
By assuming a perfectly cylindrically deformed shape, one can easily approx-
imate the value of the engineering strain as a function of the deflection, using

simple trigonometric arguments (c.f. Figure 1.1),

where a is half of the characteristic length and wy is the maximal deflection.

This can be further approximated by

e~ g (%)2 (1.1)

Thus, in order to work in the linearly elastic range, the central deflec-

tion should not exceed 0.05 X a. As long as that condition is obeyed, one



R-wo
Wo /:
< >
2a

Figure 1.1: Geometric parameters for engineering strain calculation

may assume that there is also no significant change in the thickness of the
membrane.

Note that even though the material is considered linearly elastic (less
than 0.2% strain), the deformation is considered large because the deflection

is much larger than the thickness of the membrane.

1.1.2 Film manufacturing

There exist several techniques to manufacture thin films, such as vapor depo-
sition or chemical etching. However, every method is known to induce some
residual stresses in the final membrane. These will have to be accounted
for when one writes the (differential) equilibrium equation for an assumed

isotropic material. To that end, one writes the net forces as

Nt = N, 4+ h(oz)o (1.2)

N;otal Ny + h(Uy)o



Nl = Nyt h(oa)o

where N, is the force per unit length in the o-th direction, (04)o is the
residual stress in the a-th direction and & is the thickness of the film. It will
be assumed that the residual stresses (04 )o are spatially constant. Moreover,

the shear strain (o, )o is taken to be zero.

1.1.3 Membrane behavior

Thin films may be viewed as plates with a thickness tending to zero. As
a result, their flexural rigidity tends to zero as well. Therefore, the load-
deflection behavior is governed by the stretching of the middle plane rather
than by the resistance to bending. Consequently, the contribution of the

resistance to bending will be neglected.

1.1.4 Applied pressure

The membranes considered are under uniform pressure. The load is, there-
fore, always perpendicular to the membrane. The method developed in this

section will assume that the load is along the z-axis.

1.2 General method

From intuition, one can assume a functional form for the components of
the displacement field u(z,y,2), v(z,y,z) and w(z,y,z) that satisfies the

boundary conditions.



The resulting large deformation strains are computed using the simplifi-

cation introduced by Timoshenko [1].

ou 1 0w,

= = oz 2(31:) (1.3)
Bv 1 0w

€y = ( )2

o, ou oo
Yoy = dy 09z 9z 9y’

Note that in the following study, the in-plane strain should not exceed 0.2%
and the non-linear terms are probably negligible.

If the plate is linearly elastic, the following strain-force relations govern

1
€& = ﬁ(NI_VNy) (1.4)
1
€& = ﬁ(Ny_VNz)
_ 1 Ney
T = SRE(+v)

From the above, the strain energy, V, is evaluated as

V= [{f" Ndeo+ [ Nide, + [ N drey Yz dy

which can be rewritten as

V=V+V;

where V, is the strain energy due to the loading and V; is the strain energy



due to the residual stresses in the membrane. V, and V; are then given by

1
V. = 5 /A (Noeo + Nyey + Noyysy)dz dy,

h
V, = E/A(az)oex + (0y)o€y dz dy.

Making use of Equation 1.4, one obtains the elastic strain energy as a function

of the strains only, namely
Eh 2, .2 1 2
= — : - —(1— . 1.5
Ve 51— %) /A(e,c + €, + 2ve.€, + 2(1 V)7ay)dz dy (1.5)
The potential energy, II, is then

n=v- /A qw(z,y)dz dy. (1.6)

The unknown constants in the displacement field and the desired load-
deflection relationship are derived using the potential energy minimization
theorem.

The success of this method depends on the form of the assumed displace-
ment field. A value of the potential energy II may be calculated from any
admissible function and then minimized with respect to the unknown con-
stants. However, II is an absolute minimum only if the displacement field
1s exact. Thus, pick a simple but very reasonable deformation pattern that
closely approximates the exact solution. One may then check on closeness

by comparing with numerical data.
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1.3 Application to a square plate

This method is first applied to determine the load-deflection behavior of a

square plate [2]. Assume the following displacement field,

_ (T Ty
u csin( - ) cos( 5g )"
_ esin(™) cos( %2
v = csin( - ) cos( 2a),

T ™
w = wocos(%—)cos(%),

and compute the total strain energy,

2 4,4
_w 2 Eh s . € 5 o  OTwy
V= ?oohwo + ———2(1 — Vz)(TC + Sg’wo‘ll' + 2%71?
where
16 w?
P= S+ TO-),
-5+ 3v
§ = —.
6
From Equation 1.6, compute the total potential energy,
2 4,4
o 9 Eh g C o o ST wy
II= —8-0'0th + ——-—‘2(1 — Vz)(TC + s;wow + -2—5'65) —16

a’qug

(1.7)

(1.8)

(1.9)

First minimize IT with respect to ¢ and obtain c as a function of wo. Then,

minimize II with respect to wp, substitute ¢ by its value and obtain the
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following load-deflection relation

™ hw, #% 5 s E  huw}
L T2 8 & hwo 1.10
6% TRE gy e ¢ (1.10)

1.4 Application to an infinite strip

In the case of an infinite strip, the problem is one-dimensional and the gov-
erning equations are greatly simplified. It is possible in that case to find
the exact solution. The displacement field is found to be a superposition
of a hyperbolic cosine function and a parabolic function. Their respective
amplitude cannot, however, be found in closed form since they are roots of a
transcendental equation. The search of an approximate solution is therefore
justified by its more compact form.

The displacement field will be approximated by sine and cosine functions

as follows

u = esin(=), (1.11)
a

w = wp cos(;r—x).
a

Computing and minimizing the total potential energy II (per unit length)
yields the desired load-deflection relationship.

E7l'2h 2 2 1 2 3 2 4 2 hw02
V.= m(‘*“c —gaeTwo + om “’0)”"0 Toa (-12)
4

I = V- —aquw
T
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Figure 1.2: Shape of the deflection for different aspect ratios

Therefore, minimization of II with respect to ¢ and wy yields

x3 h + = E  hwd
——0OoWw, =
32020 T 256 (1—12) @t !

(1.13)

1.5 Rectangular plate of finite aspect ratio

From intuition, one can think that a rectangular plate of finite aspect ratio
will behave neither like a square plate (sinusoidal displacement field) nor like
an infinite strip (constant central deflection), but rather like a combination of
both (Figure 1.2). Thus, using the mathematical properties of the potential
energy (namely additivity and non-dependence on coordinate system), one
can calculate the strain energy of a rectangular membrane of aspect ratio
b/a described by a displacement field that takes those two aspects under
consideration. By symmetry, the problem can be reduced to the study of one
half of the plate. In Section 1.5.1, the distance § at which the ”short” edges

cease to influence the membrane behavior will be assumed to be equal to the
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half length a. In Section 1.5.2, it will be assumed that this distance is some

fraction k of a.

1.5.1 Assume that d =a

First assume that the distance at which the edges cease to influence the be-
havior of the membrane is § = a. The displacement field is then decomposed

in two parts:

e For y € [0,(b— a)):

Assume that the membrane behaves like an infinite strip. Thus, the
displacement field does not depend on y, but only on x. Moreover,
assume that the displacement field has no component in the y-direction,

namely v(z) = 0. Take

{ wl(y) = csin(%)

wI(y) = wg cos(-’%)

e For y € [(b—a),b):

Assume that this part behaves like a square plate and

u(z,y)!! = csin(%2) cos Z(y — (b — a))

v(z,y)!

w(z,y)T = wp «cos(;'—:) cos 5-(y — (b — a))

= ccos(3=)sin Z(y — (b— a))
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The system 1is, therefore, described by the following

(o) = { esin(’%) y€[0,(b-a)]

csin(2) cos £(y — (b—a)) y € [(b—a),}]

0 y €[0,(b~a)]
v(z,y) = { ,
ccos(3Z)sin Z(y — (b—a)) y€[(b—a),}

N { wg cos(%E) y € [0,(b—a))
w(a:,y) - )
wo cos(22) cos £ (y — (b— a)) y € [(6— ),

Note that the above displacements are continuous at £ = b— a and vanish
at the edges.

The strain energy is the sum of the strain energy of a rectangular plate
with two free edges of length (b —a) (whose behavior is similar to that of an
infinite strip) and one half of the strain energy of a square membrane of side

2a (Equation 1.8), namely

w? 2 Eh
V= G

4,4
[ T W
0
rc2 + s_wgzr2 + ___._)
a

256 a?
Ex*h 1 3 hwo? (b—a
+ (b— a)m (4(1202 - §ac7rw02 + ézwzwo") + wzoo—sl( - )
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Substitute the aspect ratio b/a by n and simplify to obtain

2 h 51t wi
V = nLaohwg + _E (1‘02 + .sz;‘;ﬂ'2 + iivﬁ)
a

16 41— 17 256 a?
Eh m( . lc_, 3 ,w

where r and s were defined in 1.9. Note that for n = 1, one retrieves, as
expected, the value of the strain energy of a square membrane of side 2a.

To obtain the potential energy II, one needs to compute the work W done
by the load, which is '

W = /qw(:c y)dz dy
(b—a) b
= /_a/ qu'(z,y) dz, dy+/ /b_a)qw”(x,y)dx,dy
8

1!'

Then, minimize II

n=v-w

with respect to ¢ and wp to obtain the desired load-deflection relationship

72 hw Ex® hw} (6n—1 (s—3%(n—1))° 8 )
"8 T4l - 17) o ( 64 r+2nin-1)) 1 (? tiln-1)),
(1.14)

where r and s are given by Equation 1.9. Note that if n = 1, Equation 1.14
is similar to Equation 1.10, as expected.
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1.5.2 Assume that d =ka

Take § = ka (where k is expected to be on the order of one), and minimize the
potential energy with respect to ¢, wo and k. To achieve this, the membrane
has to be decomposed into two parts again: a portion of length (b— k a) that
will behave like an infinite strip, and a rectangular portion of sides 2a x 2k a,
for which the displacement field will be assumed to be sinusoidal. Neglecting
the residual stress o (cf. Section 2.3), the strain energy of one half of the

plate is
Eh 0,  wwic, ww},
V= (1-22) {cr t ak t k3a2l
with
, 4
o= 9(1+u)-i- 1 k? ( —(n—k)

n
- () e e
o= (4096( + 4)+2(’;48+5—i§ n —k))

The work done by the load is

quwoa

W= = 2(-8;k+4(n—k)).

Therefore, the potential energy becomes

_ En 2, Twie ,  mwg,|  qwoa® (8k
H—(l_yz){cr+ > s+k3021 - +4(n k).




17

Minimizing II with respect to ¢ and wp in closed form yields

on 0= o miwl §
dc ’ €= ak 2r

6_1'[ = 0= w —aa’—al
dwe 0T W ER

o = {4(1 — 12)k? (2”—" +(n — k)) }1/3

5 a_
T k r!

where

To obtain the value of £* that minimizes the potential energy, plot the value
of IT as a function of k for different aspect ratios (see Figures 1.3, 1.4, 1.5).
As expected, k* is close to unity for aspect ratios two, four and ten.

Variations of k* as a function of the aspect ratio are shown in Figure 1.6.

1.6 Application to a circular plate

Let a circular membrane of radius a and thickness A be subjected to a uniform
pressure q. Assuming that the shape of the deflected surface can be repre-
sented by the same equation as in the case of small deformations, choose the

following displacement field:

v = r(e—r)(cr + car), (1.15)
w = 'wo(l - 25)2

From equations 1.15, one calculates the strain components €, and ¢, in
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n=2, a=0.001, E=290 GPa, nu=0.25, t=500 nm, g=5000 Pa

T - Y y —y—r -

-5. 10

-7. 10

-1. 10

-7 %
-1.1 10 N N " " A N N
0.25 0.5 0.75 1 1.25 1.5 1.75 2

Figure 1.3: Potential energy as a function of k, n = 2
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n=4, a=0.001, E=290 GPa, nu=0.25, t=500 nm, q=5000 Pa

Y T Y na

-1.6 10

-1.8 10

-2.2 10

-2.4 10 \_—/

Figure 1.4: Potential energy as a function of k, n
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n=10, a=0.001, E=290 GPa, nu=0.25, t=500 nm, g=5000 Pa

7L
-4. 10 )
-7L
-4.5 10 1
-7t ]
-5. 10
_',' [
-5.5 10 ]
-7 [ ]

-6. 10 \
- /
-6.5 10 L/

-

Figure 1.5: Potential energy as a function of k, n = 10
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E=290 GPa, nu=0.25, a=0.001m, t=500 nm, q=5000 Pa

1.10
e e e
e e
e *
e
e
i 1.00 | -
He

0.90 1

0.0 5.0 10.0

Aspect ratio n=b/a
Figure 1.6: Variation of k* as a function of the aspect ratio

cylindrical coordinates as

e = 4v ldwy
T dr " 2Ydr
2 w5, a2
= c(a—2r)+ c(2ar —3r*) + 8 " (r* — a®)*,
u
€& = ;:(a—-r)(cl + car).

The strain energy due solely to the stretching of the middle surface is
given by

V= nEh
1—v2

/ (€ + € + 2ve, €)r dr, (1.16)
0
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Ehzn |1 3 7 4 44

.‘/e = - (= 4 2 .6 2 - - 2,.°.,.2
TN 00t geiat G+ gEean
46 82 , 96 w
+ (o35t Ve t 3

To obtain the potential energy II, first compute the work done by the
applied forces

W = 27r/aqw(r)‘rdr
0

= 2 / 1-—
roqwo( az)rr

Twoga’
3

Deriving the total potential energy

In=v-w
Etr |1 7 9
———-—(1 — 2)(4 + a cico + ——a 2+ (3—1—5- + E v)a®cw?
82 ., 96 w0 Tweqa’®
+ (_315 V)t 3 ) T

and minimizing II with respect to c;, ¢z, wo yields the following load-

deflection relationship
[T
Et

Wo = Qcirc@
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where
6615
Qeire = Y (1 - !/2).
15010 + 8500 v + 5582 /2
For further reference, note that
179 — 89y w?
= — A7
“a 126 a3 (1.17)
—79 + 13v w?
g = ——

42 at’
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Chapter 2

Comparison with numerical

analysis

2.1 General methods

A commercial software, COSMOS/M, was used to numerically simulate ex-

periments. Given
e the geometrical parameters,

— thickness h, geometry (square, rectangle of aspect ratio n, etc...)

e the material properties,

— Young’s modulus E, Poisson’s ratio v
e the load level in the membrane ¢,

e the residual stress oy,
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e the boundary conditions,
the program was able to render data of

e the load and the corresponding deflection
{g, (wo):} (2.1)

e and the shape of the deformed geometry

w = w(Z).

On the other hand, the models developed in chapter one yielded relations

of the type
q= fiwo+ f3wp (2.2)

where

fi = fi(oo,geometrical parameters)

fs = f3(E,geometrical parameters).

Therefore, if the models derived in chapter one are acceptably accurate,
one should retrieve the values of E and o, independently by curve-fitting
the numerical data 2.1 to a third order odd polynomial and compare it to

Equation 2.2.
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In other words, curve-fit the data 2.1 by
q =8, wo + &3 w
and set

f1(00, geometrical parameters) = 4,

f3(E, geometrical parameters) = 3

which can be solved for E and o independently.

A more direct way of evaluating the models obtained in chapter one is to
compare the shape of the deformed geometry given by the program to the
one assumed in the energy minimization process. Both approaches will be
investigated in the forthcoming sections.

The models will be compared to the numerical simulations in two steps.
In Section 2.2, the residual stress will be ignored and set equal to zero in the
equations. In Section 2.3, op will be set to a value of 2 M Pa.

2.2 Ignoring the residual stress

If one ignores the residual stress, the load-deflection relations derived in chap-

ter one for the different geometries can all be rewritten in the form

NET) Eh 4

wo = @ay/ o Of —wo =¢ (2.3)
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where
32 1
a = —+—=(1- v?) for a square plate
e v
256 P
ofy = —(1-1% for an infinite plate
T
4 84 4(n—1)
al = F(l -7 oL Iy for a rectangular plate, k =1
64  r2xi(n—1)
4 2k —k
ay = ;—5-(1 — Vz)kz%)- for a rectangular plate, k = k*
k r!
. 6615

= 1— 22 for a circular plat
eire = 15010 7 85000 + 55822 L V) or a drcwlar plate

These five different models will be compared to numerical results in the

following sections.

2.2.1 Square plate

First, the validity of the displacement field will be checked by comparing
the assumed deformed shape to that given by numerical analysis. Then, the
numerical data will be curve-fitted to obtain the corresponding value of E.

Validity of the assumed displacement field

The following function was chosen for the deflection

w = wo c‘os(g-v-) cos(;—y
a a
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aq
Wo = a,a{/;,—’q—

@ = 251 — )5
r=1140)+ 2O -0),
s = =543v

=sta

where

-

This displacement field is compared with the numerical data in Figure 2.1.
The values of the central deflection compare within 10%. The shape that
was assumed in the energy minimization process was thus not suitable for
this geometry since it overestimates the value of the central deflection. It
is interesting to note that at locations close to the edges, the model fits
the numerical data well; towards the center of the membrane, however, the
deflected shape is flatter than expected on the basis of approximate theorems.
It can then be expected that the model will be inaccurate in estimating the

Young’s modulus.

Validity of the model

To evaluate the ability of the model in yielding Young’s modulus, different
tests were performed for different values of Young’s modulus and Poisson’s

ratio. The results are shown below.
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N=1, as=1 mMm, h=500 nm, E=290 GPa, nu=0.25, q=5000 Pa

deflection (mm)

0.030
0.020 | -
0.010 | .
< Numerical data
—— Model
0.000 L L - .
0.0 0.2 0.4 0.6 0.8 1.0

ova)
Figure 2.1: Deflection w along the x-axis; n = 1

e Assuming that Poisson’s ratio is known and equal to 0.25, let Young’s

modulus vary.

v | Input Value E* (GPa) | Calculated E (GPa) | Error

0.25 50 67 25%
0.25 290 389 25%

0.25 450 601 25%
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e For a fixed value of Young’s modulus, let Poisson’s ratio vary in its full

range while the model assumes an average Poisson’s ratio of 0.25.

v | Input Value E* (GPa) | Calculated E (GPa) | Error

0.0 290 327 11%

0.15 290 345 16%

0.25 290 389 25%

0.35 290 426 32%

0.45 290 - 498 41%
Conclusion

The error in Young’s modulus is on the order of 25%, provided that Poisson’s
ratio is known. If Poisson’s ratio takes values in its full range while the model
assumes an average value of 0.25, the error increases to 41%.

The model developed in Section 1.3, therefore, fails to provide a good

estimate for Young’s modulus.

2.2.2 Infinite strip

The same procedure is now applied to an infinite strip. Even though this
model does not account for variations along the y-axis, this section shows
how it satisfactorily characterizes the behavior of rectangular membranes
with "high” aspect ratio n. The results derived in Section 1.4 are compared
herein to the data obtained for rectangular plates having aspect ratios two

and four.
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N=2, a=1 mm, h=500 nm, E=290 GPa, nu=0.25, q=5000 Pa

e 0.020 L 4 E
E
%

0.010 | B

< Numericai data PN
Infinite strip model
0.000 L . . L
0.0 0.2 0.4 0.6 0.8 1.0
Os/a)

Figure 2.2: Deflection w along the z-axis, n = 2

Validity of the assumed displacement field

The displacement field assumed for this case was
w = wp cos(%).

where

Wp = a‘stripa\:/%"—;,
Qutrip =  2R2(1 — 12).
Figures 2.2 and 2.3 compare the assumed displacement field to the nu-
merical data along the z-axis and y-axis, for a rectangular membrane of
aspect ratio of two while Figures 2.4 and 2.5 refer to membranes with an

aspect ratio of four.
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n=2, a=1 mm, h=500 nm, E=290 GPa, nu=0.25, q=5000 Pa

0.035 T T T
- B
0030 I-—-—-—-— - — e e e — - — - —
| G S e ]
L 2
0.025 | L 4 N\ -1
N
A\ ]
N\
*\
0.020 | N -
\
0.015 | -
0.010 | < Numerical data -
k=1 model
— — - k=k* model
— - — _Infinite strip model
0.005 -
0.000 L t L
0.0 0.5 1.0 1.5 2.0
Ova)
Figure 2.3: Deflection w along the y-axis, n = 2
n=4, q= 5000 Pa, a=1 mm, h=500 nm, nu=0.25, E=290 GPa
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\
0 ooo i i 'l 1 \
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Figure 2.4: Deflection w along the r-axis, n = 4
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Ova)

Figure 2.5: Deflection w along the y-axis, n = 4

The estimated value for the central deflection, wg, is within 4% of the

numerical results for an aspect ratio of two and within 3% for an aspect ratio

of four. As expected, the error decreases as the aspect ratio increases.

Validity of the model

The ability of the model to yield Young’s modulus was tested on membranes

of aspect ratio four for different input values of Young’s modulus and Pois-

son’s ratio.
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e Fix Poisson’s ratio and let Young’s modulus vary:

Poisson’s ratio | Input Value E* (GPa) | Calculated E (GPa) | Error
0.25 50 57 12%
0.25 160 175 9%
0.25 290 319 9%
0.25 450 520 13%

e Fix Young’s modulus and let Poisson’s ratio vary:

Poisson’s ratio | Input Value E* (GPa) | Calculated E (GPa) | Error
0.0 290 311 %
0.15 290 312 8%
0.25 290 319 9%
0.35 290 335 13%
0.45 290 362 20%
Conclusion

Although the displacement field does not take the detailed bending behavior
deformation along the ”short” edges into account, the model developed in
Section 1.4 yielded a good estimate of Young’s modulus within 9% of the
value specified for the numerical analysis, provided that the assumed Pois-
son’s ratio was close to that of the material under test. If it is not, the error

in E can be as high as 20% for materials with high Poisson’s ratios.
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2.2.3 Rectangular membrane of finite aspect ratio -
d=a
Validity of the assumed displacement field

In this case, it was assumed that the displacement field could be broken into

two parts as follows
wo cos( 3= y €[0,(b—a)]
w(z,y) =
wo cos(52) cos 75(y — (b—a)) y € [(b—a),}]

where

Wo = alaf/ —EJ;;

(a ) 1/3
;+4(ﬂ—l)
) = (:—5(1 - uz) (6”_1 _(.-{-(n—l))’)) .

64 r+21r2(n—1)

This displacement field was compared to the numerical data in Figure 2.3
and 2.5 for membranes of aspect ratio equal to two and four. The value of
the central deflection compare within 0.5% of the numerical results for an

aspect ratio of two and within 1.5% for an aspect ratio of four.

Validity of the model

The model was tested for two aspect ratios, various values of Young’s modulus

and Poisson’s ratio.
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— Fix Poisson’s ratio and let Young’s modulus vary:

v | Input Value E (GPa) | Calculated E (GPa) | Error
0.25 50 50.3 0.6%
0.25 160 161.6 1.0%
0.25 290 293.0 1.0%
0.25 450 456.0 1.3%
— Fix Young’s modulus and let Poisson’s ratio vary:
v | Input Value E* (GPa) | Calculated E (GPa) | Error
0.0 290 272 6.6%
0.15 290 281 3.1%
0.25 290 293 1.0%
0.35 290 313 7.3%
0.45 290 342 15.2%
e For n=4:
— Fix Poisson’s ratio and let Young’s modulus vary:
v | Input Value E*(GPa) | Calculated E (GPa) | Error
0.25 50 52.9 5.5%
0.25 160 162.3 1.4%
0.25 290 294.6 1.6%
0.25 450 480.0 6.2%
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— Fix Young’s modulus and let Poisson’s ratio vary:

v | Input Value E' (GPa) | Calculated E (GPa) | Error
0.0 290 287.2 1.0%
0.15 290 287.6 0.8%
0.25 290 294.6 1.6%
0.35 290 309.3 6.2%
0.45 200 334.4 13.7%

Conclusion

This model provides an accurate value of the Young’s modulus (within 1%
for membranes of aspect ratio equal to 2; within 6% for membranes of aspect
ratio equal to four), provided that the assumed Poisson’s ratio is close to
that of the material under test. If this is not the case, the maximum error
in E is of the order of 15% and as before, this corresponds to materials with

high Poisson’s ratio.

2.2.4 Rectangular membrane of finite aspect ratio -
d=ka

Validity of the assumed displacement field

The deflection was taken of the form

w(z,y) = { oo y€[0,(b—ka)
wo cos(3=) cos Z(y — (b—ka)) y€[(b—ka),b]

2a
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where

wy = aka{/ﬂ
/| Et - k)) %
—2)k? (T +H(n—

ay = (4(1 ) )

4l_ o7
kol

k depends on the aspect ratio as shown in Figure 1.6.
A comparison of the subsequent displacement field to numerical data for
a membrane of aspect ratio four is shown in Figure 2.5. The value given by

the model for the central deflection is within 1.3% of the numerical value.

Validity of the model

As before, one tests the ability of the model to render E by running numerical

simulations with various values of F and v.
e For an aspect ratio n = 2 (k* = 1.05):

— Fix Poisson’s ratio and let Young’s modulus vary:

v | Input Value E* (GPa) | Calculated E (GPa) | Error

0.25 50 55.7 10%
0.25 160 178.7 10%
0.25 290 324.5 10%

0.25 450 504.1 11%
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— Fix Young’s modulus and let Poisson’s ratio vary:

v | Input Value E*(GPa) | Calculated E (GPa) | Error
0.0 290 281.6 3%
0.15 290 285.1 2%
0.25 290 297.0 2%
0.35 290 315.7 8%
0.45 290 345.0 16%

e For an aspect ratio n = 4 (k* = 1.07):

— Fix Poisson’s ratio and let Young’s modulus vary:

v | Input Value E' (GPa) | Calculated E (GPa) | Error
0.25 50 54.2 8%
0.25 160 166.1 4%
0.25 290 301.5 3%
0.25 450 491.4 8%

— Fix Young’s modulus and let Poisson’s ratio vary:

v | Input Value E* (GPa) | Calculated E (GPa) | Error

0.0 290 294.0 1%
0.15 290 294.4 1%
0.25 290 301.5 4%
0.35 290 316.7 8%

0.45 290 342.3 15%
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2.2.5 Circular plate

In the following section the same analysis is performed on a circular plate.

Validity of the assumed displacement field

The following deflection was assumed for a circular plate of radius a by

Timoshenko [1].

7‘2

- 2
w = ’wo(l - ;—2')

where wy was found to be

19845 NE¢

\,/ 7505 + 42500 — 27910 [a@q
Wo =

This displacement field is compared with numerical data in Figure 2.6.
The values of the central deflection compare within 7%. The displacement
field that was assumed in this case is therefore judged inadequate. It is
interesting to note that the behavior of the membrane at the edge differs
greatly from that assumed. In fact, because the membrane is thin, the ”zero-
slope” boundary condition does not apply. Future guesses should take this

aspect into account.

Validity of the model

The model is compared with numerical analysis and its ability in yielding

Young’s modulus is evaluated in this section.
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circular plate, a=1 mm, h=500 nm, E=290 GPa, nu=0.25, q=5000 Pa
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Figure 2.6: Deflection w along the r-axis, circular plate

e Fix Poisson’s ratio and let Young’s modulus vary:

v | Input Value E* (GPa) | Calculated E (GPa) | Error
0.25 50 62.6 20%
0.25 160 200.9 20%
0.25 290 364.6 20%
0.25 450 566.4 29%
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e Fix Young’s modulus and let Poisson’s ratio vary:

v | Input Value E* (GPa) | Calculated E (GPa) | Error
0.05 290 302.5 4%
0.15 290 330.1 12%
0.25 290 364.6 20%
0.35 290 409.8 29%
0.45 290 471.0 38%
Conclusion

The displacement field chosen for this geometry yielded an estimate for the
central deflection that differed from the numerical data by 7%. This error is
reflected in the evaluation of Young’s modulus which is determined within
30% of the numerical value if Poisson’s ratio is known and within 40% if it
varies in its full range and is assumed to be 0.25 in the model.

Because of its geometry, however, a circular membrane deflects less than
a rectangular membrane of any aspect ratio, for equal characteristic length, a
(radius for a circular plate, half-width for a rectangular plate). Their deflec-
tion is consequently harder to measure experimentally. Moreover, the etching
processes involving epitaxial growth, rectangular membranes are more natu-

rally obtained. Circular membranes will therefore be set aside.

2.3 Effect of the residual stress

To evaluate the influence of the residual stress, a theoretical analysis will be

performed on the equation derived in chapter one. Numerical analysis will
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then be used to confirm the theoretical conclusions.

2.3.1 Theoretical analysis

The following analysis will focus on rectangular membranes of any aspect
ratio, n. The model for which ¥* = 1 is chosen to describe their load-
deflection behavior.

The load-deflection relation 1.14 is rewritten in the form

o T to {m T (%Y (6n —1_(s—5(n— 1))2)} .

4 a? n(1—1v2) \a/ 64 r+2n2(n — 1)

where
8
5= (;+4(n—1)).

In other words, one needs to compare the order of magnitude of the following

expression:

T S O - ERy) e

to oy.
As seen in Equation 1.1, the ratio of deflection to half width is limited by
the strain level in the film.

2
(ﬂ) ~ %s ~ 0.3%.

a

For aspect ratios of one, two and four, the factor of £ in Equation 2.4 is

on the order of 1073, Thus, the residual stress is significant only if it is on
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the order of E/1000. For most cases, the residual stress is much less than

E /1000 !. It can therefore be ignored in the analysis.

2.3.2 Numerical analysis

Residual stresses of 1 M Pa and 2 M Pa were included in the program. The
results showed no difference between this case and that without residual
stress and, therefore, reinforce the above statement.

The computer program could not handle residual stresses higher than
2 MPa.

2.4 Strain analysis

It is assumed in the present analysis that the strains in the membrane are
such that the material can be considered linearly elastic. In other words, the
load was chosen such that the strains never exceed 0.2% in the membrane.
This assumption is herein validated by numerical analysis. Figure 2.7 and
2.8 show the distribution of the total strain in one fourth of membranes of
aspect ratio two and four respectively. The center of the membrane is located

at the top left corner of the figure.

1The residual stress in membranes or in micro-bridges is explained by the fact that the
bulk material is itself subject to residual stress. It is possible nowadays to obtain films
virtually stress-free for which o¢9 ~ 1M Pa.



n=2. a=1 mm, h=500 nm, E=290 GPa. nu=0.25, g=5000 Pa
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Figure 2.7: Distribution of the total strain in a membrane of aspect ratio
equal to two




n=4, a=1 mm, h=500 nm, E=290 GPa, nu=0.25, g=5000 Pa
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Figure 2.8: Distribution of tlie total strain in a membrane of aspect ratio
equal to four
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2.5 Discussion

2.5.1 Comparison of the proposed models

Figure 2.9 compares the value of the central deflection predicted by the dif-
ferent models to the numerical results for various aspect ratios, and for a
known Poisson’s ratio of » = 0.25. Note that when n tends to infinity in the
rectangular membrane model, the solution tends to that given by an infinite
strip model, as expected. In fact, for n > 7, the two values for the central
deflection are within 1%.

For any aspect ratio, the rectangular plate model is superior to any other.
As seen in Figure 2.9, though, the model for which ¥ = k* is better for
an aspect ratio in the range {1,3}; while the model for which ¥ = 1 is
more accurate for aspect ratio greater than 3. This discrepancy is due to
the nature of energy methods. Indeed, the minimization theorems apply to
complete regions and do not provide a point-wise minimum potential energy.

It was also shown in this section that Poisson’s ratio greatly influences the
behavior of the membrane. Indeed, if it varies in its full range, the error in the
value of E increases considerably. Chapter three will, therefore, concentrate

on this effect and propose a method to determine Poisson’s ratio.

2.5.2 Comparison with previously published models

The infinite strip model and the rectangular membrane model are compared
with the model proposed by Tabata et al. [4] for which the displacement

field was chosen sinusoidal along both the = and y-axes, for any aspect ratio
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a=0.001 mm, h=500 nm, E=290 GPa, nu=0.25, q=5000 Pa
0.034 v r _—

0030 F——fmmmm oo m o e
T | .
E ______Q ——————— - <*
% -
s
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8 <@ Numerical data

0.026 ——— Sinusoidal disp. field model

- — - - Infinite strip model

— - — rectangular plate model (k=1)
------------ rectangular plate model (k=k*)

0.022 L L L
1.0 2.0 3.0 4.0 5.0

aspect ratio n=b/.

Figure 2.9: Comparison of the results given bay the three different models

n = b/a. Namely,

_ csin(™) cos(™
u = csin( - ) cos( %
. Y T
v = csm(-z-)cos(-z—a-),
— ki Ty
w = wocos(za)cos(zb).

The central deflection predicted by this model for various aspect ratios is
compared with numerical results in Figure 2.9. The displacement field as-
sumed is not appropriate, especially to describe the deflection along the long
axis (c.f. Figure 2.10). This results in an error in the predicted maximum
deflection of about 10%. It is important to note that such an error in the

deflection, wy, yields a larger error in the determination of Young’s modulus
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typical deflection for plates with aspect ratio four

® o ¢ o -

deflection

< Numerical data
— Sinuoidal disp. field model

1 :0 2:0 3:0 4.0
(y/a)
Figure 2.10: Comparison with the previously published model

0.000
0.0

E. This model is, therefore, not able to render Young’s modulus with an

acceptable accuracy.
The model of the rectangular plate with finite aspect ratio is believed to

constitute a significant improvement over the previously published model.
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Chapter 3

Influence of Poisson’s ratio

3.1 Affect of Poisson’s ratio

As shown by the numerical data tabulated in Section 2.2, the error in the
Young’s modulus is greatly increased by the fact that Poisson’s ratio is un-
known.

To quantify this error, rewrite Equation 1.14 neglecting the residual stress
(which was shown so small as to be of no influence), using non-dimensional

groups. Let

2 | by

{(2) o

where (s )
4 (3+4n-1)
— 2 T
y(m,v) = (1-v")~ =y
64 r4272(n-1)
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-
0.60
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0.40 . . : ;
0.00 0.10 0.20 0.30 0.40 0.560
. Poisson’s rati;:; .
Figure 3.1: Influence of Poisson’s ratio on v(n,v)
where
n=b/a,
16 2
r=2(140)+ (9 -w),
s = =543v

6

Plots of v(n,v) for different aspect ratios n are shown in Figure 3.1. This
figure shows that the influence of the unknown Poisson’s ratio v on v(n,v)
decreases as the aspect ratio increases. Moreover, since the error in Young’s
modulus is directly propbrtiona.l to v(n,v), membranes of large aspect ratio
should be preferred for performing the experiment.

On the other hand, it is important to note that membranes of smaller
aspect ratios are easier to manufacture. Thus, one should find a compromise

between membrane of high aspect ratio with an acceptable accuracy for £
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for an unknown Poisson’s ratio, and smaller membrane.

3.2 Method for the evaluation of v

This section proposes a method to determine the Poisson’s ratio, v.

3.2.1 Theory

The following method has been proposed by Tabata et al. [5]. In order to
evaluate Poisson’s ratio, one can compare the load-deflection relationship of
two rectangular membranes of different aspect ratio n; and nj, respectively.

In the general case, the load-deflection relationship reads

7w twy  En®  twd (6n— 1 (s— g(n—l))z) —q (8 )

L Zi4n-1
"1 +4(1-—V2) at 64 r+27%(n —1) 7r+ (n—1)

It was shown that the residual stress is of no influence on the membrane

behavior. Thus, the above equation may be further simplified to

Ex® tw (6n—1 (s—Z(n—1))? (8 )
- —q(=+4n-1
4(1—v?) a* ( 64 r+2r%(n—1) I\zt (n—1)
or
EK,wi=q (3.1)
with

(‘s,._l _ (a—%(n—l))’)
t b 64 r+2nZ(n—1)
at4(1 —v?) (% +4(n — 1))

where K, is a function of n and v only.

K. =
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Consider two different configurations having aspect ratios n; and n,. By
curve-fitting the numerical data for each to a third order polynomial, one
can find the value of E K,,, and E K,,, for the membrane of éspect ratio n,

and n,, respectively. From these, derive

EK, K,

EK, K.

= Q.

On the other hand, theoretically, one has

(snl_l _ (a—-:-(m-l))’)
t 7o 64 r+272(n; —1)
at 4(1 — v?) (% + 4(n; — 1))

(sn,_l _ (a—f(nz-l))’)
t wd 64 r+2n2(ng—1)

at4(1 - v2) (& +4(ny ~ 1))

K, =

K., =

Thus,

ny — (s—F(n1-1))?
K,, (6 61 - - r+241rz(i31—1) ) (% +4(n2 — 1))

an - (6"2-1 - (’_f("2-1))2) (% +4(n1 _ 1)) .

64 r+272(nz—1)

Therefore, solving the equation

(em_l (s—§(m—l))’) 8
64  r+2m’(m—1 ;> +4(n2—1
o) (3+4ma =) (32

(82t — G (54 4y — 1))

64 r42n2(ny—1)

yields the value of the Poisson’s ratio, v. This is easily achieved graphically:
For given values of n, and n,, one plots K,, /K, as a function of the Poisson’s

ratio. Solving Equation 3.2 then reduces to locating for which v the K,, /K,
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E=290 GPa, n1=2, Nn2=4

Theoretical data
1.12 < Numerical data

K2/K4

1.08

1.06

1.04 *> R ; A \ A . R
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

. . . Poisson’s ratio .
Figure 3.2: Variation of K, /K,, as a function of v

curve intersects with the value a. See Figure 3.2.

3.2.2 Example

From numerical data, compute the load-deflection relationship for two rect-
angular membranes, with material properties E = 290 GPa and v = 0.25,
with aspect ratio n; = 2 and n, = 4. Note that the case n = 1 will be
discarded since its inaccuracy was larger relative to higher aspect ratios (c.f.
Section 2.2.1).

Both membranes are of thickness t = 0.5y m and of half width a = 1 mm.

For the membrane with aspect ratio n = 2, the numerical data were fitted
to yield

2.20810"w) = ¢
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which is to be compared with Equation 3.1. Therefore, E K, = 2.208 107,

For the membrane with aspect ratio n = 4, the numerical data render
2.03510" w3 = ¢

so that E K, = 2.03510'7. Compute the ratio

K,
22 o =1.085.
K,

Compare the above with the theoretical result.

_l)2

Loss - 7 5H) (249)
O EB-EHE

Using Figure 3.2, one can easily solve Equation 3.3 and find

(3.3)

v=0.23.

This value is within 8% of the input value v = 0.25.

3.2.3 Additional examples

The following table lists the different values of K, and K, found numerically

for different Poisson’s ratios. By comparing these with the theoretical value

of %1, one can compute the corresponding Poisson’s ratio » making use of
4

Figure 3.2.
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Input v E K, FK, = g—,’% v Error
0.00 2.04710'7 | 1.98410'7 1.031 N/A | N/A
0.05 |2.05710'7 [ 1.97610'7 | 1.041 | N/A | N/A
0.15 2.11210'7 | 1.98710'7 1.063 0.08 | 50%
0.25 2.20810'7 | 2.035107 1.085 023 | 8%
0.35 2.35410'7 | 2.13710'7 1.102 034 | 3%
0.45 2.57710'7 | 2.31010'7 1.116 0.46 | 2%
0.49 2.69910'7 | 2.41310'7 1.118 048 | 2%

3.3 Discussion

It was observed in Section 2.2 that an unknown Poisson’s ratio had a sig-
nificant effect in the determination of the Young’s modulus. A method to
evaluate this Poisson’s ratio was therefore proposed. However, it was found to
be invalid for Poisson’s ratio in the lower range {0,0.25}. On the other hand,
the method gives accurate results for higher Poisson’s ratio (v € {0.25,0.5}).

See Figure 3.2.

On the other hand, the Poisson’s ratio is not a complete unknown: for any
material, the range in which it varies is known. The value of the bulk material

may be taken as a reference value for the energy method and, therefore,

dramatically reduce the error in Young’s modulus.
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Chapter 4

Application to composite

plates

Homogeneous thin films are usually difficult to manufacture or to support
mechanically. On the other hand, there are simple techniques available to
deposit a thin film onto a substrate, forming a composite membrane. There-
fore, the methods previously developed to obtain the Young’s modulus of a
homogeneous film are now adapted to composite specimens. The geometry
considered is also a rectangular bimaterial membrane with characteristics as

follows:

e a layer of thickness h; possessing material properties E; and v,

e a layer of thickness h, with material properties E; and v,

Refer to Figure 4.1 for the definition of the geometric parameters.
Also, because the mechanical behavior of the system is greatly dependent

on the thickness ratio of the two layers, three different configurations are
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2a
— Z
E2, h2
y
2b X
El, hl

Figure 4.1: Definition of the geometric parameters for a composite membrane

examined: a) composite membranes with layers of equal thicknesses, b) the
second layer is twice as thick as the substrate and finally c) the second layer
1s one fifth of the substrate thickness. The range of Young’s modulus E,
considered 1s from 50 to 500 GPa.

The problem of a bimaterial membrane may be handled in two different
ways: Through the use of an effective thickness, as defined in Section 4.1,
or through the use of effective material properties, as defined in Section 4.2.

Section 4.3 will compare these analyses with numerical results.

4.1 Definition of the effective thickness

There are two avenues along which the effective thickness can be defined:

e Through a bending equivalent:

Define the effective thickness h? as the thickness of an object homoge-
neous plate with Young’s modulus E; such that the composite plate

and the homogeneous plate have the same bending stiffness D.
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Therefore, h® is such that

D — Elhg
12(1 — v?)
_ 1 (_l(Elhf + E3h} + 2E3hyhy)?
- (]. - l/2) 4 Elhl + E2h2

1
+ §(E’1h:13 + Eghg + 3E2h1h2(h1 + hz)),

which can be solved for h® and written in non-dimensional form as

1+ 4FEh +6Eh? + 4ER3 + E?*h*
B2 =3 .
where
E, ho
E E1 ’ hl

e Through a stretch stiffness equivalent:

Define the effective thickness h? as the thickness of an object homo-
geneous membrane with Young’s modulus E; such that the composite
membrane and the object homogeneous membrane exhibit the same

engineering strain for an equal uniaxial extensional membrane load.

Therefore,
IS ]L1E1 + h2E2
) =

: E, = h,(1+ Eh) (4.2)

with
E2 h _ h2

PEE " T
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It was found in the previous sections that the behavior of a homogeneous

rectangular membrane of Young’s modulus E; and thickness k. is satisfactory

modeled by
a
Wy = 010,13’ El (;Le (43)

1/3

where

(% +4(n — 1))
(6n—l (S-f("—l))z)

4 2
ay = ;E(l—u)

64 r+2n?(n—1)

The only unknown in Equation 4.3 is the effective thickness h. which
can be found by curve fitting the data of load versus deflection. Once h,. is
determined, Equation 4.1 or Equation 4.2 are easily solved for E,. Recall-
ing that E, is an input of the numerical code, and is therefore known, one
can determine numerically which definition of the effective thickness is most

appropriate.

4.2 Definition of the effective material prop-
erties

A more complete description takes into account the three dimensional aspect
of the deformation.

By writing the constitutional laws for both layers and considering identi-
cal strains on both layers as leading to average stresses over the membrane
thickness, on derives equivalent material properties as follows

g o= 2 (4.4)
(5]



B = afi-2y (4.5)

where

hy E, ho E,
g = +
h1+h2 1—1/12 h1+h2 1—1/22

hy Ey hy E,
c; = 1N + Vs
h1+h2 ].-—1/12 h1+h2 l—l/%

The analysis of the mechanical behavior of the bimaterial membrane is

therefore reduced to the study of an homogeneous membrane of thickness
R = hy + h, and material properties E and #. The mechanical behavior of
such a membrane was shown in Chapter two to be satisfactorily described

by

wo = a1 (7)a ] = (4.6)

4.3 Comparison with numerical analysis

Composite membranes of thickness ratios h equal to 2, 1 and 0.2 are examined
in this section. For each case Young’s modulus of the substrate layer will
be taken equal to 290 GPa while E; will vary in the range from 1GPa to
450 GPa; Poisson’s ratio of the substrate material will be taken to be 0.25

while that of the complementary layer will vary in its full range.
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n=2, h1=500 nm, h2=1 micron, E1=290 GPa, nu1=0.25

o4 L — - — Bending equivalent thickness

. ——— Tensile equivalent thickness ay
s Numerical data, nu2=0.00
< Numerical data, nu2=0.25
O Numerical data, nu2=0.45 >

Effective thickness he (micron)

0.0 100.0 200.0 300.0 400.0 500.0
Young’'s modulus E2 (GPa

Figure 4.2: Effective thickness; h = 2

4.3.1 Effective thickness

The effective thickness is numerically found by curve fitting the data of load
versus deflection as a third order odd polynomial and compare the latter to
the theoretical equation relating the load and the deflection of a membrane
of Young’s modulus E; and thickness k..

By plotting the effective thickness found numerically and both effective
thicknesses (defined through bending equivalent or through tensile equiva-
lent), one can calculate easily the corresponding E,.

Figure 4.2, 4.3 and 4.4 refer to composite membranes with thickness
ratios h = %11 equal to 2, 1 and 0.2 respectively.

Clearly, the numerical data follow a nearly linear trend which confirms the

choice of a tensile equivalent thickness as an effective thickness. Indeed, the
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n=2, h1=h2=500 nm, E1=290 GPa, nu1=0.25

- — Bending equivalent thickness ]
—— Tensile equivalent thickness
s Numerical data, nu2=0.00 VaN
< Numerical data, nu2=0.25
A Numerical data, nu2=0.45

0.4 s L s .
0.0 100.0 200.0 300.0 400.0 500.0
. Young’s modulus E2 (GPa
Figure 4.3: Effective thickness; h =1
n=2, h1=500 nm, h2=100 nm, Nnul1=0.25
0.70 . . _ B
— - — Bending equivalent thicknessd A
Tensile equivalent thickness
» Numerical data, nu2=0.00
< Numerical data, nu2=0.25 b
2 Numerical data, nu2=0.45 <>
0.65 —
- -
0.60 -1
]
0.55 E
0.50 L -~ L y
0.0 100.0 200.0 300.0 400.0 500.0

Young’s modulus E2 (GPa)

Figure 4.4: Effective thickness; h = 0.2
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bending equivalent thickness is appropriate to describe small deformations
of plates under bending. In the case considered here, the deflection is much
larger than the thickness of the plate so that the deformations are controlled
by in-plane stretching rather than resistance to bending; The bending-related
equivalence is correspondingly poor.

If Poisson’s ratio of the second layer material is in the range {0,0.25},
Young’s modulus is determined to within 3% of the value used in the nu-
merical simulations. For higher Poisson’s ratio material, the error increases

to
e 21% on average for a thickness ratio of 0.2
e 18% on average for a thickness ratio of one

e 17% on average for a thickness ratio of two

The error decreases as the ratio h = hy/h; increases. In other words, if
h, is much larger than h,, the error is minimized. This does not correspond,
however, to the case of interest. For composite membranes, the substrate is

typically much thicker than the second layer.

4.3.2 Effective material properties

For this case, the comparison with numerical analysis is performed in two
steps. In a first approach, Poisson’s ratios is assumed known, and the only
remaining unknown in Equation 4.6 is E;. Then, v; is unknown and an av-
erage value of 0.25 is assumed by the model, while the numerical simulations

let v, vary in its full range. In both cases, by curve-fitting the numerical



65

data of load-versus-deflection and comparing this to Equation 4.6, E; can be

determined and compared to its input value.

e First assume v, known

For thickness ratios of one and two and for low Poisson’s ratio materials
(v in {0,0.1}), Young’s modulus was retrieved within 13% on average.
However, as the Poisson’s ratio increases, the error decreases: 3% on

average for Poisson’s ratio in the range {0.25,0.45}.

If the thickness of the layer of material under test is much thinner
than the substrate the above average errors are increased to 17% for
low Poisson’s ratio materials and to 10% for higher Poisson’s ratio

materials.

® v, is unknown and an average value of v, = 0.25 is assumed.

If an average value of v, is considered in the model, the error is on
the order of 4% for low Poisson’s ratio material and for any thickness
ratio. For higher Poisson’s ratio materials, the error increases to 20%
for thickness ratios of one and two, and to 25% if the second layer is

much thiner.

4.4 Discussion

For materials with Poisson’s ratio in the range {0,0.25}, the first method
(Section 4.1) enables the determination of Young’s modulus to within 3%
of its numerical input, and to within 20% for higher Poisson’s ratio materi-

als. The second method (effective material properties; Section 4.2), however,
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showed that F; could be retrieved within 3% of its input value for high Pois-
son’s ratio material, providing that v, is known. Thus, a combination of both
analyses yields the determination of E; within 3% of its input value for any
Poisson’s ratio.

The thickness ratio is, however, a critical parameter. Indeed, if the thick-
ness of the material under test is much thinner than the substrate, the error

is increased to generate unreasonable results.
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Conclusion

The deflection of a rectangular membrane undergoing large deformations un-
der uniform pressure was successfully modeled using energy methods. Exper-
iments were numerically simulated and data points of load versus deflection
were obtained. By comparing these to the model, Young’s modulus was re-
trieved to within 2% of the value used for the code, assuming that Poisson’s
ratio was known. If the latter is unknown, it was shown that assuming an
average value of 0.25 yielded an error on the order of 15%. To reduce this
error, a method to determine the Poisson’s ratio of a homogeneous film was
developed and found to be useful for » varying from 0.25 to 0.49. In that
range, the method renders Poisson’s ratio to within 8% for v = 0.25 and with
2% for higher values of v.

The model was adapted to bimaterial plates for which the substrate ma-
terial is well-characterized. Young’s modulus of the second layer material
was found through the use of an equivalent stretch thickness, as defined in
Section 4.1 or through the use of effective material properties, as defined
in Section 4.2. These methods render E within 3% on average over the full

range of Poisson’s ratio. This error may be decreased, however, by increasing
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the thickness of the second layer.

Through the comparison with numerical analysis, the models were found
to be more accurate for rectangular membranes of aspect ratio equal to two
or higher if Poisson’s ratio is known (c.f. Section 2.2). On the other hand, it
was shown in Section 3.1 that the influence of the unknown Poisson’s ratio
decreases with increasing aspect ratio, as expected. Narrowing of the uncer-
tainty through bounding Poisson’s ratio is also demonstrated. Rectangular
membranes of aspect ratio two are therefore strongly recommended for exper-
iments. Circular membranes should be discarded because they deflect much
less than rectangular membrane for the same load level and characteristic
length, as shown by numerical simulations (c.f. Section 2.2.5).

The analysis conducted in this report may be applied to the experimental
study of mechanical properties of thin film. If the material under test can be
obtained in the form of a homogeneous membrane of the desired thickness,
it may then be tested directly using the model developed in chapter one
as sho§vn in Chapter two. The technology to manufacture these ultra-thin
films is currently not available. Techniques to deposit ultra-thin films on
thicker substrates, however, have been successfully developed. It was thus
important to adapt this single layer film technique to a bimaterial film, which
was achieved in Chapter four.

One should keep in mind that the underlying question that addresses this
project is the consistency or discrepancy of material properties depending on
the scale of the specimen. The material properties of a bulk material are
easily found experimentally; this project provideses a method to measure

those of a thin film, which is more difficult to handle. Do these properties
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compare? One could now answer that question by following the forthcoming

procedure. Two specimens should be tested simultaneously.

e The substrate by itself in order to characterize its mechanical behavior.
This is achieved by using the method developed in Chapter one, two

and three.

e The composite film: the substrate on which the material of interest is
deposited. The mechanical properties of this second layer are found

using the methods developed in Chapter 4.

Moreover, to ensure a consistency in the substrate thickness, these two spec-
imens as described above should be machined simultaneously: The etching
processes should leave two homogeneous films of the desired geometry on the
same wafer; the material of interest should then be deposited on only one of
them. The two samples can then be tested simultaneously.

If the experiment yields values of E that differs from the bulk material
value, it is now possible to determine the source of the error: If the error is
within 10%, one may conclude that it is due to a combination of experimental
errors and modeling errors. If the difference is much greater, then one may
conclude that the thickness of the film is such that homogeneity assumptions

of continuum mechanics do not hold at this scale.
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