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Abstract

In this work, we consider the numerical calculation of water waves in three di-
mensions. One well accepted method for studying surface waves is the boundary
integral method, which defines the fluid velocities at the interface in terms of inte-
grals over the boundary of the domain in which the problem is posed. There exists
a considerable body of work on the numerical study of surfé,ce waves in two dimen-
sions. However, until recently the numerical study of surface waves was considered
intractable because of the high computational cost of approximating the defining
integrals.

We discuss the boundary integral formulation for the three-dimensional water
wave problem and present the point vortex approximation to the singular integrals
which define the particle velocities. We consider three aspects of the point vor-
tex approximation: accuracy of the approximation, efficient means of computing
solutions, and numerical stability of the scheme.

Concerning the accuracy of the point vortex method, we analyze the error asso-
ciated with the approximation and show that it can be expressed as a series in odd
powers of the discretization parameter h. We present quadrature rules which are
highly accurate.

The efficient computation of the point vortex approximation is achieved through

the use of the fast multipole algorithm, which combines long distance particle inter-
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actions into multipole expansions which can be efficiently evaluated. The underlying
periodicity of the problem is reduced to a lattice sum which can be rapidly evalu-
ated. We discuss the implementation of the numerical schemes in both serial and
parallel computing environments.

The point vortex method is shown to be highly unstable for straightforward dis-
cretizations of the surface. We analyze the stability of the method about equilibrium
and discuss methods for stabilizing the numerical schemes for both the linear and
nonlinear regimes. We present numerical results which show that the method can
be effectively stabilized.

In the final chapter, we present numerical results from several calculations of

three-dimensional waves using the methods developed in the previous chapters.
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Chapter 1

Introduction and Background

Many different physical problems involve the time evolution of propagating inter-
faces. In many instances, the motion of the interface can be defined in terms of
surface integrals on the boundary of the domain in which the problem is posed.
This type of formulation is advantageous for computing solutions numerically be-
cause the effective dimension of the problem is reduced. For example, surface waves
in three dimensions can be computed in terms of two-dimensional integrals. Thus,
boundary integral methods have the potential of being significantly less costly to
compute than methods which define the fluid motion in terms of the entire vol-
ume of fluid. Additionally, free surface problems often involve quantities which are
not continuous at the interface. Boundary integral methods are advantageous in
that they avoid the difficulty of computing derivatives of variables which are not
continuous across the interface.

One class of propagating interface problems to Which boundary integral methods
have previously been applied is the study of deep water waves in two dimensions.
In one of the earliest of these studies, Longuet-Higgins and Cokelet [17] used a
boundary integral approach to study plunging breakers on deep water in two dimen-
sions. Baker, Meiron, and Orszag [1] applied iterative boundary integral methods
to the study of two-dimensional water waves in order to improve both the computa-
tional storage requirement and the arithmetic operation count. Others have applied

boundary integral methods to the study of two-dimensional water waves with sur-



face tension and with finite depth. These include Vinje and Brevig [29], Roberts
(23], and New, Mclver, and Peregrine [21]. Boundary integral methods have also
been used to study multi-fluid interfaces and vortex sheet roll-up. See for example
[28] and [27].

The primary difficulty in numerically calculating surfaces waves using boundary
integral methods is the calculation of the velocity and velocity potential at the
interface. These quantities are defined in terms of singular integrals. In the case of
three-dimensional potential flows, the integral which defines the velocity is a singular

Biot-Savart integral of the following form for a vortex sheet:

1

u(x) = in

/Sln(x') x VxG(x,x")dS’ (1.1)

where k=1 X [u; — up] is the vortex sheet strength, A is the unit normal to the
interface, u; — uy is the jump in interfacial velocity at the vortex sheet (u; is the

velocity above the interface), and

1

Cx=x

G(x,x') = (1.2)

One approach to numerically evaluating this singular integral is the point vortex
method. The point vortex method as we and others have applied it is the trape-
zoidal rule for integration, excluding the singular contribution. Goodman, Hou,
and Lowengrub [7] showed that for the Euler equations in two dimensions, the point
vortex approximation to the Biot-Savart integral converges and the error is a series
in powers of h? where h is the local mesh size. Lowengrub, Shelley, and Merri-
man [18] explicitly computed the coefficients of the error series for the point vortex
approximation to the two-dimensional Biot-Savart integral for a rectangular grid.
In their study, the authors applied the Poisson summation formula generalized to
singular functions to determine the coefficients of the series. Hou and Lowengrub
[11] also showed convergence of the point vortex method for the Biot-Savart law in
the case of the three-dimensional Euler equations. In the case of a vortex sheet in

two dimensions, Shelley [25] showed that removing the first-order error term from



the point vortex method gives a spectrally accurate method. Hou, Lowengrub, and
Krasny [12] proved convergence of the point vortex method using the desingulariza-
tion technique that Shelley presented.

In their early work on overturning water waves in two dimensions, Longuet-
Higgins and Cokelet [17] observed numerical instabilities. Roberts [23] discussed
the existence of sawtooth instabilities in surface wave calculations. More recently,
studies of the point vortex method applied to free surface problems in two dimen-
sions have shown that straightforward spatial discretizations and quadrature rules
can lead to extremely unstable schemes. By studying the leading order discrete
quadrature and derivative operators, Beale, Hou, and Lowengrub [3] showed that
some Fourier filtering of surface variables is necessary for the scheme to be stable.

The extension of the two-dimensional water wave problem to three dimensions
introduces a number of challenges. In two dimensions, spectrally accurate quadra-
ture rules can be defined to approximate the velocity and velocity potential. How-
ever, these quadrature rules cannot be extended to three dimensions. In addition,
the approximation of the integrals using the point vortex method requires O(N*)
calculations where N is the number of particles used to discretize the surface in
each dimension. Even for relatively small values of N, the number of calculations
required makes a straightforward application of the point vortex method imprac-
tical. Finally, as with the two-dimensional problem, the three-dimensional water
wave problem is susceptible to severe numerical instabilities.

In the present work we consider the numerical calculation of water waves in three
dimensions using a boundary integral formulation with the point vortex method used
to approximate the singular integrals. In Chapter 2 we present the boundary integral
formulation for water waves. In Chapter 3, we present and analyze the point vortex
approximation to the singular integrals. We develop high-order quadrature rules
for computing the singular Biot-Savart integrals using Richardson extrapolation. In
particular, we show that the error in numerically approximating the integrals is a
series in odd powers of h where h is the local mesh size. In Chapter 4 we present

methods for efficiently computing the singular integrals and provide details on the
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numeri(‘:al implementation of the method. We approximate the point vortex method
using a fast multipole algorithm which reduces the operation count for computing
the integrals to O(N?). In Chapter 5 we analyze the stability of the point vortex
method near equilibrium and present several methods for stabilizing the scheme. We
apply these stabilization methods to a nonlinear problem and compare the results.
In Chapter 6 we present results from several numerical experiments of nonlinear

three-dimensional water waves. In Chapter 7 we briefly summarize our work.



Chapter 2

The Boundary Integral Formulation

2.0.1 General Formulation

We consider an interface separating two incompressible, inviscid, irrotational fluids
as in Figure 2.1. We assume the interface to be free from surface tension. We
parameterize the interface using surface parameters r and s so that x(r,s,t) =
(z(r,s,t),y(r,s,t), z(r, s,t)) where t is time. We label the region above the interface
as region 1 and that below as region 2. The normalized tangent vectors of the

surface t; and t9 are defined by

ox ,|0x ox  |0x

t1 = 57: E and t2 - 5‘; g (21)
and the normal to the surface i1 is defined by
ox Ox
. o s
or Os

The velocity field u; (ug) is the velocity above (below) the interface. We define
uy to be the limit of u; approaching the interface from Region 1 and u_ to be the
limit of uy approaching the interface from Region 2.

The flow in each region is irrotational, so we can introduce the velocity potentials

¢1 and ¢y given by u; = V¢, and uy = Vy. Since the flows are incompressible,



Region 1

Region 2

Figure 2.1: Regions 1 and 2 with the normal vector @i pointed into region 1 and

tangent vectors t; and ts.

the velocity potentials satisfy Laplace’s equation:
Vi = V2 = 0. (2.3)

The motion of the interface is defined by

ox

5 =6 (2.4)

where @ = (@, 7,W) is the velocity of particles on the interface. The kinematic
condition that the interface moves with the fluid requires that the normal component
of velocity be continuous at the interface. However, the tangential velocity at the
interface is arbitrary. We therefore have some freedom in choosing 1.

The continuity of normal stresses gives the Bernoulli equation which expresses

the time evolution of ¢_. At the interface, we have

D¢_ 1
D;ﬁt — Uu_ — dv_ — Dw_ + §(u2_ + 02 +w?) +gz=0. (2.5)



In order to use these evolution equations, we need a method for computing the

velocities. The method we develop here relies on singular Biot-Savart integrals.
The interface can be considered as a distribution of dipoles of strength density

n(¢p_ — ¢y )/4m (see, for example, Saffman [24]). The potential at a point off the

interface is defined as
$o,,2) =~ 5 [ DA - TGl XS, (26)
Sl

where i is the normal to the surface, y = ¢_ — ¢4, and

1

x — x|

G(x,x')=— (2.7)

Depending on the direction from which we approach the interface, the potential
assumes the value ¢_ or ¢. On the interface, the integral is defined by a principal

value integral, which we denote by ¢. The value ¢ is the mean of the two limits:

b(r, s) = @-'Qi?t. (2.8)

Using this relation and the definition of 1, we obtain a Fredholm integral equation

of the second kind:
=2¢_ —2¢p=2¢_ + —/ 'G(x,x")ds, (2.9)

where the integral is a principal value integral. This equation can be solved by
iteration on u.
The velocity jump at the interface can be defined in terms of derivatives of the

dipole sheet strength:

(6_}( )8,u (8xx )By

X
_ \0s or or Js
u_ —u, = O o . (2.10)
or  0Os

This gives a formula for the vortex sheet strength k= fi X (uy —u_) in terms of the



derivatives of u:

_0x0p  Ox0p
ds Or  Or Os
K xR (2.11)
or  Os

The fluid velocity off the interface can also be defined using a boundary integral
(see Saffman [24]):

! / R(x') x VxG(x, x)dS" (2.12)

U(J},y,Z) = —4_7_(_— g

The value of the Biot-Savart integral on the interface u(r, s) is defined by a principal

value integral whose value is given by

_ug+u_

u(r,s) = 5 (2.13)

Since we can explicitly compute the tangential derivatives of ¢, we need only
compute one component of u using the Biot-Savart law. The other components are

then determined by the following relations:

O¢ 0x
= = =. 2.14
or ar (2.14)
0¢ ox
= - == .. 2.1
O0s as U (2.15)
We now define u_. Noting that u_ — u; = —k x 11, we have
1 .
u- =u-— oKX (2.16)
The particle velocity @ often takes the form
Dx  _
D—t :u:u+a(u_ —u+). (217)

Table 2.1 shows representations of u1 for various values of a. The value of o is

usually taken to be 1.



a u
-1 ] uy
0 u

1 |u_

Table 2.1: Values of 4 for various a.

We now have a method for calculating the time evolution of water waves given

an initial surface x and interfacial potential ¢_:
1. Compute p from the Fredholm integral equation.
2. Compute & from p.
3. Compute u using the Biot-Savart law.
4. Compute u_ and 1.

5. Step x and ¢_ forward in time.

2.0.2 Fixed Grid Formulation

We have implemented a simpler formulation that constrains the particles to move

vertically. That is, we take

dx

—~ = §= 2.1
7 =0 (2.18)
dy s

- = = 1
7 =0 (2.19)

We define r = z, s = y, and z = n(z,y) where 5(z,y) is a single valued function of z
and y. The surface is then defined by x = (z,y, n(z,y)). We are allowed to impose
the vertical velocity constraint because the tangential velocities are arbitrary. The
condition that the normal velocity be continuous at the interface then specifies the

value of the vertical velocity w:

(2.20)

[=1]
=
I
F
=13
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Using this we write

on an on
5~ D= Wo U — v y° (2.21)

Using this formulation gives a simplified formula for the vortex sheet strength

and the velocity u_. If we define

9 )
Ye(z,y) = a—xu(w,y) and v, (z,y) = @u(ﬁc,y), (2.22)

then we have the following expression for K in terms of u:

)

. . (O on
Yyl — Y2J + (am'Yy - ay')’z)

Jie (3) (&)

After computing u = (u, v, w) from the Biot-Savart integral, we can compute u_ as

(%) %)

(2.23)

K(a,y) =B x fuy —u_] =

follows:

’u)__ ol
an\?  [on\? ’
”(%) +<5.1;)
_ 0¢- In
e (2.24)
_ O¢- on
v_ = 8y w_ay

The algorithm for computing the velocities and stepping 7 and ¢_ forward in
time are essentially the same as in the general case, with the time evolution equations

for  and ¢ given by

Dn -
D¢y 1 2 2 2
Dy = Uw--—3 (v +v2 +w?) —gn (2.26)
- on on
= W_ —U_—— —V_—. 2.2
w Wo U Y 3y (2.27)

In the next chapter we present and analyze a method for approximating the
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singular integrals which define the velocity and velocity potential of the surface

wave.
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Chapter 3

Numerical Analysis

3.1 The Point Vortex Method

We are interested in the computation of the singular Biot-Savart integrals which
define the velocity and the velocity potential. We limit ourselves to the former and
note that the analysis of the integral defining the potential is similar. We consider
the case of the fixed grid formulation. The extension to the more general case is not
difficult. We assume that 7, v;, and vy, are periodic in z and y with period 2. We

can express the velocity integral as follows:

u(z,y) = %/S’n(x') x VxG(x,x)dS’
1 o0 [e’] [ai + ﬁj + (512] d.iE’dy’
- = 3.1
dm [—oo /—00 [(z —2)2 + (y = ¥)? + (n(z,9) — (', ") 2> &y
where
[g—Z(w’, Y (', y') — g—Z(m’, Y )y (2 y’)] (y—1v')
_718(1‘/7 y,) [77(907 y) - 77(93', yl)] ’
p =[S ) - S )] - o)
—y (', y") [n(z,y) —n(=',9)],

6 = v,y )z —) + v y)y -y
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In order to simplify the notation, we consider the evaluation of the velocity at
the origin. That is, we set (z,y) = (0,0) and drop the primes. Our conclusions
are valid for general (z,y). We also limit discussion to the evaluation of the z-
component of u(z,y) = (u,v,w). The cases involving the other components are

completely analogous. Applying the simplifications mentioned above gives

__ Lo 272(2,y) + y7y(2,9)
200 =5 [ 00 - O

The point vortex method approximation to w(0,0) is an application of the two-
dimensional trapezoidal rule, excluding the singular contribution. If we define the
integrand to be f(z,y), and denote the approximation of w(0,0) by wa(0,0), then

the method is defined as follows:

wa(0,0) = K> 3" [(j1h, j2h) (33
J#0 .
where h = 2n/n, (z,y) = (jih, joh), and j = (j1, j2)-

The computation of the sum in this form would be impractical because of the
infinite range of summation and the slow decay of the Green’s function kernel. In
Chapter 4 we detail several methods for approximating this sum efficiently, including
the Ewald summation technique and fast multipole algorithms. In the remainder
of this chapter, we study the error of the point vortex approximation and develop

high-order quadrature rules.

3.2 Richardson Extrapolation

In order to develop quadrature methods which are highly accurate, we examine the

€rror

E = w4(0,0) —w(0,0). ) (3.4)

Based on the studies mentioned in the introduction, we suspect that E should be a

series in powers of h. If this is the case, then we can use Richardson extrapolation
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to obtain a higher-order method for computing w. In practice, we apply Richardson
extrapolation by noting that it is equivalent to assigning weights to each grid point.

This gives a modified definition of w4:

wa(0,0) ———h2 Z Z wi; f (ih, 5h). (3.5)
i=—3+1 j=—%+1
(m)#o

Here w;; is the weight associated with Richardson extrapolation. As an example,

let I4[h] be the numerical approximation to I. If we know that
Io[h] =T+ Cih+ Coh? + - -, (3.6)
then we can use Richardson extrapolation by noting that
IA[2h) = I +2C1h+ 4Coh* + - --. (3.7)
Subtracting I4[2h] from 214[h] gives
2Ia[h] — Ia[2R] = T — 2C5h® + - --. (3.8)

We see that the first-order term has been removed, leaving a second-order approxi-

mation for I. To determine the weights w;;, we define the function g(i, j) to be:

o 1 if¢ and j are both even
9(i,j) = : (3.9)
0 otherwise

Using this definition, we write

214[h] — I4[2h] = ——Wh2 i f(ih,jh) (3.10)

=Tl j=— B4l
(i.4)#0
E.

|3

ﬂ

+ - 4h2 Z Z f(2ih, 25h)

i=—241j=—2+1
(1,5)#0
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1 > s . o
_Eh2 Z Z [2_49(23.7)] f(/Lha]h)
i:-%-{-lj:—%-}—l
(i,5)#0

From this we see that the definition of w;; for a second-order method would be
wij =2 —49(1, 7). (3.11)

The condition that g(i,5) = 1 occurs when ¢ and j are both even and this occurs
when the lattice point (4,j) contributes to both I4[h] and I4[2h]. Thus, lattice
points contributing only to I4[h] have w;; = 2 while those contributing to both
sums have w;; = —2.

In our numerical experiments with (3.5), the application of Richardson extrap-
olation led us to believe that E can be expressed as a series in odd powers of
h. In Figure 3.1, we show a calculation of the error associated with the point-
vortex method and the first two applications of Richardson extrapolation. The first
application of Richardson extrapolation yields a third-order method. The second
application of Richardson extrapolation is applied so as to explicitly remove the
third-order term. This yields a fifth-order method. If we assume a series in integer
powers of h and apply Richardson extrapolation, the first and second applications of
the method both yield a third-order method because there is no second-order term.
In Figure 3.2 we show the slopes (in absolute value) of the respective error curves

in Figure 3.1. In this example, we have taken

n = sin(z+y) + cos’(z +y),
vy = 0, (3.12)
vy = —2[sin(y) + cos(y)].

The figures show (as expected) that the point vortex method is a first-order method.
The successive application of Richardson extrapolation yields third- and fifth-order

methods, respectively. This suggests that the error is a series in odd powers of A.
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The analysis of the method which follows confirms this claim.

3.3 Analysis of the Point Vortex Method

In order to justify the general use of Richardson extrapolation, we must demonstrate
that the error associated with the point vortex method has the appropriate form.
Our analysis of the method relies on two different approaches. The first approach,
which demonstrates that the error is a series in odd powers of A, is based on work
by Goodman, Hou, and Lowengrub [7]. The second method is an application of
the two-dimensional Euler-Maclaurin summation formula which demonstrates how
to construct the coefficients in this series. Because of the comparative simplicity of

the method of Goodman et al., we discuss their ideas first.

3.3.1 The Form of the Error

We consider the point vortex approximation to the integral

I= /_o:o /_O:o K(z,y)p(z,y)dzdy, (3.13)
where
1
K(z,y) = , 3.14
) (52 + % + (n(0,0) — (=, )2 19
and
P(,) = ~ o= a(@9) + (@ 9)]- (3.15)

We assume that v, and -y, are smooth, periodic, and bounded in z and y. The error

FE associated with this approximation is defined by

o0 [o.¢] 00 fo'e)
E=1Y Y K@aypow) - [ [ K@ypeydedy  (3.16)
i=—o0 j=— —00 J—00
(4,4)#(0,0)
where we use the notation (z;,y;) = (ih, jh).

Following the treatment of Goodman et al., we split F into a near field part, o,

and a far field part, 7. To do this, we define a cutoff function f;(s). We take f; to
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be a function which is smooth for all s and which satisfies the following: f1(s) =1
if |s| <1, f1(s) =0if |s| > 2, and fi(s) varies smoothly from 0 to 1 for 1 < |s| < 2.
We also define fo(s) =1 — f1(s). We take 0 < ¢ < 1 and define

o = h2 Z Z K(:L‘Zay])p(mlvy])fl(h_q|xk|)
i=—00 j=—00

(4,5)#0
_/_oo /_oo K(z,y)p(z,y) f1(h~x|)dzdy, (3.17)

and

(e ©] o0
o= B Y Y Kz y)p(eiys) fo (b0 xil)dady
I=—00 j=—00

(i.1)#0
- /_oo /_oo K(z,y)p(z,y) f2 (R~ |x[)dzdy, (3.18)

where x = (z,y) and xx = (z;,y;). To analyze o, we express K(z,y)p(z,y) in a
series expansion in z and y. Since p(z,y) has no singularities, we have the following
expansion for p:

p(z,y) = pgz +pjy + - + O(1x|Y) (3.19)

for any N, where we use the notation

0
0
p) =~ . (3.20)
0% |(2,4)=(0,0)
We expand the denominator of K (z,y) as follows:
3/2 :
|22 + 7 + (1(0,0) — n(z,))"] " = (3.21)
224y + (m5z + nYy)? + (nde + ndy) (nle2® +nly + 20y wy)

e+ (/)

3/2 02 + nly) (1, + 2, + 21 i
(a$2 +by? 4 dxy) 214 (1% + 1y Y) (Mg ®” + Ny + 203, TY) b
(az? + by? + dzy)3/2
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for any N. In this equation, we have

a = 1412(0,0), (3.22)
b = 1+172(0,0), (3.23)
d = 2n-(0,0)n,(0,0). (3.24)

From the above results we have that

where C),(z,y) is homogeneous of degree n — 2 in x. In addition, C,, is even in x

for odd n and odd in x for even n. Since f1(|x]) is even in x, we have

/ Z / °; Coa(, ) 1 (B x| dzdy = 0 (3.26)

for n even. The substitution (z,y) = h?(n1,n2) gives, for n odd, that

/_O:o /_O:o Cr (2, ) f1 (h™|x|)dzdy = h™" /_"; /_O:o Cr(n1,m2) f (Inl)dmdnz,  (3.27)

where 1 = (n1,72). We define a,, as follows:

Gn = /_o:o /_O:O Cn(n1,m2)f (In])dnrdns. (3.28)

We now analyze the discrete sum in o (3.17). Again using the fact that fi(x) is

even in x and Cp(z,y) is odd in x for odd n, we have

BSOS Culhi A (k) =0 (3.29)

I=—00 Jj=—00
(4,7)#(0,0)

for n even, where we define k = (i, 5). For n odd, we make use of the homogeneity
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of C,, to rewrite the sum as follows:

W25 S0 Culhi,hj) fi(h9E]) = B"S,(h), (3.30)
I=—00 J=—00
(4,7)#(0,0)
where
Suh)= 3 3 Culi, ) A(RTIK)). (3.31)
T 0.0

Goodman et al. [7] show that Sy, (h) can be expressed in the following form:
Sn(Rh) = Dy, + bph ™09 + O(AN) for any N, (3.32)

where D,, is constant and b, depends on the cutoff function f;. Combining this

result with the result for the integral terms (3.28) gives
0 =Dih+D3h3 +---+dh? + d3h3 + - + O(hY) for any N (3.33)

where we take d; = b; — a;.
The theory of numerical quadrature tells us that 7 = o(h?) for any N since the

integrand has no singularities and decays at infinity. This gives
E=0c+7=Dih+Dsh®+-- +dih? +dsh’ 4+ -+ O(hV). (3.34)
Since E must be independent of ¢, we conclude that d; = vaor any 4. This leaves
E=0+47=Dh+Dsh3+---+O(h"). (3.35)

The fact that we have a series in odd powers of h rather than in even powers of h

(as in Goodman et al.) is due to the form of K.
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3.3.2 Computation of the Coefficients: Overview

The computation of the coefficients is based on studies of the Euler-Maclaurin sum-
mation formula. Our approach follows closely that of Sidi and Israeli [26] and Navot
[20] who studied 1-dimensional singular integrals. We first sketch the approach and
then cite some examples.

Recall that we are studying integrals of the form

I= /_o:o /_o:o K(z,y)p(z,y)dzdy (3.36)

where K (z,y) is defined by (3.14) and

p(:l:,y) — _x7z(m7y)z;ry7y(x7y) (337)

= zg(z,y) + ya(z, y).

As before, we assume that v, (z,y) and v, (z, y) are smooth and periodic in z and y,

with period 27 in each variable. We take I4 to be the point-vortex approximation

to I:
o0 o0
Is=h > Y flziy), (3.38)
I=—00 j=—00
(4,5)#0
where we have defined
f(z,y) = K(z,y)p(z,y). (3.39)

The error F is defined by £ = 14 — I.

The derivation of the coefficients follows the method outlined by Navot [20]
which extended the (1-dimensional) Euler-Maclaurin summation formula to include
functions with branch singularities. Navot’s basic approach is to apply the Euler-
Maclaurin formula to a region where the integrand is non-singular, and treat the
singular region separately. We here outline the approach and leave the details to

the next section. We begin by defining the following:

T= RQ/{[—h, R] x [=h, h]}, (3.40)
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Ir= [ [ 1@.ydady (3.41)
h h
Is= [ [ f@vdedy (3.42)
IAS — f(ha h’) + f(h'7 _h) +4f(_h‘a h’) + f('_h" —h) (343)
f(0,h) + f(h,0) + f(0,—h) + f(=h,0)
5 .
We rewrite I as follows:
I = /_O:o /_O:O f(z,y)dzdy (3.44)
= Ip+1Is.
We define 14, as follows:
Tp, =14 —I4a,. (3.45)

We have defined 14, in such a way that I4,. is the trapezoidal rule approximation

to IT. We then use the Euler-Maclaurin formula to analyze Ep:
Epr =14, —Ir. (3.46)

We analyze Eg = I44 — Is by expanding p(z,y) in a series about (0,0). Combining
the results for Epr and Eg yields a series in odd powers of h. We remark that we
have subdivided the domain of integration in such a way that the KEuler-Maclaurin
formula is applied only on a domain where the integrand and its derivatives are
non-singular.

The Euler-Maclaurin formula is usually applied to integrals where the domain of
integration is independent of A. OQur application of the Euler-Maclaurin formula is
different in that we apply the formula to an integral where the domain of integration
depends on h. We note that while the domain upon which the formula is applied
is arbitrarily close to the singular point, the use of the formula is valid since the

integrand and its derivatives are nonsingular on the domain. We also note that
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this approach can be used to study the error in approximating each of the singular

integrals that we compute using the point-vortex method. |

3.3.3 Examples

In order to simplify the notation, we make the following definitions:

of

) o f .
‘7 = — ] pr— .

The function P, (z) is given by

(3.47)

(3.48)

where B,,(z) is the Bernoulli polynomial of order m on [0, 1] extended periodically.

B; is the 4’th Bernoulli number.

Because the notation and formulas are lengthy and somewhat cumbersome, we

present the complete formula only for the simplest case involving a flat interface.

We assume the following:

n(z,y) = 0
YW(z,y) = 0
'Vz(mvy) = 'Yz(w)

Given these assumptions, the formula for the error expansion is:

m—1
E =) Dy_1h®* 1+ O(n*™Y),
k=1

where

m
By,

(3.49)
(3.50)
(3.51)

(3.52)

1 1
_ 27—1 21
Doy = —4 ;:1 )] [/0 D37 Co—1(1, y)dy +/0 D" Cog—1(z,1)dz

m
B _ _
20 Gy OO G (11)
p=1 A
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1, 1,
+ /0 D2 DI Oy (2, 1)dz + /0 DD Cop_y (1, y)dy | (3.53)

(0. ¢] o0 R 1 o0 A
w4 [ [T D0 o iye 4 [ [ DG (o, )y
[o.0] [os] N 1 0o
44 /1 /0 D2 Gy (z, y)derdy + 4 /0 /1 B e (o)
(o] [oe] " R
i / / DI DI Cp—i (2, y) dydz
1 0
1 [ I R
+4/ / ngHDzmHC%—l(ﬂ?,y)dydx
0 1

1 p1
——4/0 /0 CQk—l(I7 y)d:vdy + [CQk—-l(l,O) + CQk—l(l, 1)] ,

and

k k+1
1z (0)z

We note here that given any m, we can calculate Dgi_1 for all £ up to and
including £ = m — 1. For example, to calculate D¢, we need m > 2. We also observe
that (3.53) suggests that there are multiple representations for the coefficients Doy _ .
The different representations depend on the value of m chosen. Because m is an
arbitrary parameter, the value of the coefficients should be independent of m. We
have done some numerical experiments which verify this fact.

We demonstrate the method by calculating D; and D3 for a simple problem.

We take v;(z,y) = —2sin(z), 7, = 0, and 1 = 0. Recalling (3.15), we have

z sin(z)

K(z,y)p(z,y) = (@ F g2 (3.55)
Expanding sin(z), we calculate C; and Cj5 as follows:
2
z
C = ————=7
1 27 (22 + y2)3/2
ol
Cy = (3.56)

- 127 (z2 + 42)3/2°
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Taking m = 3, we have expressions for D; and D3 from (3.53):

{ 42 Bay l/ Doy (1, ydy+/ D1y (z, 1)dx

By _ _ L _
2 D2 D} 101(1,1)+/0 DID21C, (3, 1)da

*,;1@)

1 ~
+/0 DIDZ1Cy(1,y)dy

+4/ / DIC(z,y)dydz (3.57)
1 Jo

1 poo 0o foo
+4/ / DICy(x,y)dydz —|—4/ / D;Cl(x,y)da:dy
0 J1 1 Jo

1 poo oo poO
+4/ /1 DZCl($,y)dacdy+4/l /0 D;D;C’l(x,y)dyda:
11
+4/ / DI DTCy (5, y)dydz + C1(1,0) + Cr(1,1) — //Cl(m,y)dxdy},

-1-1

3 1 1
Dy = {_42 ]232”, [/ 037—103(1,y)dy+/ D21 Cs(x,1)dz
= @0t o 0

3
B L
+Z(2—;‘)‘|D§7_1D§“_16’3(1,1)+/0 DI D1 Cy(z,1)da

T o0 foo
+ DZDﬁ”—lcg(l,y)dy] +4 [ [ Dlca(z,y)dyde
1 poo o oo
+4 /0 /1 DICs(x,y)dydz + 4 /1 /0 DICs(z,y)dzdy
1 poo oo poo
+4/ / D;Cg(a;,y)da:dy+4/ / D;D;Cg(x,y)dydx

+4/ / DIDICy(w, y)dyds + C5(1,0) + Cs(1,1) / / Cs(z y)dmdy}

We have computed D; and D3 to be approximately —.3103732 and —1.33299 x
10~3, respectively. These agree very well with the coefficients of the A and A3
terms computed from the point vortex calculation. Figure 3.3 demonstrates the
comparison between the numerically computed value and the analytical value for
D;.

In the case of an interface that is not flat, the formula is similar, but considerably

more lengthy; we therefore omit the formula, but sketch the approach. We can
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Figure 3.3: The solid line represents the value of D; using (3.57). The dashed
line represents the value of Dy computed using the point vortex approximation for

various values of n.

limit consideration to the case where p(z,y) = zg(z,y) since the more general
case is analogous. We expand K (z,y)p(z,y) as outlined in Section 3.3.1. Our
analysis shows that the first term that contributes to the error expansion is Cf,

which contains all of the terms which contribute to the first-order coefficient. We

have
-z [gm(o’ 0)$ + gy(O, O)y]
b (Az? + By? + Czy)3/? (3.58)
—§a:g(0 0) [12:(0, 0)z + 7, (0, 0)y] [722:(0,0)2? + 1 (0, 0)y? + 274, (0, 0)zy]
2 ’ (Az? + By? + Czy)5/? )
where

= 1+72(0,0),
= 1+7(0,0), (3.59)

= 21,(0,0)n,(0,0).
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For a specific example, we take

Y= = —2(sin(z) + cos(z)),
n(z,y) = sin(z +y) + cos(z + y), (3.60)
v = 0.

From C}, we compute D; to be approximately —.21733. This gives good agreement

with the value we computed using the point vortex method.

3.4 Computation of the Coefficients: Detail

3.4.1 Two dimensional Euler-Maclaurin Summation Formula

Before deriving the formula, we make the following definitions:

3 ifi=0ori=n
w; = ’
1 otherwise
j o i j
Dm = @, Dz = P2m+1 ($/h)D
(3.61)
The function P,,(z) is given by
Bp(z)
Po(e) = =2 (3.62)

where B,,(z) is the Bernoulli polynomial of order m on [0, 1] extended periodically.
B; is the i’th Bernoulli number. The two-dimensional version of the the Euler-
Maclaurin summation formula is derived as below: First apply the 1-d formula in

the y direction:

/ab/Cdf(%y)dIdy=/ [th]f (z,v5) i Bz“ [DQﬂ Lf(z,d)

—D2—1 f(:c,c)] — p2ml / D2+ f(z,y)d ] (3.63)
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Next, we apply the trapezoidal rule in the z direction for the first sum term, and

explicitly integrate the other terms:

[ s dmay =2 5> iy i)

=0 j=0
nom g2yt
h21H1B,

2.2,

[D27 Low; f(b,y;) — Dﬁ”‘lef(a,yj)]

om (@)
_hZth—H/ D2y £ (, y;)da
7=0

_ Z h2MBQ;/, |/b [DZ“_lf(ﬂC,d) _ D;u_lf(ﬂf,C):I dx:l
p=1 e
—h2m+1/c /ab D;mﬂf(m,y)dxdy. (3.64)

In the second and third terms of this equation, the sum over j represents a trape-
zoidal rule integration, so we can apply the 1-d formula in each of these terms to

give:

/ / (z,y)dzdy = hQZszwa T35, Yj)

i=0 5=0

m 192 d
X [/ (D21 1(0,0) - DI (0] s
=1 ) ¢

+Zh B2u

—D.?ﬂ 1D§“ 'f(a,d) + D D f(a, )]

(D2 Dy £ (b, d) = D= D £ (b, )

d
+h2mH / D+t D21 f(b,y) — D2 f(a,y)) dy]

c

b pd _
_h2m+1/ / D3m+1f($,y)dyd$

Y
h2m+1/ Z h B2’}’D2m+1 I:D2'y lf(IL' d) Di'y—lf(l_,c)] dz

iz [1 / D2 D2 £ (o, ) dady

m 2 b
> h(;fﬁ” / (D3 F(z,d) — DI f(,0)] do
=1 ©Je
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d rb _
—p2mtl / / D2t £ (z, y)dzdy. (3.65)
[ a

Regrouping the terms gives

hQZzwiwjf(wi,yj)—/a/cf(m,y)dmdyz

i=05=0
3 hzf)?;v [/d (D2 f(b,y) — DD f(a,y)] dy—f—/b (D271 1(z,a)
7=1 T a
- ™ p2B o
—D§7 1f(m,c)] d$+/;1 (ZM)Q!M [ng 1D;“ 1¢(b,d) (3.66)

—DP 7 D (b, ¢) = DYDY f(a, d) + DY D f(a, )

b
+R2mH /a D=t [+ f(z,d) — DY f(w,c)| dz
a
+h2mHL / Dyt (DD f(b,y) — DI f(a,y)] dy]
C
b rd _ d rb _
+p2mA / / D2 f (2, y)dyds + B2 / / D2+ f (5, ) dady
a C C a

bopd R
ahtms 77 D DI o,y dyda
a [

3.4.2 Calculation of the Error

In order to apply (3.66), we rewrite I as a sum of singular and non-singular integrals,
I = I, + I.. We can then also write the error as £ = E; + E,, where E is the error
associated with the approximation to I, and FE, is the error associated with I,. We

can write I as:
4

I=L+1L =1+ I, (3.67)

i=1

where

o0
o0 ™

I = [ [ s@yadsay, (3.68)
Kis
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L, = [ [ f@ydedy,

I, = /_O; /:o f(z,y)dzdy.
(3.69)
If we define Q by
= B /{{mm) x [yl (3.70)
then we have
I, = //Qf(:c,y)dxdy. (3.71)

We denote the trapezoidal rule approximation to I, by I, and the trapezoidal
rule approximation to Iy by I4,. We define the respective errors as E,, = I4, — I,

and Es = I4, — I,. Finally, we define E, = 3% | E,

3.4.3 Calculation of E,

We can use the 2-d Euler Maclaurin formula to derive the following result for E,, .

ETl = IAI 7“1:
h2 B _
+Z 2 {/ D27 f(—m,y)dy

+/ D27_1f(x, ) — D;W“lf(a:, —77)] dz
Z

LD TIDP (=, ) = DYDY (=, )] (3.72)
4-h2mtl /_ ; D2m+1 [D;j”"l f(z,m) = DY f(a, —7r)] da

7o
L p2mL /- D;mHDg”V_lf(—vr,y)dy}

L & s -
h2mt / / D2 f (g, ) dyda + B2 / / D2 (5, ) dadly
—00 — —T -0

-7 T B
L pAm2 / / D2+ P2l Al 2m i (5 dy
-
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We can derive a similar result for each of the other three regular integrals. We then

add all of the terms together to get:

_ : _ — h%B? i 2y—1 2v—1
E" - ;(IAi - ITi) - ; (2,),)(}/ l:/—ﬁ I:Dm7 f(_7T7y) - Da:’y f(ﬂ-ay)] dy
+/_ [D;”/—lf(a;, —7) — D;V—lf(:v,ﬂ)] dz + ) h’(252"‘ [D21-1D2 ! f(—m, )
™ p=1 :

—Dy 7Dy f (=, —m) = DT DY f (mm) 4 DYDY f (=)

T .
st [* D2t [0 (g, ) — DI f (o, m)] do (3.73)
-7

-7

T
et [ D [0 ) - D2 ]

+p2mH / /Q D2t f(z, y) dyda
+p2mrl / /Q DY f(w,y)dydz

+h4m+2//Qf)gm“f);mﬁf(m,y)dydx.

We define 0€2 to be the boundary of € as shown in Figure 3.4. The last three terms
in the previous expression are integrals over ). We denote these terms by FEqn. The
rest of the terms in the expression are evaluated in terms of 9€). We denote these
terms by —Esq (we use the negative sign for convenience). .

Thus we have

Er = —Esq + Eq, (3.74)
where
m h2'yB2 s
E - _ 2 / DZ’Y—]. — — 27-1
n=T 2 Ty | [PE (o) = DI () dy
i 2v-1 27-1 < hQMBQH 2y-1p2p—1
+ [ [Py e ) = D @) de S " SR DY T DR (o)
=1
—D D f(—m, —m) — DY DY fm, ) + DY DR f (w, — )]
T
L p2m /_7r pam1 [DZV“lf(m, ) — D;”’_lf(a:,ﬂ)] dz (3.75)

+h2m+1/ D2+ [ng—lf(—w,y)—Dfﬂ_lf(ﬂ,y)] dy],
-
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7
(—m,m) (7, )
(0,0)
02
(_”Tv —71') (7!‘, —7T)
7

Figure 3.4: The shaded region is {2 and extends infinitely in both dimensions. The

boundary is 0f2.

and

Bo = Wt [ [ D2,y dyda
Q
+h2m+1// ﬁzm“f(a:,y)dydm (3.76)
Q

+h4m+2//ngmﬂf)zmﬂf(x’y)dydx_
We note that Fjyq is a finite series in even powers of h. We comment later on Egq.

3.4.4 Calculation of E,

We now consider the error that comes from applying the trapezoidal rule to the
singular integral I5. Because of the singularity, we must use the point vortex method.

We can write

|3

i=—

j==
(i,5)70

% ™ ™
Ey=1Ip, — I, = waw; (i, k) = [ [ f(a,y)dody. (3.77)

3
N3
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We want to express F; in a form which allows the direct use of the Euler-Maclaurin

formula. To do this, we break I; and 14, into several integrals and sums and arrange

them as follows:

where

By =

Es;=E 1+ FEs+ E3+ By + Es

—1 g —h
R2 )" N W, f(ih, jR) — f(z,y)dydz,
i==3i=—3 - Jom
2 3 -
h’2z "I)zw]f(ZhaJh) - f(xay)dyd$>
’L:lj:—% -
h? Z Zw,wjf (ih, jh) / / flz,y)dydz,
1,——1] 1
—h
Z szw]fzhjh / / f(z,y)dydz,
Z——l]—
Z Z W;w; f (3h, jh) / / f(z,y)dydz
1=—1 =—

J
(6:5)# (0 0)

The factor w; is defined by

if i = tmin O ¢ = imay

otherwise

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

where 4,4, and %,,;, are the respective upper and lower limits of the summation

index ¢. For example, i, = —1 and 4., =

—n/2 in the equation defining E;.

Using the two dimensional Euler-Maclaurin formula, we can evaluate E; through

E4. After some manipulation, we arrive at the following result:

E1+E2+E3+E4:
h2 B
- Z = U |02 f(=m,y) — DI f(m,y)] dy
y=1 -

+ /_ [057—1 f(z, -

h? Ba,

271m7r 7
m) — Dy f( ]d+2 Tt

[DZ'y 1D2u~1f(
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—D Dy (m, =m) = DY LD f () + DY D f (=)
T
+h2mH] / D™ (w/h) | DY f (@, —m) — DY f(w, m)| do (3.85)
-7

T
w3 [ D (D27 ) - D2 ]
-7

-2 h(;% [/ . [Dﬁ”’_lf(h,y) - Dfﬂ_lf(—h,y)] dy
= i

h m
# [ [P = D a3

h2 By,
(2p!)

~DZY D (<hi h) = DYDY f(hy —h) 4 DD (=, —h)

D2t Dp ()
h .

+p2mH / D2m+l [Dj“/—l f(z,h) — D21 f(a:,—h)}da;
—h

ho .
p2mH / Dy DY f (k) —D?‘lf(—h,y)]dy]

2L / /A D24 f (2, ) dzdy + h2™H / /A D2+ £ (5, y)dady

+h4m+2//Aﬁgmﬂﬁ;me(x,y)da:dy,
where
A= {[—ﬂ, ] x [—w,w]}/{[~h, B x [—h, h]}. (3.86)

We define the inner boundary of A to be JA and note that the outer boundary of A

is 012, the inner boundary of €2, as shown in Figure 3.5. We define Fy5 and Ej by

— - h27327 h 2v—1 P2yl
B =3 " {[ DBy - D2 () ay

"\ h? By,
= (2u)

—D2 7 D2 f(—h, h) — DDTID2L f(h, —h) + D2 ID2 f(—h, —h)

h
+ /_ . [057—1 fz,h) — D27 f(z, —h)}dw + [Dfﬂ—lpjﬂ—l f(h,h)

h
wemtt [ D2 (D0 (e, by - DD (e, ) o 3.87)
~h

h
4nzott [ pamt [Di”"lf(h, y) = Dy f (=h, y)] dy}
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(—m,m) (m,m)

o0

(—m,—) (w,—m)

Figure 3.5: The shaded region is A. The inner boundary is JA. The outer boundary
is 99Q.

and

Ey = h2m+1//Af)%mﬂf(x,y)dxdy—l-thH//Af);mﬂf(a:,y)da;dy

FpAmt2 / /A bimﬂf);mﬂf(m, y)dzdy.
Using the definitions of Egp, Ep, and Egq (recall (3.76)), we see that we can write
Ey\+ Es+ Es+ Ey = Egq — Egp + Ey. (3.88)
We can now write a simpler expression for E;:

E, = Ei+Ey+E3+Ey+ Ex
= FEgqg — Egp + Ep + Es.
(3.89)
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3.4.5 Formula for F

Putting together our definitions of E, and F;, we can now write an expression for

E:
EFE = E;+E,
= —FBEsq+ Eq+ Eaq + Ex — Esp + E5 (3.90)
= FHEo+ Er— Epp + Es
= Eq+ FEr,
where
Ep = Ey — Egp + Es. (3.91)

We show that E7, is a series in odd powers of h. It is significant that Eyq does not

appear in F, as this means that there are no even powers of h in . We show later

that
Eq = o(h™). (3.92)

To simplify the computation of Ej,, we use the notation Er(f) to mean that
we plug f into the expression for E; and we observe that Ep, is linear. That is, if
a and b are constants and f and g are functions of z and y, then Er(af + bg) =
aEr(f)+bEL(g). Using this notation, the definition of Ey, (3.91), and the definition
of A (3.86), we have

EL(f)=hzm“/Aﬁim+1f(m,y)dxdy+h2m+l//AD;m“f(m,y)dxdy

+h4m+2//AngHf)gm“f(:v,y)dxdy

_ m h2’yBZ”y h o1 o1 |

= 2! [/_h [Dz7 F(hoy) = D7~ f(=h, y)}dy, (3.93)
" [p2r- - ™ B2 o

+/_h |:DZ'Y 1f(37,h) — D237 1f({1;, —h):l dzx _|.u§1 (2M'§N [Dgfy lDzu lf(h, h)

=D DP (=, h) = DYDY f (b, —h) + D2 DY (=, )
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ho
_p2ma / D2+ [D§7‘1f(w, h) =Dy f (x’_h)] d
—h

h
et [ pamet [t () - DI ()| dy]

+ Z Z wzw]f(zh jh) — / / f(z,y)dydz.

i=—1 j=-1
(4.5)#(0,0)

Recall that the integrand of I is defined by
f(z,y) = K(z,y)p(z,y). (3.94)

To demonstrate our reasoning, we assume that p(z,y) = p(z) = zg(z) and that
n(z,y) = 0. We comment later on the general case. Using these simplifications, we

have

f(z,y) = (—Jf(—%. (3.95)

Using Taylor’s theorem, we can write

2m

f(may) (1'2 +y )3/2 [ :Z."g k) +/ 2m ' (2m+1)( )dT . (396)

If we define
(k)( ) k+1
and (
(" z(x—rT) 2m) m
R(ny) - /0 (2m)'(.’ﬂ2 T y2)3/2 gz +1) (T)dT; (398)
then \
k=0

Since Cj, is odd when k is even, we plug Cj into the expression for Ef, and get

E(Ck) =0 for k even. (3.100)
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Using this, and the fact that Ey, is linear, we can write

2m
Er(f(z,y)) = EL (Z Ck(w,y)> + EL (R(z,y))

k=0

= i Br (Cok-1(z,9)) + Er (R(z,y)) (3.101)
k=1
= Erc+ ELrg.

Using the definition of Ej, we have

WBZ7
(2!

Bie =43 {3

y=1

h
[/O D1 Co_1(hyy)dy

o h? By
+/ D210y _1(z, h)dz + E
0 y 2k 1( ) #z::l (2N')

ho
+h2mH /O D2 D21 Cop_y (w, h)de

DY D Cop_1(h, h)

h -
+h2mHL /0 DIIP2M Gy (hy)dy

w T . h T .
+h2m+1/h /0 Dﬁm“C’zk_l(x,y)dydm+h2m+1/o /h D" Cop 1 (2, y)dyda

—— h po
p2m /h /o D§m+102k~1($,y)dxdy+h2m+1/0 /h Dy Cop 1 (, y) dwdy

L .
+h4m+2/h /0 DimHD;mHC’gk_l(m,y)dydm

h pm _ .
+h4m+2/0 /h ngHD;mHC’Qk_l(m,y)dyda:

h rh h2
—/0 A Cog—1(z,y) + T [Cot—1(h,0) + Cop—1(h, )] .

Here we have taken advantage of the symmetry of Cox_1(z,y) with respect to z and
y to reduce the domain of integration to the first quadrant. Now, let z = hz’ and

y = hy', substitute, and then drop the primes. The result is:

m m B, 1
e=yoa {3 B [ orcu i,y
k=1 =1 \&7)7 1J0

! = B
+/ D§7_1C2k_1($, ].)dl' + E (2;1:) Dgy—lDz‘u_lCZ}g_l(l, 1)
0 !
p=1
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1, 1 .
+/0 D§m+1D§7_102k—1(I71)d$+/0 DY DI Oy (1, y)dy

n/2 rn/2 1 pn/2

+/1 /0 ngHCgk_l(m,y)dydx—i—/O /1 ngHCgk_l(x,y)dydm
n/2 pn/2 1 rn/2 |

+/ D§m+102k—1($,y)d$dy+/ / D2 Cop_1 (2, y)dady
1 0 0o J1
M2 M2 ot A2met

+ . D" Dy Cog—1 (0, y)dyde

1 rnj2 .
+ /0 1 D2 D2 Cop_y (2, y)dydz (3.102)

1 1 1
-/0 /0 Cop—1(z,y)dzdy + 1 [Cor—1(1,0) + Cor_1(1, 1)]},

where D is defined by
Ny 59

8%
Il

(3.103)

We have written this as a series in odd powers of h. However the coefficients are
not independent of h because some of the double integrals have n/2(= x/h) in the

limits of integration. We rewrite Erc as follows:

m
ELC — Z 4h2k)—1{
k=1

.~ B e L1
> (27;| /0 Dy~ C2k-1(1,y)dy+/0 D, Cog-1(z, 1)dz
=1 °

m
Bay yoy—1p2u-1
+ D¥»-px-lc,. (1,1
2y Pe DT G (LD
1 1 R
+ [0 D2 DI Cop s (z, 1)dir + /0 DZLDZM L Cop (1, y)dy | (3.104)

oo fOO 1 poo
—I—/ / DimHCgk_l(a;,y)dydm—}-/ / D2y, 1 (z, y)dydz
1 Jo 0 J1
0o oo 1 roo
+/ / D§m+102k—1(-’17,y)d33dy+/ / D2 Cop_y (2, y)dzdy
1 Jo ) ) 0o J1
+ / / DI D2 Cop s (2, y)dydz
1 Jo
1 poo N
+ / / DIHPIILC, | (5, y)dyd
0o J1

1 1 1
——/0 /0 Cor—1(z,y)dzdy + 7 [Cop-1(1,0) + Cor_1(1, 1)]} +ErE
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where Erg is defined by:

m
Eig=-, 4h2k_1{
k=1
© oo n/2 proo
L[ pmicu @ ydyds +4 [ [ DI G (@, y)dyds
n/2Jo 0 n/2

o poo n/2 roo
+/ / D21 Cop_1 (2, y)dzdy +4/ D2 Cop_1 (2, y)dzdy
n/2Jo 0 n/2

[ee] o0 R
+//2/0 ngHngHCqu(m,y)dydm
n

2% ol p2met
+/0 //2 Dm+ Dym+ Cok—1(z,y)dydz ;.
n

Because the range of integration of the double integrals is infinite, we must discuss

the issue of convergence. We examine

aL
Wczk—l(xa Y) (3.105)

where L > 2m + 1 and @} > 0. This is equivalent to examining

oL zP

8nyL—Q (1172 + y2)3/2

(3.106)

for values of 0 < P < 2m. If we perform the differentiation and convert to polar
coordinates, all of the terms involve 7F~L=3. Because of the restrictions on P and
L, P—L—3 < —3. Because the radial factor has an r dependence which goes as
r~4, all of the infinite integrals converge.

If we change back to the original variables (that is let x = //h, y = ¢'/h,

substitute, then drop the primes), then we have

ELE' - _ Z 4h2m+1{
k=1
0 foo T oo
| DO ydyda + [ [T D2 oy (o )y
T 0 0 g
P Komt1 [ 2oma1
+ ; D" Cop—1(w, y)dxdy + A D" Cor—1(z, y)dady
™ i

00 foo .
+h2m+1/ /0 D§m+1D§m+102k—l($ay)dydx
e
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k [e I -
+p2mHl /O / D§m+1D§m+102k_1(x,y)dyda:}. (3.107)
w

We know that the periodic Bernoulli functions are bounded. We define A as follows:

| P (z/h)| < A for all xz. We now have a bound on Epg:

m
ELES4Ah2m+IZ{
k=1
[ H2mat T [ h2mtl
//O‘Dac CQk—l(x,y)‘dydm"'/o/ ‘Dm C2k—1($,y)‘dyd$
iy m
+ [T [T |prrricua @y dedy + [ [ |p2mie dad
A Y 26—1\%,Y)| aTay + ) v 2%—1(z,y)| dzdy

x x
+ARP™H / /0 | DI DIy, (3, )| dyda

m (e e]
+Ah2m+1/0/ |D§m+lD§m+ngk_1(m,y)ldydx}. (3.108)

We have already shown that these integrals converge. Therefore, the coeflicient of

h?™+1 in Erp is bounded as h approaches 0. We conclude from this that E;p =

o(h?™). We now express Erc in the general form

m
Ere = Y Dy 1h®* '+ Epp
k=1

m
= > Doj1h®* 71 4 o(h*™), (3.109)
k=1

where Dyy_1 is defined by (3.53). The analysis of Er g is similar, and is left until

later in this section. We show there that
Err = O™ 1), (3.110)

Using (3.92), (3.109), and (3.110), we can express E as follows:

m—1
E=FEq+E,=FEqg+ Erc+ ELgr = Z D2k_1h2k_1 + O(th_l). (3.111)
k=1
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3.4.6 The General Case

We now briefly discuss the more general case of (3.94) where n(z,y) # 0 and p is a

function of both z and y. In this case we have

_ p(z,y)
1Y) = G (0(0,0) = n(a 9) ) (3-112)

We want to calculate and analyze E as in the previous section. First, we note that
the analysis of Eq does not change in this case. To analyze E; we rewrite f(z,y)

as in Section 4.1. That is, we write
flz,y) =Co+C1+C2+C3+ -+ R(z,y), (3.113)
where C), is homogeneous of order n — 2 in (z,y). We are interested in calculating
EL(f) = EL(Co) + EL(C1) + -+ - + EL(R). (3.114)
For n even, C, is odd in (z,y) so we have
Er(Cp) =0 for n even. (3.115)

The analysis of the nonzero terms in (3.114) is similar to the analysis of the pre-
vious section in terms of the basic method, but the details are significantly more

complicated. We omit the full proof, and state the result:
Er(f) = Dih + Dsh® 4 -+ + O(R"), (3.116)

where we compute Dy, using a formula similar to (3.57). The primary difference is
that the symmetry of the problem leading to (3.57) allows a simpler formula than

in this more general case.
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3.4.7 Analysis of Eq

We have

By = 0 [ [ Pansa(a/h)DE £ (@, y)dyds
#12m4 [[ Poia(9/W) D™ (@, ) dyds (3117)
Q

12 [ | P (0/h) Pams (/B DZDE™ £ (2, ) dyd.
We consider the first term of Eq:

pems [ | Ponia (@/R)D £ (@, ) dady. (3.118)

We first define a new region §':

Qo = {(x,y)h/x? Fy? > 27r}. (3.119)

The region ' is the portion of © which lies outside a circle of radius 27, (This will

lead to a more pleasant geometry.) Because the region 2 — Q' is finite, we have

Wt [ [ Par(o/B)DE™ f(2,y)dody = O(h"*). (3.120)

This follows because the integrand has no singularities on the domain of integration,

and because Py, 11(z/h) is bounded.

We now have to consider the integral over Q. We look first at a special case:

f(z,y) = (xg—ﬂ:‘(_]%))?/g (3.121)

where we have taken g to be a function of z alone, and n = 0. We have the following:

:Egzm'H(:I:)

2m~+1 _
D.’E f(way) - (1,'2 +y2)3/2

+ R(z,y) (3.122)

where it can be seen by examination that R(z,y) consists of a collection of terms
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that vary as r~P where p > 3 and 72 = 22 + y?. We know that [Py y1(z/h)| < C

where C' is a constant, so

Wit | [ [ Poms(a/W)R(s,9)dady| <02m10 [ [ |Rla,y) dody. (3.123)
Q Q

The integral can be seen to converge, given the way the integrand depends on
the radial factor 7. Thus, the coefficient of 2™ *! is bounded as h approaches 0.
However, it is possible that the coefficient vanishes as h approaches 0. Specifically,
the coefficient may be o(1) or smaller in magnitude. Thus, we conclude that this
term is o(h®™). We note that this analysis serves only to place a bound on the
magnitude of the term rather than to explicitly state the magnitude. (This does
not affect the form of the expansion since m is arbitrary. To explicitly determine
the magnitude of the next term in the expansion, we must choose a larger value of
m in the Euler-Maclaurin formula.) We next define ¢(z) = ¢?™+1(z). We write g(z)
as the sum of its odd and even constituents: g(z) = ¢g.(z) + ¢o(z) where ¢, is even

in z and ¢, is odd in z. Since Pyy,4+1(z/h) is odd in z, we can write

2mt1 / / P2m+1(m/h)(—%%d dy = (3.124)

p2m+1 / / Py (z /h)x(?e( J)r 26)13536))

[ [ P

since

p2m+1 //Q/ szﬂ(m/h)ﬁg;w =0, (3.125)

(the integrand is odd in z).
For m > 1, the function Py,41(z/h)ge(x) is continuous for all z, odd in z, and
satisfies the condition Py, 11(0) = Popya1(1) = 0. Thus, we express Poy,1(2/h)ge(z)

as a Fourier (sine) series which converges absolutely and uniformly:

Pomti(z/h)ge(z ZA sin(iz) (3.126)
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Because the series converges uniformly, we may integrate each term separately:

zqe(T)
//Q/P2m+1(:v/h)Wdazdy = //, :c2+y ZA sin(ix)

A:L'smzx
_ Z//Q ) 3/2d edy. (3.127)

Next, we change to polar coordinates. If we define

T Q3 A

Si(z) = / sin(e) .. (3.128)
0o T
then we have
h2m+1z / / Aswsin(iz) (3.129)
/(@2 + y2)3/2 y :
2 roo
p2m+1 Z/ / A;cos(d sm(zr COS(G))drdH (3.130)
2

= h2m+1ZA/O [ |cos(8)| — Si(2im cos(0)) cos(0)| df.  (3.131)

It can be shown that the integrand of the latter integral is bounded by a constant

which is determined by the maximum value of Si(z) (which occurs at z = 7):

.g |cos(@)| — Si(2nm cos(0)) cos(@)‘ < —723 + Si(n). (3.132)
If we define
Cmaz = 27 E + Si(ﬂ)] (3.133)
then we can write
A x sin(ix)

for all i. We know from the theory of Fourier series that > 72, |A;| is a convergent

series. Hence, the series Cnoz > so; |A;| also converges. This in turn implies that

A;z sin(ix)

NPy 3/2dxdyl (3.135)
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converges. From this we conclude that

m Tqe(x
h2 +1// P2m+1($/h)—(—2——(?;3—/2d$dy (3136)
m Az sin(iz) m
h? +1§://’ ) 23300 zdy = O(h?™T1). (3.137)

Now we treat the more general problem. That is we want to show that
W [ [ Pomya(a/B)DE™ f(w,y)dody = o) (3138)
QI

where

B zg(z,y)
19 = 2 T 00,0) —nw,0)) P (3.139)

We rewrite f(z,y) in the following way:

f(x,y) :fl(xay)—l_fQ(may) . (3140)

where
fils,y) = % (3.141)
Famy) = zg(z,y) zg(z,y) (3.149)

(@2 + 42+ (10,0) = nlz, 1)) (2 + 2P
We can rewrite fo(z,y) in the following form:

zg(w,y) [432 — (A+ B)*/?]
f2($,y) = A3/2(A+B)3/2

(3.143)

where

= 22442 (3.144)

B = (n(0,0) — n(z,y))*. (3.145)
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If we rationalize the numerator, we have:

fa(ony) = ——29@Y) [A° ~ (A + B)]
olz,y) = A3/2(A+B)3/2 [A3/2 + (A+B)3/2].

(3.146)

Expanding the numerator gives

_ =zg(z,y) [-3A%B — 3AB? — B?]
12@Y) = T4 By [ + (AT BYR] (3.147)

We now observe that in terms of the radial variable r, A varies as 72 and B is

bounded. Thus, in polar coordinates, fo varies as r~%. Using this, we can write

=D g(z, y)

2m—+1 -
Dw + f(-’l;,y) - (1'2 +y2)3/2

+ R(z,y) (3.148)

where, as in the simpler case, R(z,y) consists of a collection of terms varying as r =7,

p > 3 in the radial factor r. (R(z,y) includes all of the terms in D2+ fo(x,y).)
The analysis proceeds essentially as before from here. The integral involving

R(z,y) is o(h?™). We define q(z,y) = D2 lg(z,y). We can express ¢(z,y) as a

sum of terms

9(z,Y) = Gee(2,Y) + geo(T,Y) + Qoe(®, Y) + Goo(Z, ) (3.149)

where, for example g, is even in z and odd in y. We can then use symmetry to

write

//Q, P2m+1(x/h)%dxdy=//ﬂl P2m+1(w/h)%dwdy.

z? +
(3.150)
Next, we express Poy,11(z/h)gee(x,y) as a double Fourier series:
oo X
Popi1(z/h)gee(z,y) = Z Z A;; sin(iz) cos(jy) (3.151)
i=1 j=1
1 x x0
= 5 D> Ay lsin(iz + jy) + sin(iz — jy)] . (3.152)

=1 j=1
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From here, we use the uniform convergence of the series to enable us to interchange
summation and integration. We use the fact that Si(z) is bounded to obtain a

convergent series representation for

/ /Q , P2m+1(z/h)(—$-§%dxdy. (3.153)

As in the first case, we again conclude that

2m-+1 zq(z,y) L omit

he™ //Q/ P2m+1($/h)m§d dy O(h ™ ) (3'154)
and hence,

2m-+1 zq(z,y) e gmt

hem //§2P2m+l(x/h)mdmdy — O(h m ) (3.155)

The condition that the Fourier series representations used are uniformly convergent
relies on the premise that g and the derivatives of g are smooth.
We have considered one of the terms in Fq. The analysis of the other terms is

analogous. We conclude that
Eq = o(h*™). (3.156)
3.4.8 Calculation of Erp

We now consider Erg. In order to analyze Er g, we need the following results, which

are derived from Leibniz’s rule for differentiation of an integral:

z(x — 7)™ m
ERC / ml( frmyr =

Bk (iL‘ — T)m m—+1
/0 Ok [m!(g;2 +y2)3/2] Fo(r)dr (3.157)

for k <m+1,

.’L’—T m 1 _
Back/ mi(z? + 42) L7l D(r)dr =
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ZARIC)

z gm+l [ z(z — 7)™

m+1
0 Oxmt1 m!($2+y2)3/2:| f( + )(T)d’7’+

for k=m+1.

We can express Er g as follows:

m h2'7BQ
Erp=—4 Z =
=1 27)'

(
— hz“BZM 2y—1 n2u—1 2m+1 4 H2m+1 ny2y—1
u=1 )

h
+h2m+1 /0 D§m+1D12;7_1R(h, y)dy:|

h h
[ / D2 1R(h, y)dy + / DY 'R(z,h)dz
0 0

L qp2m /h” /07r D2 R(x, y)dyda + 42 /Oh /hw DI R(z,y)dydzs
L gp2mt /h " /0 " DX R(z, y)dzdy + 4h> ™! /0 ' /h i D2+ R(z,y)dady
1 4p i+ /h i /0 " D D2 Ry y)dyda
L gpbme2 /0 " /h " DI R, ) dyds

_ /_ ':L /_ '; R(z,y)dydz + R(h,0) + R(h, k)

where
[ z(z— T)(zm)
R(xay) - /O (2m)'(m2 + y2)3/2.q

We start with the last terms in Epg.

2mA1) (1)dr. (3.159)

h — \2m
Rro) = [ Mh =TV omi) () gy
0

(2m)!h3
h -7 2m
_ g /0 %dr (3.160)
92m+1(§) 2m—1
(2m + 1)!
— O(th—l)

by the mean value theorem for integrals. This assumes that the derivatives of g(z)

are bounded. In an analogous manner, it can be shown that R(h,h) = O(hR?™1).
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Next we consider the integral

" Ray)dedy — B dad 2z — 7)™ (@m+1) (hr)d
/;h./—-h ($,y)$y — / / l'y/ 2m :L'2+y)3/2g (T T

L amtl p2m+2 (2m+1)(§) Ind 3161
/ / @m + DI(z2 + y2)32 " (3.161)

= 0O (h2m+1

where, again, we have applied the mean value theorem of integrals. Next, we want
to consider those terms in Ky p which involve a single integral. For example we can

consider the first term in Er,g
h
B2 / D2 7IR(h,y)dy.
0

If we make the change of variables z = hz', y = hy’ then (dropping the primes) we

get:

h
h2Y / DY R(h,y)dy =
0

1 82’7—1 T IE(IE _ 7.)2m
2m+-1 omi1
h o Oz2-1 l:/o (2m)!(:(:2+y2)3/2‘q( )(hT)dT dy. (3.162)

z=1

Since v < m we can take the differential operator inside the integral (using (3.157),
perform the differentiation, and then apply the mean value theorem to verify that
this integral is O(h?™*1). Again, we have relied on the fact that g(z,y) is bounded

in all its derivatives. It is completely analogous to show that the terms
277,20 n2y—1 28—
h*'h* DY~ D R(h, h)

are O(h?m+1),
We have only to consider the terms involving the double integrals. To show the

general approach, we consider the following term from FErp:

Y
h2m+1/h /0 D2l R(z, y)dydz.
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"We know that

z g2m+l :12(:1: _ ’T)2m
2m+1 — (2m—+1)
D;" " R(z,y) o 92t (2m)l(z2 + y2)3/2g (T)dr
nglm-!-l(x)

N ol 1

(z2 + y2)3/2 (3.163)
Applying the differential operator and using the mean value theorem gives a series
of terms, which, when converted to polar coordinates is of order 7—2. Thus, we can

bound the integral as follows:

7
h2m+1/ / D§m+1R(.’E,y)dyd$ <
n Jo
o1 [2 (™0 2
Ch m+/ / r~Ldrdg = O(h?™) (3.164)
g1 Jhs(6)

where C is some constant determined by the derivatives of g and the periodic
Bernoulli functions.

We have now considered all of the terms of Er, g and conclude that

Epr = O(h?™Y). (3.165)
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Chapter 4

Implementation

In this chapter we present the numerical implementation of the point vortex approx-
imation. We discuss efficient schemes for computing the boundary integrals using a

direct approach and using two different fast multipole methods.

4.1 Direct Method - Ewald Summation

The primary computational difficulty in computing the velocity fields and the ve-
locity potential is the efficient calculation of the point vortex approximation. This
difficulty arises because the domain of integration is infinite and the Green’s func-
tion is very slowly decaying. To demonstrate an efficient direct approach, we return

to the formula for computing the third component of velocity w at the origin:

Yz (z,y) + Y vy (2, v) .
/ / 2+ 92+ (n (0,0)~n(w,y))2]3/2d i )

where 7, vy, and 7 are periodic with period 27 in z and y. We take advantage of the
periodicity in order to redefine w(0,0) in such a way that the domain of integration

is finite. We then have

1 m w
w(0,0) = —E/ / dzdy x
—T J—T

[o.0] o0

Y2 (T, y) (& — 2n7) + vy (2, y)(y — 2mm) 2
"—z—:oo m;oo [(& — 2nm)? + (y — 2mm)2 + (n(0,0) — n(z,y))2>* 42
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In order to evaluate this lattice sum, we have applied the Ewald summation tech-
nique as outlined by Baker, Meiron, and Orszag [2] which converts the derivatives of
the periodic Green’s function into rapidly converging sums of error functions. Be-
cause this approach directly computes all particle interactions, the operation count

is O(N*) per time step where N is the number of mesh points in each dimension.

4.2 Fast Multipole Methods

Because of the asymptotic operation count, direct methods are impractical for large
scale problems. In order to make large scale computations feasible, it is necessary to
use an algorithm with a lower asymptotic operation count. One general approach
to reducing the operation count is the fast multipole method. The reduction in
operation count is achieved by computing local particle interactions directly and
combining distant particle interactions into multipole expansions. The calculation of
the velocity and velocity potential is analogous to the calculation of the electrostatic
forces due to a collection of charged particles. The fluid particles on the surface of
the wave are the “charged particles” and the “charge distribution” is related to
the shape of the interface and the dipole and vortex sheet strength. Because the
calculations are analogous but simpler, we initially describe the multipole methods
in terms of electrostatics, bearing in mind the analogy to the water wave problem.

While a detailed description of multipole methods is beyond the scope of this
work, we give a sketch of the approach in order to describe our implementation. We
consider a cube of side 27 centered at the origin. We refer to this cube as the center
cell. The charged particles are distributed throughout the center cell. The center
cell is subdivided into subcells, and multipole expansions for each of the subcells
are computed about the subcell origin. The electrostatic force at any particular
particle is a combination of direct interactions with particles in nearby cells and
multipole interactions with cells further away. The error introduced by the multi-
pole expansions is controlled by setting restrictions on how far apart subcells must

be before permitting multipole expansions to describe the interactions between par-
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ticles in the subcells. Various algorithms combine multipole expansions in different
ways to achieve improved efficiency. The way in which mgltipole calculations are
combined to compute the distant interactions determines the computational cost
of the method. We have implemented algorithms with computational requirements
which are O(N3) and O(N?). We describe the algorithms later.

We define a number of the terms generally used in describing the multipole
expansions. We follow the definitions given by Greengard in [8] and [4]. We begin
by describing the multipole expansion for an electrostatic field and field potential.

The free space Green’s function can be defined in terms of a multipole expansion by

Z Z n+1 (a, B)Y,"(6, 4) (4.3)

IX xll n=| On——m

where we assume that r > p and where the the spherical coordinates of x and x’ are
taken to be (7,8, ¢) and (p, a, B), respectively. Using this definition, the electrostatic
far field contribution of a collection of source terms contained in a box centered at
the origin is given by

m Y (6, 9)

= f__: Z s (4.4)

where (r, 8, ¢) are the spherical coordinates of x and Y;(0, ¢) are spherical harmon-
ics defined by

m — ( ’ml) [m)| s ime )
2(0.6) = || o P cos(E) ™. (4.5)

Here P;" denotes the associated Legendre function of degree n order m. Note that
this definition varies by a constant factor from the usual definition of spherical

harmonics. The multipole coefficients M are defined by

K
Mn = Z QkpZYn_m(ak,ﬂk) (46)

where K is the number of point sources, (pg, ok, Bx) is the location of the kth source
and g, is its strength. The electrostatic field is defined to be —V®. The fact that

the Green’s function and its derivatives can be expressed in terms of a multipole
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expansion is the basis for our use of multipole methods.

4.2.1 Periodicity

Before we describe the different multipole algorithms which we have applied, we
discuss the problem of periodicity. Our problem can be viewed as a cube of side 27
centered at the origin which is extended periodically in two dimensions. We refer
to those cells adjacent to the center cell as its neighbors. Because of the periodicity
of the problem, the multipole coefficients of the center cell’s neighbors are identical
to those of the center cell. Hence, we only need to compute multipole expansions
for the center cell. The effect of all cells beyond the neighbéfs of the center cell can
be expressed as a local expansion about the origin in terms of lattice sums and the
multipole moments of the center cell. We are not able to include the neighbors of
the center cell in the lattice sum because we must compute some direct interactions
between the center cell and its neighbors.

The lattice sums of interest are defined by

Y (/2
ngz%, n>1m=0,...,n (4.7)
PEAs

where Ay is the set of integer lattice points {(k1, ke,0),|k;| > 1, i=1,2}. The
efficient calculation of these sums is due to a method by Berman and Greengard [4].
Our application is slightly different from their approach in that we are summing
spherical harmonics over a two-dimensional lattice rather than a three-dimensional
lattice.

The terms L7*, for m = 0,1 are conditionally convergent, and an appropriate
value must be chosen. For the case m = 0 the Associated Legendre polynomial PP(0)
is identically zero. For m = 1, we arrange the lattice sum using the symmetry of
the problem in such a way that the sum is zero. This is analogous to the general
case of m odd.

We define the multipole expansion of a collection of charges in the center cell to
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be

x & Y (0,
o= ZO Z M,T"T—TE”@. (4.8)

For a point x in the center cell with spherical coordinates (r,#,¢), the far field
contribution due to points in image cubes indexed by elements of Ay can be expressed

as a local expansion about the origin

o J
U(x) =) > NFYF(O,¢)r (4.9)
J=0k=—j
where R
O DL M (=) TP AT A
k n k n 7 —k
NE=Y Y - Sk @)
n=0m=—n J+n pEA2

AT = (=) (4.11)
"V =m)(n+m)!
and
g Y o (4.12)
1 otherwise.

We now define the following sets of integer lattice points:

M = {(ki,k2,0)||k;| <1,i=1,2} (4.13)
N = {(k1,k2,0)||ki|] <2,:=1,2} (4.14)
T = {(ky,ko,0)||ks| <7,i=1,2} - N (4.15)
Ay = Ay—N. (4.16)

We define the spherical coordinates of the lattice points to be (pp,7/2,5,). If we
define L™ by

~ Y "7 /2

ir=y YW0/2%5) (4.17)

n - +]_ ’
pEAs
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then iﬂ is computed by the recursion relation given by Berman and Greengard:

wmUEmfk gmekgm ghem
DY (ayn T B k) = R(nm) (418)
= e, J
where
Qn,m) = 3 Y(n/2,6,)0p (4.19)
pEM
Y™ (/2,8
Rnm) = Y RG] (4.20)
perl Pr

To compute i?, we truncate the infinite sum in Equation 4.18. Berman and Green-
gard show that 100 terms is sufficient to guarantee fifteen digits of accuracy. To

compute L™ we simply add
Lp=Lp+ > Ltz (4.21)

In Table 4.1 we show the (nonzero) values of L and L for n < 16. Because these
lattice sums are independent of the particles and the particle locations, we compute
the values before the calculation and then read in the coefficients for the calculation.
Using the lattice sums, we can compute the contribution due to particles outside
the center cell’s neighbors using a simple local expansion. In practice we have
found that the computational cost of adding the far field contributions represented
by L7 is negligible compared to the computation of the multipole moments. The
calculation of the lattice sums required approximately two minutes on a workstation
using double precision arithmetic. For our calculations, we assumed that the center
cell was of side length 27. To convert L)' to the appropriate value for a cube of side

length I requires multiplying L™ by a factor of (2r/1)"*+1.
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Em

n

Lm

n

-0.448919120391818E-02

-0.729571660209102E-02

0.355928447585322E-05

0.146724420257081E-04

0.968645018532362E-06

0.432381519979532E-05

-0.560223368175452E-08

-0.562312798832289E-07

-0.188769737998386E-08

-0.204646553329348E-07

0.109209474749826E-10

0.259631641534164E-09

0.449767384406115E-11

0.116255477660096E-09

-0.713854109869944E-13

0.966463765496442E-10

-0.236138345943999E-13

-0.130656679309689E-11

-0.112686043598392E-13

-0.686176344963998E-12

-0.889010941655920E-15

-0.521932356090937E-12

0.541982661085200E-16

0.690752418161287E-14

0.288676103361732E-16

0.410848727175016E-14

0.442299001094658E-17

0.325285579757940E-14

0.153504678753166E-16

0.110723533036711E-13

-0.129213929754837E-18

-0.377242571638190E-16

-0.748862385345919E-19

-0.247758239150935E-16

-0.165089305497221E-19

-0.205554746071491E-16

-0.333223327477159E-19

-0.462301034285150E-16

0.316172750372947E-21

0.210934440477164E-18

0.195889593444058E-21

0.150066186979569E-18

0.553877721975190E-22

0.129613718377271E-18

0.882519798892363E-22

0.238414258321495E-18

n|m
2, 0
41 0
41 4
6, 0
6| 4
81 0
8| 4
8| 8
10 0O
10| 4
10, 8
121 0
12| 4
12| 8
12 | 12
141 0
14| 4
14| 8
14 | 12
16| 0
16| 4
16 | 8
16 | 12
16 | 16

0.394283992843946E-21

0.348193153763391E-18

Table 4.1: The nonzero lattice sums L™ and L™ for n < 16.
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Figure 4.1: A comparison of the direct algorithm using Ewald summation and the
Buttke algorithm for various levels of subdivision. For large N the Buttke algorithm
is approximately O(N3). The curve without points is proportional to N3, showing

that for N > 128, the Buttke algorithm is O(N?).

4.2.2 Buttke Algorithm

One fast multipole method is described by Buttke [6]. In this algorithm, the center
cell is subdivided and multipole coefficients are computed for each subcell. Inter-
actions between cells are computed directly for neighboring cells. Interactions for
separated cells are computed using the multipole expansion. This formulation has
the advantage of not requiring a tree structure and the storage of numerous multi-
pole expansions. The computational cost per time step is O(N3). We show in Figure
4.1 some sample timings for computing the velocity potential for the Ewald summa-
tion method and for the Buttke algorithm. For larger values of N, the asymptotic
computational cost begins to be apparent. We did not develop a complete water
wave method based on the Buttke algorithm because we determined, based on these
timings, that the Fast Multipole algorithm would yield better results even for mod-
erately small values of N. In addition, our original intention was to do large scale

problems, for which the Fast Multipole algorithm would most likely be better suited.
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4.2.3 Fast Multipole Algorithm

The Fast Multipole algorithm uses a tree structure of multipole coefficients to max-
imize efficiency. The center cell is divided into subcells, then each subcell is subdi-
vided. This process continues to some level of subdivision. Multipole coefficients are
computed at the lowest level on the tree structure (meaning the last level of subdi-
vision) and translated to multipole coefficients of the parent cells. Beginning at the
first level of subdivision, the multipole coefficients in a subcell are translated to local
expansion coefficients about the center of each well-separated cell on the same level.
When this process is complete, the local expansion coefficients of each cell are trans-
lated to the centers of its subcells, and the process repeats at the next level. After
this process has reached the last level of subdivision, all of the distant interactions
for a given cell are contained in the local expansion coefficients for that cell. The
direct interactions are then computed. Thus, for each cell in the tree structure, it is
necessary to store multipole coefficients and local expansion coefficients. While the
implementation is quite complicated, the asymptotic computational requirement is

O(n?).

PMTA

Because of the complexity of developing a full multipole algorithm, we used a source
code developed at the Electrical Engineering Department at Duke University. The
code is the Parallel Multipole Treecode Algorithm (PMTA) version 4.1. The code is
described in a users manual [9] which accompanies the code and in several technical
reports [22], [15], [16]. This code was originally developed to compute electrostatic
potential and force calculations. Although the code was readily adapted to the
water wave problem, we made a number of significant modifications to the code to
maximize efficiency for our particular application. In this section we detail the most
significant additions and modifications which we have made to the original source

code.



61

Force Calculations

Given an initial charge distribution, the PMTA program computes the electrostatic

potential and field using

(x;) = ZQjG(xi—Xj) (4.22)

j
E(x;) = - Z g;VxG(xi — x;) (4.23)
]

where ¢; is the charge on the ith particle and x; is the position of the ith particle. For
our purposes, the computation of @ is irrelevant. The computation of the velocity

and velocity potential take the form
A(Xi) = ZBsz(Xi - Xj) + Cij(Xi - Xj) + Dsz(xi — Xj) (4.24)
J

where (G;,Gy,G,) are the components of VxG. A represents either the velocity
potential or one component of velocity and B, C, and D are the appropriate co-
efficients as determined by the governing equations. For example, to compute the
velocity potential we use the following definitions of B, C, and D with the surface

normal defined by #i = (n,ng,n3):

B(x) = —Wiﬂ (4.25)
Cx) = ——’f%fﬁ (4.26)
D(x) = —i"zgf’@h? | (4.27)

Hence, the calculations of velocity and velocity potential are analogous to the elec-
trostatic field calculations with the charge distribution being defined in terms of the
normal to the surface, the vortex sheet strength, and the dipole sheet strength. For
a single computation of Equation 4.24, there are three separate sets of multipole
coefficients required because we have three different “charge density” functions. We

rewrote the PMTA routines to simultaneously compute the necessary multipole co-
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efficients. While this increases the memory requirement, only one subroutine call is

necessary to compute a sum like Equation 4.24.

Adaptivity

The original PMTA source code was based on the assumption that the initial particle
distribution would be roughly uniform in the center cell. Because a surface wave
problem has a very nonuniform particle distribution, PMTA is quite inefficient for
these types of problems. This is true both in terms of computations and memory
storage. The original code allocated significant amounts of memory that were never
accessed, and computed multipole and local expansion coefficients in boxes where
there were no particles. The elimination of superfluous coefficient calculations was
relatively simple and straightforward, involving only the addition of conditional tests
for particles before performing calculations for a particular subcell.

The modifications involving memory use were considerably more difficult. The
memory management was made completely dynamic. At the conclusion of each
time step, our code checks each subcell for particles. When particles enter a subcell
which previously had no particles, memory is allocated for the multipole coefficients.
When all particles have left a subcell, the memory for storing coefficients is freed. In
our implementation, the dynamic allocation of memory was not costly in terms of
computational time required, and it significantly reduced the memory requirement.
This is particularly important for large scale problems at high resolution, since the
memory requirement is proportional to the square of the number of multipole terms

multiplied by the number of particles on the interface.

Periodicity and Parallelism

The PMTA source code was originally adapted for use either on a workstation
or a shared memory architecture, specifically the KSR architecture. Because the
KSR implementation of shared memory loops is somewhat different from that used
for SGI and CRAY machines, we were required to add some additional loops to

the overall structure of the program. The addition of the appropriate compiler
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directives to complete the parallelism was straightforward and simply mirrored the
KSR directives in the code (with one exception, which we discuss forthwith).

The original PMTA source code allowed the computation of periodic particle
arrays. However, we found their periodic computation to be very inefficient com-
putationally. We have detailed our approach above. The lattice sums we used do
not account for the contribution due to neighbors of the center cell. This is because
some direct interactions must be computed between the center cell and its neigh-
bors. The PMTA implementation computes the interactions due to neighbors of
the center cells efficiently, but does not implement the algorithm in parallel. This
is a significant consideration, since there are 8 neighbors of the center cell for which
interactions must be computed. We modified the original code to first tabulate the
necessary interactions which should occur between subcells of the neighbors and
subcells of the center cell before making any computations. The computations were
then ordered in a loop which could be efficiently parallelized.

Our experience with smaller runs (e.g. 64 x 64 mesh points) indicates that the
parallelism is extremely efficient. Our experiments showed nearly ideal speed up for
small numbers of processors. We have developed parallel codes which can be run
on both CRAY and SGI shared memory machines. An important consideration for

the CRAY implementation is that this code does not vectorize efficiently.

Robust Calculations

We also made several minor changes to the code to make the calculations more
robust. The calculation of forces relies on computing spatial derivatives of the local

expansions. For a local expansion of the form

P n

d(x) =D > NIYHO,H)r" (4.28)

n=0m=—n

where N]" are the local expansion coeflicients, we need the derivatives of the terms
Y (60, )™

The PMTA implementation uses the following form for computing the z deriva-
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tives for n > 0 and m positive:

2 o) = | eyt [ (.29
cos(6) m 1 " _ )
((TWPR (cos(9)) + \/TT—FW)P" +1(cos(9))> cos(0) sin(¢) sin(6)

—Pﬂ(cos(@))% — n cos(¢) sin(@)} .

The y and z derivatives are computed similarly. The difficulty arises when 6 = %r.
While it can be shown that these derivatives are well defined for § = £+, the PMTA
implementation does not robustly compute the derivatives for these values of 6.

We have implemented a different method for computing the spatial derivatives
of the spherical harmonics which avoids division by zero. This approach is based on
the definition of spherical harmonics given by Greengard [8].

Using the definitions given in Greengard, we have for m = 0,

Y20,4) _ 40 0" (1
il = A g (;) (4.30)
For m > 0 we have:
Y0,0) o 0 [ O\mgO\n-m /1
el An' (B_x —H@) (E) (;) (4.31)
and
Y, 0,6)  _gp 0 . O\myO\n—m /1
L = A (5 - ’5;;) () () (4.32)
where
(-1)"
Al = . 4.33
"V =m) (n+m)! (4.33)
The operators 04, 0_, and 9, are defined by
o . 0
0z = 2 (4.35)

Oz
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If ¢ is harmonic, then

010_(¢) = —82(¢)
Therefore,

0

Y, (6, 9) )

8+ ( pn+l

Oz

= Ag-8+(8

= Ag.aJr(_

0z
Ag _y241(97¢)

)'(2)
)" )

i
A1
and

3_(Yr?(9, ¢)) _ 9

7""44'1
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Similarly, we have
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and for m > 0 we have

ax ,,.n+1 - 92 A’T—:_ll A:zn—{—ll .
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pr+1 2pn+2 Am—l—l A;n+11 :
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We can use all of these relations to calculate the derivative of the local expansion.

We begin with the x derivative of the terms of the local expansion:

0 0 0

5y Y (0:0)r") = 8—95( T-TE+1¢) 2n+1> (4.67)
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In a similar manner, we express the derivatives of y and z as
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il O 9
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We now express these derivatives in terms of the formulae just derived. For

m = 0 we have
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We use these formulas for computing the derivatives of the terms in the local ex-

pansions.

The PMTA implementation also does not always calculate ratios of the form

z/v/x% 4 y? 4 22 to be less than or equal to 1 when z and y are both zero or nearly
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Figure 4.2: Timings for various values of N at various levels of subdivision with
precision p = 20. The line without any points is proportional to N2, showing that

the optimal time is proportional to N2.

zero. This is significant because this ratio must be less than or equal to one in order
to properly compute the azimuthal angle. Some rescaling of the terms was sufficient

to eliminate the problem.

4.2.4 Practical Considerations and Timings

The time required to perform a time step is dependent on a number of factors.
The level of precision required determines the number of terms in the multipole
expansion. For a given precision €, the number of terms p required for the multipole
expansion is given by p = —logy(€). For a given choice of p, the number of levels of
subdivision of the center cell is chosen to minimize the computational time. Figure
4.2 shows the timings for various values of n at various levels of subdivision, for a
fixed precision p = 20. Hence, for p = 20, and N = 64, we usé 3 levels of subdivision.

We are also interested in the computational cosf associated with increasing the
precision of the calculations. According to the theory, the computational time re-

quired is O(p*). This, however, assumes a fixed level of subdivision. Since the
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Figure 4.3: Timings for N = 64 for various values of p at various levels of subdivision.

The increase in optimum time versus p is approximately linear in p.

optimal timing occurs at different levels for different values of p, the computational
time required is much less. In Figure 4.3 we show timings for N = 64 as p increases.
The increase in the optimal time appears to be only linear in p. We note that as
p increases, the fastest timings occur at a lower level of subdivision. This suggests
that for fixed N, the required memory can decrease as p increases. This is because
the memory required is related to the number of levels of subdivision.

An additional cost factor is involved in computing high-order quadrature rules.
Using a direct method, Richardson extrapolation can be accomplished by applying
a weight function to the summand. The cost of this is very small. However, the
weight function consists of both source and field terms which cannot be factored.
Hence, in order to compute a third-order quadrature rule using Richardson extrap-
olation, we must compute an integral at the grid spacing h and 4 integrals at the
grid spacing 2h. This effectively doubles the computational cost when compared to
computing one integral with grid spacing h. We can further reduce the computa-
tional cost by reducing the number of iterations needed to determine u. To do this,

we implemented an extrapolation scheme to approximate the value of u at the next
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Figure 4.4: Timings per time step with N = 32,64 and 128 for 1 — 4 processors on
the SGI Power Onyx. The lines without points show the ideal speed up.

time step.

In Figures 4.4 and 4.5 we show the timings as the number of processors is
increased for various values of N on the SGI Power Onyx and on the Cray J90.
The timings were done for one time step with the Stokes wave initial condition,
using the desingularization stabilization method and the third-order scheme. These
plots show characteristic timings for calculating each time step using the third-order
quadrature rule.

For the majority of our numerical experiments, we took N = 64, p = 20 (single
precision accuracy), 3 levels of subdivision, using 2 processors on the SGI Onyx. A
typical experiment required approximately 8 MB of memory and required 2 itera-
tions to compute p. With these parameters, the typical time required per time step
is about 3 minutes. A test problem with N = 512 at 6 levels of subdivision required
approximately 220 MB of memory. For a problem of this size, we expect to need

about 3 hours per time step.
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Chapter 5

Stability

The numerical stability of the boundary integral method for two-dimensional wa-
ter waves is a problem which dates to the work by Longuet-Higgins and Cokelet.
More recently, the stability issue has been examined in studies by Beale, Hou, and
Lowengrub [3] and Hou [10]. In their work, Beale et al. showed that in order for
the boundary integral method to be numerically stable, a compatibility condition
between the discrete derivative operator and the quadrature rule must be satisfied.
They demonstrate a Fourier smoothing method which can be used to impose the
compatibility condition. A similar compatibility condition is required in the three-
dimensional case. In the three-dimensional case, however, the coordinate system
used to discretize the system must also satisfy certain additional conditions.

In this chapter we analyze the numerical stability of the boundary integral for-
mulation near equilibrium. This analysis is based on a study of the continuous
formulation for three-dimensional water waves by Hou, Teng, and Zhang [13] and
on a study of the stability of the boundary integral method for three-dimensional
water waves by Hou and Zhang [14]. We propose several methods for stabilizing the
numerical scheme. We apply these methods to a non-linear problem and discuss the

advantages and disadvantages of each method.
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5.0.5 Preliminary Definitions

The discrete version of the defining equations is given by

1 .
Wi = 2¢;+ o Zujnj - VxG(x; — Xj)h2 (5.1)
iZj
Ki = —DgippiDgonXi + DyypppiDy nXg (5.2)
1
u = — Z Kj X VxG(x; — Xj)h2 (5.3)
4 =
i#j
. 1 Ky X ﬁi
s = s — = 5.4
H M Dy 1n%3i X Dy, p X (54
dx; -
_d_tl = W (5.5)
do. ~ 1

where Dy, is the discrete derivative operator.
We begin the discussion of the numerical stability of the method by defining
a number of discrete operators. We recall the definition of the discrete Fourier

transform from [5]:

Sl
w|2

fy = > u(x;)e” %, (5.7)

(rd2)=(—&F+1,-F+1)

The inversion formula is

S )
uj = — > Tpe K% (5.8)
(kl’k2):(_%+la—%,'+1)

wlz
w|z

where x; = (21h, z2h) and h = 27 /N The Fourier transform of a discrete derivative

operator is expressed as follows:
(Da;nf),, = ikjpi(hk) fi. (5.9)

If, for example, the discrete derivative operator D, is a spectral derivative applied

directly in the Fourier transform, then p(hk) = 1.
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We also make use of the symbols Hyj, Hop and Ay, defined by

oL (x5 — zi5) fi 9 _
Hunti) = 2m gg; (11 — 213)% + (221 — mzj)2)3/2h i=1,2 (5.10)
and
: fi—Ji 5
A i) = — ' '
n) 2m g (w11 — 213)? + (@21 — ij)2)3/2h’ (5.11)

These operators arise from the quadrature rule used to define the dipole sheet
strength when we linearize the equations about equilibrium.

The stability of the continuous water wave formulation depends on the relation

A(f) = (Hle + HZsz)(f) (5-12)

where A, H;, and Dy, are the continuous analogs of Ay, Hy, and Dy, . The discrete

analog of this relation is not necessarily true. In general we have

An(f) # (HipDyyp + HopDyyn) (f). (5.13)

We show in the linear stability analysis that this condition gives rise to numerical
instabilities.

We are interested in the Fourier transform of Hy, f and Ay f. Because these are
convolution operators, we need the definitions of the discrete convolution and its

Fourier transform:

frg(xi) =D fx —x3)g(x;) (5.14)
Jj
and
feg, = frin- (5.15)

Taking x; = (j1h, joh) and h = 27 /N, we can now compute the following:

(Hinf)y = —ip! (hk) fi (5.16)
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where
—th(j1k1+j2k2)

Jie
= — . 5.17
(]12‘7:) .71 +.7%)3/2 ( )

Making use of the symmetry of the summand, we have the following definitions for

p'(hk) and p?(hk):

j1k1h) COS(jzkzh)

1 J1 8in
pt(hk) = Z =7 (5.18)
T (77 +53)%
1 jg SlH(]Qth) COS(jlklh)
2
PArk) = — > ey . (5.19)
2m (41,32) (jl +'72) /
We express the Fourier transform of Ay (f) using the following form
(Anf)i = [Kl|o(hk) fi. (5.20)
To do this, we rewrite Ap(f;) as
M) = L > i - (5.21)
' 2m 2 (w1 — 1) + (w2 — 293))%/2
1 h*f;

2 2 (w11 — 213)? + (021 — 095)2)%%
Making use of the convolution theorem on the second sum in (5.22) we have

1 1 1 e—th(J1k1+j2ks)

(A/h\f)k: o h Z 3/2 372
2mh gy UL I 2mh 2 G+ 3)%

. (5.22)

Comparing the right-hand sides of Equations 5.20 and 5.22, and again using the
symmetry of the summand gives the definition of p(hk):

1 Z 1— COS(kljlh) COS(ijgh)

(91.92)

Finally, we are interested in the Fourier transform of Ry f where

Rh = thDmlh + HQthzh. (5.24)
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We express (E;D‘ )k in the following form:

(Bnf)e = |k|a(hk) fi. (5.25)

From the definitions of Hy, and Dy, we have

kip! ko p?
b= 1P p1|:;| 2P P2 (5.26)

5.1 Linear Stability

5.1.1 Amnalysis

We now examine the linear stability about equilibrium. Let
x = (1 + 21, 32 + 23, 2 (21, 72)) o= +¢ (5.27)

where the primed quantities are assumed to be small and C is an order 1 constant.

Substituting these into the equation defining p gives to leading order

1 — Dy n23 (w15 — 215)
pi = C + 2¢% + — :h? x J 5.28
% 2m %MJ ((z15 — 215)2 + (w25 — 95)2)3/2 (5:28)
n “szhz_;(xﬁ - xZi) + (z: — z‘;) (529)

((z1i = 215)? + (w21 — 95)2)3/2 (w15 — 213) + (21 — @25)?)3/2

We can write p; as pu; = C' + pi where p' is small. Substituting this into the right-

hand side gives to leading order

C =Dy pzi(z15 — T15)
pi=C+2¢ + =Y h?x J 5.30
2m g (w15 — 215)2 + (w21 — 205)2)3/2 (5:30)
N =Dy, (T2i — T25) (7 — ) (5.31)

(T2 — 215)2 + (w21 — £95)2)3/2 (w11 — 713)2 + (T2i — T5)2)3/2

We simplify this expression by recalling the definitions of Aj, and Ry,. The expression

becomes

pi = 2¢; + C + C(Ap — Rp) (%) (5.32)
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The vortex sheet strength, to leading order is given by
ki = (Dayn (205 + C(An — Rp)(2)), —Dzyn(265 + C(An — Rp)(#)), 0).
Substituting this equation into the equation defining the velocity gives
s = (0,0, 5 R (26] + C (A = Bi)(&1).

The equations defining the time evolution become

dxi’ C

o (0,0, Ra(¢) + 5 Ba(An — Ba) (1))
e

T =

We write this as a linear system:

o] loo 0 0 | [z
d |z 00 0 0 2o
| | |oo th(Ah~Rh) Ry || 2

¢ ], 00 —g o L4 ]

We now transform the system of equations, which yields

EN 00 0 0 | [a]
d | & 0 0 0 0 i
- _ oo, ) ]

di | g 00 —kP3(p—p) Ik ||
2 o
| &1, [00 —g 0 |L¢ ],

The eigenvalues of this system are

Clkf?_,_

ALA2 =0, A3, = 1

o 1 o -
plp—p) = Z\/Czlkl‘*p?(p — p)? — 16g|k|p-

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

If C' #0, p#0,and p # p, then the high mode instability is O(|k|?). The preceding

analysis suggests that if we are able to choose discrete derivative and quadrature
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Figure 5.1: The computed value of p for h = 2x/N,N = 64.

rules such that

An(f) = (HinDayn + HonDayn)(f) (5.40)

then the method will be stable. In the two-dimensional case, this condition can be
satisfied using operators with spectral accuracy. However, in the three-dimensional
case, it is not possible to choose operators which satisfy the compatibility condition.
In order to obtain a stable scheme, we use Fourier smoothing as explained in the

next section.

5.1.2 Numerical Experiments

We have performed several numerical experiments to verify the predictions of the
linear stability analysis and to demonstrate the high mode instability. We use the
fast multipole implementation to approximate the Green’s function kernel to single
precision accuracy. We use the fixed grid formulation with third-order quadrature
rules. We use spectral discrete derivative operators, so p; = p2 = 1. We take g = 1,
N =64 and h = 2n/N. We show the computed values of p and j in Figures 5.1
and 5.2, respectively.

The difference between p and p gives rise to the high mode instability. We
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Figure 5.2: The computed value of g for h = 27 /N,N = 64.

observe that the greatest deviation between g and j occurs for larger values of k|
For our first experiment we take C' = 0. We use for initial conditions solutions
of the linear wave equation for various values of k. (See, for example, Whitham

[30]) . The initial condition has the form

n(z1,22,0) = ecos(k - x) (5.41)

blz1,22,0) = gsin(k -x) exp(|k|n(z1, z2)) (5.42)

where w is given by the dispersion relation w = +/|k]. We refer to this as the
perturbed equilibrium initial condition.
For the case C' = 0, the linear theory predicts that the method is stable, with a

numerical dispersion relation wy4 given by

wa = 1/5lK]. (5.43)

In Figure 5.3 we show the predicted numerical dispersion relation for C = 0. In
Figure 5.4 we show the theoretical dispersion relation for linear water waves. In

Figure 5.5 we compare w and the predicted and computed values for w4 for various
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Figure 5.3: The predicted numerical dispersion relation for A = 2r/N,N = 64, and
C =0.

values of k along the line k; = k. We note that the numerical experiments give
very good agreement with the predicted values for wy4.

To demonstrate the instability, we set C' = 1 and use the initial conditions
1
n(@1,22,t) =0 $(z1,32,t) = 3 (5.44)

The initial condition is also the solution for all time. We refer to this as the equi-
librium initial condition. For this case, the eigenvalues of Equation 5.38 generally
have a real part. In Figure 5.6 we show the real part of A3 from Equation 5.39.
Because the magnitudes of the eigenvalues differ greatly for various k, we display
the same information in Figure 5.7 on a logarithmic scale. (For a few values of k the
eigenvalue is smaller than 1073, We have displayed these values as 1073.) Figure
5.7 shows that for nearly all values of k, there is an eigenvalue with positive real
part. In Figure 5.8 we show the complex part of the non-zero eigenvalues. We note
that most of the high frequency modes have no oscillatory component.

After a single time step, the computed value of 7 is non-zero because the fast

multipole method only approximates the Green’s function kernel. In effect, the mul-
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84

Figure 5.8: The complex part of A3 for h = 2r/N,N = 64, and C = 1.

tipole approximation uniformly perturbs the initial condition. We show in Figure
5.9 the spectral decomposition of 7 at time ¢ = At ~ .001 where At = 7/3000.
In Figure 5.10 we show the spectral analysis of 7 for time ¢ = 100At ~ .105 The
growth of the higher modes qualitatively matches the prediction of the linear sta-
bility analysis. We especially note the striking similarity between Figures 5.6 and
5.10.

We are able to compare the observed growth rates with the growth rates pre-
dicted by the analysis. In order to examine the rate of growth for some of the modes

with slower rate of growth, we use the perturbed equilibrium initial condition:

n(z1,22,0) = ecos(k-x) (5.45)
Ba1,2,0) = 3+ sinfle-x)exp(kin(ar, 22)) (5.46)

where w is given by the dispersion relation w = /|k[. It is, however, difficult to
accurately compute the growth rate in the lower modes because of the very rapid
growth in the high modes.

In Table 5.1 we compare the predicted and computed growth rates for a number

of modes. We denote the predicted and computed growth rates by A4 and Ay,
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Figure 5.11: A comparison of the predicted and computed growth for the mode with

wave number (k1, ks) = (30, 3).

respectively. In Figure 5.11 we compare the growth of the mode (k1, k2) = (30,3)

with the predicted growth rate.

5.1.3 Stabilization

We have implemented several approaches to stabilizing the numerical method, in-
cluding Fourier smoothing, numerical viscosity, and a desingularization method. We
discuss results for the linear theory in this section. In the next section we discuss

the results for the nonlinear problem.

Desingularization

We make use of an alternate definition of the velocity potential at the interface

b= 5 [ (1lo) — w DA - TxGx — x)oS" (5.47)

since

/ i’ VG(x - x')05 = 0. (5.48)
Sl
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ki | ko Aa An

15 | 15| 27.43167185 | 27.2
20 | 17 | 50.89035207 | 51.1
20 | 20 | 56.71974673 | 57.1
23 | 8 | 48.33265643 | 48.6
23 | 11 | 58.33481304 | 58.3
23 | 18 | 66.23485348 | 66.3
23 | 23 | 64.13379931 | 64.1
25 |12 | 73.65631713 | 73.8
25 | 25 | 57.33661827 | 574
28 | 4 | 80.83032077 | 80.9
28 | 9 | 80.73287223 | 80.7
28 | 15 | 84.31467372 | 84.3
28 | 20 | 93.98547957 | 94.0
28 | 25 | 60.59166682 | 60.5
30 | 3 | 105.63923539 | 105.6
30 | 6 | 72.62142323 | 73.6
30 | 16 | 78.68377450 | 78.7
30 | 23 | 103.49593196 | 103.5
31 |23 | 112.11161013 | 112.1
31 | 28 | 65.39791676 | 65.5

Table 5.1: Predicted and computed growth rates for various modes using the equi-
librium initial condition. The predicted growth rate is denoted by A4 and the

computed growth rate is denoted by A,.
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In two dimensions, this definition is used to define a spectrally accurate quadra-

ture rule. The nonzero eigenvalues for this formulation are given by

A3, As = 1/ —glk|p. (5.49)

This approach has a computational drawback. The integrand of the integral in
Equation 5.48 cannot be factored into a product of source and field terms. We must
break up the integral into two factorable integrals to perform the calculation using
the multipole method. Hence, this approach doubles the amount of computational
time needed to compute p. For the equilibrium initial condition, this formulation

gives the exact solution to 15 significant digits.

Numerical Viscosity

An alternative approach for stabilizing the method is the introduction of numerical
viscosity. We modify the governing equations by adding a viscous damping term
or terms in such way that the real parts of all eigenvalues are less than zero. In
this case, we modify the equation which defines the time rate of change of z. The
modified equation is

0z

S =0 vV2z. (5.50)

The non zero eigenvalues are then given by

2
Yo da = 5 (00— 5) - 2) £ LIk (Cro— ) — 207 — 16gbp. (551)

A straightforward computation shows that for C = 1, N = 64, and v > .1164,
all of the eigenvalues have negative real part. We have used the value v = .12
and have computed solutions for the equilibrium initial conditions using an implicit
time stepping algorithm. While the method is stable, this approach has several
side effects which must be considered. Because the eigenvalues have negative real
part, we expect this method to be somewhat dissipative. In addition, our numerical

experiments show that the addition of the viscous term necessitates a much smaller
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Figure 5.12: Spectrum of the equilibrium solution at time ¢ = .45 using numerical

viscosity.

time step for the implicit iteration to converge. We found that At must be on
the order of 1073 for the iteration to converge. A final consideration is that as NV
increases, the minimum value of v which makes the scheme stable does not change
very much. Thus, we don’t expect the numerical stiffness to decrease as N increases.
In Figure 5.12 we show the spectrum of the equilibrium solution computed at time
t = 429At = 45, corresponding to a time step of At = 7/3000. In Figure 5.13 we

show the amplitude of the mode (30,0) as a function of time.

Fourier Smoothing

In the two-dimensional case, Fourier smoothing can be used to satisfy the com-
patibility condition given by Equation 5.40 in order to stabilize the method. This
approach is outlined in [10] and [3]. For the linear case, this is easily generalized to
three dimensions. The smoothing factor is determined by 5 and p. Specifically, we

define the smoothed interface variable xP so that

xP = (21 + (21)F, 32 + (25)7, ()P) (5.52)
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Figure 5.13: Amplitude of the mode (30,0) as a function of time with numerical

viscosity.

where

@) (2) = §<ﬁ'>k. (5.53)

Note that we only apply the smoothing to the periodic part of the interfacial variable.
Thus, to apply the smoothing to 2’ we transform 2’ to Fourier space, multiply by
p/p, then apply the inverse transformation. In Figure 5.14 we show the smoothing
factor p/p. As we expect, the smoothing factor deviates most from 1 for large
values of |k|. Hence, modes with low wave numbers are not modified substantially
while many of the high wave number modes are modified significantly. To make the

scheme stable, we modify the governing equations using the definition of xP:

1
W= 200+ o > pihy - ViG(xi? — x;P)h? (5.54)
i#j
ki = =Dy npiDeynXi + DgypptiDy, nX; (5.55)
N 1 .
u = E an X VxG(Xip — ij)h2 (056)
i#j
1 % fis
w o= o i X (5.57)

2 Dzlhxi XDthi
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Figure 5.14: The Fourier smoothing factor 5/p.

dx; -

di = uj (5.58)
do; - 1

—d? = - -uj— §ui ‘U — g Xj (5.59)

When we linearize this system, we find that all terms are the same except the

term involving Aj. The linearized equations to leading order are now defined by

dxi’ C C

o = (O0.0.Ru(6) + S RuM()P — 5 RuBi() (5.60)
!
%ﬁi — (5.61)

We compute the Fourier transform of Aj(2')? as follows:

—

(ARG))e = PR = K22 = 5. (5.62)

The eigenvalues of the modified linear system are given by

/\1,)\2 =0 and )\3,)\4 = \/—ﬁglkl. (563)

This analysis suggests that the modified method is stable. We have applied
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Figure 5.15: Spectrum of the solution for the equilibrium initial condition at time

t = 10At for €' = 1 using Fourier smoothing.

the modified method using the equilibrium initial conditions (Equation 5.44) with
At = 7/300. We have computed the solution for a few hundred time steps, and
observe that the method is now stable. In Figure 5.15 we show the spectrum of the
solution after 10 time steps. In Figure 5.16 we show the spectrum after 500 time
steps. This corresponds to ¢t = 57/3 ~ 5.23. We show in Figure 5.17 the amplitude
of the mode (30,3) with both regular and modified methods.

5.2 Non-Linear Stability

In this section we apply the methods of the previous section to a nonlinear problem.
As an example of a nonlinear problem, we have computed a two-dimensional Stokes
wave using a three-dimensional vortex sheet. The wave has amplitude .23 which is
about 53% of the maximum amplitude for Stokes waves. We choose this type of wave
because it has a steady profile, and because we know (theoretically) the solution for
all time. We have found some numerical difficulties associated with wave numbers
k = (k1,k2) where k; of k; equals N/2 or N/2 — 1. For the N/2 mode numbers, the

difficulty probably arises as a result of aliasing due to the discrete Fourier transform.
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Figure 5.18: The initial wave profile for the Stokes waves.

For the N/2 — 1 mode numbers, the cause is less certain. It may also be due to
aliasing errors. For all of our experiments in this section, we have explicitly removed
these modes by Fourier filtering.

The Stokes wave solution is given by

n

n(z1,z2,t) = Zaj cos(jz — ct) » (5.64)
J=0
n

d(z1,z2,t) = ij sin(jz — ct) exp(jn(z1, T2, t)). (5.65)
Jj=1

For this particular amplitude, the wave speed ¢ is approximately 1.02815. In Table
5.2 we give the first few values of a; and b;.

To demonstrate the instability, we use the fixed grid formulation with N = 64.
We show the wave and wave spectrum at time ¢ = 0 in Figures 5.18 and 5.19,
respectively. In Figure 5.20 we show the spectrum of n at time ¢ = 35At ~ .37.
In Figure 5.21 we show the wave profile at t = 47At ~ .49. In Figure 5.22 we show
the wave spectrum at t = 47A¢. As in the linear case, the high modes grow most
rapidly. As the high frequency modes grow, more iterations are required to compute

4 to within the required tolerance.



95

.

aj

bj

0.142933126659572E-21

0.000000000000000E-00

2.297779080059771E-01

2.278158324123190E-01

0.287217280543541E-01

0.156618016002308E-02

0.549751997819685E-02

0.826183380501244E-04

0.125813502941109E-02

0.508807495561693E-05

0.317766353303841E-03

0.338651044021795E-06

0.854325834662375E-04

0.239847505940169E-07

0.239808534629156 E-04

0.178452706194413E-08

© |00 [ | |0 [ W N =

0.694707126702719E-05

0.137837218524794E-09

—
o

0.206152843897577E-05

0.109542630340699E-10

it
—

0.623464762469231E-06

0.890174655716639E-12

—
(o]

0.191465395356647TE-06

0.736495331036325E-13

[u
w

0.595469270779001E-07

0.618192187054263E-14

=
>

0.187169483334039E-07

0.527809033082833E-15

—_
ot

0.593650374261307E-08

0.405337834594774E-16

=
(=}

0.189759103973911E-08

0.105257671618492E-16

—_
-3

0.610678441909494E-09

-0.479315894205654E-17

—
o0

0.197698146299351E-09

0.556527183698467E-18

fa—
Ne)

0.643392907937666E-10

0.349248504423153E-17

[\.)
o]

0.210370808159800E-10

-0.505691133547518E-17

Table 5.2: Coefficients defining a Stokes wave.
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Figure 5.19: The initial wave spectrum for the Stokes waves.
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Figure 5.20: The Stokes wave spectrum for ¢+ = 35At ~ .37.
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Figure 5.23: The Stokes wave spectrum for ¢ = 9.42 using the desingularization

method.

In the next sections, we discuss the application of the stabilization techniques

previously discussed to the case of the Stokes wave.

5.2.1 Desingularization

The desingularization technique significantly stabilizes the numerical scheme. We
show in Figure 5.23 the spectrum of the wave after approximately 1.5 periods. This
corresponds to ¢ = 9.42. In Figure 5.24 we show the amplitude of mode (30, 30) as
a function of time. There are also other modes which grow in time, particularly on
the line k2 = 30. While the results for this particular problem are encouraging, it is
not clear how effective this approach will be for general three-dimensional problems.
We note that these results are very similar to the results we report for the Fourier
smoothing approach using the equilibrium smoothing factor, suggesting that in this

case, the instability is similar to that of the equilibrium case.
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Figure 5.24: The amplitude of the mode (30, 30) for the Stokes wave as a function

of time, using the desingularization method.

5.2.2 Numerical Viscosity

We have investigated the effect of the viscous damping using the Stokes wave initial
condition. Because of the stiffness of the numerical scheme, we did not propagate
the wave for a long time. However, even in the short time for which we propagated
the wave, we see the stabilizing effect of the viscous term . We used time step
At = /2000 and v = .12. In this particular case, we did not explicitly filter any
modes. In Figure 5.25 we show the computed solution after 172 time steps, t ~ .27.
By comparison, the original Stokes wave calculation showed significant growth by
this time in the calculations. As an example, we plot the amplitude of the mode
(30,3) as a function of time. The growth appears to be at worst linear in time.
While it is difficult to generalize for such a short time period, the method appears
to be stable. We do not detect any modes growing exponentially. The dissipative
effect of the scheme can be seen by observing the mean wave height as a function of
time, as plotted in Figure 5.27. For the time period under consideration, the mean

wave height has decreased approximately 6%.
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Figure 5.27: The mean wave height for the Stokes wave using numerical viscosity.

5.2.3 Fourier Smoothing

The Fourier smoothing approach for finite amplitude waves in three dimensions is
considerably more complicated than for the two-dimensional case. The stability of
the continuous boundary integral formulation for three-dimensional water waves far
from equilibrium has been examined by Hou, Teng, and Zhang in [13]. That analysis
suggests that the leading order instability in the discrete case is defined in terms of

operators Hj, and Ay, where Hy, and A, are redefined as follows:

h? (z1; — m15) fi
ooy = P j 5.66
wf) 2m g 1Dz il (213 = @15) + Dy X5 (w1 — 2o3)° 260
2 . — f:
Ap(fi) = " = (5.67)

21 375 1Dy, Xi| (211 — 215) + | Doy, X3 (w21 — 295)[°

This form suggests that the appropriate Fourier smoothing factor needs to be
computed for each point on the grid and possibly at each time step. Since this
would not be practical, we seek to define a surface parameterization 3 = (8, 5;)

such that

ox Ox
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ox |? ox |?
== = _— 5.69
06 g 002 ( )
where Ag is independent of 8. The operators Hj;, and A, take the form

1 (B — Bi3) fi 2
Hy(f)) = — h 5.70
(/i) o % (Ag(B1i — B13)% + (Bai — B;)2)3/2 (570)

1 Ji— f 2
M) = — h*. 5.71
h(f) 27 g ()\ﬁ(,ﬁli — ,31j)2 + (,32i - ﬂ2j)2)3/2 ( )

We then compute the smoothing factor as in the linear case, where we modify the

definitions of p!, p?, and 5 as follows:

1 j1 Sin(jlklh) COS(ij‘zh)

1
Pk Ag) = oo 2 5 (5.72)
2 G, 72)7(0,0) (Aggt + 75)3/2
1 72 Sin(ij'zh) COS(j1k1 h)
2
2m (J1,92)7(0,0) ()‘ﬂjl +75) /
p ! 1 — cos(j1k1h) cos(jakah)
Kh2e) = ] : 5.74

(41,72)#(0,0)

We refer to a coordinate system satisfying Equations 5.68 and 5.69 as an equal-
orthogonal coordinate system. A coordinate system which satisfies these conditions
would eliminate the necessity of computing the smoothing factor at every time step.
While the condition of orthogonality is readily imposed, the condition given by
Equation 5.69 is more difficult to impose. To see this, we begin with the surface
parameterization x = (z(z1, z2),y(21, z2),n(21,72)). We next consider z; and z,
to be functions of 5. Substituting into the equations given by 5.68 and 5.69 and

applying the chain rule for differentiation gives

F0my 0my || O |* Oy O
061 0By |0z2| OB Ofs
ox 0Ox (8301% 0z (93;2) —0

2 9z, dzy \ OB 0B, 2%%
2 2
((%) s (Z_Z;) )+ 58% ((‘2%)2—&3 <%‘%)2) (5.76)

ox

o (5.75)

ox
6w1
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with periodic boundary conditions in 8. The solution set of this system is not trivial.
An additional complication is that Ag may be a function of time. To see this,
we consider Equation 5.69 in the case where the surface does not vary in z,. In this

case, the equation simplifies to

2

ol (5.77)

B

If we now integrate over the surface, we conclude that Ag = L where L is the arc
length of any curve on the surface such that zo is held constant. Hence, for C' to
be constant in time, the arc length must be constant in time. Allowing Ag to be a
function of time permits stretching of the vortex sheet. This permits, for example,
overturning waves. It may be necessary, therefore, to compute the smoothing factor
more than once throughout the computation.

It is unclear whether an equal-orthogonal coordinate system can always be con-
structed. Fortunately, we are able to construct such a coordinate system for the
Stokes wave. Later in this chapter we discuss the details of computing the coordi-

nate system and the associated smoothing factor.

5.2.4 Numerical Experiments

For our first experiment, we use the fixed grid formulation and apply the same
smoothing factor computed for the linear problems. That is, we take Ag = 1in
Equations 5.66 and 5.67. This formulation is considerably more stable than the
method without smoothing. We have been able to propagate this wave for 4 periods,
noting the onset of instability in a number of the high frequency modes. Since the
fixed grid formulation gives an incorrect smoothing factor, we expect instabilities to
occur. We show in Figures 5.28-5.31 the spectrum of the solution computed after
1,2,3, and 4 periods, respectively. The smoothing factor used eliminates most of the
growing modes. We still detect growth (though at a slower rate) in several modes,
particularly a number of modes where k; or ky has the value N /2 —2 =30. In

Figure 5.32 we show the amplitudes of modes (k1,30) where k; varies from 20 to
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Figure 5.28: The spectrum of the Stokes wave after approximately one period using

the smoothing factor from linear theory.

30.
Our next experiment uses the equal-orthogonal coordinate system and the asso-
ciated smoothing factor to compute the same wave. The coordinate system is given

by

1 = B+ 8i(B) (5.78)

where Sy is shown in Figure 5.33. In Figure 5.34, we compare the coordinate systems
by projecting them onto the z-y plane. In F igure 5.35 we compare the ratio \,

and Ag for the Stokes wave initial condition where ), is defined by

2 2

ox
8.1,'1

ox

B (5.80)

Ax(wth) =

For this wave, both coordinate systems are orthogonal. For this particular wave, we
compute the value of Ag to be approximately 1.0281. While using this coordinate

system does stabilize most of the modes, we still see growth in modes on the line k; =
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linear theory.
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28. The cause of this instability is uncertain. The nonlinear theory suggests that
even after the primary instability is removed, there could still be weaker instabilities.
One possible method for controlling weaker instabilities is using Krasny filtering.
This type of filter removes all modes with amplitude lower than some tolerance.

While we have not completely removed all of the instabilities, this example is
significant in that it shows the effect that a slight change in the coordinate system
and the smoothing factor can have on the calculations. One important consideration
is that the accuracy of the multipole expansions for thesé calculations was roughly
single precision. Higher precision (taking more terms in the multipole expansion)
could have some effect on the growth of instabilities. This is because the stability
theory assumes an exact Green’s function kernel, while our method uses an approx-
imate kernel. Tn Figures 5.36 - 5.39 we show the spectrum of the wave solution after
1, 2, 3, and 4 time steps, respectively. In Figure 5.40 we show the amplitudes of the
mode (k;,30) where &, varies from 20 to 30, as in the previous example. Comparing
this figure with Figure 5.32 shows that these modes have been stabilized.

It is also useful to verify to what degree the equal-orthogonal condition is satis-
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Figure 5.39: The spectrum of the Stokes wave after approximately four periods

using the equal-orthogonal coordinate system and smoothing factor.
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Compare with Figure 5.32.
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Figure 5.41: The computed value of A4 after 1 period.

fied. We define g to be
ox Ox

V8 = a1 B (5.81)
We show the computed values of A3 and ~y4 after 1 and 4 periods in Figures 5.41 -
5.44.

In Figure 5.45 we show the wave profile after approximately 4 periods (t = 26).
Because the wave solution is known for all time, we can compare the theoretical

solution with the exact solution. We show the difference of exact and computed

solutions after 1 period and after 4 periods in Figures 5.46 and 5.47.

5.3 Remarks

We have shown that for both the near-equilibrium and the non-linear regimes, the
boundary integral scheme can be stabilized significantly. The numerical viscosity
approach has the disadvantage of being particularly stiff. This approach, there-
fore, has a distinct computational disadvantage. We consider this method to be
unsuitable for stabilizing the numerical scheme.

The desingularization approach works relatively well for the test problem we
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Figure 5.42: The computed value of Az after 4 periods.

N
I
!"’!é("’

)
4
N

4

Figure 5.43: The computed value of v after 1 period.



114

2e
-05
1.5e-05 L

1e-05 [

5e-06 -

o]

-5 L0

©-06 ‘\;x“:‘\\!r' !

-1-;3‘05 R
Seosr
©-05 -

-3
Figu 83— 3 3
re 5.44: T
he ¢
omput
ed val
ue
of Vs "
aft
er 4 p
eri
0
ds.
0.3
0.25
o2l
615 |
1+
0.05 |-
0 0 k
.05 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
_ . 1 - \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
O . 1 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ AN
0.2 A\ ‘?‘M&ﬁss:‘&?&&““ﬁt N
0.5 - = “‘%‘\‘M??f/n =% s S e
\\\\\\\s\s 2 TR \\\\\\s\\\j $2is {0 2 TN \\\s‘\\\\\\\\\\\\\\\\\‘\\\\\\‘\\\\\\\\\\\\\\\\\
‘5“‘\:‘~“\*‘ ‘*“*““““‘*yf" ,yf" \\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
= S S
72 \\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\
A\ W\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\
-3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ W
W\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
N \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
W\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\
W\ \\\\\\\\\\\\\\\\\\\\\
\\\\ \\\\\\\\\\\\\\\
3

Fi
gure 5
A45:
- The
Stok
S Wa
ve

proﬁ
le after ap
Proxim

atel

y 4
period
s (t=



2'29'05 -
e-05
1.5e-05 I
1e-05 [
56-06 -

5000
A -1e-05
5e-05

115

== = ;{::“:‘ggi = s
‘::s:‘s::::*s::“ R ‘:\:““\&:\‘s.::::::::\““m\“
.“\‘\“\\\\\\\“\w\“\»\“ R ‘“\\N\“\\“\\\\m\\
\\\\\\\\\\\\\\\\\\\\ RN \\\\\\\\ AN AR \\\\\\\\\\\\\\\\\\\ o
\\\\\\\\\\\\\\\\\\\\\\\ SO S SO S \\\\\\\\\\\\\\\ S
‘\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\ Do AN \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ SN0 \\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\ \\\\\\\\\\\
Y \\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\ \\\\\\ \\\\\ W\ W NS
\\\\\\\\\\\\\\\\\\\\\\\ W \\\\\\ \\\\\\\\ \\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\ \\\\\\\\\ WM
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\
\\\\\\\\ W
\\\\\\\\\\\\
\\\\\\\\\
NN

,,,,, 7 N
\\\\\\\
\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\
W W \\\\\\\\\‘\\\\
M \\\\\\\\\
\\\\\\\\\\\
\\\\\\\\ W\
WS \\\\\\\\ N
\\\\\\\\\\\\\\\ N\
\\\\\\\\\\\\\\‘

“t\“
SRS
>

Fi
gure 5
.46:
e Stok
es wave er
ror af
ter 1
period

“\.«,«‘M,«,.“‘«,‘ <

.‘.w.w....‘... &
S 5

S

X v)&;‘v)“*

A AV

SR

P

Y ‘
X
AR "‘A'"‘\\a X
AR AN
S :Az:!:\\k'A'A AN
R
RN
AR ORI 0
Y, ‘,:\v;v,, ,}:g;;y.,; \
WL ARYY YAALL
AV 'V;g::!ﬁ
33 y\{A'A e
6\0\5‘{0{0
.‘.».,.\.-.\

A%
Q O
AN A AR A
V’Y/\: \/ V/‘:,\tk y,\:\oy/ﬁ\,ﬂ"/‘\a\,
1'([)!&':"/”)[‘“‘&; ‘:‘(ﬂ"“g(“ﬁl’(‘
AN u(‘V(r"u A ')VI}‘}‘M")‘

Fi
gure 5
AT:
- The
Stok
es wave er
ror afi
ter 4
periOd
S.



116

used. However, for this problem, the ratio Ag varies by only a few percent over the
surface. It is not certain how well this approach would work for a. problem where Ag
varied more significantly over the surface such as for breaking waves. We also cannot
tell how effective this approach will be for very large values of N. It is possible that
this method moderates the O(|k|?) instability but does not completely remove it.
Hence, for large N, we could still see rapidly growing instabilities. In addition, this
approach is more costly from a computational standpoint. The desingularization
approach, however, is much simpler to implement.

The Fourier smoothing approach seems to have the best overall effect on the sta-
bility of the scheme when used with the appropriate coordinate system and smooth-
ing factor. However, as we noted earlier, there could exist weaker instabilities that
even this method does not remove. Moreover, it is not clear whether an equal-
orthogonal coordinate system can be constructed for all possible initial conditions.
A comparison of the results using Fourier smoothing both with and without the
equal-orthogonal coordinate system suggests that for many problems, it may not be
necessary to construct the equal-orthogonal coordinate system. However, for large
N or for very complex surfaces (such as breaking waves), we expect this method to

remove the high order instability.

5.4 Equal-Orthogonal Coordinate System

Initially we want to specify a parameterization of the surface

x(B) = (z1(B), 72(8), 2(B)) where 8 = (1, B2) such that

ox O0Ox

ox 0Ox ox Ox
35 95 0552_ e (5.83)

We need this condition to hold for all time, where the constant C is allowed to vary
in time. We consider separately the calculation of the initial coordinate system and

the time evolution of the coordinate system.
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5.4.1 Initial Equal-Orthogonal System

If we consider the perturbation of a plane, we can derive an iterative method to

compute solutions. We parameterize the surface using x = (x1, 3, /en(z1, x2)) and

let
z1 = P +eS1(B,5) (5.84)
T2 = [2+ €S2(61, ) (5.85)
C = 1+eC (5.86)

where Sy and S are periodic in S.

Substituting this into the system of equations and keeping the first two orders

in € gives
081 085y _On Oy
8,62 + 6,81 = le 8:E2 +€F1 (587)
9s; 88, 1 877)2 (%)2
B 9B 2 <<3$2 o) TREG (5:88)
where

851 08,  8S, 85,
F = — _ 5.89
1 96, 9B, ~ 95, 97, (5.89)
051 ( on )2 055 ( on )2 on On (85’1 35’2)

T 0B \0z1) 9P \Bz2) ~ By 0w \35, T 35,

B () (B (52 () ()

87] 2 852 377 81] (9,5'1 852
(a—x) %5 " 290 52, (a—m B %) (5.90)

08 on ) 2
+G <23/32 * (3362 '

We can express the system given by Equations 5.87 and 5.88 as a pair of coupled

Poisson equations defined by

8F1 BFQ) 0 (87] 8’!})
AS = (L1 92)_ 9 (9n on _
f1= ¢ <8ﬁ2 *36.) ~ 95 \ 8wy 2, (5.91)
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i (2) - (Ga))

OF, 0F\ 8 [ on an)
= (2L %2y 9 (9n 9n 92
AS, ‘ (8ﬁ1 3,32) 0B (3361 Oz (5.92)

o () - (32))
19)6)) O12 0x1 '
We have implemented an iterative method to solve this system. We begin with
a fast Poisson solver and iterate on S1 and S;. The value of € is determined by
substitution of S; and Sy into Equation 5.88 and integrating over 5. The value
of Cy is thus chosen to satisfy a solvability condition between the right-hand side
and the left-hand side of Equation 5.88. Since the left-hand side is periodic and a

derivative, the right-hand side must have mean value 0. C1 is chosen to satisfy this

condition. We iterate on C; to determine the final value.

5.4.2 Tangential Velocities

In order to satisfy Equations 5.82 and 5.83 for all time, we make use of the freedom
in choosing tangential velocities. That 18, we want to define the particle velocities
by

X =0+ T + T, (5.93)

where T and 72 are chosen such that

(Xt),@l'xﬂ2 + xﬂ1'(xt)ﬂ2 =0 (5-94)
2
X
(xt)ﬂl Xp = C(xt)ﬂz Xg, + Ctl%, (595)
Recalling that
Xg = lxﬂll i;1 (5.96)

Xg, = lxﬂ2'£2 (5'97)
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we substitute Equation 5.93 into Equations 5.94 and 5.95 which gives
lxﬁllTﬁlz + lxﬁlegl = - |X[32| (£1ﬂ1 : EZ)Tl - lxﬁ1| ({:2[32 'EI)TZ

- |Xﬁ2| ﬁﬁl ’ EZ - |X,31 l ﬁﬂz ; 1?1 (5-98)

|xﬂ2| (élﬂz : 1A:Z)C'Tl - Ixﬁll (132,51 : f"l)Tz -+

|xﬁ1 ’ Tl}l - [xﬂzl CTﬁzz

2
~ ~ - ~ X
C |x§2, ug, -ty — |xﬂ1| ug, - t1 + Ct%. (5.99)

If we divide the first equation by |xg,| and the second equation by |xg,| we can

write the equations as follows:

VOT), + Th = G (5.100)
T} —VCTs = Go+ Ct";ﬂl (5.101)

where
G1 = —(big, t2)T" — VC(Eag, - t1)T? —iig, - t2 — VCig, - &1 (5.102)

Gy = VC(tig, t2)T" — (825, - £1)T? + VCig, -ty — g, - 1. (5.103)

As with the system for initially determining the coordinate system, the right-hand
sides of these equations must have mean 0 over the surface. For the first equation, it
is not certain whether we can always satisfy this condition. For the second equation,
we choose C} to satisfy the mean zero constraint.

In order to solve the system numerically, we rewrite it to resemble Equations

5.91 and 5.93. We make the following substitutions:

C, = VC-1 (5.104)

a = 1-"‘%21, (5.105)
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We then rewrite the system as

Ts,+T5 = R (5.106)
T, —T5, = Ro+C (5.107)
where
R = G- 1T}, (5.108)
Ry = G2+ C1Tj, — Cion (5.109)

By differentiating both equations, we can rewrite the system as a pair of Poisson

equations:

OR; ORy

AT = 5,'6§+a_ﬂ1 (5.110)
AT? = g—lgf—g—%. (5.111)

We now proceed as with the initial coordinate system. We solve the Poisson
equations, then integrate Equation 5.107 to update the value of C;. We repeat this
process iteratively to determine the final value of C;. We can then update x and C.

We have tested this algorithm for the case of a two-dimensional steady wave.
In this case, we anticipate that C; should be zero for all time. Our experiments
show that in this case, the algorithm maintains the orthogonality of the coordinate

system and the value of C remains roughly constant.

5.5 Calculation of the Fourier Smoothing Factor

One difficulty in using the Fourier smoothing as defined in Chapter 5 is that the
smoothing factors are defined in terms of very slowly converging sums. In order to

compute the factor as time evolves, we define p!, p?, and p to depend on a parameter
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Lkh,a) = 1 Z J1 sin(j1k1h) cos(j2kah) 5.112)
T (1,42)#(0,0) (53 + aj3)3/

1
Plkh,a) = o 3
(41,92)7#(0,0)
1 Z 1-— COS(jlklh) COS(ijQh)
2mhlk] ¥ (7 + j3)3/? '

J2 sin(jakah) cos(j1k1h)
(51 + ag3)3/?

(5.113)

(5.114)

pkh,a) =
(71.52)#(0,0)

We can view these sums as the point vortex approximation to the integrals I, I2,

and I, respectively, defined by

1 . o zsin(kiz) cos(kay)

IMky gy 0) = 27T/ / A (5.115)
2 _ % ysin(key) cos(kiz)

I*(k1, kg 0) = 27r/ o (2t o (5.116)
- _ o 1 — cos(k1z) cos(kay)

T(ky, kpya) = 27T|k’/ /- gy (61

The integrals 1,72, and I can be computed explicitly (see [13]):

/ /00 z sin(kyz) cos(kay) _ ky (5.118)
Dy (22 + ay?)3/2 \/m '
1 /oo o ysin(koy) cos(k1z) _ ks (5.119)
27 Joco)co (2 + )3 ofak? + k3 |

/ /00 1 —cos(kyz) cos(kay) _1_@ (5.120)
27r|k| . |

@+a? T W a

We can make use of the analysis of 3 to compute the sums defined by p', p?, and 5.

For example, to compute p, we have that

i +ZDQ, A2 4 O(R?m=3)y, (5.121)

VER+ K 1=

where Do;_; is defined by Equation 3.53. In practice, the formulas describing the

pt (k1 h, koh) =

coefficients of the error series are unwieldy and inefficient to compute. By using

a different approach, we need only compute the coefficient D; using the definition
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3.53.

The remaining coeflicients are computed using a formulation suggested by Lowen-
grub, Shelley and Merriman [18]. Their work derives the Poisson summation formula
for singular functions and shows how to compute the coefficients of the series de-
scribing the error of the point vortex approximation. We encountered some difficulty
in computing the first term of the error series using their approach. However, we
were able to compute all other terms of the series using their approach. Thus, we
use the analysis of Chapter 3 to compute the first term in the series, and the analysis
of Lowengrub, Shelley and Merriman to compute all other terms in the series. We
now give the formulas for computing the coeflicients. In the next section, we outline
the Poisson summation approach.

Using the notation of Chapter 3, we define ¢; ¢ as

1 1
C10 = —232 I:/ D}EC’l(l,y)dy +/ D;Cl(x, 1)d1‘
0 0
By
+=5 DaDyCi(1,1)
1 1
+/0 DID,C(x, 1)dw+/0 Dipjcl(l,y)dy] (5.122)
oo OO, 1 proo
+4/ / DgCl(x,y)dydm—i-él/ / D2Cy(z,y)dydx
1 0 0 J1
oo poo 1 poo
4 / / D3C, (z, y)dudy + 4 / / D3Cy(x, y)dzdy
100 000 o 0 J1
+4/ / DngCl(x,y)dydm
1 0
1 oo,
+4 / / D2D3Cy (3, y)dyda:
0 1

_4/01 /01 Ci(z,y)dzdy + [C1(1,0) + C1(1,1)],

where

1.2

T o (5.123)

01(17, y) =
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For 7 > 1 we have

cijla) = : <2i . 1) > o b (5.124)
I (2i — DI2m)Z-1\ 25 (1) 2(0,0) QP12 \ [al2 + 12

where j ranges from 0 to 7 — 1.

The single integrals in c¢;9 can be computed in closed form. We compute the
double integrals numerically. The sums in ¢;; for i > 1 can be computed using
a Maple program. In order to compute the factor in real time, we used Maple to
generate the source code needed to compute the sums numerically. For large values
of 4, only one or two terms of each series is significant. For smaller values of i, the
acceleration techniques described by Lowengrub, Shelley, and Merriman can be used
so that only a few terms are necessary to compute the series. Similar calculations
are used to compute the values of p? and p.

Having defined c; j, we now give formulas for computing the smoothing factors.

The formula for computing p' is given by

pt= +Zh21 12% [ (5.125)

Vo k2+k2 i=1

We can use the definition of p' to compute p?:

jg Sin(jz kg h) COS (]1 k’l h)

(7 + o) (5:126)

p?(kih, koh, o) = 3
(41,42)#(0,0)

1 Z j2 sin(jakah) cos(j1k1h) (5.127)

3/2 . 3/2
I 1,72)2(0,0) (J_%’ N .2>
o J2

L(koh, k1h)(1/a
— P ( 2 a31/2)( / ) (5128)

Finally, we consider the calculation of p. We have

|k|p(ky, ko, ) = ,/ak2+k2+zh2ﬁ 1}:% (kMg (5.129)

i=1 7=0
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where the coefficients c; ;(a) are defined by:

. y 2+ 12
/ 1 (21) - 0? (\/ I +l2) ' (5.130)

ci,j(a) = (2’i)!(27r)2i_1 2j lfi_ch‘)lgj o

We can relate the coefficients c; ; to ¢; ; by

L yla) j<i
_.—.'Ci,j a 1

dj= (221— 2j) . (5.131)
WCZ’O(l/a) 1 :j

For our calculations, we computed the values of ¢;; up to ¢ = 30. This gives
single precision accuracy. The source code for generating ¢; j for 7 > 1 takes up more
than 2 megabytes of space. However, the code takes less than a second to execute.
The reason is that only one or two terms in the series defining ¢; ; are necessary.
The calculation of p',p?, and p takes less than 15 seconds on a workstation. While
this is not negligible, it is a small percentage of the computational cost at each time

step.

5.5.1 The Poisson Summation Method

The derivation of the formula for calculating the coefficients comes from the Poisson

summation formula for singular function, defined by Lowengrub et al. as follows:

> feirt = [ [ fegdx =l [Z £ (3) - fe(O)hQJ (5.132)

j#0 1£0

where f is singular at the origin, J. is some smoothing function and f, = f * §.. If

we define f = Kw where
Ty

CEE TR o

K(x) =
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and w is periodic in x and odd in z;. For example, to compute p', we take w =

sin(k1z1) cos(kaz2). Using the Poisson formula for singular functions, we have

P gt 27T 2
> (Kw / / (Kw)(x)dx = lim {Z 5. Ko (—h—1> — (Kw).(0)h }
j#0 1£0
(5.134)
We here take @ = 1, and note that the more general case is similar. We are

interested in expanding the series on the right-hand side in powers of h. We first

define F'(1,m,7) to be

ll — T

Fl,m,7) = V(= 7mm1)2 + (I — 7my)?’

(5.135)

where we 7 = 27/h. We compute the Fourier transform of K to be K (1) = —iF(1).

From the convolution theorem, we have that

Kol 27T / / )(m)dm. (5.136)

Using this result, we compute the following:

I/{D(T> @ / / F(1,m,7)(m)dm (5.137)

Using this result, we have
Z?Kcu)e (2—7rl> = —Z ( ) / / F(l,m,7)&o(m)dm.  (5.138)
: h 2m)?
#0 1£0
Since 7 is small, we can Taylor expand F about 7 = 0 away from the singular point.
oo Tn
F(l,rm,7) = > 87F(1,m, O)F' (5.139)
n=0 :
We notice that the terms in this series can be separated as follows:
n

OrF(L,m,0) =Y "Il Im] (5.140)
=0



126

with
. o" I
T = (=) ——— . (5.141)
LN
We further relate the moments of & with derivatives of w:
/m1m2w Jdm = i7" [97 81 w] (0). (5.142)

This result together with the Taylor expansion of F' suggest the following form for

the series:
N ’T ~ n .. . .
S TKw). ( ) =S T8 i (ool (0) + O+ (5.143)
120 o 120 j=0

for N sufficiently large. The even terms in n vanish because the summand is odd,
leaving a series in odd powers of h, since 7 = h/2w. Also for j odd, ¢/ is odd, so

these terms also vanish. Using this and the relation

. AN L
¢ = (1)t () 9 5.144
=) <J> ol an (,/I%Jrlg) (G.144)

suggests the following series:

(7o), (2_;[1) _ (5.145)

1£0
N R n

= RIS 6 30 P [ty w| (0) (5.146)
n=0 10 j=0

Lo (5.147)
N

_ thi—1 )i cha% 1-2j [821] w(0) + O(r™) (5.148)
i=0

for any N sufficiently large and where ¢; ; are defined by

Cij = . <2i 3 1) > - ). (s49)
2,J (22- _ 1)!(27T)2i—1 25 (LI E00) al%z—l—2jalgj l% n l% . .
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From this we obtain the formula for computing the smoothing factors, by noting that
the sums ¢; ; are absolutely convergent for n > 2. Hence, the choice of smoothing
function does not matter for these sums, and we can compute these sums indepen-
dent of the limit in e.

We remark here that we have not rigorously shown that this approach is valid,
but have (somewhat naively) applied the approach to our particular problem. In
particular, Lowengrub assumed that w was a decaying function, whereas in our case,
it is periodic. Hence the rigor of all of the steps which lead to the final formula is
not clear. Surprisingly, we have compared these results with our approach using
the Euler-Maclaurin formula and find that for n > 1, the coefficients agree. The

derivation of the series for general « is similar.

5.5.2 The Calculation of ¢;

The most computationally intensive step in the calculation of the smoothing factors
is the computation of ¢; o using Equation 5.123. We present an alternative approach
to computing this coefficient which is less rigorous, but gives the correct answer and
is more eflicient computationally.

For n = 1, the Poisson summation approach suggests that for general o,

1 . 0 I
col@ = == D demr <——-) (5.150)
@m) g0 O \yfal? +13

1 N 13
= — > eyt (5.151)
2 72)\3/2
T azoe (@)
Because the underlying sum is divergent, no choice of smoothing factor can make this
sum converge in the limit as e approaches zero. This suggests that this term cannot
be evaluated separately from the self induction term in the limit as e approaches
zero. Because the coefficient should be finite, we expect that the singularity in

the sum should be balanced by a singularity in the self induction term. We must
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evaluate c; o using

— s B
€10 = EE)% (J;ézo 5GW - (KUJ)G (0) h) (5152)

where the limit cannot be applied to each term separately. This differs from the
case which Lowengrub studied, in that the sums are conditionally convergent and a
careful choice of smoothing function allows this limit to be separated.

However, since we know that the term is finite, we can sum the series minus
the singularity. We then must determine the nonsingular contribution of the self
induction term. To sum the series, we choose the smoothing function which gives a

sharp square cut-off. We let ¢ = Il/f- and

5 1 if|lj] <Mand |l <M
51/M = . (5.153)
0 otherwise

Using this definition of é, gives the following lattice sum (which we call S(a)):

l2
2 (5.154)

M—o0
(I 0o

)#(0,0)

We can rewrite this sum using the symmetry of the summand and by reordering the

terms in the sum:

] M m/ m2 k2

S(a) = lim 4 Z:Mz::o [(ak2+m2)3/2 + (am2+k2)3/2] (5.155)
ISR A LA 1 (k/m)?
= ami X {(a(k/mﬁ 02 T lar (k/m)?)?)/?} (5-156)
M
= Jim 4 Zz:lg(m;a), (5.157)
where

N 1 (k/m)?

g(m;a) = Ek; [(a(k/m)2 T T o (k/m)z)?,/Q} (5.158)
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and Y’ denotes that terms with £ = 0 or k = m are weighted by 1 /2. The function

g(m; o) is the trapezoidal rule approximation of the integral

ar? +1)3/2 + (o +12)3/2

1 1 ,,"2
/O { : dr = arcsinh(1//a). (5.159)

Using the Euler-Maclaurin summation formula, we know that
g(m; a) — arcsinh(1/+v/a) = O(1/m?) (5.160)

for large m. Hence, we can define a modified sum S; which converges:

co

Si(a) = ) [g(m; @) — arcsinh(1//a)] . (5.161)

m=1

Since the singularity in S must balance with the singularity in f.(0)h, we need
only determine the nonsingular contribution of the latter term. The correct term
was determined by an educated guess. The formula for computing the first-order

coefficient is

ero(@) = Si(a) — 2@1—%&@. (5.162)

We have compared values of ¢ (@) computed using Equation 5.162 with values
computed using Equation 5.123 from the Euler-Maclaurin approach and find that
the results give good agreement. Using this alternative definition of ¢; g, the calcu-

lation of the smoothing factors requires only 2 or 3 seconds on a workstation.
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Chapter 6

Numerical Experiments

In this chapter we report the results of several numerical experiments performed

using the methods developed in the previous chapters.

6.0.3 Gaussian Initial Condition

We consider the time evolution of a wave with initial condition given by

expl— x 1;2
Waray) = SRCIET ) (6.1)

¢($1,$2) = 0. (62)

We encountered some difficulty in setting up the equal-orthogonal coordinate system
for this initial condition. For this initial condition, we used the Fourier smoothing
with the equilibrium smoothing factor in the fixed grid formulation. This proved
to be sufficient to suppress instabilities for the length of time which we considered.
We propagated the wave until approximately ¢ = 10.

In Figure 6.1 we show the initial wave profile. In Figures 6.2, 6.3, and 6.4 we
show the wave profile at times ¢ = .95, 5.23, and 9.5 respectively.

For our next experiment, we double the amplitude of the initial condition and
propagate the wave using the Lagrangian formulation with the desingularization

method for stability. The initial condition is

(w1, 02) = eXp("lol(g%”%)) (6.3)
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Figure 6.1: Gaussian wave initial condition.

Figure 6.2: Gaussian wave at ¢t = .95.
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Figure 6.3: Gaussian wave at t = 5.23.
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Figure 6.4: Gaussian wave at ¢ = 9.5.
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Figure 6.5: Gaussian wave profile at ¢ = .105.

$(z1,72) = 0. (6.4)

In Figures 6.5-6.8 we show the wave profile at times ¢ = .105, 4.71, 6.81, and 9.42.

6.0.4 Three-Dimensional Steady Wave

Meiron, Saffman, and Yuen [19] showed that three-dimensional waves of permanent
form can be obtained as bifurcations of two-dimensional Stokes waves. In this section
we present results of the time evolution of a three-dimensional wave of permanent
form.

The initial condition is given by

M N 1 3

z(z,y) = mz::() 7; Am.n cos(ima:) cos(iny) (6.5)
M-1 N

d(z,y) = mzz:l T;) b, sin(%mm) cos(—g—ny) exp(4/ imQ + %rﬁz(m, y)). (6.6)

This wave is 47 periodic in z and y. The wave we computed propagates in the

positive z direction with wave speed 1.0222. In Table 6.1 we give the first few
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Figure 6.8: Gaussian wave profile at ¢ = 9.42.

nonzero coefficients. The initial wave profile is shown in Figure 6.9. The coordinate

system is given by

z1 = B+ 85151, 00) (6.7)
Ty = P2+ S2(61,52) (6.8)

where 57 and S are shown in Figures 6.10 and 6.11. The value of the constant C
is approximately 1.02173.

We have propagated the wave for approximately one half of a period. The
wave profile at time ¢t = 7.5 is shown in Figure 6.12. The difference between the
computed value and the theoretical value at ¢ = 7.5 is shown in Figure 6.13. The
error appears to grow linearly as a function of time. The reason for this is currently

under investigation.
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n|m Gm,n bm,n

0| 2| 0.157732286726428E-03 | 0.000000000000E+00
0| 4| 0.479964514039474E-05 | 0.000000000000E+00
0 6| 0.550038364206870E-07 | 0.000000000000E+00
0| 8| 0.140409205611713E-09 | 0.000000000000E+00
1] 11 -0.898422335587618E-03 | -0.503284290781E-02
1] 3| 0.597223725336634E-04 | 0.113022690894E-04
11 5 0.105367887717518E-05 | -0.177810574629E-06
11 7| 0.108145424302587E-07 | -0.539736250622E-08
2| 0 0.203623047421752E+00 | 0.202290992971E+00
2 2] -0.262869354349005E-03 | -0.807610958614E-03
2| 4| 0.820223586888213E-05 | 0.309415997044E-05
2| 6| 0.118348697558678E-06 | -0.694402295192E-07
2| 8| -0.468303283517227E-09 | 0.125805700996E-10
3| 1| 0.259423437502074E-01 | 0.181733360205E-01
3| 3] -0.461481062245146E-04 | -0.968188684960E-04
31 5| 0.133061116113115E-05 | 0.793014193891E-06
3| 7| 0.283833638881459E-08 | 0.123460513610E-07
3| 9| 0.539817727098814E-09 | -0.249037209185E-09
4| 0 0.222972428278761E-01 | 0.112828359184E-02
41 2| 0.296740463245126E-02 | 0.173857579653E-02
4| 4 -0.702897007969855E-05 | -0.127935406013E-04
4| 6| 0.223848033943067E-06 | 0.245483233623E-06
4 8| 0.469881950477252E-08 | 0.973029021872E-09

Table 6.1: A few of the nonzero coefficients for a three-dimensional wave of perma-

nent form.
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Figure 6.9: Three-dimensional steady wave initial profile.
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Figure 6.10: The function Sy (81, 52)-
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Chapter 7

Summary and Conclusions

In this work, we have presented some investigations of the numerical calculation of
water waves in three dimensions. We have developed efficient, accurate and stable
schemes for describing the evolution of surface waves. While the original formulation
of the boundary integral is unstable, we find that both the Fourier smoothing and the
desingularization methods seem to remove the most severe numerical instabilities.
Although the Fast Multipole algorithm is not as fast as we had hoped, the method
still has promise because the asymptotic operation count is O(/N?) and because the
algorithm is readily adapted to parallel architectures. As with any scientific work,
however, there remain open questions.

From a practical standpoint, the computational time required to calculate waves
using our methods is daunting, even for problems with relatively coarse spatial dis-
cretizations. We have not considered how readily these schemes can be adapted to
distributed parallel architectures. Because of the high computational cost, we have
not tested the stability of the schemes at high resolution. From a theoretical stand-
point, we do not know how well the stabilization methods work when the surface
becomes highly distorted, as with breaking and plunging waves. The theoretical
work for the Fourier smoothing method suggests that it should yield robust results
for large N and for distorted interfaces. It is not certain how well the desingular-
ization method will work for large N or for distorted interfaces. Moreover, it is not

certain whether an equal-orthogonal coordinate system can be efficiently computed



141

for a wide range of problems.

We have shown that the boundary integral approach, when properly stabilized,
works well for the problems which we have investigated. While no single method is
well-suited to all problems, the boundary integral approach is a promising method
for numerically studying water waves and general interfacial fluid flow in three

dimensions.
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