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ABSTRACT

We report an investigation of the melting transition in a two-dimensional system of 

particles that interact through the Lennard-Jones potential. In our investigation we 

attempt to determine whether the melting transition consists o f a conventional first-order 

transition or a pair of higher-order transitions separated by a region of hexatic phase. We 

study systems containing 1024 and 4096 particles using Monte Carlo simulations, which 

we ran on Caltech’s concurrent processor. Since the concurrent Monte Carlo algorithm 

differs significantly from previous applications for the concurrent processor, we also 

explore various issues of concurrent computation. In particular, the processors must run 

completely asynchronously in order for the algorithm to be efficient, leading to problems 

satisfying detailed balance.

We investigated the melting transition along the T* = .7 isotherm using constant- 

density simulations to measure potential energy, pressure, elastic constants, topological 

defects, and angular correlations. Using thermodynamic integration, we calculated the 

free energies of the solid and fluid phases, which we used to locate the melting transition. 

Both constant-density and constant-pressure simulations of the transition region confirmed 

the predictions of the free energy analysis. We initialized a sequence of constant-pressure 

simulations with a configuration from a constant-density simulation of the transition 

region. Using this technique, we were able to establish upper and lower bounds on the 

melting pressure and thereby estimate the width of the transition.

The sharpness of the melting transition and the consistency of our various simula­

tions give strong support to the interpretation that the melting transition is first-order. 

Measurements of the elastic constants and the angular correlation function provided evi­

dence that the Kosterlitz-Thouless mechanism does not correctly describe the melting 

transition. Thus, we conclude that melting in the two-dimensional Lennard-Jones system 

at T* = .7 is a first-order transition. Since our simulations of the 1024-particle system 

exhibited strong finite-size effects in the transition region, we believe that finite-size 

effects dominated most previous simulations of the transition region.
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Chapter 1: Introduction

1.1 Preamble

Although the subject of ordering in two-dimensional systems has been studied over a 

period of many years, several recent advances have renewed interest in the subject 

Experimental advances in the area of surface physics have increased theoretical interest in 

the effects of the reduced number of dimensions in such systems. Theoretical predictions 

have postulated the existence of a new phase and a phase diagram that is qualitatively dif­

ferent from that of a three-dimensional system.

With the availability of powerful computers, computer simulations have been used to 

study the properties of two-dimensional systems. Such simulations have several advan­

tages over experimental systems since their results are not obscured by such effects as sub­

strate interactions and second-layer promotion that occur in experimental systems. How­

ever, computer simulations generally require large amounts of computer power to obtain 

good results, especiaUy near phase transitions. Since the lack of sufficient computer power 

is usually the limiting factor in many types of simulation studies, faster computers would 

expand the utility of simulations in many fields.

The speed of the fastest sequential computers is unlikely to increase dramatically in 

the future, so achieving large increments in available computer power requires a different 

approach to computing. An obvious method of building a faster computer is to connect 

several sequential computers together to form a concurrent processor. Advances in VLSI 

technology have produced microprocessors that are very cost-effective and have made the 

construction of concurrent processors with many processing elements practical At Cal­

tech we have built several concurrent processors and are learning about many issues 

involved in concurrent processing by implementing substantial research applications on 

the machines.
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Excited by the promise of large amounts of computer power, we have undertaken a 

project which combines research in physics and concurrent computation by developing a 

concurrent algorithm for simulating a two-dimensional system. The implementation of the 

concurrent algorithm raised several challenging issues dealing with concurrent computa­

tion and the results of the simulation provided greater insight into the melting transition in 

the two-dimensional system.

1.2 Theoretical Background

In 193S Peierls,1 and later Landau,2 argued that long-range order does not exist in 

the traditional sense in two-dimensional systems. The thermal motion of the atoms breaks 

the perfect translational symmetry of a crystal at nonzero temperatures in any number of 

dimensions. However, in a two-dimensional crystal the equilibrium positions of the atoms 

become uncorrelated due to long wavelength thermal phonons. In a three-dimensional 

crystal the mean-squared deviation of an atom from its equilibrium position is always fi­

nite, regardless of the size of the crystal. In contrast, the mean-squared deviation 

increases logarithmically with the system size in a two-dimensional crystal. In 1967 Mer- 

min3 used rigorous inequalities to arrive at the same result. Although the two-dimensional 

system lacks long-range translational order, Mermin showed that the orientation of the 

crystal axes around two points remains correlated, regardless of the separation of the two 

points. Thus, the two-dimensional system possesses long-range orientational order.

In 1972 Kosterlitz and Thouless4 proposed a new definition of long-range order, 

which they call topological long-range order. Rather than refer to the two-point correlation 

function, which vanishes at any finite temperature in the two-dimensional system, they 

base their definition on the overall properties of the system. Possibly the most obvious 

way to characterize a solid is that it should have an elastic response to a small applied 

shearing stress. Thus, they propose that the disappearance of long-range topological order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 3 -

be associated with the transition from an elastic response to a fluid response to an applied 

shearing stress.

Kosterlitz and Thouless propose a general mechanism for melting in a two- 

dimensional system. At any finite temperature topological defects, such as dislocations in 

the two-dimensional solid, are thermally excited in the system. However, the dislocations 

experience an attractive potential that grows logarithmically with their separation, which 

tightly binds them into pairs with equal and opposite Burgers vectors. The potential 

energy of an isolated dislocation is a function of the logarithm of the system’s size, so free 

dislocations cannot exist at low temperatures. Since the solid contains no free disloca­

tions, it is rigid and has an elastic response to an applied shearing stress.

As the temperature of the system increases, the number of bound pairs of disloca­

tions and the average length of their bonds also increase. Since the pairs of dislocations 

can orient themselves in response to an applied shear so that they reduce the shear, the 

shear modulus of the solid decreases with increasing temperature. Kosterlitz and Thouless 

show that both the potential energy of a free dislocation and its entropy vary with the log­

arithm of the system’s size. Thus, at low temperatures the potential energy of a dislocation 

is more important than its entropy in the free energy of the system, so the probability of a 

free dislocation’s existing in a large system is extremely smalL However, at high tempera­

tures the entropy of the dislocation becomes more important than its potential energy in 

the free energy, so the system should contain many free dislocations. At some critical 

temperature the contributions of the energy and entropy to the free energy exactly balance 

and the system becomes unstable to the formation of free dislocations. The criterion that 

expresses the limit of stability is

< L I >kTm 2p +  A
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whcre wc use the form given by Abraham,5 which differs slightly from that given by Kos­

terlitz and Thouless. In (1.1) Tm is the instability temperature, a  is the lattice constant, 

and p  and A are the two Lamd elastic coefficients.6 The value K  is known as the 

Kosterlitz-Thouless K  parameter, which has a discontinuity of 16r at the instability tem­

perature.

Kosterlitz and Thouless point out that their instability criterion is only an upper 

limit of the stability of the solid against the formation of free dislocations. In arriving at 

their criterion, they considered the dislocation pairs in the solid to be independent How­

ever, the field of one dislocation reduces the Lamd coefficients of the solid, thereby 

reducing the attractive potential that binds other dislocation pairs. Since the dislocation 

pairs interact in such a way as to reduce their binding potential, Kosterlitz and Thouless 

argue that the critical temperature could be renormalized downward by the interaction of 

the pairs. They predict nothing about the order of the phase transition at Tm; they only 

note that since free dislocations appear above Tm, the resulting fluid state will not support 

a shearing stress.

In 197S Halperin and Nelson7'8 reported calculations in which they applied renor­

malization group methods to the model of two-dimensional melting proposed by Kosterlitz 

and Thouless. Young9 reported further study of the system with renormalization group 

techniques in 1979. They showed that the presence of bound pairs of dislocations in the 

two-dimensional solid renormalizes the Lamd coefficients. Just below the melting tem­

perature, Tm, Halperin and Nelson find that the renormalized Lamd coefficient pR has the 

form

=  M *(r-)| 1 +  const(Tm -  T f \  (1.2)

where Pr (T~) is limit of pR as Tm is approached from below. They obtain a similar 

expression for the other renormalized Lamd coefficient, XR, and calcinate the exponent,
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v  =  0.36963 • • •, which Young also obtained. In addition, they find a universal relation­

ship involving the renormalized Lamd coefficients that has the same form as (1.1), which 

Kosterlitz and Thouless obtained from their energy-entropy argument Thus, (1.1) gives 

Tm as the actual melting temperature when the renormalized values of the Lamd coeffi­

cients are used, as suggested by Kosterlitz and Thouless.

An important feature of melting through the unbinding of dislocation pairs is that an 

isotropic fluid does not result from such a phase transition. Instead, Halperin and Nelson 

found that a new type of liquid crystal results from the presence of free dislocations, 

which they proposed be called the hexatic phase. While the hexatic phase does not sup­

port a shearing stress, it does retain some of the long-range orientational order of the two- 

dimensional hexagonal crystal, which gives it a sixfold anisotropy. In addition, they found 

that the unbinding of dislocation pairs leads to a higher-order phase transition.

Phase transitions are characterized by the discontinuities that occur in the various 

free energy derivatives at the transition. When quantities such as density and potential 

energy, which are first derivatives of the free energy, are discontinuous at a phase transi­

tion, the transition is said to be first-order. For instance, the melting transition in a three- 

dimensional system, such as water, is first-order. The density of ice and water differ at 

the melting temperature, as do their internal energies, so these quantities are discontinuous 

across the phase boundary. Since the internal energies of the two phases are different, the 

transition exhibits a latent heat, which indicates that the specific heat of the system has a 

singularity at the transition. In addition, first-order transitions exhibit hysteresis, in which 

the undisturbed system continues in its current phase as it passes through the phase 

boundary. The system is then in a metastable state that becomes less stable as the system 

moves farther from the phase boundary, until it abruptly changes into the equilibrium 

phase.
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Phase transitions that are not first-order are known as higher-order phase transitions, 

where the order of the phase transition refers to which derivatives of the free energy have 

discontinuities. Since higher-order transitions do not have discontinuities in the first 

derivatives of the free energy, quantities such as density and internal energy are continu­

ous across the phase boundary. Thus, the transition does not have a latent heat and the 

system does not exhibit hysteresis when crossing the phase boundary. An interesting 

feature of a higher-order phase transition is the large fluctuations in quantities such as 

density at the phase boundary. For instance, when water is at its critical point, the dis­

tinction between a low density liquid and a high density gas disappears. Since no latent 

heat is present at the critical point, large fluctuations in density occur giving rise to the 

phenomenon known as critical opalescence. In addition, the two-point correlation function 

diverges at the phase boundary, meaning that all of the particles’ positions are correlated 

in the system. Besides leading to strong finite-size effects in the small systems that can be 

studied by computer simulations, the diverging correlation length leads to a phenomenon 

known as critical slowing down of the simulation, which greatly reduces its rate of 

approach to equilibrium near the critical region.

The orientational order of the anisotropic hexatic phase results from disclinations in 

the crystal structure remaining bound together in pairs of opposite disclinicity after the 

pairs of dislocations unbind. Although the screening effect of the free dislocations 

reduces the potential energy of a disclination, the pairs remain bound by a logarithmic 

potential until the system reaches a higher temperature, T{. At a second higher-order 

transition occurs, in which the pairs of disclinations unbind and the system becomes an 

ordinary isotropic fluid.

Thus, Halperin and Nelson postulate the existence of a new phase, the hexatic phase, 

which separates the solid and fluid phases of the two-dimensional system. An algebrai­

cally decaying translational order and long-range orientational order characterize the solid
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phase, in which thermally excited disclinations are tightly bound into pairs. In a triangu­

lar lattice the pairs of disclinations form dislocations, which in turn are more loosely 

bound into pairs by a logarithmic potential Since free dislocations do not exist in the 

solid, it responds elastically to an applied shear.

When the system reaches the temperature Tm, the pairs of dislocations unbind and 

the system becomes an anisotropic fluid, which retains the sixfold anisotropy of the hexag­

onal crystal and is known as the hexatic phase. An exponentially decaying translational 

order and an algebraically decaying orientational order characterize the hexatic phase. 

The disclinations remain bound into pairs in the hexatic phase, but the pairs are bound 

more weakly than in the solid since the free dislocations partially screen the binding 

potential

At a higher temperature, T{, the pairs of disclinations unbind and the system 

becomes an isotropic fluid. Both the translational and orientational order decay exponen­

tially in the ordinary fluid.

The two phase transitions that occur during the melting of the two-dimensional sys­

tem are higher-order phase transitions. Higher-order phase transitions differ first-order 

phase transitions by having continuous first derivathes of the free energy and thus lacking 

a latent heat Near such transitions large fluctuations and a diverging correlation length 

occur, which cause critical slowing down in computer simulations due to the very long 

time scales of the physical system. However, Halperin and Nelson are careful to note that 

although their description of melting is stable and self-consistent, it is only a possibility. A 

first-order phase transition could occur in which the system would change directly into an 

isotropic fluid in a single step, as in three dimensions. Another possibility that they raise 

is that the system could melt through a single first-order transition in part of its phase 

diagram and through the two higher-order transitions, with the intervening hexatic phase, 

in another region of its phase diagram. For instance, Figure 1.1 illustrates a possible phase
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diagram in which a single first-order melting transition occurs above T q, as indicated by 

the heavy line. In contrast, below T 0 a region of hexatic phase separates two higher-order 

transitions, which the lighter lines indicate.

1.3 Previous Computer Simulations

Attracted by the interesting predictions of Halperin and Nelson, many investigators 

have used computer simulations to study the phase structure of various two-dimensional 

systems. Computer simulations have several important advantages over experimental stud­

ies of such systems. One advantage is that the residual effects of the third dimension, 

which are always present in experimental studies, do not exist in computer simulations. 

Another advantage is that some measurements that are difficult or impossible to perform 

in an experimental system are easily obtained from simulations. In addition, the investiga­

tor specifies exactly the interactions of the particles in a simulation, so uncertainties in the 

interactions do not complicate the interpretation of the results.

However, computer simulations have many disadvantages, also. Due to the limita­

tions on the amount of computer power that is available for a simulation study, only rela­

tively small systems can be studied in detail. Besides the size of the system being simu­

lated, the length of time corresponding to a simulation is very small because very small 

time steps must be taken to ensure accurate results. As a result, features with long charac­

teristic times may be impossible to see in a simulation. Near a phase transition both limi­

tations can become very serious. As we mentioned in the previous section, the correlation 

length diverges and critical slowing down occurs near a higher-order phase transition, 

making accurate simulations of such a transition very difficult If the phase transition is 

instead first-order, the results can be obscured by the strong metastability of the system 

near the transition. When the characteristic time of the metastability is large, a simulation 

may not be able to distinguish between stable and metastable equilibrium.
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Two basic methods are commonly used to perform computer simulations of many- 

body systems, such as the two-dimensional system of particles that we will be considering. 

The first method is called molecular dynamics. As its name implies, the method consists of 

solving for the motion of each of the particles in the system as it interacts with the other 

particles. First, each of the particles is assigned an initial position and velocity. The force 

on each of the particles is then evaluated by summing the effects of all the other particles. 

Next, the force on each particle is integrated over the time step of the simulation giving a 

new position and velocity for each particle. A molecular dynamics simulation repeats the 

update procedure many times in order to solve for the dynamical evolution of the system.

The time step chosen for the simulation must be small enough to give accurate 

results, yet large enough to allow the simulation to evolve the system through a adequate 

length of time. Generally, a time step is small enough if it is somewhat smaller than the 

smallest characteristic time in the system, which is typically the mean time between colli­

sions. On the other hand, the total amount of simulation time should be larger than the 

largest relevant time ?cale in the system. In a solid such a time scale might be the time a 

sound wave takes to propagate across the system. However, near a phase transition 

relevant time scales might be much larger. Since the minimum characteristic time does not 

change appreciably near a phase transition, the simulation must run for many more time 

steps when it is near a phase transition. If the simulation does not run long enough, the 

system may not be in equilibrium when measurements are made, giving results that can be 

very misleading.

Unfortunately, both the size of the time step and the number of steps required for 

accurate results are difficult to determine. If two simulations use significantly different 

time steps and still give nearly identical results, both values are probably sufficiently 

small, so subsequent simulations can use the larger value without introducing error. The 

same approach can be used to determine how long a simulation must run for it to give
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accurate results. When the average values of several measurements stop changing during 

the simulation, we may assume that the system is in equilibrium and that the measure­

ments are accurate. Of course, both a metastable equilibrium and a very slow approach to 

equilibrium can closely resemble a stable equilibrium, so the validity of assuming that a 

system is in equilibrium is often debatable.

The second method of simulating a system is the Monte Carlo method, which is so 

named because it uses random numbers in its update procedure. We will explain the 

Monte Carlo method in detail in the following chapter, so we give only a brief overview 

here. Rather than numerically integrating the equations of motion for each of the particles 

in the system as the molecular dynamics method does, the Monte Carlo method generates 

a sequence of configurations of the particles based on the probability of each 

configuration’s occurring. Results from statistical mechanics assign a probability to each 

configuration, which depends on the potential energy of the configuration and the tem­

perature at which the simulation is running. An important feature of the Monte Carlo 

method is that it has no concept of time, except in the sense that the system’s approach to 

equilibrium defines the direction of time. Thus, the problem of determining an appropri­

ate value of the time step does not arise. However, the problem of determining whether 

the system is in equilibrium still occurs in a Monte Carlo simulation.

Having examined briefly the methods used in the computer simulations, we now 

present a survey of some of the previous results that were obtained in computer simula­

tions. Most of the results that we report are for systems whose particles interact with the 

Lennard-Jones potential, which is a respectable model of the interaction potential between 

atoms of the noble gasses. Although the Lennard-Jones potential is a short-range poten­

tial, it is often truncated at a fixed distance to reduce the amount of computation that the 

simulation requires. In the next chapter we will discuss methods of correcting for the 

effects of the truncated potential.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-11 -

In 1962 Alder and Wainwright10 reported one of the early simulations of a two- 

dimensional system. They performed a molecular dynamics simulation of 870 hard disks 

in a rectangular cell with periodic boundary conditions. Using various initial conditions, 

they ran several simulations at various densities and measured the pressure of the system. 

Since the results of different simulations at the same density were typically within 1% of 

each other, they concluded that the system was in equilibrium and that the measured 

values of pressure were accurate.

Their pressure data exhibit a van der Waals loop that connects the solid and fluid 

regimes of the system. Figure 1.2 illustrates a van der Waals loop, which is an anomaly in 

a plot of pressure versus density where the pressure of the system decreases as its density 

increases. While a van der Waals loop cannot occur in an infinite system, it can appear in 

finite systems since the small size of the system tends to stabilize the predominant phase. 

Thus, the pressure is lower near the solid regime than it would be in an infinite system 

and higher near the fluid regime. A van der Waals loop indicates the presence of a first- 

order phase transition and is due to the phase separation’s not being complete in the two- 

phase region as it would be in an infinite system. Alder and Wainwright plot the trajec­

tories of the particles, which show that the two-phase system contains regions of mobile 

particles that separate domains of localized particles. In addition, they observe fluctua­

tions in pressure near the phase transition that are larger than in the solid or fluid regimes. 

Alder and Wainwright conclude that a melting transldon does take place in the two- 

dimensional hard disk system and that the transition is first-order.

In 1974 Tsien and Valleau11 reported the results of a Monte Carlo simulation of a 

two-dimensional Lennard-Jones system containing 121 particles. They truncated the 

Lennard-Jones potential at a distance of 3<r, where a is the Lennard-Jones length parame­

ter. Periodic boundary conditions were imposed on the system with a unit cell in the 

shape of a 60* rhombus, which conforms to the geometry of the triangular lattice of the
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solid phase. Pressure measurements made at various densities along four isotherms show 

the clearest evidence of phase transitions. Two separate regions of van der Waals loops 

identify the solid-liquid and liquid-gas phase transitions. Measurements of the two-point 

correlation function that show a distinct smearing of the peaks in the liquid region but not 

the solid region, support the interpretation of the pressure data. The disappearance of one 

of the van der Waals loops along the two highest temperature isotherms establishes the 

existence of a liquid-gas critical point and provides an estimate of its temperature and 

density. Tsien and Valleau conclude that the phase structure of the two-dimensional 

Lennard-Jones system is similar to that of common three-dimensional systems, which have 

a liquid-gas critical point and first-order transitions separating their solid, liquid, and gas 

phases.

In 1975 Toxvaerd13 reported the results of a molecular dynamics simulation of a 

two-dimensional Lennard-Jones system containing 256 particles. He truncated the 

Lennard-Jones potential at a distance of 2.5a and imposed periodic boundary conditions 

on the system. In order to minimize the amount of time that the simulation required to 

reach equilibrium, he initialized each run with a configuration that was in equilibrium at a 

slightly higher density. The pressure data along the T* =  .526 isotherm show a van der 

Waals loop that is not present in the T* =  .651 pressure isotherm, indicating that the 

liquid-gas critical point occurs between the two temperatures. The melting transition 

manifests itself as a van der Waals loop in the pressure data along both isotherms over a 

range of densities centered somewhat above p* =  .80. Thus, Toxvaerd’s results are con­

sistent with the existence of a liquid-gas critical point and conventional first-order phase 

transitions separating the phases.

A few years later, Toxvaerd13 reported the results of a similar study in which he 

simulated the same 256-particle system at various densities along five isotherms ranging in 

temperature from T* = .65 to T* = 1.3. Using the method of thermodynamic integration,
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which we will discuss in Chapter 5, he calculates the free energies of the solid and fluid 

states, which he uses to locate the melting transition. In conclusion, he states that the sys­

tem exhibits a first-order solid-fluid phase transition in the range of temperature between 

.65 and 1.3.

In 1979 Frenkel and McTague14 reported the results of a molecular dynamics simu­

lation involving 256 particles that interact with the Lennard-Jones potential. They studied 

the p* =  .88 isochore at temperatures between T* = .25 and T* =  1.25. Plots of both 

pressure and potential energy versus temperature show a change in slope at T \  =  .36 and 

T \  =  .57, which they tentatively identify as Halperin and Nelson’s Tm and respec­

tively. By traversing the range of temperature in both directions, they checked for hys­

teresis, which they found to be virtually absent Although the region between T 1 and T 2 

could be a two-phase region, they argue against the presence of a two-phase region since 

the region in question showed no hysteresis, which is characteristic of a two-phase region. 

In addition, the angular correlation length seems to diverge as it approaches T 2 from 

above, as predicted by Halperin and Nelson, and the system loses its resistance to shear 

above T j. Thus, Frenkel and McTague tentatively identify a regime of hexatic phase 

bounded by T x and T 2.

In a 1980 paper on two-dimensional melting Toxvaerd15 disputes the claim of 

Frenkel and McTague that their results are compatible with the Halperin-Nelson predic­

tions. In support of his argument Toxvaerd shows that the molecular dynamics results are 

compatible with a first-order melting transition. According to Frenkel and McTague’s 

interpretation, the system should be a hexagonal crystal below t \  =  .36. However, they 

show in their Figure 1(b) that the pressure for T* % .36 is negative. In an infinite system 

the equilibrium pressure is never negative since the system can separate into a solid-vapor 

coexistence, which cannot have a pressure less than that of a vacuum. However, the phase 

separation may not be able to occur in a finite system due to the stabilizing effects of the
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boundary conditions, so equilibrium pressures can be negative.

Repeating the simulation of Frenkel and McTague, Toxvaerd observes the breakup 

of the uniformly distributed solid below T* =  .36, supporting his claim that the system lies 

in a two-phase region. He then simulates the system at T* = .50, which lies between their 

values of 7^ and T 2, and imposes periodic boundaries on a square box, which is incom­

mensurate with the triangular lattice, to avoid favoring the crystal over a fluid. Plots of 

the particle positions show that their distribution is nonuniform with some particles form­

ing triangular lattices. As the temperature decreases, the fraction of solid increases, as we 

would expect in a two-phase system. Toxvaerd concludes that the melting transition is 

first-order and that the sixfold anisotropy observed by Frenkel and McTague is due to the 

coexistence of the liquid and solid phases in the two-phase system.

Also in 1980 Abraham16 reported a different type of Monte Carlo simulation. 

Instead of simulating a 256-particle Lennard-Jones system under conditions of constant 

temperature and constant density, he specified the temperature and pressure of the system 

during his simulations. In order to maintain a constant average pressure, the simulation 

allowed the volume of the system to expand and contract A two-phase system is not 

stable in a constant-pressure simulation, so the melting transition should be abrupt if it is 

first-order. By simulating the p '  = .05 isobar in a temperature range from T* = 0 to 

about T* =  .53, he shows that the system abruptly decreases in density when its tempera­

ture increases to T* =  .48, following a previously smooth decrease in density. The two- 

point correlation function and plots of the particle positions show a change from order to 

disorder when the density drops abruptly. He then decreases the temperature and shows 

that the system exhibits hysteresis as it passes back through the phase transition. After 

smoothly increasing in density, the system suddenly freezes at T* = .40. From the discon­

tinuity of the transition between solid and liquid phases, the evident latent heat, and the 

existence of hysteresis, Abraham concludes that the melting transition of the system is
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certainly first-order.

In a third paper in 1980 on the subject, van Swol, Woodcock, and Cape17 reported 

the results of molecular dynamics simulations of both the Lennard-Jones and the soft-disk 

systems. In their 2688-particle Lennard-Jones system they investigated the T* =  .8 iso­

therm and the p* =  .8 isochore, which Frenkel and McTague studied. Along the T* =  .8 

isotherm they observed transient metastability in both the expanded crystal and the 

compressed fluid near the phase transition. Two of the densities they studied apparently 

lie on the phase coexistence line of constant pressure in the two-phase region. The melt­

ing pressure that they obtained by direct simulation of the two-phase system is about 20% 

greater than that reported by Toxvaerd.15 They note that the difference probably occurs 

because of the small size of his system or the method that he used to obtain the reference 

values in his free energy analysis. They find no evidence of a van der Waals loop in their 

data, but they clearly see hysteresis, which eliminates the possibility of a higher-order 

phase transition. Thus, they agree with Toxvaerd’s conclusion that melting is first-order.

Along the p* =  .8 isochore, melting started at T* = .40 and completed at T* =  .55. 

At T* =  .40 the system seems to be in a solid-vapor coexistence, but only small voids 

form and the pressure is negative since the phase separation is incomplete. Plots of parti­

cle trajectories at T* — .45 show that some particles are localized in triangular lattices 

while others are mobile, providing evidence of a two-phase coexistence. Since the tem­

peratures bounding the melting region correspond to Frenkel and McTague’s T  x and T 2, 

they support the conclusions of Toxvaerd15 that the intermediate region is a conventional 

two-phase region, not the proposed hexatic phase.

In 1981 Barker, Henderson, and Abraham18 presented results from both constant- 

density and constant-pressure Monte Carlo simulations of a two-dimensional Lennard- 

Jones system containing 256 particles. Using thdrmodynamic integration, they calculated 

the free energies of the solid and fluid phases of the system, from which they extracted the
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location of the phase boundaries of the system. They ran the majority of their simulations 

along four isotherms with reduced temperatures of .45, .55, .70, and 1.00. They calculated 

a fluid density of p* =  .801 at the transition when T* =  .55, which is in excellent agree­

ment with the results of van Swol et aL17 In addition to the Monte Carlo simulations, they 

used perturbation theory and cell theory to estimate the fluid and solid free energies, 

respectively, which agree closely with their Monte Carlo data.

After examining particles’ trajectories, they conclude that p* = .84 on the T* =  .7 

isotherm is clearly in the two-phase region, as their free energy analysis predicts. The 

direct coexistence value of the melting pressure is p* =  2.50, which is significantly lower 

than the value of p* = 2.85 that the free energy analysis gave. They note that the differ­

ence is presumably due to finite-size effects that restrict the separation of the two phases 

and thereby lower the pressure in the simulation of the two-phase system. As in the simu­

lations of van Swol et aL,17 they obtain higher pressures and solid and fluid densities at 

the melting transition than Toxvaerd.15 They also observe evidence of a van der Waals 

loop in the two-phase region, which provides further indication that the melting transition 

is first-order. They conclude that all of their results are consistent with first-order transi­

tions separating the solid, liquid, and gas phases and with the existence of a liquid-gas 

critical point They also suggest that the sixfold anisotropy observed by Frenkel and 

McTague is due to solid-liquid coexistence in the two-phase system and not to a hexatic 

phase.

In another paper Abraham19 reported that his computer simulations satisfy the 

Kosterlitz-Thouless instability criterion for a two-dimensional solid but that the instability 

leads to a first-order transition. His simulation results show that at a constant pressure of 

p* — .05 the system melts abruptly at a temperature of T* =  .45. After measuring the 

Lamd coefficients, he shows that the Kosterlitz-Thouless K  parameter approaches the 

predicted value of 16ir when extrapolated to the observed melting temperature. However,
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the free energy analysis gives a value of T* = .415 for the melting temperature, in contrast 

to the observed temperature of T* — .45. Thus, he argues that the system melts at the 

higher temperature where the metastable solid reaches an instability that allows a dilute 

concentration of free dislocations to form. The absence of a free surface, which results 

from the periodic boundary conditions, constrains the system to superheat and to become 

metastable. By simulating a strip of particles with two free boundaries, he shows that the 

equilibrium melting point is between T* =  .40 and T* =  .42. Thus, Abraham concludes 

that the system satisfies the instability criterion when it melts from a metastable state but 

that the resulting transition is first-order.

Also in 1981 Toxvaerd20 reported additional simulations in which he investigated 

the effects of changing the number of particles in the system. The simulations are similar 

to his previous ones,12’13*15 except that he simulated systems with 256 and 3600 particles. 

Both systems exhibit a van der Waals loop in their pressure data along the T* =  1.00 iso­

therm. In the melting region the pressure measurements exhibit large fluctuations in the 

small system but much smaller fluctuations in the large system. The value of the melting 

pressure that he obtains from a free energy analysis is higher than that obtained by direct 

simulation of the two-phase region, but he notes that the cumulative error in the free 

energy analysis is large and the difference may not be significant

Toxvaerd observed no evidence of significant finite-size effects in the fluid regime. 

However, the energy per particle in the solid regime was significantly larger in the larger 

system, as was the defect concentration. As the system approached the transition, the 

difference in both quantities increased. In addition to the expected clusters of four discli- 

nations, Le., a bound pair of dislocations, he observed clusters of defects in the larger sys­

tem as it approached the transitioa In contrast, the smaller system seemed to inhibit the 

formation of defects. After measuring the elastic constants, he found that while the 

Kosterlitz-Thouless K  parameter was significantly greater than its predicted value of 16x
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at the melting density that the free energy analysis gave, it was close to 16* at the 

observed melting density. Thus, Toxvaerd agrees with Abraham’s conclusions that the 

Kosterlitz-Thouless instability criterion seems to be satisfied at the observed melting tem­

perature and that the melting transition is first-order. However, he raises the possibility 

that the order of the melting transition itself might be a finite-size effect since defect for­

mation was apparently inhibited in the smaller system.

In 1982 Tobochnik and Chester31 reported the results of Monte Carlo simulations of 

a 1024-particle Lennard-Jones system. They investigated the system along three iso­

chores, two at the relatively low densities of p* = .856 and p* =  .888 and one at the higher 

density of p* =  1.143. Although they measured many quantities, such as potential energy, 

pressure, two-point correlation, angular correlation, and elastic constants, and examined 

the topological defects and particle trajectories, they were unable to reach a firm conclu­

sion about the order of the melting transition at the two lower densities. The problem is 

that most of the data do not have unambiguous interpretations that would clearly distin­

guish between a two-phase system and the predicted hexatic phase. At the highest den­

sity, they concluded that the melting transition is first-order since the results are less ambi­

guous.

The short summaries of previous computer simulations that we have provided in this 

section are meant to give a general impression of the research work that has been done; 

they certainly do not constitute an exhaustive review of all the results that have been pub­

lished. However, we hope that they provide an overview of the techniques involved in 

computer simulations and illustrate some of the important issues that need to be resolved.
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1.4 Overview of Research

From the simulations discussed in the previous section, we see that the data pro­

duced by computer simulations can often be interpreted in more than one way. In fact, no 

experimental measurement or computer simulation can determine absolutely the order of a 

phase transition since any singularities may be unobservably weak. However, carefully 

examining the sources of ambiguity may allow us to improve our simulation techniques 

and learn more about the system. An example of an ambiguous feature in the data is the 

hysteresis that several investigators reported observing as the system passed through its 

melting transition. As we mentioned in Section 12, hysteresis is characteristic of a first- 

order phase transition. However, distinguishing the hysteresis that is due to a first-order 

transition from the critical slowing down that a higher-order transition causes may be dif­

ficult, leading to an ambiguous interpretation of the simulation.

The discontinuity of such quantities as density and energy across the phase bound­

ary illustrates another instance of the inherent ambiguity in many of the results that a 

simulation produces.. Since such discontinuities characterize a first-order transition, they 

seem to provide a useful way of determining the order of the transition. However, a 

higher-order transition may appear to be discontinuous if the simulation crosses the phase 

boundary so quickly that the system is not always in equilibrium. Unfortunately, critical 

slowing down can make determining whether the system is in equilibrium very difficult 

On the other hand, a first-order transition would not really be discontinuous anyway, 

since such a transition is discontinuous only in the limit of an infinite system. In a system 

with a finite number of particles, an effect called finite-size rounding reduces the sharpness 

of the transition. Thus, if the number of particles in the system is too small, the transition 

may appear to be continuous and lack hysteresis. Depending on the circumstances, both 

continuous and discontinuous transitions in the system being simulated can lead to multi­

ple interpretations.
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The fundamental problem relating the various ambiguities in the results of computer 

simulations is the limited amount of available computer power, which manifests itself in 

two different ways. One way is that the system being simulated can contain only a rela­

tively small number of particles. In the previous section we noted that the number of par­

ticles which have been used in simulations varies from a few hundred to a few thousand. 

With such a small number of particles compared to the number in a macroscopic system, 

finite-size effects may dominate the simulation results so that the simulation does not 

exhibit the features of the macroscopic system. A small number of particles usually give 

adequate results for a single phase system that is not near a phase boundary since the 

relevant length scales in the problem are on the order of the distance between particles. 

However, near a phase boundary, length scales that are much larger can occur since the 

two-point correlation function diverges at a higher-order transition. Even if the transition 

is first-order and the correlation function does not diverge, the boundary conditions can 

have a significant ordering effect on the system, especially if they accommodate exactly 

the triangular lattice of the solid.

The second way in which the limited availability of computer power manifests itself 

is that a simulation can represent only a relatively narrow range of time scales. The 

number of updates performed by the simulations discussed in the previous section was 

usually on the order of thousands. Thus, such simulations would not accurately represent 

time scales that are more than about a thousand times longer than the smallest time scale 

in the system, which is typically the mean time between collisions. However, near a phase 

transition the range of relevant time scales in the system can span many orders of magni­

tude. If the transition is higher-order and the simulation is experiencing critical slowing 

down, the system cannot approach the transition too closely and still remain in equili­

brium.
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If the transition is first-order, simulations must avoid known sources of metastability 

since the characteristic time scale of a metastable state may be extremely long. For 

instance, the solid formed by rapidly cooling a liquid contains many lattice defects and is 

not in its true equilibrium state since the free energy of a perfect crystal is lower. How­

ever, a large free energy barrier separates the metastable glass from the perfect crystal, so 

the characteristic time of the metastability may as well be infinite. Another example of 

metastability is the hysteresis encountered when passing through a first-order transition. 

In some cases carefully planning the simulation can avoid or reduce the effects of such 

metastabilities if their causes are understood.

In the research that follows, we will employ several methods of reducing the ambi­

guities in the results of our Monte Carlo simulations of the melting transition. First, we 

limit the scope of our investigation to a single isotherm so that we can concentrate all of 

the available computer power into a few carefully chosen simulations. Since the pressure 

in a two-phase region is constant along an isotherm, we choose to simulate the system 

along an isotherm where the behavior of the pressure should clearly identify any two- 

phase region. Of course, the pressure will be constant only if the system is large enough 

that finite-size effects are not significant However, if the transition is first-order and 

flnite-size effects are important, a van der Waals loop would still identify the two-phase 

region.

Another method of improving our results involves avoiding some of the metastabili­

ties that have obscured previous results. We will use a method of simulation that has not 

been reported previously, which should greatly reduce the metastability near a first-order 

transition and allow very sensitive measurements. The method avoids much of the metas­

tability in the transition region by using a configuration that is in equilibrium in the transi­

tion region to initialize a series of constant-pressure simulations. If the initial config­

uration consists of two coexisting phases, the system should become either all liquid or all
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solid depending on the simulation pressure since a two-phase configuration is not stable in 

a constant-pressure simulation. Several such simulations at different pressures should pro­

vide upper and lower bounds on the melting pressure and thereby give an indication of 

the sharpness of the transition.

The final method of improving the results of the simulation is the brute force 

method, increasing the available computer power. We describe the effort at Caltech to 

obtain large amounts of computer power through concurrent computation, in which many 

computing elements work together on a single problem. We will examine the concurrent 

Monte Carlo update algorithm in detail and carefully establish the correctness of the modi­

fied algorithm. The concurrent algorithm presents several interesting issues that had not 

been explored previously in our concurrent computation project

After describing the two-dimensional system that we will be simulating and review­

ing the Monte Carlo method in a preliminary chapter, we discuss the the concurrent 

Monte Carlo update algorithm and present a detailed analysis of its efficiency. We then 

report results of simulations along integration paths in the solid and fluid regions of the 

phase diagram. Applying the method of thermodynamic integration, we obtain the free 

energies of the two phases and calculate the parameters of the melting transition, which 

the analysis assumes to be first-order. In the following chapter we present results of simu­

lations in the transition region, including constant-pressure simulations that we initialized 

with a configuration from the transition region. After deriving tbe formulas for the iso­

thermal elastic constants in two dimensions, we present measurements of the elastic con­

stants and calculate the Lamtf coefficients and the Kosterlitz-Thouless K  parameter. 

Next, we discuss the results of two additional measurements, the topological defects of the 

lattice and the angular correlation function. Finally, we summarize the most important 

results and draws several conclusions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr
es

su
re

- 2 3 -

A Possible Phase Diagram of the 
Two-Dimensional System

fluidso lid

liquid
hexatic

g a s

Temperature

Figure 1.1 A possible phase diagram in which the heavy lines indicate first-order 
transitions and the lighter lines indicate higher-order transitions. Above 
r 0 a conventional melting transition occurs, but below T Q a region of 
hexatic phase separates two higher-order transitions.
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A van der W aals Loop

Figure 1.2

D ensity

A van der Waals loop in which the pressure of the system decreases as its 
density increases. The dashed line indicates the behavior of an infinite 
system, which cannot exhibit a van der Waals loop in equilibrium.
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Chapter 2: The Monte Carlo Simulation

2.1 Introduction

In the previous chapter we discussed briefly the two methods that are commonly 

used to perform computer simulations of many-body systems. We now present a detailed 

review of the Monte Carlo method of simulation to prepare for the discussion of imple­

menting a concurrent Monte Carlo algorithm in the following chapter. Since the con­

current Monte Carlo algorithm differs in several important ways from its sequential coun­

terpart, we must carefully establish the conditions that are necessary for the concurrent 

algorithm to be correct In particular, we will note that the specific order in which the 

simulation updates the many degrees of freedom of the system is not important as long as 

the simulation updates all of them often enough for the system to reach equilibrium.

After reviewing the Monte Carlo method, we describe the specific system that we 

will simulate. The system consists of many particles interacting with the Lennard-Jones 

potential in a rectangular region with periodic boundary conditions. Since the system 

being simulated is relatively small, the effects of the boundary conditions can be impor­

tant, so we examine some of the effects due to imposing periodic boundary conditions on 

the system. As in the previous simulations described in Section 1.3, we will truncate the 

interaction potential used in our simulation. We then consider some of the effects due to 

the truncated potential and mention some methods of partially correcting for its effects.

We then conclude the chapter by applying the discussion of the Monte Carlo method 

to the two-dimensional Lennard-Jones system that we will simulate in order to obtain 

specific update procedures. In particular, we construct the partition functions that 

describe both the constant-density and constant-pressure simulations. Using these parti­

tion functions, we extend the discussion in Section 22  and obtain the update procedure 

for a constant-pressure simulation.
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2.2 Theoretical Basis of Monte Carlo

As we mentioned in Section 1.3, the Monte Carlo method simulates a system by gen­

erating a sequence of configurations of the particles in the system according to the proba­

bility of each configuration’s occurring. From statistical mechanics, we know that the 

probability P of configuration r ’s occurring in an equilibrium system is proportional to its 

Boltzmann factor22

(2.1)

where P=(kT)~1 and £ (r )  is the energy of configuration r. The distribution of states 

resulting from the probabilities given by the Boltzmann factor is known as the canonical 

distribution. The normalization factor for the canonical distribution is the partition func­

tion, which is the sum of the Boltzmann factors of all possible states of the system. For 

instance, the partition function for a system of N  particles at fixed volume V  and tempera­

ture T  is

z  =  h ^ m L d2pi'''dZpti l d*qi' ‘  ‘ d2qs e'm ( 2 ' 2 )

where p,- and are the momentum and position of particle i, respectively.

Knowing the partition function of a system allows us to obtain all of its properties by 

taking the appropriate derivatives of the partition function. Thus, evaluating the partition 

function of the system numerically would seem to be a method of studying a physical sys­

tem in equilibrium. In principle, we could calculate the partition function by averaging 

the value of its integrand over many configurations in which the particles’ coordinates are 

randomly selected. However, since the Boltzmann factor is usually a very sharply peaked 

function, the partition function cannot be evaluated directly in practice, unless the system 

contains only a few particles or is in the low-density, high-temperature limit
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Rather than evaluating the partition function itself, we can obtain the value of any 

physically measurable quantity, A , from its expectation value in equilibrium

If A depends only on the particles' coordinates and not on their momenta, the total energy 

E  of the configuration in (2.3) can be replaced by the potential energy U since the 

integrals over the momenta cancel Still the remaining 2Af-dimensional integrals are no 

easier to evaluate directly than the partition function itself. However, if  we generate a set 

of configurations in which each configuration occurs with a frequency proportional to its 

Boltzmann factor, simply averaging A over the set of configurations gives the expectation 

value in (2.3). Since A is normally much less sharply peaked than the Boltzmann factor 

itself, we can evaluate expectation values of the partition function even though the under­

lying probability distribution for the configurations is very sharply peaked. This method 

of evaluating expectation values is known as importance sampling since only the configura­

tions with large Boltzmann factors have a reasonable probability of occurring.

In 19S3 Metropolis et a l2S reported a method of generating configurations with the 

required probability distribution. They start with all the particles in an arbitrary config­

uration, such as a crystal lattice, and then successively update the position of each of the 

particles with the following procedure. First, they select a new position for the particle:

where the and r 2 are uniformly distributed random numbers between 0 and 1, and A is 

an adjustable parameter. Next, they calculate the change in energy due to moving the par­

ticle. If AE < 0, Le., the new position of the particle results in a lower energy, the move is

/  d 2p x - • • d 2ps  /  d 2q x • • • d 2qN A e~^E 

J  d 2p x • • • d 2pN I  d 2q x • • • d 2qN e ~ ^
(2.3)

= x M + 

y«ew =  you + 7 A r 2
(2.4)
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accepted. If AE > 0, the move is accepted with a probability of by selecting

another uniformly distributed random number r between 0 and 1 and accepting the move 

if r < Otherwise, the move is rejected and the particle is returned to its old posi­

tion. Regardless of whether the move is accepted, the resulting configuration always 

counts as a new configuration when computing expectation values.

We now examine whether the Metropolis procedure generates configurations whose 

probabilities of occurrence are proportional to their Boltzmann factors. We first note that 

the procedure is ergodic; Le., the procedure allows any point in configuration space to be 

reached. Since each particle can move anywhere within a square of side A with a nonzero 

probability, it can move anywhere in the simulation volume after a sufficient number of 

moves. Thus, the Metropolis procedure can generate all possible configurations of the sys­

tem, making it ergodic.

We now consider an ensemble of many identical systems. For simplicity we assume 

that the number of states of the system is finite and that the number of systems in state r 

is «r . In addition, we label the sequence of particle updates with a time parameter, even 

though the sequence of updates does not correspond to the true dynamical evolution of 

the system. The change in the number of systems in state r is given by the master equa­

tion24

where P„ is the probability of the system making a transition from state 5 to state r in one

dnT
update. When the system is in equilibrium, —r— = 0 for all r. Since the system must be indt

some state after an update, we have

(2.5)

S  Pn =  1 • 
§

(2.6)
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Thus, in equilibrium (2.5) becomes

nr =  S  n»pm • (2-7)
0

The condition in (2.7) is usually satisfied by imposing the stronger condition of detailed 

balance on the system, which is

nrpn  =  n,Pw (2.8)

for all states r and s. Detailed balance states that the transition rate from state r  to state s 

is the same as the transition rate from state s to state r. Since the ratio of the states' 

Boltzmann factors gives the correct ratio of nr to nt in the equilibrium system, we obtain 

from the condition of detailed balance

(2.9)
n ,  rt

We now check, whether the Metropolis update procedure satisfies detailed balance 

and (2.9) by considering two states, r  and s. According to (2.4), a particle has an equal 

probability of moving anywhere within a square region about its old position and zero 

probability of moving elsewhere. Thus, state r  has a nonzero probability of making a tran­

sition to state s in one update if state s differs by the position of a single particle and that 

particle in state s is within the square region about the same particle in state r. When 

state r  can become state s in a single update, state s can also become state r in a single 

update since the square region is symmetric about the particle being updated. Thus, we 

have P„ = P„ for all states r and 5 before applying the acceptance criteria, which depend

on the energies of the states. We see that all states where P„ = Pw = 0  satisfy (2.8) trivi­

ally.
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We now consider the case where Er < E, and apply the acceptance criteria of the 

Metropolis update procedure. When Pn  and P„ are nonzero, we get

p  _  -fi (E.-Er) (2‘10)
r T9 ~~ C

which clearly satisfies (2.9). Thus, the Metropolis update algorithm satisfies detailed bal­

ance and, as we have already noted, it is ergodic. Together these properties ensure that 

the distribution of states in the ensemble of systems will approach the canonical distribu­

tion.24

We now generalize the Metropolis algorithm by considering the system as consisting 

of many degrees of freedom /,-. In the two-dimensional system of particles, the /,• are the 

two independent coordinates giving the position of each particle in the system The first 

step in the update procedure is to choose new values for a subset of the degrees of free­

dom using

fr ° =ft* + iA -',- (2.H)

where the r,- are uniformly distributed random numbers between 0 and 1. The values of 

A,- do not need to be the same for all the degrees of freedom In fact, a complicated simu­

lation could have several types of degrees of freedom and require different values of A,-. 

However, choosing each of the /,?*• with equal probability in a symmetric region about its 

value of f f *  is essential. In the two-dimensional system that we will investigate, the simu­

lation updates the two degrees of freedom of a particle together and uses the same value 

of A.

After choosing the new positions of the subset of the degrees of freedom, we meas­

ure the energy difference between the new and Old configurations and apply the Metropo­

lis acceptance criteria. When a simulation updates several degrees of freedom at the same
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time, the acceptance criteria must accept or reject all of the degrees of freedom together 

in order to satisfy detailed balance. We note that the Metropolis algorithm does not 

specify the order in which the simulation updates the degrees o f freedom. As long as it 

updates all of the degrees of freedom so that it can generate all possible configurations, the 

distribution of configurations will approach the canonical distribution.

In our discussion of the Monte Carlo method, we have mentioned that an update 

algorithm which is ergodic and satisfies detailed balance causes the distribution of config­

urations to approach the canonical distribution, regardless of the system’s initial config­

uration. However, we cannot predict its rate of approach to equilibrium since the Monte 

Carlo procedure gives no estimate of the number of updates required for the simulation to 

reach equilibrium. We can only assume that the simulation is in equilibrium when all of 

its expectation values remain constant as it updates the system. Of course, we can never 

determine that a simulation has reached equilibrium and that it has obtained accurate 

expectation values. Thus, metastability and critical slowing down can be serious prob­

lems, especially near phase transitions where strong metastability or long time scales often 

occur.

The values of At- in (2.11) can have a large effect on the simulation’s rate of 

approach to equilibrium, so we should choose their values carefully. If the A,- are too 

small, the degrees of freedom change only a small amount in each update, so the system 

moves very slowly through configuration space. A similar effect occurs in a molecular 

dynamics simulation when its time step is too small since the particles can move only a 

short distance during each update. If instead the values of A,- are too large, the accep­

tance rate will be low since most of the moves are rejected even though particles occasion­

ally move large distances in a single update. In contrast to a molecular dynamics simula­

tion, which gives incorrect results when its time step is too large, the size of the values of 

A,- does not affect the correctness of the Monte Carlo simulation. In addition to the values
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of the A,-, the number of degrees of freedom that the simulation moves in a single update 

also affects the acceptance rate since it must accept or reject all of the moves together. 

The results of these considerations is that most simulations update only a few degrees of 

freedom per update and adjust the A,- to obtain about a 50% acceptance ratio.

We now examine the sources of errors that occur in Monte Carlo simulations. 

Clearly, using configurations that are not in equilibrium to calculate expectation values 

results in errors. Such errors may be impossible to detect since the system may appear to 

be in equilibrium when it is really in a metastable state. Another source of error is statisti­

cal error in the expectation values, which is always present in a simulation due to thermal 

fluctuations in the individual measurements. Averaging the measurements over independ­

ent configurations reduces the statistical error, but successive configurations are highly 

correlated since each update changes the configuration only a small amount Thus, the 

statistical error of an expectation value may decrease very slowly during a simulation, 

especially when the simulation is near a phase transition where long time scales are impor­

tant Finally, differences between the system that is being simulated and the system that 

we really want to study introduces systematic errors. For instance, we simulate the melt­

ing transition in a two-dimensional system consisting of a few thousand particles when we 

really want to study the melting transition in the thermodynamic limit. If the system that 

is being simulated exhibits finite-size effects, which are due to its relatively small number 

of particles, the expectation values contain systematic errors, even though the the simula­

tion accurately describes the finite system.
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23  Description of Lennard-Jones System

As we have already mentioned, the particular two-dimensional system that we will 

investigate consists of many classical particles interacting through the Lennard-Jones 

potential. The Lennard-Jones potential, which acts between pairs of particles, is given by

* =  * [ (  j ) 12- ( f ) 6} (212)

where £ is its energy parameter, a is its length parameter, and r is the distance between the 

two particles. For a system of N  particles interacting through the Lennard-Jones poten­

tial, the total potential energy of the system is

U = 4Ne[<r12(r -12) -  <r6<r_6>] (2.13)

where (r~12) and (r-6) are averages over a configuration and have the form

<r ~n)  = 77 £  r>7n • (2-14)
"  <«>

The summation in (2.14) extends over all distinct pairs of particles in the configuration 

and rfj- is the distance between particles i and j .

The Lennard-Jones potential, which we illustrate in Figure 2.1, is characterized by a 

strongly repulsive core at short distances and an attractive tail that falls off as r -6 at large

distances. One reason that the Lennard-Jones potential is interesting is that it describes

the interaction between atoms of the noble gasses reasonably well For instance, the two- 

dimensional Lennard-Jones system should approximately describe a single layer of xenon 

atoms adsorbed onto graphite.25 In addition, many investigators have performed both 

molecular dynamics and Monte Carlo simulations of the two-dimensional Lennard-Jones 

system, as we noted in Chapter 1.
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The Lennard-Jones energy and length parameters, c and a, respectively, and the 

number of particles in the simulation, N , allow us to define a set of dimension!ess, intrin­

sic units for the quantities that we will use in the simulations. These reduced quantities 

are denoted by a superscripted asterisk. For instance, the potential energy, pressure,

volume, and density become U* =  — t p* = V* = —— , and p'  =  - V ,  respec-
eN e tfa 2 V

tively. Other reduced quantities are generated in a similar way.

In order to make the Monte Carlo simulation computationally feasible, we will not 

use the full Lennard-Jones potential given by (2.12). Instead, we will truncate the poten­

tial at a particle separation of 3a, which is comparable to the truncation distance used by 

other investigators.11,13,17,21 Without some type of truncation, the contributions from all of 

the particles in the system would have to be summed in order to calculate the potential 

energy differences required by the Monte Carlo update algorithm. Clearly, treating the 

short-range Lennard-Jones potential as a long-range interaction is undesirable. By fixing 

the range of the interaction with an explicit truncation, we greatly reduce the amount of 

computation needed to calculate the potential energy differences. The particular value of 

the truncation distance is quite arbitrary, but the distance of 3a should retain the essential 

physics of the system while keeping the computational requirements of the simulation 

within reasonable bounds.

Using the truncated Lennard-Jones potential will affect the results of the simulation 

in several ways, but many results should not be affected substantially. For instance, the 

contributions to the potential energy differences from particles that are outside the trunca­

tion distance are relatively small, so using the truncated potential should have only a small 

effect on the acceptance of Monte Carlo moves. In addition, we expect that the particles 

beyond the truncation distance are distributed rather evenly, so even their small contribu­

tions should cancel almost completely. Another way of examining the effect of the
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truncatcd potential on the acceptance of Monte Carlo moves is to express the positions of 

the particles as a sum over the system’s normal modes. The normal modes that are not 

correctly represented in a simulation using the truncated potential are those whose 

wavelengths are greater than or approximately equal to the truncation distance. Since the 

number of such modes is small, we expect the effect of the long wavelength modes on the 

acceptance of Monte Carlo moves to be smalL

Since we expect the truncated potential to have little effect on the acceptance of 

Monte Carlo moves, which determines the physics of the system being simulated, we do 

not expect the truncated potential to affect the details of the melting transition substan­

tially. From a different point of view, at very high temperatures and densities the 

geometric packing effects due to the repulsive core of the Lennard-Jones potential dom­

inate the melting transition. The attractive tail of the potential is irrelevant as is the trun­

cation of the potential at large distances. Even at low temperatures and densities, the 

repulsive core still plays a large role since the fluid phase near the melting transition is dif­

ficult to compress. The Lennard-Jones energy parameter, e, gives the characteristic energy 

of the competition between the attractive and repulsive components of the potential. 

Since the characteristic energy at the truncation distance is so much weaker than e, we do 

not expect that using the truncated potential will affect the details of the phase transition 

substantially.

Although we have shown that the truncated potential should have only a small effect 

on the evolution of the Monte Carlo simulation, the truncated potential does have a signif­

icant effect on some types of measurements. Since the truncated part of the Lennard- 

Jones potential is always negative, as we see in Figure 2.1, the measured potential energy 

of the system is always somewhat higher than it would be if the full Lennard-Jones poten­

tial were used. The truncated potential also affects related quantities, such as the pressure 

of the system, in a similar way. One way of correcting for the effects of the truncated
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potential assumes a uniform distribution of particles beyond the truncation distance and 

calculates corrections to the various measurements. While the distribution of particles that 

constitute a fluid is rather uniform when averaged over time, the distribution of particles 

in a crystal is certainly not uniform, so another method of correction should be found. 

Fortunately, we have almost completely removed the effects of the truncated potential in 

the results of our simulations by using additional corrections that we will discuss in 

Chapter 4.

In addition to specifying the interaction potential, we must also impose boundary 

conditions on the system in order to specify completely the interaction between particles. 

We impose periodic boundary conditions on our system in the form of a rectangular unit 

cell whose dimensions are commensurate with the triangular lattice of the Lennard-Jones 

crystal In the relatively small systems that we will simulate, periodic boundary conditions 

have the important advantage over other types of boundary conditions of not allowing 

edge effects to dominate the simulation results. We use a rectangular unit cell rather than 

a 60* rhombus so that the simulation program can more easily determine the location of 

the boundaries. Since we want to run all of the simulations with the same boundary con­

ditions, we make the unit cell commensurate with a triangular lattice to avoid simulating a 

solid under an applied shearing stress.

Since the systems being simulated are relatively small, the type of boundary condi­

tions used in computer simulations can have a large effect on the results, especially when 

the system is near a phase transition. For instance, near a higher-order phase transition 

the correlation length is very large. When the correlation length is larger than half the dis­

tance across the unit cell, the system becomes overcorrelated since the effect of each parti­

cle wraps around the system in both directions. However, even if the correlation length 

does not become large, periodic boundary conditions can still have a large effect due to 

the periodic structure that they impose on the system. Near the melting transition, the
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ordering imposed by the periodic boundary conditions favors the solid phase over the 

fluid phase if the periodicity of the boundaries is commensurate with the periodicity of 

the crystal lattice.

Another effect of periodic boundary conditions arises because the system effectively 

has no surfaces.10 When a solid melts at constant pressure, it must be allowed to expand 

since the fluid phase typically has a lower density than the solid phase. Thus, under con­

ditions of constant pressure, melting normally starts at the surface of the solid where the 

resulting fluid is free to expand and progresses into the solid from the surface. When the 

system has no surfaces, small droplets of fluid cannot form at the true melting temperature 

because the surrounding solid does not allow the fluid droplets to expand. Due to the sur­

rounding solid, the pressure on any droplets that do form is greater than the externally 

applied pressure, so the temperature required to form the droplets must be greater than 

the true melting temperature at the specified pressure. Thus, the periodic boundaries con­

strain the system to superheat during a constant-pressure simulation, as Abraham19 

observed.

2.4 Monte Carlo Update Procedures

We now combine the Metropolis algorithm with the truncated Lennard-Jones 

interaction potential and the periodic boundary conditions to obtain the specific Monte 

Carlo update procedures that we will use in our simulations. The effects of the periodic 

boundary conditions appear both explicitly in the limits of integration in the partition 

function and implicitly in the potential energy of the system. Since we will simulate the 

Lennard-Jones system under conditions of both constant density and constant pressure, 

we must construct the partition function for each type of simulation as the first step in 

designing the update procedures. As we mentioned in Section 22., the partition function is 

the sum of the Boltzmann factors of all possible states in the system. In the system that we
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arc studying, all of the degrees of freedom are continuous quantities, so the sum becomes 

an integral, as in (22).

When we specify the temperature and density of the system, the only degrees of free­

dom are the two coordinates that give the position of each particle. Thus, the partition 

function is

X  Y

Z v  = f  d x l  • • • dxN /  d yx • • • dyN e~pv (2.15)
o o

where N  is the number of particles and X  and Y  give the dimensions of the rectangular 

unit cell We have used Z v  to indicate that we have ignored the constants and kinetic 

terms that appear in (22) but cancel when we calculate expectation values. The density of

the simulation is p* =  ^  , so we can change the simulation density by simply changing

<7, rather than by changing X  and Y.

When we specify the temperature and pressure of the system, the simulation updates 

the volume of the system in addition to the particles’ coordinates so that it maintains a 

constant average pressure at the specified value. Thus, the volume of the system is an 

additional degree of freedom, so we must add an integral over the volume of the system to 

the partition function, giving

co x  Y

Z y  = J  dV f  d x x • • • dxN /  d yx • • • dyN e ' M  +*,v) (2.16)
o o  o

where p is the simulation pressure and X  and Y  are now functions of the system volume 

V. Since we are not integrating over the shape of the system, the ratio of X  to Y  remains 

constant The energy appearing in the Boltzmann factor is no longer simply the potential 

energy of the system but also includes the mechanical energy of the system. Of course, the 

mechanical energy is also present in the system maintained at constant density, but no
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mechanical work is ever performed on the system since its volume is constant, so its 

mechanical energy is ignored.

Having constructed the partition functions that describe the constant-density and 

constant-pressure simulations, we can obtain the specific Monte Carlo update procedures 

using the Metropolis algorithm. Since we already discussed a constant-density simulation 

during the presentation of the Metropolis algorithm in Section 22, we note only that we 

use the Lennard-Jones potential energy in the acceptance criteria.

However, a more complicated situation arises in the constant-pressure simulation 

because the simulation updates the volume of the system in addition to the positions of its 

particles. In order to determine the acceptance criteria for updating the volume, we exam­

ine the Boltzmann factor of the partition function given by (216). In particular, we must 

determine the volume dependence in (216) and specify exactly what integrating over the 

volume of the system means. Since the limits of integration, X  and Y, depend on the 

volume of the system, the importance sampling technique of obtaining expectation values 

does not apply direqtly to (216). Thus, we would like to rewrite (2.16) so that its volume 

dependence is explicit

X» y>
By substituting x{' = —  and y{ ' = -^- into (2.16) we obtain

A  Z

CO 1 1
Z v  =  /  dV VN f  dx  i  • • • d x ’N /  d y \ - - -  dy'N e ~ ^ u  +«*,r> (2.17)

0 0 0

where we have used V  =  XY. Besides making the volume dependence explicit, we have

specified that the particles’ coordinates are to be rescaled when the volume of the system 

changes. Including the VN term in the Boltzmann factor gives the quantity that 

corresponds to the energy in the Metropolis acceptance criteria,

W = U + pV - k T N ] n V  . (218)
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For convenience, we will update the positions of the particles separately from the 

volume in the constant-pressure simulation. Since simply moving a particle affects only U, 

(2.18) leads to the same acceptance criteria for updating a particle as in the constant- 

density simulation. However, changing the volume by randomly selecting a new value of 

V  from a symmetric region about its old value causes all three terms in (2.18) to contribute 

to AW. The new volume is always accepted if  AW < 0 and is accepted with a probability 

of e~&AW if AW > 0. Although the position of a particle and the volume could be 

changed together, we will find that such an update procedure is undesirable in the con­

current update algorithm that we will discuss in the next chapter.
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Figure 2.1 The Lennard-Jones potential, whose energy and length parameters are e 
and <r, respectively. The Monte Carlo simulation truncates the potential 
at 3a to reduce its computational requirements.
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Chapter 3: Implementation on a Concurrent Processor

3.1 Introduction

Having described the method of Monte Carlo simulation and derived the appropriate 

formulas for simulating particles interacting through the Lennard-Jones potential in 

Chapter 2, we are ready to examine the implementation of the simulation on a computer. 

We first discuss some of the general issues involved in programming the simulation. In 

particular, we consider methods that take advantage of the short-range nature of the 

interaction potential Such general issues depend on the details of the application being 

programmed but not on type of computer used to run the application.

We then discuss a specific type of concurrent processor, which is the computer that 

we will use to run the simulation. A concurrent processor consists of many independent 

processing elements, called nodes, that work together on a single application. Such a com­

puter has the potential to provide far greater computer power than what is currendy avail­

able. Current sequential computers are approaching fundamental limitations on their pro­

cessing speeds, so substantially increasing the available computer power requires exploit­

ing some type of concurrency. One method of exploiting concurrency in an application 

involves operating on vectors, which may contain many elements, as if they were single 

units. In the concurrent computation project at Caltech, we use a different approach and 

exploit concurrency by assigning separate pieces of the application to the many intercon­

nected nodes comprising the concurrent processor that we built The Caltech concurrent 

processor is a homogeneous machine since all of the nodes are identical. Although the 

nodes are not very powerful individually, they can give the performance of a much faster 

and much more expensive computer by working together.

However, we can realize the potential performance of the concurrent processor only 

if we can program it to run efficiently, so that most of the nodes are doing useful

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 4 3 -

computation most of the time. In this chapter we explore the major issues and problems 

that arise when adapting the Monte Carlo algorithm to run on a concurrent processor. 

Although the actual simulation program consists of many separate pieces, most of the 

pieces are fairly standard, so we confine our discussion to the Monte Carlo update pro­

cedure, which is the essential component of the simulation. We discuss a particularly 

interesting feature of the concurrent simulation, which is that its results are inherently 

irreproducible. As an indication of how well we have achieved the goal of obtaining an 

efficient concurrent implementation, we present a formal analysis of the efficiency of the 

update algorithm, which includes direct measurements of its efficiency.

3.2 Data Structures and Decomposition

Before discussing the implementation of the Monte Carlo simulation on the con­

current processor, we first review some of the characteristics of the two-dimensional 

Lennard-Jones simulation. The Monte Carlo procedure updates one particle at a time by 

randomly selecting a new position for the particle and accepting or rejecting the move 

based on the resultant difference in potential energy. Thus, we must separately sum the 

contributions to the potential energy that involve the particle being updated for both its 

new and old positions and then take the difference of the sums.

An important feature of the Lennard-Jones potential is that it is a short-range poten­

tial, meaning that the potential decreases rapidly with increasing particle separation. In 

fact, the potential that we use in the simulation is truncated at a particle separation of 3a, 

so all of the particles in the system clearly do not contribute to the potential energy sums 

of the particle being updated. Thus, the particles in the simulation can be conceptually 

divided into two groups: the nearby particles, which directly affect the particle being 

updated, and the distant particles, which have no direct effect Although the two groups 

are different for each of the particles, the concept of spatial locality is important since the
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interaction potential is short-range. If the interaction potential were instead long-range, 

such as the gravitational potential, all particles would directly affect all other particles 

since the potential does not decrease sufficiently rapidly as the separation of the particles 

increases. Although the magnitude of the effect still depends on the separation of the par­

ticles, spatial locality is not an important concept because the effect of distant particles 

cannot be ignored.

A good implementation of the Monte Carlo simulation should exploit the short-range 

nature of the interaction potential to reduce the number of arithmetic operations required 

to update the particles in the simulation. A standard measure of the number of operations 

required by an algorithm is its complexity, which is often specified by the dependence of 

the number of required operations on the number of items being handled by the algorithm. 

In many cases, the exact number of operations is less important than the functional 

dependence on N , the number of items. For instance, many sorting algorithms have a 

complexity of order N  log N , and an ordinary long-range force algorithm has a complexity 

of order N 2. If the coordinates of the N  particles in our Monte Carlo simulation reside in 

one list, a naive update algorithm would have to search the whole list in order to deter­

mine which particles contribute to the potential energy sums. Searching the whole list 

every time that a particle is updated results in an algorithm with a complexity of order N 2 

for one Monte Carlo sweep, which updates each of the N  particles once. By assigning all 

of the particles to one list, we have failed to exploit the short-range nature of the interac­

tion potential to minimize the complexity of the problem.

Correctly organizing the coordinates of the particles in the system can greatly reduce 

the complexity of the Monte Carlo update algorithm. We can avoid searching through a 

single list containing all of the particles if  we separate the particles into several lists in 

such a way that we can determine which lists need to be searched when any particle is 

updated. By assigning to each list a distinct portion of the simulation volume and the
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particles that lie within it, we can take advantage of the spatial locality of the interaction 

potential by a technique known as geometric hashing. Since each of the lists contains the 

particles within a fixed region of space, called a cell, we can easily determine which lists 

of particles must be searched during the update of any particle. Thus, by dividing the 

simulation volume into cells and assigning the particles in each cell to separate lists, we 

can reduce the complexity of the algorithm to order N. The coefficient of N  depends on 

the average number of lists that need to be searched during an update and on the average 

number of particles per list

In order to minimize the complexity of the Monte Carlo update algorithm, we must 

determine the optimal way of dividing the total simulation volume into cells. Actually, 

rather than divide an arbitrary simulation volume, we will determine the optimal parame­

ters of cells and allow only simulation volumes that are built from such cells. We note that 

all of the cells should be the same size and shape so that determining which cells could 

contain particles that affect the particle being updated is relatively simple. The shape of 

the cells should reflect the periodic boundary conditions imposed on the system as 

described in Section 2.3, so the cells should be rectangles whose dimensions allow some 

number of particles to form a perfect crystal. In addition, the cells should be as nearly 

square as allowed by the boundary conditions so that they preserve a strong sense of spa­

tial locality.

We determine the optimal size of the cells by minimizing the product of the average 

number of particles per cell and the average number of cells that must be searched during 

the update of a particle. Clearly, the cells should be rather small since the purpose of 

dividing the simulation volume into cells is to avoid having all of the particles in one large 

list On the other hand, if the cells are smaller than some limit the number of cells that 

must be searched increases in inverse proportion to the average number of particles per 

cell, so the complexity remains constant Since eight cells completely surround each of the
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cells, a convenient choice for the size of the cells, which is nearly optimal, is the minimum 

size that is large enough to ensure that no more than nine cells will need to be searched to 

update any particle.

Thus, we use cells whose minimum dimension is larger than the range of the interac­

tion potential plus the maximum distance that a particle can move in one update. We 

recall that the range of the truncated Lennard-Jones potential is 3<r and that (2.4) gives the 

maximum distance that a particle can move during an update as yA. Although both a and

A vary in order to change the density of the system and adjust the acceptance rate, 

respectively, we can still fix the size of the cells without imposing unnecessary restrictions 

on the simulation. We simply choose the cells’ minimum dimension to be larger than the 

largest value of (3a+  yA) that will occur during a simulation. However, since the shape

of the cells should reflect the periodic boundary conditions, we must select the number of 

particles forming a perfect crystal that the cell will contain before making a final determi­

nation of the cells’ size.

Applying the previous considerations to the concurrent Monte Carlo update algo­

rithm slightly complicates the previous argument because the simulation does not confine 

the particles to their original cells. Since each particle is free to move anywhere in the 

simulation volume, the particles must be sorted periodically into their correct cells. In an 

implementation of the simulation on a sequential computer, each particle could be stored 

in its correct cell immediately after being updated. However, in a concurrent implementa­

tion of the simulation a much better procedure is to update all of the particles once and 

then sort them into their correct cells. With a delayed sorting scheme the boundaries of 

adjacent cells effectively overlap during an update by the maximum distance that a parti­

cle can move in one update. Thus, the minimum dimension of the cells must be (3a+ A), 

rather than (3a+  -|-A) as we noted previously.
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Keeping in mind all of the considerations for determining the size of the cells, we 

choose the dimensions of the cells such that 16 particles forming a perfect crystal fit into a 

cell when periodic boundary conditions are imposed at its edges. Since we have fixed the 

average number of particles per cell, the number of cells determines the total number of 

particles in the system. Figure 3.1 illustrates a system containing 1024 particles that con­

sists of an 8 x 8 grid of cells and shows the range of the potential around several of the 

particles.

Besides reducing the complexity of the algorithm, assigning the particles to cells has 

another major advantage for a concurrent implementation of the update algorithm. Before 

the nodes can work together on a problem, we must assign a portion of the problem to 

each node. We decompose the Lennard-Jones system for concurrent processing by simply 

assigning the cells to the nodes, so each node updates the particles in one or more cells. 

Clearly, assigning the same number of cells to each node is important because it balances 

the computational loads of the nodes. If the problem had not already been broken into 

cells for a completely different reason, the decomposition might not have been so obvious. 

However, many types of applications seem to have a natural decomposition. The decom­

position of a problem can be characterized by its decomposition topology, which specifies 

the connections between the pieces of the decomposed problem. For instance, the cells 

assigned to each node in the Lennard-Jones simulation form a two-dimensional grid with 

periodic boundaries in which each node must be able to communicate with the eight 

nodes that surround i t
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33  Description of the Concurrent Processor

The concurrent processor used to nm the simulation is an ensemble of independent 

processing elements communicating with each other by exchanging messages. Each of the 

independent processors executes its own instruction stream and operates on a separate set 

of data; such an ensemble is known as a multiple-instruction, multiple-data (MIMD) 

machine. An environment in which the processors communicate by transmitting and 

receiving data items is a message-passing system. The concurrent processor that we dis­

cuss uses message-passing communication exclusively since it provides no facilities for 

sharing memory between any of the nodes.

Our original concurrent processor, the Mark I, consists of 64 nodes, each about as 

powerful as an IBM-PC. The memory on each node consists of 8K bytes of EPROM and 

128K bytes of dynamic RAM with an extra parity bit for each byte of dynamic RAM that 

allows single-error detection in the RAM. The processing unit consists of the Intel 8086 

microprocessor and the Intel 8087 floating-point coprocessor, which has a nominal speed 

of about 20 Kflops at a 5 MHz clock rate. Our second-generation concurrent processor, 

the Mark H, is very similar to the Mark I, except that it runs at a clock rate of 8 MHz and 

has twice as much memory. Detailed timing measurements of the Mark II system are pro­

vided by Otto, Kolawa, and Hey.*6

In addition to the processor and memory, which are common to all computers, each 

of the Mark I nodes has six high-speed communication channels that implement the 

message-passing system. A single channel can connect only two nodes, so all communica­

tions are point-to-point In contrast, if many nodes resided on a common bus, broadcast 

communication could be a primitive operation. The communication channels, which are 

implemented in each node’s hardware, consist of separate transmitting and receiving com­

ponents and a collection of wires that connect the transmitting component of one node to 

the receiving component of another node and vice versa. The receiving component of a
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channel has a buffer into which the transmitting node can write and from which the 

receiving node can read. However, the transmitting node must not write into the buffer if 

it is already full, and the receiving node must not read from the buffer if  it is empty, so 

the channel hardware also provides information on the status of the channel buffer to the 

transmitting and receiving nodes.

The channel hardware provides its status information to the transmitting and receiv­

ing nodes with a separate interrupt line for each node. An interrupt line can either inter­

rupt the processor or be polled by the processor, depending on the software support for 

the communication channels. The channel hardware sets the transmit interrupt line only 

when its channel buffer is empty. Similarly, the channel hardware sets the receive inter­

rupt line only when its channel buffer is full Thus, the channel can only transmit and 

receive data in fixed-length packets whose length depends on the size of the channel 

buffer. On both the Mark I nodes and the Mark II nodes, all communications involve 

eight byte packets.

As we have mentioned, a channel consists of both a transmitting and a receiving 

component so that the nodes that it connects can communicate messages in both direc­

tions. If the two components of the channel are completely separate, both nodes that the 

channel connects can write into each other’s channel buffer at the same time without 

interference. Such a channel is known as full-duplex since both nodes can transmit 

independendy. Since the two components of the full-duplex channel are independent, 

they require two sets of wires to connect them. Using a half-duplex circuit, in which both 

components of the channel use the same wires, reduces the number of wires that the chan­

nel requires, but it allows only one of the nodes to transmit at a time. Since the number of 

wires is not prohibitive and full-duplex channels are easier to use, the channels in both the 

Mark I and Mark n  nodes implement full-duplex communication.
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Having described the channels, that implement interaode communication, we now 

examine the interconnection topology of the concurrent processor, which specifies the pairs 

of nodes that are connected by a channeL The most general interconnection topology is 

the fully interconnected topology in which communication channels connect all pairs of 

nodes, allowing any node to communicate directly with any other node. However, build­

ing a machine with so many channels implemented in hardware is completely impractical 

unless the machine contains relatively few nodes. If the ensemble consists of N  nodes, 

each node must have N - l  communication channels in order to communicate directly with 

all of the other nodes in the system, so the total number of channels in the ensemble is 

TV2 — N— - — . Since the total number of channels increases so rapidly as the number of nodes

increases, building a large system using the fully interconnected topology is nearly impos­

sible.

While many different interconnection topologies have been investigated, we will con­

sider only the hypercube, which can be thought of as a grid topology where the dimen­

sionality of the grid depends on the number of nodes. The N  nodes in a d  -dimensional 

hypercube, a d  -cube for short, are indexed by d  bit binary numbers and a communication 

channel connects pairs of nodes whose indices differ by only one b it37 Another way of 

defining a hypercube, which provides a more geometrical description, is recursive defini­

tion in terms of grids. We start with a 0-cube, which consists of a single node with no 

communication channels, Le., a standard sequential computer. By connecting two 0-cubes 

with a communication channel, we construct a 1-cube. Connecting the corresponding 

nodes of two 1-cubes with an additional channel results in a 2-cube, which forms a square 

with the nodes at its vertices and communication channels on its edges. In general, con­

necting the corresponding nodes of two (d -l)-cubes with an additional channel per node 

results in a d  -cube.
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Thus, a d  -dimensional hypercube consists of N  = 2* nodes with d  communication

AT lo g , AT
channels per node. The total number of channels in an ensemble of N  nodes is —  ----- ,

which grows only slightly faster than the number of nodes. Since the required number of 

channels grows so slowly, it imposes little restriction on the number of nodes that can be 

connected as a hypercube. Although channels do not directly connect all of the nodes in a 

hypercube, the maximum distance between nodes is lo g ,#  steps, which also grows very 

slowly with increasing N. The six communication channels on the Mark I nodes are 

exactly enough to allow the 64 nodes to be connected as a 6-cube.

An important feature of the hypercube topology for many scientific and engineering 

applications is that it contains grids of each dimensionality that is lower than the dimen­

sionality of the hypercube. In addition, if the number of nodes in each dimension of a 

grid is a power of two, the hypercube topology also ensures that the grid can have 

periodic boundaries. In grids whose dimensionality is lower than that of the hypercube, 

not all of the communication channels may be used. For instance, each node in a two- 

dimensional grid with periodic boundaries uses only four channels, leaving two of the 

channels on each node in the Mark I machine unused. An example of a grid that uses all 

of the channels is the 4x4x4 grid with periodic boundaries, which is isomorphic to the 6- 

dimensional hypercube.

In addition to the 64 nodes of the Mark I concurrent processor, we have a control 

processor that handles tasks which do fit into the symmetry of the ensemble. Such tasks 

include the inherently sequential components that typically occur in concurrent algorithms 

and in the communication between the concurrent processor and a user or a file system. 

The control processor is appropriately named because one of its major tasks in a typical 

application is coordinating and monitoring the concurrent processor. We note that, 

because of its special role, the control processor has very little computation to perform in
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a good algorithm, which minimizes the amount of sequential components.

3.4 Programming a Concurrent Processor

The communication channels discussed in the previous section must have software 

support before we can use them in an application program. As we noted, the interrupt 

lines that report the channels’ status can either be polled by the processor or cause the 

processor to be interrupted, depending on the type of software that supports the channels. 

Thus, all software implementations of intemode communications can be divided into two 

groups based on the use of the interrupt lines. The far simpler type of implementation is 

polled communications, which we will discuss first

In the most basic implementation of polled communications, only two routines, a 

transmitting routine and a receiving routine, are needed. The polled transmitting routine 

writes a single packet of data from the node’s memory, starting at the location indicated 

by the routine’s first argument, to the channel indicated by its second argument How­

ever, before the processor can write the packet to the channel, it first determines that the 

channel buffer is ready by polling the transmit interrupt line until the line indicates that 

the buffer is empty. The length of time that the polled transmitting routine spends testing 

the interrupt line is indefinite, so it imposes a strong synchronizing condition on the appli­

cation program by blocking the transmitting node until the receiving node empties the 

channel buffer.

The polled receiving routine reads a single packet of data from the channel indicated 

by its second argument and stores it in memory starting at the location given by its first 

argument However, before reading a packet, it must determine that the channel buffer 

contains valid data by polling the receive interrupt line until the line indicates that the 

buffer is full. As in the case of the transmitting routine, the length of time that the polled 

receiving routine spends testing the interrupt line is indefinite. Thus, the polled receiving
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routine also imposes a strong synchronizing condition on the application by blocking the 

receiving node until the transmitting node writes a packet

The strong synchronizing conditions that the polled communication routines impose 

have several consequences for application programs. The most important effect of the 

synchronization is that it forces the nodes to execute their programs in a loose lockstep. 

However, the application program imposes the lockstep through its use of the communica­

tion routines; the nodes do not actually run synchronously as they would if they shared a 

single instruction stream. Since the synchronization occurs only when the application pro­

gram calls one of the communication routines, the lockstep may be sloppy, with the nodes 

proceeding at their own pace between communication steps in the algorithm. If one node 

has less computation to perform than nodes with which it communicates, the node wastes 

time while waiting to read or write. Thus, an efficient concurrent algorithm must carefully 

balance the computational loads of nodes that communicate. Balancing the loads between 

every communication step in the algorithm is essential because the slowest node always 

determines the amount of time taken by each computational step.

Another limitation on the polled communication routines results from requiring that 

all transmitting and receiving operations be programmed explicitly. Such a requirement 

limits the application program to using expected communications, so a node cannot write 

to another node unless the destination node knows in advance to receive the message. 

Although requiring expected communications may seem like a severe constraint, experi­

ence has shown us that it is not as serious as it first appears. For instance, the communi­

cation requirements of an application can be data-dependent as long as each node knows 

what data it will receive at every stage in the algorithm.

We refer to the polled communication routines as the Crystalline Operating System 

(CrOS) since they are most useful for implementing concurrent algorithms which are suffi­

ciently regular and predictable. The problems must be regular in the sense that the partic­
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ipating nodes can expect the communications and that they distribute the computational 

load evenly so that the synchronizing effects of the polled communications do not 

adversely affect the algorithm. Applications that have these properties tend to be very 

symmetric, which is why we refer to them as being crystalline. In many of the applica­

tions programmed so far using CrOS, some type of underlying grid gives the application a 

regular structure which helps to ensure that all of the nodes communicate together. Often, 

all of the nodes apply the same algorithm to equal amounts of data, so the computational 

loads are well balanced. Although the routines that comprise CrOS do not constitute a 

complete operating system in its normal sense, they do provide an adequate programming 

environment for developing and running many applications on a concurrent processor.

Unfortunately, the routines that comprise CrOS do not provide an adequate environ­

ment for implementing a Monte Carlo simulation of the Lennard-Jones system on the con­

current processor. Due to the absence of an underlying grid, the simulation does not have 

a regular structure that would allow the necessary communications to be easily specified 

in advance. Since the communications needed during the update of a particle depend in 

detail on the position of the particle within its cell, each node will typically have very dif­

ferent communication requirements, which change as the particles are updated. In addi­

tion, the communications are not restricted to adjacent nodes in the hypercube since each 

node must communicate with the eight nodes that surround it in the decomposition topol­

ogy, and the channels in a hypercube can only connect four of the eight directly. In order 

to transmit a message to a nonadjacent node, the transmitting node sends the message to 

an intermediate node, which forwards the message to its final destination.

Besides the difficulty of specifying the communication requirements in advance, the 

computational loads are not well balanced in the nodes between every communication 

step in the update algorithm. The amount of time taken to update a particle depends on 

the number of cells that must be searched for particles that contribute to the potential
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energy difference due to moving the particle. Since obtaining the contributions from some 

cells may involve communication with other nodes, the amount of time taken to update 

the particle also depends on the amount of communication required. Another source of 

load imbalance occurs because not all of the nodes contain the same number of particles 

since the particles are free to move between nodes. Fortunately, the difference in the 

number of particles is small in simulations near the melting transition, so we expect the 

differing number of particles to cause much less load imbalance than having the communi­

cation routines synchronize all of the nodes during each update.

In contrast to the regular applications for which the CrOS routines are adequate, 

efficiently programming irregular applications, such as the Lennard-Jones simulation, 

requires a more general communication system. Before introducing the more general com­

munication system, we consider what features such a system should have so that irregular 

problems can be implemented efficiently. First, such a system should allow the nodes to 

run completely asynchronously; it should not force all of the nodes to proceed through 

their programs in a loose lockstep as the CrOS routines do. If the communication routines 

did not synchronize the nodes as the CrOS routines do, the computational loads would not 

have to be balanced between each communication step in the algorithm. Allowing the 

nodes to run completely asynchronously in the Monte Carlo update algorithm would elim­

inate the major source of load imbalance since the total computational load of each node 

is nearly identical A general communication system should also allow unexpected com­

munications so that the destination node does not have to know in advance that a message 

is coming. Finally, such a system should allow messages to be communicated between any 

pair of nodes in the concurrent processor as if communication channels connected all 

pairs of nodes.

We implement such a general communication system by using the interrupt lines 

from the communication channels to interrupt the processor, rather than by polling the
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lines as we did to implement the CrOS routines. When a communication interrupt occurs, 

the processor suspends its current task and executes a special routine called an interrupt 

handler, which then transmits or receives a packet depending on the type of interrupt that 

occurred. If the transmitting interrupt handler adds a header to each packet containing its 

destination, the receiving interrupt handler can forward a packet if its destination is 

another node. Since the interrupt handler can forward a packet towards its destination, 

messages can be routed between any pair of nodes without affecting the application pro­

gram.

Although many interfaces between an interrupt-driven operating system (IDOS) and 

an application program are possible, any interface has two basic functions. First, the 

application program must be able to instruct the IDOS to send a message to a specific des­

tination node. Second, it must be able to determine when a message has arrived and 

where it can be found. Since the node receives messages as they arrive, the application 

program does not need to anticipate the communications as it does when using the CrOS 

routines. In addition, an IDOS need not synchronize communicating nodes as the CrOS 

routines do, so application programs can run completely asynchronously. Since an IDOS 

is much more complicated than CrOS, we will not present the details of the system that we 

designed to implement the concurrent Monte Carlo update algorithm. Instead, we refer 

the reader to a detailed discussion of its design and implementation.*8

Before we can run an application program on a concurrent processor, we must assign 

the decomposed pieces of the problem to the nodes of the concurrent processor. The 

assignment requires a mapping from the decomposition topology of the application onto 

the interconnection topology of the concurrent processor. As we mentioned previously, 

the hypercube contains grids of each dimensionality that is lower than the dimensionality 

of the hypercube, so the proper mapping can directly connect adjacent regions in such a 

decomposition topology with a communication channel. A routine that maps a hypercube
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onto a  general Cartesian grid is part of a utility library that supports the communication 

routines.39 Although communication channels directly connect adjacent nodes in the two- 

dimensional decomposition topology of the Lennard-Jones simulation, channels cannot 

directly link the diagonally connected nodes. However, when an application uses 

interrupt-driven communications, a communication channel does not need to link con­

nected regions of the decomposition topology since the communication routines trans­

parently route a message to its destination. Even though a random mapping from any 

decomposition topology onto a concurrent processor with any interconnection topology 

would work, the specific mapping is still important since it should minimize the average 

distance that a message must travel.

3.5 Concurrent Update Algorithm

As we have mentioned, the Monte Carlo update algorithm requires the calculation of 

the potential energy difference due to moving a particle. We calculate the difference by 

first summing the contributions from each particle within the range of the truncated 

Lennard-Jones potential for both the new and old positions of the particle being updated. 

However, in the concurrent update algorithm, some of the contributing particles may be in 

cells that are in other nodes, so a method of obtaining the contributions from other nodes 

is needed.

Since the cells correspond to fixed regions of the simulation volume, determining 

which of the eight surrounding cells are within the range of the potential is easy. Fig­

ure 3.1 illustrates the range of the potential with the large circles surrounding several of 

the particles. An efficient method of obtaining the contributions from particles in the cells 

that are within the range of the potential but reside in other nodes uses a request-response 

protocol The protocol involves sending to each such cell a request containing the coordi­

nates of the new and old positions of the particle being updated. A node that receives
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such a request responds by returning the sum of the contributions to both the old and the 

new potential energies from the particles in the indicated celL While waiting for the 

responses, the node updating the particle sums the contributions from particles in its own 

cells. When all of the responses have arrived, the node calculates the difference in poten­

tial energy and applies the acceptance criteria to determine whether to accept or reject the 

move.

In the concurrent Monte Carlo update algorithm, all of the nodes update particles 

simultaneously using the same procedure. While waiting for other nodes to respond to its 

requests, a node responds to the requests that it receives from other nodes in addition to 

performing the necessary sums for its own update. However, a problem arises when a 

node receives a request whose response requires the contribution from the particle that 

the node is currently updating. When such a conflict occurs, the nodes that are involved 

must work together to resolve the problem correctly.

We examine the problem caused by such conflicts by first reviewing the discussion 

of the Monte Carlo procedure given in Section 22. While evaluating the difference in the 

potential energy due to moving a particle, all of the other particles in the system remain 

fixed. Thus, the Monte Carlo algorithm is inherently sequential since one update must 

completely finish before another can start The system evolves from one state to another 

in a progression of states differing by the position of a single particle. Such a progression, 

known as a Markov chain, arises from the condition of detailed balance which we imposed 

to ensure that the distribution of states of the system approachs the canonical distribution. 

Breaks in the Markov chain of states, which can occur when conflicts are not resolved 

correctly, correspond to violations of detailed balance and result in an incorrect distribu­

tion of states. Although detailed balance requires a strictly sequential ordering of the 

updates, the specific sequential ordering is irrelevant; only the existence of such an order­

ing is essential.
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Since an efficient concurrent implementation of the Monte Carlo procedure requires 

updating many particles simultaneously, establishing a sequential ordering of the updates 

can be difficult However, if  all of the particles being updated at the same time are well 

separated from each other, the concurrent algorithm satisfies detailed balance trivially. 

The finite range of the interaction potential ensures that particles separated from the parti­

cle being updated by more than the range of the potential have no effect on the accep­

tance of the move. Performing such a set of concurrent updates sequentially would give 

identical results regardless of the specific ordering of the updates. Unfortunately, the con­

current implementation cannot easily guarantee that only well-separated particles will be 

updated together since the nodes are running asynchronously. Thus, the concurrent algo­

rithm must reliably detect and correctly resolve conflicts as they occur dining the simula­

tion.

Receiving a request whose response requires the contribution from the particle that 

the node is currently updating is the only method by which a node can detect a conflict 

Fortunately, the radial symmetry of the Lennard-Jones potential ensures that all of the 

nodes involved in the conflict can detect it by this method. Figure 3 2  illustrates a conflict 

by showing the old and new positions of two particles in adjacent nodes and the range of 

the interaction potential about each of the particles’ old positions. Resolving such a con­

flict and thereby preserving a sequential ordering of the updates require that one of the 

nodes delay its update until the other has finished. Of course, complicated conflicts 

involving many nodes can also arise, so resolving a conflict correctly may involve the 

coordination of many nodes.

When a node detects a conflict, it must choose between only two alternatives in 

order to resolve the conflict It can either send the response immediately using the old 

position of the particle that it is updating, or it can delay sending the response until its 

current update finishes, and use the updated position of the particle. In the former case,
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the node is deciding that the other node’s update should finish before its own, and in the 

latter case, it is deciding that its own update should finish before that of the other node. 

Each node involved in the conflict makes a similar decision and the result must be a con­

sistent ordering of the conflicting updates.

If the decisions of all of the nodes involved in the conflict do not assign a consistent 

ordering to the updates, the concurrent Monte Carlo update algorithm will not simulate 

the Lennard-Jones system correctly. For instance, if two nodes both send responses to 

each other based on the old positions of the particles being updated and then accept both 

moves, the simulation violates detailed balance. In such a situation, one of the nodes 

based its acceptance of the move on an incorrect potential energy difference that did not 

account for the new position of the particle in the other node. On the other hand, if two 

nodes both decide to delay sending a response to each other until their own updates fin­

ish, neither node will receive a response to one of its requests. Since neither node is able 

to finish its update, deadlock occurs, which causes the simulation to halt abruptly. When 

all of the nodes involved in a conflict agree on a consistent ordering of their updates, the 

concurrent update algorithm both avoids deadlock and satisfies detailed balance.

A reliable method of resolving conflicts assigns a sequential ordering to the updates 

based on the order in which they started. But how can a node determine when another 

node initiated its current update? Since the interrupt-driven communication routines do 

not synchronize the nodes as the CrOS routines do, the nodes run completely asynchro- 

nously, which makes such a determination difficult One method of providing information 

that allows arbitrarily complicated conflicts to be resolved correctly is to label each of the 

requests generated by an update with the starting time of the update. The label records 

the starting time of the update since the update as a whole, rather than the individual 

requests, must be assigned a consistent ordering when a conflict arises. Although the 

method works even if the clocks in all of the nodes are different, using a clock that is
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identical in all of the nodes balances the computational loads optimally. Such a global 

clock allows asynchronous processes to impose weak synchronizations, such as con­

sistently ordering several conflicting updates, without reducing their efficiency as much as 

a stronger synchronization would.

Labeling each request with the time that its update started makes the method of 

resolving conflicts obvious. When a node detects a conflict, it sends a response immedi­

ately based on the old position of the particle that it is updating if the requesting node’s 

update started before its own update. However, if the requesting node’s update started 

after its own update, the node delays its response until its current update finishes and then 

uses the new position of the particle to calculate the response. However, since the clocks 

that generate the time labels have a finite resolution, the conflicting updates will occasion­

ally start at the same time. In such a situation, a convenient method of resolving the con­

flict uses the unique processor number that labels each node. If the processor number of 

the requesting node is less than the processor number of the node that receives the 

request, it sends the response immediately; otherwise it delays i t

Using the starting times of the conflicting updates to order the updates results in an 

ordering that is always consistent, regardless of the number of nodes involved in the con­

flict In addition to arguing that the method works, we can also reliably test whether the 

simulation actually resolves all conflicts correctly. If deadlock occurs when the simulation 

resolves a conflict incorrectly, the problem is immediately obvious because the concurrent 

processor abruptly halts during a Monte Carlo sweep. However, determining the exact 

sequence of events that led to deadlock is very difficult since deadlock results from events 

in several nodes whose interactions are very sensitive to the timing of the events. Thus, a 

strong a priori argument that deadlock cannot occur, such as the method that we just 

described provides, is almost essential for designing a concurrent algorithm that always 

avoids deadlock.
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If the simulation incorrectly resolves a conflict by allowing several nodes to send 

responses based on the old positions of particles that they are updating, the simulation 

may violate detailed balance and give incorrect results. Although deadlock does not 

reveal the error, the simulation can detect a violation of detailed balance by updating the 

total potential energy of the system while it updates the particles. Since calculating the 

difference in the potential energy due to moving a particle is part of the update procedure, 

a node simply adds the difference to the current potential energy when it accepts a move 

in order to obtain the new potential energy. The requirement that the updates have a con­

sistent sequential ordering ensures that the correct potential energy will result after many 

updates.

If the concurrent update algorithm resolves all conflicts correctly, the potential 

energy obtained by updating its value during the simulation will agree with the potential 

energy obtained by directly measuring its value when no particles are being updated. The 

only difference between the two values should be due to roundoff error, whose expected 

magnitude can easily be calculated. A difference that is significantly larger than the 

expected roundoff error reveals that the simulation used an incorrect energy difference in 

at least one of its updates and violated detailed balance. Thus, we can be very confident 

that the simulation is always resolving conflicts correctly if deadlock does not occur and 

the two methods of obtaining the total potential energy are always in agreement

Although conflicts are clearly an undesirable situation because they require that a 

synchronizing condition be imposed on the asynchronous processes, they are not disas­

trous to the efficiency of the algorithm. While waiting for all of its responses to arrive, a 

node can respond to requests from other nodes and sum the contributions from its own 

particles to the potential energy difference due to moving the particle that it is updating 

The node whose update will finish first during a conflict must delay sending its responses 

to the other nodes involved in the conflict, but it can still calculate the responses. In the
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current implementation of the simulation, the node calculates both possible responses, 

which differ only by the contribution of the particle being updated, so that when its 

update finishes, it can send the appropriate responses immediately. Thus, we see that 

resolving conflicts by requiring one node to finish its update before sending its responses 

to other nodes only slightly reduces the concurrency of the algorithm.

In Section 32  we mentioned that the concurrent update algorithm should sort the 

particles into their correct cells after updating all of the particles once, rather than sort 

each particle immediately after updating i t  We can now examine why sorting the particles 

immediately is difficult in the concurrent algorithm. We begin by reviewing several 

important features that the concurrent algorithm should possess in order to run efficiently. 

The individual nodes should run asynchronously, so they do not have to wait for the 

slowest node to finish its current update before they start their next one. In addition, the 

nodes must correctly resolve conflicts as they arise so that the simulation avoids deadlock 

and satisfies detailed balance. If the update algorithm satisfies these three conditions, it 

cannot also move particles from one node to another while updating other particles, so it 

can sort the particles only after it finishes updating all of their positions.

The problem with moving a particle to a cell in another node while updates are 

occurring is that the update algorithm cannot guarantee that the particle being moved will 

be included in all of the necessary potential energy sums. To illustrate, we consider the 

following situation that can arise if the algorithm moves particles to their correct cells 

immediately after updating them. Moving a particle to a cell in another node requires that 

the node containing the particle remove it from its old cell and send a message to the 

other node, instructing it to add the particle to its new celL If both nodes receive a 

request from a third node whose update requires the contribution from the particle being 

moved, a situation can arise in which neither node will include the contribution of the 

particle in their response. Since the nodes are running asynchronously, the node to which
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the particle is moving has no advance notice that the particle will arrive, so it may send its 

response to the third node before the particle arrives. However, the node that originally 

contained the particle may have sent the particle and removed it from its old cell before 

responding to the third node. Since it has already sent the particle to another node, it will 

not include the contribution from the particle in its response. The result is that neither of 

the nodes involved in moving the particle includes its contribution in the response that 

they send to the third node, so a violation of detailed balance occurs.

As long as the nodes are running asynchronously, the update algorithm cannot move 

particles between nodes while other particles are being updated and still always satisfy 

detailed balance and avoid deadlock. Since the node to which the particle is moving does 

not know in advance that the particle is coming, it cannot simply wait until it receives the 

particle to send responses that should include the particle. Likewise, the node sending the 

particle cannot know that the node receiving the particle has already sent responses that 

should have included the particle. In order to supply either node with the information 

needed to ensure that the update procedure satisfies detailed balance, the algorithm would 

have to synchronize the nodes in some way. A solution that does not significantly reduce 

the algorithm’s efficiency is to sort the particles into their correct cells after updating all of 

their positions so that the algorithm needs to synchronize the nodes only after each com­

plete Monte Carlo sweep.

Having discussed the concurrent algorithm for updating the positions of the particles 

in the system, we now examine the procedure for updating the volume of the system. In 

Section 2.4 we discussed that although a constant-density simulation requires updating 

only the particles’ positions, a constant-pressure simulation also requires updating the 

volume of the system in order to maintain a constant average pressure. We effectively 

change the volume of the system by changing the Lennard-Jones length parameter, <r, 

which results in rescaling all of the particles’ coordinates. In contrast to updating the
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position of a single particle, which has only a local effect, updating a affects the interac­

tion potential between all pairs of particles whose separation is less than the range of the 

truncated potential. In fact, updating a even changes the range of the truncated Lennard- 

Jones potential since we specified the truncation distance in terms of a. Because of the 

global effect of changing o-, the algorithm cannot update a while performing concurrent 

updates of the particles’ positions.

Since updating a is an inherently sequential component of the constant-pressure 

update algorithm, we update a only after each complete Monte Carlo sweep of the system. 

While we were able to distribute the computational load of updating the particles’ coordi­

nates rather uniformly among the nodes, we cannot do the same with the computation load 

of updating a since it is a global parameter. Although any of the nodes could update <r, we 

generally assign to the control processor such components of an algorithm that do not fit 

into the symmetry of the concurrent processor. Since we cannot update a  concurrently 

with the particles’ coordinates, the efficiency of updating a is terrible. However, the 

overall loss of efficiency resulting from the sequential component in the algorithm is obvi­

ously small since it involves only one degree of freedom in contrast to the many degrees of 

freedom associated with the positions of the particles. Although Amdahl’s Law30 states 

that the sequential components of an algorithm place an upper limit on the number of use­

ful nodes, our 64 node concurrent processor is nowhere near the limit in this case. Since 

we typically use a larger concurrent processor to run a larger problem, rather than to run 

the same problem faster, we usually do not see the effect of Amdahl’s Law.31
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3.6 Irreproducibility of Simulation Results

An interesting feature of the concurrent Monte Carlo update algorithm is that it 

gives irreproducible results. The irreproducibility arises because the algorithm does not 

impose a specific ordering on the sequence of particle updates. As we discussed in the 

previous section, the algorithm assigns a definite ordering only when one is necessary to 

resolve a conflict While detailed balance requires that a consistent sequential ordering of 

the updates exist, it does not require any specific ordering. The algorithm incorporates no 

specific ordering since imposing a predetermined ordering would require synchronizing 

the nodes in some way, which would reduce the efficiency of the algorithm.

Still, a computer is a deterministic machine, so how can an algorithm give irreprodu­

cible results? The answer is that while any node of the concurrent processor is deter­

ministic in isolation, its interaction with the other nodes may not be. Even though all of 

the nodes comprising the Mark I machine use the same clock signal, each of the communi­

cation channels connecting the nodes contains an asynchronous component, which allows 

a type of race condition to occur. Since the update algorithm is sensitive to the race con­

dition, it can affect the ordering of updates in the simulation and lead to irreproducible 

results.

In order to illustrate the sensitivity of the update algorithm, we first examine the 

effect that a slight change in the arrival time of a request can have. If a node receives a 

request before finishing its current update, it generates a response to the request while 

waiting to receive the responses for its update. The node may send the response immedi­

ately or delay it in order to resolve a conflict, but the node will always send the response 

before starting to update another particle. However, if a request arrives just after the 

node receives all of the responses for its update, the node will not respond to the request 

until it begins waiting to receive the responses for its next update. Thus, depending on 

whether the node receives the request before or after receiving the last response that it
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requires to complete an update, it may send the response promptly or after a considerable 

delay. A delay in sending the response could allow updates in other nodes to finish before 

the one in the node that sent the request, which could change the ordering of the updates 

and affect the acceptance of subsequent updates. Such a situation illustrates one way in 

which a race condition involving two messages can affect the acceptance of an update.

Since the algorithm does not impose a specific ordering on the updates in the simula­

tion, situations that are sensitive to the arrival times of messages can arise in complicated 

ways. However, before such a situation can affect the simulation, the arrival time of a 

critical message must actually change by the required amount A synchronous system is 

not sensitive to small changes in the timing of events because a system clock regulates all 

timing. In contrast, an asynchronous system does not have a clock to regulate the timing 

of events, so the relative timing of several events can differ by arbitrarily small amounts. 

Since part of the circuit forming the communication channels is asynchronous, the arrival 

times of messages can vary slightly because of many effects, which can change the order 

in which messages on different channels arrive. The sensitivity of the algorithm to the 

order in which messages arrive and the possibility of changes occurring in that order pro­

duce an algorithm whose results are inherently irreproducible.

Thus, if we run a simulation twice using exactly the same initial data, including the 

random number seeds, the results of the two simulations will eventually differ. Once the 

decision of whether or not to accept a single move differs between the two simulations, 

the Markov chain of states describing the simulation bifurcates. The simulations then 

proceed along completely different paths as the effect of changing one update reaches all 

of the other particles in the system. We have observed the bifurcation of the Markov 

chain in simulations that gave identical results for many Monte Carlo sweeps before 

abruptly differing. We note emphatically that the inherent irreproducibility of the simula­

tion results in no way indicates that the concurrent update algorithm is incorrect It
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merely illustrates that the specific sequential ordering of the updates is irrelevant If we 

were to implement a different concurrent algorithm in which a specific ordering of events 

was important the algorithm would have to be insensitive to small changes in the arrival 

times of messages so that such irreproducibility could not arise.

3.7 Efficiency of Concurrent Update Algorithm

Having developed an intuitive sense that an algorithm is efficient when it uses most 

of the nodes for useful computation most of the time, we now formalize the concept of 

efficiency. A formal definition of efficiency allows us to measure the efficiency of a con­

current algorithm and to compare its effectiveness to that of other concurrent algorithms. 

In addition, we can analyze a concurrent algorithm in order to calculate its expected effi­

ciency and obtain its dependence on parameters such as the number of degrees of freedom 

per node.

We measure the effectiveness of a concurrent algorithm by comparing its perform­

ance to that of its sequential counterpart The increase in the computational speed of a 

concurrent algorithm is its speedup, S , which is defined as

where Tm  is the time taken by the sequential algorithm and is the time taken by the 

parallel algorithm. In order for the comparison to be meaningful, we assume that the 

sequential machine has the same computing power as one of the nodes in the concurrent 

machine and enough memory to run the algorithm. We define the efficiency, e, as the 

average fraction of the time that each node performs useful computation. In terms of S ,  

the efficiency is

par
(3.1)

S
£ =  — (3.2)
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where AT is the number of nodes in the concurrent processor.

Four effects can reduce the efficiency of a concurrent algorithm from its ideal effi­

ciency of e =  1. In the discussion of the update algorithm we mentioned that communica­

tion overhead, load imbalance, and sequential components reduce the concurrent 

algorithm’s efficiency. We account for these three effects by writing as

^por =  *eafc +  *eomm ^tead +  ^teqe (3-3)

where , teornm, and are the average amounts of time that each node spends calcu­

lating, communicating, and waiting on other nodes, respectively. The total amount of time 

that is required to perform the sequential components of the concurrent algorithm is t^ . .

The fourth effect, which is not present in the update algorithm, occurs when the con­

current algorithm is fundamentally different from the sequential algorithm. The con­

current implementation of an application may use a different algorithm because some algo­

rithms that work well on a sequential computer cannot be decomposed so that they run 

efficiently on a concurrent processor. For instance, the quicksort algorithm, which is often 

the optimal algorithm for sorting on a sequential machine, does not perform well on a con­

current processor, so other algorithms are used.33 In order for the efficiency of an algo­

rithm to be a meaningful measure of its performance, using the best algorithm for each 

machine is essential when evaluating the relative performance of the concurrent algorithm. 

Using a sequential algorithm that is not optimal could result in efficiencies that are greater 

than one, but they would have little meaning.

We now express the efficiency of an algorithm in terms of the effects that reduce its 

efficiency. We first consider an algorithm in which the only significant effect reducing its

efficiency is communication overhead, allowing us to neglect t  ̂ and tM9e. In addition,

we assume that the concurrent and sequential algorithms are basically the same algorithm 

so that = Ntajg . Using (32) and (3.3), we obtain
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*calc " F  tcotnm
(3.4)

which shows that £ is the fraction of the time that the nodes spend performing calculation. 

If we extend (3.4) to include the effect of sequential components in the concurrent algo­

rithm, we have =  N  tcde + , which gives

Although we could generalize (3.5) to include the effects of load imbalance by

adding a term containing t  * ,  as we did with in (3.5), we will use a different

method. The load balance of an algorithm is the average fraction of the time that the 

nodes spend performing communication or calculation instead of idly waiting on other 

nodes, so we express its effect as that fraction. The efficiency of an algorithm in which 

we must account for load imbalance is

As a simple example of calculating k, we consider an algorithm that consists of a

tion, such as the CrOS routines provide. We assume that the algorithm contains no 

sequential components, so we can neglect . If the period of computation takes longer 

in some nodes than in others, the algorithm has a load imbalance, and the other nodes

(3.5)£ =
*calc +  ^cornm " F  t̂eqe

(3.6)£ =  K
I cole "1” ^comm 4 "

where we define k as

K = ^eafc ^comm ~F t̂eqe (3.7)
*eafc +  icomm +  +  ^toai

period of computation in which no idle time occurs, followed by a synchronizing opera-
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must wait for the slowest node when they reach the synchronizing operation. In such a 

situation, ( t ^  + / ,--mm > is the average amount of time that each node takes to finish its 

computation and (fade +  teomm +  r«a* ) is the amount of time that the slowest node takes to 

finish. The latter expression is the total execution time of the concurrent algorithm, so at 

least one node must have taken that long to finish its computation. Although the terms in 

(3.7) may not have such a simple interpretation in a more complicated situation, k 

correctly accounts for the effect of load imbalance, regardless of how it arises.

The final effect that we must include in a general expression for the efficiency of an 

algorithm is the effect that arises when the concurrent algorithm is fundamentally different 

from the sequential one. As with the effect of load imbalance, we account for the algo­

rithmic effect with an overall multiplicative factor. We define a as

where Tm  (optimal) is the time taken by the optimal sequential algorithm and 

Tftq (concurrent) is the time taken by the sequential algorithm on which we based the con­

current algorithm. In addition to fundamental differences in the concurrent and sequen­

tial algorithms, extra indexing or looping overhead in the concurrent algorithm can reduce 

a  from its ideal value of 1. Inserting a into (3.6) gives the general expression for the effi­

ciency an algorithm, which is

Of course, we do not intend to imply that the quantities in (3.9) are independent of each 

other. For instance, the sequential components of an algorithm could be considered a load 

imbalance since one node must perform more computation than the others. However, 

conceptually separating the effects that reduce the efficiency of an algorithm is useful

TKq (optimal)
(3.8)Tftq (concurrent)

(3.9)€ =  OK
*eate "I’ ^comm ^teqc
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since it allows a better understanding of the algorithm, which may lead to improvements 

in i t

We can estimate the efficiencies of many concurrent algorithms with (3.9) before we 

implement them by measuring the characteristic times of calculation and communication 

and counting the number of such operations in the algorithm. In many algorithms, includ­

ing the Monte Carlo update algorithm, we know that a =  1 and that is negligible. 

Although estimating ic is simple in some algorithms, we cannot calculate the load balance 

in the update algorithm by simply examining the algorithm since the asynchronous interac­

tion of many nodes determines k as the algorithm runs. However, we can obtain the effi­

ciency of the update algorithm by measuring Tm  and directly and using (3.1) and 

(3 2).

We obtain values of Tm  and for systems of various sizes by measuring the 

average length of time that 20 Monte Carlo sweeps take. In order to be consistent, each 

measurement uses the same starting configuration, which is a perfect triangular lattice. 

Since the update algorithm can be run on only one node, we can easily measure values of 

TKq. Although memory limitations restrict each node to a maximum of 64 cells, which 

corresponds to a total of 1024 particles, the linear dependence of T^  on n , the average 

number of particles per node, allows us to extrapolate reliably to larger values of n. 

We report the results of the timings in Table 3.1, whose first three columns give the config­

uration of nodes, the average number of particles per node, and the average time per 

sweep in seconds at T * = .7 and p* =  .86. The fourth column of Table 3.1 reports the effi­

ciency of the update algorithm. Since we cannot estimate ic, which appears in the fifth 

column in Table 3.1, by simply examining the update algorithm, we will use the measured 

efficiencies from Table 3.1 and (3.9) to calculate k. However, before we can use (3.9) to 

calculate k, we must first know and tcomm. Since Ar/cafc =  TKq when a = 1, we can 

use the extrapolated values of to obtain teolc .
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Table 3.1

Efficiency of Monte Carlo Update Algorithm

Nodes n Time c K

1 x 1 64 2.54 1.000 1.000

1 x 1 256 10.14 1.000 1.000

1 x 1 1024 40.56 1.000 1.000

2 x 2 16 126 .504 .753

2 x 2 64 3.92 .647 .825

2 x 2 256 13.57 .747 .855

2 x 2 1024 47.95 .846 .908

4 x 4 16 1.29 .491 .735

4 x 4 64 3.95 .642 .819

4 x 4 256 13.33 .761 .871

4 x 4 1024 47.64 .851 .914

8 x 8 16 1.33 .477 .713

8 x 8 64 4.00 .634 .808

8 x 8 256 13.52 .750 .858

8 x 8 1024 48.04 .844 .907
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Obtaining an accurate value of tcgmm is more difficult because we cannot measure 

teorrm directly, as we can . Instead, we measure the characteristic time of the basic 

communication operation, which consists of sending a request and receiving a response, 

and we calculate the expected number of such operations during a Monte Carlo sweep. 

Measuring the communication speed of the interrupt-driven communication system under 

several different conditions allows us to calculate the amount of time that the various 

stages of the communication system take. From these times, we calculate the total amount 

of time involved in sending a request, which includes the time that other nodes spend 

receiving and forwarding the request Since sending a response is nearly identical to send­

ing a request, we assume that the two take the same amount of time. From these measure­

ments, we obtained / 1=3.168ms and / 2=4.454 ms, where t x and t 2 are the characteristic 

times of request-response pairs that travel a distance of one step and two steps, respec­

tively.

In order to calculate the expected number of requests per node during a Monte 

Carlo sweep, we refer to the cell that Figure 3.3 illustrates, in which the x  and y  dimen­

sions of the cell are Lz and Ly, respectively. In order to obtain the contributions to the 

potential energy difference due to moving a particle in the cell, the update algorithm sends 

a separate request to each cell that is within ( ju t  of the particle if the cell resides in another 

node. As we discussed in Section 32 , the distance fur is the sum of the range of the poten­

tial and twice the maximum distance that a particle can move during an update, so we 

obtain fur= 3a+ A. Updating a particle that lies above the horizontal dashed line in Fig­

ure 3.3 requires sending a request to cell A if it resides in another node. Similarly, updat­

ing a particle that lies to the right of the vertical dashed line requires sending a request to 

cell B if  it resides in another node. If the particle lies both above the horizontal line and 

to the right of the vertical line, a request must also be sent to cell C if it resides in another 

node. In the last case, some of the particles in the specified region may not be within fta
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of cell C , but we use the indicated boundaries to avoid floating-point computation, which 

is much slower than integer computation on our concurrent processor.

We now calculate the average number of requests that a node sends while updating 

each of the particles in a cell once. We assume that the three neighboring cells, A , B, and 

C, reside in other nodes and we treat each one separately. Since the average number of 

particles per cell is 16, the average number of requests sent to cell A is

poL.
vA =  16 j - f -  (3.10)

in which the number of particles is multiplied by the fraction of the cell’s area that is 

above the horizontal dashed line in Figure 3.3. Since we specify the reduced density, p*,

rather than a in a simulation, we rewrite (3.10) in terms of p* using p* =  -, which
Ls L%

gives

VA =  4mVp* [ y ~ y  . (3.11)

Similarly, the calculations for regions B and C respectively give

uB =Alty / 7 { ^ L- Y  (3.12)

”c  =  A*V • (3.13)

We can use vA, i/B , and vc  to calculate the average number of requests that a node 

sends during an update sweep of a cell since all of the cells that surround it are similar to 

one of the labeled cells in Figure 3.3. The average number of requests depends on which 

of the cell’s edges face cells that reside in other nodes. Since cells that reside in other 

nodes may face 0, 1, or 2 edges of a cell along both the x  and y  directions, we must treat
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each of the nine possibilities separately. We label the possible cases with ns and ny, 

which are the numbers of adjacent cells that reside in other nodes along the x  and y  

directions, respectively. Requests sent to cells A and B  are always one-step requests since 

the hypercube topology can be mapped onto a two-dimensional grid so that communica­

tion channels connect adjacent regions of the grid. However, since channels cannot also 

connect regions along a diagonal in the grid, requests that a node sends to cell C are two- 

step requests if cells A and B both reside in other nodes. We summarize the number of 

one-step and two-step requests that are required for the various combinations of nz and 

in Tables 3.2 and 3.3, respectively.

Table 3.2

Number of One-Step Requests per Cell

0

«*

1 2

0 0 ^1 + 2 2v1+4t/s

n9 1 i/2+ 2i/j j/i+ j/2+ 2j/s 21/1+ 1̂ + 21/3

2 + 4i/s v 1+2t'2 + 2i/s 2i/1+ 2i/2

Using the information in Tables 3.2 and 3.3, we obtain the average number of 

requests sent by a node during a  Monte Carlo sweep of all of its cells for several different 

configurations of cells. Table 3.4 reports the total number of one-step and two-step 

requests, n x and n 2, respectively. Since we chose the dimensions of a cell so that it would

2accommodate 16 particles arranged in a triangular lattice, we have —— = - p .  In
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Table 33

Number of Two-Step Requests per Cell

»z

0 1 2

0 0 0 0

ny 1 0 vs 2*3

2 0 2*s

addition, we use p* =  .86 and the nominal value of p = 3.25 to obtain vA =  11.22, 

vB =  12.95, and vc  =  9.08. Substituting these values into the entries in Table 3.4 and using 

the characteristic times t x and f 2, we obtain the values of frjmin reported in Table 3.5. 

Finally, we substitute the values of teomm, , and e into (3.9) to calculate the values of *

reported in the last column of Table 3.1.

We see from Table 3.1 that the efficiencies range from slightly under 50% for the 

smallest simulations to about 85% for the largest simulations. The values of k  for small n 

show a slight decrease as the number of nodes increases, but the effect disappears for 

larger n. The concurrent algorithm does a respectable job of balancing the computational 

loads of the nodes with k ranging from about 70% to 90%. As we expect, the load balance 

improves with increasing n since the fluctuations in the computational loads average 

better.

Although the request-response protocol introduces a potential instability into the 

load balance, the data in Table 3.1 provide no evidence of such an instability. The
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Table 3.4

Total Number of Requests per Node

Cells « i n 2

1x1 2t/1+2i/3 4vs

2 x 2 4i/1+ 4 i/2+8*'3 4*/s

4 x 4 8v1+ 8j/2+ 24j/3 4j/s

8 x 8 16*^+ 16i/2+  56i/3 4l/s

Table 3.5

Total Communication Time per Node

Cells « i n 2 êomm

l x  1 48.3 36.3 0.315

2 x 2 169.4 36.3 0.698

4 x 4 411.4 36.3 1.465

8 x 8 895.5 36.3 2.999

instability could occur when some nodes fall slightly behind the others by spending more 

time responding to requests. If the nodes that sent the requests quickly send another 

batch of requests as they start updating their next particles, the nodes responding to the
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requests might not be able to update their own particles and could fall further behind. At 

the end of the Monte Carlo sweep, the nodes that finished sooner would have to wait for 

the slower nodes to finish, thereby reducing k . If the algorithm exhibited such an instabil­

ity, we would not expect k  to increase as n increased.

In conclusion, we see that the concurrent Monte Carlo update algorithm is reason­

ably efficient, even for small n. Although we could not calculate <c, and thus the effi­

ciency, by analysis of the algorithm alone, we were able to obtain values of k indirectly. 

In addition, our measurements and calculations of the various parameters that affect the 

efficiency gave us a quantitative understanding of the dependence of the algorithm on 

both the number of nodes and the average number of particles per node.
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D iv is io n  o f  1 0 2 4  P a r t ic le  S y stem  in to  C e l ls

figure 3.1 A system containing 1024 particles that consists of an 8 x 8 grid of cells.
The large circles illustrate the 3c range of the potential about the particles 
indicated by the smaller circles.
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A Pair o f  Conflicting Updates

no d e  boundary

new position

old position

range  o f  
po ten tia l

Figure 3.2 A conflict involving two particles that adjacent nodes are updating simul­
taneously. Since the ranges of the interaction potential about the particles 
overlap, the updates cannot occur independently of each other.
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A Typical Cell

Cell A Cell C

Cell B

f i a

Figure 3.3 A diagram of a typical cell and the three types of neighbors that surround 
i t  The dashed lines indicate the regions of the cell that are within pa of 
its edge. Updating particles that lie within these regions requires infor­
mation from the neighboring cells.
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Chapter 4: Simulations of Solid and Fluid Regions

4.1 Measurement of Potential Energy and Pressure

Since we have introduced the Lennard-Jones system and described the implementa­

tion of the update algorithm that simulates the system, we now discuss simulating of the 

system and measuring some of its properties. Constant-density simulations, in which we 

specify the temperature and the density of the system, generated the results that we report 

in this chapter. Two important quantities that we measure in such simulations are the 

potential energy and pressure of the system. From (2.13), the potential energy of the sys­

tem in reduced units is

U* = 4 [a12( r" 1J) -  <r6(r-6) ] (4.1)

where (2.14) expresses (r-12) and (r -6) as a sum of the indicated quantity over all pairs of 

particles divided by N, the total number of particles in the system. As we mentioned in 

Section 3.5, the sums in (4.1) do not need to be recalculated for each measurement since 

the update algorithm can easily adjust their values as it updates the particles.

Before we can measure the pressure of the system, we must derive a formula that 

expresses the pressure of the system as a function of the particles’ coordinates and the 

temperature and density of the system. Although we can use several methods to derive an 

expression for the pressure, we present only one of them here. In addition, we give two 

other derivations, which are based on the partition function of the constant-density system 

and the virial theorem, in Appendices A and B, respectively. The derivation that we 

present here uses the exponent of the Boltzmann factor in the partition function for the 

constant-pressure simulations, which is given in Section 2.4 as

W = U +  pV -  kT N ia V  . (2.18)
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Since updating the volume of the system maintains an average pressure of p ,W  is 

minimized when the pressure of the configuration equals the specified simulation pressure 

p. Thus, we obtain an expression for the pressure of a configuration by setting

aw
av = 0 (4.2)

config

and solving for p. The subscript config indicates that the relative positions of the particles 

are held constant; only an overall scaling factor changes during differentiation. Substitut­

ing (2.18) into (4.2) and solving for p gives

» dU  . .
p  T  <4-3>

which we have converted to reduced units.

Since we effectively change the volume of the system by varying the length parame-

• Vter a, we rewrite the derivative in (4.3) in terms of o. Using V  =  — -  we obtain
N o2

^ - 2 ^ .  (4.4)do a

Applying the chain rule and (4.4) to (4.3) gives

* p a dU* ,a n
p = 2 ~& r 9 * *

where p* = Substituting (4.1) into (4.5) gives the final expression for the pressure of 

a configuration;

p * =  1 2 /  [2o12(r~12) -  oe(r-°)]  + p*T* . (4.6)

We see that the pressure of a configuration depends on the same sums as the potential
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energy, so we can measure the pressure of the system as easily as its potential energy.

As we described in Section 22, the expectation value of a quantity is its average 

over many configurations. In addition to calculating the expectation value of each meas­

urement, we would also like to extract an estimate of its statistical error. However, we 

cannot use the normal expression for the standard deviation of a mean, which assumes 

that the set of measurements is uncorrelated.33 Successive values of the pressure and 

potential energy are correlated since each Monte Carlo sweep changes the configuration 

by only a small amount Calculating the standard deviation of a mean from a set of n 

correlated measurements does not reduce its standard deviation from that of the individ-

ual measurements by the normal factor of n 2 since the n measurements are not indepen­

dent In order to calculate the true standard deviation of the average, we must account for 

the effect of the correlated measurements.

An easy method of obtaining an error estimate of the mean of a correlated set of 

measurements involves grouping the measurements into blocks of equal size. Averaging 

the measurements in each block gives a set of blocked measurements, which we use to cal­

culate the standard deviation of the mean. Although the individual blocked measurements 

have a smaller standard deviation than the original measurements, the number of blocked 

measurements is also smaller. If the original set of measurements were uncorrelated, the 

effects would balance exactly, so the standard deviation calculated with the blocked meas­

urements would be identical to that calculated with the original measurements. However, 

since the set of original measurements is correlated, the improvement in the standard devi­

ation of the individual blocked measurements does not balance the reduction in the 

number of such measurements, so calculating the standard deviation of the mean with the 

blocked measurements gives a larger value. If we increase the number of measurements in 

each block, the standard deviation that is calculated with the blocked measurements 

increases as long as the set of blocked measurements is correlated. For sufficiently large
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blocks, the blocked measurements are nearly uncorrelated, so we obtain a true estimate of 

the statistical error of the mean. In addition, the block size at which the standard devia­

tion of the mean stops increasing gives a rough estimate of the sweep-to-sweep correlation 

length of the measurement

4.2 Corrections for the Truncated Potential

In Section 2.3 we discussed truncating the Lennard-Jones potential at a distance of 

3a in order to reduce die amount of computation required to calculate the potential energy 

differences during an update. We argued that although using the truncated potential

should have only a small effect on the evolution of the simulation, it would affect some of

the measurements, such as the potential energy and pressure. Since the effects of the trun­

cated potential enter through the values of (r~12) and (r -6), we begin by breaking the 

(r~n) into the two pieces

=  < r-> < *  +  <'-">>*, (4-7)

where (2.14) defines (r - *). The first term on the right side of (4.7) is the value obtained 

from the Monte Carlo simulation and the second term is the correction term that we 

would like to evaluate.

A simple method of correcting for the truncated potential assumes a uniform distri­

bution of particles outside the 3a cutoff. Calculating the resulting corrections to the values 

of (r~n) gives the integral

2<roo

( ' - ’*>>3,  = ± f  J p r - ' r  dr dd  (4.8)
0 3<r

where p is the uniform density and n > 3. The factor of one-half arises from counting the 

interaction potential between each pair of particles twice in the integral. Integrating (4.8)
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gives

<'•**>>3e = - r UL^ Q ° ) - {n- 2) • n -  z (4.9)

Rewriting (4.9) in reduced units and substituting 6 and 12 for n gives

(4.10)

and

< '-12>>* = 590490 (4.11)

However, a uniform distribution of particles outside the 3o  cutoff is only an approxi-

good approximation for particles in an ideal gas, it is a poor approximation for particles in 

a crystal lattice. Thus, we expect that the approximation is better at lower densities than 

it is at higher densities. Since the attractive component of the potential gives the particles 

a tendency to clump together, we expect that the true values of (r-12) and (r~6) are larger 

than the uniform density approximation predicts. The value of (r-12) is relatively insensi­

tive to particles beyond 3c compared to the value of (r-6), so the true values of the poten­

tial energy and pressure should be somewhat lower than those given by the uniform den­

sity approximation. However, at high densities the nearly hard core of the potential dom­

inates the interaction between particles, inhibiting the clumping due to the attractive com­

ponent of the potential, so the previous argument does not apply.

A measure of the system that is related to the distribution of particles is the two- 

point correlation function. If we knew the two-point correlation function, we could 

extract from it the average density outside the 3<r cutoff and use the true average density 

in (4.8). By using the true distribution of particles, the calculation of the corrections
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would involve no approximations, so we would obtain the correct values of the potential 

energy and pressure. However, the two-point correlation function contains much more 

information than we need to calculate the corrections for the truncated potential since we 

simply integrate over all the details of the correlation function. Rather than measuring the 

two-point correlation function and extracting the corrections, we measured the corrections 

directly. Using a few configurations from each simulation density, we calculated the con­

tributions to (r-12) and (r~6) from the particles outside the 3a cutoff. Subtracting the 

correction obtained with the uniform density approximation gives the residual correction. 

Since the residual correction is small and relatively insensitive to the specific configura­

tion, we easily obtained values whose errors were sufficiently small. We discuss actual 

measurements of the residual corrections and plot their values as a function of density in 

Section 4.4.

4.3 Thermalizing the System

Before we can obtain any meaningful measurements from a simulation, we must ther- 

malize the system in order to bring it into equilibrium. Minimizing the number of Monte 

Carlo sweeps needed to thermalize the system requires that the initial configuration be 

chosen carefully, especially in the solid regime and near phase transitions, where the sys­

tem may exhibit strong metastability. In the solid regime, an appropriate starting config­

uration is a cold start in which the particles are arranged in a regular crystal lattice. For 

the two-dimensional Lennard-Jones system, the lowest energy crystal lattice is the triangu­

lar lattice, in which all of the particles have six equidistant nearest neighbors. At low tem­

peratures and high densities, we expect the deviations of the particles from the lattice sites 

to be small, so the cold start provides a good initial configuration for such simulations.

Another good choice of an initial configuration is one that is in equilibrium at a 

nearby temperature or density. Since the system approaches equilibrium faster when its
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entropy is increasing, configurations that are in equilibrium at slightly higher densities or 

lower temperatures usually thermalize fastest Often, the entropy changes only a small 

amount during thermalization, so the thermalizing time is rather insensitive to whether the 

entropy is increasing or decreasing. However, in some situations the change in entropy 

during thermalization may be much larger, making the thermalizing time very sensitive to 

the choice of an initial configuration. For instance, in simulations near a phase transition 

the difference in entropy between two configurations may be large, even when they are in 

equilibrium at only slightly different temperatures. In Chapter 6 we will illustrate the 

importance of using a good initial configuration when we discuss simulations of the transi­

tion region that are very sensitive to their initial configurations.

Besides the choice of an initial configuration, another factor that affects the thermal­

izing time of a simulation is the size of the system. A smaller system and a larger system 

require about the same number of Monte Carlo sweeps to reach equilibrium if finite-size 

effects do not dominate the smaller system. Since a Monte Carlo sweep of the system with 

fewer particles takes less time, the smaller system thermalizes faster. We take advantage of 

this property by first thermalizing a smaller system and then using it to initialize a larger 

system. For instance, we can create an initial configuration with four times as many parti­

cles by repeating a configuration from the smaller system twice in each direction. The 

periodic boundary conditions ensure that the four copies of the smaller configuration fit 

together correctly, so if  the smaller system is in equilibrium, the initial configuration for 

the larger system will also be in equilibrium, except for finite-size effects.

In our simulations we used both methods of reducing the amount of time required 

for thermalizatioa The smallest system that we could simulate conveniently assigned one 

cell to each of the 64 nodes in the concurrent processor, so the whole system contained 

1024 particles. We began a sequence of simulations with the one at the highest density, 

p* =  .95, and used a cold start to initialize the system. After thermalizing the system with
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10,000 Monte Carlo sweeps, we used the resulting configuration to initialize a simulation 

at the next lower density. We then repeated the procedure to provide an initial configura­

tion for each of the densities that we intended to simulate. While thermalizing the simula­

tion at each of the densities, we observed that the average values of the potential energy 

and pressure stabilized, providing an indication that the system was in equilibrium.

After thermalizing each of the simulations of the 1024-particle system, we used the 

resulting configurations to initialize simulations of a system containing 4096 particles. 

Since the finite-size effects are small outside the transition region, we expect the initial 

configurations in the solid and fluid regions to be nearly in equilibrium. Although we will 

discuss the principal reasons for preferring the larger system in Chapter 6 when we dis­

cuss simulations of the transition region, we will mention two advantages of using the 

larger system in simulations that are outside the transition region. One advantage is that 

any residual finite-size effects that are present in the smaller system are reduced in the 

larger system, giving more accurate results. The second advantage is that the same amount 

of computer time gives more precise expectation values of the potential energy and pres­

sure when used to simulate the larger system.

At first, simulating a system under the same conditions of temperature and density 

with a fixed amount of computer time seems to result in a  statistical error that is 

independent of the number of particles in the system. The distribution of the individual 

measurements of a quantity such as the pressure has a standard deviation that is propor-

tional to N  3, where N  is the number of particles in the system. Likewise, the standard

— i.
deviation of the average of n measurements is proportional to n 3, even if the measure­

ments are correlated. Although the standard deviation of the average also depends on the 

sweep-to-sweep correlation length of the system, the decrease in the standard deviation is 

the same for both systems as n increases if finite-size effects are not important Thus, the 

simulation of the smaller system must perform four times as many Monte Carlo sweeps to
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achieve the same statistical error as the simulation of the larger system. However, simulat­

ing the larger system requires four times as much computation per sweep, so the effects 

seem to balance.

On a sequential computer the competing effects balance, so a simulation obtains a 

statistical error that is independent of the number of particles in the system. However, the 

same is not true when the simulation runs on our concurrent processor, since the effi­

ciency of the update algorithm improves as the number of particles per node increases. As 

we discussed in Section 3.7, the communication overhead is a smaller fraction of the total 

time and the load balance improves when we simulate a larger system. Table 3.1 shows 

that the the efficiency of simulating the system with 1024 particles on an 8 x 8 grid of 

nodes is about 48%, while the efficiency of simulating the 4096-particle system is about 

63%. Although a Monte Carlo sweep of the larger system requires four times as much 

computation as a sweep of the smaller system, a sweep of the larger system takes only 

about three times as long. Thus, the same amount of computer time gives a lower statisti­

cal error in measurements such as the potential energy and pressure when it is used to 

simulate the larger system.

4.4 Simulation Results

We now describe the sequence of constant-density simulations in the solid and fluid 

regimes of the Lennard-Jones system. We have confined most of our simulations to the 

T* =  .7 isotherm in order to avoid spreading the available computer power too thinly. 

According to calculations by Barker et aL,18 the temperature T* ~  .7 lies well above the 

critical temperature of the two-dimensional Lennard-Jones system, which they estimate to 

be T* =  .533. Thus, our system should not exhibit a liquid-gas transition, so we expect to 

observe only solid and fluid regions separated by a melting transition. In addition to simu­

lating the system along the isotherm, we obtained data along the p* = .95 isochore to
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complete an integration path for the free energy analysis that is discussed in the following 

chapter.

We chose to study the melting transition along an isotherm because a first-order 

phase transition has an especially distinctive signature along an isotherm If the melting 

transition is first-order, the solid and fluid phases are separated by a two-phase region in 

which both phases coexist As the simulation traverses the two-phase region at constant 

temperature by changing the density of the system, the fraction of the system in each 

phase changes, but the system’s pressure remains constant In sharp contrast the pressure 

varies rapidly with changing density in the adjacent regions of solid and dense fluid, 

which are both relatively incompressible. Although finite-size effects can change the con­

stant pressure behavior in the two-phase region by preventing a complete separation of the 

two phases, a van der Waals loop still identifies the region, as we mentioned in Section 1.3. 

Thus, if the melting transition is first-order, the transition region should be easy to iden­

tify. If instead the melting transition is higher-order, the transition region should smoothly 

connect the solid and fluid regions, and we expect changes in the slope of the pressure 

and potential energy as functions of density to identify the transition region.

While we were thermalizing the simulations of the 1024-particle system, we observed 

a van der Waals loop in the pressure data. As mentioned in the previous section, we used 

a cold start as the starting configuration at p* = .95 and initialized simulations at succes­

sively lower densities with a thermalized configuration at the previous density. As the 

density decreased, the equilibrium pressure of the system also decreased, until the system 

reached p* =  .84, where the pressure increased sharply during thermalizatioa Thus, the 

system exhibited a van der Waals loop in its pressure, indicating that all of the simulations 

at higher densities whose pressures were lower than that of the system at p* = .84 were 

inside the loop. Since the pressure at p* =  .83 was significantly lower than at p* = .84, the 

density p* =  .83 appeared to be outside the transition region. Although the van der Waals
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loop indicates the presence of a phase transition, we believe that interpreting the loop as 

evidence that the transition is first-order would be premature. As we noted in Section 1.4, 

a higher-order transition may appear discontinuous if the system passes through the transi­

tion region so quickly that it is not always in equilibrium. For now we will exclude the 

range of density from p* =  .84 to p* =  .87, which appears to lie in the transition region, but 

in Chapter 6 we will present results from simulations in that range of density.

Using the thermalized configurations of the 1024-particle system, we initialized 

simulations of the system with N  = 4096 and again thermalized the simulations. Tables 4.1 

to 4.4 report the measurements of the potential energy and pressure at each of the simula­

tion densities that lie along the T* =  .7 isotherm and outside the transition region. The 

columns labeled C/J*. and report the measured values of potential energy and pres­

sure, respectively, which include the corrections obtained with the uniform density 

approximation. In addition, we calculated the residual corrections to the potential ener­

gies and pressures as discussed in Section 4.2. Since we found that the statistical errors in 

several values of U*„ and p ^  were small compared to the errors in U^. and p ^ .,  we 

used only one configuration to calculate some of the values, which do not include error 

estimates. The last column of the tables gives the number of Monte Carlo sweeps used to 

evaluate each expectation value. In Figure 4.1 we plot the pressure data from Tables 4.2 

and 4.4 and connect the data points with a smooth curve to guide the eye. The transition 

region lies in the gap between the solid and fluid regions. We also plot the values of p ‘„  

in Figure 42  for the same data and see that the qualitative predictions about the behavior 

of the residual correction in Section 42  are accurate.

Tables 4.S and 4.6 report the results of the simulations along the p* =  .95 isochore in 

the same format as the other tables. Since we calculated the potential energy and pressure 

at T* =  0 exactly, using a static triangular lattice, the measurements involved no Monte 

Carlo sweeps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.1

Solid Potential Energies for T*= .7 and AT=4096

0
P U L U'a* uL l sweeps

0.95 -2.74450±.00047 .00266±.00005 -2.74184±.00047 10000

0.94 -2.75533±.00026 .00176 -2.75357±.00026 10000

0.93 -2.76064±.00051 .00036 -2.76028±.00051 10000

0.92 -2.75926±.00040 -.00052 -2.75978±.00040 10000

0.91 -2.75116±.00040 -.00143 -2.75259±.00040 10000

0.90 -2.73720±.00061 -.00220 -2.73940±.00061 10000

0.89 -2.71958±.00036 -.00300 -2.72258±.00036 10000

0.88 -2.69808±.00028 -.00356 -2.70164±.00028 15000
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Table 4.2

Solid Pressures for T * = .7 and #=4096

» 0 ♦ «
P Pmc Pcor Ptotal sweeps

0.95 6.5914±.0037 .0076±.0001 6.5990±.0037 10000

0.94 5.8910±.0020 .0050 5.8960±.0020 10000

0.93 5.2495±.0039 .0010 52505±.0039 10000

0.92 4.6739±.0032 -.0014 4.6725±.0032 10000

0.91 4.1642±.0031 -.0039 4.1603±.0031 10000

0.90 3.7169±.0051 -.0059 3.7110±.0051 10000

0.89 3.3104±.0031 -.0080 3.3024±.0031 10000

0.88 2.9490±.0022 -.0094 2.9396±.0022 15000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 9 6 -

Table 43

Fluid Potential Energies for T* =.7 and tf=4096

0
P u L ULr sweeps

0.83 -2.4465 ±.0012 -.00246±.00003 -2.4490 ±.0012 70000

0.82 -2.41573±.00098 -.00224±.00005 -2.41797±.00098 5000

0.81 -2.3831 ±.0011 -.00219±.00006 -2.3853 ±.0011 5000

0.80 -2.35046±.00057 -.00195 -2.35241±.00057 10000

0.78 -2.29331±.00061 -.00163±.00004 -239494±.00061 5000

0.75 -2 3 0 127±.00048 -.00128±.00005 -230255±.00048 5000

0.70 -2.04530±.00033 -.00079 -2.04609±.00033 5000

0.65 -1.89298±.00046 -.00054±.00004 -1.89352±.00046 5000

0.60 -1.75000±.00096 -.00038 -1.75038±.00096 5000

0.55 -1.61590±.00073 -.00022±.00003 -1.61612±.00073 5000

0.50 -1.4960 ±.0016 -.00017 -1.4962 ±.0016 5000

0.45 -1.3929 ±.0015 -.00051±.00006 -1.3934 ±.0015 5000

0.40 -13693 ±.0013 -.00036±.00006 -13697 ±.0013 5000

0.35 -1.1429 ±.0019 -.00035±.00003 -1.1433 ±.0019 5000

0.30 -1.0226 ±.0023 -.00024±.00004 -1.0228 ±.0023 5000

035 -0.8977 ±.0014 -.00035±.00005 -0.8981 ±.0014 5000

020 -0.7468 ±.0012 -.00027±.00004 -0.7471 ±.0012 5000

0.15 -0.5936 ±.0012 -.00009±.00004 -0.5937 ±.0012 5000

0.10 -0.41732±.00055 -.00003±.00001 -0.41735±.00055 5000
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Table 4.4

Fluid Pressures for T * = J  and W=4096

«
p Pme Pcor Ptotal sweeps

0.83 2.6051 ±.0085 -.0061 ±.0001 2.5990 ±.0085 70000

0.82 2.3941 ±.0079 -.0055 ±.0001 2.3886 ±.0079 5000

0.81 2.2012 ±.0089 -.0053 ±.0001 2.1959 ±.0089 5000

0.80 2.0368 ±.0053 -.0047 2.0321 ±.0053 10000

0.78 1.6667 ±.0060 -.0038 ±.0001 1.6629 ±.0060 5000

0.75 12385 ±.0044 -.0029 ±.0001 12356 ±.0044 5000

0.70 0.7591 ±.0029 -.0017 0.7574 ±.0029 5000

0.65 0.4955 ±.0017 -.0011 ±.0001 0.4944 ±.0017 5000

0.60 0.3420 ±.0026 -.0007 0.3413 ±.0026 5000

0.55 0.2544 ±.0016 -.0004 ±.0001 02540 ±.0016 5000

0.50 0.2091 ±.0018 -.0003 02088 ±.0018 5000

0.45 0.17857±.00080 -.00069 ±.00008 0.17788±.00080 5000

0.40 0.1532 ±.0011 -.00043 ±.00008 0.1528 ±.0011 5000

0.35 0.13336±.00057 -.00037 ±.00004 0.13299±.00057 5000

0.30 0.11827±.00081 -.00019 ±.00003 0.11808±.00081 5000

0.25 0.10458±.00030 -.00025 ±.00004 0.10433±.00030 5000

0.20 0.08969±.00029 -.00016 ±.00002 0.08953±.00029 5000

0.15 0.07326±.00019 -.00004 ±.00002 0.07322±.00019 5000

0.10 0.05439±.00006 -.000009±.000004 0.05438±.00006 5000
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Table 4.5

Solid Potential Energies for p*=.95 and 1V=4096

T* u L V*cor uL * sweeps

0.0 -3.38280 .00908 -3.37372 0

0.1 -3.28485±.00011 .00854±.00002 -327631±.00011 5000

0.2 -3.18951±.00016 ,00691±.00006 -3.18260±.00017 5000

0.3 -3.09599±.00020 .00569±.00007 -3.09030±.00021 5000

0.4 -3.00479±.00028 .00456±.00005 -3.00023±.00028 5000

0.5 -2.91708±.00058 .00382±.00004 -2.91326±.00058 5000

0.6 -2.83119±.00040 .00320±.00006 -2.82799±.00040 5000

0.7 -2.74450±.00047 ,00266±.00005 -2.74184±.00047 10000
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Table 4.6

Solid Pressures for p*= .95  and #=4096

0 * •T Ptnc Pcor Ptotal sweeps

0.0 0.9824 .0258 1.0082 0

0.1 1.8522±.0009 .0243±.0001 1.8765±.0009 5000

0 2 2.6913±.0012 ,0197±.0002 2.7110±.0012 5000

0.3 3.5124±.0015 .0162±.0002 3.5286±.0015 5000

0.4 4.3128±.0022 ,0130±,0001 4.3258±.0022 5000

0.5 5.0827±.0045 .0109±.0001 5.0936±.0045 5000

0.6 5.8354±.0031 .0091±.0002 5.8445±.0031 5000

0.7 6.5914±.0037 .0076±.0001 6.5990±.0037 10000
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P ressure  vs Density for T * =  .7  and N = 4 0 9 6
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Figure 4.1 A pressure versus density plot of the data from Tables 4.2 and 4.4. The 
melting transition lies in the gap that separates the lines connecting the 
data points.
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Residual Corrections vs Density
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Figure 4.2 A plot of the residual corrections to the pressure versus density. The 
residual correction exhibits the qualitative features that we discussed in 
Section 4.2. The melting transition lies in the gap that separates the lines 
connecting the data points.
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Chapter 5: Free Energy Analysis

5.1 Thermodynamic Integration

In this chapter we assume that the melting transition of the two-dimensional 

Lennard-Jones system is first-order and calculate the parameters of the transition using 

the Monte Carlo data presented in Tables 4.1 to 4.6. We use a procedure known as ther­

modynamic integration to obtain the free energies of the solid and fluid phases, which we 

then use to predict the location of the phase transition.18 In the following chapter, we will 

check our predictions by comparing them to the results of directly simulating the system 

in the transition regioa If the predictions of the free energy analysis disagree with the 

simulation results, we must question the validity of the assumption that the transition is 

first-order. On the other hand, strong agreement between the predictions and the simula­

tion results would provide evidence that the assumption is correct

A single component system maintained at a constant temperature T  and average 

pressure p is in equilibrium when its Gibbs free energy is minimized.84 The Gibbs free 

energy is

G = E + pV  -  TS  (5.1)

where £  is the total kinetic and potential energy of the system, V  is its volume, and S  is 

its entropy. In order for arbitrary proportions of two phases to coexist in equilibrium, the 

Gibbs free energy per particle, G*, must be equal in both phases. Although two distinct 

phases cannot coexist if the transition is higher-order, the system still minimizes G* across 

the phase transition. The assumption that the phase transition is first-order enters the cal­

culation when we extrapolate G* into the transition region, using its trajectories in the 

solid and fluid phases. Extrapolating G* from the solid and fluid data would miss any 

unexpected phases in the transition region, such as the proposed hexatic phase, and give
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incorrect results.

Since we can obtain only expectation values from a Monte Carlo simulation, as 

described in Section 2.2, we cannot directly measure G*, which cannot be expressed as 

such an expectation value. In terms of the partition function Z , the entropy of the system

In order to make the Monte Carlo calculation computationally feasible, we used the 

method of importance sampling, which requires only the relative probability of occurrence 

of a configuration, rather than its absolute probability. Without knowing the absolute 

probabilities of all possible configurations, we cannot directly measure quantities such as 

S  and G that are functions of InZ.

Instead, we calculate the free energy of the system, using thermodynamic integration, 

which is a standard method of evaluating quantities that depend on the value of the parti­

tion function itself. Using formulas that relate derivatives of the free energy to quantities 

that can be directly measured directly in a Monte Carlo simulation, we obtain the free 

energy by integrating the derivatives along appropriate paths. We begin the derivation of 

the necessary formulas with the First Law of Thermodynamics36

where Q is the heat absorbed by the system, IT is the mechanical work performed by the 

system, and £  is its internal external energy. Using dQ =  TdS, which is valid for a 

quasi-static process, we obtain

S  = k ( l n Z  + pE )  . (52)

dQ = dE + dW (5.3)

T d S  = dE + p d V  . (5.4)
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The simulation data from the previous chapter provide integration paths along the 

T* = .1 isotherm and the p* = .95 isochore, so we want to differentiate the free energy 

with respect to these variables. We switch to using T  and V  as the independent variables 

by substituting T  dS  =  d(TS) -  S d T  into (5.4), which gives

dF = - p d V  - S d T (5.5)

where the Helmholtz free energy is defined as F = E  -  TS.  Taking the derivative of 

F ( T ,  V ) gives

dF = dF
8T

dT + dF
dV

dV (5.6)

Equating the coefficients of dT  and dV  in (5.5) and (5.6) gives

dF
d T

=  - S (5.7)

and

dF
dV = ~P (5.8)

The simulation can easily measure the pressure of the system, so (5.8) gives the ther­

modynamic derivative that we will use to integrate along an isotherm. Since the number

Nof particles in the system is fixed, we can rewrite (5.8) in terms of p =  — , using

d V
dp

N_
„2 (5.9)

Substituting (5.9) into (5.8) using the chain rule and converting to reduced quantities give

dF
dp' *2 (5.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 105-

As we have mentioned, the simulation cannot measure S  directly, so (5.7) is not a 

useful derivative for integrating the free energy along an isochore. However, we can con­

struct a slightly different derivative that the Monte Carlo simulation can measure, which is

a F _  1 dF
dT T

1̂1
* dT

F 
T 2

(5.11)

Substituting (5.7) into (5.11) gives

a
dT

S_ _ E - T S  
T (5.12)

which leads to a formula that is useful for integrating the free energy along an isochore. 

Converting (5.12) to reduced quantities gives

d 
d T * T*

U* (5.13)

where we have replaced the total internal energy E with the potential energy U. The 

reference values of the free energy that we calculate in the next section account for the 

kinetic energy exactly, so we must ignore its contribution to the derivatives of the free 

energy. The reason that the kinetic energy enters the calculation exactly is that the kinetic 

degrees of freedom are noninteracting, so their contribution to the partition function can 

be solved analytically.

Thus, we have constructed two derivatives, (5.10) and (5.13), that allow us to 

integrate the Helmholtz free energy along paths of constant temperature and constant den­

sity, respectively, using the data reported in Chapter 4. Tables 42  and 4.4 provide meas­

urements of the system’s pressure along the T* =  .7 isotherm and Table 4.5 provides meas­

urements of its potential energy along the p* =  .95 isochore. However, before we can 

numerically integrate the free energy derivatives, we need reference values of known free
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energy for both the solid and fluid phases.

5.2 Reference Values of the Free Energy

Since we must be able to calculate the reference values of the free energy exactly, we 

use the convenient limits of an ideal gas and a harmonic solid. 18 As the fluid phase of the 

Lennard-Jones system approaches p* =  0 at T* = .7, it becomes an ideal gas, whose free 

energy can be obtained by evaluating its partition function. Likewise, as the solid phase 

approaches T* = 0 at p* =  .95, it becomes a harmonic crystal, whose free energy can be 

calculated using a normal mode expansion. Since we use the reference values only in their 

appropriate limits as boundary conditions for the integrals of the free energy derivatives, 

they are not approximations and introduce no error into the calculation. In Section 5.4 we 

will show that the reference values join smoothly onto the Monte Carlo measurements 

when we actually perform the numerical integration.

We calculate the free energy of an ideal gas in two dimensions by starting with the 

partition function, Z , for a set of N  noninteracting particles, which is

P i 'i' * * * P

z = j£m°Le 2m *r  • ( 5 - 1 4 )

Since the particles are noninteracting, we can immediately evaluate the integrals over the 

particles’ coordinates, which give VN, where V  is the volume of the system. In addition, 

we can factor the integrals over the particles’ momenta to obtain

VN 
Z  ~  h w Nl

The integral in (5.15) is a Gaussian integral whose value is

2mkT d 2p

AT

(5.15)
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/  e 2mkT d 2p = Ixm kT  (5.16)
—OO

where p 2 =  p 2 +  p 2 since the system is two-dimensionaL Substituting (5.16) into (5.15) 

gives

Z  = N\
2xmk.IV N

(5.17)

for the partition function of an ideal gas. Using (5.2) and the definition of the Helmholtz 

free energy, we obtain

F =  -k T  In Z  . (5.18)

Substituting (5.17) into (5.18) and using Stirling’s approximation to expand the factorial 

gives

F = -k T [ - (N ln N  -  Af)+jVln( '”kJ V ) \  - (5.19)
h 2

We now convert (5.19) to reduced quantities and obtain

F* = -T *  - T ' l n T *  +  r ' l n p '  +  r ' l n ( - ^ ^ - )  . (5.20)
max2

Next, we calculate the free energy of a harmonic crystal exactly, using standard 

methods of lattice dynamics, which are discussed in detail by Feynman37 and used in cal­

culations by Phillips and Bruch.38 The Helmholtz free energy of a crystal that consists of 

particles executing simple harmonic motions about their equilibrium positions consists of 

two components,

F = + Fdy* (5-21)
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where Fdatie is the static lattice potential energy Uq. Fifr is the sum of the contributions 

from each of the crystal’s M  normal modes, which we write as

=  £  Fi • (5-22)
«=i

In order to calculate the Ff, we first write the partition function for each of the nor­

mal modes, which are in thermal equilibrium at the temperature T. The partition function 

for mode / is the sum over all of its possible excitations, which is

(5.23)

From quantum mechanics we know that the energy of each excitation is

£ ; =  7ra,,.(n +  i.) . (5.24)

Substituting (5.24) into (5.23) and summing the resulting geometric series give

(5.25)

By substituting (5.25) into (5.18), we obtain

/»(*/*
F ,.= * r in [ 2 sinh ( - ^ ) 1 (5.26)

for the free energy of each mode.

We now convert (5.26) to reduced quantities, using: F* = - r r ,  T* =  —eN e

% 2 *"
A* =  , and w* =  ma a«. In addition, we take the limit of (5.26) when

y/mett2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 109-

T* »  A*w* since we want the free energy for the classical two-dimensional crystal Sub­

stituting the classical limit of (5.26) into (5.22) gives

(5.27)

The total number of normal modes in the crystal is the same as the total number of coordi­

nate degrees of freedom. Since each particle in a d  -dimensional system has d  such 

degrees of freedom, a two-dimensional system with N  particles has M  =  2N , which we 

substitute into (5.27) to obtain

Substituting (5.28) into (5.21) and expanding A* for comparison with the free energy of an 

ideal gas in (5.20) gives

By comparing (5.20) and (5.29), we see that Tt and the particle mass m correctly cancel in 

the classical system when we take the difference of the free energies at the same tempera­

ture.

Before we can use (5.29) as a reference value in the free energy analysis, we must 

solve for the M  normal mode frequencies and sum their logarithms. Since solving for the 

normal mode frequencies is rather lengthy, we leave a detailed discussion of the calcula­

tion for Appendix C and only quote its result here. For the Lennard-Jones system with 

N = 4096 and the periodic boundary conditions specified in Section 2.3, the sum of the log­

arithms of the normal mode frequencies is

* i»  =  ~2T '  r*  +  IT*  ln l*  +  ^ S  W  •
t=l

(5.28)

mao
(5.29)

j -  S  ln w /=  5.19514 .
.- - I*=1

(5.30)
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53 Methods of Numerical Integration

Before continuing with the discussion of the free energy analysis, we need to exam­

ine methods of numerically integrating the free energy derivatives that will give accurate 

results with relatively few data points. Methods of numerical integration consist of two 

steps, converting a discrete set of data points into a continuous function and then integrat­

ing the continuous function. The method of converting the set of data points, rather than 

the values of the data points, determines the form of the function produced by the first 

step, so the integration is independent of the values of the data points. Thus, integrating 

the function and substituting the result into the formula that converts the set of data points 

into the function give a formula for the numerical integral directly in terms of the set of 

data points.

Since the integration in the second step is exact, the quality of a method of numeri­

cal integration depends entirely on the type of continuous function into which it converts 

the discrete set of data points. For instance, the trapezoidal rule converts a set of data 

points into a continuous function by simply connecting adjacent data points with a straight 

line. In contrast, Simpson’s rule generates the continuous function by connecting each set 

of three data points with a parabola so that adjacent parabolas share a data point 

Although the continuous function produced by Simpson’s rule is much better than that 

produced by the trapezoidal rule, neither function is particularly accurate in most cases. 

If we could easily increase the number of data points, these methods would be adequate, 

since increasing the number of data points improves the accuracy of the result However, 

increasing the number of data points generated by a Monte Carlo simulation involves 

much more computation than improving the method of converting the data points into a 

continuous function. Consequently, we must find better methods of converting a discrete 

set of data points into a continuous function so that we can obtain more accurate results 

from a fixed set of data points.
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la  some situations we may know that a power series accurately describes the func­

tion that the set of data points represents, so we use the n data points to determine the 

m+1 coefficients of an m -degree polynomial, which we denote Pm. In order to determine 

the coefficients, we first assume that each data point consists of a value x,- that parameter­

izes its measured value y,-, which samples a normal distribution whose standard deviation 

is <t,-. We then construct d{ — y,- -  Pm (xf), which measures the deviation of the measured 

value from the polynomial at xf. Since y,- samples a normal distribution, the probability P 

of obtaining each value of d, is

and the combined probability of obtaining the set of n measurements is the product of

(5.31) for each of the individual measurements.

We obtain the familiar set of least-squares conditions for the coefficients of Pm by 

applying the principle o f maximum likelihood, which states that the set of measurements 

that we obtained was the most likely such set of measurements.30 Setting to zero the 

derivative of the combined probability with respect to each of the undetermined coeffi­

cients, Cj, and using w,- =  o f 2 give

for the m+1 conditions that determine the Cj. As a specific example we consider the case 

where m =  3 and the polynomial has the form

Applying the conditions given by (5.32), we obtain four simultaneous equations, which we

(5.31)

(5.32)

P 3(X. ) = C 0 +  C iX,- + C jX ,2 + c 3x, 3 . (5.33)
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writc in matrix form as

XX XX*,- E w,-*,-2 XX. *,3 Co E*',->v
XX*,- XX*,-J XX*.3 5X*.-4 C1 Ew;*i>'i
XX*,2 XX*,-3 XX*,-4 XX*,-6 C2 E w.-*,-V,-
XX.-*.-3 XX,-*,-4 XX,-*.-5 E*',-*,-6 es E*',-*,-3J',-

Solving (5.34) by an appropriate method, such as Gaussian elimination, gives the values of 

the four coefficients in (5.33) that minimize the sum of the squares of the d{. After fitting 

the polynomial to the set of data points, we integrate the polynomial to calculate the 

numerical integral of the data points.

The result of the numerical integration is accurate only when the polynomial 

correctly describes the function that the data points represent Although the fit of a poly­

nomial to the data points improves as the degree of the polynomial increases, a problem 

known an the Runge phenomenon40 can occur when a high-degree polynomial is fit to 

equally spaced data points. As a result of the Runge phenomenon, the polynomial exhibits 

oscillations which increase in amplitude as the distance from its origin increases, due to 

the competing effects of the large powers of x .  While such a polynomial may accurately 

fit the data points, the large oscillations make it a poor method of interpolating between 

them, so the value of the numerical integral could be seriously in error. On the other 

hand, if  a low-degree polynomial fits the data well, the resulting polynomial should be use­

ful for interpolating between the data points as well as extrapolating beyond them, which 

we must do to obtain the free energy of the system in the transition region. Still, in many 

cases a polynomial is simply the wrong function to use because a single polynomial cannot 

fit all of the data points. An improvement would be to use a set of polynomials, each of 

which models only a portion of the interval that the data points encompass, similar to the 

parabolas used in Simpson's rule.
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Such a set of polynomials comprise spline functions, which provide a general method 

of connecting a set of data points with a smooth curve. A generalized spline function of 

degree m  connects adjacent points with a polynomial of degree m .41 Two of the m+1 

conditions that uniquely specify each of the polynomials require the polynomial to pass 

through the two data points that it connects, guaranteeing that the spline is continuous. 

The remaining m —1 conditions require the first m —1 derivatives of the polynomial to be 

continuous on the closed interval bounded by the two data points, making the spline 

smoother as its degree increases. For instance, the trapezoidal rule uses the spline with 

m =  1, which connects adjacent data points with a straight line and has no continuous 

derivatives. The most commonly used spline is the cubic spline, which has m = 3 and thus 

has continuous first and second derivatives.

We now consider the cubic spline that connects n+1 data points, which consist of 

measured values y,- that are parameterized by x {. We order the values of x{ so that 

x 0<x i< • • • <xn and parameterize the each of the n intervals where *,•_! < x  < x{ with

h{ = Xf -  *, _ x

x  ~ * .-i 
hi

The cubic spline function q{(x )  for i =  1,2, 3, • • • , n is

<?,(*) =  ly* +  (1 -  O y.-r +  V O  -  -  4X1 - t ) - { k i -  d{)t\ (5.35)

where k o ,k v  • • • ,£ „  satisfy

+  2(4  +  hi+iKi + V f + i  =  3 (M ,+ i + 4 + i 4 )  • (5-36)

Since (5.36) contains n+1 unknowns and only n —1 equations, we must specify two
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additional conditions on the Setting the second derivative of the spline to zero at x 0 

and x n is the usual method of obtaining the two additional conditions, which leads to the 

equations

2k  q +  k  j — 3 d j 
S. - 1  +  2kn = 3 dn+ = 3d. • <5*37>

We can easily verify that the cubic spline connects all of the data points and has con­

tinuous first and second derivatives by differentiating (S.3S) and substituting the condi­

tions given by (S.36) and (S.37). Differentiating (5.3S) also provides the interpretation that 

*,• is the derivative of the spline function at We note that the equations given by (5.36) 

and (5.37) constitute a linear tridiagonal set of equations, which can be solved in an 

amount of time that grows linearly with n , so cubic splines are useful even when n is 

large.

We now perform the second step of numerical integration, which involves integrating 

the cubic spline that interpolates between the data points. In order to make the integra­

tion easier, we rewrite (5.35) as

<7,(0 =  * _ i  +  h fk i.j t  -  M 2* ,-! +  *,• -  3df ) ' 2 +  * ,(* .• -1 +  *,• -  2d, ) ; 3 . (5.38)

Integrating (5.38) over the whole interval between the two data points that bound it gives

*< i
/  qi (x )d x  = h{ /  (t)dt = A,y, _ 1 + A, 2 [ -Jj(*,_i -  *,•) +  jd,- ] . (5.39)

‘i-i 0

Since the cubic spline smoothly interpolates between data points by using a set of 

polynomials, it is the basis of a generally useful method of numerical integratioa In con­

trast to polynomial fitting, the cubic spline works well even in situations when fitting all of 

the data points to a single polynomial is inappropriate. In addition, equally spaced data
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points do not cause problems for the cubic spline as they can when a  high-degree polyno­

mial is fit to them. However, the cubic spline has larger errors near its endpoints than in 

the middle of the interval because in (5.37) we arbitrarily set the curvature at the end­

points to zero. In contrast to a low-degree polynomial that fits the data well, the cubic 

spline has little ability to extrapolate beyond the data since it does not assume a functional 

dependence that is valid over the whole interval Since both methods of numerical 

integration have advantages and disadvantages, we will use both of the methods in the cal­

culation of the free energy.

Before calculating the free energy of the system, we examine the two sources of 

error that result from numerically integrating the data. The first source is systematic 

error, which is the difference that would remain between the true value of the integral and 

the result of the numerical integration if each of the data points were known exactly. The 

systematic error depends on how accurately the continuous function used by the method 

of numerical integration models the true function that the data points represent Although 

we cannot determine the systematic error without knowing the true function, comparing 

the results of methods that use different functions gives a rough estimate of the size of the 

systematic error. Of course, if the data points represent a function that is not relatively 

smooth between adjacent data points, the systematic error may be large even if several 

methods of numerical integration agree closely. In such a situation, the data points do not 

convey sufficient information about the function that they represent to allow the function 

to be integrated accurately, so more data points are clearly needed.

The second source of error is statistical error, which arises from the statistical errors 

in the Monte Carlo data that are being integrated. An easy method of propagating statisti­

cal errors through a complex analysis, such as numerically integrating many data points, 

involves repeating the analysis on many data sets generated from the original data. We 

assume that each of the original data points samples a normal distribution that is centered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 116 -

on the measured value y,- and has a standard deviation of <7,-, which is the measured stan­

dard deviation of y,-. Sampling the distributions associated with each of the original data 

points generates a new data set, which we can use in the analysis as if it were the original 

data se t Repeating the analysis on many such data sets allows the effect of the statistical 

error in each of the data points to be seen in the results of the analysis. Although sam­

pling the input data from normal distributions does not ensure that the results of the 

analysis will be normally distributed, we expect any deviations from a normal distribution 

to be small so that expressing each result in terms of its mean and standard deviation is 

adequate.

In order to sample the distribution associated with a data point, we must generate 

normally distributed random numbers with a specified mean and standard deviation 

Starting with two independent random numbers that are uniformly distributed between 0 

and 1, the Box-Muller’s transformation42 generates two independent random numbers that 

are normally distributed with a mean of 0 and a standard deviation of 1. The Box- 

Muller’s transformation is

rt1 = , / - 2 1 n r x cos(2*rj)
n 2 =  y /—2\n.r1 sin (2*r 2) (5-40)

where n 1 and n 2 are the normally distributed random numbers and r x and r 2 are the uni­

formly distributed random numbers. Using n x and we sample a distribution with a 

mean of y{ and a standard deviation of <rf by constructing y,- +  n &  and yf +  n ^ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 117 -

5.4 Determination of Phase Boundaries

The first integration that we perform calculates the Helmholtz free energy of the 

solid at T* = .7 and p* =  .95, using the values of U* in Table 4.5. Integrating the free 

energy derivative (5.13) along an isochore from T* = 0 to T* =  T q gives

  Ti  u*  -  (Uq +  r * )   ............................
F (Po» T 0) — Ffunn (fiQ, T 0) - T q J  ^ 7 5  dT  (5.41)

where is the harmonic contribution to the total free energy given by (5.29). Sub­

tracting the harmonic contribution to U * in the integrand of (5.41) balances the contribu­

tion of F L n  and makes the integrand finite at T* =  0. The first term in the harmonic 

potential energy, U q ,  is the static lattice potential energy, and the second term, T*, arises 

from the equipartition theorem result for a two-dimensional harmonic oscillator.

We first evaluate (5.41) using the polynomial fitting method of numerical integration 

since we expect a power series expansion of U* in powers of T * to be valid near T* = 0. 

The polynomial to which we fit the data in Table 4.5 is

U* = Uq + T* + c 2T ' 2 + c 5T*a + C4T '*  + c tiT** (5.42)

which has four undetermined coefficients. We use a fifth-degree polynomial because poly­

nomials of lower degree do not fit all of the data points to within their statistical errors.

In Table 5.1 we report the values of the undetermined coefficients in (5.42) and the 

value of F* at T* =  .7 and p* =  .95 that we obtained by integrating (5.41). We emphasize 

that we did not first calculate the average values of the coefficients and then use their 

average values to calculate F*. Instead, we calculated each average and standard devia­

tion separately, using the values obtained from analyzing the data sets that were generated 

from the original data. The value of F ^ ,  that enters into the result is F j ^ ,  =  -0.77396,
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Table 5.1

Integration Parameters along 

p* =  .95 Isochore

c 2 -0.356 ±0.017

c* 1.00 ± 0.12

-1.75 ±0.26

c s 1.10 ±0.18

F* -0.6767±0.0012

which contains all terms in (5.29) that do not cancel with terms in (5.20) at equal tempera­

ture. The standard deviations of the coefficients and the free energy indicate that the 

Runge phenomenon has not caused a major problem with fitting a relatively high-degree 

polynomial to the equally spaced data points. Figure 5.1 illustrates the results of fitting the 

data points in Table 4.5 to (5.42) with a plot of the integrand of (5.41) versus T*, which 

clearly shows the absence of any significant oscillations in the polynomial

As a check on the results of the polynomial fitting method, we repeat the evaluation 

of (5.41), using the cubic spline method of numerical integration. However, we must 

extrapolate from the data point at T* = .1 to T* = 0 because the data point at T* =  0 is Uq, 

the static lattice potential energy, which enters (5.41) exactly. An easy way of extrapolat­

ing the cubic spline uses a straight line with a slope equal to the slope of the spline at 

T* =  .1. The result of integrating the cubic spline and propagating the statistical errors as 

described in the previous section is F* =  -0.6792±0.0016. Although extrapolating the
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spline should be less accurate than extrapolating the polynomial, we find that the results of 

the two methods of numerical integration are consistent, indicating that the systematic 

error of the integration is relatively small However, Figure S.l shows that the spline and 

the polynomial give different results for the integrand of (5.41) near T* =  0, where the sta­

tistical error of the data is largest In fact, the statistical consistency of the two methods is 

probably due to the large uncertainty of the data points near T* =  0. Since we expect that 

fitting the data to a polynomial allowed a more accurate extrapolation, we will use its 

value of F* in subsequent analysis.

Using the value of F* at T* =  .7 that we obtained by integrating along the p* =  .95 

isochore, we now integrate the free energy along the T* = .7 isotherm. Integrating the 

thermodynamic derivative in (5.10) gives

which we evaluate by numerically integrating the pressure data in Table 4.2. Since we 

know F* at p* =  .95, we set pg = .95 in (5.43). However, we do not know p*, which is the 

density of the solid at the phase transition, since it is one of the quantities for which we 

are solving.

In order to locate the phase transition, we will need to extrapolate beyond the data 

points in Table 42, so we use the polynomial fitting method to integrate (5.43). Since the 

pressure data in the solid region is very smooth, we expect a power series expansion of p * 

in powers of p* to describe the whole region adequately. Although the exact location of 

the origin of the power series is not important, the series is most accurate when its origin 

is near the middle of the region. We found that the third-degree polynomial

*>P
(5.43)

P* = c 0 + c 1(p* - a )  + c 2(p* -  a )2 + c s(p* - a ) * (5.44)
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adequately fits all eight data points. Substituting (5.44) into (5.43) and integrating gives

F*(pl) =  F*(pq) +  (c„ -  ac1 +  a 2a 2 -  a sc j  ( -V  -  ~ r )
Po P,

0

+ (cx -  2ac2 + 3a2c j i n ( ~ )
Po

+  (c2 -  3ocj)(p; -  po) +  ± c s(p,'7 -  po2) . (5.45)

In Section 5.1 we gave the condition for locating the phase transition in terms of the 

Gibbs free energy rather than the Helmholtz free energy, so we convert from F* to G*, 

using

0

G* = F* +  F—  (5 .46)
P

which requires that the system contain a fixed number of particles. Since we know p* at 

T* = .1 and p* =  .95, we can easily convert the reference value F*(j>q) into G*(j>q). We

then use the expression for p in (5.44) with (5.45) and (5.46) to convert F*(p *) into G*(p*)

and obtain

0

G 'ifi’, )  =  G*(pq) +  (c! -  2ac2 + 3a2c s ) ln (% ) +  2(c2 -  3acJ(pt* -  Po')
Po

+  f^ s (p /2 -Po'2) • (5-47)

In Table 5.2 we report the results of fitting the coefficients in (5.44) to the measured 

pressures in Table 4J2 with the origin set to a —.91. Although the data do not determine a 

precise value of c s, its effect on the polynomial over the range of densities in which we
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Table 5.2

Integration Parameters along 

Solid T* =  .7 Isotherm

Cq 4.1626± 0.0020 

c x 48.52 ±  0.13 

c 2 282.4 ±  18

c s 760 ±130

are interested is small.

Before we can solve for the parameters of the melting transition, we must calculate 

G* for the fluid, which requires establishing an integration path in the fluid region. Using 

the free energy of an ideal gas as a reference value in the limit where p* =  0 , we integrate 

the free energy derivative in (5.10) along the T* = .7 isotherm and obtain

F'(pq, Tq) =  (fio,T'0) + I  P'  dp . (5.48)
o p

The contribution to the free energy of an ideal gas at the indicated temperature and pres­

sure is , which we calculated in Section 52. Subtracting the pressure of an ideal gas 

from the integrand in (5.48) balances the contribution of F * ^  and makes the integrand 

finite at p* =  0 .

Since a single low-degree polynomial does not adequately fit all of the pressure data 

in Table 4.4, we use the cubic spline method of numerical integration to evaluate the 

integral in (5.48). We improve the accuracy of the cubic spline near p* =  0 by
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incorporatmg two of the virial coefficients into i t  At low densities we can express the 

pressure as a series expansion in powers of the density,43 which gives the virial expansion

p = k T ( p + B 3p* + B sp*+ ■■■) (5.49)

in which the virial coefficients, B j, Bs, • • •, depend on temperature but not on density. 

By substituting (5.49) into (5.48), we see that the value of the integrand in (5.48) at p* =  0 

is B \T * . Thus, knowing the second virial coefficient provides an additional data point 

that could not be obtained directly by measuring the pressure of the system and eliminates 

the need to extrapolate the spline to p* =  0. In addition, the fourth virial coefficient gives 

the correct curvature of the spline at its p* =  0  endpoint, so we can avoid arbitrarily set­

ting its curvature to zero as we did to obtain one of the equations in (5.37).

Before we can use the modified cubic spline to interpolate the data in Table 4.4, we 

must obtain the values of the second and fourth virial coefficients for the two-dimensional 

Lennard-Jones system at T* =  .7. Morrison and Ross, 44 who calculated and published 

values of the second and third virial coefficients, obtained B \  =  -2.7613 at T* = .l. In 

Appendix D we derive the expression for the second virial coefficient and obtain 

B \  =  -2.761223, which is the value that we use to evaluate (5.48). Glandt45 reported cal­

culations of the fourth virial coefficient in which he obtained B \ — 10.1924 at T* =  .7. In 

Figure 5.2 we plot the integrand of (5.48) versus p*, which we calculated with the modi­

fied cubic spline. The result of integrating the modified cubic spline from p* =  0 to 

p*=.81 and propagating statistical errors as described in the previous section is 

F* = -1.3104±0.0013, which includes =  -0.8475.

We integrate only to p* =  .81, using the cubic spline method since we must extrapo­

late the pressure data in Table 4.4 to locate the phase transition, and the polynomial fitting 

method often extrapolates more accurately. After fitting a third-degree polynomial to the
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five highest density data points, we integrate the free energy from p* =  .81 to the density 

of the fluid at the phase transition, which we denote pj. In Table 5.3 we report the results 

of fitting the coefficients in (5.44) to the five data points in Table 4.4 that lie in the density 

range of p* =  .78 top* =  .83 with the origin set to a  =  .81. Although the data do not deter­

mine precise values of c 3 and c 3, their effects are relatively small over the range of densi­

ties in which we are interested. In any case, the statistical error in the final results of the 

free energy analysis will correctly account for their uncertainty. The integration formula 

(5.47) gives G* for the fluid when we replace p* with pj and use pq =  .81 as the density of 

its reference value.

Table 53

Integration Parameters along 

Fluid T* =  .7 Isotherm

c 0 2.2015± 0.0056

c x 17.46 ±  0.56

c 2 67 ±  23

c 3 2800 ± 1 1 0 0

Since we have expressed G* for both the solid and fluid phases in terms of their 

densities by fitting the coefficients in (5.44) to measured pressures in both regions and 

using (5.47), we can now solve for the location of the phase transition. In addition to hav­

ing the same temperature and pressure, the solid and fluid phases must have equal values 

of G* in order for arbitrary proportions of them to coexist in equilibrium, as we men­

tioned in Section 5.1. Thus, we locate the phase transition on the T* = .7 isotherm by
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setting

GLu(P,m)= c ;^ {p ,m) (5.50)

where is the melting pressure.

Starting with an initial guess of p ^ , the iterative algorithm that we use to solve (S.S0) 

evaluates G* for the solid and fluid phases and corrects p ^ ,  until the two values of G* are 

equaL Since (5.47) expresses G* in terms of the density, we must solve two third-degree 

polynomials to obtain the solid and fluid densities at the current estimate of p„ before we 

can evaluate (5.47). To solve for the densities, we use Newton’s method, which gives

s»+i-
/ ( * n) 
/ ' ( * )

(5.51)

for successive approximations to the solution of / (x)= 0. After using the resulting densi­

ties to obtain values of G* for the two phases, we correct p ^  using Newton’s method and 

repeat the procedure.

The derivative that Newton’s method requires to correct the estimate of the melting 

dG*pressure is — 7 -, which we derive by starting with 
dp

T d S  = dE + p dV  . (5.4)

We switch to using T  and p as the independent variables by substituting 

T d S  =  d{TS) -  S  dT  and p dV  =  d(pV) -  Vdp  into (5.4), which gives

dG = S d T  + V dp (5.52)

where we use the definition of G from (5.1). Taking the derivative of G(T, p )  gives

dG = dG
dT dT  + dG

dp dp (5.53)
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We now equate the coefficients of dp in (5.52) and (5.53) and convert to reduced units to 

obtain

dG* 
dp *

-V  • (5-54)
P

Following the procedure discussed in the previous section, we propagate the statisti­

cal errors of the data points in Tables 42  and 4.4 by repeating the entire analysis many 

times with data sets generated from the original data. In Table 5.4 we report the melting 

pressure and the solid and fluid densities at the melting pressure that the free energy 

analysis predicts, along with their standard deviations. Figure 5.3 illustrates the predicted 

location of the melting transition with a plot of pressure versus density, which shows the 

polynomials that were fit to the solid and fluid pressures and the values and statistical 

errors of p j, p /, and p ^ .

Table 5.4

Predicted Location of 

Melting Transition

p*m 2.724 ±0.034 

P*f  0.8350±0.0015 

p* 0.8733±0.0011
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Figure 5.1 The polynomial and spline functions that lit the data points which form 
the integration path for the free energy along the p* =  .95 isochore. Only 
the data point at T *=.1 has a statistical error that is large enough to be 
shown.
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Figure 5.2 The spline function that fits the data points which form the integration 
path for the free energy along the T* =  .7 isotherm. The second virial 
coefficient gives the exact value of the data point at p*= 0 .
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Predicted Location o f Melting Transition
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Figure 5.3 A pressure versus density plot showing the predicted location of the melt­
ing transition. Portions of the polynomials used to extrapolate the pres­
sure data are shown. The two data points and the heavy line that connect 
the two polynomials locate Pf, p/, and p„, whose statistical errors are 
indicated by the lighter lines.
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Chapter 6: Direct Simulation of Transition Region

6.1 Constant-Density Simulations

In Section 4.4 we reported that the two-dimensional Lennard-Jones system exhibited 

a van der Waals loop in its pressure as we thermalized the system at successively lower 

densities, indicating the presence of a phase transition. In this section we describe the 

results of simulating the system along the T* = .7 isotherm at densities from p* =  .84 to 

P*  = .87, which seem to lie in the transition region. In the following section we discuss a 

sensitive method of locating the phase transition that involves simulating the system at 

constant pressure rather than at constant density. We will compare the results from both 

methods of directly simulating the system in the transition region to the predictions of the 

free energy analysis that we presented in the previous chapter.

The first indication of the presence of the transition region occurred when the pres­

sure of the system with N =  1024 at p* = .84 increased sharply after appearing to be in 

equilibrium. Figure 6.1 illustrates the rise in pressure in a plot of pressure versus Monte 

Carlo sweep number, in which each value of pressure is averaged over 400 sweeps. The 

horizontal lines indicate a range of one standard deviation about the melting pressure that 

the free energy analysis predicted. About 30,000 sweeps after the system seemed to be in 

equilibrium, the pressure started increasing towards a new value, which further simulation 

indicated was relatively stable. In addition to the higher pressure, we observed large fluc­

tuations in the pressure on a time scale of thousands of sweeps. Fluctuations with such a 

long time scale are unique to the transition region and represent longer term correlations 

than are present in simulations outside the transition region. The simulations in the transi­

tion region typically used about an order of magnitude more Monte Carlo sweeps than 

other simulations because of the presence of such long time scales. Accordingly, we spent 

most of our computer time on the few simulations in the transition region that we report in
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this chapter.

After observing the increase in pressure at p* = .84, we performed more update 

sweeps of the simulations at the higher densities that lie in the transition region. The pres­

sure at p* =  .87, which was only slightly lower than the the pressure at p* =  .84, showed lit­

tle change. At p* = .85, the pressure eventually increased to a value near the pressure at 

p* = .84, but the long-term fluctuations were even more pronounced, making an accurate 

measurement of the pressure impossible. Although the pressure at p* =  .86  was substan­

tially lower than the pressure at p* =  .84, it showed little change as it was updated, except 

for one interesting anomaly. The plot of pressure versus sweep number in Figure 6.2 

shows a sudden increase in pressure after about 40,000 sweeps. The system remained at 

the higher pressure for about 10,000  sweeps, before falling back to the lower pressure. 

Since the pressure then remained substantially lower than the pressure at p* =  .84, the van 

der Waals loop seemed to be stable, which indicated that flnite-size effects were dominat­

ing the simulation.

In order to reduce the effects of the small size of the system, we decided to increase 

the number of particles in the system from 1024 to 4096. As described in Section 4.3, we 

used configurations from the smaller system to initialize simulations of the larger system 

since the periodic boundary conditions ensure that the edges fit together correctly. The 

simulations of the larger system exhibited the same type of long-term fluctuations in pres­

sure as the smaller system. Thus, describing the results of the simulations by giving their 

mean pressures and standard deviations would be misleading for most of the densities. In 

Figures 6.3 to 6.6 we plot pressure versus sweep number for each of the densities that we 

simulated in the transition region. We note that although the vertical scales are the same 

in all of the figures, the horizontal scale is expanded in Figures 6.4 to 6.6  since we per­

formed fewer total sweeps in those simulations. .For comparison with the densities in the 

transition region, Figure 6.7 shows the same type of plot for p* =  .83, which is not in the
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transition region. Although the pressure at p* =  .83 does exhibit the long-term fluctua­

tions, they are much less pronounced than for the simulations in the transition region. 

Similar plots showed that such fluctuations quickly disappear as the density decreases.

In contrast to the behavior of simulations in the solid and fluid regimes, the pressure 

at p* =  .86  in the 4096-particle system shows a considerable change from its behavior in 

the 1024-particle system, emphasizing that flnite-size effects dominated the smaller system. 

We see from Figure 6 .S that the pressure quickly increased to approximately the same 

value as observed at other densities in the transition region. Thus, we see no evidence of 

a stable van der Waals loop in the system with N  =  4096. However, an indication that the 

larger system still contains finite-size effects is that the long-term fluctuations in pressure 

are smaller in amplitude and longer in period, as the difference between Figure 6.1 and 

Figure 6.3 illustrates. The long-term fluctuations are clearly finite-size effects that using 

the 4096-particle system reduces but does not eliminate.

The simulation at p* =  .87, whose results are illustrated in Figure 6 .6, appears some­

what anomalous because its long-term fluctuations are much smalle r  than those at other 

densities in the transition region. Since p* =  .87 is near the edge of the transition region, 

finite-size effects may have been dominating the simulation, even though its pressure is 

similar to that at the other densities.

The long-term fluctuations in pressure could be evidence of the proposed hexatic 

phase in which such fluctuations are expected because of critical slowing down near a 

higher-order transition. However, the fluctuations could also indicate a two-phase region 

in which channels of fluid separate regions of solid. We would then interpret the fluctua­

tions as normal statistical fluctuations involving changes in the interface separating the 

solid and fluid regions. The fluctuations would be large because of the relatively small 

number of such regions and would decrease as the size of the system increases since the 

number of such regions would also increase.
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Table 6.1

Residual Corrections for T* =.7 and N = 4096

0
P Kcr Peor

0.87 -.003704±.000043 -.00965±.00011

0.86 -.003309±.000054 -.00852±.00014

0 .8S -.002864±.000053 -.00729±.00013

0.84 -.002575±.000068 -.00648±.00017

Since the simulations at p* =  .84 exhibit several of the long-term fluctuations in pres­

sure, obtaining accurate values of their average pressures and standard deviations from the 

simulation data appears possible. Before presenting the averages, we report the residual 

corrections to the potential energy and pressure at each of the densities in the transition 

region, which we measured with the technique described in Section 42. Table 6.1 reports 

the residual corrections and Figure 6 .8  adds the new values of the residual corrections to 

Figure 42. Using the last 80,000 sweeps of those shown in Figure 6.1, we obtained 

2.746±0.017 for the corrected pressure of the system with N  = 1024. For the system with 

N  = 4096, we obtained 2.712±0.016 using all 120,000 sweeps shown in Figure 6.3. 

Although the difference in pressure may not be significant, we would anticipate a lower 

pressure in the 4096-particle system if the 1024-particle system were on the fluid side of a 

van der Waals loop that was significantly smaller in the 4096-particle system.

We see that the pressure obtained by directly simulating the 4096-particle system 

agrees closely with the melting pressure that the free energy analysis predicted. The close 

agreement with an analysis which assumed that only solid and fluid phases exist and the
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apparently constant pressure throughout the transition region give strong support to the 

interpretation that the melting transition is first-order. Although many of the observa­

tions, such as the long-term correlations, have ambiguous interpretations, none of the 

observations contradict interpreting the transition region as a two-phase region. Thus, we 

interpret the transition region to be a standard two-phase region and not the proposed 

hexatic phase.

6.2 Constant-Pressure Simulations

Although the results presented in the previous section agreed closely with the results 

of the free energy analysis, we could not accurately measure the pressure in most of the 

simulations in the transition region because of their long-term fluctuations. Accurate 

measurements of the pressure in the transition region would allow us to determine the 

width of the transition region in pressure and place bounds on the extent of any hexatic 

region. As we mentioned in Section 1.4, we cannot make an absolute determination of the 

order of the melting transition in any simulation or experiment However, by placing 

bounds on the extent of the transition region, we can quantify the limits of our knowledge 

about the melting transition. In addition, finding a narrow transition region would give 

strong support to the interpretation that the melting transition is a first-order phase transi­

tion.

Instead of simulating the system at constant density as discussed in the previous sec­

tion, we attempt to improve our results by simulating the system under conditions of con­

stant pressure. Constant-pressure simulations have several advantages over constant- 

density simulations near a phase transition, especially if it is first-order. Along an iso­

therm, a first-order phase transition occurs over the range of densities between the densi­

ties of the solid and fluid phases at the transition pressure. In order to determine the 

width of the melting transition in pressure using constant-density simulations, we must
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measure small changes in the pressure, which the long-term fluctuations obscure. In con­

trast, we choose the pressure exactly in a constant-pressure simulation and measure the 

density, which exhibits a large change across the phase boundary. Thus, constant-pressure 

simulations should allow much more accurate measurements of the pressure and width of 

the melting transition.

However, constant-pressure simulations also have a major disadvantage over 

constant-density simulations since they are much more strongly metastable at a first-order 

phase boundary. As we discussed in Section 2.3, the source of the metastability is the 

periodic boundary conditions, which eliminate the surfaces that are necessary for a first- 

order melting transition to occur gradually. Without surfaces, the whole system must 

abruptly decrease in density as it crosses the phase boundary since the solid prevents local 

regions of fluid from forming. Such an abrupt change cannot occur by simply changing a 

single degree of freedom, such as the length scale, because the solid configuration is not a 

good approximation to a fluid configuration at the same pressure. Thus, crossing a first- 

order phase boundary at constant pressure involves changing nearly all of the degrees of 

freedom in the system, which makes the system strongly metastable.

In contrast to the strong metastability that occurs at the phase boundary in a 

constant-pressure simulation, the metastability is much weaker when the system enters the 

transition region in a constant-density simulation. In order for a solid to form a two-phase 

system by partially melting, the solid must break apart into several pieces so that channels 

of fluid can form. The solid becomes unstable to the formation of a two-phase system 

when breaking into domains of greater than average density reduces its potential energy 

by enough to offset the energy cost of the resulting domain boundaries. Since breaking 

into such domains mainly affects the particles near the domain boundaries, it involves 

relatively few degrees of freedom compared to melting the system at constant pressure. 

Thus, the metastability associated with forming a two-phase region is much weaker than
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that which occurs at the phase boundary of a first-order transition in a constant-pressure 

simulation.

By combining the two methods of simulation, we can significantly reduce the effects 

of metastability near the phase transition and exploit the instability of a two-phase config­

uration in a constant-pressure simulation. If the pressure that we choose for the simula­

tion is slightly higher than the melting pressure, all of the fluid will freeze and the system 

will become completely solid. On the other hand, if the pressure is slightly lower than the 

melting pressure, all of the solid will melt and the system will become completely fluid. 

We avoid the strong metastability at the phase transition by starting with a configuration 

that contains both phases, so the proportion of each phase can change continuously during 

the simulatioa If the melting transition is higher-order rather than first-order, the instabil­

ity does not occur because the transition is not sharp, so the density should change 

smoothly as a function of pressure. However, we retain the advantage of setting the pres­

sure exactly and looking for a relatively large change in the density across the transition 

region. Thus, initializing constant-pressure simulations with a configuration from the tran­

sition region should allow the location and width of the phase transition to be determined 

precisely.

Even though initializing the simulation with a two-phase configuration avoids the 

strong metastability associated with melting a completely solid configuration at constant 

pressure, it does not eliminate all of the long time scales from the simulation. As we men­

tioned in Section 4.3, a simulation reaches equilibrium much faster when the system’s 

entropy increases during thermalization than it does when its entropy decreases. Thus, 

the rate at which a simulation approaches equilibrium is quite slow when its specified 

pressure is slightly higher than the melting pressure, since the entropy of the system 

decreases significantly as the fluid freezes into a crystal Annealing the defects that form 

where domain boundaries meet involves many degrees of freedom, so it is a slow process.
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In contrast, the simulation approaches equilibrium much faster when its specified pressure 

is slightly less than the melting pressure since the entropy of the system increases as the 

regions of solid melt In order to make any increase or decrease in density easily notice­

able, the initial configuration should be one that is in equilibrium near the middle of the 

transition region. Although we may not always be able to determine whether a simulation 

reaches equilibrium, we will at least know whether the density of the system is increasing 

or decreasing, which provides bounds on the width of the transition region.

Another source of long time scales that is present when the transition is first-order is 

the small difference in the Gibbs free energy between the two-phase configuration and the 

equilibrium state of the system. The difference in free energy from the state of minimum 

free energy, which defines the equilibrium system, is what drives the simulation towards 

equilibrium. When the specified pressure is very close to the melting pressure, the differ­

ence in free energy is small, so the system may take very long to change significantly from 

its initial configuration. As successive simulations get closer to the pressure at the phase 

transition, they will require more Monte Carlo sweeps to reach equilibrium.

In order to determine the location and width of the melting transition accurately, we 

used a configuration that appeared to be in equilibrium at T* =  .7 and p* = .86  to initialize 

a series of constant-pressure simulations of the 4096-particle system at T* =  .7. Fig­

ures 6.9 to 6.12 illustrate the results from four of the simulations with plots of density 

versus Monte Carlo sweep number, in which we have plotted the average densities from 

blocks of 400 sweeps. In addition, the horizontal lines on each of the plots indicate ranges 

of one standard deviation about the values of p / and p j that the free energy analysis 

predicted. From Figure 6.9, we see that the simulation at p * =  2.71 apparently reached an 

equilibrium density that is slightly higher than the predicted fluid density after about

30,000 sweeps. At p* =2.72 the simulation required nearly 40,000 sweeps before begin­

ning a definite decrease in density and almost 60,000 sweeps before its density seemed to
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stop decreasing, as Figure 6.10 illustrates. Although the simulation may not be in equili­

brium after 80,000 sweeps, its density clearly decreased to a value close to the predicted 

fluid density at the phase transition. Thus, we see strong evidence that the melting pres­

sure at T* = .7 is greater than p * =  2.72.

In contrast, Figure 6.11 shows that the simulation at p* =  2.73 neither increased nor 

decreased substantially in density after 60,000 sweeps. While the system may actually be 

in equilibrium near its initial density of p* =  .86 , we And such an interpretation uncon­

vincing since the simulation at p* =  2.72 required almost as many updates before its den­

sity clearly began to change. We think a more reasonable interpretation is that the pres­

sure is so close to the melting pressure that the free energy driving the simulation towards 

equilibrium is too small to be apparent in 60,000 sweeps. Regardless of which interpreta­

tion is correct, the melting pressure must be very close top* = 2.73.

From Figure 6.12 we see that the density in the simulation at p* =  2.75 is slowly but 

definitely increasing. Since the simulation still appears to be approaching equilibrium 

after 60,000 sweeps, we cannot estimate its equilibrium density, but we expect that it is at 

least as high as the highest value attained during the simulation. Although the simulation 

has not reached equilibrium, its increasing density provides strong evidence that the melt­

ing pressure is less than p* =  2.75.

Thus, the results of the constant-pressure simulations give further support to our 

interpretation that the melting transition at T* =  .7 is a first-order phase transition. While 

the simulations closest to the melting pressure are not all in equilibrium, they clearly indi­

cate that a density change of at least Ap* =  .025 occurs between the pressures p * =  2.72 

and p * = 2.75. The location of the melting transition is consistent with the results of both 

the free energy analysis in Chapter 5 and the constant-density simulations in the previous 

section. In addition, by bounding the region in which the transition occurs, we show that 

the melting transition is quite abrupt, which is characteristic of a first-order transition.
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While we still cannot eliminate the possibility that melting is higher-order, we have placed 

limits on the width of any region of hexatic phase, unless the simulations have completely 

missed the hexatic phase due to critical slowing down. Although we cannot completely 

rule out the possibility that critical slowing down has dominated all of our simulations, 

such a situation seems very unlikely since the results of many types of simulations give 

consistent results.

Table 6.2

Densities for T*=.7 and N-=4096

0 0
P P sweeps

2.5939 0.82927±0.00044 40000

2.6537 0.83443±0.00043 40000

2.6836 0.83722±0.00062 30000

27036 0.83841 ±0.00040 30000

27134 0.84141±0.00045 20000

2.7216 0.85865±0.00044 30000

2.7407 0.86662±0.00048 10000

Table 62  reports additional results from the constant-pressure simulations in which 

we have added the residual corrections to the simulation pressures in order to obtain a 

better value of the true pressure of each simulation. We calculated the residual corrections 

by using the measured density of the simulation and linearly interpolating between the 

values of p^or in Tables 4.4 and 6.1. The entries in Table 62  also give the number of 

Monte Carlo sweeps used to calculate the average and standard deviation at each pressure.
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For instance, at p* =2.72, whose corrected value is p* =  2.7134, we used only the last

20,000 sweeps of the 80,000 sweeps illustrated in Figure 6.10 in order to avoid using the 

configurations are clearly not in equilibrium. Although the simulation at p* =  2.75 does 

not appear to have reached equilibrium, we used its last 10,000  sweeps to calculate an 

average density in order to indicate how much its density increased during the simulation.

In Figure 6.13 we have expanded the transition region shown in Figure 5.3 and have 

turned the plot on its side. The polynomials that give the solid and fluid pressures and the 

predicted location of the transition and its statistical errors are identical to those in Fig­

ure 5.3. The data point at p* — .83 with a horizontal error bar and the one at p* =  .88 are 

the pressures obtained from the constant-density simulations reported Chapter 4. The 

constant-density simulation of the 4096-particle system that was reported in the previous 

section obtained the pressure at p* = .84 with the horizontal error bar in Figure 6.13. In 

addition, we have plotted the results of the constant-pressure simulations as they appear in 

Table 62. Even if some of the simulations did not reach their equilibrium values, they 

still indicate that the transition region is very narrow in pressure. We see some evidence 

that the transition is rounded, which could be due to the simulations’ not being in equilib­

rium since the simulations approached equilibrium by moving away from their initial den­

sity of p* =  .86 . While the rounding could indicate that the transition is higher-order and 

therefore continuous, a more likely explanation is that we are seeing flnite-size rounding 

of a first-order transition. As we mentioned in Section 1.4, a first-order transition is 

discontinuous only in an infinite system and is otherwise rounded by an amount that 

depends on the number of particles in the system.
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Pressure vs Sweep Number for N = 1024 and p*  =.84
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Figure 6.1 A plot of pressure versus sweep number for p*=.84 and N  =  1024. Each 
data point is the average pressure of a block o f 400 sweeps. The horizon­
tal lines indicate a  range of one standard deviation about the melting 
pressure that the free energy analysis predicted.
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Pressure vs Sweep Number for N = 1024 and p*  =.86
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Figure 6.2 A plot of pressure versus sweep number for p* = .8 6  and N  =  1024. Each 
data point is die avenge pressure of a  block of 400 sweeps. The horizon­
tal lines indicate a range o f one standard deviation about the melting 
pressure that the free energy analysis predicted.
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Pressure vs Sweep Number for N = 4096  and p*  =.84
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Figure &3 A plot of pressure versus sweep number for p*=.84 and =4096. Each 
data point is die average pressure of a  block o f 400 sweeps. The horizon­
tal lines indicate a  range of one standard deviation about the melting 
pressure that die free energy analysis predicted.
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Pressure vs Sweep Number for N = 4096 and p *  =.85
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Figure 6.4 A plot of pressure versus sweep number for p* =  .85 and N —4096. Each
data point is the average pressure of a block of 400 sweeps. The horizon­
tal lines indicate a  range of one standard deviation about the melting 
pressure that the free energy analysis predicted.
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Pressure vs Sweep Number for N = 4096 and p*  =.86
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Figure 6J> A plot of pressure versus sweep number for p* * . 8 6  and N =4096. Each 
data point is die average pressure of a  block of 400 sweeps. The horizon­
tal lines indicate a  range of one standard deviation about the melting 
pressure that die free energy analysis predicted.
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Pressure vs Sweep Number for N = 4096  and p*  =.87
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Figure 6.6 A plot of pressure versus sweep number for p* =.87 and W=4096. Each 
data point is die average pressure of a  block of 400 sweeps. The horizon­
tal lines indicate a range of one standard deviation about the melting 
pressure that die free energy analysis predicted.
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Pressure vs Sweep Number for N = 4096 and p*  = .83
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Figure 6.7 A plot o f pressure versus sweep number for p* =  .83 and N =4096. Each 
data point is die average pressure of a  block of 400 sweeps. The horizon­
tal lines indicate a range of one standard deviation about the melting 
pressure that the free energy analysis predicted.
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Residual Corrections vs Density
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Figure 6 .8  A plot of the residual corrections to the pressure versus density. Data 
points at densities that lie in the transition region have filled the gap that 
separated the solid and fluid regions in Figure 42.
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Density vs Sweep Number for p* = 2.71
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Figure 6.9 A plot of density versus sweep number for p* = 2.71 and T  =  .7. Each 
data point is the average density of a block of 400 sweeps. The horizontal 
lines indicate a range of one standard deviation about the values of p* 
and p j  that the free energy analysis predicted.
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Density vs Sweep Number for p* = 2.72
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Figure 6.10 A plot of density versus sweep number tor p * = 2.72 and T —.1. Each 
data point is the average density of a block of 400 sweeps. The horizontal 
lines indicate a  range of one standard deviation about die values of p* 
and p j  that the free energy analysis predicted.
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Density vs Sweep Number for p* = 2.73
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Figure 6.11 A plot of density versus sweep number for p* =  2.73 and T =.7. Each 
data point is the average density of a block o f 400 sweeps. The horizontal 
lines indicate a range of one standard deviation about the values of p* 
and Pf that die free energy analysis predicted.
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Density vs Sweep Number for p* = 2 .75
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Figure 6.12 A plot of density versus sweep number for p* = 2.15 and T —.7. Each 
data point is die average density of a block of 400 sweeps. The horizontal 
lines indicate a range of one standard deviation about the values of p /  
and pf that die free energy analysis predicted.
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The Melting Transition
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Figure 6.13 A density versus pressure plot that summarizes our results on the melting 
transition. Portions of the polynomials used to extrapolate the pressure 
data and the results of the free energy analysis are shown as in Figure 5.3. 
The data points at p" -  .83 and p*=.84 with horizontal error bars and the 
data point at p* =  .88  were obtained in constant-density simulations. The 
other data points are the results of the constant-pressure simulations.
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Chapter 7: Measurement of Elastic Constants

7.1 Derivation of Expressions for Elastic Constants

In the previous chapters we have reported only the results of measuring the potential 

energy and pressure of the system since we were interested in locating its melting transi­

tion. We now expand our investigation and measure the elastic properties of the two- 

dimensional Lennard-Jones system so that we can test the predictions of Kosterlitz and 

Thouless. In Section 12  we mentioned that Kosterlitz and Thouless4 established a cri­

terion that specifies the limit of the stability of a solid against the formation of free dislo­

cations. When the Kosterlitz-Thouless K  parameter reaches a value of 16*, free disloca­

tions, which prevent the system from supporting a shearing stress, can form and K  drops 

abruptly to zero. Converting the expression for K  in (1.1) to reduced quantities gives

K  = - j J r - r  p .i)
V l p T  2/i +  A

where fi and A are the two Lamtf coefficients. Thus, K(T„) = 16* defines the temperature 

T ‘m at which the solid loses its resistance to shear due to the formation of free dislocations. 

We note that the measured values of the Lamd coefficients are necessarily their renormal­

ized values since the simulation correctly models any interaction between the pairs of 

thermally excited dislocations.

In order to test whether the two-dimensional Lennard-Jones system melts by becom­

ing unstable to the creation of free dislocations, we will evaluate K  near the melting tran­

sition. If K  is substantially greater than 16r at the melting density along the T* =  .7 isoth­

erm, we can conclude that the system melts before reaching the instability predicted by 

the model of Kosterlitz and Thouless. In such a situation, another mechanism would have 

to allow the system to melt before the pairs of thermally excited dislocations could unbind.
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On the other hand, obtaining a value of K  =  16* at the melting density would suggest that 

melting may occur through two higher-order phase transitions that bound a region of hex­

atic phase. In Section 12 we mentioned that results of renormalization group calculations 

by Halperin and Nelson7’8 showed that dislocation unbinding leads to the possibility of 

such a two-step melting process. By measuring K  near the melting transition, we intend to 

determine whether the model of melting on which Halperin and Nelson based their 

analysis applies to the system that we are investigating.

We prepare to study the elastic properties of the system by deriving expressions that 

give the isothermal elastic constants of the system in terms of quantities that the Monte 

Carlo simulation can measure. In the following section we will use the elastic constants to 

obtain the Lamd coefficients, which we then use to evaluate K . In order to derive the 

elastic constants, we follow the procedure outlined by Squire et aL, 48 which starts with the 

partition function for the system at constant density. From Section 2.4 we obtain the par­

tition function, which is

Z  = f d x l - - d x f f J d y 1 - d y N (7 .2)

where 4>(r) is the Lennard-Jones potential and the summation extends over all distinct

*. ^ . Vi
UlUUllg X j  = -----------------------------------

ence explicit and gives

pairs of particles. Substituting x,-' = and y,-' =-p- into (7.2) makes the volume depend-

Z  = VN f d x i - - - d x ' N f d y ' 1 ---dy'N e ~ ^ Hr) . (7.3)

In terms of the Helmholtz free energy, which is F  =  - k T ln Z  by (5.18) in Section 5.2, the 

definition of the isothermal elastic constants is47

r T  = _L d*F
drtij drju

(7.4)
Tt,"
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where is the Lagrangian strain tensor, and the subscript 17' indicates that all other qy 

are held constant during differentiation.

Before we can differentiate F with respect to r/ij, we must express the distance 

between two particles in terms of the Lagrangian strain tensor. Deforming a system dis­

places every point by an amount that depends on the displacement vector, it, which is

where the coordinates of the point are xf in the undeformed system and X{ in the 

deformed system. From the displacement vector we define the displacement gradients

In our derivation of the elastic constants we will consider only the effects of homogeneous 

deformations, in which the u,y are constant throughout the system.

If the vector connecting two points is T  in the undeformed system and / f  in the 

deformed system, the squared distance between the points is

where we have used the Einstein summation convention of summing over repeated 

indices. The Lagrangian strain tensor is defined as48

where we have written 2«,y in the explicitly symmetrical form, . Thus, the dis­

tance between two points in the deformed system is

Ui = Xi - x , (7.5)

(7.6)

=  (>i + + 2 % - ^  +  uu  uk jrirj (7.7)

= 7  (“ii + “ji + uUukj) (7.8)

Rj2 = r,-2 +  2riijri ri  . (7.9)
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Having expressed the distance between two particles in terms of the Lagrangian 

strain tensor, we can obtain a derivative that we will use evaluate the derivatives in (7.4). 

We let T  be the vector connecting two particles in the system and r  =  |7*| be the distance 

between them and use (7.9) to obtain

in which the derivative is evaluated in the undeformed system. Using (7.10) and the chain 

rule, we can now differentiate F with respect to 17̂  to obtain the elastic constants. For 

now, we ignore the kinetic term in the elastic constants, which arises from the factor of VN 

in (7.3). Differentiating F once gives

where we have written the derivative as an expectation value over the partition function. 

We differentiate (7.11) and obtain

We now evaluate the contribution to the elastic constants from the factor of VN in 

(7.3). In order to differentiate the additive term of -kT N  In V  in the free energy, we first 

need the derivative of V  with respect to We note that the Lagrangian strain tensor is 

symmetric, so an appropriate rotation of the coordinate axes will transform it into diagonal

(7.11)

- K ( £  '* '/)>

(7.12)
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form.48 The two mutually perpendicular basis vectors in the rotated coordinate system 

are its principal axes, along which the deformation is only pure compression or pure 

extension. Thus, the elements of length along the principal axes, which are dx{ in the

undeformed system, become d x \ — V l  +  2n^d:c,- in the deformed system, where are 

the principal values of . The volume element, which is dV  =  dx xd x 2 in the undeformed 

system, becomes

d V ‘ = V l +  2nw + 2nW + 4ri^V 2)dV  (7.13)

in the deformed system.

We obtain the two principal values of the Lagrangian strain tensor by solving

det =  0 (7.14)

where a =  t}l v  b = = »721, and c = ri22. Solving (7.14) gives

,(•') = ± ( a + c ) ±  ± V (a  - c ) + 4 b 2 . (7.15)

Substituting the principal values given by (7.15) into (7.13) gives the volume element in 

the deformed system, which is

dV'  = dV[l + 2(a + c )  + 4(ac -  #)\ . (7.16)

In terms of »jf J-, (7.16) becomes

dV ’ =  dV  (1 +  *  -  *£ +  (7.17)

where is the sum of the squared components and ij|  is the squared sum of the diagonal 

components.
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Using (7.17) we can now calculate the derivative of V  with respect to ^  and obtain

=  V(Si3. -  2*,- +  Sqi,* ) (7.18)

in which the derivative is evaluated in the undeformed system. Differentiating -kT N  In V  

to obtain the kinetic contribution to the elastic constants gives

- kTN^ - = - k T N T ' V{-s<i +  • <7-19)

Differentiating a second time gives

- kT N ad\ V ' = kTN(S* 8, + 6* )  (7.20)d r i ijd tiu  *

where we have written the result in explicitly symmetric form. Thus, the final form of the 

elastic constants is

C& = f V i> < E  f  rkrt )

- ^ ( ( E  f v ' i H s f * ' * ) )

+  f < E  ( ■ ^ - ■ ^ ) ri ri rk ri ) + Isy L(sik s ,  + s i sj k ) . (7.2i)

7.2 The Effective Lame Coefficients

The elastic constants form a fourth rank tensor, CIjH , which has 2* = 16 components 

in two dimensions, but not all 16 of the components are independent From the definition

of the elastic constants in (7.4) and the symmetry of the Lagrangian strain tensor, we see

that the elastic constants have complete Voigt symmetry. The Voigt symmetry means that
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the elastic constants are invariant when the i j  or kl indices are exchanged and when the 

pairs i j  and kl are exchanged.47 For instance, we see that

CijU = c jM -  c ifk = c Wj (122)

Applying the Voigt symmetry reduces the number of independent components to six. By 

exploiting the symmetries of the triangular lattice, we will show that the number of 

nonzero, independent components is only two.

We first use the inversion symmetry of the triangular lattice to show that two of the 

elastic constants are zero. Since the triangular lattice is invariant under the transforma­

tions x  -* - x  and y  —► -y* c *ju must also be invariant under the same transformations. 

The elements of a tensor transform like the product of the corresponding coordinates,49 so 

the components of Ctja in which x  or y  appear an odd number of times change sign 

under at least one of the transformations and must be zero. Thus, we see that 

C__, =  =  0.xxxy

Using the rotational symmetry of the triangular lattice, we will now show that only 

two of the remaining four elastic constants are independent Under rotation the elements 

of a fourth rank tensor transform as50

CijU = aimaj*ahoalpCfmvv (7.23)

where ai}- is the orthogonal rotation matrix of the transformation. A triangular lattice is

invariant under a rotation of so the elastic constants must also be invariant under suchs

a rotation. The orthogonal matrix that describes a rotation of is
3

cos f- sin^-
3 3

^  - s i n c o s ^ -  
3 3

(7.24)
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Transforming the Cm  component of the elastic tensor with the rotation matrix

(7.24) and applying the invariance of the elastic constants give

= c 4Csttt + 2c2s 2Ctxn + 4c2s 2Cxgtf + s 4Cm f (7.25)

where we have used c =  cos ~  and s =  sin j  for convenience. Transforming the C ,^

component in the same way gives

Crm  = s 4Czzxz + 2c2s 2Ca„  +  4c2s 2CJW +  c 4C „ „  . (7.26)

By subtracting (7.26) from (7.25) we obtain

- C m ,  = (c* ~ -  Cm ) (7.27)

which gives C _ =  since cos4 j  -  sin4 j  =* 1. Substituting Cxxxx = into

(7.25) and using cos2d +  sin20 =  1 gives

Cmx = Cmn =  c a »  +  2Cxyr, • (7.28)

Thus, two elastic constants completely describe the elastic properties of the two- 

dimensional hexagonal crystal Since two elastic constants also describe an isotropic solid, 

we see that the elastic properties of the two-dimensional hexagonal crystal are isotropic. 

Using (7.21) to obtain expressions for the two independent elastic constants gives

cs.

+ 7 < S  ( * » )

and
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« £ .  =  -  j ^ K t S  f * 1) ( E  fV)> - < S  f * ’X E  f^>i

+  r < S ( 4 ’- 4 ) Jt,>'1> • (7.30)r J r 3

We now derive expressions for the Lamd coefficients in terms of the elastic constants 

in (7.29) and (7.30) so that we can evaluate the Kosterlitz-Thouless K  parameter. Landau 

and Lifshitz6 define the Lamtf coefficients, ft and A, as

where F 0 is the Helmholtz free energy of the undeformed system and rj- is the Lagran- 

gian strain tensor of the deformation. Since (7.31) is a power series expansion of the free 

energy about the undeformed crystal, it contains no linear term in Performing a simi­

lar expansion in terms of the elastic constants using (7.4) gives

7 = 1 T + t C .  ' l i  + k c l > < + l c l , i l  + c l ,  1=  » „  (7.32)

which (7.28) reduces to

Equating the corresponding coefficients in (7.31) and (7.33) gives A =  and

•* = c 2 m -

However, we do not measure the elastic constants in an undeformed crystal since the 

pressure of the Leonard-Jones solid at T* =  .7 is nonzero. Thus, the effective Lamtf coef­

ficients that we need to evaluate the Kosterlitz-Thouless K  parameter are the values of the 

Lamd coefficients at finite pressure. Instead of expanding the free energy about the
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undeformed crystal as in (7.31), we expand the free energy about the equilibrium state of 

the crystal at the temperature and density of the simulation. Thus, the linear term in 

does not vanish and we get

maintains the system at the specified density. Differentiating t-j to obtain the second- 

order terms in the expansion of the free energy gives

equilibrium state of the crystal, where tj-  =  0 .

Wallace47 derives the stress-strain derivatives by expanding the stress tensor for 

one configuration in terms of the stress tensor for another configuration and the Lagran- 

gian strain tensor that relates the two configurations. The stress-strain derivatives that he 

obtains are

which differ from the isothermal elastic constants by terms involving the applied stress. 

Since rtJ- is a symmetric tensor, has the same symmetry properties as C ,^ , so (7.35) 

leads an equation that is similar to (7.33) with the stress-strain derivatives in place of the 

elastic constants. Since the two-dimensional hexagonal crystal is isotropic, the externally 

applied stress is the same as that on a fluid at pressure p , which is

(7.34)

where i is the stress tensor47 that represents the externally applied stress that

F_
V (7.35)

where we define Bfa  = ■ . In (7.35) both t.-,- and B&L are evaluated in the
dvu  . t

BijW ~  Sjk + rjtSik +  rfl! +TjkSiI ~ 2ri jSH ) +  QjH (7.36)
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*ij =  -PS* • (7.37)

Expressing the Lamtf coefficients in terms of Bfa  and substituting (7.37) into (7.36) give

A =  * £ ,  = C^  + p  (7.38)

and

/* =  * £ ,  =  < £ ,  - p  (7.39)

for the effective Lamd coefficients at nonzero pressure.

7.3 Simulation Results

In order to obtain the values of and from the simulation of the two- 

dimensional Lennard-Jones system, we measured the four sums that appear in (7.29) and

(7.30) for many configurations. After every tenth Monte Carlo sweep we calculated

E  E  ^ ~ * 2i S  ^ ~ y2* and E  ~ ^ r \ x2 y 2- Although the Monte Carlo update
T  T  T  f  /»S

algorithm provides the sums that enter the expressions for the potential energy and pres­

sure, it does not provide the sums needed to calculate the elastic constants. Thus, we must 

calculate the four sums over all pairs of particles whose separation is less than the range of 

the truncated potential Since successive configurations in the simulation are highly corre­

lated, we lose little information by calculating the sums for one configuration out of ten 

and we slow the simulation only slightly.

Using the values of the four measurements, we can construct the expectation values 

that enter (7.29) and (7.30). Following the example of Squire et a l , 46 we report the contri­

butions of the various terms separately. The first terms in (729) and (7.30) have the forms 

of a variance and a correlation, respectively, so both of the terms arise from fluctuations in 

the data and are known as fluctuation terms. Squire et aL refer to the second term as the
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Bom term since it is the term derived by Born,51 who confined his results to the case of 

perfect crystals at absolute zero. The third term in (729), which is absent in (7.30), is the 

kinetic term, which enters through the VN term in the partition function. Although calcu­

lating the Bom and kinetic terms is simple, evaluating the fluctuation term is more diffi­

cult since the correlation of successive measurements affects its average value, not just its 

standard deviation as in the other measurements.

When we calculate the fluctuation terms by using all of the measurements together, 

we obtain the best estimates of the terms, but we have no information about their standard 

deviations. We can measure their standard deviations by grouping the measurements into 

blocks and averaging the values of the fluctuation terms calculated from each block. 

Although we obtain both average values and their standard deviations when we average 

the results from each block, inaccurate values of the fluctuation terms result if the blocks 

contain too few measurements. The averages that enter the fluctuation terms in (7.29) and

(7.30) minimize the size of the fluctuations since the mean of a normal distribution is the 

value that minimizes its standard deviation. Thus, the blocks must contain enough meas­

urements to ensure that the correlation of successive measurements does not bias the aver­

ages and thereby reduce the magnitude of the fluctuation terms.

In order to determine the effect of the correlations, we calculated the fluctuation 

terms using different numbers of measurements per block. As the size of the blocks 

increased, the fluctuation terms also increased in magnitude until they reached their true 

values. However, the number of blocks decreases with increasing block size, so the error 

estimates of the fluctuation terms become less precise. Table 7.1 reports the averages and 

standard deviations of the fluctuation terms, denoted by / OT and f rrn , which we calcu­

lated with 500 measurements at T* = .7 and p*=.95 using the indicated blocking sizes. 

We see that the fluctuation terms apparently reached their limiting values when each block 

contained about 125 measurements, so the 500 measurements appear to give accurate
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Table 7.1

Fluctuation Terms from 5,000 MC sweeps 

with p*=.95, T*=.7, W=4096

block size number f t m f a n

2 250 -726±0.60 -7.1±1.6

4 125 -11.55±0.80 -102±1.9

5 100 - 1 1.75±0.83 -10.3±2.0

10 50 -14.03±0.79 -14.2±2.4

20 25 -15.02±0.85 -15.4±2.1

25 20 -15.09±0.93 -15.2±1.9

50 10 -15.59±1.04 -16.6db2.2

100 5 -15.86±0.83 -17.6±2.4

125 4 -16.06±1.17 -18.4±3.4

250 2 -16.08±0.87 -182±2.4

500 1 -16.08 -18.1

values of the fluctuation terms. Other simulations of the solid phase at various densities 

gave similar results for the behavior of the fluctuation terms.

In addition to measuring the elastic constants in the solid phase, we also measured 

them at one density in the transition region and one density in the fluid region. In the 

transition region we measured the elastic constants at p* =  .84 since it was the only simula­

tion in the transition region that exhibited several of its long-term fluctuations in the 

number of sweeps that we could perform. In contrast to the behavior of the fluctuation
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Table 7.2

Fluctuation Terms from 50,000 MC sweeps 

with p'=.84, r '= .7 ,  Af=4096

block size number / XJBJf f a n

500 10 -26.99±0.86 -17.9±3.0

625 8 -27.21±0.65 -15.9±2 2

1000 5 -27.37±1.04 -20.8±22

1250 4 -27.31±0.65 -19.2±2.2

2500 2 -27.63±1.34 -23.1 ±4.2

5000 1 -27.65 -26.2

terms in the solid region, Table 12  shows that the 5,000 measurements that were obtained 

from 50,000 sweeps at p* =  .84 may not be enough to give an accurate value of . 

While / w  nearly reached its limiting value with 1,000 measurements per block, 

exhibited a substantial change when the number of measurements per block increased 

from 2,500 to 5,000, so we have no indication that has reached its limiting value. In 

the simulation of the fluid phase at p* =  .80, the fluctuation terms seemed to reach their 

limiting values more slowly than in the simulations of the solid phase, but the 500 meas­

urements still appeared to give accurate values.

In Table 7.3 we summarize our measurements of the elastic constants along the 

T* =  .7 isotherm in the system with N  =  4096. In addition to the fluctuation terms, we 

give the Bom term and the kinetic term We corrected the Bom term for the effects of the
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Table 7 J

Elastic Constants for T *=.7 and N= 4096

0
P fxgtt ftxn Bom kinetic c l ' C L .xzn

0.95 -16±1 -18±2 53.107±.024 0.665 38±1 35±2

0.94 -15±1 -17±2 49.505±.032 0.658 35±1 33±2

0.93 -15±1 -18±2 46.092±.024 0.651 32±1 28±2

0.92 -16±1 -21±3 43.062±.039 0.644 28±1 22±3

0.91 -16±1 -19±2 40.167±.031 0.637 25±1 21±2

0.90 -16±1 -19±2 37.655±.038 0.630 22±1 19±2

0.89 -15±1 -19±2 35.184±.021 0.623 21±1 16±2

0.88 -15±1 -23±3 33.032±.037 0.616 19±1 10±3

0.84 -28±1 -26±2 29.576±.078 0.588 2±1 4±2

0.80 -21±1 -14±4 24297±.057 0.560 4±1 10±4

tnmcated potential by taking advantage of the isotropy of the elastic properties in the hex-

2 2
agonal crystal and the fluid to obtain - ^  =  -|- by averaging over orientations. We then

r 8

used the results of the uniform density approximation and the measurements of the resid­

ual corrections to calculate the corrections to the Bom term. We cannot correct the fluc­

tuation terms with any such static corrections since the corrections would simply cancel in 

the variance and correlation that comprise the terms. However, correcting the fluctuation 

terms for the effects of the truncated potential is completely unnecessary since their errors 

are so large. The last two columns of Table 7.3 report the values of the two independent
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elastic constants with their standard deviations, which arise entirely from the fluctuation 

terms.

Table 7.4

Lamd Coefficients and Isothermal Bulk Modulus for T*=.7 and W=4096

0
P

0
P cj?L C jL**w

0
M A' B*t

0.95 6.5990±.0037 38±1 35±2 31±1 42±2 73±2

0.94 5.8960±.0020 35±1 33±2 29±1 39±2 68±2

0.93 5.2505±.0039 32±1 28±2 27±1 33±2 60±2

0.92 4.6725±.0032 28±1 22±3 23±1 27±3 50±3

0.91 4.1603±.0031 25±1 21±2 21±1 25±2 46±2

0.90 3.7110±.0051 22±1 19±2 18±1 23±2 41±2

0.89 3.3024±.0031 21±1 16±2 18±1 19±2 37±2

0.88 2.9396±.0022 19±1 10±3 16±1 13±3 29±3

0.84 2.712 ±.016 2±1 4±2 -1±1 7±2 6±2

0.80 2.0368±.0053 4±1 10±4 2±1 12±4 14±4

In Table 7.4 we report the results of using (7.38) and (7.39) to convert the elastic 

constants into the Lam4 coefficients, which we give in reduced units. We obtained the 

pressures from Tables 42  and 4.4, except for the pressure at p* = .84, which we gave in 

Section 6.1. In addition to the Lam l coefficients, we report the reduced isothermal bulk 

modulus, ffy, which is related to the Lamd coefficients. Separating the second-order con­

tributions to the Helmholtz free energy in (7.31) into hydrostatic compression and pure
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shearing stress gives

+  M i, =  y(A +  )2 (7.40)

where d  is the dimensionality of the system. Since the bulk modulus is twice the coeffi­

cient of the hydrostatic compression, we obtain

Bj> =  A + /* (7.41)

in the two-dimensional system. In addition, we see from (7.40) that the shear modulus, 

which is the coefficient of the pure shearing stress, is identical to the Lami  coefficient p.

From Table 7.4 we see that both the shear modulus and the bulk modulus of the 

solid decrease with decreasing density. At p* =  .84 and p* =  .80 the shear modulus is close 

to zero, indicating that the system is no longer a solid. Although the bulk modulus in the 

solid and fluid regions near the phase transition is large, it is considerably smaller at 

P* =  .84, which is consistent with the sharpness of the melting transition that Figure 6.13 

illustrates. Using an alternate definition of the bulk modulus, which we will present, we 

can show that the isothermal bulk modulus is exactly zero in the two-phase region of an 

infinite system, since the pressure of the system remains constant as its density changes. 

While the bulk modulus is not zero at p* =  .84 to within its errors, may not have 

reached its limiting value, which would result in a value for the bulk modulus that is too 

large. In addition, the true bulk modulus may not be exactly zero due to finite-size round­

ing of the melting transition.

The values of the elastic constants also suggest another interpretation of the long­

term fluctuations in the potential energy and pressure that we discussed in Section 6.1. 

The long-term fluctuations, which are unique to the transition region, are the same fluc­

tuations that make the fluctuation terms in the elastic constants, especially , become 

sufficiently large to nearly cancel the Born term. Thus, the long-term fluctuations indicate
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that the system’s bulk modulus is very small in the transition region. Such an interpreta­

tion in no way contradicts the previous interpretation that the fluctuations are finite-size 

effects that involve changes in the interface separating the solid and fluid regions of a 

two-phase system. Taken together, the two interpretations indicate that the changes in the 

solid-fluid interface reflect the behavior of the pressure in the two-phase region and vice 

versa.

Instead of using the values of A* that appear in Table 7.4 to evaluate the Kosterlitz- 

Thouless K  parameter, we use the values of y  in Table 7.4 and the values of B*t  that we 

obtain by a different method which gives smaller errors. Besides using (7.41) to express 

the isothermal bulk modulus in terms of the Lamd coefficients, we can write BT as

Converting (7.42) to reduced units and writing it in terms of density rather than volume 

give

Using the previously derived expressions that relate V to ijtJ- and p to t̂ ,  we can easily 

verify that (7.43) and the definition of BT in terms of the Lamd coefficients are 

equivalent

We now obtain the bulk modulus by fitting a third-degree polynomial to the pressure 

data in Table 42  using the same algorithm as we used in Chapter S. Differentiating the 

resulting polynomial gives the derivative in (7.43), which we evaluate at each of the simu­

lation densities in the solid region. We propagate the statistical errors in the data using the 

method described in Section 5.3, which involves repeating the analysis many times with 

data sets generated from the original data. Fitting a polynomial to the measured pressures

(7.42)

(7.43)
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allows us to avoid measuring second derivatives of the free energy directly, as we did to 

calculate the elastic constants. Thus, we avoid the large statistical errors in the fluctuation 

terms and obtain values of the isothermal bulk modulus whose errors are about an order of 

magnitude smaller. The third column of Table 7.S gives the results of calculating by 

fitting a polynomial to the pressure data. The results of the two methods of obtaining b ‘t 

are generally consistent, and the large error estimates for the values in Table 7.4 appear to 

be reasonable.

Table 7.5

Kosterlitz-Thouless K  Parameter for T *=.7 and JV=4096

•
P

*
P b ‘t K K

16t

0.95 31±1 71.00±.42 15Q±3 2.98±.06

0.94 29±1 63.46±.19 140±3 2.79±.06

0.93 27±1 56.48±.09 130±3 2.59±.06

0.92 23±1 50.05±.ll 113±3 2.25±.06

0.91 21±1 44.16±.12 103±3 2.05±.06

0.90 18±1 38.79±.08 -0-I-3 1.79±.06

0.89 18±1 33.94±.14 87±3 1.73±.06

0.88 16±1 29.58±.33 78±3 1.55±.06

Using the values of p  and B? reported in Table 7.5, we evaluate (7.1) to obtain the 

Kosterlitz-Thouless K  parameter, which we report in the fourth column of Table 7.5. In 

addition, we divide K  by 16x, which is the value of K  at which the system becomes
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unstable to the formation of free dislocations. Although K  decreases with decreasing den­

sity, its value is still about 50% above the limit of stability at p* =  .88, which is very close 

to the density of the solid at the melting transition. Unless K  drops very sharply between 

P* = .88 and the density of the solid at the melting transition, it would remain significantly 

larger than I6r  when the system melts. Thus, the values of K  seem to indicate that the 

melting transition occurs by some other mechanism than the unbinding of dislocation pairs 

that Kosterlitz and Thouless proposed. Since the renormalization group analysis of Halpe- 

rin and Nelson7,8 is based on the mechanism of melting that Kosterlitz and Thouless pro­

posed, their results do not seem to apply to melting in the Lennard-Jones system at 

T* — .7. In contrast, none of the measurements presented in this chapter weaken our pre­

vious interpretation that the melting transition is a conventional first-order phase transi­

tion.
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Chapter 8: Topological Defects and Angular Correlations

8.1 Topological Defects

In this chapter we attempt to test some of the predictions that the Halperin-Nelson 

theory of melting in two dimensions makes about the topological order of the system. We 

first examine the topological defects in configurations that simulations at various densities 

produced and compare the behavior of the defects to the predictions of the theory. In the 

following section we extract a measure of the angular correlation of the bonds that con­

nect a particle to its nearest neighbors. We then compare the behavior of the angular 

correlation function to that predicted by the Halperin-Nelson theory.

At low temperatures the two-dimensional system contains only bound pairs of ther­

mally excited dislocations. According to the Halperin-Nelson theory,7’8 both the number 

of such pairs and the average length of their bonds increase with increasing temperature 

until the dislocations unbind at the temperature Tm, which is defined by K(Tm) =  16s-. 

The resulting system cannot support a shearing stress since it contains free dislocations, 

but Halperin and Nelson show that disclinations may remain bound in pairs of opposite 

disclinicity, giving the system a sixfold anisotropy. According to their theory, a region of 

hexatic phase, which is orientationally ordered but translationally disordered, separates 

the normal solid and fluid phases. At a higher temperature, T{, the pairs of disclinations 

unbind and the hexatic phase becomes an isotropic fluid.

In order to test the sequence of events that the Halperin-Nelson theory predicts for 

the melting transition, we examine the defect structure of configurations at densities in 

and around the transition region. Although we vary the density of the system while hold­

ing its temperature constant instead of varying its temperature, we still expect to see the 

predicted behavior of the defects if the Halperin-Nelson theory accurately describes the 

system. Before we can extract the defect structure of a configuration, we need a precise
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definition of a particle’s nearest neighbors, which the Voronoi polygon construction21 pro­

vides. The Voronoi polygon that surrounds a particle is the polygon that encloses all of 

the points closer to the particle than any other particle. The sides of the Voronoi polygon 

are the perpendicular bisectors of the lines that connect the particle to its nearest neigh­

bors. Tobochnik and Chester21 show that a particle with a coordination number of n, 

which is its number of nearest neighbors, is a disclination of strength m = 6 -n .  They also 

note that in a triangular lattice an adjacent pair of disclinations of strengths +1 and -1 

form a dislocation whose Burgers vector is perpendicular to the line connecting the two 

disclinations.

In Figure 8.1 we show the topological defects in a configuration at T* =  .7 and 

p* = .88, where the system is a solid. The dots indicate the positions of the particles and 

the additional symbols identify the defects according to the key at the top of the figure. 

With the exception of one cluster of six disclinations, we see that all of the defects consist 

of clusters of four disclinations, which represent a tightly bound pair of dislocations whose 

Burgers vectors point in opposite directions. In the case of the cluster of six disclinations, 

the Burgers vectors of the three dislocations also sum to zero due to the symmetry of the 

lattice. We note that the thermally excited pairs of dislocations apparently show no ten­

dency to cluster together and that their effects on the crystal lattice are locaL

At p* =  .87, which is in the transition region, the number of defects is larger and a 

new type of defect appears. Figure 8.2 shows two instances of a disclination of strength 

-2  that is tightly bound to two others of strength +1. Closer inspection of the figure 

reveals that nearby vacancies in the lattice are responsible for both such defects. 

Although the system is at the measured transition pressure and below the estimated den­

sity of the solid at the phase transition, we see no evidence that free dislocations can exist 

in the system. In fact, only one pair of dislocations has separated by more than a single 

lattice spacing.
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Figure 8.3 shows the defects in a configuration at p*=.86, which contains substan­

tially more defects than were present in the previous figures. While many of the isolated 

defects are bound pairs of dislocations, a few dislocations do not seem to be bound. How­

ever, a strong tendency for the defects to cluster is evident, making a determination of the 

interactions between the defects difficult On the other hand, the disclinations appear to 

be tightly bound since we see no disclination that is more than two lattice spacings from a 

disclination of opposite sign. Thus, the predictions of the Halperin-Nelson theory seem to 

describe the defect structure in Figure 8.3. However, we could also explain the defects by 

considering the transition region to be a two-phase region in which channels of fluid 

separate domains of solid. Since we would expect lattice defects to be clustered around 

the domain boundaries in such a situation, we see that the defect structure in Figure 8.3 

also agrees with the interpretation that the melting transition is first-order.

In Figures 8.4 and 8.5 we illustrate the defect structure of configurations at p* =  .85 

and p* = .84, respectively. As in Figure 8.3, we see that the defects exhibit a strong ten­

dency to cluster. Since the concentration of defects continues to increase as the density of 

the system decreases, the distinction between bound dislocations and free ones gradually 

disappears. Still, we see no evidence of free disclinations existing in any of the configura­

tions. Figure 8.6 shows the defect structure of a configuration at p* =  .83, where the sys­

tem is an ordinary fluid. We see that the defect structure of the fluid appears to be similar 

to that of the system at p* =  .84, which is in the transition region, except that its concen­

tration of defects is higher. We cannot determine whether any of the disclinations are free 

in the fluid since the large number of defects obscures their interactions.

Although the defect structures of the configurations in Figures 8.1 to 8.6 clearly 

exhibit some of the behaviors that the Halperin-Nelson theory predicts, we can also inter­

pret them in terms of a first-order melting transition. Thus, we cannot reliably distinguish 

between the proposed hexatic phase and a two-phase region. We note only that none of
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the observed features of the lattice defects weaken our previous interpretation that the 

melting transition is first-order at T* =  .7.

8.2 Angular Correlation Function

Using the precise definition of a particle’s nearest neighbors that the Voronoi 

polygon construction provides, we can easily calculate a measure of the angular correla­

tion in the crystal lattice. Nelson and Halperin8 define an order parameter for bond orien­

tations in a triangular lattice as

tf(r) =  <?*'«»('> (8.1)

where 8 (r ) is the orientation of the bond relative to some fixed axis. The factor of six in 

the definition of arises from the symmetry of the triangular lattice. In terms of ^  the 

angular correlation function is

*efr) =  < * > ) *  0)> (8.2)

where the asterisk denotes the complex conjugate.

Halperin and Nelson show that when melting occurs due to the unbinding of disloca­

tion pairs, the resulting fluid retains an orientational order since the pairs of disclinations 

remain bound. The angular correlation function of the anisotropic fluid decays algebrai­

cally rather than approaches a constant as it does in a solid or decays exponentially as it 

does in an isotropic fluid. Thus, they predict that g 6 will have the form

8 * r )  = a r - * m  (8.3)

where ij6  is always less than j ,  except at the disclination unbinding temperature where 

V6(Ti)=  -j-. Tobochnik and Chester21 note that tj6 cannot exceed as long as
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macroscopic elastic theory correctly describes the disclinations, since the system would 

then be unstable to the formation of free disclinations. The presence of free disclinations 

makes the fluid isotropic and causes the angular correlation function to decay exponen­

tially instead of algebraically.

Rather than use the definition of $  in (8.1), we have used a slightly modified defini­

tion, which considerably reduces the amount of computation required to obtain the angu­

lar correlation function. By averaging over the bonds that connect a particle to its n 

nearest neighbors, we obtain

i>(.r)=- S e <M(,) (8.4)
* i

which is similar to the definition of rf> that Frenkel and McTague14 used. Actually, the 

only difference between (8.4) and (8.1) is that in (8.4) r  refers to the location of the parti­

cle instead of the center of the bond as it does in (8.1).21 Thus, we see oscillations in our 

results of the angular correlation function, which are caused by correlations in the parti­

cles’ positions, but the oscillations do not obscure the form of the correlation function. 

After calculating i> for each of the particles in the system, we evaluate # 6(r) by averaging 

over all distinct pairs of particles and using r= \r i - r i \.

In Figure 8.7 we plot the angular correlation function of a configuration at T* =  .7 

and p* =  .88 versus r ,  using a logarithmic scale for both axes. The range of r over which 

we plot g 6 extends from r  =<r to r  =  33a, which is nearly half the minimum dimension of 

the periodic system. We see that g 6 quickly approaches the constant value of g s =.624, 

which is consistent with the system’s being a solid at p* =  .88. Figure 8.8 is a similar plot 

of g 6 at p=.87 in which we averaged the angular correlation function over four configura­

tions. The correlation function at p*=.87 approaches the constant value of g 8=.556. 

Since we did not calculate g 6 for many configurations, we cannot accurately estimate the
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statistical error of the asymptotic value, but it appears to be about ±.002. Table 8.1 

reports the asymptotic values of g 6 for several densities at T* =  .7.

Table 8.1

Asymptotic Values

of g 6 at T* =  .7

0
P £  6

0.90 0.675

0.89 0.638

0.88 0.624

0.87 0.556

Starting with the density p* = .86, we were able to fit the angular correlation function 

to a function of the form given in (8.3) with a value of that was nonzero. In Figures 8.9 

to 8.11 we plot g 6 versus r for the densities p* =  .86, p* =  .85, and p* =  .84, respectively, 

using a logarithmic scale for both axes. In addition, we plot the function of the form given 

in (8.3) that best fits the data. While the angular correlation functions in Figures 8.9 and 

8.10 seem to fit the predicted function quite well, the fit is somewhat poorer in Fig­

ure 8.11. We believe that the upward deviation from the straight line for large r is due to 

the periodic boundary conditions of the system, which allow the effect of a particle to 

wrap around the system in both directions. At each of the densities we averaged g e over 

four configurations to obtain the function that we plotted. We observed large fluctuations 

in the angular correlation functions of the configurations, which make the errors at the
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densities in the transition region considerably larger than those at higher densities. Due to 

the large number of Monte Carlo sweeps associated with the long-term fluctuations, we 

could not accurately determine the statistical errors of the correlation functions. In 

Table 82  we report the values of a and for each of the densities at which g 6 exhibited 

a nonzero slope.

Table 8.2

Values of a and n*

r-II
%ke3

•
9 a *76

0.86 0.461 0.037

0.85 0.516 0.315

0.84 0.727 0.831

At densities of p* =  .83 and lower, the angular correlation function appeared to 

decay exponentially rather than algebraically. However, accurate measurement of the 

correlation length was impossible due to large fluctuations in g 6 as it approached zero.

In our measurements of the angular correlation function we saw each of the 

behaviors that Halperin and Nelson predicted. In the solid regime and at the highest den­

sity in the transition region, g s clearly approached a constant value. At the densities in 

the transition region other than p= .87, g 6 fit the functional form in (8.3) quite well over a 

substantial range of r. We also observed exponential decay of the correlation function at 

densities that lie in the fluid regime. While our data agree with some of their predictions, 

the values of >76 at p* =  .85 and p* =  .84 are considerably above the maximum value of j
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that they predict Although at p* =  .85 the value of is close enough to j  so that we 

could dismiss the difference as error due to the long-term fluctuations in g 6, the same is 

not true at p* =  .84. Thus, the behavior of the angular correlation function in the transi­

tion region argues against interpreting the transition region as a region of hexatic phase.

Tobochnik and Chester21 note that the angular correlation function might exhibit an 

algebraic decay in a two-phase configuration, arising from the competing effects of its 

solid and fluid components. While g e would approach a constant in the domains of solid, 

it would decay exponentially to zero in the regions of fluid. Averaging the two behaviors 

over the whole system might produce an algebraic decay in g 6 or at least a behavior that 

is sufficiently similar to an algebraic decay that we could not distinguish between the two 

in our measurements. Thus, the measurements of the angular correlation function support 

interpreting the transition region as a two-phase region rather than as a region of hexatic 

phase.
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Lattice Defects at />*=.88

symbol n #  %

© 5 25 .6

• 6 4046 96.8

A 7 25 .6

Figure 8.1 The topological defects in a  configuration at T* =  .7 and p* =  .88. The 
dots indicate the positions of the particles and the additional symbols 
identify the defects according to die key at the top of the figure. In the 
key n is the coordination number and #  and % are the number and per­
centage of such particles in the configuration.
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Lattice Defects at p * = .87

symbol n # %

O 5 49 1.2

• 6 4000 97.7

A 7 45 l.l

e 8 2 .0

Figure 8.2 The topological defects in a configuration at T* = .7 and p* =  .87. The 
dots indicate the positions of the particles and die additional symbols 
identify the defects according to the key at the top of the figure. In the 
key n is the coordination number and #  and % are the number and per­
centage of such particles in the configuration.
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L a tt ic e  D e f e c t s  at * ii

symbol n # %
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Â P ; ;  •’ v ”2V- • •©• v . ' •'•'•'<?•

.  .  . q A .  • - A . -  . . o '  • • • • • • • . ‘ . Y  ■ •

Figure 83  The topological defects in a configuration at T * =.7 and p* =  .86. The 
dots indicate the positions of the particles and the additional symbols 
identify the defects according to the key at die top of the figure. In the 
key n is the coordination number and #  and % are the number and per­
centage of such particles in the configuration.
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Figure 8.4 The topological defects in a configuration at T* =.7 and p*=.85. The 
dots indicate the positions of the particles and the additional symbols 
identify the defects according to the key at the top of the figure. In the 
key n is the coordination number and #  and % are the number and per­
centage of such particles in the configuration.
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Lattice Defects at p* = . 8 4

symbol n # %

© 4 2 .0

O 5 426 10.4

• 6 3249 79.3

4 7 408 10.0

0 8 II .3

Figure 8 3  The topological defects in a configuration at T * = .7 and p ' - .8 4 . The 
dots indicate the positions o f the particles and the additional symbols 
identify the defects according to the key at the top of the figure. In the 
key n is the coordination number and #  and % are the number and per­
centage of such particles in the configuration.
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Lattice Defects at p* =.83

symbol n #  %

© 4 2 .0

0 5 470 11.5

• 6 3160 77.1

a 7 454 ll. l

0 8 10 .2

P .’

Figure 8.6 The topological defects in a  configuration at T* =  .7 and p*=.83. The 
dots indicate the positions o f die particles and the additional symbols 
identify the defects according to the key at the top of the figure. In the 
key n is the coordination number and #  and % are the number and per­
centage of such particles in the configuration.
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Angular Correlation Function at £*=.88
I.OOt

. 5 0 -

.01
20 50

Figure 8.7 The angular correlation function of a configuration at T* = .7 and 
p*=.88. A logarithmic scale is used for both axes. The horizontal line 
indicates the asymptotic value of g 6=.624.
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Angular Correlation Function at p* = .87
I.OOt

.50 -

.2 0 -

20 50
r/cr

Figure 8.8 The angular correlation function averaged over four configurations at 
T *=.7 and p*=.87. A logarithmic scale is used for both axes. The hor­
izontal line indicates die asymptotic value o fg t =.556.
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Angular Correlation Function at p*  =.86
I.OOt

.5 0 -

.0 5 -

.01
5020

Figure 8.9 The angular correlation function averaged over four configurations at 
r *  =  .7 and p* =  .86. A logarithmic scale is used for both axes. We also 
plot gf^r) =  a  far a  =  0.461 and 0.037, which was fit to the
correlation function.
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Angular Correlation Function at .85
I.OOt

.50

g6 .10-

.0 5 -

.01
20 50

Figure 8.10 The angular correlation function averaged over four configurations at 
T *=.7 and p*= .85. A logarithmic scale is used for both axes. We also 
plot g ^ r )  =  a  for a  = 0^16  and t;6= 0315 , which was fit to the
correlation function.
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Angular Correlation Function a tp * = .8 4
I.OOt

.2 0 -

.0 5 -

. 0 2 -

20 50

Figure 8.11 The angular correlation function averaged over four configurations at 
T*=.7  and p* — .84. A logarithmic scale is used for both axes. We also 
plot g ^ r )  =  a r~n* ^  for a =0.727 and i;6= 0.831, which was fit to the 
correlation function.
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Chapter 9: Conclusions

After presenting a detailed description of the Monte Carlo method in Chapter 2, we 

discussed the implementation of the simulation on a concurrent processor and analyzed its 

performance in Chapter 3. The simulation of the Lennard-Jones system was the first 

application that we implemented on the Caltech concurrent processor, which required a 

more general communication environment than the Crystalline Operating System pro­

vided. The irregular nature of the algorithm required that we implement an interrupt- 

driven communication system, which allowed the nodes to run asynchronously during the 

simulation. In order to maintain the necessary sequential ordering of the updates, we 

developed a technique that guarantees a consistent ordering of conflicting updates without 

drastically decreasing the efficiency of the update algorithm. Although we designed the 

implementation for a concurrent processor, the implementation would also perform very 

well on a sequential computer since we used geometric hashing to reduce the complexity 

of the algorithm to order N. Thus, we could easily use our simulation program to investi­

gate larger systems when faster computers become available.

In Chapter 4 we reported measurements of the potential energy and pressure of the 

Lennard-Jones system along integration paths in the solid and fluid regions. While our 

results are not quite the same as those of other investigators, such as Barker et aL,18 

finite-size effects might be significantly affecting their systems, most of which are substan­

tially smaller than ours. In Chapter S we used the measurements of the potential energy 

and pressure to calculate the free energy in the solid and fluid regions, allowing us to 

predict the location of the melting transition. The results of our free energy analysis, 

which predicted a melting pressure of =  2.724±0.034, differ from the results of Barker 

et aL, who reported a predicted pressure of =  2.85 at the same temperature of T * =  .7.
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In Chapter 6 we presented the results of directly simulating the system in the transi­

tion region. The measured values of the pressure in the constant-density simulations were 

near the value predicted by our free energy analysis and were consistent with the 

pressure’s being constant across the transition region. We interpreted the transition region 

as a two-phase region, which identifies the melting transition as being first-order. In addi­

tion, we demonstrated that finite-size effects are significant in the transition region in the 

1024-particle system. Thus, we believe that most of the previous simulations of the transi­

tion region were completely dominated by finite-size effects. We also observed long-term 

fluctuations of the pressure that are unique to the transition region, which make obtaining 

accurate expectation values in the transition region difficult

In addition, we also presented the results of a series of constant-pressure simulations 

of the transition region. Since melting a solid without surfaces is strongly metastable in a 

constant-pressure simulation, we initialized the simulations with a configuration from a 

constant-density simulation of the transition region. We showed that such constant- 

pressure simulations can provide bounds on the width in pressure of the transition region 

and that the Lennard-Jones system has a very sharp melting transition. We believe that 

the constant-pressure simulations provided the strongest evidence that the melting transi­

tion is a first-order transition. In addition, we noted that the results of the free energy 

analysis, the constant-density simulations, and the constant-pressure simulations are all 

consistent

In Chapter 7 we presented measurements of the elastic constants of the system that 

allowed us to test the predictions of the Kosterlitz and Thouless. Although our statistical 

errors were rather large, the results indicated that the system melted before reaching the 

Kosterlitz-Thouless instability temperature. Thus, we do not believe that the two- 

dimensional Lennard-Jones system at T* =  .7 melts through the formation of free disloca­

tions.

- - -  -- -   _  _ —  _   _  .  —  -------
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We directly examined the topological characteristics of the system in Chapter 8 by 

illustrating the topological defects and by plotting the angular correlation function. At 

high densities along the T* =  .7 isotherm we observed bound pairs of dislocations that had 

no noticeable tendency to cluster. In the transition region the number of defects was large 

enough to obscure their interaction, but we did notice a definite tendency of the defects to 

cluster. Since we could interpret the characteristics of the defects in terms of either a hex- 

atic phase or a two-phase region, we could not distinguish reliably between the two by 

examining the lattice defects.

The angular correlation function clearly approached a constant at densities where 

the system was a solid and at the highest density in the transition region. At densities 

where the system was a fluid, the angular correlation function seemed to decay exponen­

tially, but long-term fluctuations prevented an accurate measurement of its correlation 

length. The angular correlation function appeared to decay algebraically in the transition 

region, as predicted,by Halperin and Nelson. However, at the two lowest densities in the 

transition region it decayed faster than the results of the Halperin-Nelson theory allow. 

Thus, the angular correlation function provides evidence that the Halperin-Nelson theory 

does not correctly describe melting in the system.

The finite-size effects and long-term fluctuations that we observed in the transition 

region indicate that future simulations of the transition region should perform tens of 

thousands of Monte Carlo sweeps on systems containing at least 4096 particles. Although 

we do not believe that the Lennard-Jones system at T* = .7 melts through the mechanism 

that Kosterlitz and Thouless proposed, the order of the transition may be different at 

other temperatures. Investigating the change in entropy across the transition at different 

temperatures would provide an indication of whether the transition becomes continuous at 

some temperature.
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Potentials other than the Lennard-Jones potential could also be studied in an attempt 

to determine whether a two-dimensional system of particles ever melts through the 

Kostcrlitz-Thouless mechanism. A s interesting system for further study consists of parti­

cles interacting with a repulsive j  potential, such as that investigated by Morf.52 The

techniques of constant-pressure simulation that we used in Chapter 7 provide a way of 

placing bounds on the width of the transition region, which is our most sensitive indicator 

of the nature of the transition. In addition, our method of using constant-pressure simula­

tions appears to be sufficiendy sensitive that direct measurements of the finite-size round­

ing of first-order transitions could be made. Such measurements could be compared to the 

behavior of the finite-size rounding that Privman and Fisher predictss As more powerful 

computers become available, simulations could reflect actual experimental conditions 

more accurately. In particular, the simulation could account for the interaction of the sub­

strate with the atoms adsorbed onto its surface. Effects of multiple layers and the transi­

tion to a full three-dimensional system could then be investigated.

Our investigations in concurrent computing were some of the first that used an 

actual machine. Having several years of experience programming our concurrent proces­

sor, we believe that we understand the major issues involved in the Crystalline Operating 

System that we briefly described in Section 3.4. Since CrOS is now relatively stable, we 

present a detailed discussion of its current version in a book54 that we are writing about 

concurrent computing. While we have designed and implemented a high-performance 

interrupt-driven communication system for the Monte Carlo simulation program, 28 many 

important issues, such as the user interface, still need to be resolved. At a deeper level, 

many questions about the correct programming model for concurrent computing remain.
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Appendix A: Calculating Pressure from the Partition Function

As we mentioned in Section 4.1, we will calculate the pressure of a two-dimensional 

system of N  interacting particles by using the partition function that describes the system 

in a constant volume V. In Section 2.2 we gave the partition function of the system at 

temperature T  as

Z  =  h 2 N ^  d *pN I d 2 q i '  ’ '  d *qif e ~ P E
(2.2)

in which p={kT)~l, and E  is the total energy of the system. In (2.2) p{ and q{ are the 

momentum and position of particle /, respectively. Splitting total energy into its kinetic 

and potential components gives

n p? 
£  =  ,? 1

(A.1)

In Section S.l we derived an expression for the pressure of the system in terms of its 

Helmholtz free energy, F , which is

dF
av — - f ' (5.8)

Using F =  - k T  In Z  from (5.18) in Section 5.2, we write the pressure in terms of Z as

az
av (A.2)

Since limits of the integrals over the particles’ coordinates in (2.2) depend on the 

volume of the system, we must change variables to make the volume appear explicitly
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before differentiating with respect to V. Dividing each coordinate by the length of the

d iqi
system in its direction gives d 2q'i = , which we substitute into (22) to obtain

(A.3)

Substituting (A.3) into (A2 )  and differentiating with respect to V  gives

P =
kTN ,dU_K 

v  '  a v  >V  ' d V ' (A.4)

where (A) is the expectation value of A at the temperature T  and volume V, as defined in 

Section 22.

Using the general result in (A.4), we now consider the case of the Lennard-Jones 

system, following the same procedure as in Section 4.1. Converting (A.4) to reduced units 

gives

In order to differentiate with respect to the Lennard-Jones length parameter instead of V,

• V  we use V  =  — — to obtain
No2

Substituting (A.6 ) into (A.5) with the chain rule and using p* =  —̂7- give
V

(A.7)
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Q T J *
Since the expectation value of ——  is its average over many configurations in a

d<7

Monte Carlo simulation, we can obtain the pressure of each configuration by evaluating 

(A.7) for each configuration. In Section 4.1 we gave the potential energy of the Lennard- 

Jones system in reduced units as

U* = 4 [<r12( r ' 1J> -  <r«<r-6> ] (4.1)

where (2.14) expresses (r-12) and (r“6) as a sum of the indicated quantity over all pairs of

particles, divided by N. By substituting (4.1) into (A.7) and differentiating U* with

respect to a, we obtain an expression for the pressure of the Lennard-Jones system, which 

is

p *  =  p 'T *  +  12p* [2<r12(r~12) -  <r6( r -6) ]  . (A.8)

We note that (A.8 ) is identical to (4.6), which was obtained by a different argument
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Appendix B: Calculating Pressure from the Virial Theorem

As we mentioned in Section 4.1, we will calculate the pressure of a two-dimensional 

system of N  interacting particles by using the virial theorem. The virial theorem is55

where A is the kinetic energy of the system and #*,' is the total force acting on particle /, 

which is located at Since the virial theorem is statistical in nature, it uses the time 

averages of the relevant quantities, where the average of a quantity A over the interval r is

The virial theorem applies to any system of particles whose coordinates and momenta 

remain finite, such as the Lennard-Jones system.

In order to derive the pressure of the system using the virial theorem, we begin by 

separating the total force acting on the particles into internal forces and forces of con­

straint In the Lennard-Jones system the forces of constraint which m aintain the system 

at its specified density, consist of a hydrostatic compression that can be described as a 

uniform pressure over the unit cell of the periodic system. Writing the forces of constraint 

as an integral over S, the surface of the unit cell, in terms of the pressure p gives

where ft is the unit vector that is normal to the surface. The internal force on particle / is 

which is the force due to all of the other particles but not the pressure. We use

(B.1)

o
(B.2)

I f  If
S  n  'F'i = S  n - F i - $ P ( r - f i ) d A  
«=1 »=1 *

(B.3)
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/  ^  • TdV = <£(T- d)dA  to convert from the integral over a closed surface in (B.3) to an
v  ®

integral over the volume of the system. In addition, we use V -T =  d , where d  is the 

dimensionality of the system, to obtain

I f  IfEn-?i = ?:n-Fi-dpv. (b.4>
i=l 1=1

The equipartition theorem gives the average kinetic energy of a d  -dimensional sys­

tem that contains N  particles, which has dN  kinetic degrees of freedom, as

K  =  ±dNkT . (B.5)

We obtain an expression for the average pressure of the system by substituting (B.4) and 

(B.S) into (B.1), which gives

1 Z~ N k T
P = d y ^ 1r i ' f i + v '  (B6)

Keeping in mind that the thermodynamic pressure of the system is the time average 

of the pressure, we will drop the time averages in the remaining discussion and refer to 

the pressure of an individual configuration. In order to perform the sum in (B.6 ), we write 

Ff as the sum of the forces due to each of the other particles, which gives

=  (b .7)
i=l t=l )=i

where the force on particle i due to particle j  is Tij- We obtain f i j  =  ~Tji from Newton’s 

Third Law of Motion and substitute it into (B.7), giving

=  (b.8)
i=i <0>
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where ( i j)  indicates all distinct pairs of particles.

We now assume that the forces between particles arise from an interaction potential 

<f> so that | Tij I =  -  rij =  1^ I- In terms of the potential (B.8) becomes
ij

=  (B.9)
<=i <«> Sra

Substituting (B.9) into (B.6 ) gives

(R10)

which is a general expression for the pressure of a system of particles that interact through 

an arbitrary pairwise potential

We now consider the Lennard-Jones potential which in Section 2.3 we gave as

= • (2 -12) 

Substituting (2.12) into (B.10) and differentiating <f> give

in which (r -B) =  -jt £  r~*. Converting to reduced units and setting d  =  2 give the final 
N  <«>

result for the pressure of the two-dimensional Lennard-Jones system, which is

p * =  1 2 /  [2a12< /-12> -  *6<r-6>] +  p*T* . (B.I2)

We note that the result that we obtained by deriving the pressure from the virial theorem 

is identical to the results in Section 4.1 and Appendix A, which were derived by different 

methods.
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Appendix C: N orm al M ode Analysis

1 uIn order to calculate — X) low,-»which appears in (529), we must solve for the nor­

mal mode frequencies of the hexagonal crystal that consists of N  interacting particles. We

a general periodic function. After enumerating the wavevectors that the periodic bound­

aries of the system allow, we express the potential energy of the system in terms of the 

Lennard-Jones potential and solve for the frequencies of the normal modes. Finally, we 

report the results of the sum that enters (529) for several values of N  and for two types of 

periodic boundary conditions.

Equations of Motion

We derive the equations of motion for the N  particles using Feynman’s notation, 37 

except that we will consider only one particle per unit cell of the lattice. We label a parti­

cle in the crystal with J7, where f t  =  n-Jtl + n jZ 2 two-dimensional system and the 

7ta are the basis vectors of the crystal lattice. A convenient pair of basis vectors for the 

hexagonal crystal is66

where a is the lattice constant and £  and $  are the unit vectors in the x and y directions, 

respectively. We define the basis vectors of the reciprocal lattice in terms of the basis vec­

tors of the direct lattice as57

begin by deriving the equations of motion for the N  particles and solving them in terms of

(T1 = a£
(C.1)

(C.2)
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Substitudng the basis vectors of the direct lattice from (C.1) into (C.2) gives

a yf%a
4* - <C-3>

which shows that the reciprocal lattice differs from the direct lattice by having a different 

lattice constant and being rotated by

We denote the displacement of the a coordinate of the particle at f t  from its equilib­

rium position as Z ajj. Since we consider only small oscillations of the particles about 

their equilibrium positions in the analysis of normal modes, we can expand the potential 

energy of the crystal in powers of the displacement of the particles, which gives

-  (C4)

in which all of the derivatives are evaluated at Z aj f  =  0. Since U0 is simply the potential 

energy of the static lattice, it cannot affect the dynamics of the particles, so we will ignore 

i t  The first-order term vanishes since we evaluate the derivatives about the equilibrium 

positions. Considering only small oscillations of the particles allows us to ignore all but 

the first nonzero term, which leaves only the second-order term in the potential energy.

In terms of U we write the total force on the particle f t  due to the other particles as

Substituting the second-order term of V  from (C.4) into (C.5) gives

<c -«
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where we define

r 'f t  — '-'afi =
d2u

d Z a j f a Z 0f?+ hi
(C.7)

2=0

Substituting Faj j  into Newton’s Second Law of Motion gives the equation of motion for 

each particle in the crystal, which is

m Z a j t  £  Z pjt+B (C.8)

where m  is the mass of the particle.

In order to solve the equations of motion, we assume a general periodic function as 

the solution,

(C.9)

Substituting (C.9) into (C.8) and differentiating give

m u2aa = '£ C % 3al9 e* a  
MZ

(C.10)

Enumeration of Allowed Wavevectors

Before we can obtain the frequencies of the normal modes by solving (C.10), we 

must enumerate the allowed values of £*, which depend on the way the periodic bound­

aries are specified. Periodic boundary conditions mean that

Z/f = Ztf+a (c.i i)

for certain values of A?. By substituting (C.9) into (C.11), we see that the periodic bound­

ary conditions allow only the values of !c that satisfy
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F-A? =  2rm (C.12)

where m is an integer.

A standard method of specifying periodic boundary conditions on a triangular lattice 

uses a 60* rhombus as a unit celL Since the unit cell is periodic along two axes, we obtain 

two vectors that describe the periodicity of the lattice, which are

S t1 =  A/jZTx
= (C13)

where the Zta are the basis vectors of the lattice. Substituting both vectors in (C.13) into 

(C.12) gives

r = ^ r F ‘ + ^  ( C 1 4 >

as the allowed wavevectors, in which the S a are the basis vectors of the reciprocal lattice 

and m x and m  2 are both integers.

As we mentioned in Section 2.3, using periodic boundary conditions with a unit cell 

that is a 60* rhombus has a disadvantage since the vectors in (C.13) are not mutually per­

pendicular. A more convenient specification of the boundary conditions uses a rectangu­

lar unit cell, which allows the simulation program to determine the boundary of the unit 

cell with less computation. The pair of vectors that describes the periodicity of the rec­

tangular unit cell is

A?i =  M-gti

fif2 = -  j ? i )   ̂ ^

where and A? 2 express the periodicity in the x  and y  directions, respectively. As 

before, we substitute the two vectors that describe the periodicity of the system into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-206 -

(C.12) to obtain the allowed wavevectors, which are

where m  x and m 2 are again both integers.

We note that the two different types of periodic boundary conditions lead to dif­

ferent sets of allowed wavevectors. However, any effect that the details of the boundary 

conditions have on the system is a finite-size effect by definition. Thus, we expect that 

any differences due to the boundary conditions in the contribution of the normal modes to 

the free energy of the crystal will decrease as the number of particles in the system 

increases.

In (C.14) and (C.16) we express the allowed wavevectors in terms of the integers m 1 

and m 2, but we did not specify the range of the integers. Since FA? defines a phase angle 

in (C.9), which has a period of 2r, only certain wavevectors correspond to distinct normal 

modes of the crystal. A convenient specification of such wavevectors is that they lie in 

the first Brillouin zone,57 which is the region of space about a point in the reciprocal lat­

tice which is closer to that point than any other point in the reciprocal lattice. Any 

wavevectors that lie on the boundary of the first Brillouin zone are weighted by a factor of 

y . In addition, we can further reduce the number of wavevectors that we use to calculate 

the frequencies of the crystal’s normal modes by exploiting the symmetry of the hexagonal 

lattice. We calculate the unique frequencies by using the wavevectors that lie in of the

first Brillouin zone and then weight them according to the number of times that they occur 

in the full zone.38 We easily obtain the correct weighting for each frequency by initially 

giving it a weight of 12 and then dividing the weight by a factor of two for each boundary 

of the sector of the first Brillouin zone on which it lies.
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Solving for the Normal Mode Frequencies

In order to calculate the frequencies of the crystal’s normal modes, we solve (C.10) 

for each of the wavevectors that we discussed in the previous section. We assume that the 

total potential energy is the sum of a pairwise interaction potential over all distinct pairs 

of particles in the crystal, which we write as

(C.17)

Using (C.17) for the potential energy and referring to (C.7), we see that the only 

nonzero contributions to come from pairs of particles that include the particle at ft. 

Each such pair makes two contributions to one where A? =  0 and one where A? =* 0 . 

In addition, we can further simplify by using

dZ aJ}+Kt d Z a jt

where A? =*= 0. Substituting (C.17) and (C.18) into (C.10) gives

(C.18)

mu>Ja a =  2  a g ( l - e * a ) 
Afl*o

dH{ra )

d Z a fP Z fij! 2 = 0

(C.19)

Since the contributions to the sum in (C.19) from A? and -A? differ only by the sign 

of their exponent, we combine such pairs in the sum in order to eliminate the imaginary 

exponent and obtain

mu2aa = 2  a ^ 2(1 ~ coslc-Af) 
A3 az ajjd z fijf

(C20)
2=0

in which the sum includes only the values of A? that lie in the upper half-plane, excluding 

A? = 0.
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In order to solve (C.20) and obtain the normal mode frequencies, we define the fol­

lowing three quantities for convenience:

A =  E 20  -c o s jT - j? ) -^ -  
d x 2

(C.21)

B = S  2(1 -  cosF-A?) -£ % -  
^  dxdy (C.22)

C =  S  2(1 -c o s F -A ? ) -^ -  .
dy2

(C.23)

Substituting (C.21), (C22), and (C.23) into (C.20) and writing the result in matrix form 

give

A -  m u2 B a,
B C -  m u2 .*» .

=  0 (C.24)

We solve (C.24) by setting

det
A -  m u2 B 

B C -  m u 2 =  0 (C.25)

The solution of the quadratic equation that results from expanding (C.2S) is

n w 2= ±(A + C) ±  ± V (A  -  C )2 + 4B 2 . (C.26)

We calculated the frequency of the normal mode corresponding to each of the 

allowed wavevectors by summing A , B, and C separately for each value of Jc and substi­

tuting the results into (C.26). We then obtained the contribution of the normal modes to

the free energy of the crystal by calculating -j-y! ln« /, which appears in (5.29), after
N

weighting each value of o> appropriately. In Table C.1 we report the contribution of the
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nonnal modes to the free energy at p* =  .95 for several values of N  and for both types of 

periodic boundary conditions. The columns labeled rhombus and rectangle give the results 

for the boundary conditions in (C.13) and (C.15), respectively. We note that the difference 

in the results due to the specific form of the boundary conditions disappears as N 

increases. In addition, we observe that the contribution to the free energy approaches a 

limiting value as N  increases.

Table C l

Normal Mode Contribution to F* at p* =  .95

N rhombus rectangle

64 5.26046 5.26033

256 5.21523 521512

1024 5.19997 5.19993

4096 5.19514 5.19514

16384 5.19369 5.19368

65536 5.19326 5.19326

262144 5.19314 5.19314
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Appendix D: Calculation of the Second Yirial Coefficient

In this appendix we will derive an expression for the second virial coefficient of a

system of N  particles that interact through an arbitrary pairwise interaction potential. 58 

We then consider the case of the Lennard-Jones potential and evaluate the resulting

in which the virial coefficients, B 2, B s, ■ • •, depend on temperature but not on density.

In order to calculate the second virial coefficient, B^, we express the pressure of the 

system in terms of the partition function, which we expand in powers of V ~ \  In Sec­

tion S.l we derived an expression for the pressure of the system in terms of its Helmholtz 

free energy, F , which is

Using F =  -k T  In Z  from (S.l8) in Section 5.2, we write the pressure in terms of Z  as

In Section 22 we gave the partition function of the system at temperature T  and volume 

V as

integral to obtain the second virial coefficient44,46 In Section 5.4 we introduced the virial 

expansion, 48 which is

p =  kT(p +  B^p* +  F jp8 +  • • ) (5.49)

ainz (D.l)

(2.2)
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in which 0= (kT )~ 1, and £  is the total energy of the system. In (22) p{ and q{ are the 

momentum and position of particle respectively.

We can ignore all factors in (22) that do not depend on V  since they will cancel in 

(D.l). In addition, we rewrite the integrand in (22) as

Z  = /  d iq 1 • • • d*qN [l +  (e~Pv  -  l)] 
v

(D.2)

so that we can expand In Z  in a power series. Using the series expansion of ln (l + x )  

gives

“  _1 m +1
in Z  = N ]n V  + £  —------

mil m i) (D.3)

Since the integral in (D.3) still contains different powers of V, we must also expand the 

exponential in a power series, which gives

o o  _ t m + l

InZ  =  ATlnF +  £  1
m =l m i S  L^rJd'qi 'd'qsU*

V "  »=i ni v
(D.4)

In order to obtain the second virial coefficient, we must collect all of the terms in 

(D.4) that contain V~l . We will assume that the potential energy can be written as

U = X  *(r,-y) 
«>>

(D.5)

where the sum extends over all distinct purs of particles. In (D.S) ^ is the pairwise 

interaction potential, and rtJ- is the distance between particles / and j .  If the integrand of 

(D.4) contained no interaction potential, the integral over each particle would contribute a

factor of V, which would cancel the factor of — . However, since the index n must be
V"

at least one, the interaction potential must act between at least one pair of particles. When
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4 acts between a single pair of particles and m =  1, the integrals over the particles contri­

bute a factor of VN~ \  which gives us the desired V~x terms in the expansion.

Keeping only the terms that contain the interaction of a single pair of particles in 

(D.4) and performing the integrals over the other particles give

InZ = N h iV  + -—r- 2  ^ f - V N~x M ULzlij d2q p  (D>6)
VN nl 2 v

where we integrate over the distance between the two interacting particles. The factor of 

^  in (D.6 ) arises from the number of interacting pairs in the system. We will 

N 2replace the factor with in subsequent equations because the difference between the

two factors represents a finite-size effect, which disappears in large systems.

By performing the sum in (D.6) and converting the integration variables to polar 

coordinates, we obtain

a 7w oo

]nZ = N l n V + y - f  f  ( e - P + - l ) r d r d 6  . (D.7)
2 k o o

Substituting (D.7) into (D.l) and differentiating give

2«r oo

p = k T p - U T p * f  1) r d r d d  . (D.8)
o o

By comparing (5.49) and (D.8), we identify the second virial coefficient as

OO

B 2 = - x f  (e-t»  -  1) r dr (D.9)
o

where we have performed the integration over Q.
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We now integrate (D.9) to obtain the second virial coefficient using the Lennard- 

Jones potential, which we gave in Section 2.3 as

* - * [ ( 7 ) " - ( 7 )*] • (2.12)

Using x  =  —, we convert (D.9) to reduced units, giving<T

oo
B*2 = - r j  (e T -  1) x d x  . (D.10)

o

In terms of x  the Lennard-Jones potential is

4* = 4(x~12 -  x -* )  . (D .ll)

In order to make the numerical integration easier, we analytically integrate (D.10) in 

the limits, x —*0 and x —*oo. In the former limit, the exponential in the integrand of (D.10)

approaches 0 since <f>* is large and positive. We denote the resulting integral as I x, which

is

s
I x = - * f  - x  dx  =  (D.12)

o

where S is small enough that the exponential in (D.10) is always 0 to within the precision 

of the numerical integration that follows.

In the limit of x-*oo we expand the integrand in (D.10) in powers of x~6, which

gives

where we have dropped terms of order x ~ 18 and higher. Integrating (D.13) gives
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We determine an appropriate value for L  by ensuring that the contribution of the terms 

that we dropped is less than the precision of the following numerical integration.

We evaluate the remaining integral,

l

/ 2 =  -* • /(*  r* - i ) x d x  (D.15)

by an appropriate numerical method, such as Simpson’s rule. Combining the results of I v  

/ 2, and / s for T* — .7, S = .5, and L  =  5 gives

B*2 =  -2.761223 (D.lo)

when we use a step size of .0001 in Simpson’s rule. Our value of the second virial coeffi­

cient agrees closely with the value of -2.7613 that Morrison and Ross obtained.44
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