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ABSTRACT

The first order approximation of the theory of the so-called simple
material describes the viscoelastic behavior of soft polymers in large
deformatiéns with twelve time-dependent material functions and three
material constants, all functions of the three invariants of the
deformation tensor. Restricting consideration to deformations in
which time shift invariance is preserved, a series of models was
developed which describe the time dependence of the stress through
the Boltzmann superposition integral incorporating into it a suitable
nonlinear measure of strain. The theory was developed in its most
general three-dimensional fofm. Its predictions for homogeneous
deformations were tested in a series of experiments on an uncrosslinked
styrene~-butadiene copolymer.

For the prediction of the viscoelastic behavior of soft polymers
the simplest form of the theory requires only one time function,
the relaxation modulus. 1In addition, it requires a strain parameter
which is a characteristic material constant. The dependence of this
parameter on temperature and other material and experimental variables
was examined on hand of estimates from published data as well as from
the experimental results reported here.

Sensitive tests in which small (theoretically infinitesimal)

deformations were superposed on a finite stretch, allowed a distinction



to be made between the two simplest forms of the theory which, in
principle, should apply to solidlike and to liquidlike behavior,
respectively. Although uncrosslinked styrene-butadiene copolymer
behaves in many respects liké a liquid, it showed unprecedented
excellent agreement with the predictions of the solid model at room
_temperature. It was concluded that under this condition the
liquidlike character of the copolymer is not strong enough to satisfy
the special requirements of the liquid model.

The new theory allows specific predictions to be made concerning
the contribution of internal energy to the.restoring force in rubber-
like materials. It represents an advance over former theories in
that it permits the contribution to be obtained on uncrosslinked as
well as on crosslinked soft polymers. Literature data were reviewed

and examined in the light of the theory.
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INTRODUCTION

Every engineer at one time or another in his career has to deal
with problems related to the deformation of materials. Frequently he
is asked to predict or to interpret the response of a material under
different excitation conditions. A mathematical model for the response
of the material is indispensable for such an assignment. The fundamen-
tal tool is mechanics.

The task of mechanics is to link the deformation of a body and the
forces applied to it in such a way as to yield good models for the
behavior of the material. For sufficiently smooth fields the applica-
tion of the conservation laws for force (or torque) and energy lead to
the familiar f{eld equations. In addition, {initiaf and/or boundary
conditions have to be specified. Even with these two pileces of infor-
mation it is generally not possible to determine the response of the
material adequately. Experience has shown that different materials
generally behave differently when subjected to the same excitation
conditions. Therefore, further restrictions must be introduced before
the deformation qf a continuum can be determined, Ever since the days
of Euler and Cauchy, phenomenological theories of the mechanical
behavior have rested on the comstifufive equation which spells out the
relation bet&een the kinematic and dynamic variables.

There are basically two ways to develop a constitutive equation:
the phenomenological approach and the molecular (or sfructural) approach.
The former falls into the realm of continuum mechanics, The latter is
based on statistical mechanics, molecular hydrodynamics, etc. In the

last two decades mathematics research in the field of continuum
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mechanics has made profound progress(l—g). The efforts of mathematic-
ians have clarified a number of basic concepts such as the definition
of various solids and liquids, and also set guide lines for formulating
constitutive equations. For the polymer scientist or engineer rational
mechanics provides a logical way of proposing constitutive equations and
it rationalizes the treatment of the observed mechanical behavior of
polymers.

On the other hand, there has been a renaissance of thermodynamics
and statistical mechanics during the last twenty years. In particular,
the theory of irreversible processes has advanced at an ever increasing

rate(lo). A general theory of non-equilibrium systems has been develop-

(1D

ed by van Hoeve and Prigogine ; a new theory of the linear response
. ; (12-14)

of systems to an external perturbation has been developed by Kubo 3

the methods of quantum field theory have been introduced successfully

. . (14,15)

into statistical mechanics . Although these advances are still

far from allowing the complete description of general physical systems,

answers for some special problems have been obtained.

Continuum mechanics may provide an adequate phenomenological
description of observed behavior. Statistical mechanicg, on the other
hand, may help to establish a reasonable model which incorporates the
molecular characteristics of the material into the constitutive equations.
Such a model allows correlation of mechanical with other properties (e.g.
electrical, optical, etc.), lends physical meaning to the parameters
in the phenomenological equations, and supplies a physical picture to

predict new phenomena. Therefore, linking the statistical mechanical

with the continuum mechanical approach is imperative for accelerating



our understanding to the rheological properties of polymers.

Over the past thirty years, there have been significant advances
in the field of defprmation of polymers., To some extent, however,
these advances have suffered from fragmentation among efforts directed
towards experiment, phenomenological theory, molecular theory, and
engineering épplications. Attempts at integration of difference view~
points should produce cross—fertilization. What the field appears to
need most today is probably best expressed by Sir Francis Bacon(l6):
"The mere rationalists are like spiders who spin a wonderful but
flimsy web out of their own bodies; the mere empiricists are like ants
who collect raw materials without selection and store them up without
modification. True and fruitful science must combine rationalism with
empiricism, and be like the bee who gathers materials from every flower
and then works them up by her own activities into honey".

The subject of this thesis is the theoretical and experimental
investigation of a new approach to the phenomenological description of
the viscoelastic behavior of soft (rubberlike) materials in moderately
large deformations, For the purposes of this thesis, moderately large
deformations are those in which time shift invariance is preserved
as explained in Chapter 1. In this chapter the concept of incorporating
a generalized strain measure into the Boltzmann superposition integral
is introduced and some experimental confirmation is given. In Chapter
2 the rigorous mathematical theory is presented, and two specific
three-dimensional constitutive equations are proposed, and are com-—

pared with other constitutive models. In Chapter 3 the two models are



tested on hand of our own as well as literature data on uncrosslinked
soft polymers in uniaxial deformation under different loading histor-
ies. Finally, in Chapter 4 the application of the theory to thermo-
elastic measurements of the internal energy contribution to the
restoring force of viscoelastic materials is disucssed.

The format of this thesis consists of a series of self—contéined
papers. Chapter 1 has now been accepted for publication in the
Proceedings of the National Academy of Sciences. Chapter 2 will be
submitted to Rheologica Acta. Chapter 3 is slated for submission
to the Journal of Polymer Science, and Chapter 4 will be submitted

to Macromolecules,
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CHAPTER 1

THE TIME DEPENDENT RESPONSE

OF SOFT POLYMERS IN MODERATELY

LARGE DEFORMATIONS



ABSTRACT

A new theory successfully describes the time-dependent mechanical
behavior of soft incompressible isotropic polymers in moderately large
deformations. The theory is based on the introduction of a generalized

measure of strain into the Boltzmann superposition integral.



In a polymeric material the ratio of stress at time t to that at an
arbitrary reference time t. in a stress relaxation experiment is usually
independent of strain. For stress relaxation in simple tension this
behavior was observed by Tobolsky and Andrews (1) on styrene-butadiene
rubber rubber (SBR), by Guth et al. (2) on natural rubber (NR), and by
us on l,4-polybutadiene (PBD). Chasset and Thirion (3) studied the
stress relaxation behavior of NR and SBR specimens which were prepared
with different crosslinking agents. They concluded that the observation
holds generally for various network structures. The same behavior was
also seen in carbon black and starch xanthide reinforced SBR by Bagley
and Dixon (4).

Similar observations have been made in other deformation fields,

Our own unpublished data as well as the data of Bergen (55 on carbon
black filled SBR and on PVC samples containing various amounts of
plasticizer, the data of Gent (6) on SBR, of Valanis and Landel (7) on
silica filled poly(dimethyl siloxane) rubber, and by Kawabata (8) on NR
and SBR all indicate that the phenomenon is not restricted to simple
tension.,

This behavior suggests that a constitutive equation containing only
a single integral might be more appropriate for the description of time-
dependent mechanical properties than one containing multiple integrals.
Indeed, several one~dimensional modified Boltzmann integrals have been
proposed (e.g. 2,9-12). These attempts can be divided into two classes.
One generalizes the integral by replacing the true stress by an experi-
mentally determined fumction of the.tensile.stress (12,13). The other

replaces the infinitesimal strain of the classical Boltzmann integral
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by feplacing the true stress by an experimentally determined function of
the tensile stress (12,13). The other replaces the infinitesimal strain
of the classical Boltzmann integral by a finite strain measure such as
the Cauchy or Green strain (9,11,13). Leaderman (14) concluded from
multiple step creep and creep recovery experiments that the first
approach is inadequate. Hence, it is ruled out from our considerations.

The observations we have cited strongly intimate that the non-linear
mechanical response of soft (i.e. rubberlike) materials.results from
strain non-linearity while time shift invariance is essentially preser-
ved (i.e. the normalized modulus density on relaxation time remains
unchanged), at least in moderately large deformations. The term
"moderately large" will be made more precise further on.

To introduce our formalism we first consider the purely elastic
deformation of an incompressible isotropic soft material. We write our
constitutive equation as

kK .k k

where tkﬁ ig the (mixed) Cauchy stress tensor, p is an arbitrary hydro-
static pressure, 6k£ is the Kronecker delta, G is the shear modulus,
and
k _ =1k k
bp=(cp-6,J2 [2]
is a (mixed) strain tensor defined in terms of Finger's deformation

tensor whose contravariant form is
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—ékfﬁ i GKka x£
K™ 'L

(3)
In Eq. 3 the {xk} are the spatial (deformed) coordinates, the comma de-
notes partial differentiation with respect to the material (undeformed)
coordinates {XK}, and GKL is the metric tensor of the material system,

Rotation to principal axes yields

a k £ ,
ta =V, t eV g (no summation on a) {4]
and
-1 _ a=-lk X )
c,=mnCpn (no summation on o) [5]

where 0=1,2,3, and the {vk} and {nk} are the eigenvectors of the stress
tensor and the deformation tensor, respectively. For purely elastic
isotropic materials, these eigenvectors are identical. Substituting

Eqs. 4, 5, and 2 into 1 gives
t =-~p+ ZGba [6]

where

~1 2
b, = (c -D/2=0Q"-1/2 [7]

-1
In Egs. 4 through 7 the {ta}’ {ba}’ and {cu} are the principal compon-

ents of the respective tensors, and the {Ka} are the principal stretch
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ratios, We note that ba = Eu where the {Ea} are the principal compon-
ents of the Lagrangean strain temsor, and that t = Ea where the {Eu}
are the true stress components. This establishes the connection with
the notation we have used in preceding publications (19-21). The
principal components (i.e. the eigenvalues) of the two tensors, bkz and
EKL, are identical. We have replaced EKL by a strain tensor in spatial
coordinates for convenience in extending the treatment to viscoelastic

behavior.

To generalize the strain measure, Eq. 7, we now write

b = (El 1’1/2
=0

-1/n= () - 1)/n [8]
where the underscore distinguishes the generalized tensor components
from the classical ones. We prefer Ea because the strain exponent, n,
will then be positive definite for a rubberlike material. We note that
n, a material parameter, has nothing to do with the eigenvectors, nk.
The idea of a generalized measure of strain is not new. Its earlier
history has been reviewed by Truesdell and Toupin (15). Some new
measures were proposed by Karni and Reiner (16). Seth (17, 18) applied
it to transition field problems such as elastic-plastic transitionms,
creep, boundary layers, and shocks. Blatz, Sharda, and Tschoegl (19-21)
and Ogden (22) independently adopted the idea of a generalized strain
measure to predict equilibrium stress-strain relations for crosslinked
SBR and NR samples under various modes of deformation. The agreement
between the predictions of their theories and the experimental results

was qypnprecedentedly good.
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We now adapt the idea to the problem of time-dependent (viscoelastic)
deformations by introducing our generalized strain, Eq. 8, into the
Boltzmann superposition integral. We obtain
db (u)

t
Ea(t) =-7p + 2[ G(t—u)—:%E~—du : [9]
Yo

where t is the present time, u is the past time, and G(t) is the shear
relaxation modulus in small (theoretically infinitesimal) deformation.

- Excluding the glassy and upper transition regions of the viscoelastic
response from consideration, we may replace 3G(t) by E(t) where the
latter is the tensile small deformaﬁion relaxation modulus. Introducing,

in addition, the second of Egqs. 8 into Eq. 9 we obtain

_ c " )
5 (£) =-p+ (2/3n)f E(t-u)—F3—du [10]
o

Eq. 10 is limited to moderately large deformations for both theoretical
and experimental reasons to be discussed elsewhere. Under a moderately
large deformation we understand one which requires only the first term
of the elastic poteqtial functions of Blatz, Sharda, and Tschoegl and
of Ogden for the description of their mechanical respdnse in purely
elastic deformations., In our present notation this single term poten-

tial function becomes

W= (26/n) I, [11]
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where Ib is the first invariant of the generalized strain tensor Ekﬁ.

Typically, in a moderately larpe deformation of an unfilled crosslinked
rubber the stretch ratio would not exceed about 2.5 in simple tension.
Equation 10 is neither the only admissible form nor 1s it the most
general one. Other admissible forms and their relations wifh mechanical
models will be discussed in a separate paper. The equation reduces to
the classical Boltzmann superposition integral for infinitesimal
deformations, and it reduces to the stress-gtrain relations given by
Blatz, Sharda and Téchoegl (20) in purely elastic deformations. 1In
particular, the response to a step function of strain in simple tension

becomes
St = 2/3m) 0= 2E () [12]

We note that this relation is true for all times, and, hence, also for
a specific isochronal time,

The only material information needed to apply Eg. 10 is a relaxation
function and the strain expoment n. The relaxation function can be
constructed, utilizing the time-temperature superposition principle,
by conducting stress relaxation tests at different temperatures in
small deformations. The exponent n can be found, using non-linear
least squares fitting, from isochronal stress-strain relations cross-
élotted from stress relaxation measurements in simple tension at
different values of strain in moderately large deformations. The ex-
ponent n, its variation with temperature, crosslink density, nature of

material, etc., will be discussed in another forthcoming publication.
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As an example, we show here the application of Eq. 10 to comnstant
rate of strain experiments. The experiments were made on specimens of
dicumyl peroxide cured SBR 1502 having a 100 minute tensile modulus of
7.55 bar at 23°C. The specimens were slightly swollen (about 1.5%) in
silicone oil. The reasons for this are irrelevant to the present
discussion and will be presented elsewhere. The strain exponent, n,
was 1.22 for this sample at 23°C.

For constant rate of strain, €&, Eq. 10 specializes to

t .
S() = (28/3) j E(t-w) D (w) + 0.0 2 (u) Jau [13]
)

where A(u) = 1. + éu. Fig., 1 shows data at four strain rates. The
filled circles and the lines represent thé experimental data and the
theoretical predictions, respectively., Fig. 2 embodies the results of
an experiment in which the specimen was first extended at the indicated
rate of strain to a predetefmined strain, left to relax (é=0), and then
brought back to zero stress at a different strain rate 10 minutes after
the first stretch was begun (tr)'

We have examined numerous literature data as well as our own. In
all cases the agreement between theory and experiment was within experi-
mental error. We have extended our treatment to uncrosslinked materials
with similarly good results, These étudies'will be presented in a

series of papers now in preparation.

This work was supported in part by NSF Grant number DMR75-08076.
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Figure 1.

Stress-strain curves on styrene-butadience rubber at

different rates of extension fitted by Eq. 13.
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Figure 2. Response to a trapezoldal strain excitation fitted by Eq. 13.



10.
11.
12,

13.

14,

15.

18

" References

Tobolsky, A.V, & Andrews, R.D. (1945) J. Chem. Phys. 13, 3-27.
Guth, E., Wack, P.E. & Anthony, R.L. (1946) J, AppfL. Phys. 17,
347-351.

Chasset, R. & Thirion, P, (1965) in Proceedings International
Conference on Physics of Noncrystalline Solids ed. Prims. J.A.
(North-Holland, Amsterdam) pp. 345-359.

Bagley, E.B. & Dixon, R.E. (1974) Trans. Soc. Rheof. 18, 371-394,
Bergen, J.T. (1960) in Viscoelasticity-Phenomenological Aspecis,
ed, Bergen, J.T. (Academic Press, New York), pp. 109-132,

Gent, A.N. (1962) J. Appl. Poly. Sci. 6, 433-448,

Valanis, K.C. & Landel, R.F. (1967) Trans. Soc. Rheof, 11, 243-256.
Kawabata, S. (1973) J. Macromof, Sci.-Phys. B8, 605-630.

Staverman, A.J. & Schwarél, F. (1956) in Die Physik der Hochpoly-
menen, Vol, IV, ed, Stuart, H.A. (Springer-Verlag, Berlin) pp.
138-140,

Leaderman, H. (1962) Trans. Soc. Rheof. 6, 361-382.

Halpin, J.C. (1965) J. Appl. Phys. 36, 2975-2982,

Findley, W.N. & Lai, J.S.Y. (1967) Trans. Soc. Rheof. 11, 361-380.
Leaderman, H. (1943) Efastic and Creep Properties of Filaments and
Othen High Polymens (The Textile Foundation, Washington D.C.).
Leaderman, H,, McCrackin, F. & Nakada, ). (1963) Trans. Soc. Rheok.
7, 111-123,

Truesdell, C. & Toupin, R. (1960) "Principles of Classical Mechanics

and Field Theory", in Encyclopedia of Physics, ed. Fligge, S.



16.

17.

18.

19,

20,

21,

22,

19
(Springer-Verlag, Berlin), Vol. III, part 1, section 33.
Karni, Z. & Reiner, M. (1964) in TUTAM Symp., eds. Reiner, M & Abir,
D. (McMillan, New York), pp 217-227.
Seth, B. (1964) in IUTAM Symp. eds. Reiner, M. & Abir, D. (McMillan,
New York), pp. 162-172,
Seth, B.R. (1970) Bulf, Cal. Math. 62, 49-58.
Blatz, B.P;, Sharda, S.C. & Tschoegl, N.W. (1973) Proc. Nat. Acad.
Sci., USA, 70, 3041-3042,
Blatz, P.J., Sharda, S.C. & Tschoegl, N.W. (1974) Trans. Soc. Rheol.
18, 145-161. |
Sharda, S.C., Blatz, P.J. & Tschoegl, N.. (1974) Letfers Appl. Eng.
Sei., 2, 53-62.

Ogden, R.W. (1973) Rubber Chem. Tech. 46, 398-416.



20

CHAPTER 2

ON THE VISCOELASTIC THEORIES OF

LARGE DEFORMATIONS
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1. Introduction

A key aim of research in polymer rheology 1s to obtain, for specif-
ic materials, a three dimensional constitutive equation which accounts
for the observed mechanical properties. Despite a great deal of
progress, it appears that the search for constitutive equations which
give realistic descriptions of the viscoelastic behavior of polymeric
materials and is mathematically simple enough for use in engineering
applications, is far from concluded (1,2,3,4). 1In this paper we |
propose a linear integral theory which is based on the introduction of
a generalized measure of strain into the Boltzmann superpbsition inte-
gral. A special version of the theory was formulated in terms of the
principal directions and was experimentally verified in an earlier
publication (5). Furthef experimental evidence (6,7) and the range
of applicability of the theory (8,9,10) will be presented elsewhere.

The theory assumes that the viscoelastic behavior of a material is
represented by its relaxation spectrum and that the spectrum remains un-—
changed in moderately largé deformations. In other words, in such
deformations the nonlinear viscoelastic behavior results solely from
(time-independent) stress—strain nonlinearity. While time shift invar-
iance is preserved. The stress—strain nonlinearity can be properly
accounted for by choosing an apprdpriate strain measure.

In the following discussion we shall use tensor component notation
only in a subordinate way. A tensor field is logically distinct from
its components in a given coordinate system just.as a function is
logically distinct from its value at a point. As pointed out by Lodge

(1), working with the tensors themselves instead of their  components
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not only facilitates manipulation but also enhances the understanding
of the underlying processes.

We generally use Truesdell's notation (1). However, the rank of
a tensor will be denoted by the number of bars underlining its symbol.
For a second rank tensor A, we shall denote the transpose by éT, and
the inverse, when it exists, by é—l. The identity or unit tensor is
written I. We shall write éz for the second rank tensor A-A, with a
similar convention for products of higher integral order. We denote
the trace of a tensor A by trA. The symbol Q will be used only for

orthogonal tensors. We denote the matrix formed from the mixed com-

ponents of a tensor by a wavy underscore.

2. TFundamental Kinematics

Consider a material point or particle £ of a body B. Suppose that
£ occupies the position X when B is in a referenée configuration. Let
£ occupy the instantaneous position % at the time u. Then the motion

of B may be written in the form
x = x(X,u) [2.1]

Thus the instantaneous location g may be represented as a function of
the reference location X and of the past time u.

The gradient E(u) of %(g,u) with respect to X becomes

F(u) = Vx(X,u) [2.2]

where V is the del operator. E(u), a second rank tensor, is called the
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deformation gradient tensor at the material point & at time u.
By the theorem of polar decomposition. (1), F can be split into
a symmetric positive definite stretch Zenson and an orthogonal
rotation tenson, Thus
F(u) = R(w)*U(u) = ¥(u)-R(w) [2.3]
where

R(u)+U(u) = V(u)+R(w) [2.4]

U and V are the right and left stretch temsors, respectively,

In general, the calculation of the componenté of U and ¥V is

involved and it is preferabie to introduce the deformation tensons
c-U-IE [2.5]
B=Y =EF [2.6]

which are called the right Cauchy-Green (or Green tensor), and the left

Cauchy-Green (or Finger) tensor, respectively. C and B are related by

R(u)+C(u) = B(u)-R(w) [2.7]
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Next, let us denote the position occupied by the material point

£ at time t (the present time) as x. Then

2

x = x(X,t) [2.8]

which, in the applications we are considering here, possesses a unique

inverse so that

I
|

= X(x,t) [2.9]

Therefore, we may write

X2
i

= 3"_<t(>_5,u) : : [2.10]

which should be compared with eq. [2.1]. Eq. [2.10] gives the instan-
taneous location % as a function of the past time u and the pfesent
location, i.e. the location at the present time t. Hence, we can define
the deformation gradient tensor at time u relative to the configuration

at time t as
F (u) = F(u)F (t) =V x (x,u) [2.11]

where the subscript on V emphasizes the independent variable of
differentiation. Similarly, we define the right Cauchy-Green and left
Cauchy-Green tensors, respectively, at time u relative to the configura-

tion at time t, by



25

(u) [2.12]
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It follows from their definitions that both the right and left Cauchy-

Green tensors are symmetric and are positive definite. Furthermore,

F (£) =y (t) =y (6) =R (t) =¢C(t)=p(c)=1 [2214]

We also have
F (0 = () F (w) = V%, (x,¢t) [2.15]

where gu(x,t) denotes the present location as a function of the instan-

taneous location and the present time. Thus
c (u) = B “(t) [2.16]

when Egl(t) is the inverse Finger tensor at the present time t relative
to the past time u.

Any constitutive equation must satisfy the principle of material
frame indifference. This is a mathematical statement of the require-
ment that the response of a material be invariant under a rotation of
reference frame. A reference frame is an object with respect to which
the motion is observed. There is a fundamental difference between

reference frames and coordinate systems., Tensors of any rank are, by
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definition, invariant to a change of coordinates within a given frame
of reference. They are, however, not necessarily invariant under a
change of the reference frame. A vector r and a second rank tensor I

are called frame-indifferent if they are related in two frames of
reference by

r = Q(t)-r [2.17]
and

T* = g(£)-T+Q (t) [2.18]
In eqs. [2.17] and [2.18] the asterisks denotes the new frame and Q (t)
represents a time-dependent relative rotation of the two frames. It can
be shown that gt(u), U(u), Xt(u), C(u), gt(u) are not frame-indifferent,
and V(u), Et(u), B(u), gt(u) are frame-indifferent (12).
We note that the velocity field

ox (x,u)
vix,t) = - ——— [2.19]

- - du u=t

is not frame-indifferent. We define a velocity gradient tensor

6(t) = Vv _v(x,t) = d(t) + u(t) [2.20]

where d(t) is a symmetric second rank tensor called the stretching
tensor and w(t) is an antisymmetric tensor called the vorticity (or
spin) tensor. The tensor g(t) is frame indifferent but the tensor
g(t) is not.

The velocity gradient tensor is related to the deformation gra—

dient tensor at time u relative to the configuration at time t by

G(t) = = F (| | [2.21]
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G(r) = U (v) + R (6) [2.22]
where
g, () =Sy | =4 [2.23]
and
R.(t) = 5 R | _ = w() [2.24]

by equating the symmetric and antisymmetric tensors. It further

follows from eq. [2.12b]} that

= Ct(u) = 2d(t) [2.25]

because w(t), being antisymmetric, cancels in the differentiation.

3. .Constitutive Equations for Materials with Fading Memory.
Mathematical theories of constitutive equations for materials with
memory have been formulated in recent years by several authors (1,2,

13-20). 1In general, all these theories start from the principles of
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determinism, local action and material frame indifference (1), and can
be classified into two categories. In constitutive equations belonging
to the first category (17-20), the stress tensor and its time deriva-
tives are related to various kinematic quantities such as gradients of
deformation, velocities, and higher order accelerations. These are
usually called rate theories and emerge from Oldroyd's original work
(18). Couching constitutive equations in terms of derivatives makes
it impossible to compute.the stress tensor for all but the simplest
kinematics except by perturbation methods or by seeking numerical
solutions, since one must solve six simultaneous equations (21).
Furthermore, some constitutive equations of this type suffer from an
apparent instability above a critical shear rate in superposed simple
or sinusoidal shearing and are therefore unsuitable for the description
of polymeric behavior (22). Hence, we will not discuss them here.

In constitutive equations belonging to the second category, the
stress tensor is functionally related to the entire history of defor-
mation (1). An important special case is the constitutive equation
for the so-called simple material in which the stress at a particle is
determined by the cumulative history of the deformation gradient at
that particle (1, 15, 23). Mathematically, it has the form

u=t

g(t) = F [Ew] [3.1]

u=eo

where g(t) is the Cauchy stress and f, is a tensor-valued functional

which depends on the material coordinates X and the present time t.
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The application of the principle of matefial frame indifference

leads to
0(t)-g(t)-Q () = F  1Q(u)*Fw)] [3.2]

which imposes restrictions on the constitutive functional and its

arguments. For example, one reduced form (1) of eq. [3.1] is

g(t) = R(O- F U]’ () (3.3]

UY==00

For an isotropic material, it can be shown (1) that

= u=t .
g(t) = F [Ywl= G [B()] [3.4]

U= =00 U=

The functional.g will in general depend on the configuration which is
taken as reference in computing the deformation gradient. Some
materials such as crosslinked elastomers and crystals possess certain
special configurations which, when taken as reference configurations,
will simplify the form of G.

Eq. [3.3] states that for a simple material the dependence of the
stress tensor on the rotation tensor R is explicitly known but the
dependence on the stretch tensor U is arbitrary. From the results of
one stretching history it is not possible to predict the results of
other stretching histories in general. Furthermore, the entire history

of the body can never be completely specified. Hence, a theory of this
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type is still too general for the experimentalist to design exper~
iments from which the rheological properties of the material can be
deduced.

We need to define a norm which provides a precise measure of
the distance between two deformation histories. With this as a basis
we can define the continuity and smoothness of functionals. With the
further assumption that the stress functional is continuous, the
functional caﬁ be expanded in terms of a series of multiple integrals.
This expansion is similar to the Taylor expansion of an analytic
function into an infinite series. There are various represéntations
of the functional g in terms of series of multiple integrals. Here,
we will briefly discuss the two most referenced ones, the Green—-
Rivlin (13) and the Coleman-Noll (14) representations which will be
denoted by G-R and C-~N, respectively, from now on, In both theories
the concept that deformations that occurred in the distant past should
have less significance in determining the present stress than those
that occurred in the recent past is used to define the distance
between two deformation histories. Therefore, these theéries are fre-
quently referred to as theories for materials with fading memory.

Based on this principle of fading memory, Coleman and Noll (14)
defined a Fréchet differential of the stress functional. By assuming
that the functional is Freéchet differentiable n times about the zero
history they obtained n successive approximations. This is basically
a generalization of the Welerstrass theorem which states that a con-

tinuous function may always be approximated by a polynomial. Further—
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more, they also proved that the Boltzmann superposition integral
constitutes the limit of infinitesimal deformation. They also pointed
out that any given stretch history E(t) may be regarded as arising
from the superposition of an adaitional stretch on some arbitrarily
chosen state of steady stretch U, In particular, we may take

Qo to be U(t), and rewrite eq. [3.4] as

t
o(t) = WIB(t)] + g [D(u;t);B(0)] - [3.51]
u:—w
where
D(se) = g, (w-11/2 (3.6]
and the .conditions
D(t;t) = 0 [3.7]
and
t
g [0:B(t)] =0 [3.8]

apply. In eq. [3.5], W represents the equilibrium response of the
material, D depends parametrically on t and the functional g depends

parametrically on B(t).
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For isotropic materials, Coleman and Noll prove that, under the
restriction of slow motions, the rheological properties can be
approximated by a first order Fréchet differential which can in turn
be expressed by three material functions of the strain invariants and
twelve relaxation functions which are also functions of the strain

invariants. Mathematically, it has the form (24)

=0y T+ 1 + 24 B2
g(t) ¢0 I ¢0 B ¢0 B

t
+l[ (1% (t-u)I + ¢ (t-u)B + 2¢ B2)-& (w)
- 1 = 1 = 2= =t

{oe]

-+

e

(@ 1% (-0I + 14 (e-wB + 24 (e-wE] [3.9]
+ 1er[, (- (% (e-w0I + 1o (t-w)B + ¢ (e-w)BH)]
- - 2 - 2 = 2 -
+ Btr[C, (u)- (% (t-w)I + '¢ (t-u)B + 2¢_(t-uw)B?)]
= =t 3 = 3 = 3 =
+ B2erlC (w- (% (e-w + 1¢u(t-u)§ + 2¢q(t—u)gz)]} du

where

[3.10]
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~
=
~
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and

B = B(1), [3.11]
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0¢0, 1¢0, 2¢0 are functions of the three invariants of B, and i¢j(t),
where 1=1,2,3 and j=1,2,3,4, are twelve relaxation functions of time

and of the three invariants of B, such that

lim i¢j (t) = 0 [3.12]

oo

For an incompressible material, the number of material functions can

be further reduced to nine relaxation functions and two material
functions of the invariants (14). It is evident that the determination
of all these eleven functions experimentally is not only a formidable
but an impossible task. If we cannot deal effectively with the simplest
case of an isotropic incompressible material, should we even mention
more complicated cases? Therefore, the C-N theory suffers from its

own generality and offers little practical.usefulness.

The Green~Rivlin expansion of eq. [3.1] in a series of multiple
integrals leads to a slightly more useful expression. Since it involves
higher order temsors, it is more convenient to use the indicial notation.
In rectangular Cartesian coordinates the G-R constitutive equation for

an anisotropic incompressible material can be expressed as

Gij(t) E FiI(t) SIJ(t) Fjj(t) [3.13]

and
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t
SIJ(t) = KIJ [EAB(u)] [3.14]

P==—0
where SIJ(t) is the Piola stress tensor at time t, and EAB(u) is the

Green strain tensor defined by

E _(u) = [C

A3 () - §,.1/2 | [3.15]

AB AB

By assuming that the strain histories are continuous and that the
material has fading memory, the strain histories can be expanded into
Fourier series. With the further assumption that the functionals 5
are continuous, S may be regarded as a continuous function of the
coefficients of the Fourier series. From Weierstrass's Theorem, it
follows that S can be approximated as closely as desired by a poly-

nomial in the Fourier coefficients., Hence we write

© t t
Spp® =% J Qyp B ...a B (FTUpstrgeee touy) x

[3.16]

EA B (ul)....EA B (un) dul....dun
11 nn

It is straightforward to show that egs. [3.13] and [3.16] satisfy the
principle of material frame indifference. Eq. [3.16] can be separated

into two parts as follows
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o

S_.(t) =2 N E (t) E
IJ .o "es o B
n=1 IJAlBl. Aan AlBl Aan

(t)
[3.17]

- ('t t
+E RO INY M (t"'u ,t—ll .coit_u )E (u )o.ou (u )
J J:m TJA[B .vwnA B 7010 T2 n A BN A B "n

where NIJAlBl....Aan is a tensor of rank 2{(n+l) which represents the

instantaneous elastic response of the material and the MIJAlBl---.Aan

are commonly referred to as the memory functions.
Equation [3,17] can be converted to the following equation by

integration by parts if E(u) is continuous. The equation is

«© t t
SIJ(t) =3 ...:[ GIIA B ....A B (t—ul,t-uz....t-un) X
n=1/J-« —a0 ‘n'n

171
EA B (ul)....EA B (un) dul...dun
11 nn
g . R t
where the dot indicates the time derivative and the GIJAlBl....Aan s

are the relaxation moduli. Equation [3.18] can also be developed by
the technique leading to eq. [3.16] and assuming that SIJ is a function
of the strain rate histories. Since strain rate histﬁries are less
smooth than strain histories for a given deformation history, eq. [3.18]
may converge more slowly than eq. [3.16]. Therefore, for a given order

of approximation, these two representations may not be exactly the same.

Parallel to eq. [3.13] an inverse theory can be written formally as
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t t -1 -1
EAB(t) = DAB[SIJ(u)] = DAB[FIi(u) Oik(u) FkJ(u)] [3.19]

e 00 u=—-o

Hence, the stress history involves not only the Cauchy stress tensor but
also the deformation gradient. Because the stress in not entirely
separated from the kinematic quantities in the constitutive equation,
eq. [3.19} is more complicated than [3.13]. Furthermore, as pointed
out by Rivlin (17), this type of equation will lead to the difficulty
that the relatively complicated equations of compatibility must be
used for the reduced Cauchy strain in place of the three equations of
motion when boundary value problems are considered. There are six
compatibility equations because there are only three independent_
variable functions in eq. [3.13]. These are the displacement compon-
ents. In eq. [3.19] there are six independent variable fﬁnctions, the
components of the Piola stress tensor.

Green and Rivlin (13) show that in the simple case of an initially
isotropic material there are two kernels in the first order approx-
imation, six kernels in the second order approximation, and twelve
kernels in the third order approximation. Pipkin (24) shows that for
incompressible materials, only four independent stress-relaxation moduli
are involved in the third order theory.

Green and Rivlin's approach has been applied to describe the creep
behavior of some plastics (25—27), plastic filaments (28,29) and poly-
urethane (30). In uniaxial creep or creep recovery, the third order
approximation provides a satisfactory description for experimental

results on oriented polypropylene monofilament (28) and plasticized



37

PVC (25). However, when we wish to apply the theory to more general
cases, such as three dimensional loading or multiple loading, and
want to predict stress relaxation and constant rate of strain experi-
ments from creep data, some shortcomings of the theory become evident.

The determination of the kernel functions of the G-R theory in-
volves a great deal of experimental work. For the simple third order
approximation theory, the determination of the twelve relgxation func-
tions requires more than 100 tests (26). This is quite impractical for
industrial characterization purposes. Even if all the kernel functions
have been determined, usually the predictions are not very satisfactory.
Findley and his coworkers (26,27,29) have applied the third order
approximatidn theory to two-dimensional loading tests. Their results
indicate that the agreement between the predictions and the experi-
mental results is not very good. In certain cases a modified super-
position principle yields better results (30).

Furthermore, the multiple integral theory generally fails to
predict the unloading part of the response to a triangular strain
excitation (2).

Another disadvantage of using the G-R theory with a finite order
of approximation in describing the mechanical response of real
materials was pointed out by Brereton et al. (29). Whereas stress
relaxation and creep experiments have equal status, the representations
of the two constitutive equations (eq. [3.13] and eq. [3.19]) in
general do not. For example, the stress may perhaps be adequately

described by a polynomial in the strain with terms no higher than the
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third order, but we usually would not obtain a tolerable description
for strain as a polynomial in stress, even by extending the expansion
to terms of much higher order.

Rivlin (15) pointed out that it is not generally true that the
percentage error in the first order approximation becomes arbitrarily
small as the size of the strain history decreases even though the
absolute deviation can be made arbitrarily small. Brereton (29) and
Pipkin (24) also realized that the accuracy of eqs. [3;16] and [3.18]
cannot in genéral be improved merely by adding higher order integrals.
The kernel functions in the lower order terms must be altered as the
order of approximation increases if improved accuracy is to be obtained.

We conclude from the above discussion that the C-N and G-R
theories, although they are quite general in the mathematical sense,
do not furnish convenient ways to characterize real materials. Their
shortcomings are three: first, they are too complicated to have popular
uses; second, the convergence rate is usually too slow; third, there are
some materials, e.g. solid propellants (31), which do not fall into the
category of materials with fading memory.

Next, we wish to say a few words about the Coleman-Noll theory of
the simple fluid (19). The term fluid, as it is usually used, does not
have a precise definition. A fluid, unlike a solid, does not possess
a preferred configuration or natural state which, when taken as the
reference configuration, will yield a constitutive equation of a
particularly simple form. Hence Colemén and Noll defined a fluid as

a substance with the property that every configuration is an undistorted
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configuration. Therefore, taking the current configuration as the
reference configuration, they specialized the theory of the simple

material to the theory of the simple fluid which has the form

t
g(e) = L [gt(u);p(t)] [3.20]

Y=

where p(t) is the density of the fluid at time t. It follows from the
theory of the simple fluid that every simple fluid is isotropic and
that a simple fluid cannot support a shearing stress indefinitely
without flowing. With the further assumption that the fluid is in~-
compressible, eq. [3.20] can be reduced to

t
o(t) =L+ L [ (W] [3.21]

u:—-w

Coleman and Noll also proved that the perfect fluid, the Newtonian
fluid and the Rivlin-Ericksen fluid (17) are all particular cases of
the simple fluid if, in case of the Newtonian fluid, discontinuous
changes in the velocity gradient are disallowed (15).

The simple fluid theory can be approximated by the retarded-
history expansion approach proposed by Coleman and Noll (19), or by
the approach advocated by Pipkin (24). The latter is similar to the
G-R integral expansion method. Coleman and Noll show that normal
stress effects are present already in the second order approximation
but that a third order approximation is needed to describe non-

Newtonian behavior. The third order theory has been tested
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experimentally, but the results are not very encouraging (22). 1t
appears that this kind of expansion also suffers from a slow conver-—
gence rate. However, for some particular classes of flows the general
theory of the simple fluid can offer certain predictions which are

useful for material characterization purposes.
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4. Some Special Nonlinear Viscoelastic Theories

There are basically two ways to construct a constitutive equation.
The axiomatic approach is based on a few general assumptions whose
logical consequences are developed. Because of its generality the
results obtained within the framework of the theory may have a wide
validity. However, precisely because of its generality very few
problems can be solved within this general frame without more specific
assumptions. Some constitutive theoriles belonging to this category
are the C-N theory, the G-R theory, Coleman and Noll's simple liquid
theory (19), Farris's theory of the material with permanent memory (31),
etc,

In the other approach one may formulate, without violating the
conditions to which a constitutive equation is subject, some theories
more useful to the experimentalist by focussing on some particular
class of materials. One may then reduce the number of material
parameters to a manageable number by adding assumptions which seem
reasonable on the basis of experience. Schapery's theory derived from
irreversible thermodynamics (32-35), and Kinder and Sternétein's
path~dependent theory (36) are examples of theories belonging to this
category. We are interested in soft polymeric materials, i.e. poly-
meric materials at temperatures above their glass transition temperature.
Special constitutive equations for these materials have been developed
by Lianis (37), and by Bernstein, Kearsley and Zapas (BKZ theory)

(38, 39).
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Lianis's theory is an approximate form of the C-N theory and
contains four time-dependent but strain-independent relaxation functions
and three equilibrium constants. Four assumptions were introduced in
Lianis's theory. First, the material is considered to be incompress-
ibleg second, the relaxatiom functions of the C-N theory are assumed
to be independent of the strain invariants. Third, the long time
behavior of the material is assumed to satisfy the equation

- . 2
g=~-PL+ [Cy+Cpr (1,=3) + Cyy I,1B - Cpy (B [4.1]

where P is an arbitrary hydrostatic pressure, Il is the trace of

10° 620’ and C01 are material constants.

Eq. [4.1] is similar in form to the constitutive equation of the incom-

Finger's tensor, and C

pressible hyperelastic material with the strain energy density

function

— — — 2 —
W= ClO(Il 3) + CZO(Il 3)7 + COl(I2 3) [4.2]

often referred to as Signorini's potential (38). 1In eq. [4.2] 12 is
the second invarianf of Finger's tensor. Fourth, Lianis further
assumed that the elastic response at.short times can be expressed by
an equation similar to [4.,1] but with different material constants.

With this assumption, he reduced eq. [3.9] to



43

g(e) = = P(t) L+ [C)p+ Cpy(1y=3) + Cpy1y1 B = Cp B

t t
+ .[ ¢1(t—u) Qt(u) du + §~J- ¢2(t~u) g (u) du
[4.3]

t ¢ .
+ [[— ¢2(t—u) ét (U) du] . E -+ gzuj; ¢3(t—u) Et(u) du
t . ) ¢ .
+ U_ ¢3(t-—u) gt(u) du} BT+ E_Lo ¢4(t—u) Il(‘u) du

where the four ¢i(t—u)'s are relaxation funétions which are independent
of the strain invariants.

The applicability of this constitutive equation has been well
investigated by Lianis and his associates on several materials and in
different loading conditions (40-43). The deviations of the predictiomns
from the experimental data were clearly shown in the cases of constant
stretch rate unloading curves (40), superposition of a small sinusoidal
oscillation on a finite strain (41), and combined tension-torsion
(43). These deviations can result either from the inadequacy of eq.
[4.1] or from the assumed independence of the relaxation functions
on the invariants. We believe the former to be more likely. Tschoegl
(44) has shown that eq. [4.1] does not generally represent the equilib-
rium stress-strain behavior of soft polymeric materials since it is
only one of many three-term equations which will fit a given set of
data. These equations can be derived from appropriate functions of the

Taylor expansion of the strain energy density function in terms of
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ll and Iz. Unpublished results of Tscheegl show that these equations
are not constitutive equations because data obtained on the same mate-
rial in different deformation fields cannot be fitted with the same
constants, This is a consequence of the slow convergence of the
expansion,

In recent years many specialized constitutive equations for
polymer solutions and polymer melts havé been proposed. Most of these
contain single integrals and have the form

t
g=-PI1 +-J; {Ml(t—u) g;l(u) - Mz(t—u) gt(u)} du [4.4]

(e}

where the memory functions Ml and M2 depend, in general, on some
invariants of the deformation history. The memory functions can be
classified into three categories: (A) They are functions of the
invariants of d(u) (4,45-51); (B) They are functions of some time
average of d(u) from d(u) to d(t) (3,49); (C) They are functions of
the invariants of gt(u) (39, 52-55). Depending on the way in which
the memory functions are expressed in terms of these invariants,
special theories were proposed in each category.

Most of these theories qualitatively describe the viscosity, the
normal stresses, and the response in small amplitude oscillatory
experiments of polymeric liquids. However, literature data on stress
growth at the start of shearing flow, stress relaxzation after cessation

of steady flow (3,4,56,67), finite amplitude sinusoidal simple shearing

(58), and stress versus strain hysteresis loop (59) show deviations
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from the predictions of some models in category (A). Furthermore,
the experimental results of Simmons (60) and of Tanner and Williams
(1) indicate that the dynamic viscosities measured by superposing
in-line and transverse small-amplitude oscillations on steady simple
shearing are independent of the base rate of shear at ultrasonic
frequencies., Bernstein and Huilgul (62) recently showed that this
experimental fact contradicts the predictions of the Bird-Carreau
model (50) and M-OWFS model (51).

These failures did not answer the question whether they
were due to inadequacy of these special models or of all models
belonging to category (A). Several éttempts were made to tackle this
problem (62-66). The procedures used by van Es and Christensen (64)
and by Sakai et al., (65) provide ways to check the basic hypothesis
that the memory functions are functions of g(u), without the need to
determine the memory functions themselves. Application of these
procedures to standard materials indicate the inadequacy of the basic
hypothesis. The validity of the constitutive equations of category
(A) and (B) was discussed most clearly by Marrucci and Astarita (66).
They pointed out that the constitutive models of categories (A) and (B)
reduce to linear viscoelastic behavior in the limit of very small
deformation rates. By contrast, the general theory of the simple fluid
predicts linear viscoelastic behavior in the limit of very small
deformations. Hence the constitutive theories of category (A) and (B)
do not belong to the general frame of the simple fluid., Which theories

are more appropriate must be decided on the basis of experimental data.
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Philippoff's data on polyisobutylene solutions (67) in small amplitude
oscillatory motion at different frequencies and different maximum
ghear rates show deviation from linear viscoelastic behavior at
constant deformation rather than constant deformation rate. This
provides unequivocal evidence of the inadequacy of the theories based
on deformation-rate dependent memory functions [categories (A) and (B)].
As pointed out by Astarita and Marrucci (68), if coupling effects
resulting from deformations occurring at different times are excluded,

eq. [3.21] can be rewritten as

nc

t
(t) = "'PL +‘[ {Ml[t"ll, Il(t,u), 12(t9u)]gt(u)

o

[4.5]

- Mz[t—u, Il(t,u), Iz(t,u)]gzl(u)} du
where I1 and I, are the first and second invariants of gt(u). There-
fore, the models in category (3) are all special cases of the simple
fluid. Among these models, we discuss in more detail the so called
BKZ theory of the incompressible elastic fluid (39,40). Borrowing the
idea of an elastic potential from the theory of finite elasticity,
Bernstein, Kearsley, and Zapas write the memory functions in eq. [4.5]

as
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-0 _
Ml =3 = UI [Tl(t,u), [z(t,u),t-u]
1 1
[4.6]
=3 : _
M2 3[2 - Ulz[ll(tau)s Iz(t,u):t"u]

where U is a time-dependent potential function. If UI and UI are
1 2

delta functions located at u=0, eqs. [4.5] and [4.6] reduce to the
Mooney-Rivlin equation. The physical features of the BKZ theory are:
(1) the configuration of the body at any past time u can be considered
as a stress—free configuration; (2) the transition from a configur-—
ation at the past time u to the configuration at the present time t
(i.e. the deformation) will generate a stress; (3) the stress is
elastic in origin, i.e. it can be derived from a potential function;j
(4) the potential depends not only on the configurations at the past
time u and the present time t, but also on the elapsed time t-u; (5)
the stress at the present time t is the sum of all the contributions
from u<t,

The BKZ model has been applied to uncrosslinked amorphous polymers
(39,69), crosslinked rubbers (39,70), polymer melts, and polymer
solutions (4,60,61,62,71). The data seem to be roughly in agreement
with the theory. However, Zapas's recent data (72) on stress growth
at various rates of shear for a polyisobutylene solution clearly

show that the BKZ model fails at high shear strains. Yen and
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McIntire (73) assume that in simple shear eq. [4.5] can be simplified

to

T =.{t M(t-uw)F(y) du [4.7]
—
where 1 is the shear stress, M(t-u) is a memory function depending on
the elapsed time, F(y) is a function of the shear strain y which is
defined as the product of the rate of shear Y and the elapsed time t-u.
They calculated F(y) for Ashare's data on a polystyrene solution (74)
and Chen's data (2) on a polyethylene melt in steady-state shearing
flow. They found that F(y) does not possess a unique value at high
shear rates and that F(y) calculated from viscosity data was different
from F(y) calculated from normal stress data. The predictions of
stress grpwth from F(y) calculated from steady state shearing flow

did not agree with the experimental data. They attributed the discre-
pancies partly to the inadequacy of the BKZ fluid model at high shear
rates and partly to data scatter. We feel that part of the deviation
may also be due to the fact that they assumed a strain and strain rate
independent relaxation spectrum.

Changes in the relaxation spectrum as functions of strain and
strain rate may arise from orientation and disentanglement of the
molecules in the shearing flow. Therefore, one must be careful in
applying the BKZ model with parameters determined in steady shearing

flow to predict behavior in tramsient response.
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The claim that a liquid theory such as the BKZ theory is more
suitable (39) than a solid theory for crosslinked polymers which have
a well-defined stress-free state is something that needs further check-
ing. In its most general form given by eq. [4.5] the BKZ theory does
not assume a specific potential function. However, in most practical
apﬁlications a gpecific potential must be assumed. The use of the
Signorini potential, eq. [4.1], has been tested by Lianis and his
associates on both crosslinked and uncrosslinked polymers (41,42).
Large discrepancies were found between the theory's predictions and
the experimental results, From Goldberg and Lianis's data (41) as
well as our own data (7) obtained by superposing small deformations
on a finite stretch it appears that a simpler constitutive equation
can be obtained if the stress-free state 1s taken as a reference state
(7).

In summary, in spite of more than thirty years of research, there
is still no simple, accurate constitutive equation which can adeqﬁately
describe the finite viscoelastic behavior of polymers. The key to the
successful formulation of a useable constitutive equation which can
adequately describe the finite viscoelastic behavior of polymers
appears to be the incorporation of characteristic features of particular
classes of materials into the general theoryv. The characteristic
features may be deduced from experimental observations or from
theoretical considerations. 1In the next sections we introduce a

generalized linear theory for soft viscoelastic polymeric solids and
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liquids in moderately large deformations. We define a moderately
large deformation as one in which the relaxation spectrum is not
altered by the deformation., The theory is a special case of the
theory of the incompressible simple material and is based on the

concept of a generalized measure of strain.
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5. The Generalized Strain Measure

A material body subjected to a deformation assumes a new configur-
ation, It is convenient to define a measure of the deviation of this
configuration from a suitably chosen reference configuration. Any
measure will serve which determines the directions of the principal
axes of the deformation and the magnitude of the deformation in these
directions. Such a measure is called 3frain, We recognize it as being
essentially a measure of the difference in distance between two material
particles in different configurations. Thus, it is completely indepen-
dent of the coordinate system in which one wished to describe it and is
therefore a tensor.

Conceptually, a deformation and, hence, a strain, is probably
most easily described by a body coordinate system (11,23). The changes
in the metric tensor of such a system adequately describe the defor-
mation and can therefore be used to define a measure of strain. = However,
when solving boundary value problems, all variables and, therefore,
the equations linking them, must be referred to a space coordinate
system external to, and independent of, the body. It is generally
convenient to adopt one system (the spatial or Lagrangean system) for
the undeformed configuration and another (the material or Eulerian
system) for the deformed configuration. The deformation can then be
viewed as a transformation of coordinates from one system to the other.

Which one is chosen as the reference system is, in principal, immaterial.
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In practice, ¢ or the other of the dual approaches may have advan-
tages, The r »lest and most widely used strain measures in the theory

of finite e ticity 18 Green's strain tensor

EG = (C-1)/2 [5.1]
which defined in terms of the undeformed or Lagrangean coordinates,
and ansi's strain tensor

e, = (1-¢)/2 [5.2]

yich is defined in terms of the deformed or Eulerian coordinates.
In eq. [5.2] c is Cauchy's deformation tensor which is the inverse of
Finger's tensor, B. For infinitesimal deformations EG and e reduce

to Cauchy's strain measure
T
E, = (B+E)/2-1 [5.3]

and to Swainger's strain measure

e =1- (F+£T)/2 [5.4]

respectively.

These strains are based on considering (ds)2 - (dS)z, where dS and

ds are the elemental undeformed and deformed length between two
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particles, as the measure of deformation (16). 1Instead of the length,
we may, however, consider the elemental area defined by the cross
product of two vectors connecting a material peint to two others. As
a result of the deformation the magnitude of the vectors and the angle
between them changes. Hence, the undeformed elemental area dA is trans-
formed into the deformed elemental area da and the difference between
the squares of the elemental areas, (dA)2 - (da)z, may serve as a
measure of the deformation (16). On this basis we define two more

measures of strain., We call.

[5.5]

o
]
~~
—
—
=
c
e
I
( et
U]
~
~
[~]

Finger's strain tensor which is defined in terms of the Eulerian

coordinates, In eq. [5.5] IIIC is the determinant of c. We also have

)/2 [5.6]

» » 3 _l -
which we call Piola's strain tensor. C is Piola's deformation tensor

and IIIC is the determinant of C. EP is defined in terms of the

Lagrangean coordinates. For an incompressible body we have

- D/2 [5.7]

and
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B, = @-¢H/2 [5.8]

For infinitesimal deformations €y and EP reduce to e and E_respec-
= = =8 =C

tively.

C and ¢ are symmetric and their matrices can therefore be

diagonalized by orthogonal transformations. We have

C = NA'N [5.9]

and

c = nh n [5.10]

-1 .
where C and c are the matrices of the mixed components of the

~

-1 .
tensors C and ¢ ', N and n are the matrices formed from the eigenvectors

-1 T T , . .
of C and ¢ 7, N" and n" are their transposes, and A is the matrix of

~ ~

the eigenvalues of C which are identical with those of c—l. We define

-~

A = diag(2 )3) where the A's are the stretch ratios in the

1°%20?

principal directions. We also have

F = nAN [5.11]

~

which relates A to the matrix of the deformation gradient tensor, and

~

n = RN [5.12]
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which establishes the connection between the two eigenvector matrices.

We 1list, without proof, the conditions which a strain measure must
satisfy to be acceptable as: (1) it must exclude rigid body rotations;
(2) it must vanish identically when the deformation gradient tensor is
a unit tensor; (3) it must be a second rank isotropic temsor function
of C or g_l; and (4) any of its principal values should be positive if
the corresponding stretch raﬁio is greater than unity. In addition,
(5) for an incompressible material it must reduce to Cauchy's or

Swainger's measure when the deformation is infinitesimal.

E

Eqs &ys are not the only possible strain tensors. We

e, and E

F P

may define a generalized Lagrangean strain tensor

T
In = A
EaL §?GL(5)§ [5.13]

and a generwrlized Eulerian strain tensor

T
egg =~ Mgp(Mn [5.14]

The generalized strain functions @GL(A) and @GE(A) are matrix functions

of A and are chosen so that they satisfy the condition
(1) = 0 [5.15]

where 0 is the null matrix.

~
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The idea of a generalized strain measure is not new. Tts earlier
history has been reviewed by Truesdell and Toupin (75), and some new
measures were proposed by Karni and Reiner (76). A particular form of

the generalized measure of strain may be obtained by letting
n
@a(xu) = (Xa—l)/n a=1,2,3 [5.16]
where n is a strain parameter which we allow to be any real number and

which has nothing to do with the eigenvector matrix n. Substitution of

eq. [5.16] into eq. [5.14] yields

e = n(*ll") n [5.17]

where eETxis the matrix of the Finger strain tensor based on the n-

measure of strain. In tensor notation

pp = (gnlz—;)/n [5.18]

For the n-measure based Green strain tensor we have analogously

n
A -1 T

Eon T VOGN [5.19]

and



57

M2 1y/n [5.20]

w3l
i

—~

e

The n-measure of strain has been applied by Seth to transition field
problems (78). Hsu (79) used it to describe creep in metals. Blatz,
Chu, and Wayland (80), and Chu and Blatz (81) applied it to animal
tissues and rubberlike materials. Ogden (82), and independently,
Blatz, Sharda, and Tschoegl (83,84,85) further developed its use for
the description of the elastic large deformation behavior of rubberlike
materials. Chang and Blatz (86,87) discussed its application to the
prediction of the elastic responée of rubberlike materials in small
deformations superposed on a finite homogeneous elastic deformation.
Recently, Chang, Bloch, and Tschoegl (5) extended its use to visco-
elastic behavior.

The choice of a particular strain measure to simplify the consti-
tutive equation is similar to the selection of a particular coordinate
system to deal with a given geometry or, equivalently, to the selection
of a particular set of base vectors to simplify a mathematical represen-
tation. In most cases the choice is between equally acceptable
alternatives and is therefore a mattef of taste, convenience, or economy,
rather than one of principle. Because of its unorthodox nature some
comments aré in order, however, concerning the n-measure of strain.

The strain parameter n is a material parameter and must be

determined by experiment. It is generally not an integer. Its



58

magnitude and dependence on temperature and other variables have been
studied by us for a styrene-butadiene rubber (5-9). We have also
assembled a series of estimates, based mostly on published data, of
its magnitude and temperature dependence for other polymeric materials.
Its dependence on molecular parameters is unclear at present, In
connection with rubberlike material we have discussed it elsewhere (9)
in the light of the Gaussian statistical theory (88) for which n=2.

Objections to its use can be countered by the practical argument
that it is simple, ecomomical, and highly successful and is thus
perfectly acceptable for applications in rubber engineering. We do
not believe, however, that there are any convincing arguments against
it on theoretical grounds. There appear to be two main objections:
(1) that it makes the strain measure a material as well as a kinematic
variable; and (2) that it is of fractional power. Traditionally,
strain is indeed defined as a purely kinematic variable. However,
there is nothing wrong on phenomenological grounds in letting the
strain measure become a material property. This simply means that the
measure of strain with which the description of the mechanical
properties of a given material can be cast in the simplest form, is
a property of the material.

With respect to its non-integral nature we point to the well known
thermodynamic relation connecting the volume, V, of a gas to its

pressure, P, This relation is

p = vy [5.21]
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where Yy is non-integral. Tor an ideal gas, v can be given a precise
physical meaning (89) as CP/CV where CP and CV are the heat capacities
at constant pressure and counstant volume, respectively, For a
monatomic ideal gas the molecular kinetic theory gives y=1.4.

With respect to the n-measure of strain, n # 2 means that the
definition of deformation in terms of the square of the elemental

length (ds)2 cannot be expressed by a quadratic form, i.e. we must

admit a form more general than
2
(ds)” = dx-dx [5.22]

This is tantamount to saying that the deformation cannot be described
in Euclidean space. While such a statement is certainly unorthodox,
there is no a4 prloil reason to reject it out of hand. In fact, it
would be the continuum mechanical corollary of the finding that the
(suitably averaged) end-to-end distance of entangled chains in not

of the classical (90) form
2
<r > = Bml [5.23]

where <r2> is the mean square end-to-end distance, B is a factor
depending mainly on chain geometry, m is the number of links, and 1 is
the link length. At this time we offer this merely as a basis for

speculation.
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6. The Generalized Linear Viscoelastic Theory

In a polymeric material the ratio of stress (or strain) at time
t to that at an arbitrary reference time t, in a stress relaxation
experiment (or a creep experiment) 1s independent of strain (or stress).
For stress relaxation in simple tension this behavior was observed by
Tobolsky and Andrews (91) on a crosslinked styrene-butadiene rubber
(SBR), and by Guth et al. (92) on natural rubber (NR). Chasset and
Thirion (93) studied the stress relaxation behavior of NR and SBR
specimens which were prepared with different crosslinking agents.
They concluded that the observation holds generally for various network
structures. Uncrosslinked polymers show similar behavior. Experiments
on uncrosslinked polymers have been conducted by us on SBR and on
1,4-polybutadiene (PBD) (6), by Djiauw and Gent (94) on SBR, polyiso-
butylene (PIB), and polyisoprene. The same phenomenon was also
observed in carbon black and starch xanthide reinforced crosslinked
SBR by Bagley and Dixon (95), in carbon black reinforced cured and
uncured SBR by us (10), and in carbon black reinforced uncured SBR
and uncured polyiosprene by Djiauw aﬁd Gent (94).

Similar observations have been made in other deformation fields,
Qur own data (10) as well as the data of Bergen (96) on carbon black
filled SBR and on PVC samples containing various amounts of plasticizer,
the data of Gent (97) on SBR, of Valanis and Landel (98) on silica
filled poly(dimethyl siloxane) rubber, and by Kawabata (99) on NR and
SBR all indicate that the phenomenon is not restricted to simple

tension.
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The phenomenon is not confined to relaxation behavior. Leaderman
(100) studied it in the creep behavior of plasticized poly(vinyl chlor-
ide) (PVC). Work on the creep behavior of other polymers, in which
the same phenomenon was noticed, has been reviewed by Staverman (101).

This remarkable observation strongly suggests that constitutive
equations of the multiple integral type (see Section 3) can be
simplified to single integral equations if one is willing to restrict
oneself to deformations in which time shift invariance is preserved
i.e. in which the relaxation or retardation spectra do not change with
the magnitude of the deformation. Indeed, if time shift invariance is
preserved, the observed nonlinearities are reduced to stress-—strain
nonlinearitieé and the Boltzﬁann superposition integrals of the
linear theory remain valid with respect to tilme-dependent behavior.
They can, presumably, be modified to account for stress-strain non-
linearity. Several one~dimensional modified Boltzmanun superposition
integrals have in fact been proposed (27,100-103), These can be
grouped into two categories, One generalizes the integral by replacing
the true stress by an experimentally determined function of the tensile
stress (27,102). The other replaces the infinitesimal strain measure
of the classical integral by some finite strain measure (101,103,

103) such as (Az-l)/2. Leaderman (25) concluded from multiple step
creep and creep recovery experiments that the first approach is
inadequate., Furthermore, as discussed in Section 3, it introduces some
inconvenience in solving boundary value problems. Hence, we omit it

from our considerations here.
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Our aim is the development of a three-dimensional constitutive
equation based on a generalized measure of strain such as those
discussed in Section 5. A similar, but one~dimensional approach has
been used by Fung (104) for describing the viscoelastiec behavior of
soft biological tissues.

As our generalized measure of strain we adopt the n-measure we
discussed in Section 5. To develop our equation, we start from the
stress~strain relations for homogeneous deformations in elastic

equilibrium as derived from the single-term BST potential (83,84)
o, = =P+ (26/n) (3 "-1) a=1,2,3 [6.1]

where G is the shear modulus. Extending these relatioms to shift

invariant time-dependent behavior, we write

dA n(u)
—& du [6.2]

~t
5(6) = v+ (2/n>J 6(tu) —%

Eq. [6.2] represent the predictions of what we have elsewhere (5,6)
called the (simple) Acfid model (denoted as model S), for orthogonal
deformations, i.e. in a deformation in which the orientation of the
principal directions remains unchanged.

To prepare for the next step, we first cast Eq. [6.2] in the

mathematically equivalent redundant form
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-t
G () = -+ (l/n)J cle-w) 1r ()

[¢)

[6.3]

A M) A Mw)
a%l: o —:]+E%I:—9-E~—J )\an(t)} du
Aa ()

where, in keeping with the C-N theory (cf eq. [3.5]) of the simple
material, we have taken the configuration at the present time, t, as
the reference configuration in the differential. To extend Eq. [6.3]

to the case of a general deformation we make the substitution

(v [6.4]

(cf. Egs. [5.17] and [5.18]) where B(t) is Finger's tensor at the

present time, t, and

a [ty @ d . n/2
du [ e B L L6.51
u >\Otn(t) u =t

where Qt(u) is Green's tensor at the past time, u, referred to the
present time, t. We chose B(t) in substitution [6.4] but Qt(u) in
[6.5]} to ensure that the relations to be derived be frame indifferent.

This will be shown explicity later on. We obtain
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: t
a(t) = -2L + (1/n)J c(t-u)[g“/zct) : ‘&%S n/2 0
[6.6]
+ é% =tn/2(u) . §n/2(t)] du

We note that the term in brackets is a symmetric temsor. We wrote
eq [6.3] as the average of two equal terms to facilitate the transition
to the general case. Eq. [6.6 ] represents the predictions of our
model S for the general deformation of a simple solid.

From eq. [6.6] we may derive an equation for a simple liquid. The
predictions of a liquid model cannot depend on the original configur-
ations at u=0 because, as discussed in Section 3, a liquid does not

possess a natural reference state. Hence we must have
B(t) = 1 [6.7]

and substitution into eq. [6.6] leads to

t _n/

2
. (u) du [6.8]

é(t) = ~-PIL - (2/n)J‘ G(t-u) é% c

Eq. [6.8] represents the predictions of what we have called elsewhere
(6.7) the (simple) L{quid model (denoted as model L) for the case of a

general deformation. We note that the deformation tensor in eq. [6.8]
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is Piola's tensor. We have made the change from Green's to Piola's
tensor (which entails the change in sign in front of the integral)
to ensure positive values of n. As a consequence of eq. [6.7], n
would assume negati&e values if data were fitted to the form of

eq. [6.8] with Green's tensor.

For homogeneous deformations (6,7) eq. [6.8] becomes

-0

_ t q TA,
o (t) = —P—(Z/n)J G(t-u) _&._[_9”_._} du [6.9]
a u >\OLn(u)

We note that eqs. [6.3]1, [6.6], [6.8], and [6.9] reduce to eq. [6.1]
for a purely elastic material, as they should.

For a Newtonian (purely viscous) material
G(t-u) = ng(t-u) [6.10]

where n is the constant (Newtonian) viscosity and §(t) is the delta

function. Substitution into eq. {6.8] yields

é(t) = -PI - (2n/n) lim-é%‘gt-n/z(u) [6.11]
u>t
But, by eq. [7.34] of the next section
d -n/2
lim == ¢ 7@ = -ng(t) [6.12]

u+t
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where g(t) is the stretching tensor at the present time, t. Combining
eqs. [6.11] and [6.12] and dropping the now unnecessary explicit

reference to the present time, L, gives

g = ~PI + 2nd [6.13]

which is the equation for a Newtonian fluid.
Eqs. [6.6] and [6.8] can also be written in terms of memory

functions

M(t-u) = - ggéﬁigl [6.14]
This leads to
a(t) = -PL + 2G_e_ +
= = e =Fn
t n/2 d . n/2
@/ M) [BY () + - ¢ T [6.15]
sk e w o a

for model S and to

- t -n/2 :
g(t) = ‘B} + ZGe e —(Z/n:[‘ M(t-u) gt (u) du [6.16]
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for model L. In eqs. [6.,15] and [6.16] Gé is the equilibrium shear mod-.

ulus. When either model is applied to a liquid, we Set Ge=0'
Several of the foregoing equations contain the n/2-power of
-1
gt(u), gt {(u), and §(t). The former are obtained from

™%, (W =N "W ¥, W [6.17]

and

il

g—z/z(u)

-n T
§t(U)ﬁt (u) N .

{u) [6.18]

2 -2
where At(u) and &t "(u) are the diagonal matrices of the eigenvalues

of Ct(u) and gt—l(u), respectively, and Nt(u) is the matrix formed
from the eigenvectors of gt(u) or gt—l(u). The n/2-power of g(t) is

obtained from

8™ 2ty = (A" (E)n’ (£) (6.19]

where K%t) is the matrix of the eigenvalues of B(t), and n(t) is the

matrix of its eigenvectors.
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We show next that both models satisfy the principle of material
frame indifference. Let us denote all tensors by their mixed
component matrices and denote those referring to the rotational frame

*
by a superscript . Then the equation for model S becomes

t
OREE I <1/n1[f ae-w B30 £ 2w

-

[6.20]

taw & 2w ) a

in the rotational frame. But, from the discussion in Section 2 we have

o (t) = Q(t)g(£)+Q (t) [6.21]
and

B (6) = Q(6)"B(e) 9" () [6.22]
and

or(w) = Q) -g, (g (®) [6.23]

It follows from eq. [6.19] and [6.22], and from eq. [6.17] and [6.23],

respectively, that
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n" () = Q(t)n(t) [6.24]
and
* =
N F(u) = Q)N () [6.25]
Thus, we have
/

52 (t) = g(r)-B" z(t)-gT(t) [6.26]

and

*n/2 /
gt

(w) = 9t) o/ 2w +g () [6.27]

Making the appropriate substitutions we see that eq. [6.20] is satisfied
and, hence, model S obeys the principle of material frame indifference.
An entirely similar derivation proves the frame indifference of model L.
Models S and L have the following characteristics: 1) They'
represent three-dimensional constitutive equations for an incompressible
and initially isotropic material; 2) They satisfy the principle of
material frame indifference; 3) They form subclasses of the simple
material; 4) They reduce to the BST equation if the material is elastic;

5) Model L reduces to the Newtonian fluid if G(t) = n§(t); 6) Model L
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predicts the first and the second normal stress effects; 7) In the

application of these models the only material information required

is the relaxation function, G(t), and the strain parameters n.

Their determination as well as the application of the models to

crosslinked and uncrosslinked SBR have been discussed elsewhere (6,7).

Models S and L are neither the only admissible forms nor are they

the most general forms. Models S and L can be further generalized if

Cn/2
t

~

we replace Bnlz(t) and (u) according to

BY2(6) —wn() o [A(D)] 0T (e)

and

c,™ % () —> N_(w 0, ()] rﬁm)

/

and C;n 2(u) according to

() == N (@ 24[A ()] N} (w)

where the gi[é(t)] are isotropic tensor functions of é(t).

[6.28]

[6.29]-

[6.30]

Since the

latter is diagonal, so are the former. We call the models obtained in

this way (10) the genenalized sofid modef (model GS) and the

generalized Ligudd model (model GL), respectively.
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As an example of another admissible form we briefly mention the

solid model represented by

¢ d n/2-2
S(t) = - PL + (2/n) G(t-u) 3= ¢C (u) du [6.31]
in which S(t) is Piola's stress tensor. This model is similar in form

to model L. However, the time~dependent Green's tensor is referred

to the original configuration.
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7. The Differential Form of the Generalized Linear Theory

With the preservation of time shift invariance, the generalized
linear integral models proposed in the last section can be recast in
terms of linear differential operators with constant coefficients.

In this section, we illustrate this process by defiﬁing a new diff-
erential operator and then using it to convert eq. (6.5) into a tensor
‘differential equation. Hence, we link the integral equation represen-
tation (105) to the representation by mechanical models which, in turn,
can be linked to some of the molecular models of the spring-and-bead
type (105,106). The differential operator representation requires
derivatives of the stress and strain tensors.

Historically, the first three~dimensional rate theory was proposed
by Zaremba (107) in 1903. He realized that the generalization of even
a simple Maxwell model to three dimensions is not a trivial matter. As
mentioned in Section 3, a constitutive equation must satisfy the
principle of material frame indifference. The central problem involved
in rate theories is that the time derivatives of tensors are not
necessarily frame indifferent. For example, for a stressed body per-
forming a rigid body rotation, neither the partial derivative,
acij/Bt, nor the material derivative, Doij/Dt, of the stress vanishes
identically. Therefore it 1s necessary to define rate derivatives of
stress, and similarly, strain, which obey the principle of material
frame indifference. |

The properfies of a méterial are independent of the choice of a

particular derivative which, like the choice of a measure of strain, is
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a matter of convenience although subject to certain necessary condi
tions. There are infinitely many such derivatives among which we
mention the convective derivative (18,20) and the corotational deriv-
ative (or Jaumann derivative) (107,108).

The corotational derivative of a second rank tensor T 1s defined

as (1)

=0

= LR TR W] . [7.1]

il
-3
+

e
Ilé
+
3
Ilé

[7.2]

where i is the material derivative of T with respect to t and w is the
vorticity tensor,

Given a convective frame, i.e. a frame which deforms with the
body, there are four frame-~invariant derivatives according to whether
we consider its covafiant, contravariant, or mixed components. When
these are referred to the laboratory frame, each yields a different
tensor which we will denote by arrows placed over the symbol.

Corresponding to the covariant components of a second rank

tensor, the convective derivative in the laboratory frame becomes

=+

= &5, T T E, W] " [7.3]
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il
= O
+
[{=W
I3
+
W=
.
=

[7.4]

o
where T is the corotational derivative defined above, and d is

the stretching tensor. Convective derivation of the contravariant

components gives

[F (£)*T(u)-F ()] [7.5]
=u - = u=t

=3 >
"
l

- 411+ [7.61

i
= °

Convective derivatives of the left and the right mixed components

are defined as

“< 3 d .
=4 [Eu(t) z(u)-gt(u)] _ [7.7]
u=t
o
T- 4TI [7.8)
and
7= L g, 1@ F (©] [7.9]
= T du ‘=t 2 = ~
u=t
o
=T+d.T - 7T-d [7.10]
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respectively.
I1f T is the unit (i.e. metric) temsor I, egs. [7.4], [7.6], [7.8]

and [7.10] reduce, respectively, to

<«
1
N
I}

d= 30 Wt [7.11]
! d
-:‘[-' - _zg - - E.E Eu(t) u=t [7'12]
“ -
I=1I=0 [7.13]
Eq. [7.12] can also be written as
+ d -1
-Ll=g7&W [7.14]
v 4

We note that I is the first Rivlin-Ericksen (17) tensor él’ and - I

is the first White~Metzner (109) temsor, D Higher order Rivlin~

1°
Ericksen and White-Metzner tensors can be generated by using eqs.
[7.4] and [7.6] as recurrence relations.

For incompressible isotropic materials twd constitutive equations'
were proposed (110-116). These are based on the convective derivatives
of the covariant and contravariant components of the stress and the

strain tensors. The equations are of the operator form and replace

the operator equation of the infinitesimal theory of visocelastic
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behavior (105).

The first equation is

i=n vi j=m +3
X pyo0 *+ PL = q, A (7.15]
i=0 j=0 4
and the second takes the form
i=n 44 j=m 43
r, g + PL= Y s, D [7.16]
1=0 3=0

In eqs. [7.15] and [7.16] the symbols placed on the tensors denote
convective derivation of order indicated, the zeréth order implying the
- quantity itself. P is an arbitrary isotropic pressure, the p, q, T,
and s are material constants which are independent of time, stress, and
strain, and A and D are the Rivlin-Ericksen and White-Metzner tensors,
respectively.

To represent the mechanical behavior of real materials, the index
m in eqs. [7.15) and [7.16] should be n for the representation of solids
and n-1 for liquids (105).

Eq. [7.15] can be recast in integral form as

g(t) = - PI +‘[t G(t-u) é% gt(u) du [7.17]

After differentiating using eqs. [2.12] and [2.25] we have
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t
o(t) = -PI + zf G(t-u) F," () d(w) E, (u) du

-0

In terms of the memory function M(t-u) eq. [7.18] becomes

Q

t
(t) = -PL + 2-[ M(t-u) ]=)(u;t) du

o«

which, by eq. [3.6], is

na

t .
(t) = =PI +f M(t-u) gt(u) du

o]

absorbing the constant term into PI.

Similarly, eq. [7.16} can be written as

na
—
rt
~
It

t
-P] - f_w 6(t-0) & ¢ (W) du

il

t
-PI + zf G(t-u) F (t)-g(u)-guT(t) du

oo

and

[7.18]

[7.19]

[7.20]

[7.21]

[7.22]
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_Q_(t) = -PI + th M(t-u) é[d;t] du [7.23]
where
. -1 [7.24]
D(u,t) = [T - C "(u)]/2
Thus
t
g(t) = - PL - 2.[ M(t=-u) __(;t-l(u) du [7.25]

Eqﬁations {7.17] and [7.21] correspond to the special cases of
n=-2 and n=2 of our model L, eq. [6.5]. These two models and
their various forms given by eqs. [7.17] to [7.24] were proposed
by several workers (110-116). Eq. {7.21] predicts the first normal
stress effect but not the second. Conversely, eq. [7.17] predicts
the second normal stress effect but not the first, Combinations of
eqs. [7.20] and [7.24] have been proposed. Neither of these equations
and combinations, however, can predict the shear gradient dependence
of the viscosity.

Since both eqs. [7.17] and [7.21] are special cases of our eq.
[6.5], it is natural to attempt to define an invariant differential

operator which is similar but more general than those defined by eqs.
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[7.3] and [7.5]. We shall call this new operator the generalized
convective differential operator. We first express gt(u) in terms

of its eigenvecotrs and eigenvalues of Ct(u). We have

_ 2. T [7.26]
) = N @AW
where
2
A2 - 12 () [7.27]
~ ~ t
and
2 - [7.28]
& t(u) u=t }
Taking derivatives with respect to u, we obtain
[7.29]

¢, = N N @ + 23 @Al " @)

~ ~L ~

' 2. T
N (WAN ()
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Since §t(U) is an orthonormal matrix, we have
. . T
N (N (W) + N (WN "(u) =0 [7.30]
In particular, at u=t

. T .
N (OF, () + ¥ (©F Tr) = 0 [7.31]

As discussed by Blatz and Chang (86), gt(t) does not have to be I.
Taking the 1limit of Ct(u) as u approaches t and then substituting

eqs. [7.28] and [7.31] into the resulting equation, we obtain

- _ . ) T

c (1) = let(t){\(t,t)tjt (t) [7.32]
As shown in Section 2, by eq. [2.25]

¢ () = 2d(e) [7.33]

Thus eq. [7.32] indicates that A(t;t) and Nt(t) are the matrices of
eigenvalues and eigenvectors of the stretching tensor. Similarly,

we can show that
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n/2(u)

) T )
ndu w—t = 2N _(e)A(e;0)N, (r) = 2d(t)

[7.34]

which includes both eqs. [7.11] and [7.22] as special cases

We next define the transpose of the (n/2)-power of the relative

deformation gradient as

PP ) - w S T [7.35]

where nt(u) is the matrix of eigenvectors of

§t(u) = ft(U)ftT(U) = n, (u)A n T(u)

A"n, [7.36]

Nt(u) and nt(u) are related by

gt(u) = Et(u)ﬁt(U) [7.37]

where Bt(u) is the matrix of the mixed components of the rotational

tensor of Et(u). Therefore,

n (t) = N (6) [7.38]
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(v)

~t

since Rt(t) =1,
Furthermore,
N (u) =
~t ju=t
= R (N
which gives
(e -

With eqs. [7.33], [7.37], [7.40] and [7.43] we derive

Similarly

du .t

u=t

u=t

~t
u=t

-5,

9§t(t) + gt(t)

= 0.5 nd(t) - w(t)

= 0.5 nd(t) + w(t)

[7.39]

[7.40]

[7.41]

[7.42]

[7.43]
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Furthermore,
c_h“/z(u) - T®/2D) g /2, [7.44]
Ce -t ~t
so that
d . n/2 .4 . T(n/2) d _n/f2 [7.45]
du gt (u) u=t du Ft (u) u=t + du gt (w u=t

Eqs. [7.45] agrees with eq. [7.34]

We now define an nth power convective derivative of a temsor T

as
A d T(n/2 2
=2 2w rweg Y w1 [7.46]
B u=t
o .
A o
T is frame indifferent since T, d, and T are also. We note that
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A4
I=1I (n = -2) [7.48]
and
Ay
T=1T (n = 2) [7.49]

Higher order derivatives can be generated by using eq. [7.47] as
recurrence relation. As an example, the kth order nth power convective

derivative of the unit (metric) tensor can be written as

Ak k
d n/2 -
ARV [7.50]

i
il

In principle, eq. [7.50] can be further generalized to the

form

3 %
It
ll=3 O
+
-
~
o
S
e
+
[[=H
<
7~
{{=¥
e’

[7.51]
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*
where Y is an isotropic tensor function of d and hence T can be
considered as a definition of the generalized convective differential
operator. Thus, our model GL can be considered as a linear combination
of higher order derivatives of the Cauchy stress tensor and the

metric tensor defined in terms of the generalized convective differ-

ential operator. Similar conclusions apply to our model GS.
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CHAPTER 3

A STUDY OF THE VISCOELASTIC BEHAVIOR OF
UNCROSSLINKED (GUM) RUBBERS IN

MODERATELY LARGE DEFORMATIONS
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INTRODUCTION

One of the central problems of polymer rheology is the establish-
ment of a three dimensional rheological equation for viscoelastic
materials which are capable of large deformations. Basically, there are
two ways to approach the problem. One is to develop a mathematical
constitutive theory based on only a few assumptions and aimed at
rather broad classes of materials. There exist several such theories
among which the most notable are the Green-Rivlin theory1 and the
Coleman—N0112 theory. Because of their generality, they are usually
too complicated to be ut?lized by material scientists to characterize
materials and by engineers to estimate the response of materials under
service conditions.

The other alternative is to focus on a restricted class of materials
and/or a restricted class of deformations without violating the princi-
ples to which a constitutive equation is subject such as the principles
of determinism, local action, material frame indifference, and entropy.
One may build into the constitutive equation some experimentally known
facts and thus produce an equation that is useful to the applied scien-
tist or the engineer. 1In an earlier article3 a single integral consti-
tutive theory for soft polymeric systems was proposed. Such systems in-
clude both crosslinked and uncrosslinked polymers in their low transi-
tion region and in their equilibrium or terminal region, respectively.
For such systems, published data indicate that the effects of time and
strain are separable in both uniaxial and multiaxial stress relaxation

3 .
and/or creep tests”. The equilibrium stress-strain data for such
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systems are better represented by constitutive equations based on a
generalized measure of strain4’5. The theory was developed by taking
both of these facts into consideration.

Two particular models, S and L, resulted from specification of the
forms of the strain measureB. We have discussed the application of
these models to the behavior of crosslinked rubbers in another
publication6 in which we also presented a detailed derivation of the
necessary equations for model S which we have called the s0fid model.
These equations will only be summarized in this paper in which we
derive the equations for model L, called the Liquid model. We apply

both models here to the behavior of uncrosslinked rubberlike polymers.

THEORY OF THE APPLICATION OF THE LIQUID MODEL

Our liquid model (model L of reference 3), designed for an isotropic

incompressible elastic liquid, yields

"()—P——-Z—tEct—)i—A-‘?‘—(f}—nd (1)
% t)=- 3n | Y 3y Aa(u) u

as the equation for the principal true stress components in an orthogonal
deformation, i.e. in a deformation in which the orientation of the
principal directions remains unchanged. In eq. (1) Ea(t) is the
principal true stress in the o-direction at the current time £, P is an
unspecified hydrostatic pressure, n is the material constant characteriz-
ing the strain measureA’s, E(t) is the small deformation tensile
relaxation modulus, and Aa(u) is the principal stretch ratio in the
a-direction at the past time u. Eq. (1) is limited to isothermal

deformations, although it can be modified to cover
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nonisothermal conditions. In an isothermal deformation (the case we

are interested in) Aa(u) is defined by

Aa(u) =1, (u,T)/Lao (T) (2)

where Lao(T) is the length of the specimen in the o—-direction at zero
stress at the test temperature T, and La(u,T) is the length of the
specimen in the same direction at time u at the same temperature.

Eliminating P we obtain the true stress in uniaxial tension as

Q0

t n -n/2 '
-y 2 d |(AB)) _ [A)
o(t) = - 3n£ E(t-u) Ta Kk(u)> (A(u)) jldu (3)

If A(u) is continuous, we may use

3 A (u) A{u) du u

—O0

n -n/2
Se6) = - g;[tE(t—u)[KA(t)> + 0.5 (A(t)) J dlni (w) g “)

We now develop special forms of eqs. (3) or (4) for different strain
histories in uniaxial tension. TFor the strain histories to be
discussed, the lower limit of integration in egs. (3) and (4) is zero

because when u < 0, A{u) will be constant.
Ramp Function of Strain

We begin by considering the imposition of a constant rate of strain,

i.e. a ramp function. The stretch ratio becomes
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A(n) = 1 + ¢u (5

where & is the rate of strain. Thus

dr(u) = &du (6)

and eq. (4) yields

o =2 [ o () MR 0
The nominal stress results as
o(t) = o(t)/(1+ke) (8)
Evaluation of the integral requires numerical integration.
Fxponential Stretch Ratio
Let the excitation function be given by
A(u) = exp(ku) (9)
where k is a.constant. Then

di(u) = k exp(ku)du (10)
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and substitution into eq. (4) yields

- _ t exp(kt) n exp (kt) —n/2 du
o(t) = (21(/3)J E(t-u) {["‘———‘expm} + 0.5 ———-_exp(ku) m (11)

(&}

Again, numerical integration is necessary to evaluate a(t).
Ramp Followed by a Constant Strain

If the strain history consists of the imposition of a constant

rate of strain to t = t. at which time the extension is held comstant,

1

we have
Au) = 1 + &uh(u) - €(u - tl)h(u - tl) (12)
where h(u) is the unit step function. Then
dA(u) = €[h(u) - h(u - tl) + ud(u) -~ (u - tl)d(u - tl)] du (13)

where 8(u) is the delta function, Inserting this into eq. {4) we see

that the delta function terms contribute nothing so that we may write

£du for u< t
di(u) = (14)

0 for u> t
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Consequently, for t > t1

n -n/2

. rt 1+¢t 1+ét
- _2(" 1 i 1) 1
o (t) 3.f E(t—u)[(l+éu ) + 0.5 <l+éu ] Tteu du (15)

o]

which differs from eq. (7) only in the upper limit of integration. We

note that eq. (15) is not a convolution integral.

Step Function of Strain

For an excitation represented by a step function of strain we may

write

n
(“t)) =2+ @ - 2 Mhw (16)
\ o )

where AO is the stretch ratio corresponding to the constant strain €,
imposed at t = 0, Thus, when u < ¢, A(u) = 1 and we have Alt) = Xo as
it should because A(t) is the extension at the present time t. When
u > O,.A(t)lx(u) becomes 1 as required.

Substitution of eq. (16) into eq. (3) yields

n/2

3(t) = (2/3mEE) O] = 1) (17)

as the sought-for expression for the stress, the nominal stress being

given by
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A—(n+2)/2
o

o(6) = 23MEMDIT - ] (18)
The liquid and solid models predict the same response to a step function
of strain.

We note that it is not possible experimentally to impose a finite
strain instantaneously. 1In practice a step function of strain is in-
variably a ramp followed by a step as discussed earlier. However, if

t, is much smaller than the first time of interest, the "ramp transients"

1
will have effectively decayed and the response will have become in-
distinguishable from the response elicited by the imposition of a true

step function.
Two Step Functions of Strain

In double step stress relaxation the stretch ratio A(u) has the
value 1 when u<0. At u = 0, A(u) is changed to some other value AI’
and is held at AI until some time tl' At time ti the value of A(u) is
changed to AII at which it is kept constant up to the current time t.

For this deformation history we can write

n 2

A, \ i
A () _ Ann +< Irll - k]::[n) h(u) + (1 - —-]-:-IIT—)h(u-tl) (19}
I

A

and substitution into eq. (3) yields
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A n
o(t) = é% ECt) ﬁlln - AII—H/Z - (Xll)
1

(20)

A__\n Arry-n/2
2 11 I1
+ 5 E(t—tl)[(r—) - (r) ]

I I
Small Step Function Superposed on a Finite Step of Strain

We now consider a small deformation superposed on a moderately
large one. Let the small strain superposed at t. be given by eé(;) and
the large stretch ratio by kr. Further, assume that the stress due to
the finite deformation has substantially relaxed when the small defof-

mation is superimposed. Then

A= Xx + e (t) (21)
T s
and we have
A= el (22)
T T s

because, by stipulation, es(t)<<(kr-1). Thus, for a superposed step

function of small strain we have
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n ne_(t)
2B 5y ™ (o) + [1 THN R N (t):l h(u)
An(u) r r s Ar r r s
(23)
ss(t)
- n 7\ - h(u—tr)
r

Now, the incremental true stress at t > tr arising from the superposi-

tion of the small deformation at t = tr is

AE(t-tr) = g(t) - Er(t) | (24)

where o(t) is obtained from eq. (3) using eq. (23), and Er(t) is

obtained using eq. (17). Consequently,

es(t) _E(D) - @

A A 8
r r

wir

- _ n -n/2
Ao(t—tr) = E(t) éi'+ O.SAr )

(25)

1 t de (u)
=] E(t-u) —2— du
A t u

If the superimposed infinitesimal deformation is a step function of

strain, i.e. if

e (u) = & hi{u-t ) (26)
s 8 r
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then the superimposed relaxation modulus Es(t—tr) obtained from the

superposed strain is given by

- (27)
Ao(t=-t )
_ r’ _ 2E(t) [in -n/2 E(t) 1
Es(t-tr) - € 3 (Ar + 0.5 )\r T + A E(t tr)
s T T
Eq. (27) reduces to E(t-tr) if Ar =1,
Small Ramp Function Superposed on a Finite Step
Function of Strain
For strain history we have
e (W) = elu-t Jh(u-t ) (28)
Eq. (25) becomes
Ao (t-t )
Fs(t_tr) T (=t
T
(29)

where

1 (¢
F(t) =-—J. E(t-u) du (30)
- o
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Small Sinusoildal Oscillations Superposed
on a Finite Step Function of Strain
We have
ss(u) = ssexp[Jw(u-tr)]h(u—tr)

Substituting in eq. (25) we obtain

Ao(t—tr)= E(t)
€ 3A
s r

n -n/2
A A - 5 -
[} : + r 3 expjw(t trJ

\ t
+ %E:f E(t—u)expjm(u—tr) du
rJ, '
r
The steady state solution is obtained as
x—n/Z
T

' _ n
Es(w) = E(t)[ZAr + —3]/3xr + E'(w)/)\r

"

Es(w) = E"(w)/Ar

where E'(w) and E"(w) are the real and imaginary components of the

complex tensile modulus.

(31)

(32)

(33a)

(33b)
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THEORY OF THE APPLICATION OF THE

SOLID MODEL
We summarize for convenience the corresponding equations for

our solid model (model S of reference 3) which we derived elsewhereﬁ.

For a ramp function of strain
5(t) = (2.‘.:/3)'[.t E(t-u) [(1+éﬁ)“‘l + 0.5 (1+éu)'(“+2)/2} du (34
o

For an exponential stretch ratio

t
g(t) = (2k/3{[ E{(t-u) exp(ku) B 'exp(ku))n‘—l
o
(35)
+ 0.5 ( exp(ku))-(n+2)/2J du
For a ramp function of strain followed by a step function of strain
(M1 » in-1 . = (n+2)/2
o(t) = (28/3{[ E(t-u) l:(l+eu)n + 0.5 (14eu) n } du (36)
(o]
For a step function of strain
5, (6 = @/30) @ [P - 5] (37)
Oy .bo Ao
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For a step function of strain followed by another step of strain

-n/2

F(t) = (2/3n) {E(t) (Atll—xl

) + E(t—tr)(kzg/z—kg+kgn/z>} (38)

For a superposition of a small step function of strain on a finite

step of strain
Es(t—tr) = f(Ar)E(t-tr) (39)
where

FQ) = (2/3) [x“‘l + 0.5 3 @2)/2] (40)
T T T
For a small ramp superposed on a finite strain

Fs(t—tr) = f(Ar)F(t—tr) (41)

For a small sinusoidal oscillation superposed on a finite strain

B (w) = £ )E' (W) (42a)
s Y

E (w)
s

mr)E“ (w) (42b)
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MATERIALS

The work described in thils paper was carried out on a styrene-

butadiene copolymer, Phillips<:)SBR-1502.
Sample Preparation
Samples were prepared according to the following recipe:

SBR 1502 100 parts

N-phenyl-2-naphtyl amine (antioxidant) 1 part

The ingredients were cold-milled on a two-roll laboratory mill. The
milled material was placed in 15.2 x 15.2 x 0.2 cm (6 x 6 x 0.08 inch)
molds and heated for fifteen minutes at about 1750 bar (25000 psi)
pressure at a temperature of about 116°C (240°F).

The gel fraction of the samples never exceeded 0.1%. The welght
average molecular weight was 170000 as determined by intrinsic viscosity
measurements in toluene at 30°C7.

Two samples (molded sheets) of polybutadiene (PBD) were supplied by

Phillips Petroleum Company. The information supplied by the company

on these samples 1s given below:
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Sample o A B
Solprene 235 100 100 parts
Zinc stearate 0.2 0.4 parts
Resin 0.133 0.266 parts
Sulfur 0.10 0.20 parts
Santocure 0.08 0.16 parts

This compounding recipe was intended to produce very slightly
crosslinked materials. However, they were found to be soluble in
toluene. Hence, they were not crosslinked but are likely to contain

branched structures,
Specimen Preparation

All experiments were made on tab bonded strip specimens. The
strips were cut from the molded sheets using a knife-edged mill blade.
U-shaped phosphorus bronze tabs were glued to the ends using a poly(cyano
acrylate) adhesive (Devcon Corp. Zip Grip 10<:)).

The specimens had dimensions of about 12 x 0.5 x 0.2 cm. To
minimize end effects, the area of contact between the strips and the tabs
(i.e. the bonded area) was kept as small as possible. The length of
overlap on each side at both ends of the strips was about 1.5 mm.

The exact width and length of the specimens were measured with a
traveliing microscope, Thicknesses were determined with a micrometer,

When not in use, the specimens were kept in a refrigerator at 0°C.
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EXPERIMENTAL METHODS

Experiments were made in uniaxiai tension on a Model TTB Instron
Testing machine fitted with a Missimers temperature control chamber.
Special baffles were installed to reduce the effect of the air currents
which tended to shake the specimen, thus superposing random oscillations
on the force recorded. The temperature was monitored through a thermo-
couple placed close to the specimen, The temperature could be controll-
ed to about tO.l°C in the operative range from -20 to 23°C.

The range of crosshead speeds covered the entire operative range
of the instrument from about 0.00508 to 50.8 cm (0.002 to 20 inches) per
minute. No appreciable heat built up in the specimen even at the high-
est crosshead speed over the short time interval required. Careful
experiments8 showed that strains calculated from cathetometer readings
of bench marks placed on specimens agreed with those calculated from
the recorded trace of force against time,

To increase the precision of the measurements, most of the work
feported in detail was made on a single specimen. Ample time (never
less than five times the previous duration.of the experiment) was
allowed between experiments so that the sample would relax completely.
During these recovery periods the specimen was removed from the grips.
To decrease the recovery time between experiments, each series of
experiments was carefully planned and tests requiring smaller defor-
mations were made before those in which larger deformations were

applied. The length of the optimum recovery times was established in
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a series of tests not reported hereS. The dimensions were redetermin-
ed after each experiment.

Upon installation, the specimen was first attached to the upper
grip so that it would hang by its own weight (about 1.5 g). The force
registering on the load cell was then balanced to zero, and the specimen
was connected to the lower grip. Since this operation normally intro-
duced some stress in the specimen, the crosshead ﬁas now adjusted
until the force reading again returned to zero, and the specimen was
rested for at least thirty minutes, Beﬁding or buckling of the specimen
was minimized by proper alignment. This problem is discussed in detail
elsewhere8. |

Because the moduli of our materials were high enmough, the error
resulting from creep under the specimens own weight is negiigible. 1In
principle, specimens of uncrosslinked materials of low modulus should

be immersed in an inert solvent of matching density.
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RESULTS

The two models which we have discussed earlier assume that the
ratio of stress at time t to that at an arbitrary reference time t. in
a stress relaxation experiment is independent of strain. We therefore
first looked at the experimental evidence in support of this assumption.
We reviewed publisﬁed data (mainly on crosslinked materials) else-
where3’9. We now present data on our uncrosslinked SBR at 23°C. 1In
Fig. 1 we plotted the engineering stress as a function of time in
logarithmic coordinates in stress relaxation experiments obtained at
~ different levels of the constant stretch ratio ranging from 1.004 to
1.852, In.such a plot the curves must be parallel if our assumption
is justified. The broken lines in Fig. 1 indicate the response to the
ramp excitation (t<t1) which preceeds the constant strain in a stress
relaxation experiment. Ramp transient behavior had effectively decayed
away for times longer than 10 ty where t1 is the time required to
impose the final strain. The solid curves are all parallel, thus con-
firming our basic assumption that the distribution of relaxation times
is not affected by the level of strain. At the highest elongation the
specimen would break after about 30 minutes at the test temperature,
Since all experiments were to be made on the same specimen we generally
stopped taking data 10 minutes after starting the deformation. At the
lower elongations the upper limit was set essentially by our ability to
read the force precisely. At lower temperatures the time-to-break
at a given elongation increases and we were able to confirm our assump-

tion over four decades of time. These data are not shown.
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Qur PBD samples gave similar results (not shown) indicating that
our assumption is valid for uncrosslinked linear materials and highly
branched ones as well as crosslinked systems.

Our next task was the determination of the small deformation
tensile relaxation modulus, E(t), at the reference temperature, 23°C.
This was accomplished by the standard proéedure, using time-temperature
superposition to widen the experimental window. At each ﬁemperature
several experiments were made using different ramp speeds to attain
different final strains. The data for t>10tl were averaged at each
temperature. Stretch ratios were determined from the Instron record.
This procedure is faster and more accuraté than cathetometric
determination58 if the ratio of free-to-bound area of the specimen is
chosen to ensure a tolerable error (1%) in (A-1). Im principle, the
faster the ramp speed, the smaller the effect of ramp transients and,
hence, the wider the experimental window at a given level of strain.
However, the precision with which the stretch ratio can be obtained from
the recorder chart decreases as the pulling rate increases.

The master curve is displayed in Fig. 2. The temperature depen-

dence of the horizontal shift function, log a is shown in the insert

T’
in Fig. 2. No vertical shifts were requiredlo. Although numerical

data may be used, it is more convenient to represent the relaxation

modulus by an equation. The equation we adopted has the form

E(t) = Eo(t/r)‘kl [1+(e/)k217t (43)
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which the coefficients found by nonlinear least squares fitting are:

*
E0 = 25,091 bar , T = 0.004461 minute, k., = 0.0422, and k2 = 0.37716.

1
This equation fitted the data within + 2% over the time interval from

7 to 103 minutes.

2x10

The second piece of information which the theory requires is the
strain parameter n. This was determined as detailed in our paper6 on
crosslinked SER. A plot of the stress, Os at the isochronal time
tr as function of Ar is shown in Figs. 3 and 4. The data displayed in
Fig. 3 were obtained at 23°C. The least squares fit gave n=0.4. The
insert shows that the isochronal true stress-strain relation is linear
at least up to 2% strain for two different isochronal times, tr=l and
tr=10 minutes.. The points in Figs. 4 and 5 show data obtained omn our
SBR gum in the temperature range from -20 to 23°C at rates of strain
spanning two decades of time. The curves represent the predictions of
model L, egs. (7) and (8), using n=0.4. The agreement is within +2%
and may be considered excellent.

Model S fitted the data within about the same error. Thus, these
data do not allow us to distinguish between models S and L. We there=—
fore turned to the more sensitive superposition test6 and, in addition,
endeavored to obtain data at longer times. This required experiments at
lower temperatures. Data were obtained at -17°C superposing small ramps
.on a finite stretch. The best fit to the data were obtained with n=0.6.
Figure 6 shows a plot of FS(t—tr) against Xr. The solid points repre-
sent experimental data and the solid lines give the predictions of

eq. (29) for model L and of eqs. (41) and (40) for model S,

*
One bar equals 106dyne/cm2 or 14.5 psi.
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both for the isochronai time of 10 minutes. An additional datum point
was obtained for an isochronal time of 300 minutes. For Ar = 1,790
F(t-300) was 12-21 + 0.5 bar. Using n=0.6, the liquid model gave
10.23 bar while the solid model predicted 11.98 bar. Thus the data
clearly favor the solid model.

We believe that the vaiue of n found in the superposition exper-
iments (n=0.6) is the more acéurate one because of the high sensitivity
of the test. If we consider the predictions of the solid model for the
step experiment [Eq. (17)] the primitive, then the predictions for the
ramp experiment [Eq. (34)] may be considered in some sense as the
integral, and the predictiqns of the ramp superposition experiment
[Eq. (41)] may be thought of again in some sense as the derivative.
Being thus eséentially a differential test, the superposition test is
the most sensitive onell. |

For this uncrosslinked material the parameter n appears to be
independent of temperature, This is shown in Figs, 4 and 5 in which
data ranging from -20 to + 23°C where fitted with the same n. We remark
that n=0.6 gave an equally good fit wiﬁhin the experimental error with
which the relaxation moduius, the temperature, and the temperature
function? aps can be determinedg. We estimate the uncertainty in n
obtained from ramp test to be about + 0.1. An example of the fit
with n=0.6 is presented in Fig. 7 which shows data at -17°C. The
insert indicates that, at this temperature, the isochronal true stress

is linear with respect to the strain up to about 6%.
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DISCUSSION

We address ourselves here to two groups of problems. We shall
first consider the applicability of our models L and S to our own as
well as published data. We then discuss the dependence of the strain

parameter n on experimental variables.
Comparison of the Liquid and Solid Models

In an earlier publication6 we have shown that our model S, based
on the introduction of the_n-measure of strain4 into the Boltzmann
superposition integral, successfully predicted the viscoelastic behavior
of crosslinked soft (rubberlike) materials in tensile deformations in
which the spectrum of relaxation times remains essentially.undisturbed.
In the preceeding sectipn we adduced evidence based on experiments on
an uncrosslinked SBR that model S is also successful in describing
the viscoelastic behavior of uncrosslinked rubberlike materials (gums).
We also found that the parameter n is smaller for the uncrosslinkéd SBR
and that it appears to be independent of témperature over the range
investigated (~20 to +23°C) in the uncrosslinked material although it
showed a definite dependence on temperature6 over essentially the same
range in the crosslinked SBR.

In addition to presenting our own results, we again examine the
data of others. The data points in Fig. 8 represent the response of an
uncrosslinked polyisobutylene (PIB) to an exponential strtch ratio

2
excitation as obtained by Goldberg, Bernstein, and Lianis1 . The



117

solid curves represent the predictions of our model L for n=0.6 both

for the data at -5 and 20°C, using eq. (11). We determined n and

the tensile relaxation modulus mastercurve by fitting the relaxation
data given in their paper to eq. (17) at both temperatures and shifting
the two isothermal segments into superposition. We note that we obtain-
ed the same value of the strain parameter, n=0.6, at both temperatures.
Model S gave an identical fit with the same value of n. Thus, again,

we were unable to decide between the two.models.

Goldberg and Lianis13 obtained data on a polyester~based poly-
urethane, B.F. Goodrich Estane(E)XIOO, using small sinusoidal oscil-
ations superposed on a finite stretch. Estane X100 is uncrosslinked,
although, as many polyurethanes, it behaves almost like a crosslinked
material. The data were obtained for two values of Ar over the
frequency range from 0,01 to 0.25 Hz., Measurements were commenced

at tr=12 minutes. Now, according to model L,
E" A " 44
A, E |, = E ()|, (44)

and, since E(t) could certainly not have been zero over the period of

measurement

xr Es(w) N # Ar Es(w) \ (45)
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by eqs. (33). On the other hand, according to model S we should

have

= (46)

We find that the data obey neither the equality (44) nor the
inequality (45). The mean value over several frequencies of the
expression on the left hand side of eq. (46) equals the mean value

of the expression on the right within the experimental error. Essen-
tially the same conclusion can be drawn6 from Goldberg and Lianis's
data13 on a crosslinked SBR. The data for Estane X100 and the SBR are
tabulated elsewherelé. We conclude that the superposition experiments
of Goldberg énd Lianis again favor model S over model L.

We point out that the failure of model L is not due to the parti=~
cular form of the strain function, i1.e. the n-measure of strain, which
we have built into it. 1In the Appendix we consider a generalized liquid
model constructed in terms of a general strain function ¢[A(t)/A(u)].
From eq. (A 18) of the Appendix we obtain for superposed sinusoidal

oscillations in the steady state

E_(w) = E()$Q) + E'W)/A_ @7
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and
B'(w) = B @)/ (48)

where

/ /2 -1

b0 = @3He' 0 + W ot (49)
Thus, the generalized liquid model (model GL) also leads to the equality
(44) and the inequality (45). For the case we have considered here,
i.e. for small oscillations superposed on a finite stretch, the theory
of Bernstein, Kearsley, and Zapas15 also leads to egs. (47) and (48),
albeit with a different expression for ¢(Xr).

It follows from eqs. (47) and (48) or, more precisely, from
(44) and (45) to which they lead, that liquid models in general cannot
predict the results in superposition experiments in simple tension on
both the uncrosslinked and crosslinked materials we have investigated
here and in the previous publication6. We do not know at this time
why models specifically déveloped for polymeric liquids fail when
applied to uncrosslinked rubberlike materials. Most theories for
polymer melts are also essentially liquid theories. We intend to
examine the applicability of our model GL to polymer melts in a later
publication, It is possible that our uncrosslinked SBR simply does
not have enough liquidlike character at 23°C. Measurements at higher

temperatures may allow us to decide this issue.
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The Dependence of n on Experimental Variables

We have attempted to collect information on the strain parameter
n for a number of different polymeric systems. This information is
assembled in Table I. The five methods we used to obtain it are
designated by capital letters in column four of the table, Method A
represents n-values obtained from a least squares fit to near equil-
ibrium stress—-strain data. Method B is similar but is based on iso-
chronal stress-strain relations. Method C refers to estimates-
obtained from the ratio of the Mooney-Rivlin constants, C2/C1, as ex-
plained below. Method D signifies n-values obtained from a least
squares fit to isochronal 0/(A-A_2) vs. 1/) data crossplotted from
constant strain rate experiménts. Method E denotes n-values obtained
from superposition tests using eq. (40). The entries in column 2 of the
table indicate whether the material was crosslinked and whether one or
more samples with differnt degrees of crosslinking were considered.

The constants Cl and C, of the so-called Mooney-Rivlin equation

2

o = 2(C, + Cz/)\)()\-)\—z) (50)

. , 27
have been obtained on many materials™ ., Our parameter n can be

estimated from CZ/Cl’ Figure 9 shows a plot of E(n)/E(z), where

S(n) = (26/m) O3 (51)
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against A—l. Equation (51) is the equation of Blatz, Sharda, and
Tschoegl (BST equationA). With n=2 Eq. (51) represents the stress—
strain relation predicted by the Gaussian statistical theory of rubber
elasticity. The open circles in Fig. 9 thus represent Mooney-Rivlin
plots of a hypothetical material obeying the BST equation with n=1.64.
From the slope and intercept of the straight lines representing the
best fit to the circles one can calculate the corresponding constants
Cl and CZ' Figure 9 demonstrates the well known fact that these
constants differ in tension and in compression, implying that the
Mooney-Rivlin equation is not a constitutive equation. From a number
of plotsISueH as those shown in Fig. 9 we constructed the nomograms
shown in Fig. 10. The ratio Clel is much smaller in compression

than in tension for a given value of n. This is a reflection of the
common Observation28 that most rubberlike materials obey the statistical
theory (n=2) more closely in compression than in tension.

We note that according to the BST equation Mooney-Rivlin plots
should be linear within the normal experimental error in simple tension
only_in the range from about l_l = 0.6 to 0.9, depending on the value
of n. In fact, the apparent linearity often extends down to lower
values of A—l because the upswing reflecting the second term of the
BST equation tends to compensate the downswing demanded by the first
term alone.

Since Cl and C2 do not have the same value in simple tension and
compression, they almost always give different values for the shear

modulus G=2(C1+C2). The nomogram presented in Fig. 11 in conjunction
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with that in Fig. 10 allows one to estimate G from Cl and CZ'

The BST equation predicts a maximum in the Mooney-Rivlin plot at

A_l=1 for n=2, TIf n<2, the maximum lies in the compression half, if

n>2, it lies in the tension half of Fig. 9. At the origin we have

do/(x—x'z)

at =

= 0.5G(2-n) (52)

Hence, n may be regarded as a measure of the derivation of the behavior
of real materials from the predictions of the statistical theory. At
very small values of A the Mooney-Rivlin plot can show up these devia-
tions with much greater sensitivity than a plot of either the stress

or the true stress against the stretch ratio.

From the tabulation of n-values in Table I we infer that (1) n
depends on temperature in crosslinked but not in uncrossliﬁked systems;
(2) in uncrosslinked polymers n is usually smaller than in crosslinked
ones and appears to show little variation with the nature of the polymer;
(3) the value of n in uncrosslinked polymers is about 0.5; polyurethane
is not really an exception because it is effectively crosslinked through
domain formation; (4) in crosslinked systems n increases with the degree
of crosslinking.

Since n can be related to C2/Cl through the nomogram presented
in Fig. 9, certain inferences may be drawn concerning its dependence

on variables which have been investigated in their relations to C

c 27,29,30
2 »

1

and Thus, we expect that it would depend on the degree

of swelling and on the nature of the swelling agent in the presence of
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specific interactions. We also expect it to depend on the nature of
the crosslinking procedure, i.e. on the network topology. The latter
effects include the presence or absence of a diluent and possible chain
orientation during crosslinking.

We consider the Gaussian statistical theory an ideal limiting
theory to which the behavior of real rubberlike materials may approach
under certain conditions. Much further work is needed before these
conditions can be clarified. However, we expect that n will approach

18,29

2 in swollen polymers as the degree of swelling increases and

that chain orientation and swelling during crosslinking may produce the
same effectzg.

We conclude by remarking that one way to generate information to
facilitate arriving at a molecular interpretation of n - if such an
interpretatioﬁ is possible -~ might be through observation of the role

10,31
a

it plays in predicting the restoring force in crosslinked nd

in uncrosslinked10 rubberlike materials,
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Appendix
We derive here a general equation for the response to a small
(theoretically infinitesimal) deformation in simple tension superposed
on a finite stretch. The equation is based on a model introduced
elsewhere3, which we have called generalized liquid model (model GL).

Model GL gives the principal components of the true stress as

- t a [/2 &)
o‘a(t) = - P - 2‘( G(t-u) E%(w)] du (Al)

00

where 0=1,2,3 denotes the principal directions, P is an arbitrary
hydrostatic pressure, G(t) is the (small deformation) shear relaxation
| modulus, Aa is the stretch ratio in the direction o, t is the present
time, u is the past time, and ¢ is a generalized strain function defined

in such a way that

(1) = 0 (A2)
and
oty = < o 39‘-52 =1 (A3)
du A (u) A )/ (w) =1
o (¢ o]
Condition (A2) ensures that Sa(t) = - P in the absence of any defor-

mation. Condition (A3) allows the liquid model to be applied to the
behavior of materials possessing an equilibrium modulus by ensuring
that the kernel function in eq. (Al) coincide with the accepted

definition of the shear relaxation modulus.
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Eliminating P, and considering that the material had been complete-

ly at rest before imposition of the finite stretch, Eq. (Al) becomes

0 - - [(eww LLRG) - o [H3] 1} a0

in simple tension.
For the superposition, at time t = tr, of a general tensile defor-

mation on a finite step of strain with stretch ratio Ar we have

i3] = eho] + {o52] - o©]} new

(A5)

-l 5P e

where AS is the stretch ratio after imposition of the superposed tensile

deformation. Substitution of eq. (A5) into (Al) leads to

-1/2
S(t) = - 2G(t){%[;(t)] - @[[§££2] ]
r r

- sp] + o) 2} (16)

-1/2
A(t) ALE)
2 e £ (28] - Y] J}e

t
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The true stress resulting from the superposed deformation alone

becomes
Ao(t-t ) = o(t) - o (t) (A7)

where o(t) is given by eq. (A6) and

5_(1) = 26(t) {cp[xr] - q>[xr'1/21} (A8)

If the material is a liquid, i.e. has no equilibrium shear modulus,

eq. (A7) reduces to

-~

ey =2 o SRR - B e 0w

t
r

as both t ant tr approach infinity while t—tr remains finite because
then G(t) - O. With the change of variables t = t'+tr and u = u'+tr’
i.e., shifting the reference point of the time scale from t=0 to t=tr,

we obtain

t'
S(eY) = gy L A") |
a(t') = —ZJOG(t -u') I {@[)\S(u,)]

(R

where we define A(t') as A(t)/Ar because the reference length has now

(A10)
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become Ar instead of unity. Equation (Al0Q) has tﬁe same form as eq.
(A4). This is a conaequency of the fact that there is no preferred
reference configuration for a liguid as pointed out by Coleman and
Nollz, It is, of course, for this reason that we use the current
deformation as the reference deformation for liquidlike behavior.

We now consider that the superposed deformation is small so that
= +
As(u) Ar es(u) (Al1l1)

where sS<<(Ar—1). To substitute eq. (All) into eq. (A7) we expand
o[A(t)/A(u)] into a Taylor series around A(t)/A(u) = 1, keeping the
first order term only. This is justified because A(t) = Ar + es(t)

and so A(t)/kr is close to unity. Using eqs. (A2) and (A3) we obtain

¢[k(t)/xr] = es(t)/,xr (A12)

/2

PNV e IR (V2 (a13)

e /A ] = [e(8) - e (1A (414)
-1/2, . -

@[[l(t)/lS(U)] 1= [es(u) - es(t)]/2kr (Al15)

We also expand 2[A(t)] around Ar to get

e[a(t)] = ¢[Kr] + ¢'(lr)es(t) (A16)
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and

/2 ~-1/2 -3/ /2

o) 1?1 = e T2 - o5 2@'[7\;1 Je (1) (AL7)

Substituting egs. (A12) through (Al7) into eq. (A7) then yields

~3/2 -1/2

AE(t-tr) = 26(t)[2" (A ) + 0.5 o' (A )
(A18)
t de (u)
-1 -1 S
- heh e (8w L Glew) —gg— dv

as the predicfion of the generalized liquid model for the true stress

arising from a superposed infinitesimal deformation.
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Figure Captions

Engineering stress, o(t), as function of time t in
logarithmic coordinates. Step response of uncrosslinked
SBR at 23°C to strain at various stretch ratios.
Relaxation modulus master curve for uncrosslinked SBR at
23°C.

Engineering stress as function of stretch ratio at the
isochronal time tr=10 min. Uncrosslinked SBR at 23°C.
Engineering stress as function of stretch ratio. Response
of uncrosslinked SBR at 23°C to ramp functions of strain
at various rates of strain.

Eﬁgineering stress as function of stretch ratioc. Response
of uncrosslinked SBR at different temperatures to ramp
functions of strain at various rates of strain.

Comparison of the predictions of the solid and the liguid
models. Fs(t—tr) as function of the stretch ratio.
Engineering stress as function of stretch ratio at the
isochronal time tr=lO min. Uncrosslinked SBR at -17°C.
Response of polyisobutylene (PIB) to different experimental
strain excitations as function of time. Data of Goldberg
et al.lz.

Mooney stress as function of 1/) predicted by BST theory
with n = 1.64,

Nomogram for the estimation of n from CZ/Cl in tension and
in compression.

Nomogram for the estimation of 2(C1+C2)/G from n.
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Figure 1 Engineering stress, o(t), as function of time t in

logarithmic coordinates. Step response of uncrosslinked

SBR at 23°C to strain at various stretch ratios.
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Figure 3 Engineering stress as function of stretch ratio at the

isochronal time tr=10 min. Uncrosslinked SBR at 23°C.
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Figure 7 Engineering stress as function of stretch ratio at the

isochronal time tr=10 min, Uncrosslinked SBR at =17°C.
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Figure 11 Nomogram for the estimation of 2(Cl+Cz)/G from n.
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TABLE 1

The Parameter n for Various Polymers

Polymer Crosslinked T (°C) . n Method Ref.
Natural rubber yes 10-70 1.64 A 16
yes 25 1.64 A 17

yes 060 1.64 A 4

various 25 0.9+1.6 c 18

SBR yes 25 1.34 A 19
yes -45+23 0.4+1.22 B,E 6

yes 0 1.4 E 13

yes 0 1.0 B 12

various 26 1.001.5 c 20

no -20+23 0.6 B,E This

work

EPR (chlorinated) yes 15 1.71 A 21
Polyethylene yes 180 =2.0 A 22
Polystyrene yes 170 1.95 A 23
PIB (Vistanex B-140) no -50>25 0.5 B 15
PIB (Vistanex L-100) no 25 0.5 B 24
no -5+25 0.6 B 12

Viton A-HV two -5-130 0.4>1.8 D 25
Butyl rubber ves =50 0.5 B 15
yes -20 1.71 D 26

yes =5 1,73 D 26

Polyurethane no -1 2.4 E 13

(Estane X-100)
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Chapter IV

The Internal Energy Contribution to the Restoring Force

in Viscoelastic Rubberlike Materials
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I. Introduction

Elastomers can be stretched reversibly to remarkably high elonga-
tions because they consist of flexible crosslinked.long chain molecules,
The statistical theory of rubber elasticityl_s ascribes the restoring
force in a deformed elastomer predominantly to the change in the con-
figurational entropy of the chains which accompanies the deformation.
Contributions from changes in internal energy are considered to play
generally a subsidiary role. In natural rubber, the elastomer par
excellence, internal energy changes contribute roughly one-fifth of the
restoring force at elongations below about 200%. Experimentally, the
magnitude of the internal energy contribution is commonly determined from
measurements of the force-temperature coefficient. Such experiments
are often referred to as thermoelastic studies because they assume that
the elastomer under study behaves as a purely elastic body although
elastomers, like all polymers, are viscoelastic. Thus, the measurements
must be conducted at elastic equilibrium, i.e. in the completely relaxed
state. In practice this situation can only be approached asymptotically.

Although the relaxation processes can be accelerated by increasing
the temperature, this device is limited by the possibility of thermal
degradation. Therefore, thermoelastic experiments are rarely, if ever,
made under conditions in which all measurements can be considered to
have been obtained sufficiently close to elastic equilibrium to render
negligible the error resulting from residual viscoelastic relaxation.
The magnitude of the error depends not only on the experimental condi-
tions such as temperature, waiting period, stretch ratio, etc., but also

on the nature of the elastomer. Thus, the error is small for natural
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rubber at 0°C but may not be so for another elastomer at the same
temperature.

In a series of recent papersG—lO we have presented a theory for the
description of the viscoelastic behavior of rubberlike ﬁaterials in
moderately large deformations. This theory easily spans the range of
deformations which are commonly employed in thermoelastic studies. It
is based on the assumption that time shift invariance is preserved in
moderate deformations of elastomers. In materials for which this
assumption proves valid, the effects of strain and time are separable
in the response to a step function of strain in simple tension, the
most commonly used technique in thermoelastic measurements. In this
paper we propose a method, based on this separability, which
circumvents the difficulties inherent in attaining elastic near
equilibrium by referring all measurements to a reduced isochronal time.
We call isochronal time that time which refers the isothermal response
of a polymer to the same state of relaxation. The concept of reduced
isochronal time generalizes the (isothermal) isochronal time by applying
to it the well known principle of time-temperature-pressure superposition.
We have used isochronal time in several previous publicationss’g, in

11,12 had earlier used a

which we have denoted it by t . T.L. Smith
similar concept in reducing data obtained in ramp (constant rate of

*
strain) experiments. We define the reduced isochronal time, t 2 by

t = tr/aT,P (1)

, ., 13,14
where ap p is the temperature and pressure function ~°° ,
N:
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In the past, thermoelastic measurements were made only on cross-
linked materials because of the impossibility of attaining elastic
equilibrium in uncrosslinked polymers. The concept of reduced isochron-
al time removes this restriction. Hence, ig becomes possible to examine
changes in the intermal energy contribution as a function of temperature
as well as crosslink density. The concept of reduced isochronal time
also permits extension of thermoelastic studies from the rubbery into
the transition region as far as the theory allows. Examples are
presented in this paper.

To illustrate the concepts introduced.here we use Sharda and
Tschoegl's strain energy density function for compressible materialsls’16
to represent the stress—strain relations of wvigcoelastic rubberlike
materials at reduced isochronal time, The Sharda-Tschoegl function
is an adaptation of the strain energy density function of Blatz, Sharda
and Tschoegll7 to compressible materials. Both functions are based on
the concept that each material carries its own strain measure which,
if properly chosen, will greatly simplify the form of the cdnstitutive
equation,

The strain measure was assumed to be independent of temperature by
Blatz, Sharda, and Tschoegll7. However, our recent studies indicate8’9
that the strain measure does depend on temperature although this
dependence is relatively small in natural rubber. We show in this paper

that a temperature dependent strain measure implies that the relative

internal energy contribution to the total restoring force is not

independent of the stretch ratio even at elongations below about 200%.
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The prediction 1is in contradiction to the Gaussian statistical theory
which implies that the internal energy 1s independent of the deformation.
Careful examination of the literature data appears to support our view,

Simple tension is not the only, nor is it necessarily the most
appropriate, mode of deformation for thermoelastic studies. Treloar2
advocates the torsion-tension test. In simple tension our present
theory is not applicable in the glassy region and in the upper transition
region because it does not allow for volume relaxation. Such effects
arising from volume dilatation in simple tension would be eliminated
in shear14’18, but the volume relaxation incident upon cooling a
specimen to lower temperatures would still persistlg. The closer the
temperature is to the glass transition temperature, the more effects
of volume relaxation will be.

Thermoelastic studies are undertaken to ascertain the range of
conditions over which the molecular theories of the mechanical behavior
of rubberlike materials is valid. The concepts which we present in this
paper are intended to broaden the range of investigation with respect

to time, temperature, and pressure.

ITI. Thermoelastic Theory
We now proceed to develop the required basic relations. TFrom the
thermodynamics of elastic deformation, we obtain for simple tension,

dU = TdS -~ PdV + fdL (2)

and
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dA = -8dT - PdV + £dL 3

where U is internal energy, T is the temperature, S is the entropy, P is
the pressure, V is the volume, f is the tensile force, L is the length
of the specimen, and A is the Helmholtz free energy.

From eq 1 we can derive

£

_u _ 93U
f

«1 - I 3f
5L =1 f oT (%)

v,T v,L

as the relative contribution to the force from the internal energy, U.
Equation 4, being based solely on thermodynamics, is independent bf any
constitutive model.
A. Statistical Theory

In principle, eq 4 provides a criterion for checking the validity
of the statistical theory of rubber elasgticity. In its current form19
this theory gives the restoring force in simple tension as

) 2, 2., =2
f = vaAO(<r> o/<r) f)(A A ) (5)

where v is the number of effective chains in the network per unit
undeformed volume, k is the Boltzmann constant, AO is the undeformed
cross—-sectional area of the specimen, X is the stretch ratio, <r2>o is
the mean-square end-to-end distance of chains between crosslinks, and

2 , . .
<r >f is the same distance if the chains are freed of the constraint of

the crosslinks, The temperature dependence of <r2>o is related to
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the thermal expansion of the sample but <r2>f is characteristic of the

. 4
chemical structure of the chains. From eq 2 one may derive

fu dln<r2>f
T -7 dT (6)

which relates fu to <r2>f. Equation 6 thus links thermoelastic studies

to solution behavior and to the rotational isomeric state model of

the behavior of chain moleculess’zo.
From eq 4 one may derive the equation of Flory, Ciferri, and

Hoeve

fu_ o, _poams| %! -
£ 9T |P,L ~ A%-1
22

as well as the equation of Shen and Blatz

L1 -TE=E_aT (8)

where G is the shear modulus at atmospheric pressure, and a is the
linear thermal expansion coefficient of the undeformed material. The
last two equations allow determination of fu/f at constant pressure by
invoking the statistical theory as modified by Florylg} It can be shown
that eq 7 is equivalent to eq 8. However, due to the presence of the
term (13-1)—1 in eq 7, a small experimental error in the vicinity of

A = 1, which is experimentally unavoidable, will greatly affect the
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calculation of fu/f. Eq 8 has the advantage of averaging out the
experimental uncertainties over the whole region of strain before
calculating the value of fu/f. Equations 6 and 8 claim that fu/f,

i.e. the #efative contribution of the internal energy to the restoring
force, is independent of strain. This is a direct consequence of the
agsumption of the Gaussian statistical theory that the relative contri-
bution by internal energy is to be accounted for by intrachain energy
alone.

To prove the validity'of the modified statistical theory, measure-
ments based only on thermodynamic considerations and completely indepen-
dent of structural models and constitutive equations are needed.
Equation 4 is difficult to use experimentally because determination of
the force~temperature coefficient at constant volume requires imposition
of large hydrostatic pressures to counteract small changes in volume.

Using the appropriate Maxwell relation23, eq 4 can be recast as

Tu _ _ 3lnf _ P,L 3inf
F- 1T P,L K 3P |T,L (9)
T,L
where
- Lav
BP,L ~ v oT|P,L (10)

is the volumetric expansion coefficient at constant pressure and length,

and
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“r,n "~ % g‘lg T,L (11)
is the isothermal compressibility at constant length.

By determining the force-temperature coefficient, the force-
pressure coefficient, the volumetric expansion coefficient and the
isothermal compressibility at constant length, as required by eq 9
Allen et al.24, and Sharda and Tschoegl16 determined fu/f for natural
rubber at temperatures above 0°C.

Allen's data give values of fu/f which are in good agreement with
values obtained from thermoelastic data carried out at constant pressure
and analyzed by eq 7. This agreement, and the fact that fu/f does not
show any significant dependence either on temperature or on strain,
geems to give a satisfactory confirmation of the theory. Furthermore,
the reported good agreement4 among values of dln<r2>0dT obtained from
thermoelastic measurements, those obtained from viscosity-temperature
measurements on polymer solutions, and values calculated from the
rotational isomeric state theory of chain configuration provides another
indication of the essential success of the theory.

B. Phenomenological Theory

Sharda and Tschoegl16 found good, but not complete, agreement
between thelr data and the statistical theory. They introduced a strain
energy density function15 for compressible isotropic rubberlike materials
and discussed their data in the light of a phenomenological theory
based on this function. In this paper we propose a modification which

takes into account the temperature dependence of the strain parameter
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n which, in their theory, characterizes the nonlinear stress-strain
behavior,

Their strain energy density function has the form

/3 1-k
v [26 3D, k JT }
W=2J {n l:IE————-———~——n ]+k [(J-l) +———-———k_l] (12)
where
I, =1 ()\3 - 1)/n a=1,2,3 (13)
and
J=v/v = T2 (14)

In eqs 12, 13, and 14, V and V0 are the deformed and undeformed volume,.
respectively, at the test temperature; V0 is taken to be at atmospheric
pressure; n is the parameter of the generélized strain measure which
characterizes17 the stress-strain relation under moderately large
deformations; the parameter vy, first introduced by Tobolsky and

25,26

Shen , takes into account the dependence of the shear modulus on

volume according to

G = GJ (15)
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where G = G(1); K is the bulk modulus at atmospheric pressure defined

by
K(P) = K + kP (16)

where P is the gage pressure,

In eqs 13 and 14 the stretch ratio is given by

Ay = Lu(T)/Lao(T) (17)

where La and Lao are the deformed and undeformed length of the specimen
in the principal direction a, respectively, at the test temperature, T,
and Lao is at atmospheric pressure. The parameters n, v, G, K, and k
are independent of stress by definition, and hence are independent of

hydrostatic pressure also.

By the application of the principle of virtual work, we have

A
= __a3d¥W
9%~ J B (18)

where Ea is the true stress in the principal direction o, For the

special case of simple tension and superimposed hydrostatic pressure,

we have 01 =qg - P, 62 = 03 = P, and Al = A, Az =_A3 = /j7k. Substitut-

ing these into eqs (12) and (18) yields

s = (26/ma" " toP - J“/zjxn/z) = £A/AJ (19)
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where £ is the force and AO is the cross—sectional area at test tempera-
ture T, at zero force, and at atmospheric pressure.

Equation 19 can be written as
f = AO(T,PO)E(T)JYW[A,n(T)] (20)
where
YDy = /30 0" - 372 ) 21)

We have assumed that E(T) = 3G(T) since the bulk modulus of a soft
polymer is usually about four decades higher than its shear modulus.
The function ¥ depends on temperature and crosslink density through
the parameter n. The effect of pressure on the restoring force
appears through its effect on J and X at constant temperature. The
parameter y may also depend on temperature and crosslink density.

We now seek an expression for (31nf/9T) Taking logarithms,

V,L°

eq 20 can be rewritten as

Inf = 1n(2/3n) + 1nE(T) + InA _(T,P ) + ylnJ

(22)

3n/2_Jn/2)

4+ 1n (A - (n/2 + 1) 1nx

From the definitions of G, vy, and n we have
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alnG - d1nG
oT |V,L dT

3y A A

3T|V,L ~ dT 0 (23)
n - dn

3T|V,L  dT

where d/dT is the total differential. The assumption that dy/dT = 0 is
based on literature datas. Using eq 17

dL (T)
3lnA - 1 0 (24)

aT |V,L LO(T) dT

because of the requirement of constant L(T). Equation 24 can be recast

as

aln) - 1 aLo(T) - - (T) (25)
aT |V,L Lo(T) aT |P o}

since Lo is independent of pressure by our definition. The thermal

expansion ceefficient of the undeformed length is given by
a = 8/3 (26)
o] o

where Bo is the expansion coefficient of the undeformed (unstressed)

volume, Further
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BlnAo 1 aAO(T)
BT |V,L A (D) T [P~ 2a,(T) (27)
and
d1nJ o1 BVO(T) - - 34 (T) (28)
9T |V,L VO(T) 3T )
aan (1 0/ 2_m/2, _
3T v,L
(A3n/2_Jn/2) 2 3T|V,L 2 AT |V,L
3n/2 n/2 3n
+ 0.5(3x 2nx - J ' “2nd) STV, L

By substituting eqs 23, 25,'27, 28 and 29 into the derivative of 22 we

obtain
3inf dinG A dn
= ———— — o il
5T |V,L T a0(3 3y-n) + q(n,i,J) T (30)
where
o) = 1520 - 0,504 m1 1 am 61
i, 2, \3n/2_n/2 n 2

At atmospheric pressure J = 1 and, therefore,



Q(n,2,1) = =22 L = L 2P < q(a,) (32)

The function q(n,A) is displayed in Figure 1 for n=2,1.64, 1,22, and

0.4, We notice that

lim gq(n,X) =0 (33)
A1

Substituting eq 30 into eq 4 we have

u dinG o _ mdn
F = 1 T 3T aOT(3 n-3v) TdT

a(nsksJ) (34)

We note that G must be determined strictly in accordance with the
chosen definition of LO as discussed in the Appendix, Failure to do so
can lead to appreciable error in dG/dT. The same comment applies to
eq 8 also. Equation 34 agrees with the corresponding equation of
Sharda and Tschoegl16 except for the last term on the right which

8,9 of n. Sharda and

arises because of the temperature dependence
Tschoegl had considered this to be zero. As will be shown later, this
is a good assumption for natural rubber, the material with which they
were concerned,
We now turn to the determination of the parameter y. The procedure
15,16 ,
proposed by Sharda and Tschoegl is based on the determination

Because n, G, v, L , A,

- P 3 .
of the force~pressure coefficient (3f/ P)T,L o 2o

Vo are independent of pressure and so is A at constant temperature and

length, Sharda and Tschoegl derive
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olnf|  _ /23?2 35
% |T,L  “T,L | 3n/2_m/z " "

Another method is suggested further on (eq 41),

One of our aims in presenting this paper is to call attention to
the temperature dependence of n. This dependence leads to the predic-
tion that fu/f depends on the degree of deformation, as indicated by
eq 34. 1In contrast to our prediction, most current theories, such as
the Gaussian statistical theory, the Shen-Blatz theoryzz, etc., conclude
that fu/f is independent of deformation. Furthermore, it is also
considered to be independent of the crosslink density. There is
experimental evidence, however, that fu/f may depend both on the
stretch 1:::1t1026“34 and on the degree of crosslinkingBO. The former
discrepancy may be explained partly by recognizing that measurements at
low values of ) are relatively unreliable because of difficulties in
measuring the initial 1ength5’22; however, other literature d.'51t£;128—34
seem to indicate a clear dependence on A even when the deformations are
moderately large.

The work of Sharda and Tschoegll6 had shown that the statistical
theory needs modification in two respects: it is necessary to take into
account the volume (pressure) dependence of the shear modulus, and it is
necessary to modify the dependence of the force on the stretch ratio.
The particular modifications used by Sharda and Tschoegl are not unique
but simple and appear to be adequate.

IT1, Viscoelastic Theory

We now extend our thermoelastic treatment to viscoelastic materials.
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To this end we make use of the concept of the separability of strain and
time effects in the response to a step function of strainﬁ—g. At the
test temperature and pressure the restoring force in a material of

crosslink density v (which may be zero) can be written
£(e LA LT,P3v) = A (T,P (e ,T,P30)0( ,T) (36)

where E is the uniaxial relaxation modulus,  is a suitably formulated
strain function which vanishes as A-1l, and AO(T,PO) is the area measured
at atmospheric pressure and at the test temperature T as required by

our definition of the reference state in eq. 17.

A step function of strain requires an infinitely fast pulling rate
during the imposition of the strain. 1In practice, it is approximated
by a fast but finite pulling rate. Therefore, the true response to a
step function of strain is achieved only after the initial ramp
transients have died out, According to eq 36, curves of the responses
to different strains as functions of time in logarithmic coordinates are
parallel to each other. A typical example is shown in Fig. 2 which
displays data on an uncrosslinked SBR at 23°C and at atmospheric pres-
sureg. The engineering stress, o, in Figure 2 is defined as f/Ao.

From Figure 2 we may take an isochronal cut at tr and crossplot the
engineering stress vs. Kr as illustrated in Figure 3; From this cross-
plot we can separate the uniaxial relaxation modulus %(tr,T,P;v) from
w(lr,T). For the class of materials we are now considering we may use

the Sharda-Tschoegl potential function. Thus
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POLT) = YA _n(D)] (37)

When the experiments are conducted at atmospheric pressure, J=1,
The parameter n andiﬁ(ﬁr,T,P;v) can then be determined by nonlinear
least squares fitting of data such as those displayed in Figure 3.

One may then conduct similar experiments at different temperatures,
keeping the pressure constant. Therefore, n can be determined as a
function of temperature. Simultaneously, one obtains segments of
ﬁ(tr,T;Po,v) at various temperatures. In the next step one determines
the relaxation modulus master curve at the reference temperature T0 and
the pressure Po. The horizontal shift factor an and the vertical shift
factor p(T;To) can be obtained from the ﬁ(tr,T;Po,v) segments by the
13,35

standard procedure used for thermorheological simple materials

*
We call E(tr;To,Po,v) the master curve. It is defined by

;TO,Po,v) (38)

o %*
E(t T3P ,v) = p(T;T YE(t ,a,

We then perform similar experiments at constant temperature but at
various pressures and determine the horizontal shift factor ap and the
1
vertical shift factor p(P;PO). For piezorheologically 4 simple

materials one must obtain the same master curve as that defined by

eq 38. Thus we have

A - *
E(tr,P;To,v) = p(P;PO)E(tr,aP;TO,PO,v) (39)
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Considering that both the constant temperature and the constant
. . .14
pressure experiments should yield the same master curve, and invoking

the free volume theory, allows us to combine eqs 38 and 39 to give

. - *
E(tr,T,P;v) = p(T;To)p(P;PO)E(tr’aT,P;To’Po’v) (40)

Obviously, this procedure of determining a p and 5 is to

T,P’
some extent arbitrary because of uncertainities in the experimental
data. The precision of the procedure can be improved by conducting

' R 14
both constant temperature and constant pressure experiments™ .

It follows from eq 15 that
p(P3P ) = G(D/6(L) = I (41)

But J = l+3AL/L0. Hence, J can be obtained by monitoring the length for
which the force is zero at various pressures, and y can be obtained

from experimental determinations of ﬁ(P;Po). Equation 41 is valid in
shear. However, in the rubbery state, G = E/3 with excellent approx-
imation. The volume ratio determined by the above procedure is not at
constant reduced time t:. However, the rate of volume relaxation is
very fast in the materials we are interested in. Thus the error may

be deemed negligible. By combining eq 36, 40 and 41 we obtain

%
. = . . Y
f(tr,Xr,T,P,v) Ao(T’Po)E(tr’aT,P’To’Po’v)p(T’TO)J W(kr,T) (42)
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According to eq 42 the dependence of the force on tr for given T and P
%

becomes a dependence on tr referred to To and Po. Hence, eq 42

expresses the fact that fu/f is independent of time at the reduced

%
isochronal time tr' Equation 4 can thus be restated as

= *
t 8T |V,L,t_ (43)

The changes in force with temperature must be measured at constant
volume and length, and at the same reduced time. As mentioned earlier,
the constant volume condition is extremely difficult to meet. Hence,
we have to use an equation similar to eq 9 to determine the relative
internal energy contribution to the restoring force at constant reduced

time experimentally. The equation has the form

R *
£ P,L,t
—%Et*=1°T%IT}—f_PLt*'TK’,ia;}fTLt* (44)
r Hs by T,L,t_ bty

where now the volumetric expansion coefficient and the isothermal

*
compressibility are also measured at the reduced isochronal time tr' To

use eq 44 we thus require experimental values of (Blnf/BT)P L t*’
L 2
r
%* * *
(Blnf/BP)T,L’tr, and BP,L,tr and KT,L,tr'

The determination of 31nf/3T and 31nf/5P is similar to that of the
vertical shifts p(T;To) and ﬁ(P;PO). The only difference is that for
these partial derivatives we do not compare moduli but forces at constant

length L. We can measure B and « by monitoring the lateral dimensions,
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or the volume, in the experiments in which 31nf/dT and 31nf/3P are
determined. Simultaneously, we also obtain the information necessary
for the determinationl5 of v by the use of the reduced time form of

eq 35. This can be used to check the accuracy of the determination of
Y by eq 41,

Substituting eqs 37 and 42 into eq 43, we obtain

fu dlnp(T;TO) dn
—————— *= e ettt sy o Ty ——— e
Fle 1 1ot aOT(B n-3v) q(n,A)T a7 (45)

where ao is thermal expansion coefficient at constant reduced isochronal

* .
time tr' In theory this can be determined from

o = lim B (46)
L-L Po’L’t
o
We note that in the soft rubbery region B * and k * will be

. P,L,t_ T,L,t

nearly independent of tr. This considerably simplifies their determin-
ation,

The values of (f/fu)t* predicted by eq 45 can be checked by
comparison with the experi;ental values obtained from eq 44,

In thermcelastic measurements assuming near elastic equilibrium
the force-temperature coefficient can be determined along any of several
paths. The customary path is to change the temperature at several

fixed lengths and to measure the resulting (equilibrium) force. If near

elastic equilibrium is not attained, the requirement that one must work
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at comnstant reduced isochronal time, t:, limits the choice of paths.
The path usually followed in thermoelastic measurements is not conven-
ient because of difficulties in defining the temperature history of the
specimen and, hence, t:. The procedure outlined in this section auto-
matically leads to data at constant t:.

Finally, we must consider the effect of crosslink density on the
internal energy contribution. The statistical theory of rubber

elasticity gives

G = kT <r2> /<r2> =E /3 47
0 £ e .
where v is deemed to be independent of temperature at constant volume.

' 2 2
Both <r %o and <r > however, are temperature dependent. For conven-

f’

ience, eq 47 can be generalized to
E_ = 3tko(T;2) (48)

where ¢ is a temperature independent parameter, and 6(T;z) is an
unspecified function of temperature. Equation 48 would also account,
e.g., for a possible temperature dependence of temporary entanglementsl3.

Substituting this into eq 45 we obtain

Ul o - q _ 4dino(Tz) e - on
1 it aoT(B n-3y) q(n,A) TaT . (49)
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Equation 49 implies that the effect of changes in crosslink density
will only manifest itself through changes in d0(T;z)/dT and through

possible changes in @ s Y, n, and an/3T ,
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IV. Discussion

We now proceed to consider published data on fu/f in the light of
the theory developed in the preceeding sections.
A, Natural Rubber (NR)

We begin with a discussion of NR data. It is known (see, e.g.,
reference 36) that the stress—strain relations predicted by the
statistical theory are not well obeyed by NR., It is claimedé, however
that the behavior of this material closely conforms to the predictions
of the statistical theory with respect to fu/f. This claim is based
primarily on the alleged independence, demanded by the theory, of fu/f
-on the stretch ratio, swelling ratio, and crosslink density. We discuss
these in turn.

5
Stretch Ratio. We consider primarily the data of Allen et all."4

and those of Sharda and Tschoegll6. These represent the only attempts
so far on any elastomer to determine fu/f by using eq 3. From the
experimental procedures followed it is clear that these data were

obtained at near elastic equilibrium.
Allen and co-workers presented data for NR samples of various
crosslink densities. The data obtained with their sample A with

Mc = 26,400 can be fitted best by eq 34 in the form
fu/f = 0,178 - 0.33 q(1.15,1) (50)
We estimated the parameter n from the Mooney-Rivlin constants C1 and C2

supplied by Allen et al. using the nomograph presented elsewhereg. From

eqs 50 and 34 we obtain dn/dT = (0.001/°C. The plot is shown in Figure 4.
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For their sample D with MC = 13,300, the best fit is obtained by
assuming dn/dT = 0. TFor some of their other samples dn/dT is negative.
Sharda and Tschoegl applied eq 34 to their data on natural rubber
using n = 1.64 and assumed dn/dT = O, The fit of their data can be

improved, however, using eq 34 in the form
fu/f = 0.26 - 0.116 q(1.64,A)

from which dn/dT = 0,0004/°C. This value is so small that it could not
be obtained from near-equilibrium measurements in simple tension. Plots
of fu/f vs A for the sample used by Sharda and Tschoegl are also shown
in Fig. 4. We infer that for natural rubber dn/dT is small, and,
consequently, fu/f is sensibly independent of the stretch ratio.

Boyce and Treloar37 determined Mu/M where Mu is the internal energy
contribution to the restoring torsional couple M, by Treloar's38
ingenious torsion-tension test. Data obtained in this test are
independent of any constitutive assumption as are data based on eq 3.
Their data on NR show a definite dependence on the angle of torsion, ¢;
equivalent to a dependence of fu/f on A. Boyce and Treloar37 averaged
over this dependence, considering it to be within the experimental
error,

Roe and Krigbaum39 and Tanaka et all:0 estimated fu/f from eq 7.
This equation tests the statistical theory only inasmuch as the term
3a0T/(A3-1) is derived from eq 5. Nevertheless, their data show a
slight but definite dependence of fu/f on A. Roe and Krigbaum39

attempted to explain this through the dependence of the Mooney-Rivlin
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constants C, and C, on temperature. This is analogous to our attempt

1 2

to explain the same observation through the temperature dependence
of n. As pointed out elsewhere, the so-called Mooney-Rivlin equation
41

. 9
is not a constitutive equation™® .

Swelling Ratio. The Gaussian statistical theory assumes that

changes in the internal energy at constant volume arise solely from
intramolecular interactions. This assumption may be tested by changing
the intermolecular interactions in the network by swelling with inert
solvents and observing whether fu/f changes, In studies on NR swollen
in n—decane24 and in n—hexadecane26 it was found that fu/f was essen~
tially independent of the degree of swelling, q, and of the solvent used.
According to our theory the degree of swelling should have an
influence on fu/f through the parameters dinG/d1lnT, n, dn/dT, and y in
eq 34. Shen26 has shown that fu/f changes very little with the degree

> n again from the

of gwelling from q = 1.0 to 1.5. Inferring
values of Cz/Cl, we deduce that n increases with q. Nothing is known
at present about the effect of q on y. We suspect that compensatory
effects weaken the dependence of fu/f on g. This is in accord with the
findings of Allen et al.24 that the effect of the swelling ratio on

fu/f is not a sensitive test of the statistical theory.

Crosslink Density. Equation 6 implies that fu/f should be

independent of crosslink density provided that the length of chains
between crosslinks is large enough. By contrast, our theory again
predicts a dependence of fu/f on the crosslink density through
d1n®(T;z)/d1nT, n, 3n/4T, o , and y.

The effect of increasing concentrations of dicumyl peroxide on the
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internal energy contribution in natural rubber was studied by Shen
et al.42 and Allen et al.24. Thelr data do not show any discernible
change in fu/f over most of the region they covered.

In Table I we assembled literature data on fu/f for natural rubber.
The second column contains the value of the equilibrium shear modulus
which may be taken as a measure of crosslink densities. The fourth
column contains the range of stretch ratios over which the fu/f values
were averaged to produce the entry in the first column. Columns 3, 5,
and 7 are self-explanatory. In column six we listed the experimental
method used to obtain fu/f. The meaning of the symbols is as follows:
A - simple tension at constant V and L; B - torsion~tension at constant
P,L, and ¢; C - simple tension at constant P and L; D - simple tension
at constant P and T, The data assembled in Table I show considerable
scatter. This is probably explained in part by the use of different
samples, experimental methods, and conditions (e.g. temperatures,
stretch ratios, etc.), and different equations for calculating fu/f.
They do not indicate a definite trend in fu/f with crosslink density
for natural rubber. However, the range of moduli and, hence, degrees
of crosslinking which were covered in these studies is not extensive
(1-6 bar). At lower or higher values of the modulus the situation may
be different., Thus, Shen et al.42 mentioned that their sample with the
lowest crosslink density (0.5 phr dicumyl peroxide) exhibited an
increase in the fu/f value over that of the other samples. At higher
crosslink densities than those covered in Table I we have no information

on n, 9n/3T, ao, or v. However, we do have values of dlnG/d1nT, the
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dominant term in eq 34, as a function G from the work of Wood46.' These
data are displayed in Figure 5. We infer from these data and eq. 34
that fu/f should decrease with increasing crosslink density for moduli
higher than about 7 bar. It has been shown by Xatz and Tobolsky47
that very highly crosslinked polymer networks show no glass transition,
i.e. they are essentially polymeric glasses. It is known that d1lnG/d1nT
is negative for glasses. Hence we suspect that dlnG/dlnT would havg
become negative if Wood had used even higher concentration of dicumyl
peroxide.. Thus, we conjecture that fu/f might show a minimum as a
function of crosslink density,

Wood48 found that dG/dT was constant with temperature and consider-
ed this a vindication of the Gaussian statistical theory. We point out
that the Gaussian statistical theory does not require a constant dG/dT

and a constant dG/dT does not imply Gaussian behavior. Differentiation

of eq 47 gives

d1n<r2> d1n<r2>

1d6 _1ldv 1 o _ f
Gdr ~var TT ' dr at (52)
But dlnv/dT = - danO/dT by the definition of v, and <r2>0 is propor-

tional to the undeformed cross-sectional area at the test temperature.

Hence dln<r2>0/dT = Zao and

] (53)
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Thus dG/dT will not in general be independent of temperature, and its
constancy cannot be considered a vindication of the Gaussian statistical
theory.
B. Other Elastomers

Van der Hoff and Buckler28 showed that fu/f depends on the stretch
ratio for a series of materials. These include ¢{4-1,4-polybutadiene,
poly(dimethyl siloxane), isoprene-acrylonitrile rubber, ethylene-
propylene rubber, and polyisobutylene. Here we shall discuss primarily
the effect of stretch rgtio on fu/f for some other elastomers. Few

data are available on the effect of the degree of crosslinking.

Styrene—-Butadiene Rubber (SBR)., Van der Hoff and Buckler28

calculated fu/f for a crosslinked SBR from older data of Stearns and

Johnson49. The plot of fu/f vs A is shown in Fig. 6 and indicates a

strong dependence of the relative internal energy contribution to the
restoring force in this material on the stretch ratio.

In another paper8 we have presented data on the dependence of the
equilibrium_tensile modulus, Ee, and of n on the temperature for a
crosslinked SBR. Figure 7 shows plots of fu/f vs A predicted from
eq. 34 for this material at three temperatures, The values of n shown
in Fig. 7 were taken from our earlier paper. We used a = 2.8 x 10~4/°C
as determined for thelr SBR sample by Cirlin et al.SO. Since we do not
know the value of vy for this material, we assume that y = 0, The curve
at 23°C lies between those at -10°C and -40°C. We have no explanation
for this inversion at this time,

We have also studied an uncrosslinked (gum) SBR for which n = 0.6.
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The temperature dependence of n and of G for this material is quite
weak over the range studied, i,e, from =40 to 23°C. Thus fu/f is
virtually independent of A, Using y = 0, and a = 2.8 x 10_4/°C, we
obtained the unexpectedly high value of fu/f = 0,79 at 30°C.

Viton A. Roe and Krigbaum29 published fu/f data on Vitom A
calculated from eq 7 instead of the strictly thermodynamic eqs. 3 or 9.
Viton A is a copolymer of vinylidene fluoride and hexafluoropropylene.
Equation 7, being based on the statistical theory, assumes n = 2 but
Roe and Krigbaum's force-elongation data at T = 45°C are better re-
presented by assuming n = 1.48, The best fit of their data in terms

of our theory results as
fu/f = -0,1 - 1,143 q(1.48,7) (54)

which gives dn/dT = 0.0036°C. We could have recalculated the data
according to the appropriate equationsl6. However, this would not have
affected the conclusion that here, as in SBR, fu/f depends on the stretch
ratio.

Crosslinked Polystyrene. Orofino and Ciferri33 presented data on

polystyrene crosslinked with. divinyl benzene. The best fit of their

force-elongation data gives n = 1.95, The data are best represented by
£,/ET = 7.85 x 107 = 0.00266 q(1.95,1) (55)

Thus dn/dT = 0.00266/°C. Both the data and the fit are shown in Fig. 8
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in which fu/fT is plotted on the ordinate instead of fu/f. The data
again show a dependence on A.

Crosslinked Polyethylene. Opschoor and Prins' data30 on radiation

crosslinked polyethylene show a clear dependence of fu/f on the stretch
ratio as shown in Fig. 9 in which again fu/fT is plotted as function of
A for samples with different crosslink densities. Their force-
elongation data indicate that n = 2,0 for crosslinked polyethylene.
The values of dn/dT range from 0.0025 to 0.0041.

A plot of (fu/f) =1 against the Y—radiation dose is shown in
Fig. 10. The curve shows a strong dependence of (fu/f) r=1 O
crosslink density. At A=l, q(n,A) is equal to zero and, hence, accord-
ing to eq 49, the change in fu/f due to the difference in crosslink
density should arise from changes in d1n6(T;z)/dT, as Dy and y. It
appears that in polyethylene dln6(T;z)/dT depends on the crosslink
density. This is consistend with Wood's data on natural rubber (see
Figure 5).
C. Conclusions

In NR fu/f data appear to agree with the predictions of the
Gaussian statistical theory of rubber elasticity. However, one must
bear in mind that swelling measurements do not afford a sensitive test,
that there is a small but probably real dependence on the stretch
ratio, and that there are indications that fu/f may depend on the cross-
link density outside of the range that has so far been investigated.

The picture is different if we consider other elastomers. A
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definite dependénce on the stretch ratio appears to be discernible in

a number of materials as discussed above. The conclusion that‘fu/f is a
function of the stretch ratio had been reached independently by various
authors28’30’39’51. The evidence for a dependence on the degree of
crosslinking is scantier because of the lack of experimental data. A
clear dependence is shown, however, for crosslinked polyethylene.

Our phenomenological theory can account for the observed behavior.
We conclude that NR may not be the best material for testing the
_ statistical theory through measurements of fu/f' In terms of our
theory this arises primarily from the weak dependence of n on T in this
material over the range of temperature and crosslink density over which
it has been investigated. We note that the stress-strain behavior of NR
does not conform well to the predictions of the statistical theory
either, ﬁy COﬁtraSt crosslinked polystyrene or polyethylene with
values of n close to 2 in the rubbery region would conform closely to
the statistical theory in their stress-strain relations according to
our theory, but would, nevertheless, show dependence of fu/f on A
and/or v.

We have proposed a phenomenological theory which should allow
extension of measurements of fu/f to uncrosslinked materials. This
raises interesting possibilities. E.g. in styrene-butadiene gum
stock n = 0.6 and dn/dT = 0. Thus, in the light of our theory it
should deviate strongly in its mechanical behavior from the equation

o = c(x-2"%) (56)

but should show no dependence of fu/f on A.
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Appendix

It is clearly important that the reference length Lo should be
defined in a consistent manner in deriving a set of interrelated data.
Failure to do so can lead to appreciable error in fu/f.

Let us consider a specimen subjected to a uniaxial stretch A at
temperature T and atmospheric pressure. Since J=1, eq 19 takes the
form

n/2

£f =20 AO(T')[An-(J/A) 1/nA (AL)

Ao(T) is the undeformed cross-sectional area at the temperature T. 1In

force-temperature measurements at constant length

* —
A=A /Ao = L(T)/LO(T) (A2)
where
*
AT = L(T)/LO(TO) | (A3)
and
A, = LO(T)/LO(TO) (A4)

L(T), LO(T), and Lo(To) are the deformed length of the specimen at
temperature T, the undeformed length at the same temperature, and

undeformed length at the reference temperature To’ respectively, The
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stretch ratio arising from the linear thermal expansion of the specimen
from Lo(To) to LO(T) is Ao and A* is the apparent stretch ratio referred
to the undeformed length at TO.

Let us denote the undeformed cross-sectional area at T0 as Ao(To)'

We then have
A (T) = A (T ) 2 (A5)
o o] [0} (o]

Substituting eqs A2 through A5 into Al we obtain

£ = 26 A @)@ M2 (46)

where
5, - %I(%’T =2 1= % =14 30 (1-1) (A7)

Equation A6 can be rewritten as
£ = 26" (1) Vo /A*)“/Z]/nx* (A8)
o o o

where

¢ =g 3103 (A9)

[}

% *
G is an apparent shear modulus defined in terms of X instead of 2.

Therefore, a change of the reference length from LO(T) to Lo(To) changes
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the modulus but does not change the value of n. Furthermore, if J#1,
*
the restoring force f does not reduce to O when » - 1. Differentiation
of eq A9 with respect to temperature leads to
-n/

*
dc_ _ ; 1-n/3 d¢ 1-n/3

4ar o dT

dn

T (A10)

+6Gn) a3 T3 - 1e/3)3 13 a1 )

Equation A9 indicates that G* does not differ too much from G.
However, dG/dT is quite different from dG/dT.

We 1llustrate this on hand of data determined on natural rubber in
our laboratory. With a reference temperature of 25°C and a test temper-
ature of 60°C, G = 6.22 bar at the test temperature, n = 1.64, a = 2.30
9.86 x 10_3 bar/°C, we find G*

X 10‘4/°c, dc/drT 6.33 bar and

il

dG*/dT = 12,78 x lO_3 bar/°C, assuming that dn/dT = 0. Thus fu/f at
60°C calculated from dG*/dT is 0.090 1lower than that calculated from
dG/dT. It is clear that application of eqs. 9 and 34 requires very high
precision in the determination of G. Thus, Shen and Blatz22 have noted
that specimen end effects can have a significant influence on fu/f.

52
As shown elsewhere the ratio of free to bonded area in the specimen

should be at least 50:1.
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TABLE I

Values of Relative Internal Energy Contribution (fu/f)
to the Restoring Force in Natural Rubber

fu/f G(BAR) T(°C) X X link. Expt. Ref.
0.107 1.69% 30 1.08+>1,948 DCP A 24
0.145 2.69% 30 1.474>1.982 DCP A 24
0.143 4,50° 30 1.180+1, 902 DCP A 24
0.120 2,642 30 1.445%2.095 DCP A 24
0.123 4,572 30 1,130+1.484 . DCP A 24
0.23 5,87 25 >1.25 S A 16
0.126 3.7 20 1.13+1.25 DCP B 37
0.18 - 50 1.42+2,58 Rad c 43
0.13 2.09 30 1.0+2.0 DCP cP 22
0.33 2,10 30 1.0+2.0 DCP c© 22
0.18 5.97 30 1.0+2.0 DCP D 26
0.15 5.97 30 1.0-2.0 DCP C 26
0.18 4,62 30 0.9+1.7 DCP E 4b
0.18 3.9 30 >1.30 Rad C 45
0.18 4,12 30 >1.30 Rad C 45
0.18 3.12 30 >1.30 DCP C 45
0.18 5,22 30 >1.30 S c 45
0.25 3,492 45 1.3 Rad c 39
0.11 3.49% 45 2.5 Rad c 39
0.215 - 50 1.0275 S c 40
0.068 - 50 2.76 s C 40

a Obtained from the Mooney-Rivlin Constants Cl and C2.

Butt jointed sample

¢ Sandwiched sample
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APPENDIX

TABLES FOR CHAPTER 3
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Table 1

Superposition of ramps on finite stretch

SBR 1502 Gum - 17°C n= 0.6

t—tr = 0.1 min R(t—tr) = 17.54 bar
1. t = 10 min E(t ) = 4.93 bar

Ar 1.0228 1.0685 1.229 1.572
¢ min 1 0.01141  0.0228  0.114 0.228
R(t—tr)bar
solid model 17.2 16.9 15.48 13.2
liquid model 17.18 16.5 15.08 12.07
experimental  16.1+.8 16+0.8 16.2+0.8 12.9+0.8
II. t, = 300 min E(cr)= 3.425 bar
A= 1.7904

r

¢ = 0.039 min T
R(t-tr)bar

Solid model 11.98
liquid model  10.226

experimental  12.2140.5

1.915 2,424

0.228 0.228

11.71 10.2
9.83  8.23

12.140.8  9.96 +0.8
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*Estimated from the figures in reference 11

Table II Superimposed dynamic storage modulus (ES') and loss modulus

(Es") of SBR*

SBR (0°C)
]
ArEs (psi)
£ (HZ)
::f\\\ 0.01 0.025 0.05 0.1 0.25 0.5
1.53 3.17-3.22  3.5-3.6  3.9-4.1  4.2-4.35  4.35-4.5  4.45-4.6
1.96  4.35-4.50  4.45-4.58 4.6-4.8  4.8-5.05  5.05-5.26  5.2-5.32
ArES" {psi)
1.53 1.5 1.9-2.06 2.16-2.4 2.37-2.63 2.76-3.0  2,9-3.1
1.96 2.1 2.45-2.75 3.1-3.35 3.4-3.6 3.6~3.85  3.8-4.05
CESN = 1.96
I
: mean = 1,365, standard deviation = 0.11

A E"
¢ rs 4‘: = 1.53

(ArEs"ﬂxr = 1.96

(A E'")
rs br = 1.53

mean = 1,27)] - standard deviation = 0.07
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*Estimated from the figures of reference 11,

TABLE III Superimposed dynamic storage modulus (ES')

and loss modulus (ES") of Estane x-100%

Estane x-100 (~1°C)

E}A_ (psi)
Y oo o025 0.05 0.1 0.25
1.55 1.9 2.3-2.65  2.7-3 3.3-3.95  3.95-4.8
1.99 3.4 4.6-5.3 4.8-5.7  5.8-6.35  7-1.6

" '3
Esxr (psi)

1.55 0.68-0.79  0.84-1.07 1.4-1.52 1.9-2.4 2.7-3.3

1.99 1-1.4 1.9-2.6 2-2.8 2.8-3.4 3.7-4.25

[ 4
(E Ar)[xr = 1.99
’
€ Xrﬁar = 1.55
"
(E lrﬁr = 1,99

"
(B Ar?&r = 1.55

mean = 1.81, standard deviation = 0,266

mean = 1.72, standard deviation = 0.56





