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ABSTRACT

The central theorems in my thesis are generalizations of theorems due to
G.Birkhoff, S.Sternberg, and J.Moser on local normal forms for invertible map-
pings. We will consider smooth, area preserving, Anosov diffeomorphisms of the
two dimensional torus, T?. These are among thé most fundamental examples
of dynamical systems which exhibit extremely complicated (chaotic) behavior.
Some geometric consequences and applications to rigidity phenomenon are also
explored.

Let f : R?2 — R? be a smooth, area preserving mapping for which the origin
is a hyperbolic fixed point. Birkhoff considered the formal power series of f at
the origin and showed that there is a formal change of coordinates, h, which
satisfies f o h = h o g where g is of the form g(z,y) = (Az®(zy), \"1y® 1 (zy))
and where X is the (real) eigenvalue of the linear part (JA| > 1) and ®(zy) =
1+ ¢1zy + ¢2(zy)® + ... is a formal series with ¢; € R. The map g is called the
local normal form for f. S.Sternberg showed that if the function f is C* then A
and hence g can be chosen to be C® also. J. Moser was able to show that if f is
analytic then Birkhoff’s formal series for h and ¢ converge in a small neighborhood
of the origin. Note that the hyperbolae zy = constant are invariant curves for g.
One may introduce hyperbolic coordinates (c,8) where 8, the hyperbolic angle,
describes the position on the hyperbola zy = ¢. These coordinates give a clear

understanding of the local behavior of f; specifically f shifts points along these
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local hyperbolae.

These theorems are generalized by eliminating the necessity of working at a
fixed point for the map. Consider a smooth, area preserving, Anosov (i.e., hyper-
bolic at each point) diffeomorphism , f, of the two dimensional torus, T?2. There
exists a family of local coordinate changes h,, p € T?, which transform f, (the
local representation for f) into the normal form g, (i.e.fp 0 hp = kg 0 gp).

Furthermore h, and g, are continuous in p.

The first step of the proofs in both the C'* and analytic cases is to establish a
nonstationary version of the formal theorem above. From the formal solution one
can construct a C'™ representation for h, which is area preserving and satisfies
the conjugacy equation above in a neighborhood of p. In the analytic case a
majorization scheme is employed to demonstrate the convergence of h, and g,.
One should also be able to use a rapidly converging iteration method instead
of majorization. Qur proofs do not fully exploit the fact that the manifold is
the torus (compactness and two dimensionality are used). The theorem above
holds if we replace the torus with a fibre bundle which has a compact base

and two dimensional fibres and the mapping with a hyperbolic skew product

transformation.

Since the hyperbolae zy = ¢ are “preserved” by the nonstationary normal
form, hyperbolic coordinates are available in this case also. The map f, takes
the simple form g¢,(¢,6), = (c,8 + loghp®,(c)) (). One can interpret g, as a
nonstationary hyperbolic twist. The higher order terms of the second coordinate
of g, form 1l-cocycles (in the sense of group cohomology for Z actions). Let ¢y,

denote the first nonlinear term of the normal form for ¢,. By integrating ¢1,,
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over T? one obtains a global invariant of the dynamical system (f, T?).
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CHAPTER 1

HISTORICAL DEVELOPMENT OF
THE THEORY OF NORMAL FORMS

The theory of local normal forms has undergone extensive development over
the last century. Consider a smooth dynamical system described by a system of
differential equations or a smooth mapping. Since the singularities (also known
as fixed points, stationary points) have signiﬁcaht impact on the trajectories
of the system, one would like to understand the local behavior of trajectories
near these points. The goal of local normal form theory is to simplify the local
expressions for a dynamical system at a singular point by making a smooth
change of coordinates. One hopes that this reduction in complexity of the local
representation of the system leads to a greafer understanding of the structure of
orbits near the fixed point and possibly of the global structure as well.

The exact nature of the normal form varies considerably. A formal solution,
where one considers power series without regard for convergence, or a smooth
(up to C*) solution depends upon resonances (algebraic relations) between the
eigenvalues of the linearized system. Analytic solutions require additional as-
sumptions for the eigenvalues such as diophantine conditions, or restrictions on
the magnitudes. Needless to say the best possible normal form theorem is one
in which the normal form is a linear map. Unfortunately many interesting sys-
tems cannot be reduced to linear form. For example any system which preserves

volume has resonances, so linearization is impossible.

As with so many ideas in the modern theory of dynamical systems, one finds
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the origins of the theory of normal forms in the work of Henri Poincaré. In his
paper, [P1], and also in his thesis, [P2], Poin‘caré studied systems of differential
equations related to problems in celestial mechanics. He was interested in finding
integrals of motion for these systems, and this lead him to consider questioﬁs
about normal forms.

Since translations do not affect the shape of trajectories there is no loss of
generality in formulating his theorem with the assumption that the stationary
point is the origin. Let X = (z1,...,%,) € R™ and let F1(X),...,Fo(X) be
power series without constant terms which converge in some open neighborhood

of the origin. The autonomous system
(1.1) :i:,-zF,-(a:) i=1,...,n

has a stationary point at X = 0. Let Ay,...,A, denote the eigenvalues of the

dFi(X)

matrix corresponding to the linear part of F, i.e., ( Ty
J

0) . Poincaré proved

the following theorem about these systems.

Theorem. Using the notations from above, if the following conditions hold

(1) The eigenvalues Ay, ..., A, are distinct.

(2) There exists a line through the origin in the complex plane such that all
eigenvalues, A;, lie on one side on this line.

(3) For any n-tuple of nonnegative integers (ki,...,ka) with 335_  k; > 1
we have that )\; # > i kidj. |

then there exists an invertible change of coordinates which transforms

_ the system (1.1) into

(1.2) vi=Ayi t=1,...,n



There are several things to notice about this theorem. First, a linear map is the
simplest possible normal form. The objective of understanding the trajectories
near the fixed point is completely attained in the normal coordinates since the
differential equation is linear and can be solved explicitly. Conditions (1) and (3)
are the nonresonance conditions mentioned above. Condition (2) is necessary for
analyticity of the change of coordinates. In the case of real eigenvalues, condition
(2) requires uniform contraction or expansion for the linear part of the solution

of the differential equation.

The proof of Poincare’s theorem has two distinct parts. First one considers all
functions in the theorem as formal power series. The change of coordinates must
satisfy a (formal) differential equation, which places algebraic conditions on the
terms of this series. One sees, by an inductive argument, that each of these terms

is uniquely defined. (This is where the nonresonance conditions are crucial.)

Next one shows that the formal series obtained in the first step converge in a
small neighborhood of the fixed point. One may use the method of majorants to
achieve this result, i.e., one finds a positive series which is known to converge,

whose terms are larger in magnitude than the terms of the coordinate change.

In the case described in Poincare’s theorem there is no question that the normal
form is the simplest possible. One may ask how simple we can expect the normal
form to be in general. It has been known for some time that smooth linearizaton
is not possible when resonances (additive relations as in condition (3)) occur.
Resonances are an algebraic obstruction at the formal level to linearization at a

fixed point.

Questions related to normal forms appear naturally in the study of celes-
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tial mechanics and other areas of interaction with physics. Lyapunov [L], Horn
[H], and many other mathematicians considered normal form problems in vari-
ous guises. Dulac [D] refined the formulation of the normal form problem and
proved a nonlinear version of Poincaré’s theorem when conditons (1) and (3) are
dropped. He found that if one includes the resonance terms in the normal form,
the normalizing transformation is well defined as a formal series. Thus a canidate
for the nonlinear normal form was discovered. Majorization was employed once
again to show convergence of these formal series. .

There has been parallel development in the theory of normal forms for maps.
Many similarities between these two cases exist; however, there are some impor-
tant differences as well. While resonances still determine the normal form for
maps, the conditions on the eigenvalues are multiplicative instead of additive.
This is explained by the exponential map which relates the vector field, F, with
the solution of the system of differential equations. It is the solutién of the dif-
ferential equation which is in direct corespondence with the map. The general
methodology of proofs is quite similar in both cases. Typically one constructs a
formal solution then applies some convergence argument.

Lattes, [La], proved several theorems for two dimensional maps whose linear
parts had eigenvalues which Were> less than one in magnitude, i.e. contraction
mappings. In the 1920’s Birkhoff did considerable research on the normal form
problem for maps. In one of many theorems in [Bi2], Birkhoff considered normal
forms for an area preserving tranformation of a surface at a hyperbolic fixed

point. He established the following theorem.

Theorem. Let f : R? — R? be an invertible area preserving mapping which
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leaves the origin fixed. Suppose that Df|y has eigenvalues A\, A™! with A > 1
(hyperbolicity), then there exists a formal area preserving coordinate change h
which conjugates f with its normal form, g(z,y) = (Az®(zy), \"12¥(zy)), i.e,

f, h, and g satisfy h~1 o fo h = g.

Remarks

(1) The power series & and ¥ only contain terms involving the product zy.

(2) Resonances for diffeomorphisms occur when A'tA%2 ... \in = \J for some
(t1,...4n) € (ZT), 7 € {1,...,n}. So the relations AT = )
and M(A71)*+! = A~! for s = 1,2,... are the resonances for the map
above. Note that the terms which are present in the normal form exactly
correspond to these resonances. Thus in the first coordinate the terms
z*+1y* are included in the normal form and in the second coordinate
terms of the form z*y’*! are present.

(3) Preservation of area forces the eigenvalues of f to be reciprocals. The

same holds for ® and V.

Proof. Consider the equation |Jac(g)} = 1. This becomes

1=(A® + Azyd'(zy)) (A‘I\I' + AT (zy))
— (Az?@") (A"1y? ¥ (zy))
= ®V + zyP'V + zyd T’

= % (207) where z = zy

The only smooth solution for this differential equation with the correct

value at the origin requires 2®@¥ = z, thus ®¥ = 1.
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(4) Observe that the curves zy = constant are invariant under the action
of the mapping in normal form. These are formal analogues of the first
integrals sought by Poincaré.

(5) We will see that the resonance terms of the conjugating map, k, are not
uniquely determined by the conditions in the theorem. Similarly the

higher order terms of the normal form are nonunique.

Sketch of proof of the theorem:.
Writing formal power series for f, k, and ¢ and assuming that the linear part

of f is in normal form, the first coordinate of foh =hoyg provides the equation

i J
/\Z h%jwiyj + Z 5 (w + Z h}czmkyl) (y + Z hilﬂfkyl)
ij i kl Kl

=\ Z Byt + Z bl (A@(zy))' ™ o'y
Any nonresonance term byl k—1 #J 1, requires
ARL 4 fh 4 Lot = ARy + Lot
where l.o.t. stands for lower order terms. Thus we see that
hy= R =) (fy + Lot)

The coefficient on the right hand side is nonzero since we are not in resonance.
The expression above can be used to define the conjugacy inductively (on the
order, k + 1, of the terms). In the resonance case the terms, hi +1 %> on both sides

of the equation have the same coeflicient, A.

Miiirt fiyre Hlot. =A%y + Ahpyq g + Lot
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The equation defines ® inductively. Note that thus far no condition has been
placed on A}, .

Similar considerations define the coefficients for the second coordinate, h%, and
¥;; . Once again the resonance coeflicients, A, +1» are free from conditions. We
will see later that preservation of area can be satisfied by choosing the resonance

terms appropriately but these terms still will not be uniquely determined.

Birkhoff’s formal solution waited for Moser, [M1] to show that it was the series
of an analytic funtion. Moser’s proof uses the forrﬁal invariant curves zy = c for
the normal form in an essential manner. He defines a cannonical (area preserving)
system of formal differential equations whose solution, s(z,y,t), interpolates the
map f, i.e., s(z,y,n) = f*(x,y) for all integers, n, such that f*(z,y) is sufficiently
close to the origin. Then, Moser proves the convergence of the normal form
for this formal system of differential equations, from which the result for maps
follows. Soon after Moser published his paper, Siegel provided a majorization
proof which did not require an excursion into differential equations. Qur main
theorem in chapter 5 uses a method modeled on Siegel’s proof.

Siegel made other major contributions to the theory of normal forms including
the first proof of the famous center problem. His theorem is a linearization result
for mappings in the one dimensional elliptic (|A] = 1) case. The proof required
delicate estimates on certain ”small divisors” (expressions like (A*=! — )\)_1)

found in coefficients of the formal solution for the linearizing coordinate change.

Kolmogorov suggested that such a theorem could be proven by a ”generalized
Newton’s method” which lead to the development of KAM (Kolmogorov-Arnold-

Moser) theory. Pliss, and others proved normal form theorems using KAM tech-
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niques. In his article [Brl], Brjuno (also spelled Bryuno, Bruno by different
english translators) masterfully surveyed the state of normal form theory up to
1972 and extended and refined many of the téchniques and theorems discussed
above. In addition this paper provides a general framework in which one can

understand and classify normal forms at a fixed point.

In the 1950’s a separate line of normél form results for maps was discovered by
Sternberg, [S1]-[S4]. He studied normal from questions for C* and C* maps, and
developed the machinery necessary to find smooth realizations of the formal series
of Birkhoff and others. The first step in this process was established in a theorem
from E. Borel’s thesis, [Bo]. Borel showed that there is a group homomorphism
from the local group of C'* functions which fix the origin, onto the group of formal
power series without constant terms. Thus any formal series could be realized by
a C* function. Sternberg used this to show that linearization is possible in the
C*° category in the absence of resonances, and that Moser’s theorem for the case
of a hyperbolic fixed point holds in this class of maps as well. We will employ

suitable versions of Sternberg’s methods to prove the main theorem in chapter 6.

Sternberg is also responsible for approaching the normal form problem from
the prespective of infinite dimensional Lie algebras. In [S4] and [S5] he indicates
his preference for this point of view. Later Chen, in [C1] and [C2] gave a new
proof of Sternberg’s result usigg Lie algebraic techniques. The work of Sternberg
and Chen encourages the philosophy that one can always realize formal local
normal form results in the C* category. This paradym will be seen to hold in

the nonstationary case as well.

The philosophy expoused above for € maps is in contrast to the state of

8



affairs in the analytic case. While there is no difference in the construction of the
formal series, convergence seems to depend in a subtle way on the higher order
terms as well as the resonances in the linear part. For example, consider the
case of a two dimensional map whose eigenvalues are A and A~!. As mentioned
previously, if we also assume that the map is area preserving, then there are at
least two known methods to prove convergence. However, at the present time no
convergence proof exists for the question above without assuming the preservation

of area.

There are still many other interesting open problems in the theory of local
normal forms at a fixed point. Bruno’s survey [Brl] as well as his book [Br2]
are good resources for some of the current ideas in this theory. These works also
provide a long list of references. It is also noteworthy that this theory has many
applications to problems in Hamiltonian systems, celestial mechanics, stability
theory, bifurcation theory, fluid dynamics and a variety of other pure and applied
areas. A. Katok has used some of these methods in rigidity theory for ”large”

(e.g. Z™ or R™) group actions.

In the chapters which follow we will develop a theory for nonstationary normal
forms generalizing the theorems of Birkhoff, Moser, and Sternberg. The term
nonstationary indicates that we no longer require the point at which the normal
form is found to be stat.ionary (fixed). Compactness of the manifold in question
(the two dimensional torus) will be instrumental in dealing with this difficulty. To
generalize the hyperbolicity condition to the nonstationary case we will consider
Anosov diffeomorphisms, which are hyperbolic at each point. Preservation of area

is still required, and as in Moser’s case it is important in the convergence proof.
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In the final chapter we will place the methods developed in this work in their
natural setting. Specifically we will study skew product dynamical systems and

interpret the normal forms as cocycles defining a system of smooth invariants.
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CHAPTER 1II

PRELIMINARIES

In this chapter we will attempt to place our results in context by recalling some
of the requisite information from the theory of dynamical systems. We begin with
a discussion of some definitions and theorems which will clarify the developments
of subsequent chapters. For a more complete sur\.rey of this material the reader
is refered to [An], [K], [M], or [Sh].

Let M be a compact manifold and f, a diffeomorphism. One says that the
pair (f, M) is a dynamical system. Two dynamical systems, (f, M) and (g, N),
are called equivalent or conjugate if there e;cists an invertible mapping, ﬁ, which
satisfies foh =nhog. A point z € M such that f(z) = z is called a fixed
or stationary point for f. A point which is not fixed will be referred to as a
nonstationary point. The classical normal form theorems are local conjugacy

results for a neighborhood of a fixed point.

Definition. A dynamical system, (f, M) is called Anosov if there is a splitting

of the tangent bundle TM into invariant subspaces

TM = E* @ E*
df(E°) = E*
df(E*) = E*

and for which there exist constants ¢ > 0 and A > 1 such that for any v € E®,
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u € B*,
ldf"(v)l| < A" |||
lldf =" ()l < A" ul]
Remarks

(1) The estimates on the invariant subspaces are hyperbolicity conditions.
(2) If M supports a measure, p, which is invariant under f, then typical
(p a.e.) orbits are dense. It is a long standing conjecture that density
of orbits holds in general, without the assﬁmption of the existence of an
invariant measure.
(3) Anosov systems are stable in the sense that they form an open set in the
C"* topology.
(4) One can show that the above decomposition of the tangent bundle is
continuous (and in fact Holder) for any Anosov dynamical system.
There are a pair of important submanifolds of M associated with a dynamical
system, the stable manifold, W* | and the unstable manifold, W* . The stable
(unstable) manifold of a point p in M is the collection of points ¢ in M which
satisfy d(f™(p), f*(¢g)) — 0 as n tends to positive (negative) infinity. The tangent
space to W*(p) at pis E*(p) and the tangent space to W¥(p) at p is E*(p). While
the structure of these manifolds is quite complicated in general, there is a clear
local picture for an Aﬁosov diffeomorphism. Let W2(p) (WX*(p)) denote the
intersection of W*(p) (W*(p)) with a ball of radius € about the point p. These
submanifolds are as smooth as the diffeomorphism, f, and for an Anosov system
one can show that they intersect transversely at each point p in M. The following

theorem is due to Anosov [An] (or see [K], [M]).
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Theorem. Let f : M — M be an Anosov diffeomorphism of class C™, p € M,

then

(1) there exists g > 0 such that for every €, 0 < € < ¢y, W2(p) Ia,nd Wk(p)
are diffeomorphic to disks.

(2) for every €, 0 < € < €, there is a § = 8(e) such that for all ¢ with
d(p,q) < 8, W2(p) N W*(q) and W*(p) N W2(q) each contain a single

point.

The invariance of W2(p) and W*(p) under the diffeomorphism, f, the local
structure implied by the theorem, and the remarks above make W2 (p) and W2 (p)
ideal choices for the axes of the family of coordinate systems which we will need
in the nonstationary normal form theorems. By choosing these local coordinates
we cause the linear terms of the local representation of f at p, fp, to be diagonal.
In addition this family of local coordinate systems is Holder continuous as one
changes the point of origin of the coordiantes.

Since f is a diffeornorphism and iterates of f or its inverse acts on A, one
may think of f as the generator of a Z-action on the manifold M. An integer,
n, acts on M by applying the n** power of f to M. It will be convenient to use

some notions from group cohomology for Z-actions.

Definition. Let M be a smooth manifold and G a group. A function o : M x
Z — G is called a cocycle over a dynamical system, (f, M), if for every k,l € Z

and for every x € M
a($7k +1) = a(fl:t,k) + a(z,!)
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There are many examples of cocycles for dynamical systems. For example one
can form a cocycle from any real valued function on M by considering the sum of

the function along an orbit. The Jacobian is a well known example of a cocycle.

Definition. A cocycle v is called a coboundary if there is a fuﬁction b: M — G

such that
Y(z,n) = b(f"(z)) — b(z)
foralln € Z,z € M.

We will see that the terms in the nonstationary normal form are cocycles in the
sense of the definition above. S. Hurder and A. Katok, [HK], have used one such
cohomology invariant, the Anosov cocycle, to establish rigidity results about the
smoothness of the invariant foliations defined by the system of stable and unstable
foliations. This cocycle is the first nonlinear term in our nonstationary normal
form.

The theorem implied by our title does not indicate the most general setting
in which our methods may be applied. In chapter 7 we will formulate a theorem

for skew products of dynamical systems.

Definition. Let M and N be smooth manifolds with p € M, z € N. Also
let T: M — M and Ry : N — N be a family of diffeomorphisms which vary
continuously in p. A transformation S : M x N — M x N is called a skew

product if S is of the form

S(p,z) = (f(p), Sp()).

This generalizes the notion of direct product since the map in the fibres changes

as one changes the base point. Any skew product generates a cocycle with values
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in the group of diffeomorphisms of its second factor (N above). More specifically,

if we let II; denote the projection onto the second factor,

C(p,n) =,5™(p, ")

=Spn-1py0-+-0Snpy 0S5,

is a cocycle. We will show that one can place the fibre map of certain skew

products in normal form.
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CHAPTER III

NOTATION AND STATEMENT OF RESULTS

In this chapter we will provide a complete list of the notation employed in

this paper as well as concise statememts of the main theorems. Counsideration

of the nonstationary case has an unfortunate affect on the notation required for

theorems similar to those of Chapter 1. In addition to the already abundant

subscripts and superscripts, one must include a parameter which designates the

location on the torus.

Notation. We will use the following notations:

<

o

<o

T2 - the two dimensional torus

f - an area preserving Anosov diffeomorphism

W*(p) - the stable manifold passing through p

W*(p) - the unstable manifold passing through p

W (p) - the local stable manifold passing through p

Wi .(p) - the local unstable manifold passing through p

fp - the local power series representation for f at p € T2

A(p) - the (real) eigenvalue for the expanding direction of the linear part
of f.

Ffolz,y) = (fi(p), f2(p))

gp - the local normal form for f at p € T?

®(p, zy) - a power series involving terms of the form (zy)* with constant

term 1. This is part of the first coordinate of the normal form .
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o Y(p,zy) - a power series involving terms of the form (zy)' with constant

term 1. This is part of the second coordinate of the normal form .

o gp(z,y) = (Mp)z2(p, zy), A7 (P)y ¥ (p, 2y))

o Y(p,zy) - the series in the exponent of the exponential form of g,

o gp(e,y) = (Mp)z e (p,zy), A\~  (p)y e~ T (P=¥)

¢ hp - the local change of coordinates which conjugates f, with g,. A

Jjudicious initial choice of coordinates permits us to think of h, as close

to the identity.

Let A(z,y) =32, ; aije'y! and B(z,y) = i bi;xiyl.

<

fi(m, y) = 254.]'22 aijzty’
[A(.’E, y)]ﬂ = Zi—j:n a‘ijmiyj
Az, y) = 3, ; laijlzty?

A < B, if |aij| < bij for all nonnegative integers ¢ and j. B is said to

<&

<

<

majorize A.

<

b, 9, H, k;, ky - various conjugacy maps

A = f@u(P)
M

I'(j,n,p) - the cocycle defined by the j** order terms of Y (p, zy).

<

<

For the convenience of the reader, we now list our main results. The only
difference between the first three theorems is the smoothness category of the

mappings involved. While the statements look very much alike the proofs are

quite different.

Theorem. Let f be a smooth, area preserving, Anosov diffeomorphism of the

two dimensional torus and f, its local representation at p as a formal power
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series. Then there exists a family of formal series, h,, continuous in p, which

conjugates fp, with its normal form, i.e.,

fpohp=hygp)ogp

where g, is of the form
9(p, z,y) = (A(p)z®(p, zy), A(p) "'y 2(p, zy))

Theorem. Let f : T? — T? be an analytic, area preserving, Anosov diffeomor-
phism and let f, denote the local power series representation for f at p € T2

Then there exists a family of analytic coordinate changes, hq, continuous in g,

such that
foohp="Hhspyogp

where gp is the local normal form for f at p.
g(p:z,y) = (Mp)z®(p, zy), A7 (p)2 ¥ (p, zy))

Theorem. Let f: T? — T? be an C'®, area preserving, Anosov diffeomorphism
and let f, denote the local power series representation for f at p € T2 Then
there exists a family of analytic coordinate changes, h,, continuous in g, such

that
Joohp=hgpyogp

where g, is the local normal form for f at p.
9(p,z,y) = (Mp)2®(p,zy), A" (p)2 ¥(p, zy))
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Theorem. Let F : B — B be a skew product dynamical system. If the eigen-
values A\1(p),. .., An(p) lie inside the unit circle and are free from resonances at
each point p € M, then there is a smooth transformation H : B — B which
satisfies

FoH=HoA

where H(p,X) = (p, Hp(X)) and A(p, X) = (f(p), Ap(z)). If there are reso-
nances, then the theorem holds with A, replaced by a polynomial containing

only resonance terms.

Theorem. Let F: M x R?2 — M x R? be a skew product transformation of the

form
F(p,X) = (f(p)9FP(X))

where the fibre map, F, is smooth and area preserving, fixes the zero section,

and is continuous in the parameter, p. Then there exists H : B — B, H(p,z) =
(p, Hp(x)) such that

FoH=HoG

where G(p, z) = (f(p), Gp(z)) and
Gp(2,y) = (Mp)z2(zy), A7 ()22 (2y))
Corollary. The normal form can be expressed as

GP(:E? y) = (A(p)xe‘r(p,zy) 5 )\_l(p)ye_r(f”zy))

The coefficients of (zy)’ in the exponent of the exponential are cocycles for the

dynamical system (F, B).
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Corollary 7.7. If the base map f(p) preserves an invariant measure on M then

Ay = [,,T(1,1,p) is an invariant of the skew product (F, B).
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CHAPTER IV

FORMAL CASE

In this section we will establish the formal version of the nonstationary normal
form theorem. This result will serve as the first step in the proofs of the C* and

analytic cases.

Theorem 4.1. Let f be a smooth, area preserving, Anosov diffeomorphism of
the two dimensional torus and f, its local representation at p as a formal power
series. Then there exists a family of formal series, hp, continuous in p, which

conjugates f, with its normal form, i.e.,

(4.1) fpohp=hgpogp

where g, is of the form

(4.2) 9(p, z,y) = (Mp)z®(p, zy), \(p) "y ¥(p, zy))
‘Remarks:

(1) Note that @(p,zy) = 1+ ®11(p)zy + ... is a function of the product
zy (and the parameter p). Recall that A(p) is the eigenvalue of the

expanding direction for f. Since f is area preserving the contracting

eigenvalue is the reciprocal of A(p).

(2) In our case (as in the classical case) one can write down formal expan-
sions, compose power series and equate coefficients of like terms. The
main difference in the proof of the nonstationary case is that the conju-
gating map has parameter value p on the left side of the equation and
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f(p) on the right. This new difficulty is overcome using hyperbolicity
and repeated substitution of equations along the orbit of p.

(3) Also like the classical case the resonance and nonresonance terms require
separate analysis.

(4) Preservation of area for g(p,z,y) requires ®(p,zy) and ¥(p,zy) to be
reciprocals of eachother. The proof is identical to the one demonstrated

in chapter 1 following Birkhoff’s theorem.

Proof. We can make things easier by making a good initial choice for the local
coordinates for f,. Let the z-axis be tangent to the unstable manifold W* and
the y-axis be tangent to the stable manifold W*. This diagonalizes the linear part
of fp. (Any initial choice could be adjusted to fit these criteria by conjugating
with any appropriate linear change of coordinates.) Having made this choice
we can take h to be close to the identity, i.e., h(p,z,y) = (z + 2"%order,y +
2"order). Thus we can write the expression for the first coordinate of the

conjugacy equation as

Ap) [z+ D rh(p)ety | +

i+522

P10 (w+ > hiz(p)wky') <y+ > h%z(p)fv’“y’)

i+i>2 k12 k+1>2

= Mp)e(p,ay) + Y kL (F(p) MP)E(p,2y) ™ o'y’

i+722
We have used the fact that ®(p,zy) = ¥(p,zy)~! to simplify the second expres-
sion on the right hand side. We will show by induction on the order, m = + j,

(not just at p but simultaniously for all p € T?) that each coefficient hl;(p),
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1 = 1,2 is well defined and varies continuously with respect to the parameter p.
To anchor the induction note that the linear part of h, is the identity map; so
these terms are both well defined and continuous for all p. Suppose all terms
of order less than m have been defined and are continuous functions in the pa-
rameter, p. By equating coefficients of the term z'y/ (for ¢ # j + 1, i.c., the

nonresonarnce case) we get the expression

(43) @)Y (0) + Fy(p) + Lot = Mp) I RY(F(p)) + Lot

Collecting all of the lower order terms and the given term f;;(p) into one expresion

1;(p) we have

(4.4) hi;(p) = )\(P)i_j_lh}j(f(p)) +Qi;(p)

An equation of the same form as above holds at f(p) namely

(4.5) KL (F(P) = M) I RL(F(p)) + QL (F(2))

and for every point on the torus. If n = ¢ —j — 1 < 0 we can write a well defined

solution for h};(p) by iteratively substituting along the forward f-orbit of p (i.e.,

by repeatedly substituting for the h}j term on the right in the last equation).
This gives us

(4.6)

e o]

i N
HOEDY (H A“(f’(p))) Q(F* () + lim_ (H A“(f’(p») R (Y (p))
=1 : =1

Since we assumed that A(p) > 1 and n < 0, H?—]_—x A™(fI(p)) shrinks rapidly to

zero as N — oco. We define

) 0o k
(4.7) i)=Y (H f\(f'(p))") ()

k=0 \i=1
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Since Q}J (p) is a continuous function on the compact space, T?, it is bounded;
hence h};(p) is well defined by the converging summation. As h};(p)is the uniform
limit of the continuous functions defined by the partial sums, we see that h}j(p)
is continuous in p.

If n=¢—j—1> 0 we may consider the equation similar to (4.3) where p is

replaced by f~1(p) and f(p)is replaced by p.

(4.8) MDA (T (P) + f;(F7H(0)) + Lot = A(f () 7/ hij(p) + Loit.

We can once again solve for hj;(p) to nget an expression similar to (4.4)

(4.9) hi;i(p) = A(F 71 (p))' =it hi;(F71(p)) + Rl;(p)
Substitution leads to an equation like (4.6) where the limit goes to zero. Finally
we have that

(4.10) hi(P) =) (H A(f"@))“) QL(F*(p))

k=0 \I=1

Thus h};(p) is well defined and continuous in p when n > 0. A similar argument
treats the nonresonance terms in the second coordinate of &,.

The above establishes the inductive step for the nonresonance terms. All that
remains is to handle the resonance terms (i.e. in the first coordinate, terms of
the form z*+1y'). As in the fixed point case there is substantial nonuniquencss

in the definition of the resonance terms. The conjugacy equation becomes

(4.11) h}+1,-(p) = h}+1i(f(P)) + @i(p) + Q}+1i(P)

For simplicity we can choose hl ;(p) = hl,i(g) for all p,g € T2, then ®;;(p)

is determined by Q},;;(p), and hence it is continuous in p. The hl ;;(p) terms
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are also continuous since they are constant with respect to p. All of the above
arguments apply for the second coordinate of h, (in that case the resonance terms
have the form z'y**1) and we may choose A% ,(p) = h%,(q) for all p,¢ € T?,
which determines ¥;;(p). As in the case of ®;;(p) above, ¥;;(p) is continuous in
p since it is also a sum of lower order terms. By induction the formal series h,
and g, are well defined and continuous in p. At this point one may wonder if the
previous choices still allow h, to be area preserving. This is indeed possible as

we will see from the following lemma.

Lemma 4.2 (Nonstationary Sternberg Lemma).
Supose Jac(h,) has no terms of the form (zy)', then h, is (formally) area

preserving.

Remark The condition from the lemma only restricts the resonance terms of A,

by requiring that Vp € T?

(4.12) h}+1i(P) + h?i+1(P) = lLo.t.

Since h},,;(p) and % ,(p) are independent and to this point unrestricted, this
equation can always be satisfied. Note that it is possible to normalize these terms
further. It will be convenient do so when the convergence argument is made in

chapter 5.

Proof. First let us establish some notation. Let
Alp,) = aij(p)z'y’ = Jac(h(p,-)) — 1

B(p,) = bij(p)z'y’ = Jac(g(p,)) - 1
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We must show that A(p,:) = 0 and B(p,-) = 0. Recall that Vp € T? Jac(f,) = 1.

Taking the Jacobian of the conjugacy equation we have

1+ A(p,) = (L+ A(f(p),)(1 + B(p, )

or
Y aii(p)aiy’ =Y ai(F()2'y + Y bii(p)atyt+
iJ ij ij

> ai(Fe)eiy | [ D bij(P)wiy])
We will use induction to show that aij(p) = 0 and b;;(p) = 0 for all 7,j. The

coefficients of z'y? from above give rise to the equation

(4.13) aij(p) = Mp)*~ ai;(f(p)) + Loit.

By the induction hypothesis the l.0.t. = 0. For ¢ — 7 < 0 we substitute along the

positive orbit of f to yield

N
(4.14) aij(p) = (H /\(fN(P))i—j) ai; (N (p))
k=0

Since a;;(p) is a polynomial in the hyy, it is continuous in p. It follows from the
compactness of the torus that for each (z,7) € ZT x Z*, there exists a constant,

Aij, such that
laij(p)] < Aij
for all p € T?. Then we have

lai; (p)| < Ayl
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for all N € Z*. Hence i — j < 0 implies that a;;(p) = 0. For ¢ —j > 0 one simply
iterates the analogue of (4.13) (at f~1(p) instead of p) along the negative p-orbit
to achieve an equation similar to (4.14). Compactness and continuity then lead

to the same conclusion, i.e., a;j(p) = 0. If i — j = 0 (resonance) we get

aii(p) = aii(p) + bii(p) + lo-t.

Since we assumed that a;;(p) = 0 and l.o.t. = 0, then b;;(p) = 0. By induction

a;j(p) = 0 and b;;(p) = 0 for all 7, and for all p € T?. O

Even if we assume the hypothesis of the lemma, the resonance terms are not
uniquely determined. This nonuniqueness reflects the invariance of the normal
form under area preserving transformations which preserve the product zy, i.e.,

ones of the form
(z,y) — (eU(zy),yU " (zy))

Exponential Form
A slight modification of the normal form reveals a family of cocycles associated
to the Z-action generated by f. We will show that one can construct a formal

series T(p,zy) = > oo, ui(p)(zy)? which satisfies the equation
T(p,zy)

(p,zy) =e

The normal form becomes

g(p,z,y) = (/\(p):c eT(P=1) y~1(p)y e—T(p,zy))
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Proposition 4.3. Given any ® constructed as above the formal equation

®(p, zy) = e T (p:zy)

has a well defined formal solution, Y.

Proof. Let z = zy and recall that & is of the form 1 4+ ®;32° +.... For the

moment let us suppress the parameter p. We have that

eT(® =14 Z% (Z uA,-z")
n=1

i

so the constant terms agree. Equating coefficients one obtains

@1 = U
Oy = ug + uy?
P =ur + Lot

By induction we see that T(p,zy) is a well defined formal series.

Corollary 4.4. The coefficients of Y(p, xy) are formal cocycles for the dynamical

system (f, M).

Proof. Consider the nt* iterate of the normal form, ¢, = gfn-1(,) 0-+- 0 ¢g,. In
» p fr=1(p) gp

exponential coordinates one computes that the first coordinate of g, is

(ﬁ ’\(fz(P))) rerizo Y(£ (p)zy)

=0
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Let T'(s,n, p) denote the coefficient of (zy)? in the exponent of the above expres-
sion. Carefull inspection tells us that
n—1
T(s,n,p) = Y us (Fi(p))
=0

If k4! = n we observe that

I(s,n,p) =T (s, &, f'(p)) + T'(s,1,p)

Thus I'(s, n, p) is an additive cocycle for the dynamical system (f, M). Further
discussion of these cocycles will appear in chapter 7.

The curves zy = constant are preserved by the normal form g,. The exponen-
tial form provides a geometric characterization of the mapping properties of the
normal form. If we think of parameterizing the hyperbolee zy = ¢ by a hyperbolic
angle, 0, the action of g7 is simply to add logA(p) + T(p,c) to 8. In our special
coordinates the Anosov diffeomorphism, f has a formal (later analytic) reduction

to a map which shifts points along these hyperbolee.
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CHAPTER V

ANALYTIC NORMAL FORMS

In this chapter we will establish our main result, the nonstationary normal
form theorem for area preserving, Anosov diffeomorphisms of the two dimen-
sional torus. The proof of the analytic version of this theorem will rely on the
groundwork laid in the previous chapter for the formal case. Analyticity will
be demonstrated using a majorization scheme similar to the one developed by
C. L. Siegel in his proof of Moser’s theorem for the analytic fixed point case.
Compactness will be instrumental in handling the complexities introduced by

the nonstationary parameter.

Theorem. Let f: T? — T? be an analytic, area preserving, Anosov diffeomor-
phism and let f, denote the local power series representation for f at p € T
Then there exists a family of analytic coordinate changes, hy, continuous in g,

such that
(5.1) fpohp="hysp o0y
where g, is the local normal form for f at p.

(5.2) 9(p,z,y) = (Mp)z®(p, zy), A"  (p)z ¥ (p, zy))

Before we begin the proof let us recall some of the notation which we will use.

Let A(z,y) =Y aijz’'y’ and B(z,y) = Y bijziy’.

A< B if laij| <bi; Vi, g
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A=) laijle’y’ A= ) aya'y’

i+j>2

[Aln= ) aiz’y’

i—j=n

Since ® = 1 +...is a series in the product zy and ¥ = &, we have

AQAz@, A7y T) = i (A8) T oty
ij
which leads to the following important identity

(53) [A(9)] = (A2)" [A]n

It will be more convenient to write expressions such as (¢ — z)™! instead of
1y o (f)n Notice that if 0 < ¢’ < ¢, then (c—z)™! < (¢'—z)~!. The following
lemmas will make the manipulations of these expressions more transparent. They

will be used repeatedly in the majorization argument.

Lemma 5.1. Let a,b € R with0 < a < b and let A be a series with nonnegative

coeflicients, then there exist ¢ such that

(a—A)1b—-A)! <(c—A)!

Proof. Expressing (a — A)™! and (b~ A)~! as power series we have

(a— A) (b= A)! = %i( )i(ig)

1=0

%IH

Notice that the cocfficient of z* satisfies

1 t+1
2 7 < g
k+i=i

<2
dt

31



for d sufficiently smaller than a. By choosing ¢ < min(d, ab) we have satisfied the

conditions of the lemma. O

Lemma 5.2. Let ¢ € R and A and B be nonnegative series. Then

(c—A) (- B! <c(c—-(A+B)™?

Proof. Writing down the series we see that

z<>z<>

1=

- +
= : Z Zcz+:17
<2 z (——A -*c_ B)

=0

=c Y e—(A+B)™' O

Lemma 5.3. Let A and A be as above and let r > 0 denote the radius of
convergence of A, then there exists a positive real number, ¢, 0 < ¢ < r, such

that

R 2
i 2ty
¢c—(z+y)

Proof. Let A(z,y) = Zij a;;z'y’. We wish to show that

> aijz y’—<2<$+y)

i+3>2

For a;; such that ¢ + j = k, we have the Cauchy estimates

K
|aij| < T
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where K is a positive real number. Coefficients of the k** term on right hand

B 1
1) ck

So for k =1+ 7 > 2, we must show that

kN 1
|ai]‘| < (Z)ZE

From the Cauchy estimates for a;j, it suffices to show

side are of the form

K 1
S
If we choose ¢ < m, then this inequality is satisfied for all integers, k > 2,

and the lemma, is verified. O

Lemma 5.4. Let A be a power series composed of terms with nonncgative co-
efficients, and let ¢ be a positive real constant. For any positive real number, d,

we have

d y 1
=4 (@-4)

for all ¢! < min(c, §).

Proof. If d < 1 take ¢ = ¢'; otherwise

<c—A>"E ( )

'
<x(3)

1
~ —~(c’ Ty O
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Lemma 5.5. Let P(z) be a polynomial in x and c a positive real number, then

there exists a positive real, ¢' < c such that

(c—z) '+ P(z) < (¢ —z)7!

Proof. Let P(z) =Y &, piz’.

(c—2)™" + P(z) = Z (p,- + (%)) 2+ i (g)i

=0 i=n-+1

1 : 1 i .

=1 >{=] +lpil-

Ci C

(2,) >1+ lpi|ci.
¢

This is satisfied for ¢} sufficiently small. Now take ¢/ = ming<i<n(ci). O

Choose ¢ such that

Equivalently such that

The following two lemmas will help to simplify the end of the majorization

process.

Lemma 5.6. Let A(z,y) be a nonnegative formal series. A(z,y) converges if

and only if A(z,z) converges.

Proof. The convergence of A(z,z) given that of A(z,y) is apparent. Suppose

A(z,z) converges.

A(:l:,.’l:) = Z ( Z ak[) :l)i

=0 \k+l=i
So by Cauchy’s estimates

K
Z ap < — for some r, K
k4l=1 r

But the ari’s are nonnegative so each one satisfies the same estimates. Hence,

A(z,y) converges. O
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Lemma 5.7(Cauchy). Let A and B be nonnegative series without constant

terms. Suppose A satisfies

2z + A
A
= c— A
and B satisfies
2z 4+ B
B =
c— B

then B majorizes A, i.e., A < B.

Proof. The argument proceeds by induction. First note that A and B satisfy
fo 5] (o) [e o] z
: . 1 B
biz* = | 2 biz' ) | — —

and

Consider the expressions derived from equating coefficients of the powers of z. It
is important to observe that the left hand side of both expressions contains the

only term in which the index matches the power of z. Note that b; = % while

a; < % so induction may begin. Suppose ar < by for all £ = 1,2,...,n, then
bn+1 = Pry1(b1,bq,...,b,) where Pn+1 is a polynomial with positive coefficients.
Thus ar < b implies that Pn+1(a1,a2,...,qn) < Puy1(bi,be, ..., by), hencé
A<B. O

We will need some global (on T?) constants to use in estimates in the majoriza-
tion proof. We list them here for reference. Recall that f, is the local power series

representation for f at p, and A(p) is the eigenvalue for the expanding direction,
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i.e. A(p) > 1. Let r, be the radius of convergence for f,.

1"=1];'I6111§217‘p
I = min A 1>1
minA(p)  (1>1)

L= A
max (p)

Based on the previous chapter we may define the following formal series.

Hy(z,y) = Z;réag |hY;(p)laty?
0 :

Hy(z,y) = mex |h%;(p)z'y’
i

&(zy) = Z;%% |®ii(p)ley’
i
Fy(z,y) = Z;rggl G0y’
i
Fy(e,y) = ) max|f(p)la'y’
i

All of the formal series above are well defined since T? is compact. Further
F, and F converge in a disk of radius r. By Lemma 5.3 there is a small positive

real number, ¢y, for which F} and £, satisfy

. (z +y)?
<=9
P a—(z+y)

s (z+y)?
By < —ETY)
2T a—(z+y)

We will show that the series H;, Ha, and & converge, from which the conver-
gence of hy and g, is immediate. The theorem will follow from a collection of
estimates on the formal series developed so far. We will manipulate these esti-
mates until we have a series which is known to be convergent as an upper bound

for our (previously) formal series.
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Proof. We begin with a slightly different formulation of the formal solutions
developed in the previous chapter. Taking [ ]n of the conjugacy equation (5.1)

in each coordinate we obtain

(5.4a)

M@)ha(p, )]n + A0, 2P, Yln = Ap) (P, )]n + (A(R)2(R, )" (A1 (f(P), )]n

and

(5.4b)

AT D)2 (P, Na+Hfalp, 1P, Nn = A7 @)y (2, a+(AR)2(P, )" A1 (f(2), M

Note that the property (5.3) was used to simplify the second term on the
right hand side of both equations. Since ® only has terms involving the product
zy, [z®]), = 0 unless n = 1, and [¢®]; = z®. Similarly [y¥], = 0 unless
n = —1, and [y¥]_; : yV. The terms in the series ® and y¥ are called
resonance terms analogous to the classical fixed point case. As in chapter 4
we can iteratively substitute for [h], these equations along the orbit of f to
get a well defined expression in the nonresonance case. (We have a slightly
more complicated remainder term to work with this time which will require more

careful estimates.)

[fl(fi(p)v h(fi(p), )]n+

z-—%) AP J dn i
(1D, Yl = — ; [Ii= <IfI (j,)) gj(p)) (F(p))

N
(5.50) Jim TTA1( () _H V(N @) r (FY (), )l
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&I A () Tz @ (F ()
el == 2 Tmo A7)

N N
65b)  lm JIAENE) [[ @Y ) h(FY (), e

[F2(p, R(F*(P), ]n+

By showing that the above limit approaches zero we will have a convenient
formuia for [h1(p)]n when n < 0. The uniform hyperbolicity of f plays a sig-
nificant role in obtaining the value of the limit and in the future utility of this
expression in the majorization process. If we “forget” all of the dependence on

the nonstationary parameter, p, equation (5.5a) becomes

[faln = (3@) = N7 [l

as in the fixed point case.
Since A(p) > 1 for all p € T?, [ > 1. Therefore
N
[[2 (@) <™ ¥peT® ¥n<o
Jj=1
The exponential shrinkage of this term counteracts the growing number of terms
of a given order generated by Hj\]:l ®"(fi(p)) as N increases. It suffices to work

with the global majorizing series @ and the smallest value for A(p), I. We may

consider

lm l(n—-l)N¢nN
N-—oo

since the expression [hi(p)]n does not involve N.
Let z = zy and recall that & has leading term 1. Let " = > o0 a;z' then

the k** term of (Zf‘;o aizi)N is

Moy (N Varergr oo (N
k) T \ g 1)% 2 1 )%
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where

( N ) _ N!
11...9 - il!...iI!(N—(il —{—--'-{-iz)!

The number of terms is bounded by the number of ways one can write k as
a sum of positive integers. Denote this function of % the partition function by

P(k). All of these combinatorial coefficients satisfy the estimate
N K
; ; <NIN-1)...(N—-(k-1)) <N
1...2]
So if ¢V = oo b;z* we have the estimate
bx] < N¥P(k)M;

where

M, = max H a;,

such that 7,...,% are nondecreasing, nonnegative integers with 5, ¢ = k.

Since we work with formal series we may fix k € Z1 and take the limit. We

sec that
| (N | < "N N*P(k)M;,
So
N
lim P=1¢Np, =0
N—co 4
i=1

As previously mentioned the above considerations only hold if we assume n <
0. The case n = 1 (resonance) will be dealt with separately. If n > 1 we return
our attention to (5.4a). By replacing p with f~!(p) and f(p) with p in (5.4a)
and iteratively substituting along the negative orbit of p, we derive a similar

expression involving a limit which converges to zero and a well defined sum. All
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of the above applies equally to the second coordinate, ho, with the caviat that
resonance occurs when n = —1.

Thus we have the following expressions for h,.

(5.6a)

izt An(fi i1 gn(fi
sy = — 3 Lim A" (2D i 27 (2))

' (F(), R(Fi (), Nn
S LA R

ifn<0.

(5.7a)

o T2 M ()
hl y )n = ] ]' . .
e = 2 F S0 s &5

LA (@) h(F7H(R), ))n

ifn>1.
(5.6b) ‘ .
2L A= 2 P) 2, "
ha(p,)]-n = : - = 2(f (), R(f T (P)s )]=n
[h2(p, )] ; T2 A5 (0) [f2(f*(p), R(fT*(p), )]
if n <0.
(5.7b)

[h2(p, Nn == | [Ti=o M7 (p))

' ' D), R(Fi (), D] =n
2T e (i) T A Y @)

ifn>1.

It is also useful to have these expressions in the form

(5.8a) .
(el = = 3 sy LI P OV (P )AL @), Dl

ifn<0.

(5.9a)

[h1(p; )ln = Z; /\(f_l,-(p)) Ll AT DT DA R), A P), Dn
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ifn>1.

(5.8b)
[h2(p, )] -n = f: M (p)) H AT )T (@) AT (P) D)-n
if n < 0. - -
(5.9b) |
[h2(p, ) —n = f; MF(p)) lj, N (p) T (f (p))[fz(fi(p), R(F'(p),))]-n
ifn > 1. ) ]
Normalizations.

We have some freedom in the choice of the resonance terms, [h1(p)]1 ana
[h2(p)]—1. However we must ensure that the restrictions placed by the conjugacy

equation and the preservation of area are maintained. We have the equations

(5102) AP + A(BENL = Ap)2(E(p) — 1) + AP)2E) A (F()]s

(5.10b)

ATH D) h2(P)]-1 + [F2()] -1 = A7 (R)(E() — 1) + A7 (2) ¥ (p) R (F())] -1

As in the formal case we may choose hi, ;(p) = hi;q;(¢) and A% ,(p) =
h%,1(q) for all p,q € T2 This choice determines ®;;(p) uniquely in terms of
lower order terms. By also choosing hi,,;(p) + % ,(p) = l.o.t. we have (by the
Nonstationary Sternberg Lemma) that h, and hence g, are area preserving. We

may normalize further by choosing

(5.11) [ha(g)]-1 =y Vq € T?
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This defines each term of [h1(p)]1 uniquely in terms of lower order terms. The

normalization from (above) yields the equation

(5.12) [f2(p, )-1 = A7 (P)(¥(p,-) — 1)

which will be helpful later.

We now derive the final expression necessary to begin our majorization process.

Since h preserves area the following condition on the Jacobian must be satisfied.

8h1 th 6h2 ahl

1= -
Oz Oy Jz Oy
Z(zk Fhhi;h5 HE=1 0+ taking [ o
i,5,k,!

1= Zn(l+])hg+n] - nl(xy)l+j_1
Ll

Integrating with respect to the product zy we see that

gy =3 nhly (PRI (p)(ey)tt

BHhn

> [h1(P)lalh2(p)]-n

n=—oo

zy — (M@ [h2(P)]-1 = Y_[h1(P)]nlha(p)]-n

n#l

Finally by employing our normalization (5.11) we have

(5.13) vy — [h(P)y = Y _[ha(p)u[ha(p)] -n

n#l

Estimates.
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With these formulze in hand we can begin to make the estimates necessary for
the majorization scheme. Throughout the remainder of this chapter we will em-
ploy a sequence of decreasing positive constants ci, ¢z,... . Recall the definitions
of the constants c¢1, [, and L. Let H = Hy + Hz and A = [71W. We have the
following estimates for [hi(p)]+n

If n < 0 (5.8a) and (5.8b) yield

[h(p)]n < éi(l" oy [iu]
%2 (1-ta )’ [ IHQHL

(5.14a) %(1“1—1‘4 " [cﬁzH]n
[ha(p)]n < Li (o)’ wa] .

< Lg; (~ta-n)’ [Cl,}f?—{} »
(5.14b) = %A_" (1-17amm)™ [cf—zﬂ] .
Ifn>1(5.9a) and (5.9b) imply

[ha(p)ln < %Z (=) [ =

(5.15a) = A" (1 ~1a™)™ [cﬁQ’H] n
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oo . 2
(ha(p))-n < LY (P7"E") [cl71 H} _

(5.15b) =L(1-14a™7" [a’fi_?_ﬂ] 3

Looking ahead to combining (5.14 ) and (5.15) with (5.13) we observe that we

will need to estimate

nA™" (1=1"1Aa—") 77

for n <0, and

nA" (1 —14am)~?
forn>1. Let 2 =A—-1"1,
Ifn <0,

(1—1tAa"m) = f: @ramy’

=0

=< i“(A‘")"

<>y
=(1-A4)"1

=(c2 - )7

where ¢ =1 —[1,

nA™™ < i(i +1)A¢
R
= (C3 - Q)—l
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where 0 < ¢3 < ¢3 is chosen as in Lemma 5.1.

So

nA™" (1 =142 < (c3 — 2)7L(cz — 2)72

(5.17) <(cs— )1

for some ¢4 defined by Lemma 5.1.

If n > 1 we can make the following estimates.

nA™ < (c3 — )7}

exactly as above, and

(1— 1A < i (Z%A)ni
< i (Z% A)ni
< i (l%A)i
< (;— 17 A)!
< (e5 — )71

Where0<¢:5<1-—l%.

Combining these results we may estimate the desired quantity.

nA™ (1 —1A™) 7% < (c3 — 2) (s — 2)72
~ (Ce — .Q)_l

45



for some cg constructed by Lemma 5.1 and (for convenience) smaller than c.

Substituting the above relations into (5.13) we obtain the following.

oy — [Py < 35 3 nA" (114" [y B)lalha(p)]-n
n<0

+L Z nA™ (1 - lA")_2 [h1(P)]n[R2(P)]-n

n>1
H2 \? »
< (Cl—H) (CG—Q) ‘
7.(4
= Cr — (H + .Q)

(5.18)

where we have used Lemmas 5.1, 5.2, and 5.4 to choose c7.

From (5.14a), (5.15a), (5.16), and (5.17) we have

hi(p) = [P = Y[ (Pl

n#l
H2

(5.19) < a—(H+ D)

Due to (5.12), (5.14b), (5.15b), (5.16), and (5.17) we obtain

H2

(5.20) ha(p) =y + 927 (W) = 1) < o

The estimates (5.11) - (5.20) hold at each point p € T? so taking the maximum
in p term by term and recalling the definitions of the series H; and H; and the
positivity of [H1]; — = we see that
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H4

H2
(5.22) H, — [Hl]l = m

H2
(5.23) Hy —y+yf2 < m

where ¢; has been replaced by the smaller quantity cy.

Since all of the series (5.21) — (5.23) are composed entirely of positive terms,
it suffices to consider the case when z = y (by Lemma 5.6). We want to combine
(5.21) and (5.22) in such a way that the [H;]; terms cancel. Eventually we hope
to put the resulting expression in the form of Lemma 5.7. The series used in
the lemma must majorize H + §2 as well as the expression obtained from adding
(5.21) - (5.23).

Multipling (5.21) by =2 and (5.22) and (5.23) by z~! we arrive at the ex-

pression
T2 HA 212

.24 24+ 0
(5.24) s YH -2+ —<c9——T+2C9—T

Let T = H+z7'H — 2+ 2. Note that T achieves the goals stated above and
that T is a positive series without constant terms. Let A = z~1H — 2, then

H=2r+zAand 7T =2z +zA+ A+ 2. Hence H < 2z + T2. We also have
g 'H? <4z + T2 <2T(1+T)
and so

e HY 4T (14 T)?

< 472
1-27T
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Combining these estimates we have

2 2
17 +4m+T +22+ 77

Tt ha-) " a1

By choosing a smaller constant ¢ we may eliminate the 4 in the numerator
of the first term and combine the denominator into a single expression cg —
T. Replacing cg with ¢g in the second term as well and adding we achieve the

following relation.

< 2(2z + T?)

T
CQ—T

+ 2z 4+ T2

By replacing cg with a smaller constant, ¢, we can absorb the extra terms (by
applying Lemmas 5.4 and 5.5) to attain the final majorization inequality which

is required.
2z + T2
_< ————

By Cauchy’s Lemma (5.7),

which converges in a neighborhood of the origin. The convergence of 7 implies
the convergence of H and §2 from which it follows that h, and g, are analytic for

every pe T2, O
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CHAPTER VI

C*® NORMAL FORMS

In this chapter we will prove a C™ version of the analytic result from the
previous chapter. The similarities between the two proofs end with the referral
to the formal result from chapter 4. Our proof is modeled on the work of S.

Sternberg who succeeded in showing the stationary case of this theorem.

Theorem. Let f : T? — T? be a C®, area preserving, Anosov diffeomorphism
and let f, denote the local Taylor series representation for f at p € T?. Then
there exists a family of C® coordinate changes, hq, continuous in q for all ¢ € T?,

such that

(6.1) fpohp=hysp)o®,

where &, is the local normal form for f at p. The Taylor series for ®, at p is

denoted by gp. .

(6.2) 9(p,z,y) = (M(p)z®(p, zy), A\~ (p)z ¥ (p, zy))

As in the formal and analytic cases compactness is the key ingredient in dealing
with the nonstationary parameter.

The proof proceeds roughly as follows.

(1) Use the formal result.
(2) By a general principle we can realize the formal conjugacy and normal

form by C'* functions which have the correct behavior at the origin.
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(3) Step (2) can be achieved in an area preserving manner using basic exis-
tence and uniqueness for a linear partial differential equation (Jac(h) =
1).

(4) Make another preparatory change of coordinates which normalizes our
mapping along W§ (p) and W _(p). This requires a nonstationary ver-
sion of Sternberg’s result for contractions, [S2].

(5) Construct a (ﬁot necessarily area preserving) conjugacy which normalizes
our diffeomorphism in a small neighborhood of p and verify that the
mapping under construction is smooth.

(6) Show that one can perturb the constructed conjugacy in a way which

makes it area preserving.

Proof. We will use b, $ to denote the sequence of preparatory normalizing trans-
formations mentioned in Remarks (1) - (6). We have already constructed a formal
solution to the problem at hand. It remains to show that this formzﬂ series can
be realized by a family of C* functions which are area preserving in the neigh-
borhoods defined by the family of local coordinate systems at each p € T2. The

first step is Borel’s lemma [Bo].

Lemma 6.1. Let A(z,y) = Y, ; a;;z'y’ be any formal power series. Then there

t,J
exists a C* function whose Taylor series at the origin is A(z,y).

Proof. We introduce a C* bump function @ : R — R, such that a =1 if |z| < 1

and a = 0 if |z| > 2. Then let

(6.3) Az, y) = Z aijz'y o ((i + §)! Mm(2* + %))

iy
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where

M, =Z Z las;|.

k=0 i+j=k

The function 2 is a € function with the desired Taylor series at the origin.

With this lemma in mind we begin by representing the formal series h, as a

C*° function.

Lemma 6.2. There exists a C™ function, §j, which has h, as its Taylor series

at the origin.

Proof. Using the previously established notation h, = (hi(p), h2(p)), we begin
by representing hi(p) by a C* function, §;(p) as is possible by lemma 6.1. The
series hy(p,z,0) can also be represented by a C*° function, b;(z) defined on the
z-axis. Since we want fj to be area preserving at the origin we seek a solution to
the partial differential equation defined by J ac(h) =1, ie,
o b o b _
Oz 0y Oy Oz
A straightforward application of the method of characteristics (see [Zw] or
any standard text on partial differential equations) indicates that there exists a
unique solution b(p) with the stated initial conditions.
Let h(p) = (h1(p), b(p)) and b, is a €' realization of the formal transforma-

tion, hyp.
Remark. The same result holds for the formal series, gp.

In the case of g, it suffices to represent @, (or Tp) by a C'* function. Then

g, is C°, area preserving, and still preserves the curves zy = constant.
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Let €, = fp 0 by — hys(p) © gp denote the error introduced into the conjugacy
equation by the construction in lemma 6.2. Note that &, vanishes to all orders
as its argument tends to the origin (in the local coordinates at p). We will call
such a function infinitely flat. The precise estimate for €, is that for all j € Z+

there exist constants F; such that

(6.4) I1€p(z, Il < Ejll(z, vl

for (z,y) near the origin.

Unfortunately our construction has only assured us that the conjugacy equa-
tion is satisfied at p. Our next step is to normalize along W, and W by an
area preserving C'* diffeomorphism. Recall that our initial choice of coordinates
made W _(p) and W (p) the z and y axes. To achieve the desired normalization

we require a nonstationary version of Sternberg’s theorem for contracting maps,

[S1).

Theorem 6.3. Let B be a line bundle over T? and F : B — B a function such

that

(1) F(p,x) = (f(p)aFP(w))
(2) Fp(z) =p(p)z +... where u(p) <1 for all p € T?

(3) Fjp is C* for each p € T? and continuous as one moves the base point p.

Then there exists H : B — B with the properties:

(1) H(p,z) = (p, Hy(z))
(2) FoH =H oG where G(p,z) = (p, u(p)z)

(3) Hp is a C* diffeomorphism which is continuous in p.
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Remarks.

(1) This theorem provides a linearizing transformation, denoted k, for g,
along W{ .(p).

(2) The same theorem applies to g, along W (p).

Now consider g, restricted to We.(p), ie, gp(0,y) = A" (p)y +.... By

theorem 6.3 we can construct a C'* function k; such that

_ K] P A—1
gP‘W’ (» ° kp =Ko,

loc

where A;ly = A7}(p)y. The same theorem applies to g, along W (p) which

in turn linearizes g, on W (p). Thus we may construct k; such that

(6.5) Oplwe () © K = Kj( 0 Ay
Now let
(6.6) K = [ kY(z), —2
P P |i£2
dr
and
8 __ T .3
K, = —3_,3-5—,]»;,(9)
: 5

Note that Jac(K;) = 1 = Jac(K}). Conjugation by K} o I places g, in
normal form along W _(p) and W .(p). Let us use the same symbol, g, for this
new C'* partial normal form.

Theorem 6.3 is a special case of a more general theorem about skew products
of R™-bundles over compact manifolds to be discussed in chapter 7.

Summing up the previous paragraphs we have the following lemma.
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Lemma 6.4. By the constructions above we can consider g, to be in local normal

form at p and along W (p) and W (p) for all p € T?.

We will now show how to construct a C* conjugacy, ), which normalizes gp
in a neighborhood of p. The size of this neighborhood will have a uniform lower
bound over all points on the torus. Take f, to be in partial normal form. Thus
the next family of local changes of coordinates may be chosen to be the identity

plus an infinitely flat part at p.

Lemma 6.5. There exists a family of local diffeomorphisms, £, such that

(1) The restriction of $), to W, (p) and Wi, (p) is the identity.
(2) The diffeomorphisms, ), are infinitely flat as they approach W§, (p) or
Wllzt)c(p)'

(3) Hspofp=Gpo

Remarks.

(1) Note the conspicuous absence of preservation of area from lemma 6.5.
After constructing ), a separate argument (and construction) will yield
an area preserving family of conjugacies.

(2) The purpose of fhe construction of §), is to eliminate the error term, €,

from lemma 6.2.

Before we begin the proof we need to establish some notation. Let X =
(z,y) € Wi (p) x Wi (p) C T2 Occasionally we may write X, or (z,y)p to

emphasize the location of the local coordinates. Let

IX||* = 2* and [ X||* =y
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IX1 = 11X + 11X

Let B, (r) denote the ball of radius r in the local coordinates at p with the metric
defined above, i.e.,

By(r) = {X | | X]| <r}
Let

€ = {(z,9)y | lo| = Iy}
(6.7) es = {(z.v)p | Il > yl}

€ = {(z,9)p | |zl < lyl}

The cone €} contains the unstable axis while C; contains the stable axis. Note
that

Ff-n(p) (C‘f?-n(p)) —s W (p) as n — oo and

fnm (€ ) — Wi(p) 2 m — oo
To construct the desired conjugacy we choose a fundamental domain, 82”’ and
define $), there, then use the iterated conjugacy equation to define £, throughout

a neighborhood of p. Let 8" denote the wedge of B,(r) bounded by €, and

f(€s-1(p)). Choose rq small enough that
(6.8) IF(X)N| < ellX|| for all X € By (ro)

Recall that f,(X) denotes the higher order terms of f,. Compactness allows us
to take rg of uniform size over all local coordinate systems.

In B,(ro) we have the following estimates.

Ifol* > (Mp) — IX|* > (1 = &)l X"
I511° > (A7 (p) = QIX|* > (17 = )| X|I°
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where | denotes the minimum of A(p) over T2?. By choosing € small enough we

can find a (global) constant ¢ > 1 which satisfies

Ifpll* > €]l X]|* and

(69) Il < I
Thus in B,(rg), ¢ controls the local expansion in || - ||* and the local contraction
in || - ||* for each p € T2 Now let r < ro and 8)" be the fundamental domain

described above. Define

85" = fr-1(p) (Sn 11(;)) NB,(r) if n > 0 and

n,r n+1,r .
(6.10) o= 17l (s ntl ) NB,(r) if n <0

Lemma 6.6. The wedges 82" cover a neighborhood of p (except for the axes).
Proof. We must verify the previous claim that
(6.11) £f-n(p) (ef""(p)) — Wi.(p) as n — o0
The estimate (6.9) indicates that
n S 1 8
[55-n (XN < S I1X]
where ¢ > 1. Hence the assertion holds. Similarly
F7-n(p) (Cr-nm) — Wie(p)  asn— —co

By construction there are no “gaps” between SI’;’T and S;';"l’r thus
U8y D By(r) — (Wike(p) U Wi (p))

We will also need a lemma which regulates how f(S" 1l )) covers 83"
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Lemma 6.7. There exists a constant 7 < 1 and an integer k such that forn > k

and r sufficiently small we have
n—1,rr n,r
(6.12) (857 o 8

Proof. Fix € > 0. From the proof of lemma 6.5 we can choose &, such that for
all k >k, and X € Sj’,f’r

1X1* > (1 = 1X]|

Then

15X > (1 = Ol > (1 = )] X]| > 1

For € small enough ¢(1 — €) > 1 thus we may choose 7 = ﬁ Let k =

SUp,em2 Kp < 00, and the lemma is verified. O

- We will construct ), by defining it on the wedge 8} for all ¢ € T2 The

conjugacy equations will determine §) in the neighborhoods, B,(r). Begin by

defining ﬁple = Id,, for all p € T? where Id, denotes the identity map. Then §
r

is defined on f(Cs-1(p)) C Cp by the equation

(6.13) NDpofr-1(p) = G5-1(p) © Nf-1(p)

The equation

(6.14) N 0 Ff-n(p) = 8F-n(p) © Df-n(p)

defines §), on a family of curves tending uniformly (as n — c0) to W (p) in a
~small neighborhood of p. To define £, on 89" we choose a C'*° function which

tends to the identity in an infinitely flat manner as it approaches Cp and which
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agrees with the requirements of equation (6.13) in a smooth manner (This is
possible as in [S1].). Equation (6.14) defines ), in each wedge, 87", and at each
p € T2. Moreover the construction makes §), a C> function over the union of all
of the wedges. All that remains is to check that ), is C> at W}, .(p) and W (p).
(Due to our previous normalizations we require £, to be the identity on W (p)
and W (p) so that f remains normalized there.) We begin by demonstrating the

continuity of §3,.

Lemma 6.8. The definition above makes $), continuous at W (p), Wi .(p),

and the origin.

Proof. Assume that X, is a sequence of points in B, (r) approaching X € W (p).

Since our definition makes £), the identity on W _(p) we have

[19p(Xn) —Hp(X)ll = 195(Xn) = X]|

(6.15) < N(55p — Idp)(Xn)l| + | X — X

So it suffices to show that (), — Id,)(Xy) vanishes as n — oo.
Since the wedges 85" cover By(r) we can define a function k(n) : Z+* — Z*

k(n),r

where X,, € §5°"’"". Note that k(n) — oo as n — co.

Let R, = &, — f, and recall that our previous normalizations make R, infin-

itely flat at the origin in all of the local coordinate systems. From its construction
—_ gk -k
51"8;" =6 k) 0 Ds-rm OF,
Let

(6.16) Dy = Hplgsr — Idy
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Observe that

Dy = Sf)p|sg,r —Id, is infinitely flat

and that ‘Dg satisfies
k— -
(6.17) @2 = ij—l(p) o] (Idf—1(p) -+ 'Df_ll(P)) o) fp 1_ Idp
By the mean value theorem there exists {; such that

Dy =Gs-1p0f," + dqu"l(p)(fk)‘g;,;ﬂ(p) ofy — Idy

(6.18) = S%f_l(p) 0 f;l -}- d@f—1(p)(£k)'®l;:1l(p) o f;l

Repeated application of the mean value theorem yields the relation

(6.19)
k=1 fi—1 _ . k

Df =Y | [[ 8550 (&x—i) | Rp-rmofy’ + (H dﬁf-f(p)(fi)) D}rpyofp "
i=0 \j=0 i=1 ,

Since &, = f, + Ry, we can find M such that

6.20 M= d®
(6.20) max Jax 48 ()]

As %, and DY are infinitely flat, we can find constants D; for any j € Z* such

that

(6.21) ~sup sup DY(X) < D;|| XY
pET? XEB, ()

(6.22) sup sup Ry(X) < Dj||X |

pET? X EB, (1)

The continuity of $), at W .(p) depends upon the amount of control which can

be exercised over ‘DI’§ ask — oo (l.e. as X, — X). Recall the definition of 7 from
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lemma 6.6 and choose j such that ¢ = /M < 1. Using lemma 6.6 we have the

estimates

sup sup || D} o fH(X)|| < DyllfH(X)I
PET XEB,(r)

(6.23) < D; (2rTi_”)j
Ifi: <k— & then

(6.24) sup sup ||R, o i H(X)| < Dj (TTi)j
pET? X€B, (r) .

and if ¢ > k — &, then
(6.25) sup sup ||, o f {(X)|| < D; (27'Tk_”)j

pET? X €By ()
We can use (6.21) and (6.23) to estimate the last term of (6.19), and (6.20) -
(6.25) to estimate the sum.

k+1-1 O'K'+l

IDRI < Y MRy 0 87| + Dy

=0

+ D20 Mgk F

-0
Fix some € > 0. By choosing [ sufficiently large the middle term can be bounded

above by e. Having fixed [ we see that as n — oo
®_i(Xn) - Wl?zc(p)

and since R is infinitely flat as it approaches W (p), the first term and the last

term (o < 1) tends to zero. Thus
IDE(Xa) =0 asn— oo

and ), is continuous at W _(p). It follows from a similar argument that §), is

continuous at W (p) and the origin for all p € T2
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Lemma 6.9. The family of conjugacies ), is C*° in By(r).

Proof. The only issue is the smoothness at W (p) and W _(p). One may ar-
gue by induction, anchored by the continuity lemma. Suppose §), and all of its
derivatives up to order n — 1 are continuous at W (p) for all p € T?. The induc-
tion step is verified in a manner analogous to the continuity lemma. The main
difference is that the objects are contrévarient tensors of various orders instead
of vector valued functions and Jacobians. Let V denote the differential opera-
tor on the space of symmetric tensors composed of partial derivatives of smooth
functions on T2. That is V takes the tensor containing all partial derivatives

of order n of a vector valued function to partial derivatives of order n + 1. Let

A(X) = (AI(X),... ,A"(X)).
VA = (Aj'l‘---jn)
where

omA?

AL ==
717 e R
" Ogzj, ---0zj,

Taking V of (6.19) we get

k-1 [i-1 i—1
k —
v =3 | IIVesiw | VR I1 ViFhi
=0 \ j=0 1=0

i—1 i—1

k—1
2 (2 I Vi | Vsm1) | Rpmiiry oy

i=0 \U=0 \j=0,j

k
+> | ] VSs-im | (V2B si(p) DS-ipy 0 Fp
1=0 \j=0,j#
k k

X 0 -1
+ I V- VD L] ViFhi
0

i=0 i=
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Split the summations as in the continuity lemma and redefine M as

M=sup sup (VSO IV I, VSO, I15,l) -
PET? £€B, ()

The continuity of H, implies M < oo for r small. Since R, is infinitely flat, VIR,
is also. Hence for all § € ZT, and all ptor, there is a (uniform) constant R; such

that

IVR(X)] < Bj|I X
I9,(X0)] < ;11X |17
IVDR (XN < RlIX|Y

DRI < Bj]IX |17

The continuity of '.'D]’; follows from estimating the tail of the summations on the
right hand side. Choosing X, close to X makes the remaining terms e-small.
By applying V"1 to (6.19) we get a complicated but similar expression for the
derivatives of H, — Id, of order n + 1 in terms of derivatives of }, — Id, of
order less than or equal to n, and derivatives of f and & of order lessthan or
equal to n + 1. The induction Hypothesis allows us to redefine M and R; based
on the continuity of the derivatives of order less than or equal to n. The same
procedure as above implies that VX, vanishes as X, — X and by induction
H, — Id, vanishes to all orders and is C*° at W (p). The proof for W (p) is

almost identical. O

Now we will indicate that the preservation of area can be regained by perturb-
ing the construction of §),. Note that &, maps the curve zy = cat pintozy =c¢

at f(p). Define ft(p) = fl(p) where [t] denotes the greatest integer function. If
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0 <t < 1 interpret A*(p) as usual. Fort > 1 let
(-1
Ap) = | II 2 @) | 3 ¥ ()
i=0

Consider the family of mappings 6;,, which can be expressed in exponential

form.

@;,(a:,y) = (,\t(p);,; etT(f’(P),xy), AHp)a e—tT(f! (p),xy))

By conjugating with §), we embed f, in a similar one parameter family f;. Al-
though f}, is not area preserving for each ¢, it is ;a,rea preserving for t € Z. As
in [S3] we can construct a time change, u(t), for the family of diffeomorphisms
which makes ﬁ;(t) area preserving for each p € T2. Now we can construct a new
conjugacy H, which preserves area as follows. Let z € €, and X; = §*()(X) (for

t <1 so that X; € B,(r)). Define H; on the fundamental domain, 8" by
Hp(X4) = &(X).

As before the conjugacy extends H, to B,(r). The considerations of smoothness
are no different than before since ), was only modified inside of the wedges (hence
the asymptotics of (6.19) and (6.26) are identical). Thus we have constructed

the desired C'° realization of the conjugacy for theorem 6.1. O
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CHAPTER VII

NORMAL FORMS FOR SKEW
PRODUCT TRANSFORMATIONS

The nonstationary normal form theorem for area preserving Anosov diffeomor-
phisms is actually a special case of a more general theorem about skew product
dynamical systems. Essentially all of the theorems for local normal forms for
diffeomorphisms at a fixed point can be carried out in the skew product setting.
We begin by establishing a generalization of theorem 6.3 to higher dimensions.

Let M be a compact manifold and B an R™bundle over M. Let (p,X) €

M x R™ Recall that a skew product F : B — B is a mapping of the form

(7.1) F(p, X) = (f(p), Fp(X))

We will assume that the fibre map, F}, changes continuously in the parameter
p € M and that F}, is a diffeomorphism for each p. In addition suppose that
F, has a fixed point at the origin of R", i.e., F} fixes the zero section of our
bundle B. Let Ai(p),...,An(p) denote the eigenvalues of the linear part of F,
at the origin (for simplicity we assume that the linear part of F}, at the origin is

diagonalizable). Let A, denote the diagonal matrix with );’s as entries.

Theorem 7.1. Let F: B — B be a skew product as above. If all of the
eigenvalues of Fy,, Ai(p),...,An(p) lie inside the unit circle and are free from

resonances at each point p € M, then there is a smooth transformation H : B —

B which satisfies

(7.2) FoH=HoA
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where H(p, X) = (p, Hy(X)) and A(p, X) = (£(p), Ap(2)).
Remarks.

(1) The word smooth can be replaced by analytic, C*¥ or C*. Since we have
used a C'™ version in chapter 6 we will verify this explicitly. The C* case
follows by combining the nonstationary formulation of the Céo version
found in this chapter with the considerations from [S2], and the analytic
case essentially follows from our formulation along with the methods of
[La] or [S2].

(2) The procedure follows the established pattern. We will cite a formal
theorem then argue that there is a smooth realization of the formal series.
The case at hand is much more simple than those of the previous chapters
since we are dealing with a contracting map.

(3) An analogous theorem holds if the eigenvalues lie outside of the unit

circle (just consider F~1).
Proof. Write F, = (Fi(p),...,Fn(p)) and let

Fi(p) =)  Fiz®

«@

where « is a multiindex a = (ay,...,a,) with the usual conventions (e.g.|a] =
a; + -+ + ap). Also assume that the eigenvalues have been ordered by their

magnitudes i.e., |[A1| < [A2] <+ < |A\,| < 1. Composition of series yields

(7.3) ML) = N HL(f(p) + Lo,

The nonresonance condition allows a unique solution for H:(p) as an expres-
~sion of lower order terms. Uniform contraction and compactness make H, well

defined and continuous in p.
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By lemma 6.1 we can realize H, by a C'* function so
(74) Ep IFPOHP—Hf(p)OAp

is infinitely flat.

Let | = maxpenm |M(p)| and I' = maxyepm |An(p)] so that 0 < I < I' < 1.

Let O, be a neighborhood of the origin in {p} x R™ and V/§ denote the set of
C* functions on M x O, which vanish up to order & at the origin for each p € M.

For Z = (Z1(p), -, 4m(p)), we have the metric,

(7.5) 1Zll5 = sup Sup > ) 1D*Zi(p)|

peEM 0, T la|=k

The mean value theorem yields the following lemma.

Lemma 7.2. Given any Z € ch and any real number ¢ > 0, there exists a

neighborhood O¢ such that

(7.6) 1Z1l6e + 1205 + - + 1 Zllg: " < ell Z]I5

Proof. Applying the mean value theorem k — 1 times to the first term (on the

left) and one less time for each subsequent term in a §-ball we see that
12052+ 1213 4+ 121570 < (6 4 -+ B 20"
Given € > 0 choose § Such that +& < ¢ and the . satisfied. 0O
Define Ly : V§ — Vi by
(7.7) (Ls2>" - pJac(Fpy)) ™ Zyp) 0 Fy)

We will « L is a contraction on V.
: (V)
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Lemma 7.3. Let Z be a function in V& and F a C* function as in theorem
7.1, then there exists a neighborhood O' C O and a positive constant k < 1 such

that

(7.8) 1£4(D)l6: < sllZ]I5:

Proof. Let A = (a;;(p,z)) denote the Jacobian of F}, and |a| = k.
(7.9) Da(Zf(P)FP)(X) = ZDaZf(p)FP(X) - AF 4 Qo

where (), is a polynomial in the derivatives of Z of order less than k and the
derivatives of F}, of order less than or equal to k. Continuity allows us to choose

0% such that lemma 7.2 is satisfied and hence

1Qallos < €llZ]l5s

Thus
(7.10) ILFZIlgs <17 ((m+8)* +€) | 2|

By choosing 6 and e small enough & = [~ ((m + §)* + €) < 1 and the lemma is
verified. [

We will complete the proof of theorem 7.1 by constructing the C°° function
£ by successive approximations. Let $° = f, the solution of (7.4) Then £°

satisfies the conjugacy equation up to an infinitely flat error, i.e.,

A7l o H o Fy — HY € Vi§®

f(p)
Let
_ —n 0
(7.11) Hy = Aoy 0 Hpnyy o FY
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Since L contracts by a factor of «, L contracts by a factor of k7. Thus the

function

n—1
(7.12) I —Hy =Y L (A7) 0 HE o Fp — 33)
1=0

is uniformly convergent, hence 7 — $), € C*°. By construction H(p,X) =

(p, Hp(X)) satisfies

FoH=HoA 0O

If the fibre maps F}, are contractions but there are resonances between the

eigenvalues, a similar proof establishes the following theorem.

Theorem 7.4. Let F : B — B be a skew product whose eigenvalues lie inside

the unit circle. Then there exists smooth transformation, H, which satisfies
FoH=HoG

where the normal form G, is a polynomial containing only those terms which

correspond to the resonances among the eigenvalues of F'.

Remarks.

(1) Slight modifications of the proof of theorem 7.1 (along the lincs of [S2])
verify this theorem.

(2) Since the eigenvalues have magnitude less than one, resonances terms
can only occur once for each relation in the normal form (in contrast to
the hyperbolic area preserving case where AN~ = 1 generates an infinite

number of terms). Thus G, is a polynomial.

The theorems of Chapters 4, 5, and 6 for Anosov diffeomorphisms can be

expressed for certain skew products as well.
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Let M be a compact manifold and B a trivial R?-bundle over M. Let F :

B — B have the form.
F(p,z) = (f(p), Fp(z))
With F), continuous in p and smooth and area preserving in each fibre. As usual

let A\(p) and A7!(p) be the eigenvalues at (p,0).

Theorem 7.5. Let F': B — B be a skew product with the fibre map smooth
area preserving fixing the zero section and continuous in the parameter for the

base. Then there exists H : B — B, H(p,z) = (p, Hy(z)), such that
| FoH=HoG
where G(p,z) = (f(p), Gp(x)) and
Co(z,y) = (AM(p)xd(zy), A2 (p)xd (zy))

(1) The word smooth can be replaced by formal, analytic, C°, to generalize
the theorems of chapter 4, 5, 6 respectively.

(2) There are no essential differences between the proof of this theorem and
those proofs given in the previous chapters.

(3) As before we have an exponential form of the normal form which leads

us to a corollary about cocycles.

Corollary 7.6. The normal form can be expressed as

Gp(z,y) = (/\(p)meT(P’”y), A—l(p)ye—'f(p,ry)>

The coeflicients of (zy)’ in the exponent of the exponential are cocycles for the

dynamical system (F, B).
Proof. The proof follows exactly as in chapter 4.
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Let I'(s,m, p) denote the cocyles defined via the exponential normal form. Let

A1=f I'(1,1,p)dv
M

Corollary 7.7. If the base map f(p) has an invariant measure, v, on M then

Ay is an invariant of the skew product (F, B).

Proof. Recall that I'(1,1,p) = ®11(p). From (4.11), ®11(p) is defined in terms
of A(p) and is unique up to a coboundary (h};(f(p)) — h3,(p)). Integration over
M eliminates the coboundary since f preserves measure and yieldé a uniquely

defined invariant. O
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